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Abstract

With rapid advancements in sequencing technology, we now have the ability to sequence

the entire human genome, and to quantify expression of tens of thousands of genes

from hundreds of individuals. This provides an extraordinary opportunity to learn

phenotype relevant genomic patterns that can improve our understanding of molecular

and cellular processes underlying a trait. The high dimensional nature of genomic data

presents a range of computational and statistical challenges. This dissertation presents

a compilation of projects that were driven by the motivation to efficiently capture

gene regulatory patterns in the human transcriptome, while addressing statistical

and computational challenges that accompany this data. We attempt to address two

major difficulties in this domain: a) artifacts and noise in transcriptomic data, and b)

limited statistical power.

First, we present our work on investigating the effect of artifactual variation in

gene expression data and its impact on trans-eQTL discovery. Here we performed

an in-depth analysis of diverse pre-recorded covariates and latent confounders to

understand their contribution to heterogeneity in gene expression measurements.

Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from

the Genotype Tissue Expression (GTEx) project. Finally, we characterized two

trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid.

Second, we present a principal component based residualization method to correct

gene expression measurements prior to reconstruction of co-expression networks. In

this work, we demonstrated theoretically, in simulation, and empirically, that principal
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component correction of gene expression measurements prior to network inference can

reduce false positive edges. Using data from the GTEx project in multiple tissues, we

showed that this approach reduced false discoveries beyond correcting only for known

confounders.

Third, we present a multi-study integration approach to identify universal tran-

scriptional patterns underlying epithelial to mesenchymal transition (EMT) across

different cancer types. With informed statistical analysis and functional validation,

we identified consensus ranked universal EMT genes. This gene list consisted of a)

known EMT genes, b) genes studied in a subset of carcinomas, unknown in prostate

cancer, and c) novel unknown EMT and cancer genes such as C1orf116.

Finally we present methods to integrate co-expression signals across multiple

human RNA-seq data to reconstruct networks with increased power. First, we

considered multiple aggregation strategies to build context-agnostic networks using

data from recount2. These networks captured ubiquitous patterns of gene co-expression

shared across tissues and cell types. Next, we briefly describe a hierarchical mixture

model groupNet that leverages signal from multiple datasets to learn the structure

of a Gaussian Markov random field (GRMF) to build context-specific co-expression

networks.
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Chapter 1

Introduction

Innovations in engineering and technology have played a remarkable role in discovery

and clinical translation in medicine (https://aimbe.org/milestones-of-innovation/).

The completion of the Human Genome Project (HGP) in 2003 was a notable break-

through, with its main goals of a) determining a draft sequence of the 3 billion

nucleotides that make up the human genome and b) identifying genes that it contains.

This was the culmination of a large-scale, interdisciplinary, thirteen-years-long effort

involving scientists with diverse expertise ranging from biology, chemistry, and genetics

to mathematics and computer science. The publication of the sequence of the human

genome in April 2003 was a groundbreaking achievement with the potential to revolu-

tionize medicine[1]. Since then, rapid advancements in sequencing technologies have

made it possible to sequence the human genome and quantify expression measurements

for every human gene – thereby presenting the opportunity to investigate patterns of

gene expression and regulatory structure at the genome-wide level. Effective utilization

of these data also presents a range of computational and statistical challenges.
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Background

Cellular and tissue level organization of the human body

Humans are complex multi-cellular organisms, and this complexity increases with

increasing levels of cellular organization. Cells are the smallest independent functional

entities of the human body. For example cardiomyoctyes are cells that make up the

cardiac muscle. A group of similar types of cells that work together to perform a

specific function come together to form a tissue (e.g. cardiac muscle tissue). An

organ is composed of a group of tissues that perform specific physiological functions.

The heart, for instance, is the organ composed of cardiac muscle tissue that pumps

blood throughout the body. Finally, an organ system constitutes multiple organs that

together perform systemic physiological functions. The circulatory system consists of

the organs that transport nutrients and oxygen to different parts of the body. These

levels of organization increase in complexity starting from cells to tissues to organs to

organ systems to a complete organism.[2]

Figure 1-1. Structural organization of human body.
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Central Dogma of molecular biology

Each cell of every multi-cellular organism, including humans, contains a copy of its

genome. A genome carries the complete set of genetic information required for normal

functioning and survival of an organism. It is often also referred as the ‘blueprint’ of

an organism. It is made of Deoxyribonucleic Acids (DNA) that contains instructions

to make proteins and other molecules required for normal cell functioning. The

information in DNA is stored in the form of a code that contains four nucleic acid

bases: adenine, cytosine, guanine, thymine. Parts of DNA that code for functional

end products such as RNA (Ribonucleic Acid) and protein are called genes. The

central dogma of molecular biology explains the information flow from DNA to its

end products through gene expression. There are two key stages of gene expression:

• Transcription – the process during which information in DNA is converted to

RNA

• Translation – the process during which information from RNA is converted to

amino acid sequences, which are the building blocks of proteins [3]

Similar to DNA, the information in RNA is also stored as a code in the form of four

nucleic acid bases: adenine, cytosine, guanine, and uracil. Historically, RNA was

viewed as an intermediate messenger between genes and proteins. While messenger

RNA, also called as mRNA serves as an intermediate molecule, there exists a diverse

group of non-protein coding RNAs such as lincRNAs, miRNAs, piRNAs, snoRNAs,

rRNA, and tRNA that are functional end products by themselves[4]. Despite containing

the same exact copy of the genome, different cells and tissues in the human body have

different phenotypes and perform very diverse functions. Regulatory programs recruit

gene products in the form of proteins and RNAs to generate specific transcriptional

patterns thus enabling cells, tissues, and organs to perform distinct functions. This
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Figure 1-2. Central dogma of molecular biology.

control can be exerted at various stages of gene expression including genetic, epigenetic,

transcriptional, and post-transcriptional regulation[5–7].

Gene expression and phenotypic variation

For many years after the discovery of the structure of DNA in 1953 scientists turned

their focus to understanding the functions of protein coding genes and how mutations

in these genes alter quantities and structures of the resulting proteins[8]. Defects in

gene regulatory programs can alter expression patterns in cells and tissues which can

eventually lead to clinically relevant phenotypes. It is critical to understand regulation

of gene expression and how it changes or adapts in response to genetic, chemical, or

environmental stimulus. Therefore, identifying genes or genetic variants associated

with phenotypic variance can provide insight into understanding cellular and molecular

processes involved in trait manifestation.

Differential gene expression analysis

Differential gene expression analysis (DGE) involves identifying genes that show

significantly different expression patterns between conditions or are associated with a
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phenotype of interest such as diseased vs normal patients, treatment vs control, cell

types, tissues, developmental stage, or other conditions.

Statistical hypothesis tests that are commonly used to identify differentially expressed

genes can be grouped into two categories:

• Parametric: These tests are based on assumptions that the data being tested

follow particular statistical distribution. For example, t-test and ANOVA

assumes that the data follows a gaussian distribution.

• Non-parametric: These tests do not make any assumptions about the data.

Wilcoxon rank-sum test is an example of a rank based non-parametric test

Usually in these tests, there are two hypotheses: a) the null hypothesis (H0) that states

that there is no statistical difference between the expression of the gene between the

two groups and b) an alternate hypothesis (H1) that states that there is a statistically

significant difference in the expression of the gene between the two groups.

Example:

Given that we are interested in using a t-test to test if a gene g is differentially

expressed between individuals with cancer (C) and normals (N), we test:

H0 : µC = µN (1.1)

H1 : µC ̸= µN (1.2)

Here, µC and µN correspond to the mean expression of gene g in cancer patients and

normal patients.

Identification of differentially expressed genes can extend our understanding of genetic

and molecular processes involved in phenotypic variation. Further, genes identified

can be used in downstream analysis such as building a relevant prediction model or

identifying disease subtypes.
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Genetic variation and transcriptomic regulation

The most frequent variants in the human genome are Single Nucleotide Variants

(SNV). These are substitutions that affect a single base pair. A SNV that is present in

a sufficiently large fraction of a population is called a Single Nucleotide Polymorphism

(SNP). Genome wide association studies (GWAS) utilize large scale population data

to identify germline SNPs associated with a trait. Since the first GWAS on age related

macular degeneration in 2005, there has been an abundance of trait associated variants

reported in literature. However, a traditional GWAS does not provide a framework

to link these statistical associations to genes or functional biological mechanisms

underlying a trait; this remains a daunting task. Genetic variants can have a series

of cascading effects first relayed at the molecular level from mRNA to protein to

pathways which can then impact cellular and physiological processes underlying traits

and diseases.

The majority of trait-associated genetic variants discovered by GWAS have been

Figure 1-3. Cis-eQTLs and trans-eQTLs.

found in the non-coding regions of the genome. In response, over the last 10 years

there have been several large scale efforts to improve understanding of the functional

effect of genetic variation on gene expression and its impact within and across tissues.

Genetic variants that are quantitatively associated with amounts of gene expression
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are called expression quantitative trait loci(eQTL)[7, 9, 10]. Two types of eQTLs are

of common interest, as seen in Figure 1-3:

• cis-eQTLs: genetic variants that quantitatively affect expression of genes on the

same molecule of the chromosome.

• trans-eQTLs: genetic variants that quantitatively affect expression of gene

located on a different molecule of chromosome.

While there has been significant progress in understanding the mechanism of cis-

genetic effect on gene expression, gene expression regulation mediated by trans-eQTLs

is not completely understood[11]. Trans-regulatory effects can be mediated through

cis-regulation affecting expression of a nearby gene, which would then in turn alter

expression of a distant gene. Trans-eQTLs can provide a framework to understand the

cascading effect of genetic and molecular signalling and implication in diseases1-4.

Figure 1-4. Trans-eQTLs.

Co-expression networks

Genes are known to interact with each other to relay signal across biological pathways

and processes. This form of signal transduction is a critical piece in the foundation

of human biology. [12–14]. This is evident by concerted expression patterns among
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genes observed in empirical data. Networks are often used to model such interactions

among entities in complex systems.

A co-expression network is an undirected graph where genes are represented as

nodes and a functional relationship between genes is represented as an edge between

nodes. Gene networks can identify patterns of expression indicative of functional

and regulatory relationships among genes. These can be used to determine critical

pathways and genes underlying a trait or disease [15]. A complete understanding

of in vivo functional interactions among genes is lacking for most cell types, tissues,

or disease relevant contexts. Therefore, discovering functional relationships between

genes can improve our understanding of genetic and molecular bases of gene regulation.

These functional relationships can also provide insights into the cascade of molecular

events critical for disease manifestation in humans under a variety of conditions.

Challenges

A primary concern for nearly all modalities of genomic measurements is that the

data is inherently noisy. Transcriptomic measurements are routinely affected by a

wide-range of artifacts and unwanted heterogeneity that is not the primary signal of

interest [16–19]. Structured artifactual signal by covariates such as RNA integrity

number of a sample, proportion of GC nucleotides in a gene, or batches in which

samples are processed adds biased noise in gene expression measurements. These

biases in the data are sometimes correlated with outcomes or variables of interest, that

can lead to inaccurate conclusions[16]. Most scientific data also contains unbiased

random (white) noise that does not have a pattern, but can yet affect statistical power

to detect signal. In this dissertation, we attempt to address the impact of biased noise

in gene expression data. Additionally, limited statistical power is another major hurdle

in computational genomics. Low probability of finding true signal, overestimation of

effect sizes leading to false positives, and lack of reproducibility are some of the major
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issues that result from under-powered studies. While we have the ability to measure

expression for over 40,000 genes, the number of gene expression samples available is

usually limited to a few hundred samples which is insufficient to make consistent and

statistically robust conclusions.

Thesis outline

Amidst noisy, under-powered, and heterogeneous genomic data, this thesis presents

carefully informed statistical and machine learning approaches to elucidate the under-

lying basis of transcriptional regulation along with some examples of its implication

in human disease. Towards this, we describe: a) methods to analyze and address

the impact of confounding on gene expression data in trans-eQTL mapping and

co-expression networks, and b) multi-study integration based approaches to leverage

power across multiple studies to improve signal estimation in differential expression

analysis and gene co-expression networks.

• In chapter 2 using GTEx data, we perform an in-depth analyses of diverse

confounding variables that contribute to gene expression heterogeneity and affect

mapping of eQTLs. Next, we identify genetic variants with distal regulatory

effects on gene expression (trans-eQTLs) and characterize some trait associated

trans-eQTLs. This work was published in Nature and involved joint effort of

multiple trainees and PIs in the GTEx consortium. Trans-eQTL analysis was

joint work with Brian Jo, Yuan He, and Benjamin Strober [20].

• In chapter 3, we present a principal component based residualization approach

to correct gene expression data prior to reconstruction of co-expression networks.

This was joint work with Claire Ruberman and was published in Genome Biology

[21].

• In chapter 4, we present a multi-study integration based approach to identify
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global transcriptional regulatory patterns underlying epithelial to mesenchymal

transition (EMT) phenotype in cancer. In this work, with informed statistical

analysis and functional validation, we identified global expression patterns in

epithelial to mesenchymal transition (EMT) phenotype in cancer and discovered

candidate regulatory genes. This work was published in BMC cancer [22].

• In chapter 5, we present an aggregation-based approach to reconstruct context-

agnostic gene co-expression networks using large scale transcriptomic data from

recount2[23]. We find influential genes and relationships involved in critical

processes shared across different biological contexts such as cell cycle, mitosis,

etc. This is joint work with Prashanthi Ravichandran.

• In chapter 6, we present a mixture model based probabilistic method to recon-

struct context specific gene co-expression networks. This can be particularly

useful when working with publicly available open source datasets, which often

have missing context-specific meta-data. Using preliminary simulation analyses

we show that our method can identify and group studies by relevant context.

• In chapter 7, we summarize the work in this dissertation and discuss future

directions.
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Chapter 2

Distant regulatory effects of
genetic variation across human
tissues

While we have successfully mapped cis-eQTLs for a majority of genes, discovery

of replicable trans-eQTLs remains a challenging task. Trans-eQTL discovery is

particularly impacted by: a) small effect sizes, b) artifact-induced false positives, and

c) statistical power. Most studies have attempted trans-eQTL discovery in limited cells

or tissue types [24–26]. It is known that genetic regulation of gene expression varies

across tissues and cell types. Context-specific regulation of gene expression recruits

specific transcriptional programs that allow different types of cells and tissues to

perform distinct biological functions. In this work, we performed trans-eQTL mapping

across 44 human tissues from the Genotype Tissue Expression (GTEx) Project to

understand distant regulatory effects of genetic variation on gene expression.

Contributions

This chapter describes the trans-eQTL analyses from the GTEx project that I co-led

along with Brian Jo, Yuan He, and Benjamin Strober. My main contributions to this

work included:

11



• Investigation of latent factors anticipated to capture artifactual variation in gene

expression that were used for eQTL mapping, and its impact on trans-eQTL

discovery

• Replication of trans-eQTLs in thyroid with TCGA Thyroid cancer data

• Investigation of functional role of eVariants and eGenes in thyroid and skeletal

muscle, and performed relevant analyses

This work was published in [20].

Introduction

The human genome encodes instructions for the regulation of gene expression, which

varies both across cell types and across individuals. Recent large-scale studies have

characterized the regulatory function of the genome across a diverse array of cell types

each from a small number of samples[27–29]. Measuring how gene regulation and

expression vary across individuals has further expanded our understanding of healthy

tissue function and the molecular origins of complex traits and diseases[7, 9, 24, 25,

30, 31]. However, to date, these studies have been conducted in limited, accessible cell

types, thus restricting the utility of these studies in informing regulatory biology and

human health.

In this study, we associate genetic variants with gene expression levels from the

GTEx v6p release. For the first time, we identify trans-eQTLs across 16 tissues

and highlight their increased tissue specificity relative to cis-eQTLs. We evaluate

trans-eQTLs to characterize their functional characteristics, genomic context, and

relationship to disease-associated variation.
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Study design

The GTEx project has created a reference resource of gene expression from ’normal’,

non-diseased tissues. Every tissue sample was examined histologically. If the tissue was

non-diseased and in the normal age-range of the donor, the sample was accepted. RNA

was isolated from postmortem samples in an ongoing manner as donors were enrolled

in the study. For this data release, 44 sampled regions or cell lines were considered,

each from at least 70 donors and thereby considered suitable for eQTL analysis: 31

solid-organ tissues, ten brain subregions including duplicates of two regions (cortex

and cerebellum), whole blood, and two cell lines derived from donor blood and skin

samples. We hereafter refer to these tissues, regions, and cell lines as the tissues used

in eQTL analysis. A total of 7,051 samples from 449 donors represent the GTEx v6p

analysis freeze (Fig. 1a). This is 4.3 times more samples than reported in the GTEx

pilot phase[32]. DNA was genotyped at 2.2 million sites and imputed to 12.5 million

sites (11.5 million autosomal and 1 million X chromosome sites) using the multi-ethnic

reference panel from 1000 Genomes Project Phase 1 v3[33]. Sampled donors were

83.7% European American and 15.1% African American. Whole genome sequencing

was performed for 148 donors to a mean coverage greater than 30×, and all donors were

exome-sequenced to a mean coverage over captured exons of 80×. The resulting data

provide the deepest survey of individual and tissue-specific gene expression to date,

enabling a comprehensive view of the impact of genetic variation on gene expression.

All data are available from dbGaP (accession phs000424.v6.p1) with multiple publicly

available data views available from the GTEx Portal (www.gtexportal.org).

Methods

No statistical methods were used to predetermine sample size. The experiments were

not randomized, and investigators were not blinded to allocation during experiments
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and outcome assessment.

Sample procurement

All human donors were deceased donors. Informed consent was obtained for all donors

via next-of-kin consent to permit the collection and banking of de-identified tissue

samples for scientific research. The research protocol was reviewed by Chesapeake

Research Review Inc., Roswell Park Cancer Institute’s Office of Research Subject

Protection, and the institutional review board of the University of Pennsylvania. Com-

plete descriptions of the donor enrollment and consent process, as well as biospecimen

procurement, methods, sample fixation, and histo-pathological review procedures

were previously described[32, 34]. Briefly, whole blood along with fresh skin sam-

ples was collected from each donor and shipped overnight to the GTEx Laboratory

Data Analysis and Coordination Center (LDACC) at the Broad Institute for DNA

genotyping, RNA expression, and culturing of lymphoblastoid and fibroblast cells.

Two adjacent aliquots were then prepared from each sampled tissue and preserved in

PAXgene tissue kits. One of each paired sample was embedded in paraffin (PFPE)

for histopathological review. The second was shipped to the LDACC for processing

and molecular analysis. Brains were collected from approximately 1/3rd of the donors

and were shipped on ice to the brain bank at the University of Miami where 11 brain

sub-regions were sampled and flash-frozen. These samples were also shipped to the

LDACC for processing and analysis.

All DNA genotyping was performed on blood-derived DNA samples unless un-

available, in which case a tissue-derived DNA sample was substituted. RNA was

extracted from all tissues and RNA sequencing was performed on all samples with

a RIN score of 5.7 or higher and with at least 500 ng of total RNA. Nucleic acid

isolation protocols and sample QC metrics applied are as described in the previous

study[32] (Supplementary Information in [20]).
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Data production

Non-strand specific, polyA+ selected RNA-seq libraries were generated using the Illu-

mina TruSeq protocol. Libraries were sequenced to a median depth of 78 million 76-bp

paired-end reads. RNA-seq reads were aligned to the human genome (hg19/GRCh37)

using TopHat (v1.4) based on GENCODE v19 annotations. This annotation is

available on the GTEx Portal (gencode.v19.genes.v6p model.patched contigs.gtf.gz).

Gene-level expression was estimated as reads per kilobase of transcript per million

mapped reads (RPKM) using RNA-SeQC on uniquely mapped, properly paired reads

fully contained with exon boundaries and with alignment distances ≤ 6. Samples with

less than 10 million mapped reads or with outlier expression measurements based on

the D-statistic were removed.

DNA from 450 donors was genotyped using Illumina Human Omni 2.5M and

5M Beadchips. Genotypes were phased and imputed with SHAPEIT2[35] and

IMPUTE2[36], respectively, using multi-ethnic panel reference from 1000 Genomes

Project Phase 3[37]. Variants were excluded from analysis if they: (1) had a call rate

< 95%; (2) had minor allele frequencies < 1%; (3) deviated from Hardy-Weinberg

Equilibrium (P < 1.0 × 10−6); or (4) had an imputation info score less than 0.4. The

final genotyped and imputed array VCF (file format v4.1) for autosomal variants

contained genotype posterior probabilities for each of the three possible genotypes for

11,552,519 variants across 450 GTEx donors. The dosages of the alternative alleles

relative to the human reference genome hg19 were used as the genotype measure for

subsequent eQTL analysis. In addition to array-based genotyping, 148 and 524 donors

were whole genome and exome-sequenced respectively. Additional details on genotyp-

ing, imputation, and sequencing can be found in the Supplementary Information of

[20]

15



RNA-seq data processing and correction for technical con-
founders

We conducted trans-eQTL mapping within the 44 tissues with at least 70 samples

each. Only genes with ten or more donors with expression estimates > 0.1 RPKM and

an aligned read count of six or more within each tissue were considered significantly

expressed and used for trans-eQTL mapping. Within each tissue, the distribution

of RPKMs in each sample was quantile-transformed using the average empirical

distribution observed across all samples. Expression measurements for each gene in

each tissue were subsequently transformed to the quantiles of the standard normal

distribution. The effects of unobserved confounding variables on gene expression were

quantified with PEER[17], run independently for each tissue. Fifteen PEER factors

were identified for tissues with fewer than 150 samples; 30 for tissues with sample sizes

between 150 and 250; and 35 for tissues with more than 250 tissues. The covariates

that were most consistently associated with PEER factors include factors related

to parameters of donor death, ischaemic time, RIN, and sequencing quality control

metrics. In addition, we have observed that little, if any, genetic signal is present in

the PEER factors.

To further understand the effect of PEER correction on gene expression and

trans-eQTL mapping in each tissue, we compared the PEER factors from each tissue

to sample and donor specific covariates. First, we fit a linear model between gene

expression data E and loadings PEER factors L. Using this model, we obtained the

expression component Ef , that was removed by PEER correction as given below:

E = µ + β · L

Ef = E − Er

We tested the association of Ef with different sample specific and donor specific

covariates. In each tissue, we first selected covariates with more than one unique
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entry after excluding missing values. For covariates with categorical entries, we only

considered categories with more than 20 observations. Samples that did not meet this

criteria were considered as missing values. The covariates that were included in this

analysis had at least 50 observations (without missing values) in at least 31 tissues

based on the above criteria. Finally, for each selected covariate we fit a linear model

with expression component removed by PEER factors, Ef as the dependent variable

and the covariate C as:

Ef = µ + β · C

From this model, we computed the proportion of variance of Ef explained by the

covariate as the adjusted R2:

Adjusted R2 = R2 −
[︃
(1 − R2) p

p − n − 1

]︃

Trans-eQTL mapping

Matrix eQTL[38] was used to test association of all autosomal variants (MAF > 0.05)

with all gene transcripts restricted to variants and genes lying on different chromosomes

in each tissue independently using an additive linear model. For trans-eQTL mapping,

we tested variants for association with expression of only protein coding or lincRNA

genes. We included, as covariates, the three genotype PCs, genotyping platform, sex,

and PEER factors estimated from expression data in Matrix eQTL when performing

association testing. The correlation between variant and gene expression levels was

evaluated using the estimated t-statistic from this model. The corresponding FDR

was estimated using Benjamini-Hochberg FDR correction[38, 39] separately within

each tissue and using permutation analysis. For all trans association tests, we applied

stringent quality control to account for potential false positives due to RNA-seq

read mapping errors, repeat elements, and population stratification (Supplementary

Information at [20]).
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Multi-tissue eQTL mapping

We quantified tissue-specificity and tissue-sharing of trans-eQTLs using Meta-Tissue[40]

which extends Metasoft[41], a meta-analysis package, by using a mixed effects model

for eQTL sharing that accounts for correlation of expression between tissues driven by

overlapping donors.

All genotypes and gene expression quantification estimates were adjusted for

covariates in accordance to the single tissue analysis as described in the previous

sections. For each variant-gene pair, we calculated mixed model effect size estimates

in each expressed tissue, thereby adjusting for partial sharing of signal between tissues.

These effect size estimates were used in meta-analysis using Metasoft[41] to assess

tissue-specificity of each variant-gene pair. For each variant-gene pair tested, Meta-

Tissue estimates a global P-value of association and the posterior probability that an

effect exists in a tissue (m-value). For computational feasibility, the MCMC method

was used to approximate the exact solution.

To supplement this analysis, we also performed multi-tissue analysis using a

hierarchical FDR control[42] for trans-eQTLs analysis (Supplementary Information at

[20])

Co-localization of GWAS and eQTL associations

In order to assess the probability that molecular traits as estimated by cis- and trans-

eQTLs, and physiological traits as estimated by GWAS share the same causal variant,

we applied the coloc R package[43]. For each GWAS, we approximated the number

of independent loci by extracting variants with at least genome-wide significance (P

< 5 × 10−8) and farther than 1 MB away from all other variants of higher statistical

significance. For each genome-wide significant variant, we extracted the list of all

eGenes (q-value < 0.05 for cis-eGene) within 1 Mb for coloc analyses. For each eGene,
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we excluded any variants without either eQTL or GWAS association statistics (effect

size estimate, standard error and P-value). We obtained reference information such as

MAF, sample size, and case-to-control proportions (in case of binary traits) for each

variant whenever available otherwise, study-wide estimate was used as a proxy. We

defined a region or an eGene as having evidence of co-localization when region- or

gene-based posterior probability of co-localization (PP.H4.ABF) P P 4
P P 3+P P 4 > 0.9.

TCGA thyroid RNA-seq analysis

To replicate trans-eVariants in thyroid, we used Thyroid Carcinoma (THCA) RNA-seq

and genotype array data from The Cancer Genome Atlas (TCGA). Filtering out

tumor normal and metastatic samples, we restricted our analysis to 498 primary

tumor samples. Next, after log transforming RNA-seq RSEM measurements, we

ensured that expression of each gene follows a Gaussian distribution by projecting

each gene expression levels to the quantiles of a standard normal. To account for

noise and confounding factors in RNA-seq measurements, we corrected the data

by 35 PEER factors. Using a linear model while adjusting for 35 PEER factors

with MatrixeQTL, we tested the effect of each variant on chr 9 position 100600000 -

100670000 on expression levels of all trans genes. We used the Benjamini-Hochberg

method to correct for multiple hypotheses testing (assessed only among 24 variants

tested). Genes with FDR ≤ 0.1 were called as trans-eGenes.

Data and biospecimen availability

Genotype data from the GTEx v6p release are available in dbGaP (study acces-

sion phs000424.v6.p1; www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000424.v6.p1). The VCFs for the imputed array data are in phg000520.v2.GTEx

MidPoint Imputation.genotype-calls-vcf.c1.GRU.tar (the archive contains a VCF for

chromosomes 1-22 and a VCF for chromosome X). Allelic expression data is also
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available in dbGap. Expression data (read counts and RPKM) and eQTL input files

(normalized expression data and covariates for 44 the tissues) from the GTEx v6p

release are available from the GTEx Portal (http://gtexportal.org). eQTL results

are available from the GTEx Portal.

Results

Trans-eQTL mapping 44 human tissues

To identify trans-eQTLs, we tested for association between every protein-coding or

lincRNA gene and all autosomal variants where the gene and variant were on different

chromosomes. To minimize false positives in trans-eQTL detection, we controlled

for the same observed and inferred confounders as optimized for cis-eQTL discovery,

and further removed genes with poor mappability, variants in repetitive regions, and

trans-eQTLs between pairs of genomic loci that show evidence of RNA-seq read

cross-mapping due to sequence similarity[44]. Applying this approach, we found 673

trans-eQTLs at a 10% genome-wide FDR. This includes 112 distinct loci (R2 ≤ 0.2)

and 93 unique genes (94 total gene associations, including an eGene detected in both

testis and thyroid) in 16 tissues (Table 2-I, Figure 2-1). An alternative approach

to quantify FDR at the gene level identified 46 genes at 10% FDR, with estimated

q-values less than 0.4 for all 94 gene associations identified using the genome-wide

FDR (Table 2-I).

Testis had the most trans-eGenes, with 35 eGenes in 157 samples (Figure 2-1),

reflecting the elevated number of expressed genes (16,853 protein-coding genes and

4,362 lincRNA genes) and cis-eGenes (6,796 genes). We found statistical power to

detect additional associations in these restricted tests, such as the test restricted to

cis-eVariants. Our results indicate that increases in sample sizes will continue to yield

additional eQTLs, especially in the trans-eQTL setting where statistical power is the
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Genome wide Gene-level FDR
Tissue No. of samples No. of trans-eGenes No. of trans-eVariants No. of trans-eGenes
Muscle – Skeletal 361 9 43 4
Whole Blood 338 1 2 1
Skin – Sun Exposed (Lower leg) 302 6 16 3
Adipose – Subcutaneous 298 2 7 0
Lung 278 2 2 2
Thyroid 278 21 181 3
Cells – Transformed fibroblasts 272 1 10 1
Nerve – Tibial 256 0 0 1
Esophagus – Mucosa 241 3 11 3
Artery – Aorta 197 1 1 1
Skin – Not Sun Exposed (Suprapubic) 196 1 1 2
Stomach 170 0 0 2
Colon – Transverse 169 2 10 2
Testis 157 35 267 16
Pancreas 149 2 12 1
Adrenal Gland 126 1 1 1
Brain – Putamen (Basal ganglia) 82 3 11 2
Vagina 79 4 27 1
Total unique 93 602 46

Table 2-I. Trans-eVariant and trans-eGene discoveries for genome-wide FDR
control, and trans-eGene discoveries for gene-level FDR control. Each tissue with
non-zero values is included as a row; the columns include the number of samples for that
tissue, followed by the number of unique trans-eGenes and trans-eVariants identified in the
genome-wide tests and the number of unique trans-eGenes found using gene-level FDR
calibration. Ultimately the set of 673 trans-eQTLs identified in the genome-wide approach
yielded 602 unique trans-eVariants.

major limitation.

Correction for technical confounders in trans-eQTL mapping

To account for hidden batch effects and other potential confounders in the gene

expression data, we used the Probabilistic Estimation of Expression Residuals (PEER)

[45] method to estimate a set of latent covariates for gene expression levels for each

tissue type. The number of PEER factors was selected to maximize ciseGene discovery,

and this optimization was performed for three sample size bins: tissues with fewer

than 150 samples, tissues with ≤ 150 and < 250 samples, and tissues with ≥ 250

samples. Specifically, the eQTL discovery pipeline was run in increments of 5 PEER

factors for 12 tissues spread across the sample size bins using a 100 permutations.

Based on these results, and to avoid potential overfitting, 15, 30, and 35 PEER factors

were selected, respectively for the three sample size bins(Figure 2-2). We did not
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Figure 2-1. Trans-eQTL discovery. Number of trans-eQTLs (x-axis) per tissue (y-axis),
with sample size indicated by point size.

have sufficient statistical power or sufficient numbers of trans-eQTLs to tune the

number of PEER factors for trans-eQTL analysis without facing potential overfitting

to spurious signal. Post-hoc analysis demonstrated no clear trend in number of trans-

eQTL discoveries as we varied the number of PEER factors removed. Further, failure

to remove confounding factors could result in false positive transeQTL associations.

Therefore, we opted to use the settings determined by the analysis of cis-eQTLs for

the trans-eQTL analysis as well. This aggressive correction, explained 59-78% of total

variance in gene expression levels, however may lead to false negatives, reducing the

signals for broad effect trans-eVariants with many target genes. Indeed, several loci

with numerous associations that were found in uncorrected data disappeared after

controlling for PEER factors. We also found that the trans-eVariants detected before

PEER correction were enriched for association with known technical confounders

(Figure 2-3).

We tested association of PEER factors from each tissue with known technical and

biological covariates recorded for each sample and donor. PEER factors from each

tissue were correlated with known technical and biological covariates recorded for

each sample and donor (Figure 2-4,2-5). The covariates that were most consistently

associated with PEER factors include factors related to parameters of donor death,
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Figure 2-2. Identification of the optimal number of PEER factors for hidden
covariate correction during eQTL analyses. The number of PEER factors was chosen
to maximize eGene discovery and this optimization was performed for three sample size
bins: tissues with < 150 samples, tissues with ≥150 and <250 samples, and tissues with
≥250 samples available. The eQTL discovery pipeline was run with increments of 5 PEER
factors for the 12 tissues shown using a reduced number of permutations (100 instead of
the adaptive 1000-10000 used for all other analyses). Based on these results and to avoid
potential overfitting, 15, 30, and 35 PEER factors were selected respectively.

ischemic time, RIN, and sequencing quality control metrics. Nucleic acid isolation

and library construction batches and total sequencing depth were also moderately

associated. Across tissues, the median percent variance explained (PVE) by RIN of

the set of PEER factors used for correction was 0.05, with a maximum PVE of 0.13 in

heart − left ventricle. The PVE by these covariates of the expression data after PEER

correction was negligible-median 4 × 10−3 for RIN. Similarly, after correction, the

detected trans-eVariants show little association with known covariates. For example,

the two tissues with the most trans-eQTLs, thyroid and testis, show no association

between RIN and any trans-eVariant at FDR 50%.

Tissue-specific patterns of trans-eQTLs

We observed much greater tissue specificity for trans-eQTLs than a set of FDR-matched

cis-eQTLs (Figure 2-6). This observation was robust to choices of m-value threshold

and selection criteria for matching cis-eQTLs. While 3.8% of trans-eQTLs were shared
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Figure 2-3. Trans-eVariants lost after PEER correction are enriched for associa-
tion with known covariatesTrans-eVariants that were detected in raw expression data
but lost after PEER correction were tested for association with known sample covariates
using a linear model. This quantile-quantile plot shows - log10(P-values) of trans-eVariants
lost after PEER correction as compared to matched random variants, with each tissue
shown as a distinct color. Combined across tissues, the association - log10(P-values) are
significantly larger than random (Wilcoxon rank sum test; P ≤ 2.2 × 10−16).

across three or more tissues at m-value > 0.9, 25.3% of FDR-matched cis-eQTLs were

shared. Extensive tissue-specificity for trans-eQTLs was also observed based on a

hierarchical approach for FDR control[46], where we found no trans-eQTLs shared

across more than one tissue (Table2-II). Our estimate of increased tissue specificity

for trans-eQTLs agreed with the minimal sharing of trans effects reported in previous

eQTL studies with fewer tissues[25, 47, 48], and dramatically exceeds what would be

expected based on replication between tissues for cis-eQTLs of matched minor allele

frequency (MAF) and effect size (Wilcoxon rank sum test; P ≤ 2.2 × 10−16 for all

choices of replication FDR). Given greater tissue-specificity of trans-eQTLs, we note

that heterogeneity in cellular composition of bulk tissue samples is one important

confounder that may reduce power to detect trans-eQTLs, or even lead to false positive

associations[24]. Despite high tissue-specificity, we did observe a small number of
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Figure 2-4. Sample covariates associated with PEER factors in each tissue. For
each tissue, adjusted (R2 ) reflecting the proportion of variance explained by each sample-
specific covariate, for the entire PEER component removed from the expression data. Each
cell reflects variance explained for a tissue/covariate pair (color scale at bottom). Grey
cells represent pairs with insufficient data for estimation.
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Figure 2-5. Donor covariates associated with PEER factors in each tissue. For
each tissue, adjusted (R2 ) reflecting the proportion of variance explained by each donor-
specific covariate, for the entire PEER component removed from the expression data. Each
cell reflects variance explained for a tissue/covariate pair, color scale at bottom. Grey cells
represent pairs with insufficient data for estimation.
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tissue-shared trans-eQTLs, including rs7683255, which was moderately associated

in trans with NUDT13 across most tested GTEx tissues with consistent direction

of effect. We also found examples of trans-eQTLs shared across a subset of related

tissues, such as an association between rs60413914 and RMDN3, a gene with increased

expression in brain, and for which the trans-eQTL had moderate effects in all tested

brain regions but no strong effect in other tissues.
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Figure 2-6. Tissue specific patterns of trans-eQTLs. Distribution of the number
of tissues having Meta-Tissue m < 0.5 for the top variant for each trans-eGene at 50%
FDR, and FDR-matched, randomly selected cis-eGenes (also 50% FDR). cis-eGenes were
matched for discovery tissue to the trans-eGenes

Trans-eQTLs and complex disease associations

Overlaps between GWAS associations and eQTLs have provided important insights into

regulatory genes and variants for a wide range of complex traits and diseases[30, 49].

Genetic variants associated with complex traits have been suggested to be enriched for

trans-eQTLs[24, 50–52]. Accordingly, we performed trans-eQTL mapping restricting

to variants associated with a complex trait in a GWAS. In this analysis, across the

44 tissues, we found 29 trans-eQTL associations involving 24 unique variants and 25

unique genes, each specific to a single tissue. There were more trans-eVariants at
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Tissue No. of samples No. of trans-eGenes No. of trans-eVariants
Whole Blood 338 1 1
Skin – Sun Exposed (Lower leg) 302 2 3
Lung 278 2 2
Thyroid 278 2 2
Esophagus – Mucosa 241 3 3
Artery – Aorta 197 1 1
Skin – Not Sun Exposed (Suprapubic) 196 1 1
Heart – Left Ventricle 190 1 1
Testis 157 4 5
Colon – Sigmoid 124 1 1
Brain – Cortex 96 1 1
Brain – Putamen (Basal ganglia) 82 1 1
Total unique 20 22

Table 2-II. Trans-eVariant and trans-eGene discoveries with hierarchical FDR
control. Only tissues with non-zero discoveries are shown. The three-level hierarchical
procedure (see Online Methods) performs FDR control across tissues. More specifically, it
controls the FDR of eVariants, the average proportion of false variant-gene associations
across all eVariants, and a weighted average of false tissue discoveries for the selected
variant-gene pairs (weighted by the size of the eVariant and eGene sets). The procedure
was applied after LD pruning.

FDR ≤ 0.5 with association in at least one tissue when testing was restricted to trait-

associated variants compared with random variants matched by MAF and distance

to TSS (Fisher's exact test, P ≤ 1.3 × 10−3). Among trait-associated variants with

trans-eQTL effects, we found two genome-wide significant trans-eVariants at the 9q22

locus (rs7037324 and rs1867277, R2 = 0.74) with thyroid-specific associations in trans

with TMEM253 and ARFGEF3 (P ≤ 2.2 × 10−16 for both with rs1867277; Figure

2-7). The 9q22 locus has previously been linked to multiple thyroid-specific diseases

including goiter, hypothyroidism, and thyroid cancer[53–55], and LoF mutations in

a thyroid-specific TF at this locus, FOXE1, manifest as ectopic thyroid tissue or

cleft palate in developing mice[56]. However, the mechanism of any cis-effects of

these trans-eVariants remains uncertain from the GTEx data. A post-hoc analysis

demonstrated that PEER correction removed broad regulatory signals from the 9q22

locus, particularly from cis- and trans-eQTL signals for FOXE1. In PEER corrected

data, cis- and trans-eQTL signals co-localized for another cis-eGene in 9q22, C9orf156,

for both trans-eGenes (posterior probability > 0.99)[43]. Mendelian randomization
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Figure 2-7. Characterization of complex trait-associated trans-eQTLs. (a) Asso-
ciation of rs1867277 with PEER corrected TMEM253 expression levels (P ≤ 2.2 × 10−16).
(b) Quantile-quantile plot of associations between 19 variants in the 9q22 locus and all
genes in GTEx thyroid gene expression levels, compared to 19 random variants from the
same chromosome, and associations between 23 variants in the 9q22 locus and all genes
in TCGA thyroid tumor expression data, compared to 23 random variants from the same
chromosome. (c) Network depicting cis- and trans-regulatory effects of rs1012793 mediated
through interferon regulatory factor 1 (IRF1). Rs1012793 affects expression of IRF1 in cis
and PSME1 and ARTD10 in trans (box plots). IRF1 is significantly co-expressed with the
trans-eGenes (scatter plots). (d) Cis and trans association significance of variants within
1 Mb of IRF1 TSS in chromosome 5 locus with cis-eGene IRF1 (blue) and trans-eGene
PSME1 (brown), showing concordant signal across the locus.

analysis of the PEER-corrected data supported C9orf156 regulating TMEM253 (P

≤ 1.3 × 10−9) and ARFGEF3 (P ≤ 2.1 × 10−11) based on trans-eVariant rs1867277. In

contrast, FOXE1 had weak Mendelian randomization support in the PEER-corrected

data. Despite the ambiguity of cis-mediation, the locus is one of the strongest trans-

eQTL signals in GTEx. We further replicated both the broad regulatory effect and

specific target genes of this locus in 498 primary thyroid cancer RNA-seq samples

from The Cancer Genome Atlas (TCGA; Figure 2-7b)[57].

In a second example, two muscle-specific trans-eVariants at the 5q31 locus (rs2706381
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Figure 2-8. Broad trans-regulatory locus 9q22 in thyroid tissue. (a) FOXE1
expression is thyroid-specific. (b) Correlation between FOXE1 expression levels and
thyroid PEER factors compared to 100 random genes. For every gene, absolute correlation
was sorted in decreasing order. The correlation of FOXE1 with the 5th, 6th, 7th, and
8th PEER factors was significantly higher than the correlation of random genes at those
rank ordered PEER factors (empirical P ≤ 0.05). (c-e) Variants in the chr 9q22 locus
were enriched for association with genes on other chromosomes in thyroid carcinomas
compared to randomly selected variants nearby randomly selected genes. We used variants
that were found within 35 Kb upstream or downstream of the gene TSS. (f) rs10759975
is associated with trans-eGene TMEM253. (g) rs10759975 is associated with trans-eGene
ARFGEF3. (h) rs10759975 shows cis association with C9orf156. (i) rs10759975 is weakly
associated in cis with FOXE1.

and rs1012793; R2 = 0.84) were associated in trans with PSME1 (P ≤ 1.1 × 10−11)

and ARTD10 (P ≤ 7.8 × 10−10), and in cis with IRF1 (P ≤ 2.0 × 10−10; Figure 2-7c),

a transcription factor known to facilitate regulation of interferon-induced immune-

response[58–61]. Both variants are associated with circulating fibrinogen levels[62]

influencing muscle injury, Duchene muscular dystrophy (DMD), multiple sclerosis, and

rheumatoid arthritis[63–66], and have been shown to drive fibrosis in DMD, where

they promote expression of IL-1β and TGF-β57. These variants were moderately

associated with numerous genes in skeletal muscle (50 trans-eGenes at 20% FDR,

assessed only among the three variants; Figure 2-9a). Additional candidate target

genes (at 20% FDR) were enriched in multiple immune pathways from MsigDB[67]
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Figure 2-9. Trait-associated variants in skeletal muscle near interferon regulatory
factor IRF1. (a) rs1012793 has broad regulatory impact in skeletal muscle. (b) Gene set
enrichment for potential trans-eGene targets (identified at P ≤ 0.001) of skeletal muscle
5q31 locus.

(Figure 2-9b). Mendelian randomization analysis supported IRF1 regulating PSME1

(P ≤ 3.1 × 10−8) and ARTD10 (P ≤ 1.9 × 10−7) through cis-eVariant rs2706381

with a consistent direction of effect (Figure 2-7c). Moreover, the cis-eQTL signal for

IRF1 co-localized with the trans-eQTL signals for both trans-eGenes (Figure 2-7c;

posterior probability > 0.99)[43]. Together, these results suggest that cis-regulatory

loci affecting IRF1 are regulators of interferon-responsive inflammatory processes

involving genes including PSME1 and ARTD10, with implications for complex traits

specific to muscle tissue.

Discussion

Since the initial sequencing of the human genome, extensive effort has been devoted

to the characterization of genome function and phenotypic consequences of genetic

variation. Describing the effects of genetic variation on gene expression levels across

tissues is a critical but challenging component of this goal. Here, we describe advances

enabled by the GTEx project v6p data, which provide a comprehensive survey of

gene expression and the impact of genetic variation on gene expression across diverse

human tissues. While considering the effect of artifacts and latent confounders, we

report trans-eQTLs in 18 tissues and discovered that trans-eQTL effects tended to be
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tissue-specific and were correspondingly more enriched in enhancer regions. Further,

we characterize two trait associated trans-eQTLs, one in skeletal muscle, and another

in thyroid tissue - along with a potential mechanism of cis-mediated trans genetic

regulation. Our work provides comprehensive characterization of trans-eQTLs across

human tissues, which contribute to an improved understanding of tissue-specific

cellular mechanisms of regulatory genetic variation.
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Chapter 3

Addressing confounding artifacts in
reconstruction of gene
co-expression networks

Introduction

Gene co-expression networks seek to identify transcriptional patterns indicative of

regulatory relationships between genes[12, 13, 15]. These are not yet fully character-

ized for most species, tissues, and disease-relevant contexts. Therefore reconstructing

co-expression networks from high-throughput measurements is of common interest.

However, accurate reconstruction of such networks remains a challenging problem.

Though some specialized methods for reconstruction of co-expression networks do

consider confounding signals within their model[68, 69], routinely used network learn-

ing methods [70, 71] do not directly account for technical and unwanted biological

effects known to confound gene expression data. Despite this, many studies do not

employ any form of data correction, or correct only for known confounders prior to

network reconstruction (Table A-I). These artifacts influence gene expression measure-

ments, often introducing spurious correlations between genes[18, 19, 19, 72]. These

correlations are often inferred as relationships between genes, leading to inaccurate

network structure and erroneous conclusions in downstream analyses[19, 68, 69, 73, 74].

Therefore, it is critical to correct gene expression data for unwanted biological and
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technical variation without eliminating signal of interest before applying standard

network learning methods.

In this chapter, we present a principal component based residualization method to

correct gene expression data prior to building co-expression networks. We demonstrate

theoretically, in simulation, and empirically, that principal component correction of

gene expression measurements prior to network inference can reduce false discoveries.

Using data from the GTEx project in multiple tissues, we show that this approach

reduces false discoveries beyond correcting only for known confounders.

Contributions

I co-led this project along with Claire Ruberman. My main contributions to this work

include:

• Design and analysis of empirical experiments

• Design and analysis of simulation experiments along with Claire Ruberman

The work described in this chapter was published in [21]. The text of this chapter is a

slight modification of the published work.

Methods

All analyses was performed using R and scripts are available on github [75]

Principal component based correction of gene expression

Using a permutation based approach as described in [76], we first determined the

number of principal components p to correct the data for with the num.sv function

in the Bioconductor package sva (Table 3-I). By permuting expression of each gene,
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num.sv identifies the number of top principal components that contribute to non-

random expression variance in the data. Next we compute the principal component

loadings L of the standardized expression matrix with singular value decomposition

(SVD).Using a linear model, we regressed the top p principal components (p as

determined by num.sv) on the each gene Ei, from the expression data and computed

the residuals Ei
ˆ :

Ei = µi + βi × L1:p (3.1)

Êi = Ei − [µi + (βi × L1:p)] (3.2)

Total # of PCs removed
Whole Blood 23

Lung 28
Skeletal Muscle 36
Tibial Artery 31

Sun-exposed skin 32
Tibial Nerve 31

Adipose Subcutaneous 37
Thyroid 36

Table 3-I. Number of principal components removed in each tissue.

Simulated example

We construct a network with eight nodes that represent genes and three edges that

represent conditional dependencies between the genes. Next, we simulate 10,000 obser-

vations from a multivariate normal distribution encoding the conditional dependencies

corresponding to three edges as non-zero entries in the precision matrix (Figure 1a).

To introduce confounding in the data, we simulate a sample specific term by drawing

a random vector of 10,000 observations from a standard normal distribution, and

add a scalar multiple of that to genes 2 through 6 (Figure 1d). Finally, to correct
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the data, we regress out the first principal component from the confounded data

(Figure 1g). We used graphical lasso to reconstruct networks using the three versions

of the data. The code for this simulation example and network reconstruction can be

found at: https://github.com/leekgroup/networks_correction/blob/master/

publication_rmd/simulation_example_fig1/figure1.Rmd

Simulation with scale-free networks

We simulated 10,000 observations from a multivariate gaussian distribution that en-

codes conditional dependencies across 100 genes corresponding to a sale-free network.

This was obtained with B-A algorithm implemented in ‘huge.generator‘ in ‘huge’ R

package. Next to introduce confounding in the data, we simulated a sample specific

term from a standard normal distribution, and added a scalar multiple of that to

genes 20 genes in the data. To correct the data, we regressed out the first principal

component from the confounded data. We used graphical lasso to reconstruct networks

using the three versions of the data.

We also simulated 350 observations from a multivariate gaussian distribution that

encodes conditional dependencies across 5000 genes - sample and gene numbers similar

to those in our empirical experiments. We simulated two sample specific terms, and

two gene specific terms to introduce weighted confounding to 1500 genes multiplied

by a scalar constant. This confounding data was corrected by regressing 2 PCs (as

estimated by the permutation procedure). We used graphical lasso to reconstruct

networks with three versions of data.

The code for these simulation examples and network reconstruction can be found at:

https://github.com/leekgroup/networks_correction/blob/master/publication_

rmd/
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Determining sample specific estimate of GC bias

Studies have shown that GC content of genes have significant impact on sequencing

read coverage in DNA-seq and RNA-seq experiments. This eventually introduces

sample specific biases in expression quantification. To quantify the effect of GC bias,

using transcript level fasta files from Gencode v25 we first computed the GC% of each

transcript by:

GC%(T ) = (#G + #C)
(#A + #T + #G + #C) (3.3)

We summarized GC content of genes, by averaging over all transcripts belonging to

the gene. Suppose k transcripts were transcribed from gene Gi then,

GC%(Gi) =
∑︁k

j=1 GC%(Tj)
k

(3.4)

Next using a linear model, we obtain sample specific estimates of GC content of genes:

Ei = µ + βi × G (3.5)

where, Ei is the vector of expression values of all genes in sample i, G is the GC

content for each gene and βi is the estimate of GC bias for sample i.

Network reconstruction using GTEx data

Based on sample size, we used gene expression RNA-seq data from eight tissues in

the GTEx project[77] that included whole blood, lung, skeletal muscle, tibial artery,

sun-exposed skin, tibial nerve, subcutaneous adipose, and thyroid (Table 3-II). In each

tissue we filtered for non-overlapping protein coding genes that had scaled expression

(counts scaled by the total coverage of the sample) of at least 0.1 25% of total number

of observations. Next, we log2 transformed the scaled gene expression data, and

performed the following steps to select the most variable 5000 genes across all tissues,

correct gene expression data, and build co-expression networks.
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# of samples
Whole Blood 393

Lung 320
Skeletal Muscle 430
Tibial Artery 332

Sun-exposed skin 356
Tibial Nerve 304

Adipose Subcutaneous 349
Thyroid 323

Table 3-II. Tissue sample size.

(a) Select genes expressed in all five tissues.

(b) For each tissue, assign a rank to each gene by variance, such that the most

variable gene is ranked first and least variable gene is ranked in last.

(c) Using the ranked list of genes from five tissues, assign an average rank to each

gene across five tissues.

(d) Select the top 5000 genes based on average rank for network inference with

WGCNA and graphical lasso.

We used multiple approaches to correct gene expression data from each tissue

individually as described below:

• Residuals from RIN/Exonic Rate/ GC bias: Using a linear model, we regressed

the RNA integrity number (RIN), exonic rate or sample specific estimate of GC

bias on the expression data and computed the residuals

• Residuals from multiple covariate correction: In each tissue individually, we

estimated expression percent variance R2 explained by the known technical

confounders. Next, using a linear model we regressed the technical covariates

with R2 ≥ 0.01 in a tissue and computed the residuals. (Table 3-I)
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• Residuals from principal components: For each tissue, principal component

based gene expression residuals were computed as described in above.

Prior to reconstructing co-expression networks with WGCNA and graphical lasso,

we transformed the uncorrected and corrected expression of each gene to a Gaussian

distribution by projecting the expression of each gene to the quantiles of a standard

normal.

To reconstruct unsigned weighted co-expression networks with WGCNA, we identified

the lowest power for which scale-free fit R2 between log(p(k)) and log(k) exceeds 0.85.

Here p(k) is the fraction of nodes in the network with at least k neighbors. After that

we used the ‘blockwisemodules‘ function in the WGCNA CRAN package to perform

co-expression module detection at varying cut-heights of hierarchical dendrogram

ranging from 0.9 to 1.0. For networks reconstructed with WGCNA, we considered all

genes in the same module to be a fully-connected subgraph.

For reconstruction of co-expression networks with graphical lasso, we first computed

the gene covariance matrix and then used ‘QUIC‘ function in the QUIC R package to

infer co-expression networks with penalization parameter λ ranging from 0.3 to 1.0.

Evaluation of co-expression networks

To evaluate our correction method and its effect on reconstruction of co-expression

networks, we used two methods to infer the structure of gene co-expression networks:

a) weighted gene co-expression networks (WGCNA)[78] and b) graphical lasso[71] - as

described above. Since the underlying network structure is generally unknown, we

used a) genes known to be functional in the same pathways and b) known transcription

factors and their targets as ground truth to assess these networks.

• Canonical pathway databases: We downloaded the latest pathway infor-

mation (2016) from KEGG, Biocarta and Pathway Interaction Database from
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Enrichr [79, 80], that were also annotated as canonical pathways by MSigDB

[81]. The number of pathways/genesets in each of these databases were:

– KEGG - 293

– Biocarta - 237

– Reactome - 1530

– Pathway Interaction Database - 209

Any pair of genes that have at least one pathway in common were assumed

as true functional relationship. An edge that was observed between a pair of

genes in the inferred network (from WGCNA or graphical lasso) and was also

present in the list of real connections was called as a true positive (TP). We

defined false positive (FP) to be an edge that was observed between a pair of

genes in the inferred network, however was absent in the list of real connections.

Shared true positives: We obtained a refined list of real connections described

above by restricting to pairs of genes that were present in at least two pathway

databases. All TP, FP and FN were computed with genes restricted to the most

variable 5000 genes that were used for reconstructing co-expression networks.

We compute false discovery rate as given below:

FDR = FP

(TP + FP ) (3.6)

Results

In this study, we provide a framework for data correction leveraging the structure of

scale-free networks. We show that for scale-free networks, principal components of

a gene expression matrix can consistently identify components that reflect artifacts

in the data rather than network relationships. It has been shown that real world

networks including co-expression networks often have scale-free topology, i.e. the node
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degree distribution of these networks follow a power law[74, 82, 83]. Several studies

have employed the assumption of scale-free topology to infer high-dimensional gene

co-expression and splicing networks[14, 70].

Latent factor-based data correction has been successfully employed in many applica-

tions in genomics from genome-wide association studies, cis- and trans-eQTL mapping,

to differential expression analysis[17, 84–87]. In genome-wide association studies

investigating the association between genotype and complex traits, it has been shown

that the top principal components explain the broad correlation between genotypes

which generally reflects population structure rather than a desired functional biological

signal of interest[87]. Co-expression analysis is more complicated because confounders

affect sets of genes in ways that induce correlation or apparent co-expression. Here, we

show mathematically, through simulation and through real data examples that similar

to genetic association studies, the broad correlation between gene expression levels in

uncorrected data appears to reflect artifacts. We expect that most real co-expression

networks are sparse which means that most genes are only connected to a small subset

of other genes. We prove that when such networks satisfy the scale-free property,

the signals from the network will not be sufficiently broad across genes to influence

the latent variable estimates from PCA. Thus, principal components will primarily

capture latent confounders, which can then be regressed from the expression data

before network reconstruction is performed.

Using a toy and scale-free simulation, we first showed that confounding can introduce

false correlations between sets of genes that can mimic co-expression and can lead to

false edge discovery during reconstruction of co-expression networks with graphical

lasso - sometimes at the expense of losing true connections (Figure3-1). We corrected

the confounded simulated data using our PC based approach and reconstructed the

network using the residuals. Graphical lasso correctly estimated the network structure

obtained from corrected data, which was same as the true network structure that was

41



−2 −1 0 1 2
value

−1.0 −0.5 0.0 0.5 1.0
value

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Sample

G
e

n
e

a

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Gene

G
e

n
e

b c

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Sample

G
e

n
e

d

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Gene

G
e

n
e

e f

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Sample

G
e

n
e

g

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Gene

G
e

n
e

h i

●
●●●

●
●●●

1

2
3

4

5

6
7

8

●
●●●

●
●●●

1

2
3

4

5

6
7

8

●
●●●

●
●●●

1

2
3

4

5

6
7

8

U
n

c
o

rr
e

c
te

d
C

o
n

fo
u

n
d

e
d

P
C

 c
o

rr
e

c
te

d

Figure 3-1. Toy Simulation Example. This toy simulation shows the reconstruction
of gene co-expression networks is affected by confounders. (g-i) True underlying network
structure can be reconstructed after principal component correction of gene expression
data as described in the paper
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obtained from the original simulated data (Figure3-1). We also simulated multivariate

gaussian data with 350 samples and 5000 genes from an underlying scale-free network.

Similar to previous simulation, we found that confounding in data can introduce many

false positives in reconstructed co-expression networks. We also showed that networks

reconstructed with PC corrected data in this setting were more similar to original

simulated data compared to confounded data. Throughout our analysis, to estimate

the number of principal components to be removed, we used a permutation based

scheme[76] as implemented in the sva package[84].

To demonstrate the impact of latent confounders and principal component correc-

tion on reconstruction of co-expression networks from real large-scale human gene

expression measurements, we applied our method to RNA-seq data from the GTEx

project v6p release. We considered data from eight diverse tissues containing between

304 and 430 samples each (Table3-I): Subcutaneous adipose, Lung, Skeletal muscle,

Thyroid, Whole blood, Tibial artery, Tibial nerve and Sun-exposed skin. Using the

most variable 5000 genes, we reconstructed co-expression networks for each tissue with

two popular methods: (a) weighted gene co-expression network analysis[70, 78], and

(b) graphical lasso[71, 88]. Since the true underlying co-expression network structure

is not known, we assessed the networks using gene pairs annotated to function in

the same pathways[79, 80] as ground truth edges. We inferred networks obtained

by using a) uncorrected expression data, the residuals after regressing out b) RNA

integrity number (RIN)[89], c) exonic rate - a mapping covariate that corresponds

to fraction of reads mapped to exons[20], d) sample specific estimate of GC bias,

all known to be common confounders in mRNA gene expression data[90–92], and e)

residuals from multiple regression model using covariates that explained at least 1

percent of expression variance (adjusted R≥0.01, TableA-II)[89, 93–95].

Co-expression gene modules obtained from weighted signed co-expression networks

were interpreted as fully-connected subgraphs. For most tissues, networks obtained
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from data corrected for latent confounders showed fewer false discoveries compared to

those obtained from uncorrected data, or from correcting for individual covariates in-

cluding RIN, exonic rate (a quality metric from RNA-seq mapping), or sample-specific

GC bias (Figure3-2(a-c), A-1,A-6, A-2). Improved performance of networks obtained
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Figure 3-2. False discovery rate of WGCNA modules and graphical lasso net-
works based on canonical pathways a–c FDR of WGCNA networks obtained at varying
cut heights. Each point corresponds to FDR of the network obtained at a specific cut
height. Each color represents networks reconstructed with a specific correction approach.
d–f Each point in the figure corresponds to false discovery rates of networks obtained at a
specific L1 penalty parameter value (lambda) in the graphical lasso. Each color represents
networks reconstructed with a specific correction approach—uncorrected, multi-covariate,
RIN, and PC corrected.

from PC corrected data was more evident in whole blood, skeletal muscle, tibial artery,

tibial nerve, subcutaneous adipose and thyroid. But for some tissues such as lung, PC

correction only contributes to moderate improvement on false discovery rates in the

reconstructed networks. It is possible that in these cases, the networks may violate

the scale-free assumption, or that true signal was already sufficiently strong in the raw

data. We also observed that correcting gene expression data with multiple technical
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a b c

Figure 3-3. Module properties of WGCNA before and after PC correction of
gene expression measurements. a) On average the number of genes per module are
considerably smaller in WGCNA after PC correction of data b) The number of modules
identified are different and varies across tissues. The pattern was inconclusive among PC
corrected and uncorrected networks. c) The number of genes assigned to gray module is
considerably higher upon PC correction.

covariates (approximately 9 - 17 were used per tissue, TableA-II) sometimes improved

reconstruction of co-expression networks obtained by WGCNA (Figure3-2(a-c),A-1).

The average WGCNA module size for networks with cut-height greater than 0.99 is

smaller with PC corrected data compared to uncorrected counterparts (Figure 3-3).

We also observed that the number of genes assigned to gray(unassigned) module in

WGCNA was considerably higher in PC corrected networks (Figure 3-3). Finally, we

repeated this analysis by varying multiple settings of WGCNA and found that PC

corrected showed improvement in most tissues consistently.

In graphical lasso networks, we found that networks estimated with principal compo-

nent corrected data showed fewer false discoveries compared to networks estimated

with uncorrected, RIN corrected or multiple covariates corrected data (Figure 3-2,

FigureA-3).

We observed that in general improved performance on false discoveries in PC cor-

rected networks over raw data in whole blood, skeletal muscle, tibial artery and tibial
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nerve. Compared to raw data, jointly correcting the gene expression data for multiple

technical covariates that affect expression measurements also improved reconstruction

with graphical lasso in some tissues such as whole blood, thyroid, and tibial artery,

while it showed little to no improvement over uncorrected data in lung, muscle, tibial

nerve, and sun exposed skin (Figure 3-2, FigureA-3).

However we observed that across all tissues PC correction still shows fewer false

discoveries compared to multiple technical covariate based correction. There was no

visible improvement in network reconstruction between using uncorrected data and

residuals from RIN or exonic rate; thereby suggesting that RIN, exonic rate or GC bias

individually is not a sufficient alternative for the wide range of confounding variation

found in gene expression data (Figure 3-2,A-3,A-7,A-4). We also found that there was

no improvement on false negative rates upon PC correction in networks built with

WGCNA or graphical lasso. With both WGCNA and graphical lasso, networks inferred

from principal component corrected data were much more sparse than networks from

uncorrected, and RIN, exonic rate or GC bias corrected counterparts (Figure 3-4).

Further, PC corrected networks from graphical lasso also showed higher clustering

coefficient, and fewer hubs compared to others.

Conclusion

Network reconstruction methods are vulnerable to latent confounders present in gene

expression data. Co-expression networks obtained from data corrected for effects of

RIN, exonic rate, or GC bias individually show little improvement on false discoveries

compared to uncorrected data and are not a sufficient surrogate for the diverse sources

of confounding variation in gene expression data. With empirical analysis supported

by theoretical proof, we show that PC correction is a simple, yet effective approach to

address confounding variation for reconstruction of gene co-expression networks. We do

note for particularly dense or connected sub-graphs in the underlying biological system
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Figure 3-4. Density of the inferred co-expression networks. a-c Each point corre-
sponds to a number of edges in networks inferred by WGCNA at a cut height. d-f Each
point corresponds to a number of edges inferred by graphical lasso in networks obtained at
a specific L1 penalty parameter value. Networks inferred by PC-corrected data have fewer
edges compared to uncorrected or RIN-corrected data
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that may not match the scale-free assumption, or when large differences in expression

changes are expected (e.g. cancer vs normal), removing principal components may

remove biological signal of interest and, as with any data cleaning methodology,

should be used with caution. We have implemented our PC correction approach as

a function - sva_network in sva Bioconductor package which can be used prior to

network reconstruction with a range of methods.

In summary, this chapter shows that known and latent confounders introduce

biases in the form of false correlation structure in gene expression measurements

which leads to a large number of false discoveries during inference of co-expression

networks. Therefore, it is critical to correct the gene expression data to remove

patterns of artifactual variation. PC residualization of gene expression data can adjust

for the effect of confounders, and can reduce false discoveries in reconstruction of gene

co-expression networks.
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Chapter 4

Multi-study integration to identify
global expression patterns and key
regulators of Epithelial to
Mesenchymal transition (EMT) in
cancer

Introduction

Cancer is the second leading cause of death in United States. Metastasis is the leading

cause of cancer-related morbidity and mortality[96], but identifying tumors with

metastatic potential remains a challenge[97]. Tumor metastasis is a multi-step process

in which primary tumor cells disseminate from their site of origin to seed secondary

tumors at a distant site[98]. It is believed that in a critical early event in cancer

progression, metastatic cancer cells undergo an epithelial to mesenchymal transition

(EMT). During EMT, stationary epithelial cells lose cell polarity and transdifferentiate

to spindle-shaped motile mesenchymal cells. EMT is a crucial physiologic process

involved in early development during embryogenesis and organogenesis. It also plays

an important role in tissue regeneration and wound healing. However, in cancer, EMT

may contribute to tumor progression and malignant transformation. Several epithelial

cancer cells have been described to undergo EMT transform to a more malignant
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•  Loss of epithelial features 
•  Gain of mesenchymal features 
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TNF 
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Figure 4-1. Epithelial to mesenchymal transition. During EMT, non-motile epithelial
cells trans-differentiate to mesenchymal cells with increased migratory potential. During
this, cells show decreased expression of epithelial specific genes that include E-cadherin,
OVOL1, and ESRP1. At the same time, expression of mesenchymal genes such as
N-cadherin, VIM, and ZEB1 increases.

phenotype[99] that can further promote formation of secondary tumors[100]. The

role of EMT has been frequently debated in clinical cancer metastasis[101]. However,

several in vitro studies have shown that epithelial cancer cells can undergo EMT in

response to a combination of signals from the tumor microenvironment [97]. During

EMT, cells go through multiple morphological and biochemical changes resulting in

loss of epithelial properties coupled with gain of mesenchymal characteristics[102–116].

Microarrays have been widely used to study gene expression patterns of cell populations

under different experimental settings, including EMT-inducing conditions (Figure 4-1).

While there have been many studies investigating the effect of a gene or pathway in

EMT, none have explored the universal changes across multiple cancer tissue types

or EMT induction methods. Several gene expression datasets examining EMT in a

variety of different cell lines under different conditions are available on open access

databases such as Gene Expression Omnibus (GEO)[117]. It has been demonstrated

that re-use and aggregation of public gene expression data facilitates discovery of

signals too weak to be detected in an individual experiment[118–121]. Gröger et al.

performed meta-analysis of 18 EMT gene expression studies and identified 130 core-

EMT genes, which were differentially expressed in at least 10 of the 18 studies[122].
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Genes such as TGFB, GNG11, TIMP1, ETS1, S100A14, DPYSL3, and C1orf116

that we discovered as differential EMT, were not found in their core EMT gene list.

Furthermore, we experimentally validated some of these genes (S100A14, DPYSL3, and

C1orf116 ) in PC3 epithelial, PC3-EMT and PC3-taxol resistant cell lines confirming

their association in EMT. Also, each dataset in [122] was confined by small sample size

per class (n<=6). The drawback with under-powered studies are: a) low probability of

identifying true effects and b) overestimation of effect size[123, 124]. Therefore, genes

that showed consistent moderate effects across datasets could be missed. In contrast,

systematic integration of multiple studies promotes reliable detection of consistent

gene expression changes that may otherwise be false negatives in results obtained from

individual experiments[125]. At the same time, it helps avoid false discoveries that

could result from intra-study variability resulting from single experiment. Batch effects

and noise introduce spurious signal and correlations in microarray gene expression

data [84, 91, 126]. Therefore, data normalization is crucial in order to correct the

data for unwanted biological or non-biological effects. However, Groger et al. do not

account for batch effects, cross-platform differences, or cross-tissue effects in their

meta-analysis study that could potentially lead to false positive findings. In this study,

to identify universal EMT genes common across multiple cancer types, we integrated

15 independent gene expression studies representing 12 cell lines (49 epithelial and 46

mesenchymal phenotypes) from 6 cancer tissue types and multiple EMT induction

modalities (Table 4-I).

After correcting data to account for cross-study differences, cross-platform differences,

and other sources of noise, we performed differential expression analysis and identified

global changes in gene expression patterns between epithelial and mesenchymal states

(Figure 4-2). Importantly, our candidate gene list was enriched for EMT-related

genes and we identified known markers of EMT. In addition, we also identified EMT

genes that had only been described in a subset of malignant disease states but were
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Figure 4-2. Workflow for multi-study data integration, normalization, and iden-
tification of candidate universal EMT genes.

previously unknown in prostate cancer (e.g. LSR, S11A14, DPYSL3 ), implying a

common EMT program across multiple cancer types. We further identified genes that

had not been previously characterized in EMT in any disease state including C1orf116,

which we then experimentally validated using siRNA knockdown in PC3 epithelial

cells. This approach of multi-study integration enabled identification of differential

EMT genes universal across different types of cancer. Functional validations of these

genes indicate manifestation of molecular mechanisms contributing to EMT shared

across disease types. This study also identifies an uncharacterized candidate novel

EMT regulator gene C1orf116. These findings thereby extend our knowledge and
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understanding of EMT biology.

Methods

Data Overview

We used 15 published EMT microarray gene expression datasets from GEO (Gene

Expression Omnibus) (Table 4-I). This is comprised of 95 observations (45 unique

samples and 50 replicates), 49 epithelial and 46 mesenchymal cell lines exposed to

different treatment modalities. The cell lines come from 6 different tissue types

including breast, prostate, colon, esophageal, liver and retinal pigment and 4 different

microarray platforms (8 chips), Affymetrix, Agilent, Stanford Microarray Database

(SMD) and Illumina. All the datasets were downloaded in the format they were

submitted to GEO. We mapped platform specific probe IDs to Ensembl IDs and gene

symbols. When multiple probes mapped to same gene, we used median values to

represent expression of that gene. We used 7276 genes common across all datasets.

Data Normalization

This work combined data from multiple studies spanning diverse cell lines and different

platforms. Batch effects and noise are inherent in gene expression data. To account

for confounders in data as a result of cross-study and cross-platform effects, we used

multiple correction methods, such as quantile normalization (QN), Surrogate Variable

Analysis (SVA), quantile normalization followed by SVA, and Column Standardized

Median Centered (MCtr). We merged all 15 datasets into one matrix prior to quantile

normalization and SVA. For MCtr, we individually processed each study and combined

them after normalization.

Quantile Normalization: Quantile normalization makes the gene expression

distribution of each sample in the dataset the same. Given a dataset D with g genes
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and n samples, this process:

1. Sorts each column in D

2. Computes the mean for each row and assigns it to each element in the row giving

D′

3. Rearranges columns in D′ such that it has the same ordering as original D, thus

giving normalized data, Dnormalized

At the end of this, each column in D has the same distribution [127].

Surrogate Variable Analysis: Surrogate variable analysis allows us to preserve the

phenotype signal of interest (epithelial and mesenchymal). It estimates known and

hidden confounding factors using Singular Value Decomposition on residual variation

matrix. We regress out estimated surrogate variables from gene expression data to

get SVA normalized gene expression [84]. We also quantile normalize combined data

followed by SVA to correct for hidden confounders.

Column standardized Median centered: Samples from each study are stan-

dardized and median centered by gene as described in [128] and combined them.

Differential Expression Analyses and concordance between nor-
malization methods

With each of the normalized dataset, we used a two-sample t-test to identify differen-

tially expressed genes between epithelial and mesenchymal states. Assuming equal

variance, we compared the mean expression of a gene between the two populations.

For each gene, we tested:

H0 : µe = µm (4.1)
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H1 : µe ̸= µm (4.2)

We ranked genes by raw p-values and applied Bonferroni correction for multiple

hypothesis testing. To test concordance between normalization methods, we used

Spearman’s rank correlation to test association between gene ranks (n = 7276)

obtained by different correction methods. Assuming equal probability of error for

each normalization method, we computed average rank for each gene across the

four methods that represented the consensus position of each gene according to the

differential expression test statistic.

Cluster evaluation of normalized data

To evaluate if normalization improved overall grouping of epithelial and mesenchymal

phenotypes together, we clustered each of the normalized data using hierarchical

clustering (with all 7276 genes). Next, to evaluate grouping we used Baker-Hubert

Gamma index for cluster evaluation. Baker Hubert’s Index (BH) [129] is an adaptation

of Goodman and Kruskal gamma statistic in the context of clustering.

BH = S+ − S−

S+ + S− (4.3)

Here S+ is the number of concordant quadruples and S− is the number of disconcordant

quadruples. To compute BH, it tests all possible quadruples in the input.

Suppose we were testing quadruple samples a, b, c, d. And d(a, b) is the distance

between samples a and b. A quadruple is concordant if it fulfills one of the following

two conditions:

• d(a, b) > d(c, d); And c and d are in same cluster and a and b are in different

clusters

• d(c, d) > d(a, b); And a and b are in same cluster and c and d are in different

clusters
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A quadruple is disconcordant if:

• d(a, b) > d(c, d); And a and b are in same cluster and c and d are in different

clusters

• d(c, d) > d(a, b); And c and d are in same cluster and a and b are in different

clusters

Since we were interesting in improvement in grouping of epithelial and mesenchymal

samples, we used known phenotype vector as cluster assignment for evaluation.

Gene co-expression module detection using WGCNA

With 200 DE genes from QN+SVA data, unsigned co-expression network was con-

structed using the WGCNA package in R[78]. Since we used differentially expressed

genes, prior to constructing networks, the effect of phenotype (epithelial and mes-

enchymal) from each gene was removed using a linear model.

RT-qPCR

RNA was isolated from cells at 80% confluency using RNeasy kit (Qiagen) and

subsequent cDNA libraries were prepared using Bio-Rad cDNA synthesis kit. TaqMan

gene expression assays were used to determine mRNA expression levels using the fol-

lowing probes: β -actin Hs_1060665_g1, LSR Hs01076319_g1, S100A14 Hs04189107,

DPYSL3 Hs00181665_m1, C1orf116 Hs00539900_g1, OVOL1 Hs00970334, CDH1

Hs01023894, CDH2 Hs00983056_m1, ZEB1 Hs00232783_m1. Relative Expression

Calculations: In the qPCR, the target of interest in each sample is measured using at

least three biological replicates. The Ct value for each biological replicate is calculated

as an average of three technical replicates. Then the Ct value of each biological

replicate is normalized to β -actin by subtracting it from the corresponding Ct value

of β -actin (−∆ Ct). The two groups of interest are compared using a Student’s t-test.
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The values plotted in the graph are the average of the base 2 anti-log transformations

of −∆ Ct for the biological replicates of interest divided by the average of the base

2 anti-log of −∆ Ct for the reference group. The standard errors of the mean are

determined from biological replicates.

Western Blot

Protein extracts were prepared using Frackleton-lysis buffer with protease inhibitors

(Thermo Scientific 78410), and samples were electrophoresed on 4 − 15% SDS-PAGE

(Bio-Rad), transferred to a nitrocellulose membrane and blocked with casein blocking

buffer (Sigma B6429). The list of antibodies used for western blotting is in Table B-I.

The Licor Odyssey fluorescence scanner was used for visualizing the westerns.

siRNA knockdown of C1orf116

C1orf116 siRNA (ThermoFisher, cat#: 4392420) with RNAiMAX transfection reagent

(ThermoFisher) was used for siRNA transfections. Some alterations were made to

manufacturer’s recommended protocol. Cells were seeded at a density result in 50%

confluency the following day. Using a 6 well plate, 9 ul of RNAiMAX reagent and

3 ul (30 pmol) of siRNA (each diluted in 150 ul of Opti-MEM media) was added to

each well the day after seeding. 72 hours later RNA was isolated (Qiagen, Rneasy

mini kit) from plates and gene expression was analyzed.

C1orf116 expression in cancer patient data

We identified publicly available published cancer patient (breast, prostate, esophageal,

liver, colorectal, and lung) gene expression studies with at least 150 patients on

Oncomine[130]. Gene expression data for studies (GSE17536[131], GSE11121[132],

GSE25066[133], GSE22358[134], GSE7390[135], GSE68465[136], GSE31210[137], and

GSE21034[138]) available on GEO were obtained using the GEOquery R package[139].
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Probeset IDs corresponding to C1orf116 were used. Gene level expression was obtained

by aggregating multiple probe expression values with median. Wilcoxon rank sum

test was used to test association between expression of C1orf116 and grade, smoking

status and cancer sample site. We also looked at association between tumor grade and

C1orf116 expression in 4 breast cancer, 1 colorectal cancer and 1 lung cancer studies

from Oncomine. We adjust Wilcoxon rank sum p-values with bonferroni correction

for a total of 23 tests performed for clinical associations.

Results

We identified publically available gene expression microarray datasets that queried gene

expression of cell lines induced to undergo EMT[102–116]. We confirmed the phenotype

of the samples by referring to associated publications for immunohistochemistry

staining and/or protein expression of known epithelial or mesenchymal markers (Table

4-I). 95 cell line observations (45 unique samples and 50 replicates) from 15 datasets

that showed sufficient evidence of correct phenotypic labeling included 49 cell lines of

epithelial phenotype and 46 cell lines of mesenchymal phenotype.

Normalization methods show consistency in signal

Technical variability in the form of noise and batch-effects is inherent in gene expression

data. We performed rigorous confounding factor correction to make gene expression

comparisons between epithelial and mesenchymal samples that came from different

studies, platforms, and cell lines. We used standard normalization methods including

column standardized mean centered (MCtr)[128] and Quantile Normalization (QN)

[127] and more rigorous methods that included Surrogate Variable Analysis (SVA)

[84] and combination of QN followed by SVA (QN+SVA). With each normalization

method (MCtr, QN, SVA, QN+SVA), we compared the mean expression of epithelial

and mesenchymal cell lines by a two-sample t-test for differential expression. We
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GEO ID Platform ID Disease Type Cell line Samples*
GSE12811 GPL7319 Breast MCF10A 3
GSE13915 GPL7785 Breast BT549, EFM19 4
GSE18070 GPL570 Breast MCF10CA1h 9
GSE28569 GPL6480 Breast MCF10A 8
GSE39356 GPL6480 Breast MCF-7 4
GSE8240 GPL3921 Breast MCF10A 11
GSE12203 GPL2700 Colon Caco-2 4
GSE14773 GPL570 Colon HT29, SW480 8
GSE27424 GPL570 Esophageal EPc2-hTERT 12
GSE26391 GPL6244 Liver HCC-1.1, HCC-1.2 8
GSE14405 GPL570 Prostate PC3, TEM4, TEM2 6
GSE22010 GPL6244 Prostate PrEC-hTERT 2
GSE22764 GPL6884 Prostate PC3 6
GSE43489 GPL570 Prostate PC3 4
GSE12548 GPL570 Retinal pigment ARPE19 6

Table 4-I. Dataset Information.

evaluated concordance among normalization methods to determine signal robustness –

any individual method may be subject to false positives due to different patterns such

as outliers, batch effects, etc. For this, we restricted our analysis to 7276 genes that

were common across all studies. We used spearman correlation to test association

between raw test statistics (n = 7276 genes) obtained from two-sample t-test from each

of type of normalized data. Test-statistic distributions from individual normalization

methods were significantly correlated with each other (p-value < 2.2e−16, n=7276).

This indicates that signal produced by data normalized using a particular method

is consistent with others (Figure 4-3). Next, to assess if normalization improved

overall grouping of epithelial and mesenchymal phenotypes together, we clustered

samples from each of the normalized datasets using hierarchical clustering (using all

7276 genes). Next, to evaluate this grouping we used the Baker Hubert Index (BH)

with known phenotype vector as group assignments. Values of the BH index range

from -1 to 1, with larger values indicating better grouping[140]. Table 4-II shows

that grouping of samples by phenotype (epithelial or mesenchymal) is considerably
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Figure 4-3. Consistency in differential expression signal across normalization
methods. A. Correlation heatmap showing concordance (Spearman rho) among ranks of
differentially expressed genes using the four normalization methods (n=7276). Genes were
ranked by raw t-test p-values. B. Correlation heatmap showing concordance (Spearman rho)
among fold-change of differentially expressed genes using the four normalization methods
(n=7276). C. Hierarchical Clustering of top 200 differentially expressed genes with
uncorrected data shows strong clustering of samples by study rather than by phenotype. D.
Hierarchical Clustering of top 200 differentially expressed genes with QN + SVA (Quantile
Normalized + SVA) corrected data clusters by epithelial and mesenchymal phenotype.
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improved in normalized datasets in comparison to non-normalized data. QN + SVA

performs the best, followed by SVA, MCtr and QN.

No Quantile Surrogate QN Median Centered
normalization Normalization(QN) Variable Analysis (SVA) + SVA Column Scaled

Baker
Hubert Index 0.0001 0.047 0.864 0.7995 0.0705

Table 4-II. Evaluation of sample grouping (with 7276 genes) using Baker Hubert index
and phenotype information.

Differential expression analyses reveal universal EMT genes
across multiple carcinoma types

With every form of normalized data (MCtr, QN, SVA, QN+SVA), we determined

differentially expressed genes between epithelial and mesenchymal cell phenotype by a

two-sample t-test. A gene list ranked by raw p-values from the t-test was generated for

each normalization method. Assuming equal likelihood of error in correction methods

(Figure 4-2), for each gene we assigned a differential rank that was the average of

p-value ranks from all four normalization methods. This was used to generate a final

integrated ranked gene list. We defined a candidate universal EMT gene list by the

top 200 genes from the integrated gene list (absolute fold change > 1.2 and FDR <

0.005 in SVA, QN + SVA and MCtr normalized data) (Table 4-IV). These genes are

representative of global differential EMT patterns independent of cell line origin and

treatment modality.

Cancer cells recruit developmental pathways and processes to acquire migratory and

invasive properties. To determine if the candidate gene list contained groups of

genes working together and shared common biological functions we tested enrichment

it’s enrichment for Hallmark genesets (MSigDB) defined and curated by the Broad

Institute [141] using a right-tailed Fisher’s exact test. The most significantly enriched

gene set was epithelial to mesenchymal transition (Odds ratio = 18.3575636, FDR =
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4.92E-31). Among the other hallmark gene sets, we found increased representation

(FDR < 10%) of several EMT related pathways including estrogen responsive genes

(early and late), genes upregulated in response to low oxygen levels (hypoxia) and

others [5,49–56] (Table 4-III). We also found that specific estrogen responsive genes

(early and late) were differentially expressed even when restricted just to the prostate

cancer samples (Supplementary Figure B-3) indicating this enrichment was not due

exclusively to breast cancer cell lines in our combined analysis. When tested for GO

biological processes, we found enrichment (FDR < 10%) for several developmental

terms including epidermis development, anatomical structure morphogenesis and organ

development. This further confirms that our analyses capture comprehensive signals

in identifying changes in gene expression patterns across cancer types during EMT.

Among genes on our candidate gene list, we found known epithelial- and mesenchymal-

Geneset p-values oddsratio FDR Genes in set
HALLMARK Epithelial 9.84E-33 18.3575636 4.92E-31 CD59, CDH11, CDH2, COL1A1, COL1A2, COL4A2,
mesenchymal transition COL5A1, COL6A3, CTGF, CYR61, DAB2,DPYSL3,

EDIL3, EMP3, ENO2, FAP, FBN1, FBN2,
FERMT2, GEM, GJA1, GREM1, LGALS1, LOX,
MMP14, MMP2, PCOLCE,PCOLCE2, PLAUR, PLOD1,
PMP22, POSTN, SERPINE1, SERPINE2, SLIT2, SPARC,

SPOCK1, TGFB1, TIMP1, VCAN, VIM, WNT5A
HALLMARK Estrogen response late 9.36E-06 4.332224532 0.00019652 ALDH3A2, ASS1, CDH1, CELSR2, LLGL2,

LSR, MAPK13, PLXNB1, RAPGEFL1, SCNN1A,
SLC22A5, SLC27A2, ST14, TOB1, TRIM29

HALLMARK Apical junction 1.18E-05 4.516129032 0.00019652 AKT3, CDH1, CDH11, CLDN7, FBN1, GRB7,
JAM3, JUP, MAPK13, MMP2, MPZL2, PVRL3,
SLIT2, VCAN

HALLMARK UV response dn 8.16E-05 4.23768997 0.001019448 AKT3, COL1A1, COL1A2, CYR61, DAB2, FZD2,
GJA1, HAS2, KCNMA1, MAP1B, PMP22, SERPINE1

HALLMARK Estrogen response early 0.000247578 3.495078664 0.002475779 AQP3, CELSR2, CLDN7, ELF3, GJA1, KRT15,
PMAIP1, RAPGEFL1, SCNN1A, SLC22A5, SLC27A2,
TOB1, WWC1

HALLMARK Hypoxia 0.000436298 3.276838008 0.003635818 AKAP12, CHST2, COL5A1, CTGF, CYR61, ENO2,
ETS1, HMOX1, KDELR3, LOX, PLAUR, SERPINE1, SRPX

HALLMARK Inflammatory response 0.000679488 3.786760716 0.004246802 CD70, CHST2, EMP3, FZD5, HAS2, HRH1,
MMP14, PLAUR, SERPINE1, TIMP1

HALLMARK KRAS signaling up 0.00061698 3.554348835 0.004246802 AKAP12, EPB41L3, ETS1, GFPT2, GNG11, JUP,
MAP7, MPZL2, PLAUR, TMEM158, TRIB2

HALLMARK Angiogenesis 0.003822541 7.2 0.02123634 JAG2, POSTN, TIMP1, VCAN
HALLMARK Complement 0.00451196 3.068992514 0.022559801 CD59, COL4A2, CTSD, MMP14, PLAUR, SERPINE1,

TIMP1, TIMP2, ZEB1
HALLMARK Myogenesis 0.00594623 2.929880329 0.027028319 COL1A1, COL4A2, COL6A3, ERBB3, MEF2C, NCAM1,

PDLIM7, SPARC, TGFB1
HALLMARK TGF beta signaling 0.010673511 4.097902098 0.044472964 BCAR3, CDH1, SERPINE1, SMURF2, TGFB1

Table 4-III. Enriched MsigDB Hallmark genesets.

specific genes such as E-cadherin (CDH1), Zinc Finger E-Box Binding Homeobox

1 (ZEB1), Vimentin (VIM), Transforming Growth Factor, Beta 1 (TGFB1), Tissue
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Inhibitor Of Metalloproteinase 1 (TIMP1)[100, 142], N-cadherin (CDH2) (Table 4-II).

We also observed enrichment of collagen genes that are known to be associated with

cell adhesion and migration amongst DE genes (Fisher’s exact p-value 1.124e-05) [49].

In addition, we also found known EMT related transcription factors such as ZEB1,

ETS1 and LSR in our candidate gene list. We also compared our list of genes to the

core EMT gene signature described by Groger et. al. [122]. We found 43 common

genes from their study (Supplementary Table 4-III). These included genes such as

CDH1, CDH2, VIM, LSR and some collagen genes. Several known EMT genes such

as TGFB, TIMP1, ETS1 that were found in universal EMT genes were missing from

their list. Some other genes such as S100A14, DPYSL3 and C1orf116 (Supplementary

Figure B-1,B-2) that we validate as differential EMT genes in our study, were also not

found in their core gene list.

Candidate gene list identified genes previously unknown in
prostate cancer EMT

In addition to genes well established in the process of EMT, we also identified genes that

had only been described in EMT in a subset of cancer types, including two epithelial

specific genes, lipolysis stimulated lipoprotein receptor (LSR) and S100 calcium binding

protein A14 (S100A14), and one mesenchymal specific gene, dihydropyrimidinase-like

3 (DPYSL3). Previous studies have investigated role of LSR in breast cancer EMT

[143], and S100A14 has been examined in pancreatic and cervical cancer [144, 145].

Previous studies have indicated involvement of DPYSL3 in malignant pancreatic and

gastric tumors[146, 147]. We validated the expression of these genes in an in vitro

model of prostate cancer EMT. mRNA and protein expression levels of these genes

were determined in one epithelial and two mesenchymal prostate cancer cell line PC3

derivatives. PC3-Epi is an expansion of a highly epithelial clone from the parental

PC3 population. The mesenchymal derivatives were generated from PC3 cells by M2
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Figure 4-4. Expression of EMT associated genes in prostate cancer EMT.

macrophage co-cultures (PC3-EMT) and Taxol treatment and subsequent resistance

(PC3-TxR) [115, 148]. RT-qPCR of canonical epithelial and mesenchymal genes,

OVOL1, OVOL2, CDH1, ZEB1, and CDH2, confirmed the appropriate phenotypic

states for these cells lines (Figure 4-4A). Elevated levels of S100A14 mRNA was

observed in PC3-Epi compared to mesenchymal PC3-EMT and PC3-TxR. Similarly,

mRNA expression of epithelial gene LSR was found to be higher in PC3-Epi than in its

mesenchymal counterparts, PC3-EMT and PC3-TxR (Figure 4-4B). Conversely, the

mesenchymal gene DPYSL3 was extremely upregulated in PC3-EMT and PC3-TxR

than in PC3-Epi (Figure 4-4B). These results were supported by western blot analysis,

which demonstrated protein levels mirrored the mRNA expression (Figure 4-4C).

C1orf116 was discovered to be a novel EMT regulator

Our candidate gene list also contained genes that have not been previously described

as related to the EMT process in any cancer type or in any physiologic process. One

of these novel candidate EMT genes, C1orf116 (also known as SARG), is a poorly

characterized gene with only one PubMed listed publication[149]. We first validated

our finding from microarray data using the PC3 in vitro model of EMT and found

increased mRNA expression in PC3-Epi cells compared to PC3-emt (1.3 fold) and

PC3-TxR (8.8 fold). These results were supported by elevated protein expression of
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Figure 4-5. C1orf116: a novel EMT regulator. A. qPCR: mRNA expression of
C1orf116 in EMT model prostate cancer cell lines PC3-Epi, PC3-EMT and PC3-TxR
∗P < 0.1; ∗ ∗ P < 0.05; ∗ ∗ ∗P < 0.005 B. Immunoblot: Protein expression of C1orf116 in
EMT model prostate cancer cell lines PC3-Epi, PC3-EMT and PC3-TxR (LSR, DPYSL3,
S100A14, C1orf116, and β-actin were all probed on the same blot, so the B-actin loading
control is appropriate for both figure 4-4C (LSR, DPYSL2, S100A14) and figure 5B
(C1orf116). Data were separated into two figures for clarity.) C. qPCR: mRNA expression
of C1orf116 and other known epithelial (OVOL1, ESRP1 and CDH1) and mesenchymal
(CDH2) gene in PC3-Epi cells transfected with C1orf116-siRNA relative to empty vector
control ∗P < 0.1; ∗ ∗ P < 0.05; ∗ ∗ ∗P < 0.005

C1orf116 in PC3-epi cells (Figure 4-5A-B).

Increased expression C1orf116 in epithelial cells confirmed of it as an epithelial marker

gene. We applied gene network analysis [78], that revealed weighted coexpression

gene modules (groups of co-expressed genes) and showed that C1orf116 clustered

with other epithelial genes including CDH1, LSR, S100A14 and others (Figure 4-6).

LSR and S100A14 were among the known-unknown genes whose expression was

validated in PC3 cell lines. This confirmed its association with other epithelial genes

universal across other disease types. Through manual literature search, we identified

that a subset of the C1orf116 module gene list have been shown to be associated with

multiple cancer types. Among other genes in the modules, SH2D3A, AP1M2, CDS1

and SCNN1A haven’t been previously studied in cancer biology. This shows that in

addition to being a novel EMT regulator in prostate cancer, C1orf116 could have

broad effects across multiple cancer types. Next, we interrogated the possible role

of C1orf116 in in vivo malignant progression. For this, we identified gene expression
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Figure 4-6. C1orf116 associated genes in weighted gene correlation network
module. This correlation network shows association of C1orf116 module genes obtained
from WGCNA. Node size is a function of correlation with C1orf116 expression. Yellow
nodes represent genes that have been previously studied in multiple (greater than 3) cancer
types. Bright green nodes are the genes that have been studied in 3 or less cancer types.
Light green nodes are genes that have not been specifically studied in cancer. Gray nodes
were genes that were not significantly associated with expression of C1orf116.
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Figure 4-7. C1orf116 expression in cancer patient data. A. Decreased expression of
C1orf116 is seen in metastatic tumor type compared to primary prostate cancer; unadjusted
P = 0.0340, Bonferroni adjusted P = 0.51 B. Expression of C1orf116 decreases in high
grade lung cancer; Bonferroni adjusted P < 0.0005 C. C1orf116 is downregulated in lung
cancer patients with increased smoking habits; unadjusted P < 0.01, Bonferroni adjusted
P < 0.1 D. C1orf116 is downregulated in lung cancer patients with smoking habits in
comparison to non-smokers; unadjusted P = 0.0586, Bonferroni corrected P = 0.879

studies with at least 150 patients that also had information on tumor grade and

expression data for C1orf116 and were able to find breast, prostate, colorectal and lung

cohorts (Supplementary figure B-4). We found that C1orf116 expression is decreased

in metastatic lesions compared to localized tumors in prostate cancer patients (Figure

4-7 A) [137]. Likewise, C1orf116 expression decreased with increasing cancer grade

in patients with lung cancer (Figure 4-7 B) [135]. Studies have shown that lung

cancer patients with history of smoking tobacco/cigarette exhibit lower expression

levels of E-cadherin and higher levels of mesenchymal markers such as vimentin

[150, 151]. Previous studies have also indicated that cigarette smoking can induce

EMT in non-small cell lung cancer[152]. Analogous to these findings, we observed

reduced expression of C1orf116 among lung cancer patients with smoking habits

(Figure 4-7C-D)[135, 136]. In some breast cancer datasets expression of C1orf116
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increased with increasing cancer grade (Supplementary Figure B-4). This suggested

that in addition to expression changes in in vitro cell line models, changes in C1orf116

expression could potentially have a functional role in clinically-important disease

progression in cancer patients.

To test the role of C1orf116 as a driver of an epithelial phenotype, we used siRNA-

mediated knockdown of the gene in PC3-Epi cells. We found that siRNA-mediated

knockdown of C1orf116 expression resulted in decreased expression of epithelial

markers OVOL1, ESRP1, and CDH1, and increased expression of mesenchymal

marker CDH2 (Figure 4-5C). This suggests that C1orf116 plays a functional role in

maintaining epithelial phenotype. Significant upregulation of mesenchymal genes in

response to C1orf116 knockdown indicates it as a novel regulator of EMT.
Test group Wilcoxon rank sum p-value Bonferroni adjusted p-value
Lung cancer (Director’s Lung Challenge): grade [43]
Grade1 vs Grade 2 1.4191e-06 3.27E-05
Grade 2 vs Grade 3 1.1481e-10 2.65E-09
Grade 1 vs Grade 3 2.6121e-17 6.00E-16
Lung cancer (Director’s Lung Challenge): Smoking Status [43]
Never vs Past 0.006 1.38E-01
Past vs Current 0.006 1.38E-01
Never vs Current 0.0002 4.60E-03
Lung cancer (Okayama): Smoking status [44]
Never smoker vs ever smoker 0.0586 1E+00
Prostate cancer (Taylor): Tumor type [45]
Primary vs Metastatic 0.0340 7.82E-01

Table 4-IV. textbfAssociation of C1orf116 expression in lung and prostate cancer patients.

Discussion

EMT may be an early step in cancer metastasis and has been associated with chemore-

sistance and disease progression[153, 154]. Though EMT is common among all solid

tumor types and is essential in early development, common drivers of EMT across

multiple cancer types have not been described. Several studies have investigated EMT

in cell lines from within a single disease type. However, most of these studies have

been confined to very small sample size. To address this, we systematically integrate

multiple EMT studies to increase power and identify novel drivers of EMT universal
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to all cancer types. A significant challenge in multi-study analysis comes from various

sources of heterogeneity arising from study specific technical and biological variation.

Biological variation interferes with analyses, especially when it is not the signal of

interest. We employed two strategies to address various sources of heterogeneity and

noise. First, we chose stringent normalization methods that have been shown to

reduce the influence of such heterogeneity (SVA, quantile normalization, and scaled

median centering). We recognize that these methods may have their failure modes

and limitations. Therefore, we defined our final differentially expressed gene list from

consensus ranking across all four normalization schemes. Thus even if a single method

introduced an error or failed to account for a particular effect, the final gene list may

be more robust than results from any individual method. However, technical variation

and experimental heterogeneity may still influence the results of our analysis, as no

method has been shown to fully remove such effects from expression data. Therefore,

experimental validation and comparison with external functional annotation were

important. Integrating across multiple studies did improve power and helped us detect

novel genes that showed consistent effect across multiple studies, which could be

concealed in a single study. We found three groups of genes in the EMT differentially

expressed list: a) known EMT genes (e.g. CDH1, ZEB1, TGFB, CDH2, VIM, TIMP1),

b) EMT genes previously unknown in prostate cancer (LSR, S100A14, DPYSL3) and

c) novel EMT genes (including C1orf116). We confirmed our discovery of unknown

EMT genes in prostate cancer by testing expression of LSR, S100A14, and DPYSL3

in a PC3 prostate cancer cell line model of EMT. Previous studies have shown that

LSR suppresses EMT phenotype in claudin-low breast cancer cell lines[143]. S100A14

has been studied in breast cancer progression and is showed to be involved in EMT

in human cervical and pancreatic cancer cells[144, 145, 155]. DPYSL3 is associated

with malignant gastric and pancreatic tumors [146, 147]. Moreover studies suggest

that mRNA expression of DPYSL3 is positively correlated with Vascular Endothelial
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Growth Factor (VEGF), a gene thought to be involved in EMT [155]. This data

indicates that our method bridged EMT cancer biology across different disease types

and captures global expression patterns in EMT (Supplementary Figure B-1A-C). We

confirmed discovery of C1orf116 as epithelial specific gene by testing its expression

in PC3 in vitro model of EMT. siRNA knockdown of C1orf116 in PC3 epithelial

cell lines showed loss of epithelial markers and gain of mesenchymal markers thereby

confirming its functional role as a negative driver of EMT. Clinical data from breast,

prostate cancer and lung cancer patients also suggested that changes in expression

of C1orf116 could have functional implications in disease progression. Altogether,

through this study we have found genes whose effects are represented by multiple

cancer types (breast, prostate, liver, colon, esophagus and retinal pigment). We have

also validated expression of some genes in an in vitro prostate cancer cell line model

and potential relevance in vivo data from three tissues, including one (lung) that was

not represented among our cell line data. However, these effects might not necessarily

be extrapolated for cancer types not included in this study. As data become available

for other tissues and cancers, further analysis can be performed.

Conclusion

Using multi-study integration approach, we identified consensus ranked universal

EMT genes. This gene list comprised of a) known EMT genes that included CDH1,

ZEB1 and CDH2 b) genes studied in a subset of carcinomas, unknown in prostate

cancer: LSR, S100A14 and DPYSL3 and c) novel unknown EMT and cancer genes

such as C1orf116. siRNA experiments indicate it to be a potential novel regulator

of EMT. Patient gene expression data shows that reduced expression of C1orf116 is

associated with poor prognosis in lung and prostate cancer (unadjusted Wilcoxon

rank sum p-value < 0.05). In conclusion, our approach of statistical analysis and

functional validation identified universal EMT genes and candidate global regulatory
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genes, thereby both extending current knowledge of EMT and showed preliminary

evidence of disease progression in cancer.

This work demonstrates informed statistical modeling to integrate data from

multiple independent small sample studies can improve power to detect ubiquitous

phenotype associated signal in gene expression measurements. This can also enable dis-

covery of novel genes and biological processes underlying a particular trait, particularly

when large datasets are not available for the trait of interest.
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Chapter 5

Leveraging large scale human
RNAseq studies for reconstruction
of context-agnostic gene
co-expression networks

Introduction

Accurate reconstruction of gene co-expression networks continues to remain a difficult

problem. Reconstruction of co-expression networks over a few thousand genes is of

common interest, particularly to understand the gene regulatory landscape of the the

human transcriptome. Most network learning methods that are based on pairwise

association between genes are sensitive to artifactual variation in gene expression

measurements, and introduce false positive edges in the networks [21, 156]. Further,

with a typical RNA-seq study that contains a few hundred samples, we are highly

underpowered for accurately estimating millions of parameters in a co-expression

network over few thousand genes.

In this study, we leverage > 24,000 uniformly processed and quantified publicly available

human RNA-seq samples spanning 236 studies and tissues from recount2 to build

context-agnostic gene co-expression networks in order to discover shared biological

processes across tissues and cell types in a well-powered analysis [23]. We formulate
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reconstruction of networks as a structure learning task for a Gaussian Markov Random

Field (GMRF), and use the graphical lasso[71] algorithm for inference. Using empirical

covariance C as the input, graphical lasso estimates a lasso penalized precision matrix

Θ by maximizing the penalized log likelihood of a multivariate gaussian distribution.

log det Θ − trace(CΘ) − Λ||Θ||1

It has been demonstrated that aggregation of data across multiple studies can help

improve inference and generalizability of models [157, 158]. While accounting for latent

sources of intra-study and inter-study heterogeneity in these studies, we considered

three strategies of aggregation to obtain an estimate of empirical covariance matrix

that was used as an input to graphical lasso: a) compute empirical covariance by

merging data from all studies, b) unweighted aggregation of individual study specific

empirical covariance matrices, and c) weighted aggregation of individual study specific

empirical covariance matrices. We demonstrate networks obtained by integrating

studies/datasets shows improvement on held-out data likelihood across all aggregation

strategies. Next, we evaluate biological and genetic relevance of topological properties

of the context agnostic network. We find that genes with high degree centrality in

this network are enriched for mitosis and cell cycle related pathways which are needed

in all cell types. We assessed the biological significance of high centrality scores in

14 genesets that included transcription factors, eQTL deficient genes, genes strongly

depleted for protein truncating variations (pLI >0.9), happloinsufficient genes, and

others. Finally, we apply stratified LD score regression to quantify the contribution

of measures of node centrality obtained from context agnostic networks to disease

heritability [159–161].

Contributions

I co-led this project with Prashanthi Ravichandran. My contributions include:
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• Mentoring Prashanthi on designing simulation and empirical experiments for

aggregation strategies, and statistical and biological evaluation of networks

• Download and pre-processing of recount2 data with Prashanthi

• Reconstructing consensus cancer networks with TCGA data from recount2

• Model selection for context agnostic and TCGA networks

• Enrichment of hub genes in mitosis and cell cycle related pathways

• Stratified LD score regression

Methods

Data aquisition, pre-processing and quality control

Raw gene expression RNA-seq counts were downloaded from recount2[23] using the

R package recount. This is comprised of data from Sequence Read Archive (SRA)

including data from the Genotype Tissue Expression (GTEx) project [20] and The

Cancer Genome Atlas (TCGA) project. Raw base level coverage counts for each gene

were transformed to RPKM. Next, we selected for expressed genes by filtering for

RPKM >= 0.1 in more than 25% of samples individually in SRA, GTEx, and TCGA

samples. To overcome erroneous associations that may arise from genes that have

overlapping genomic location, we restrict our analyses to 6871 non-overlapping protein

coding genes with a corresponding gene symbol. We log2(x + 1) transformed RPKM

values, and applied the following sample and study level processing:

• First we selected samples that had metadata information in SRAdb [162], an R

package that has a compilation of metadata associated with datasets in SRA.

• Aggregated multiple runs from the same SRA experiment meaning replicates

using median expression for each gene across the runs.
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• Excluded samples with more than 50% of genes with 0 expression value.

• Excluded potential small RNA expression studies/samples by filtering out sam-

ples with size fractionation based library selection protocol.

• Excluded potential single cell RNA-seq studies based on list obtained by an

abstract search of terms that included. We used the following search terms were

used for the abstract search: "microRNA", "miRNA", and "single cell". The

list of these studies can be found at: https://github.com/princyparsana/

process_recount2_data/blob/master/projects_excluded.rds

• Selected studies or tissues with 30 or more samples.

At the end of this processing, we obtain 14685 observations from SRA studies, 9633 ob-

servations from the GTEx project, and 11284 observations from TCGA. An automated

implementation of this processing pipeline can be found on github.

Aggregation of studies

To systematically integrate information from different studies, we employed aggregation

strategies at different levels of the data as described below: (Figure 5-1):

Study level aggregation: In this approach, we merge all studies into a single dataset

by concatenating the observations. While accounting for intra-study heterogeneity by

applying principal component (PC) residualization as described in [21], we performed

study level aggregation across multiple tissues in GTEx, and studies in SRA. Using

GTEx, we employed an additional study level aggregation where, we accounted only

for inter-study heterogeneity after merging data across tissues. Next, we quantile

normalize each merged dataset such that every gene follows a Gaussian distribution.

We standardize expression measurements so that every gene has zero mean and unit

variance. Finally we compute covariance matrix which is used for network inference.

Covariance level aggregation: In this approach, we first corrected gene expression
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Figure 5-1. Aggregation strategies for integrating co-expression signal across
multiple studies.

measurements in each study or tissue using PC based residualization. Next we perform

the following steps for aggregation:

• Quantile normalize each study such that every gene follows a Gaussian distribu-

tion

• Standardize gene expression measurements in each study such that every gene

has zero mean and unit variance

• Compute gene-by-gene covariance matrix within each study Sk

Assuming equal likelihood of error from each study, we compute the unweighted

average of covariance matrices Cunweighted as:

Cunweighted =
∑︁

k Sk

|K|
(5.1)

where, Sk corresponds to empirical covariance matrix estimated from study k, and |K|

is the total number of studies. Next, assuming that studies with larger sample size
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would have a better estimate of individual covariances, we compute weighted average

of covariance matrices Cweighted weighed by sample size as:

wk = nk∑︁
k nk

(5.2)

Cweighted =
∑︂

k

wk · Sk (5.3)

where, Sk corresponds to empirical covariance matrix estimated from study k, nk is

the number of samples in study k and wk is the weighted contribution of study k

Co-expression network inference

We reconstructed gene co-expression networks using the empirical estimate of covari-

ance matrix obtained from different aggregation approaches as described above. We

formulate this as a structure learning problem for a Gaussian Markov Random Field

(GMRF), and use graphical lasso as implemented in the QUIC [88] R package for

inference. Assuming that our gene expression data contains N multivariate gaussian

observations each of dimension p, i.e. for each observation, we have expression measure-

ments for p genes, graphical lasso estimates the structure of the co-expression network

over genes by maximizing L1-penalized log likelihood of a multivariate gaussian:

log det Θ − trace(CΘ) − Λ||Θ||1 (5.4)

Here C is the empirical covariance matrix obtained from one of the aggregation

approaches, and Θ = C−1 is the inverse covariance matrix. The L1 penalty on Θ

induces and controls the amount of sparsity in the solution [71]. If an entry Θi,j is 0,

then variable i is conditionally independent of variable j given other variables. We

inferred networks with penalization parameter Λ ranging from 0.2 to 1.0.
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Held-out data likelihood based evaluation of aggregated net-
works

We assess if networks inferred by integration of co-expression signal across multiple

studies improves power to reconstruct reliable and robust co-expression networks using

a held-out data likelihood based appraoch. First we applied aggregation strategies

described above to two splits of data from recount2: a) aggregate across tissues in

GTEx and b) aggregate across studies in SRA (excluding GTEx and TCGA). We

compute held-out data likelihood for each version of SRA aggregated networks using

five tissues with the largest sample size in GTEx. Similarly, each version of GTEx

networks were evaluated using five studies with the largest sample size from SRA as

given below:

Li = ni[log det Θ − trace(SiΘ)] (5.5)

L =
∑︁

i Li

|I|
(5.6)

In equation 5.5, Li is the held out data likelihood for dataset i, Si corresponds to

empirical covariance matrix from dataset i, Θ is the precision matrix representing the

co-expression network being evaluated, |I| is the total number of datasets used to test

held-out data likelihood. L is the average of held-out likelihood across |I| datasets.

Pathway based evaluation of co-expression networks

We used genes known to be functional in the same pathways as ground truth to assess

precision and recall of the networks. We downloaded the pathway information (2016)

from KEGG, Biocarta and Pathway Interaction Database from Enrichr [79, 80], that

were also annotated as canonical pathways by MSigDB [81]. Table 5-I shows the

number of pathways in each of these database.

Any pair of genes that have at least one pathway in common were assumed to

have a true functional relationship. An edge that was observed between a pair of
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Database # of Genesets
KEGG 293

Biocarta 237
Reactome 1530

Pathway Interaction Database 209

Table 5-I. Canonical pathway genesets.

genes in the inferred network and was also present in the list of real connections was

called as a true positive (TP). We defined false positive (FP) to be an edge that was

observed between a pair of genes in the inferred network, however was absent in the

list of real connections. All TP, FP and FN were computed with genes restricted to

the most variable 5000 genes that were used for reconstructing co-expression networks.

We compute precision and recall as given below:

Precision = TP

TP + FP
(5.7)

Recall = TP

TP + FN
(5.8)

Computing gene centrality scores using network structure

Using measures of network connectivity, we compute centrality scores for each gene in

the network. Given a weighted undirected graph G, first we normalize the graph by

dividing the weight of each edge by the maximum of all edge weights in the network.

If E is the list of all edges in the network (excluding diagonals) and Ev,j is the weight

of an edge connecting genes v and j, we get the normalized edge weight Êv,j for this

edge as:

Êv,j = Ev,j/max(Ev,j)

Next, using normalized edge weights, we compute the following types of centrality

scores:

• Degree(v): The degree centrality of a gene v corresponds to the number of

neighbors connected to v
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• Closeness(v): captures how close gene v is to all other genes in the network. For

this, we first compute the weighted distance between gene v and gene j in the

network as:

dv,j = 1.00
Êv,j

If v and j are disconnected, then dv,j is set to 0. Using this, we can compute

the closeness centrality of a gene v as:

1∑︁
v,j ̸=v dv,j

(5.9)

• Betweenness(v): is the number of shortest paths in the network that pass through

gene v. A shortest path between nodes v and j is a path where the total sum of

the edge weights in the path is minimum.

• Max weight(v): is the maximum of weights of all edges connected to v

• Eccentric(v): is the shortest path distance from the farthest node in the graph

• Eigenvector(v): is proportional to the sum of centrality of neighbors of v. It is

given by:

Ax = λx (5.10)

where where x is the eigenvector of the weighted adjacency matrix A with the

largest eigenvalue λ.

Enrichment and overlap with genesets

We assess the biological significance of high centrality scores in 13 genesets that

correspond to different gene importance related metrics and were obtained from [159].

These included:

1. All genes: This set includes all 19031 protein coding genes according to HGNC

[159].
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2. MGI essential genes: This includes genes for which homozygous knockout in

mice resulted in pre-, peri-, or post-natal lethality.

3. Autosomal dominant genes: Genes among OMIM disease genes that are consid-

ered to follow autosomal-dominant inheritance.

4. Happloinsufficient genes: Genes of severe, moderate, and mild haploinsufficiency,

where having only a single functioning copy of a gene is not enough to carry out

normal functions.

5. High pLI genes: Genes with high probability for being loss-of-function intolerant

(pLI). This list contains genes with pLI > 0.9, meaning that these genes are

strongly depleted for protein truncating variants

6. High shet genes: Genes with high selective effects for heterozygous protein

truncating variants (shet). This geneset contains genes with shet > 0.1, reflecting

strong selection against protein truncating variants

7. High Phi genes: This list included LoF-constrained genes with probability of

haploinsufficiency (Phi) > 0.95.

8. High missense Z genes: These are genes that are strongly depleted for missense

mutations.

9. ClinVar: Genes with a pathogenic or likely pathogenic variant.

10. OMIM genes: Genes obtained from Online Mendelian Inheritance in Man

(OMIM) database.

11. GWAS genes: This list includes genes closest to the peak of a significant GWAS

loci (p ≤ 5e − 8).

12. Transcription factors: This list contains the list of transcription factors.
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13. High EDS: Genes with high score in the enhancer domain score.

include genes with high pLI scores, Genes with high Shet scores, and others. First,

we divide genes with centrality score > 1 into 25 bins ordered by scores. Genes with

centrality score of zero are binned together into one group. Next, using genes in each

bin, we compute excess overlap (EO) as described in [159]:

EO(G1, G2) = Pd

Ptot

(5.11)

Pd = |G1 ∩ G2|
|G2|

(5.12)

Ptot = |G1 ∩ Gnet|
|Gnet|

(5.13)

where G1 is geneset one of the 14 genesets, G2 is the our test set corresponding to

genes in one of the bins, and Gnet is total number of genes in the network. We compute

the standard error of this excess overlap as[159]:

SE =

√︃
(Pd(1−Pd)

|G2|

Ptot

(5.14)

Heritablity enrichment with S-LDSC using annotations ob-
tained from measures of network centrality

We applied stratified LD score regression to quantify the contributions of measures

of node centrality obtained from context-agnostic networks in disease heritability.

First we transform all centrality scores to lie between 0 and 1. Next we annotate

SNPs within 100kb of a gene with the centrality score assigned to the gene. If a

SNP was within a 100kb of more than one gene, we assigned the maximum centrality

score to the SNP. We generate six network centrality based annotations and estimate

their heritability enrichment and the standardized effect size (τ∗) of an annotation

as described in [159–161]. Given βj is the effect size of a trait associated SNP j, its

variance is a linear additive contribution to the annotation c which is given by:

V ar(βj) =
∑︂

c

acjτc (5.15)
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here, τc is the per-SNP contribution of the annotation c to the heritability of the trait.

S-LDSC esimtates τc by fitting the following regression[160, 161]:

E[χ2
j ] = N

∑︂
c

ℓ(j, c)τc + 1 (5.16)

here, N is the number of samples in the GWAS, E[χ2
j ] = Nβ2

j , ℓ(j, c) LD score of

SNP j to the annotation c in the pre-defined window-size (100kb in our analysis).

We compute the standardized effect size (τ∗), i.e. the proportionate change in per-

SNP heritability associated with a one standard deviation increase in the value of

the annotation conditional on all the other annotations in the model as defined by

[159, 161]:

τc∗ = τcsd(C)
h2

g

M

(5.17)

here, sd(C) is the standard deviation of annotation C, h2
g is the estimated SNP

heritability, and M is the number of variants used to compute SNP heritability.

Enrichment of an annotation is the proportion of heritability explained by SNPs in

the given annotation divided by the proportion of SNPs in the annotation. In our

analysis we used European samples from the 1000G as reference SNPs, and regression

SNPs were obtained from HapMap3, and SNPs in the MHC regions were excluded.

We conditioned all our analysis on the v2.2 baseline LD annotations. All analyses was

done using hg38 build of the human genome, and relevant files were obtained from:

https://data.broadinstitute.org/alkesgroup/LDSCORE/GRCh38/.

Results

Aggregation of data from multiple studies improves network
reconstruction

To account for study-specific latent artifacts in gene expression measurements, we

PC based residualization as described in [21] to each dataset in our analyses. Next,
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we considered three strategies to aggregate data from multiple studies and obtain

empirical estimates of covariance matrices, which were used to build co-expression

networks with graphical lasso: a) first, we performed a study level aggregation where

we merged corrected expression matrices by concatenating samples from all studies to

form one dataset which was used to compute a gene by gene covariance matrix, b)

second, we computed an unweighted average of covariance matrices obtained from each

dataset, c) third, we computed a weighted average of study-specific covariance matrices

weighted by sample size. We applied this approach to two sets of data from recount2;

one using tissues as a proxy for studies in GTEx with a total of 9633 samples, and

second with individual projects in SRA (excluding GTEx and TCGA) with a total of

14685 samples. (Figure 5-1). We assessed if aggregation of data helps improve power

for inferring gene co-expression networks using a held-out data likelihood approach.

We used the estimated precision matrix (represents networks) from graphical lasso

to evaluate likelihood of held-out studies for each aggregation-dataset pair using a

multivariate Gaussian distribution. Five GTEx tissues with largest sample size were

used as held-out data for networks obtained from SRA, and vice versa. Both with

GTEx and SRA we observe that networks obtained by merging studies or covariances

showed improvement in held-out data likelihood across all aggregation strategies

(Figure 5-2). Reconstructed networks become sparser as we increase the number of

studies that were included in aggregation. Next, using known biological pathways as

ground truth, we compute precision, recall and F1-score for each aggregation-dataset

pair. With aggregation we see consistent improvement on recall and F-1 score, while

we find that precision shows improvement in aggregated networks with higher number

of edges (Figure 5-3). Among the highest level of aggregated networks (50 tissues for

GTEx and 186 studies for Recount), we found that merging studies and weighted

aggregation of covariance matrices yielded very similar networks, which was also

observed in their performance on held out data likelihood. This was consistent with
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a b c

d e f

Figure 5-2. Aggregating studies improves recontruction of co-expression net-
works in GTEx (top row) and SRA (bottom row).

previous observations [163]. Both approaches outperformed unweighted aggregation of

covariance matrices (Figure 5-4). For each aggregation strategy, we selected networks

corresponding to a specific value of graphical lasso penalty such that the networks

exhibited a scale-free topology, i.e. node degrees of the network followed a power law

distribution. We adapted the the scale-free test as described in [164] that measures

the variance explained (R2) by fitting a linear model between log(p(d)) and log(d),

where p(d) is represents the fraction of genes in the network with d neighbors. We

selected penalty parameters for networks based on R2 ≈ [0.75 − 0.85]. We find that

networks obtained by merging studies, and by weighted aggregation of covariance

matrix showed high overlap among the top 500 hub genes (Figure 5-5). This was

consistent with our previous observation where we find the two versions of aggregation

were found to be highly similar.
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a b c

d e f

Figure 5-3. F1 score of aggregated networks evaluated using canonical pathways
in GTEx(a-c) and SRA (d-f).

Context-agnostic gene co-expression networks: inference and
network properties

While weighted aggregation and merging perform comparably in our analyses, it has

been demonstrated that for effect size estimation, simple pooling of heterogenous

datasets can lead to confounding results, and a aggregation based meta-analysis

approach can protect against such effects [165]. Hence, we chose to reconstruct

context-agnostic co-expression networks using all non-TCGA data from Recount2

a b

Figure 5-4. Comparing across aggregation strategies. a) GTEx, b) SRA
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Figure 5-5. High overlap among the top 500 hub genes across aggregation. The
entries in the heatmap correspond to proportion of shared hub genes. This figure was
generated from SRA networks. Trend was similar in GTEx.

using a weighted aggregation of study-specific covariance matrix as the estimate of

empirical covariance in graphical lasso. This included 186 studies from SRA with

14685 samples, and 50 tissues from GTEx with 9633 samples. Since we found that

networks get sparser over aggregation, we expanded our range of Λ = [0.1, 1] for

building context-agnostic networks. We selected the network corresponding to Λ = 0.2,

which had an R2 = 0.79. This network had 12341 edges over 6871 genes, and had an

average connectivity of 3.59 per node (Figure 5-6). We computed node importance

for genes in the network using different measures of node centrality (See Methods).

Across multiple centrality annotations, we found that few nodes have high scores

(Figure 5-7). We also find that most centrality scores are highly correlated with each

other (Figure 5-8). However, we would take these correlation estimates with caution,
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Figure 5-6. Context agnostic networks were selected to have scale-free topology.

since it could be inflated by the high number of genes with a 0 centrality score.

Genes with high connectivity in context-agnostic networks en-
riched for annotations of biological importance

Genes with high network centrality are assumed to have wider influence on the

information transfer in the networks, and may be indicative of increased regulatory

relevance. We used the 13 genesets [159] (described in Methods) that are indicative of

increased biological significance to evaluate genes that had high measures of centrality.

For this, we grouped genes into 25 equal bins of ordered centrality scores, and an

additional bin for genes with a score of 0. Next, we compute excess overlap of genes

in each bin with each of the 14 genesets. Genes corresponding to bins with high

centrality scores were enriched for high pLI genes (pLI > 0.9; these genes are strongly

depleted for protein truncating variatns), high Shet genes (Shet > 0.1; these genes

show strong selection against protein truncating variants) [159, 166], genes strongly
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Figure 5-7. Distribution of node centrality scores.

Figure 5-8. Spearman correlation between different node centralities.
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depleted for missense mutations, and Mouse Genome Informatics essenetial genes

(Figure 5-9). We do not find a conclusive pattern of enrichment for other genesets

(described in Methods) we attempt to evalaute. Exploratory analyses revealed the

hubs of context agnostic networks included multiple mitosis and cell cycle related

genes such as CDK2, TOP2A, CENPE, and CDC20 (Table 5-II). Genes in the top

98th percentile of degree centrality were significantly enriched for mitotic spindle

assembly (OR = 16.23, P = 2.97 × 10−8) and G2/M transition of mitotic cell cycle

genesets from GO biological processes(OR = 8.96, P = 8.90 × 10−6). We compared

this to a tissue-specific skeletal muscle network from GTEx, and do not similar trend

of enrichment. This shows that tissue agnostic networks can capture critical biological

processes that are shared across tissues and cell types.

Gene Symbol # of neighbors
NCL 80

CDCA5 65
NCAPH 63
MELK 63
KIF11 62
CDK1 58

AURKAIP1 58
HUWE1 55
UBL5 55

TOP2A 54
ZWINT 53
SCAF1 53

NUSAP1 53
BUB1 53

KIF18B 52
ATP5B 51
BIRC5 50
GTSE1 49
RHOT2 49
PLK4 49

Table 5-II. Top 20 hub genes.
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Figure 5-9. Genes with high closeness centrality enriched for genes under strong
selection.
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Figure 5-10. Genes with high degree centrality enriched for mitosis related cell
cycle pathways.
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Enrichment of phenotypic heritability with centrality based
network annotations

Next we attempt to quantify the contribution of centrality based network annotations

to phenotypic heritability. We annotate SNPs within +/- 100kb of a gene TSS using

each of the six measures of gene level centralities. We applied stratified LDSC to

285 independent phenotypes from the UKBB cohort with heritability z-score >=7.

Following guidelines in [160], we also excluded traits with genetic correlation > 0.9.

We find significant enrichment of heritability with each network annotations across

multiple traits. Annotations obtained from betweenness centrality ovreall showed

high enrichment of disease heritability compared to others. (add heritability estimate

and pvals) (Figure 5-11. Estimates of regrerssion coefficients τ∗ were not significant

across individual traits. τ∗ quantifies the estimate of annotation based effect on

heritability of a phenotype conditioned on the baseline LD annotations. This could

imply that though network annotations were enriched for trait heritability, most of it

was captured by the 97 baseline annotations we conditioned the model on.

Next, we meta-analyzed the results of heritailibity enrichments and estimate of

standardized τ∗ across 285 phenotypes using a random effects meta-analysis. For all

six network annotations we find strong enrichment of disease heritability ranging from

1.21(SE0.0213, P < 2.2 × 10−16) to 1.64 (SE0.0323, P < 2.2 × 10−16) (Figure 5-12.

While estimates of τ∗ did not show any significance across individual phenotypes,

upon meta-analyses across phenotypes, it was significant for annotations based on

betweenness centrality (τ∗ = 0.0123, SE = 0.00297, P = 0.0000166). However, we

note that the effect size of esimates of τ∗, were small for all network annotations being

evaluated, including betweenness centrality. Our results from this analyses indicate

that while the six centrality annotations obtained from context-agnostic networks show

enrichment in trait heritability, we only find significant effect of τ∗ with betweenness

centrality with a small effect size.
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Figure 5-11. Distribution of heritability enrichment across 285 phenotypes from
UKBB based on different measures of centarlity.

Conclusion

In a typical RNA-seq study with just a few hundred samples, we are highly under

powered to estimate high dimensional gene co-expression networks. Inconsistent and

missing metadata make it challenging to effectively utilize a large repertoire of publicly

available gene expression studies. With informed probabilistic modeling, these data can

be aggregated across multiple studies to discover shared co-expression patterns across

different biological contexts. Our work shows that aggregation of data across studies

helps improve reconstruction of context-agnostic co-expression networks. Held-out

data likelihood using inferred networks show consistent improvement upon aggregation

across all three strategies. After accounting for study-specific heterogeneity, networks

obtained from merging data and from weighted aggregation of study-specific covariance

matrices yield very similar networks. In this work, using data from recount2, we build
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τ*

Figure 5-12. Heritability enrichment and τ∗ estimates meta-analyzed across
traits.

context-agnostic co-expression networks using data from 50 GTEx tissues and 186

studies in SRA. Hub genes from our networks show significant enrichment of mitosis

and cell cycle related pathways, implying that biological signal identified captures

ubiquitous cellular processes. Further, we find genes with high closeness centrality are

enriched for genesets that reflect strong evolutionary constraints such as those with

high pLI, Phi, and Shet scores. Finally we assess if topological properties of genes in

the network can explain phenotypic heritability using S-LDSC regression. Agnostic

network based annotations show significant enrichment in trait heritability, however

most of the heritability contribution by network annotations is explained by the 97

baselined LD annotations we conditioned our analyses on. Overall, in this work we

show that: a) informed aggregation of public data can improve network inference,

b) context-agnostic networks can provide insights on universal biological processes

critical across tissues and cell types, and c) network central genes captures patterns of

phenotypic heritability.
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Chapter 6

Probabilistic mixture model to
reconstruct context-specific gene
co-expression networks

Introduction

The abundance of publicly accessible human gene expression studies available on

databases such as Gene Expression Omnibus (GEO) and Sequence Read Archive

(SRA) is constantly increasing. There have been several efforts to uniformly process

this data, and quantify RNAseq measurements across all publicly available human

RNAseq studies using a standardized pipeline[23]. These databases form an attractive

resource for reconstructing gene co-expression networks. However, inconsistent and

unreliable metadata continue to be a major hurdle in effectively leveraging public

RNAseq studies to improve statistical power.

In this chapter, I describe a hierarchical mixture model groupNet that leverages

multiple datasets to learn the structure of a Gaussian Markov random field (GRMF)

to build context-specific co-expression networks. In absence of reliable meta-data, our

model works by assigning a mixture weight to each study that defines it’s relatedness

to a context. A context can be a biological phenotype such as tissues, cell types, or

disease states. The model borrows strength across studies via a mixture weight driven
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aggregation to estimate context-specific sparse co-expression networks. Preliminary

evidence shows that at reasonable network density, groupNet can correctly identify

study groupings, and shows moderate performance on reconstruction of context-specific

networks

Methods

Background on graphical lasso

Estimating the structure of a sparse high dimensional Gaussian graphical model is

of common interest across biology and statistics. Graphical lasso is one of the most

widely used algorithm for this purpose. Assuming that our gene expression data

contains N multivariate Gaussian observations each of dimension p, i.e. for each

observation, we have expression measurements for p genes, graphical lasso estimates

the structure of the co-expression network over genes by maximizing L1-penalized log

likelihood of a multivariate gaussian given by:

log det Θ − trace(SΘ) − Λ||Θ||1 (6.1)

Here S is the empirical covariance matrix and Θ = Σ−1 is inverse covariance matrix. As

described in the previous chapter, Λ corresponds to the L1 penalty on Θ that controls

the amount of sparsity in the solution [71], and captures patterns of conditional

independence between genes. In our work, we only penalize the non-diagonal elements

of the precision matrix, meaning that the diagonal entries of Λ are fixed to 0.

Next we describe our model groupNet which is a mixture model building on the

network learning principles from graphical lasso.

Problem set up

Suppose we have a database of K independent studies from a publicly available human

gene expression repository. E.g. Recount2. These studies belong to C different tissues,
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however we do not have tissue annotations for study k. Our goal is to first identify

the most likely tissue assignment for study k. We do this by giving soft clustering

assignment to each study-tissue pair. Next, we use these assignments for each tissue

to obtain a context-specific covariance matrix, which is used as an estimate of an

empirical covariance matrix in graphical lasso.

groupNet: model description and inference

Here we describe the mathematical formulation of the model, and derive updates

for parameter inference. We first introduce some notation that we use to describe

groupNet. We use K to denote the set of independent datasets or studies in our

analyses, and C to denote the number of classes that are specified by the group of K

studies. Xk is a matrix of gene expression from dataset k with n samples and p genes.

ϕzx

Θ

λ

N

C

K

Figure 6-1. Soft-clustering based graphical lasso.

Figure 6-1 is the graphical model representation of our model. ; the variables in

the model in figure 6-1 are described below:

• K is the number of studies/datasets

• each dataset contains Nk samples

98



• xnk is p-dimensional vector of gene expression measurements from observation n

from study K. It is drawn from a multivariate gaussian distribution given by:

p(xk,n|zk = c) ∼ MV N(0, Θc) (6.2)

Here Θc is a p × p precision matrix

• Θc has an elementwise Laplace prior:

p(Θc|λ) ∼ Laplace(0, λ) (6.3)

• zk is categorical variable of assignment of dataset K to a context

p(zk = c) ∼ Categorical(ϕc) (6.4)

The joint likelihood of the model in Figure 6-1 is given by:

p(X, Z|Θc, ϕ, λ) =
∏︂
k

[︄∏︂
n

p(xk,n|zk = c, Θc)
]︄

p(Θc|λ)p(zk = c|ϕ) (6.5)

Since Z ′s are not observed, we marginalize it out, and hence the marginal probability

is then given by:

p(X|Θ, ϕ) =
∏︂
k

∑︂
c

(︄[︄∏︂
n

p(xk,n|zk = c, Θc)
]︄

p(Θc|λ)p(zk = c|ϕ)
)︄

(6.6)

Next, we take the log of 6.6

log p(X|Θ, ϕ) =
∑︂

k

log
∑︂

c

(︄[︄∏︂
n

p(xk,n|zk = c, Θc)
]︄

p(Θc|λ)p(zk = c|ϕ)
)︄

(6.7)

If Z ′s were observed, this could be re-written as:

log p(X, Z|Θc, ϕ) =
∑︂

k

∑︂
c

1(zk = c)
(︃[︃∑︂

n

log p(xk,n|zk = c)
]︃
+

log p(Θc|λ) + log p(zk = c|ϕ)
)︃

(6.8)

Since zk is unobserved, we take an expectation maximization based approach for

inference. Given a specific initialization of Θc, we compute the posterior probability
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p(zk = c|Xk, Θc, λ) in the E-step as:

E Step:

p(zk = c|Xk, Θc, λ, ϕ) = γk,c = ([∏︁n p(xk,n|zk = c, Θc, λ)] p(zk = c|ϕ))∑︁
c ([∏︁n log p(xk,n|zk = c, Θc, λ)] p(zk = c|ϕ)) (6.9)

Once we have computed the posteriors, the expected log likelihood of the data is given

by:

EZ|X,Θ

[︃
p(X, Z|Θc, λ, ϕ)

]︃
=
∑︂

k

∑︂
c

γk,c

(︃[︃∑︂
n

log p(xk,n|zk = c)
]︃

+ log p(Θc|λ) + log p(zk = c|ϕ)
)︃

(6.10)

M Step:

Next given the current estimates of γk,c, we estimate the parameter Θc as:

arg min
Θc

∑︂
k

γk,c ([nk (− log |Θc| + Tr(SkΘc))] + log ϕc) + Λ||Θc||1 (6.11)

Here, Λ||Θc||1 is the lasso penalty on Θc that comes from the Laplacian prior and

induces sparsity in our networks. Taking the derivative of 6.11 w.r.t. Θc we get:

=
(︄∑︂

k

γk,c

(︂[︂
nk

(︂
−(Θc)−1 + Sk

)︂]︂)︂)︄
+ ΛΓ (6.12)

=
(︄∑︂

k

−γk,cnk(Θc)−1 +
∑︂

k

γk,cnkSk

)︄
+ ΛΓ (6.13)

Let γk,cnk = wkc, then we will have:

=
(︃∑︂

k

−wkc(Θc)−1 +
∑︂

k

wkcSk

)︃
+ ΛΓ (6.14)

= −Θ−1
c +

∑︁
k wkc · Sk∑︁

k wkc

+ Λ∑︁
k wkc

Γ (6.15)

The above equation can now be solved through graphical lasso. Using an empirical

estimate of the covariance matrix as,∑︁
k wkc · Sk∑︁

k wkc

(6.16)

we used R package glasso to infer the L1 penalized context specific precision matrix.
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Simulation study

We consider a two class problem for this simulation. We first generate two scale-free

networks with p = 1500 genes using igraph R package [167]. Next, given a network

structure, we generate a corresponding covariance matrix as follows[168]:

• Create a p × p matrix with ones on the diagonal, and zeros on elements that do

not correspond to edges

• assign entries corresponding to edges with values from a uniform distribution

with support on {[−0.4, 0.1] ∪ [−0.1, 0.4]}

• Divide each off-diagonal element of the matrix by 1.5 times the sum of the

absolute values of off-diagonal elements in its row. This helps ensure positive

definiteness

• average the matrix with its transpose to get a symmetric positive definite B

matrix

• finally we compute the corresponding Σ as:

dij(B)−1
ij√︂

(B)−1
ii (B)−1

jj

(6.17)

We used this as the estimate of the covariance matrix Σ to generate data from a

multivariate gaussian distribution with mean 0. This simulation setup has been

implemented as an R package netsimulatR and is available on github. We generate

data from six studies drawn from two classes with this framework. Using this data

we reconstruct co-expression networks using groupNet, context-specific average based

graphical lasso, and context-agnostic average based graphical lasso.
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Results

For this experiment, we used six studies drawn from two simulated covariance matrices

as described above. We applied groupNet to reconstruct two context-specific networks.

Preliminary evidence shows that groupNet captures context-specific co-expression

patterns and correctly clusters related studies together into the same group. groupNet

shows performance comparable to class-specific average based graphical lasso on the

number of true positive and false positive edges. Upon evaluation on sum of squared

error of edge values of the inferred network with ground truth, we find that if a

context is known, a class-specific average based graphical lasso shows lowest squared

error, followed by networks obtained from groupNet. Context-agnostic average based

graphical lasso shows the worst performance on both true positives vs false positives,

and squared error. This experiment provides preliminary evidence that: a) groupNet

can identify patterns of context-specific co-expression and group studies by context,

and b) it can reconstruct co-expression networks while capturing context-specific edge

information.

Figure 6-2. Performance of groupNet using simulated data. a. The number of
edges correctly identified to be non-zero (TP) is plotted against the number of edges
incorrectly classified as non-zero (FP) b. The sum of squared error in edge values is shown
against log10(number of edges).
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Conclusion

In this chapter we present a probabilistic method that in the absence of reliable

metadata in publicly available RNAseq studies, can learn latent assignments for each

study and jointly infer context-specific GCNs by sharing information across related

studies. We describe the model, and derive updates for parameter inference. Finally,

using a small simulation analyses, we provide preliminary evidence that that at a

reasonable network density groupNet correctly clusters studies into context-specific

groups, and shows moderate performance at recovering the structure of a context-

specific co-expression network.
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Chapter 7

Conclusion and future directions

In this chapter, we will first summarize the work presented in this thesis and next

discuss some future direction and extension of this work.

Summary of contributions

The ability to sequence the entire human genome and to quantify expression of over

40,000 genes from hundreds of individuals provides an extraordinary opportunity to

learn phenotype relevant genomic patterns that can expand our understanding of

molecular and cellular processes underlying a trait. The nature of high-dimensional

genomic data presents a range of computational and statistical challenges. The work

in this thesis attempts to address two major difficulties in this domain: a) artifacts

and noise in transcriptomic data, and b) limited statistical power.

Gene expression measurements are routinely affected by noise and artifacts that intro-

duce spurious structure in the data that can lead to erroneous downstream conclusions.

In chapter 2, we perform an extensive analysis to understand the contribution of known

and latent confounders on gene expression and its effects on eQTL mapping. Next,

while accounting for latent artifacts, we discovered 673 trans-eQTLs across 16 human

tissues, characterized some trait associated trans-eQTLs, and hypothesize potential

functional mechanisms. In chaper 3 we demonstrate that commonly used network

104



learning methods are vulnerable to noise and artifacts in gene expression data thereby

introducing a large number of false positive edges. We present a principal component

based residualization method to address the effect of confounders in reconstruction of

gene co-expression networks. Using empirical data, and in simulation we show that

applying PC based correction prior to network learning reduces false discoveries in

reconstructed networks.

In the next part of the thesis, we present methods and strategies to leverage multiple

related studies to increase statistical power in transcriptomic analyes. In chapter 4 we

present a multi-study integration based approach to identify global gene expression

patterns underlying epithelial to mesenchymal transition (EMT) phenotype across

different types of cancer cell lines. We demonstrate that leveraging data from mul-

tiple studies can enable identification of universal phenotype associated genes. Our

comprehensive approach of statistical analysis and functional validation in this work

identified global expression patterns in EMT and candidate regulatory genes, thereby

both extending current knowledge and identifying novel drivers of EMT phenotype.

In chapter 5 we present an aggregation based approach to build context-agnostic gene

co-expression networks. Using data from > 250 datasets from Recount2, we sought to

discover shared patterns of essential biological processes across tissues and cell types.

We demonstrate that agnostic network central genes are enriched for evolutionarily

constrainted genesets, and mitosis spindle formation related GO processes. We find

that network central annotations also show strong enrichment for phenotypic heritabil-

ity in multiple disease relevant traits such as blood and cardiovascular phenotypes in

the UKBB. In chapter 6, we present a mixture model based probabilistic framework

groupNet to reconstruct context specific gene co-expression networks by leveraging

unstructed RNAseq data from public resources. Building on the hierarchical structure

of biological phenotypes groupNet learns latent assignments for each study and jointly

infers context-specific networks by sharing information across studies from related
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phenotypes. Using a small simulation, we show preliminary evidence that groupNet

can capture patterns of similarity across datasets with moderate performance on

network reconstruction. Overall this thesis presents a compilation of diverse projects

that were driven by the motivation to efficiently capture gene regulatory patterns in

the human transcriptome while addressing statistical and computational challenges

that accompany this data.

Future directions

We are far from the dream of fully characterizing genetic and transcriptomic basis of

gene regulation, and understanding the underpinnings trait manifestation in humans.

While we have tried addressing some challenges in inferring high dimensional gene

networks, it still continues to remain a daunting task. However, if one can accurately

infer functional gene relationships in the human transcriptome, they can serve as

powerful tools for: a) understanding the molecular and cellular basis of phenotypic

variability, b) discover discover disease linked causal genes, c) identify relevant genes

or groups of genes for drug discovery, d) discover interpretable biomarkers for patient

stratification based on context specific patterns of differential co-expression. Next we

describe three potential future directions based on the work described in this thesis.

Identifying causal gene regulatory circuits by modeling small
variable sub-problem

Inferring directed gene-gene relationships can help discover causal regulatory mech-

anisms of gene expression. While learning the structure of a Gaussian undirected

graphical model to construct co-expression network is a hard, learning the structure

of the bayesian network is even more challenging. Artifacts in gene expression data,

and statistical power continue to remain a hurdle, further the huge search space that

grows exponentially with the number of nodes in a graph is an additional caveat
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with directed networks. There have been studies that propose several approaches to

reduce the size of the search space for directed networks. Leveraging the topology of

an undirected network can enable identification of a finite set of possible structures

for a directed graph. One can utilize the topology of undirected graphs to identify

small groups of genes This along with sparsity inducing structured priors can further

assist in accurate inference of gene regulatory circuits as gaussian directed acyclic

graphs. A potential extension to chapter 5 could be to identify causal relationships in

context-agnostic processes identified in the study.

Integrating genomic annotations to build a multi-modal prob-
abilistic model for co-expression

Our work in chapter 5 using stratified LD score regression demonstrates that while

network based annotations were enriched for explaining trait heritability, their individ-

ual contribution was almost completely explained by the 97 baseline LD annotations.

Several studies have shown the value of integrating genomic annotations to improve

variant interpretation and to predict the deleterious impact of common and rare

genetic variation. While there have been efforts to integrate multi-modal genomic

data to construct co-expression networks, leveraging genomic annotations to con-

struct structured priors in a probabilistic framework may have the potential to enable

inference of more accurate gene-gene relationships.

Network based models for clinical genomics

Disease biomarkers play a vital role at several stages of clinical decision making such

as: i) predict patient response to treatment or intervention (predictive), ii) predict

patient outcomes (prognostic), and iii) identify if patient has a specific disease or

subtype of a disease (diagnostic). Despite the abundance of nucleic acid biomarkers

reported in literature, there has been little success in translating them to the clinic.
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Further, most of the currently used Laboratory Developed Tests are not able to explain

the underlying molecular mechanism disease manifestation. The probabilistic model

that we described in chapter 6 can be extended to build a network based classifier for

patient stratification.

108



References

[1] L. Hood and D. Galas, “The digital code of dna,” Nature, vol. 421, no. 6921,

pp. 444–448, 2003.

[2] F. Martini, J. L. Nath, E. F. Bartholomew, W. C. Ober, C. E. Ober, K. Welch,

and R. T. Hutchings, Fundamentals of anatomy & physiology, vol. 7. Pearson

Benjamin Cummings San Francisco, CA, 2006.

[3] F. CRICK, “Central dogma of molecular biology,” Nature, vol. 227, pp. 561–563,

08 1970.

[4] K. R. Kukurba and S. B. Montgomery, “Rna sequencing and analysis,” Cold

Spring Harbor Protocols, vol. 2015, no. 11, pp. pdb–top084970, 2015.

[5] X. Yu, J. Lin, D. J. Zack, and J. Qian, “Identification of tissue-specific cis-

regulatory modules based on interactions between transcription factors,” BMC

bioinformatics, vol. 8, no. 1, p. 437, 2007.

[6] E. Pierson, D. Koller, A. Battle, S. Mostafavi, G. Consortium, et al., “Shar-

ing and specificity of co-expression networks across 35 human tissues,” PLoS

computational biology, vol. 11, no. 5, p. e1004220, 2015.

[7] A. Battle, S. Mostafavi, X. Zhu, J. B. Potash, M. M. Weissman, C. McCormick,

C. D. Haudenschild, K. B. Beckman, J. Shi, R. Mei, A. E. Urban, S. B. Mont-

gomery, D. F. Levinson, and D. Koller, “Characterizing the genetic basis of

transcriptome diversity through RNA-sequencing of 922 individuals,” Genome

Research, vol. 24, pp. 14–24, jan 2014.

109



[8] M. D. Gallagher and A. S. Chen-Plotkin, “The post-gwas era: from association

to function,” The American Journal of Human Genetics, vol. 102, no. 5, pp. 717–

730, 2018.

[9] T. Lappalainen, M. Sammeth, M. R. Friedländer, P. AC‘t Hoen, J. Monlong,

M. A. Rivas, M. Gonzalez-Porta, N. Kurbatova, T. Griebel, P. G. Ferreira,

Others, P. A. C. ‘t Hoen, J. Monlong, M. A. Rivas, M. Gonzàlez-Porta, N. Kur-

batova, T. Griebel, P. G. Ferreira, M. Barann, T. Wieland, L. Greger, M. van

Iterson, J. Almlöf, P. Ribeca, I. Pulyakhina, D. Esser, T. Giger, A. Tikhonov,

M. Sultan, G. Bertier, D. G. MacArthur, M. Lek, E. Lizano, H. P. J. Buermans,

I. Padioleau, T. Schwarzmayr, O. Karlberg, H. Ongen, H. Kilpinen, S. Beltran,

M. Gut, K. Kahlem, V. Amstislavskiy, O. Stegle, M. Pirinen, S. B. Montgomery,

P. Donnelly, M. I. McCarthy, P. Flicek, T. M. Strom, The Geuvadis Consor-

tium, H. Lehrach, S. Schreiber, R. Sudbrak, Á. Carracedo, S. E. Antonarakis,

R. Häsler, A.-C. Syvänen, G.-J. van Ommen, A. Brazma, T. Meitinger, P. Rosen-

stiel, R. Guigó, I. G. Gut, X. Estivill, E. T. Dermitzakis, P. A. C. ’t Hoen,

J. Monlong, M. A. Rivas, M. Gonzàlez-Porta, N. Kurbatova, T. Griebel, P. G.

Ferreira, M. Barann, T. Wieland, L. Greger, M. van Iterson, J. Almlöf, P. Ribeca,

I. Pulyakhina, D. Esser, T. Giger, A. Tikhonov, M. Sultan, G. Bertier, D. G.

MacArthur, M. Lek, E. Lizano, H. P. J. Buermans, I. Padioleau, T. Schwarz-

mayr, O. Karlberg, H. Ongen, H. Kilpinen, S. Beltran, M. Gut, K. Kahlem,

V. Amstislavskiy, O. Stegle, M. Pirinen, S. B. Montgomery, P. Donnelly, M. I. Mc-

Carthy, P. Flicek, T. M. Strom, Geuvadis Consortium, H. Lehrach, S. Schreiber,

R. Sudbrak, A. Carracedo, S. E. Antonarakis, R. Häsler, A.-C. Syvänen, G.-J.

van Ommen, A. Brazma, T. Meitinger, P. Rosenstiel, R. Guigó, I. G. Gut,

X. Estivill, and E. T. Dermitzakis, “Transcriptome and genome sequencing

uncovers functional variation in humans,” Nature, vol. 501, pp. 506–511, sep

2013.

110



[10] A. C. Nica and E. T. Dermitzakis, “Expression quantitative trait loci: present and

future,” Philosophical Transactions of the Royal Society B: Biological Sciences,

vol. 368, no. 1620, p. 20120362, 2013.

[11] N. Shan, Z. Wang, and L. Hou, “Identification of trans-eqtls using mediation

analysis with multiple mediators,” BMC bioinformatics, vol. 20, no. 3, p. 126,

2019.

[12] L. I. Furlong, “Human diseases through the lens of network biology,” Trends in

genetics, vol. 29, no. 3, pp. 150–159, 2013.

[13] A.-L. Barabási, N. Gulbahce, and J. Loscalzo, “Network medicine: a network-

based approach to human disease,” Nature reviews genetics, vol. 12, no. 1,

pp. 56–68, 2011.

[14] A. Saha, Y. Kim, A. D. Gewirtz, B. Jo, C. Gao, I. C. McDowell, B. E. Engelhardt,

A. Battle, F. Aguet, K. G. Ardlie, et al., “Co-expression networks reveal the

tissue-specific regulation of transcription and splicing,” Genome research, vol. 27,

no. 11, pp. 1843–1858, 2017.

[15] Y. Yang, L. Han, Y. Yuan, J. Li, N. Hei, and H. Liang, “Gene co-expression

network analysis reveals common system-level properties of prognostic genes

across cancer types,” Nature communications, vol. 5, no. 1, pp. 1–9, 2014.

[16] J. T. Leek and J. D. Storey, “Capturing heterogeneity in gene expression studies

by surrogate variable analysis,” PLOS Genetics, vol. 3, p. e161, sep 2007.

[17] O. Stegle, L. Parts, R. Durbin, and J. Winn, “A Bayesian framework to account

for complex non-genetic factors in gene expression levels greatly increases power

in eQTL studies,” PLoS Computational Biology, vol. 6, no. 5, p. e1000770, 2010.

[18] C. Chen, K. Grennan, J. Badner, D. Zhang, E. Gershon, L. Jin, and C. Liu,

“Removing batch effects in analysis of expression microarray data: an evaluation

of six batch adjustment methods,” PloS one, vol. 6, no. 2, 2011.

111



[19] J. T. Leek, R. B. Scharpf, H. C. Bravo, D. Simcha, B. Langmead, W. E.

Johnson, D. Geman, K. Baggerly, and R. A. Irizarry, “Tackling the widespread

and critical impact of batch effects in high-throughput data,” Nature Reviews

Genetics, vol. 11, no. 10, pp. 733–739, 2010.

[20] G. Consortium et al., “Genetic effects on gene expression across human tissues,”

Nature, vol. 550, no. 7675, pp. 204–213, 2017.

[21] P. Parsana, C. Ruberman, A. E. Jaffe, M. C. Schatz, A. Battle, and J. T.

Leek, “Addressing confounding artifacts in reconstruction of gene co-expression

networks,” Genome biology, vol. 20, no. 1, pp. 1–6, 2019.

[22] P. Parsana, S. R. Amend, J. Hernandez, K. J. Pienta, and A. Battle, “Identifying

global expression patterns and key regulators in epithelial to mesenchymal

transition through multi-study integration,” BMC cancer, vol. 17, no. 1, p. 447,

2017.

[23] L. Collado-Torres, A. Nellore, K. Kammers, S. E. Ellis, M. A. Taub, K. D.

Hansen, A. E. Jaffe, B. Langmead, and J. T. Leek, “Reproducible rna-seq

analysis using recount2,” Nature biotechnology, vol. 35, no. 4, pp. 319–321, 2017.

[24] H.-J. Westra, M. J. Peters, T. Esko, H. Yaghootkar, C. Schurmann, J. Kettunen,

M. W. Christiansen, B. P. Fairfax, K. Schramm, J. E. Powell, A. Zhernakova,

D. V. Zhernakova, J. H. Veldink, L. H. Van den Berg, J. Karjalainen, S. Withoff,

A. G. Uitterlinden, A. Hofman, F. Rivadeneira, P. A. C. ’t Hoen, E. Reinmaa,

K. Fischer, M. Nelis, L. Milani, D. Melzer, L. Ferrucci, A. B. Singleton, D. G.

Hernandez, M. A. Nalls, G. Homuth, M. Nauck, D. Radke, U. Völker, M. Perola,

V. Salomaa, J. Brody, A. Suchy-Dicey, S. A. Gharib, D. A. Enquobahrie,

T. Lumley, G. W. Montgomery, S. Makino, H. Prokisch, C. Herder, M. Roden,

H. Grallert, T. Meitinger, K. Strauch, Y. Li, R. C. Jansen, P. M. Visscher, J. C.

Knight, B. M. Psaty, S. Ripatti, A. Teumer, T. M. Frayling, A. Metspalu, J. B. J.

112



van Meurs, and L. Franke, “Systematic identification of trans eQTLs as putative

drivers of known disease associations,” Nature Genetics, vol. 45, pp. 1238–1243,

oct 2013.

[25] E. Grundberg, K. S. Small, Å. K. Hedman, A. C. Nica, A. Buil, S. Keildson,

J. T. Bell, T.-P. Yang, E. Meduri, A. Barrett, J. Nisbett, M. Sekowska, A. Wilk,

S.-Y. Shin, D. Glass, M. Travers, J. L. Min, S. Ring, K. Ho, G. Thorleifsson,

A. Kong, U. Thorsteindottir, C. Ainali, A. S. Dimas, N. Hassanali, C. Ingle,

D. Knowles, M. Krestyaninova, C. E. Lowe, P. Di Meglio, S. B. Montgomery,

L. Parts, S. Potter, G. Surdulescu, L. Tsaprouni, S. Tsoka, V. Bataille, R. Durbin,

F. O. Nestle, S. O’Rahilly, N. Soranzo, C. M. Lindgren, K. T. Zondervan, K. R.

Ahmadi, E. E. Schadt, K. Stefansson, G. D. Smith, M. I. McCarthy, P. Deloukas,

E. T. Dermitzakis, T. D. Spector, and Multiple Tissue Human Expression

Resource (MuTHER) Consortium, “Mapping cis- and trans-regulatory effects

across multiple tissues in twins,” Nature Genetics, vol. 44, pp. 1084–1089, oct

2012.

[26] R. S. N. Fehrmann, R. C. Jansen, J. H. Veldink, H. J. Westra, D. Arends,

M. J. Bonder, J. Fu, P. Deelen, H. J. M. Groen, A. Smolonska, R. K. Weersma,

R. M. W. Hofstra, W. A. Buurman, S. Rensen, M. G. M. Wolfs, M. Platteel,

A. Zhernakova, C. C. Elbers, E. M. Festen, G. Trynka, M. H. Hofker, C. G. J.

Saris, R. A. Ophoff, L. H. van den Berg, D. A. van Heel, C. Wijmenga, G. J.

Meerman, and L. Franke, “Trans-eQTLs reveal that independent genetic variants

associated with a complex phenotype converge on intermediate genes, with a

major role for the HLA,” PLoS Genetics, vol. 7, p. e1002197, aug 2011.

[27] ENCODE Project Consortium, E. Birney, J. A. Stamatoyannopoulos, A. Dutta,

R. Guigó, T. R. Gingeras, E. H. Margulies, Z. Weng, M. Snyder, E. T. Der-

mitzakis, R. E. Thurman, M. S. Kuehn, C. M. Taylor, S. Neph, C. M. Koch,

S. Asthana, A. Malhotra, I. Adzhubei, J. A. Greenbaum, R. M. Andrews,

113



P. Flicek, P. J. Boyle, H. Cao, N. P. Carter, G. K. Clelland, S. Davis, N. Day,

P. Dhami, S. C. Dillon, M. O. Dorschner, H. Fiegler, P. G. Giresi, J. Goldy,

M. Hawrylycz, A. Haydock, R. Humbert, K. D. James, B. E. Johnson, E. M.

Johnson, T. T. Frum, E. R. Rosenzweig, N. Karnani, K. Lee, G. C. Lefebvre,

P. A. Navas, F. Neri, S. C. J. Parker, P. J. Sabo, R. Sandstrom, A. Shafer,

D. Vetrie, M. Weaver, S. Wilcox, M. Yu, F. S. Collins, J. Dekker, J. D. Lieb,

T. D. Tullius, G. E. Crawford, S. Sunyaev, W. S. Noble, I. Dunham, F. Denoeud,

A. Reymond, P. Kapranov, J. Rozowsky, D. Zheng, R. Castelo, A. Frankish,

J. Harrow, S. Ghosh, A. Sandelin, I. L. Hofacker, R. Baertsch, D. Keefe, S. Dike,

J. Cheng, H. A. Hirsch, E. A. Sekinger, J. Lagarde, J. F. Abril, A. Shahab,

C. Flamm, C. Fried, J. Hackermüller, J. Hertel, M. Lindemeyer, K. Missal,

A. Tanzer, S. Washietl, J. Korbel, O. Emanuelsson, J. S. Pedersen, N. Holroyd,

R. Taylor, D. Swarbreck, N. Matthews, M. C. Dickson, D. J. Thomas, M. T.

Weirauch, J. Gilbert, J. Drenkow, I. Bell, X. Zhao, K. G. Srinivasan, W.-K. Sung,

H. S. Ooi, K. P. Chiu, S. Foissac, T. Alioto, M. Brent, L. Pachter, M. L. Tress,

A. Valencia, S. W. Choo, C. Y. Choo, C. Ucla, C. Manzano, C. Wyss, E. Che-

ung, T. G. Clark, J. B. Brown, M. Ganesh, S. Patel, H. Tammana, J. Chrast,

C. N. Henrichsen, C. Kai, J. Kawai, U. Nagalakshmi, J. Wu, Z. Lian, J. Lian,

P. Newburger, X. Zhang, P. Bickel, J. S. Mattick, P. Carninci, Y. Hayashizaki,

S. Weissman, T. Hubbard, R. M. Myers, J. Rogers, P. F. Stadler, T. M. Lowe,

C.-L. Wei, Y. Ruan, K. Struhl, M. Gerstein, S. E. Antonarakis, Y. Fu, E. D.

Green, U. s. Karaöz, A. Siepel, J. Taylor, L. A. Liefer, K. A. Wetterstrand,

P. J. Good, E. A. Feingold, M. S. Guyer, G. M. Cooper, G. Asimenos, C. N.

Dewey, M. Hou, S. Nikolaev, J. I. Montoya-Burgos, A. Löytynoja, S. Whelan,

F. Pardi, T. Massingham, H. Huang, N. R. Zhang, I. Holmes, J. C. Mullikin,

A. Ureta-Vidal, B. Paten, M. Seringhaus, D. Church, K. Rosenbloom, W. J.

Kent, E. A. Stone, NISC Comparative Sequencing Program, Baylor College of

114



Medicine Human Genome Sequencing Center, Washington University Genome

Sequencing Center, Broad Institute, Children’s Hospital Oakland Research In-

stitute, S. Batzoglou, N. Goldman, R. C. Hardison, D. Haussler, W. Miller,

A. Sidow, N. D. Trinklein, Z. D. Zhang, L. Barrera, R. Stuart, D. C. King,

A. Ameur, S. Enroth, M. C. Bieda, J. Kim, A. A. Bhinge, N. Jiang, J. Liu,

F. Yao, V. B. Vega, C. W. H. Lee, P. Ng, A. Yang, Z. Moqtaderi, Z. Zhu, X. Xu,

S. Squazzo, M. J. Oberley, D. Inman, M. A. Singer, T. A. Richmond, K. J.

Munn, A. Rada-Iglesias, O. Wallerman, J. Komorowski, J. C. Fowler, P. Couttet,

A. W. Bruce, O. M. Dovey, P. D. Ellis, C. F. Langford, D. A. Nix, G. Euskirchen,

S. Hartman, A. E. Urban, and Kra..., “Identification and analysis of functional

elements in 1% of the human genome by the ENCODE pilot project,” Nature,

vol. 447, pp. 799–816, jun 2007.

[28] A. Kundaje, W. Meuleman, J. Ernst, M. Bilenky, A. Yen, A. Heravi-Moussavi,

P. Kheradpour, Z. Zhang, J. Wang, M. J. Ziller, Others, V. Amin, J. W. Whitaker,

M. D. Schultz, L. D. Ward, A. Sarkar, G. Quon, R. S. Sandstrom, M. L. Eaton,

Y.-C. Wu, A. R. Pfenning, X. Wang, M. ClaussnitzerYaping Liu, C. Coarfa,

R. Alan Harris, N. Shoresh, C. B. Epstein, E. Gjoneska, D. Leung, W. Xie,

R. David Hawkins, R. Lister, C. Hong, P. Gascard, A. J. Mungall, R. Moore,

E. Chuah, A. Tam, T. K. Canfield, R. Scott Hansen, R. Kaul, P. J. Sabo, M. S.

Bansal, A. Carles, J. R. Dixon, K.-H. Farh, S. Feizi, R. Karlic, A. A.-R. Kim,

A. Kulkarni, D. Li, R. Lowdon, G. Elliott, T. R. Mercer, S. J. Neph, V. Onuchic,

P. Polak, N. Rajagopal, P. Ray, R. C. Sallari, K. T. Siebenthall, N. A. Sinnott-

Armstrong, M. Stevens, R. E. Thurman, J. Wu, B. Zhang, X. Zhou, N. Abdennur,

M. Adli, M. Akerman, L. Barrera, J. Antosiewicz-Bourget, T. Ballinger, M. J.

Barnes, D. Bates, R. J. A. Bell, D. A. Bennett, K. Bianco, C. Bock, P. Boyle,

J. Brinchmann, P. Caballero-Campo, R. Camahort, M. J. Carrasco-Alfonso,

T. Charnecki, H. Chen, Z. Chen, J. B. Cheng, S. Cho, A. Chu, W.-Y. Chung,

115



C. Cowan, Q. Athena Deng, V. Deshpande, M. Diegel, B. Ding, T. Durham,

L. Echipare, L. Edsall, D. Flowers, O. Genbacev-Krtolica, C. Gifford, S. Gillespie,

E. Giste, I. A. Glass, A. Gnirke, M. Gormley, H. Gu, J. Gu, D. A. Hafler, M. J.

Hangauer, M. Hariharan, M. Hatan, E. Haugen, Y. He, S. Heimfeld, S. Herlofsen,

Z. Hou, R. Humbert, R. Issner, A. R. Jackson, H. Jia, P. Jiang, A. K. Johnson,

T. Kadlecek, B. Kamoh, M. Kapidzic, J. Kent, A. A.-R. Kim, M. Kleinewietfeld,

S. Klugman, J. Krishnan, S. Kuan, T. Kutyavin, A.-Y. Lee, K. Lee, J. Li,

N. Li, Y. Li, K. L. Ligon, S. Lin, Y. Lin, J. Liu, Y. Y. Liu, C. J. Luckey, Y. P.

Ma, C. Maire, A. Marson, J. S. Mattick, M. Mayo, M. McMaster, H. Metsky,

T. Mikkelsen, D. Miller, M. Miri, E. Mukame, R. P. Nagarajan, F. Neri, J. Nery,

T. Nguyen, H. O’Geen, S. Paithankar, T. Papayannopoulou, M. Pelizzola,

P. Plettner, N. E. Propson, S. Raghuraman, B. J. Raney, A. Raubitschek, A. P.

Reynolds, H. Richards, K. Riehle, P. Rinaudo, J. F. Robinson, N. B. Rockweiler,

E. Rosen, E. Rynes, J. Schein, R. Sears, T. Sejnowski, A. Shafer, L. Shen,

R. Shoemaker, M. Sigaroudinia, I. Slukvin, S. Stehling-Sun, R. Stewart, S. L.

Subramanian, K. Suknuntha, S. Swanson, S. Tian, H. Tilden, L.-H. L. Tsai,

M. Urich, I. Vaughn, J. Vierstra, S. Vong, U. Wagner, H. Wang, T. T. Wang,

Y. Wang, A. Weiss, H. Whitton, A. Wildberg, H. Witt, K.-J. Won, M. Xie,

X. Xing, I. Xu, Z. Xuan, Z. Ye, C.-a. Yen, P. Yu, X. X. Zhang, X. X. Zhang,

J. Zhao, Y. Zhou, J. Zhu, Y. Zhu, S. Ziegler, A. E. Beaudet, L. A. Boyer, P. L.

De Jager, P. J. Farnham, S. J. Fisher, D. Haussler, S. J. M. Jones, W. Li, M. A.

Marra, M. T. McManus, S. Sunyaev, J. A. Thomson, T. D. Tlsty, L.-H. L. Tsai,

W. Wang, R. A. Waterland, M. Q. Zhang, L. H. Chadwick, B. E. Bernstein,

J. F. Costello, J. R. Ecker, M. Hirst, A. Meissner, A. Milosavljevic, B. Ren,

J. A. Stamatoyannopoulos, T. T. Wang, M. Kellis, A. Kundaje, W. Meuleman,

J. Ernst, M. Bilenky, A. Yen, A. Heravi-Moussavi, P. Kheradpour, Z. Zhang,

J. Wang, M. J. Ziller, V. Amin, J. W. Whitaker, M. D. Schultz, L. D. Ward,

116



A. Sarkar, G. Quon, R. S. Sandstrom, M. L. Eaton, Y.-C. Wu, A. R. Pfenning,

X. Wang, M. Claussnitzer, Y. Y. Liu, C. Coarfa, R. A. Harris, N. Shoresh, C. B.

Epstein, E. Gjoneska, D. Leung, W. Xie, R. D. Hawkins, R. Lister, C. Hong,

P. Gascard, A. J. Mungall, R. Moore, E. Chuah, A. Tam, T. K. Canfield,

R. S. Hansen, R. Kaul, P. J. Sabo, M. S. Bansal, A. Carles, J. R. Dixon, K.-

H. Farh, S. Feizi, R. Karlic, A. A.-R. Kim, A. Kulkarni, D. Li, R. Lowdon,

G. Elliott, T. R. Mercer, S. J. Neph, V. Onuchic, P. Polak, N. Rajagopal, P. Ray,

R. C. Sallari, K. T. Siebenthall, N. A. Sinnott-Armstrong, M. Stevens, R. E.

Thurman, J. Wu, B. Zhang, X. Zhou, A. E. Beaudet, L. A. Boyer, P. L. De

Jager, P. J. Farnham, S. J. Fisher, D. Haussler, S. J. M. Jones, W. Li, M. A.

Marra, M. T. McManus, S. Sunyaev, J. A. Thomson, T. D. Tlsty, L.-H. L. Tsai,

W. Wang, R. A. Waterland, M. Q. Zhang, L. H. Chadwick, B. E. Bernstein,

J. F. Costello, J. R. Ecker, M. Hirst, A. Meissner, A. Milosavljevic, B. Ren, J. A.

Stamatoyannopoulos, T. T. Wang, M. Kellis, Roadmap Epigenomics Consortium,

A. Kundaje, W. Meuleman, J. Ernst, M. Bilenky, A. Yen, A. Heravi-Moussavi,

P. Kheradpour, Z. Zhang, J. Wang, M. J. Ziller, V. Amin, J. W. Whitaker, M. D.

Schultz, L. D. Ward, A. Sarkar, G. Quon, R. S. Sandstrom, M. L. Eaton, Y.-C.

Wu, A. R. Pfenning, X. Wang, M. Claussnitzer, Y. Y. Liu, C. Coarfa, R. A.

Harris, N. Shoresh, C. B. Epstein, E. Gjoneska, D. Leung, W. Xie, R. D. Hawkins,

R. Lister, C. Hong, P. Gascard, A. J. Mungall, R. Moore, E. Chuah, A. Tam, T. K.

Canfield, R. S. Hansen, R. Kaul, P. J. Sabo, M. S. Bansal, A. Carles, J. R. Dixon,

K.-H. Farh, S. Feizi, R. Karlic, A. A.-R. Kim, A. Kulkarni, D. Li, R. Lowdon,

G. Elliott, T. R. Mercer, S. J. Neph, V. Onuchic, P. Polak, N. Rajagopal, P. Ray,

R. C. Sallari, K. T. Siebenthall, N. A. Sinnott-Armstrong, M. Stevens, R. E.

Thurman, J. Wu, B. Zhang, X. Zhou, A. E. Beaudet, L. A. Boyer, P. L. De

Jager, P. J. Farnham, S. J. Fisher, D. Haussler, S. J. M. Jones, W. Li, M. A.

Marra, M. T. McManus, S. Sunyaev, J. A. Thomson, T. D. Tlsty, L.-H. L. Tsai,

117



W. Wang, R. A. Waterland, M. Q. Zhang, L. H. Chadwick, B. E. Bernstein,

J. F. Costello, J. R. Ecker, M. Hirst, A. Meissner, A. Milosavljevic, B. Ren, J. A.

Stamatoyannopoulos, T. T. Wang, and M. Kellis, “Integrative analysis of 111

reference human epigenomes,” Nature, vol. 518, pp. 317–330, feb 2015.

[29] H. G. Stunnenberg, M. Hirst, S. Abrignani, D. Adams, M. de Almeida, L. Al-

tucci, V. Amin, I. Amit, S. E. Antonarakis, S. Aparicio, T. Arima, L. Arrigoni,

R. Arts, V. Asnafi, M. Esteller, J. B. Bae, K. Bassler, S. Beck, B. Berkman, B. E.

Bernstein, M. Bilenky, A. Bird, C. Bock, B. Boehm, G. Bourque, C. E. Breeze,

B. Brors, D. Bujold, O. Burren, M. J. Bussemakers, A. Butterworth, E. Campo,

E. Carrillo-de Santa-Pau, L. Chadwick, K. M. Chan, W. Chen, T. H. Cheung,

L. Chiapperino, N. H. Choi, H. R. Chung, L. Clarke, J. M. Connors, P. Cronet,

J. Danesh, M. Dermitzakis, G. Drewes, P. Durek, S. Dyke, T. Dylag, C. J. Eaves,

P. Ebert, R. Eils, J. Eils, C. A. Ennis, T. Enver, E. A. Feingold, B. Felder,

A. Ferguson-Smith, J. Fitzgibbon, P. Flicek, R. S. Foo, P. Fraser, M. Frontini,

E. Furlong, S. Gakkhar, N. Gasparoni, G. Gasparoni, D. H. Geschwind, P. Gla?ar,

T. Graf, F. Grosveld, X. Y. Guan, R. Guigo, I. G. Gut, A. Hamann, B. G.

Han, R. A. Harris, S. Heath, K. Helin, J. G. Hengstler, A. Heravi-Moussavi,

K. Herrup, S. Hill, J. A. Hilton, B. C. Hitz, B. Horsthemke, M. Hu, J. Y.

Hwang, N. Y. Ip, T. Ito, B. M. Javierre, S. Jenko, T. Jenuwein, Y. Joly, S. J.

Jones, Y. Kanai, H. G. Kang, A. Karsan, A. K. Kiemer, S. C. Kim, B. J. Kim,

H. H. Kim, H. Kimura, S. Kinkley, F. Klironomos, I. U. Koh, M. Kostadima,

C. Kressler, R. Kreuzhuber, A. Kundaje, R. Kuppers, C. Larabell, P. Lasko,

M. Lathrop, D. H. Lee, S. Lee, H. Lehrach, E. Leitao, T. Lengauer, A. Lernmark,

R. D. Leslie, G. K. Leung, D. Leung, M. Loeffler, Y. Ma, A. Mai, T. Manke,

E. R. Marcotte, M. A. Marra, J. H. Martens, J. I. Martin-Subero, K. Maschke,

C. Merten, A. Milosavljevic, S. Minucci, T. Mitsuyama, R. A. Moore, F. Muller,

A. J. Mungall, M. G. Netea, K. Nordstrom, I. Norstedt, H. Okae, V. Onuchic,

118



F. Ouellette, W. Ouwehand, M. Pagani, V. Pancaldi, T. Pap, T. Pastinen, R. Pa-

tel, D. S. Paul, M. J. Pazin, P. G. Pelicci, A. G. Phillips, J. Polansky, B. Porse,

J. A. Pospisilik, S. Prabhakar, D. C. Procaccini, A. Radbruch, N. Rajewsky,

V. Rakyan, W. Reik, B. Ren, D. Richardson, A. Richter, D. Rico, D. J. Roberts,

P. Rosenstiel, M. Rothstein, A. Salhab, H. Sasaki, J. S. Satterlee, S. Sauer,

C. Schacht, F. Schmidt, G. Schmitz, S. Schreiber, C. Schroder, D. Schubeler,

J. L. Schultze, R. P. Schulyer, M. Schulz, M. Seifert, K. Shirahige, R. Siebert,

T. Sierocinski, L. Siminoff, A. Sinha, N. Soranzo, S. Spicuglia, M. Spivakov,

C. Steidl, J. S. Strattan, M. Stratton, P. Sudbeck, H. Sun, N. Suzuki, Y. Suzuki,

A. Tanay, D. Torrents, F. L. Tyson, T. Ulas, S. Ullrich, T. Ushijima, A. Valencia,

E. Vellenga, M. Vingron, C. Wallace, S. Wallner, J. Walter, H. Wang, S. Weber,

N. Weiler, A. Weller, A. Weng, S. Wilder, S. M. Wiseman, A. R. Wu, Z. Wu,

J. Xiong, Y. Yamashita, X. Yang, D. Y. Yap, K. Y. Yip, S. Yip, J. I. Yoo,

D. Zerbino, and G. Zipprich, “The International Human Epigenome Consor-

tium: A Blueprint for Scientific Collaboration and Discovery,” Cell, vol. 167,

pp. 1145–1149, Nov 2016.

[30] F. W. Albert and L. Kruglyak, “The role of regulatory variation in complex

traits and disease,” Nature Reviews Genetics, vol. 16, pp. 197–212, apr 2015.

[31] F. A. Wright, P. F. Sullivan, A. I. Brooks, F. Zou, W. Sun, K. Xia, V. Madar,

R. Jansen, W. Chung, Y.-H. Zhou, A. Abdellaoui, S. Batista, C. Butler, G. Chen,

T.-H. Chen, D. D’Ambrosio, P. Gallins, M. J. Ha, J.-J. Hottenga, S. Huang,

M. Kattenberg, J. Kochar, C. M. Middeldorp, A. Qu, A. Shabalin, J. Tischfield,

L. Todd, J.-Y. Tzeng, G. van Grootheest, J. M. Vink, Q. Wang, W. Wang,

W. Wang, G. Willemsen, J. H. Smit, E. J. de Geus, Z. Yin, B. W. J. H. Penninx,

and D. I. Boomsma, “Heritability and genomics of gene expression in peripheral

blood,” Nature Genetics, vol. 46, pp. 430–437, may 2014.

[32] K. G. Ardlie, D. S. Deluca, A. V. Segre, T. J. Sullivan, T. R. Young, E. T.

119



Gelfand, C. A. Trowbridge, J. B. Maller, T. Tukiainen, M. Lek, L. D. Ward,

P. Kheradpour, B. Iriarte, Y. Meng, C. D. Palmer, T. Esko, W. Winckler, J. N.

Hirschhorn, M. Kellis, D. G. MacArthur, G. Getz, A. A. Shabalin, G. Li, Y.-H.

Zhou, A. B. Nobel, I. Rusyn, F. A. Wright, T. Lappalainen, P. G. Ferreira,

H. Ongen, M. A. Rivas, A. Battle, S. Mostafavi, J. Monlong, M. Sammeth,

M. Mele, F. Reverter, J. M. Goldmann, D. Koller, R. Guigo, M. I. McCarthy, E. T.

Dermitzakis, E. R. Gamazon, H. K. Im, A. Konkashbaev, D. L. Nicolae, N. J.

Cox, T. Flutre, X. Wen, M. Stephens, J. K. Pritchard, Z. Tu, B. Zhang, T. Huang,

Q. Long, L. Lin, J. Yang, J. Zhu, J. Liu, A. Brown, B. Mestichelli, D. Tidwell,

E. Lo, M. Salvatore, S. Shad, J. A. Thomas, J. T. Lonsdale, M. T. Moser, B. M.

Gillard, E. Karasik, K. Ramsey, C. Choi, B. A. Foster, J. Syron, J. Fleming,

H. Magazine, R. Hasz, G. D. Walters, J. P. Bridge, M. Miklos, S. Sullivan,

L. K. Barker, H. M. Traino, M. Mosavel, L. A. Siminoff, D. R. Valley, D. C.

Rohrer, S. D. Jewell, P. A. Branton, L. H. Sobin, M. Barcus, L. Qi, J. McLean,

P. Hariharan, K. S. Um, S. Wu, D. Tabor, C. Shive, A. M. Smith, S. A. Buia,

A. H. Undale, K. L. Robinson, N. Roche, K. M. Valentino, A. Britton, R. Burges,

D. Bradbury, K. W. Hambright, J. Seleski, G. E. Korzeniewski, K. Erickson,

Y. Marcus, J. Tejada, M. Taherian, C. Lu, M. Basile, D. C. Mash, S. Volpi, J. P.

Struewing, G. F. Temple, J. Boyer, D. Colantuoni, R. Little, S. Koester, L. J.

Carithers, H. M. Moore, P. Guan, C. Compton, S. J. Sawyer, J. P. Demchok,

J. B. Vaught, C. A. Rabiner, N. C. Lockhart, K. G. Ardlie, G. Getz, F. A.

Wright, M. Kellis, S. Volpi, E. T. Dermitzakis, and GTEx Consortium, “The

Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation

in humans,” Science, vol. 348, pp. 648–660, may 2015.

[33] 1000 Genomes Project Consortium, A. Auton, L. D. Brooks, R. M. Durbin,

E. P. Garrison, H. M. Kang, J. O. Korbel, J. L. Marchini, S. McCarthy, G. A.

McVean, and G. R. Abecasis, “A global reference for human genetic variation,”

120



Nature, vol. 526, pp. 68–74, oct 2015.

[34] L. J. Carithers, K. Ardlie, M. Barcus, P. A. Branton, A. Britton, S. A. Buia,

C. C. Compton, D. S. DeLuca, J. Peter-Demchok, E. T. Gelfand, P. Guan, G. E.

Korzeniewski, N. C. Lockhart, C. A. Rabiner, A. K. Rao, K. L. Robinson, N. V.

Roche, S. J. Sawyer, A. V. Segrè, C. E. Shive, A. M. Smith, L. H. Sobin, A. H.

Undale, K. M. Valentino, J. Vaught, T. R. Young, H. M. Moore, and GTEx

Consortium, “A novel approach to high-quality postmortem tissue procurement:

The GTEx project,” Biopreservation and Biobanking, vol. 13, pp. 311–319, oct

2015.

[35] J. O’Connell, D. Gurdasani, O. Delaneau, N. Pirastu, S. Ulivi, M. Cocca,

M. Traglia, J. Huang, J. E. Huffman, I. Rudan, R. McQuillan, R. M. Fraser,

H. Campbell, O. Polasek, G. Asiki, K. Ekoru, C. Hayward, A. F. Wright, V. Vi-

tart, P. Navarro, J.-F. Zagury, J. F. Wilson, D. Toniolo, P. Gasparini, N. Soranzo,

M. S. Sandhu, and J. Marchini, “A general approach for haplotype phasing

across the full spectrum of relatedness,” PLoS Genetics, vol. 10, p. e1004234,

apr 2014.

[36] B. Howie, J. Marchini, and M. Stephens, “Genotype imputation with thousands

of genomes,” G3, vol. 1, pp. 457–470, nov 2011.

[37] 1000 Genomes Project Consortium, G. R. Abecasis, A. Auton, L. D. Brooks,

M. A. DePristo, R. M. Durbin, R. E. Handsaker, H. M. Kang, G. T. Marth,

G. A. McVean, D. M. Altshuler, R. M. Durbin, G. R. Abecasis, D. R. Bentley,

A. Chakravarti, A. G. Clark, P. Donnelly, E. E. Eichler, P. Flicek, S. B. Gabriel,

R. A. Gibbs, E. D. Green, M. E. Hurles, B. M. Knoppers, J. O. Korbel, E. S.

Lander, C. Lee, H. Lehrach, E. R. Mardis, G. T. Marth, G. A. McVean, D. A.

Nickerson, J. P. Schmidt, S. T. Sherry, J. Wang, R. K. Wilson, R. A. Gibbs,

H. Dinh, C. Kovar, S. Lee, L. Lewis, D. Muzny, J. Reid, M. Wang, J. Wang,

121



X. Fang, X. Guo, M. Jian, H. Jiang, X. Jin, G. Li, J. Li, Y. Li, Z. Li, X. Liu,

Y. Lu, X. Ma, Z. Su, S. Tai, M. Tang, B. Wang, G. Wang, H. Wu, R. Wu,

Y. Yin, W. Zhang, J. Zhao, M. Zhao, X. Zheng, Y. Zhou, E. S. Lander, D. M.

Altshuler, S. B. Gabriel, N. Gupta, P. Flicek, L. Clarke, R. Leinonen, R. E.

Smith, X. Zheng-Bradley, D. R. Bentley, R. Grocock, S. Humphray, T. James,

Z. Kingsbury, H. Lehrach, R. Sudbrak, M. W. Albrecht, V. S. Amstislavskiy,

T. A. Borodina, M. Lienhard, F. Mertes, M. Sultan, B. Timmermann, M. L.

Yaspo, S. T. Sherry, G. A. McVean, E. R. Mardis, R. K. Wilson, L. Fulton,

R. Fulton, G. M. Weinstock, R. M. Durbin, S. Balasubramaniam, J. Burton,

P. Danecek, T. M. Keane, A. Kolb-Kokocinski, S. McCarthy, J. Stalker, M. Quail,

J. P. Schmidt, C. J. Davies, J. Gollub, T. Webster, B. Wong, Y. Zhan, A. Auton,

R. A. Gibbs, F. Yu, M. Bainbridge, D. Challis, U. S. Evani, J. Lu, D. Muzny,

U. Nagaswamy, J. Reid, A. Sabo, Y. Wang, J. Yu, J. Wang, L. J. Coin, L. Fang,

X. Guo, X. Jin, G. Li, Q. Li, Y. Li, Z. Li, H. Lin, B. Liu, R. Luo, N. Qin,

H. Shao, B. Wang, Y. Xie, C. Ye, C. Yu, F. Zhang, H. Zheng, H. Zhu, G. T.

Marth, E. P. Garrison, D. Kural, W. P. Lee, W. F. Leong, A. N. Ward, J. Wu,

M. Zhang, C. Lee, L. Griffin, C. H. Hsieh, R. E. Mills, X. Shi, M. von Grotthuss,

C. Zhang, M. J. Daly, M. A. DePristo, D. M. Altshuler, E. Banks, G. Bhatia,

M. O. Carneiro, G. del Angel, S. B. Gabriel, G. Genovese, N. Gupta, R. E.

Handsaker, C. Hartl, E. S. Lander, S. A. McCarroll, J. C. Nemesh, R. E. Poplin,

S. F. Schaffner, K. Shakir, S. C. Yoon, J. Lihm, V. Makarov, H. Jin, W. Kim,

K. C. Kim, J. O. Korbel, T. Rausch, P. Flicek, K. Beal, L. Clarke, F. Cunning-

ham, J. Herrero, W. M. McLaren, G. R. Ritchie, R. E. Smith, X. Zheng-Bradley,

A. G. Clark, S. Gottipati, A. Keinan, J. L. Rodriguez-Flores, P. C. Sabeti, S. R.

Grossman, S. Tabrizi, R. Tariyal, D. N. Cooper, E. V. Ball, P. D. Stenson, D. R.

Bentley, B. Barnes, M. Bauer, R. Cheetham, T. Cox, M. Eberle, S. Humphray,

S. Kahn, L. Murray, J. Peden, R. Shaw, K. Ye, M. A. Batzer, M. K. Konkel,

122



J. A. Walker, D. G. MacArthur, M. Lek, R. Sudbrak, V. S. Amstislavskiy,

R. Herwig, M. D. Shriver, C. D. Bustamante, J. K. Byrnes, F. M. De La Vega,

S. Gravel, E. E. Kenny, J. M. Kidd, P. Lacroute, B. K. Maples, A. Moreno-

Estrada, F. Zakharia, E. Halperin, Y. Baran, D. W. Craig, A. Christoforides,

N. Homer, T. Izatt, A. A. Kurdoglu, S. A. Sinari, K. Squire, S. T. Sherry,

C. Xiao, J. Sebat, V. Bafna, K. Ye, E. G. Burchard, R. D. Hernandez, C. R.

Gignoux, D. Haussler, S. J. Katzman, W. J. Kent, B. Howie, A. Ruiz-Linares,

E. T. Dermitzakis, T. Lappalainen, S. E. Devine, X. Liu, A. Maroo, L. J. Tallon,

J. A. Rosenfeld, L. P. Michelson, G. R. Abecasis, H. M. Kang, P. Anderson,

A. Angius, A. Bigham, T. Blackwell, F. Busonero, F. Cucca, C. Fuchsberger,

C. Jones, G. Jun, Y. Li, R. Lyons, A. Maschio, E. Porcu, F. Reinier, S. Sanna,

D. Schlessinger, C. Sidore, A. Tan, M. K. Trost, P. Awadalla, A. Hodgkinson,

G. Lunter, G. A. McVean, J. L. Marchini, S. Myers, C. Churchhouse, O. De-

laneau, A. Gupta-Hinch, Z. Iqbal, I. Mathieson, A. Rimmer, D. K. Xifara, T. K.

Oleksyk, Y. Fu, X. Liu, M. Xiong, L. Jorde, D. Witherspoon, J. Xing, E. E.

Eichler, B. L. Browning, C. Alkan, I. Hajirasouliha, F. Hormozdiari, A. Ko,

P. H. Sudmant, E. R. Mardis, K. Chen, A. Chinwalla, L. Ding, D. Dooling,

D. C. Koboldt, M. D. McLellan, J. W. Wallis, M. C. Wendl, Q. Zhang, R. M.

Durbin, M. E. Hurles, C. Tyler-Smith, C. A. Albers, Q. Ayub, S. Balasubra-

maniam, Y. Chen, A. J. Coffey, V. Colonna, P. Danecek, N. Huang, L. Jostins,

T. M. Keane, H. Li, S. McCarthy, A. Scally, J. Stalker, K. Walter, Y. Xue,

Y. Zhang, M. B. Gerstein, A. Abyzov, S. Balasubramanian, J. Chen, D. Clarke,

Y. Fu, L. Habegger, A. O. Harmanci, M. Jin, E. Khurana, X. J. Mu, C. Sisu,

Y. Li, R. Luo, H. Zhu, C. Lee, L. Griffin, C. H. Hsieh, R. E. Mills, X. Shi,

M. von Grotthuss, C. Zhang, G. T. Marth, E. P. Garrison, D. Kural, W. P. Lee,

A. N. Ward, J. Wu, M. Zhang, S. A. McCarroll, D. M. Altshuler, E. Banks,

G. del Angel, G. Genovese, R. E. Handsaker, C. Hartl, J. C. Nemesh, K. Shakir,

123



S. C. Yoon, J. Lihm, V. Makarov, J. Degenhardt, P. Flicek, L. Clarke, R. E.

Smith, X. Zheng-Bradley, J. O. Korbel, T. Rausch, A. M. Stutz, D. R. Bentley,

B. Barnes, R. Cheetham, M. Eberle, S. Humphray, S. Kahn, L. Murray, R. Shaw,

K. Ye, M. A. Batzer, M. K. Konkel, J. A. Walker, P. Lacroute, D. W. Craig,

N. Homer, D. Church, C. Xiao, J. Sebat, V. Bafna, J. J. Michaelson, K. Ye, S. E.

Devine, X. Liu, A. Maroo, L. J. Tallon, G. Lunter, Z. Iqbal, D. Witherspoon,

J. Xing, E. E. Eichler, C. Alkan, I. Hajirasouliha, F. Hormozdiari, A. Ko, P. H.

Sudmant, K. Chen, A. Chinwalla, L. Ding, M. D. McLellan, J. W. Wallis, M. E.

Hurles, B. Blackburne, H. Li, S. J. Lindsay, Z. Ning, A. Scally, K. Walter,

Y. Zhang, M. B. Gerstein, A. Abyzov, J. Chen, D. Clarke, E. Khurana, X. J. Mu,

C. Sisu, R. A. Gibbs, F. Yu, M. Bainbridge, D. Challis, U. S. Evani, C. Kovar,

L. Lewis, J. Lu, D. Muzny, U. Nagaswamy, J. Reid, A. Sabo, J. Yu, X. Guo, Y. Li,

R. Wu, G. T. Marth, E. P. Garrison, W. F. Leong, A. N. Ward, G. del Angel,

M. A. DePristo, S. B. Gabriel, N. Gupta, C. Hartl, R. E. Poplin, A. G. Clark,

J. L. Rodriguez-Flores, P. Flicek, L. Clarke, R. E. Smith, X. Zheng-Bradley,

D. G. MacArthur, C. D. Bustamante, S. Gravel, D. W. Craig, A. Christoforides,

N. Homer, T. Izatt, S. T. Sherry, C. Xiao, E. T. Dermitzakis, G. R. Abecasis,

H. M. Kang, G. A. McVean, E. R. Mardis, D. Dooling, L. Fulton, R. Fulton,

D. C. Koboldt, R. M. Durbin, S. Balasubramaniam, T. M. Keane, S. McCarthy,

J. Stalker, M. B. Gerstein, S. Balasubramanian, L. Habegger, E. P. Garrison,

R. A. Gibbs, M. Bainbridge, D. Muzny, F. Yu, J. Yu, G. del Angel, R. E.

Handsaker, V. Makarov, J. L. Rodriguez-Flores, H. Jin, W. Kim, K. C. Kim,

P. Flicek, K. Beal, L. Clarke, F. Cunningham, J. Herrero, W. M. McLaren,

G. R. Ritchie, X. Zheng-Bradley, S. Tabrizi, D. G. MacArthur, M. Lek, C. D.

Bustamante, F. M. De La Vega, D. W. Craig, A. A. Kurdoglu, T. Lappalainen,

J. A. Rosenfeld, L. P. Michelson, P. Awadalla, A. Hodgkinson, G. A. McVean,

K. Chen, C. Tyler-Smith, Y. Chen, V. Colonna, A. Frankish, J. Harrow, Y. Xue,

124



M. B. Gerstein, A. Abyzov, S. Balasubramanian, J. Chen, D. Clarke, Y. Fu,

A. O. Harmanci, M. Jin, E. Khurana, X. J. Mu, C. Sisu, R. A. Gibbs, G. Fowler,

W. Hale, D. Kalra, C. Kovar, D. Muzny, J. Reid, J. Wang, X. Guo, G. Li,

Y. Li, X. Zheng, D. M. Altshuler, P. Flicek, L. Clarke, J. Barker, G. Kel-

man, E. Kulesha, R. Leinonen, W. M. McLaren, R. Radhakrishnan, A. Roa,

D. Smirnov, R. E. Smith, I. Streeter, I. Toneva, B. Vaughan, X. Zheng-Bradley,

D. R. Bentley, T. Cox, S. Humphray, S. Kahn, R. Sudbrak, M. W. Albrecht,

M. Lienhard, D. W. Craig, T. Izatt, A. A. Kurdoglu, S. T. Sherry, V. Ananiev,

Z. Belaia, D. Beloslyudtsev, N. Bouk, C. Chen, D. Church, R. Cohen, C. Cook,

J. Garner, T. Hefferon, M. Kimelman, C. Liu, J. Lopez, P. Meric, C. O’Sullivan,

Y. Ostapchuk, L. Phan, S. Ponomarov, V. Schneider, E. Shekhtman, K. Sirotkin,

D. Slotta, C. Xiao, H. Zhang, D. Haussler, G. R. Abecasis, G. A. McVean,

C. Alkan, A. Ko, D. Dooling, R. M. Durbin, S. Balasubramaniam, T. M. Keane,

S. McCarthy, J. Stalker, A. Chakravarti, B. M. Knoppers, G. R. Abecasis, K. C.

Barnes, C. Beiswanger, E. G. Burchard, C. D. Bustamante, H. Cai, H. Cao, R. M.

Durbin, N. Gharani, R. A. Gibbs, C. R. Gignoux, S. Gravel, B. Henn, D. Jones,

L. Jorde, J. S. Kaye, A. Keinan, A. Kent, A. Kerasidou, Y. Li, R. Mathias,

G. A. McVean, A. Moreno-Estrada, P. N. Ossorio, M. Parker, D. Reich, C. N.

Rotimi, C. D. Royal, K. Sandoval, Y. Su, R. Sudbrak, Z. Tian, B. Timmermann,

S. Tishkoff, L. H. Toji, C. Tyler-Smith, M. Via, Y. Wang, H. Yang, L. Yang,

J. Zhu, W. Bodmer, G. Bedoya, A. Ruiz-Linares, C. Z. Ming, G. Yang, C. J. You,

L. Peltonen, A. Garcia-Montero, A. Orfao, J. Dutil, J. C. Martinez-Cruzado,

T. K. Oleksyk, L. D. Brooks, A. L. Felsenfeld, J. E. McEwen, N. C. Clemm,

A. Duncanson, M. Dunn, E. D. Green, M. S. Guyer, and J. L. Peterson, “An

integrated map of genetic variation from 1,092 human genomes,” Nature, vol. 491,

pp. 56–65, nov 2012.

[38] A. A. Shabalin, “Matrix eQTL: Ultra fast eQTL analysis via large matrix

125



operations,” Bioinformatics, vol. 28, pp. 1353–1358, may 2012.

[39] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A practical

and powerful approach to multiple testing,” Journal of the Royal Statistical

Society. Series B, vol. 57, no. 1, pp. 289–300, 1995.

[40] J. H. Sul, B. Han, C. Ye, T. Choi, and E. Eskin, “Effectively identifying eQTLs

from multiple tissues by combining mixed model and meta-analytic approaches,”

PLOS Genetics, vol. 9, p. e1003491, jun 2013.

[41] B. Han and E. Eskin, “Random-effects model aimed at discovering associations

in meta-analysis of genome-wide association studies,” American Journal of

Human Genetics, vol. 88, pp. 586–598, may 2011.

[42] M. Bogomolov, C. B. Peterson, Y. Benjamini, and C. Sabatti, “Testing hy-

potheses on a tree: new error rates and controlling strategies,” arXiv preprint

arXiv:1705.07529, May 2017.

[43] C. Giambartolomei, D. Vukcevic, E. E. Schadt, L. Franke, A. D. Hingorani,

C. Wallace, and V. Plagnol, “Bayesian test for colocalisation between pairs of

genetic association studies using summary statistics,” PLoS Genetics, vol. 10,

p. e1004383, may 2014.

[44] A. Saha and A. Battle, “False positives in trans-eqtl and co-expression analyses

arising from rna-sequencing alignment errors,” F1000Research, vol. 7, 2018.

[45] O. Stegle, L. Parts, R. Durbin, and J. Winn, “A bayesian framework to account

for complex non-genetic factors in gene expression levels greatly increases power

in eqtl studies,” PLoS Comput Biol, vol. 6, 2010.

[46] C. B. Peterson, M. Bogomolov, Y. Benjamini, and C. Sabatti, “TreeQTL:

Hierarchical error control for eQTL findings,” Bioinformatics, vol. 32, pp. 2556–

2558, aug 2016.

[47] A. Buil, A. Viñuela, A. Brown, M. Davies, I. Padioleau, D. Bielser, L. Romano,

126



D. Glass, P. Di Meglio, K. Small, T. Spector, and E. T. Dermitzakis, “Quantifying

the degree of sharing of genetic and non-genetic causes of gene expression

variability across four tissues,” bioRxiv, p. 53355, may 2016.

[48] V. Hore, A. Viñuela, A. Buil, J. Knight, M. I. McCarthy, K. Small, and J. Mar-

chini, “Tensor decomposition for multiple-tissue gene expression experiments,”

Nature Genetics, vol. 48, pp. 1094–1100, sep 2016.

[49] S. B. Montgomery and E. T. Dermitzakis, “From expression QTLs to personalized

transcriptomics,” Nature Reviews Genetics, vol. 12, pp. 277–282, apr 2011.

[50] J. Bryois, A. Buil, D. M. Evans, J. P. Kemp, S. B. Montgomery, D. F. Conrad,

K. M. Ho, S. Ring, M. Hurles, P. Deloukas, Others, G. Davey Smith, and

E. T. Dermitzakis, “Cis and trans effects of human genomic variants on gene

expression,” PLoS Genetics, vol. 10, p. e1004461, jul 2014.

[51] T. Huan, T. Esko, M. J. Peters, L. C. Pilling, K. Schramm, C. Schurmann,

B. H. Chen, C. Liu, R. Joehanes, A. D. Johnson, C. Yao, S.-x. Ying, P. Courch-

esne, L. Milani, N. Raghavachari, R. Wang, P. Liu, E. Reinmaa, A. Dehghan,

A. Hofman, A. G. Uitterlinden, D. G. Hernandez, S. Bandinelli, A. Singleton,

D. Melzer, A. Metspalu, M. Carstensen, H. Grallert, C. Herder, T. Meitinger,

A. Peters, M. Roden, M. Waldenberger, M. Dörr, S. B. Felix, T. Zeller, I. C. f.

B. P. G. (icbp), R. Vasan, C. J. O’Donnell, P. J. Munson, X. Yang, H. Prokisch,

U. Völker, J. B. J. van Meurs, L. Ferrucci, D. Levy, J. B. J. van Meurs, L. Fer-

rucci, D. Levy, and Others, “A meta-analysis of gene expression signatures of

blood pressure and hypertension,” PLOS Genetics, vol. 11, p. e1005035, mar

2015.

[52] D. Welter, J. MacArthur, J. Morales, T. Burdett, P. Hall, H. Junkins, A. Klemm,

P. Flicek, T. Manolio, L. Hindorff, and H. Parkinson, “The NHGRI GWAS

Catalog, a curated resource of SNP-trait associations,” Nucleic Acids Research,

127



vol. 42, pp. D1001–D1006, jan 2014.

[53] A. C. Lidral, H. Liu, S. A. Bullard, G. Bonde, J. Machida, A. Visel, L. M.

Uribe, X. Li, B. Amendt, and R. A. Cornell, “A single nucleotide polymorphism

associated with isolated cleft lip and palate, thyroid cancer and hypothyroidism

alters the activity of an oral epithelium and thyroid enhancer near FOXE1,”

Human Molecular Genetics, vol. 24, pp. 3895–3907, jul 2015.

[54] N. Eriksson, J. Y. Tung, A. K. Kiefer, D. A. Hinds, U. Francke, J. L. Mountain,

and C. B. Do, “Novel associations for hypothyroidism include known autoimmune

risk loci,” PLoS ONE, vol. 7, no. 4, p. e34442, 2012.

[55] J. C. Denny, D. C. Crawford, M. D. Ritchie, S. J. Bielinski, M. A. Basford,

Y. Bradford, H. S. Chai, L. Bastarache, R. Zuvich, P. Peissig, D. Carrell, A. H.

Ramirez, J. Pathak, R. A. Wilke, L. Rasmussen, X. Wang, J. A. Pacheco, A. N.

Kho, M. G. Hayes, N. Weston, M. Matsumoto, P. A. Kopp, K. M. Newton,

G. P. Jarvik, R. Li, T. A. Manolio, I. J. Kullo, C. G. Chute, R. L. Chisholm,

E. B. Larson, C. A. McCarty, D. R. Masys, D. M. Roden, and M. de Andrade,

“Variants near FOXE1 are associated with hypothyroidism and other thyroid

conditions: using electronic medical records for genome- and phenome-wide

studies,” American Journal of Human Genetics, vol. 89, pp. 529–542, oct 2011.

[56] M. De Felice, C. Ovitt, E. Biffali, a. Rodriguez-Mallon, C. Arra, K. Anastassiadis,

P. E. Macchia, M. G. Mattei, a. Mariano, H. Schöler, V. Macchia, and R. Di

Lauro, “A mouse model for hereditary thyroid dysgenesis and cleft palate,”

Nature Genetics, vol. 19, pp. 395–398, aug 1998.

[57] N. Agrawal, R. Akbani, B. A. Aksoy, A. Ally, H. Arachchi, S. L. Asa, J. T. Auman,

M. Balasundaram, S. Balu, S. B. Baylin, M. Behera, B. Bernard, R. Beroukhim,

J. A. Bishop, A. D. Black, T. Bodenheimer, L. Boice, M. S. Bootwalla, J. Bowen,

R. Bowlby, C. A. Bristow, R. Brookens, D. Brooks, R. Bryant, E. Buda, Y. S. N.

128



Butterfield, T. Carling, R. Carlsen, S. L. Carter, S. E. Carty, T. A. Chan,

A. Y. Chen, A. D. Cherniack, D. Cheung, L. Chin, J. Cho, A. Chu, E. Chuah,

K. Cibulskis, G. Ciriello, A. Clarke, G. L. Clayman, L. Cope, J. A. Copland,

K. Covington, L. Danilova, T. Davidsen, J. A. Demchok, D. DiCara, N. Dhalla,

R. Dhir, S. S. Dookran, G. Dresdner, J. Eldridge, G. Eley, A. K. El-Naggar,

S. Eng, J. A. Fagin, T. Fennell, R. L. Ferris, S. Fisher, S. Frazer, J. Frick,

S. B. Gabriel, I. Ganly, J. Gao, L. A. Garraway, J. M. Gastier-Foster, G. Getz,

N. Gehlenborg, R. Ghossein, R. A. Gibbs, T. J. Giordano, K. Gomez-Hernandez,

J. Grimsby, B. Gross, R. Guin, A. Hadjipanayis, H. A. Harper, D. N. Hayes, D. I.

Heiman, J. G. Herman, K. A. Hoadley, M. Hofree, R. A. Holt, A. P. Hoyle, F. W.

Huang, M. Huang, C. M. Hutter, T. Ideker, L. Iype, A. Jacobsen, S. R. Jefferys,

C. D. Jones, S. J. M. Jones, K. Kasaian, E. Kebebew, F. R. Khuri, J. Kim,

R. Kramer, R. Kreisberg, R. Kucherlapati, D. J. Kwiatkowski, M. Ladanyi,

P. H. Lai, P. W. Laird, E. Lander, M. S. Lawrence, D. Lee, E. Lee, S. Lee,

W. Lee, K. M. Leraas, T. M. Lichtenberg, L. Lichtenstein, P. Lin, S. Ling, J. Liu,

W. Liu, Y. Liu, V. A. LiVolsi, Y. Lu, Y. Ma, H. S. Mahadeshwar, M. A. Marra,

M. Mayo, D. G. McFadden, S. Meng, M. Meyerson, P. A. Mieczkowski, M. Miller,

G. Mills, R. A. Moore, L. E. Mose, A. J. Mungall, B. A. Murray, Y. E. Nikiforov,

M. S. Noble, A. I. Ojesina, T. K. Owonikoko, B. A. Ozenberger, A. Pantazi,

M. Parfenov, P. J. Park, J. S. Parker, E. O. Paull, C. S. Pedamallu, C. M. Perou,

J. F. Prins, A. Protopopov, S. S. Ramalingam, N. C. Ramirez, R. Ramirez,

B. J. Raphael, W. K. Rathmell, X. Ren, S. M. Reynolds, E. Rheinbay, M. D.

Ringel, M. Rivera, J. Roach, A. G. Robertson, M. W. Rosenberg, M. Rosenthal,

S. Sadeghi, G. Saksena, C. Sander, N. Santoso, J. E. Schein, N. Schultz, S. E.

Schumacher, R. R. Seethala, J. Seidman, Y. Senbabaoglu, S. Seth, S. Sharpe,

K. R. M. Shaw, J. P. Shen, R. Shen, S. Sherman, M. Sheth, Y. Shi, I. Shmulevich,

G. L. Sica, J. V. Simons, R. Sinha, P. Sipahimalani, R. C. Smallridge, H. J. Sofia,

129



M. G. Soloway, X. Song, C. Sougnez, C. Stewart, P. Stojanov, J. M. Stuart,

S. O. Sumer, Y. Sun, B. Tabak, A. Tam, D. Tan, J. Tang, R. Tarnuzzer, B. S.

Taylor, N. Thiessen, L. Thorne, V. Thorsson, R. M. Tuttle, C. B. Umbricht,

D. J. Van Den Berg, F. Vandin, U. Veluvolu, R. G. W. Verhaak, M. Vinco,

D. Voet, V. Walter, Z. Wang, S. Waring, P. M. Weinberger, N. Weinhold,

J. N. Weinstein, D. J. Weisenberger, D. Wheeler, M. D. Wilkerson, J. Wilson,

M. Williams, D. A. Winer, L. Wise, J. Wu, L. Xi, A. W. Xu, L. L. Yang, L. L.

Yang, T. I. Zack, M. A. Zeiger, D. Zeng, J. C. Zenklusen, N. Zhao, H. Zhang,

J. J. Zhang, J. J. Zhang, W. Zhang, E. Zmuda, L. Zou, C. G. A. R. Network, and

Others, “Integrated genomic characterization of papillary thyroid carcinoma,”

Cell, vol. 159, pp. 676–690, oct 2014.

[58] T. Taniguchi, K. Ogasawara, A. Takaoka, and N. Tanaka, “IRF family of tran-

scription factors as regulators of host defense,” Annual Review of Immunology,

vol. 19, pp. 623–655, 2001.

[59] L. C. White, K. L. Wright, N. J. Felix, H. Ruffner, L. F. L. Reis, R. Pine, and

J. P. Y. Ting, “Regulation of LMP2 and TAP1 genes by IRF-1 explains the

paucity of CD8+ T cells in IRF-1(-/-) mice,” Immunity, vol. 5, pp. 365–376, oct

1996.

[60] J. M. Penninger, C. Sirard, H. W. Mittrücker, A. Chidgey, I. Kozieradzki,

M. Nghiem, A. Hakem, T. Kimura, E. Timms, R. Boyd, T. Taniguchi, T. Mat-

suyama, and T. W. Mak, “The interferon regulatory transcription factor IRF-1

controls positive and negative selection of CD8+ thymocytes,” Immunity, vol. 7,

pp. 243–254, aug 1997.

[61] P. K. M. Kim, M. Armstrong, Y. Liu, P. Yan, B. Bucher, B. S. Zuckerbraun,

A. Gambotto, T. R. Billiar, and J. H. Yim, “IRF-1 expression induces apoptosis

and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo,”

130



Oncogene, vol. 23, pp. 1125–1135, feb 2004.

[62] A. Dehghan, Q. Yang, A. Peters, S. Basu, J. C. Bis, A. R. Rudnicka, M. Kavousi,

M.-H. Chen, J. Baumert, G. D. O. Lowe, and Others, “Association of novel

genetic loci with circulating fibrinogen levels,” Circulation: Cardiovascular

Genetics, vol. 2, no. 2, pp. 125–133, 2009.

[63] D. Davalos and K. Akassoglou, “Fibrinogen as a key regulator of inflammation

in disease,” Seminars in Immunopathology, vol. 34, pp. 43–62, jan 2012.

[64] C. J. Mann, E. Perdiguero, Y. Kharraz, S. Aguilar, P. Pessina, A. L. Serrano,

and P. Muñoz-Cánoves, “Aberrant repair and fibrosis development in skeletal

muscle,” Skeletal Muscle, vol. 1, no. 1, p. 21, 2011.

[65] M. Suelves, B. Vidal, A. L. Serrano, M. Tjwa, J. Roma, R. López-Alemany,

A. Luttun, M. M. De Lagrán, M. À. Díaz, M. Jardí, M. Roig, M. Dierssen,

M. Dewerchin, P. Carmeliet, and P. Muñoz-Cánoves, “uPA deficiency exacerbates

muscular dystrophy in MDX mice,” Journal of Cell Biology, vol. 178, pp. 1039–

1051, sep 2007.

[66] M. Suelves, R. López-Alemany, F. Lluís, G. Aniorte, E. Serrano, M. Parra,

P. Carmeliet, and P. Muñoz-Cánoves, “Plasmin activity is required for myogenesis

in vitro and skeletal muscle regeneration in vivo,” Blood, vol. 99, pp. 2835–2844,

apr 2002.

[67] A. Liberzon, C. Birger, H. Thorvaldsd??ttir, M. Ghandi, J. P. Mesirov, and

P. Tamayo, “The Molecular Signatures Database Hallmark Gene Set Collection,”

Cell Systems, vol. 1, pp. 417–425, dec 2015.

[68] O. Stegle, C. Lippert, J. M. Mooij, N. D. Lawrence, and K. Borgwardt, “Efficient

inference in matrix-variate gaussian models with\iid observation noise,” in

Advances in neural information processing systems, pp. 630–638, 2011.

[69] C. Gao, I. C. McDowell, S. Zhao, C. D. Brown, and B. E. Engelhardt, “Context

131



specific and differential gene co-expression networks via bayesian biclustering,”

PLoS computational biology, vol. 12, no. 7, 2016.

[70] B. Zhang and S. Horvath, “A general framework for weighted gene co-expression

network analysis,” Statistical applications in genetics and molecular biology,

vol. 4, no. 1, 2005.

[71] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation

with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.

[72] S. Freytag, J. Gagnon-Bartsch, T. P. Speed, and M. Bahlo, “Systematic noise

degrades gene co-expression signals but can be corrected,” BMC bioinformatics,

vol. 16, no. 1, p. 309, 2015.

[73] J. M. Akey, S. Biswas, J. T. Leek, and J. D. Storey, “On the design and analysis

of gene expression studies in human populations,” Nature genetics, vol. 39, no. 7,

pp. 807–808, 2007.

[74] V. Van Noort, B. Snel, and M. A. Huynen, “The yeast coexpression network has

a small-world, scale-free architecture and can be explained by a simple model,”

EMBO reports, vol. 5, no. 3, pp. 280–284, 2004.

[75] Princy Parsana, C. Ruberman, A. E. Jaffe, M. C. Schatz, A. Battle, and J. T.

Leek, “Addressing confounding artifacts in reconstruction of gene co-expression

networks,” 2019.

[76] A. Buja and N. Eyuboglu, “Remarks on parallel analysis,” Multivariate behavioral

research, vol. 27, no. 4, pp. 509–540, 1992.

[77] G. Consortium, L. analysts:, D. A. . C. C. L. Laboratory, N. program manage-

ment:, B. collection:, Pathology:, eQTL manuscript working group:, A. Battle,

C. D. Brown, B. E. Engelhardt, and S. B. Montgomery, “Genetic effects on gene

expression across human tissues,” Nature, vol. 550, pp. 204–213, 10 2017.

[78] P. Langfelder and S. Horvath, “Wgcna: an r package for weighted correlation

132



network analysis,” BMC bioinformatics, vol. 9, no. 1, p. 1, 2008.

[79] E. Y. Chen, C. M. Tan, Y. Kou, Q. Duan, Z. Wang, G. V. Meirelles, N. R.

Clark, and A. Ma’ayan, “Enrichr: interactive and collaborative html5 gene list

enrichment analysis tool,” BMC bioinformatics, vol. 14, no. 1, p. 128, 2013.

[80] M. V. Kuleshov, M. R. Jones, A. D. Rouillard, N. F. Fernandez, Q. Duan,

Z. Wang, S. Koplev, S. L. Jenkins, K. M. Jagodnik, A. Lachmann, et al.,

“Enrichr: a comprehensive gene set enrichment analysis web server 2016 update,”

Nucleic acids research, vol. 44, no. W1, pp. W90–W97, 2016.

[81] A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdóttir, P. Tamayo,

and J. P. Mesirov, “Molecular signatures database (msigdb) 3.0,” Bioinformatics,

vol. 27, pp. 1739–1740, 06 2011.

[82] A.-L. Barabási, R. Albert, and H. Jeong, “Scale-free characteristics of random

networks: the topology of the world-wide web,” Physica A: Statistical Mechanics

and its Applications, vol. 281, no. 1, pp. 69–77, 2000.

[83] M. R. Carlson, B. Zhang, Z. Fang, P. S. Mischel, S. Horvath, and S. F. Nel-

son, “Gene connectivity, function, and sequence conservation: predictions from

modular yeast co-expression networks,” BMC genomics, vol. 7, no. 1, p. 1, 2006.

[84] J. T. Leek and J. D. Storey, “Capturing heterogeneity in gene expression studies

by surrogate variable analysis,” PLoS Genet, vol. 3, no. 9, pp. 1724–1735, 2007.

[85] J. K. Pickrell, J. C. Marioni, A. A. Pai, J. F. Degner, B. E. Engelhardt,

E. Nkadori, J.-B. Veyrieras, M. Stephens, Y. Gilad, and J. K. Pritchard, “Un-

derstanding mechanisms underlying human gene expression variation with RNA

sequencing,” Nature, vol. 464, pp. 768–772, apr 2010.

[86] T. i. m. o. t. h. é. e. Flutre, X. i. a. o. q. u. a. n. Wen, J. o. n. a. t. h. a. n.

Pritchard, and M. a. t. t. h. e. w. Stephens, “A statistical framework for joint

eqtl analysis in multiple tissues,” PLoS Genetics, vol. 9, 2013.

133



[87] A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick,

and D. Reich, “Principal components analysis corrects for stratification in

genome-wide association studies,” Nature Genetics, vol. 38, pp. 904–909, aug

2006.

[88] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar, “Quic: quadratic

approximation for sparse inverse covariance estimation.,” Journal of Machine

Learning Research, vol. 15, no. 1, pp. 2911–2947, 2014.

[89] V. Copois, F. Bibeau, C. Bascoul-Mollevi, N. Salvetat, P. Chalbos, and C. Bareil,

“Impact of rna degradation on gene expression profiles: assessment of different

methods to reliably determine rna quality,” J Biotechnol., vol. 127, 2007.

[90] M. I. Love, J. B. Hogenesch, and R. A. Irizarry, “Modeling of rna-seq fragment

sequence bias reduces systematic errors in transcript abundance estimation,”

Nat Biotechnol, vol. 34, 2016.

[91] A. E. Jaffe, R. Tao, A. L. Norris, M. Kealhofer, A. Nellore, and J. H. Shin, “qsva

framework for rna quality correction in differential expression analysis,” Proc

Natl Acad Sci U S A, vol. 114, 2017.

[92] K. D. Hansen, R. A. Irizarry, and Z. Wu, “Removing technical variability in

rna-seq data using conditional quantile normalization,” Biostatistics, vol. 13,

no. 2, pp. 204–216, 2012.

[93] R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, “Salmon pro-

vides fast and bias-aware quantification of transcript expression,” Nat Methods,

vol. 14, 2017.

[94] I. Gallego Romero, A. A. Pai, J. Tung, and Y. Gilad, “Rna-seq: impact of rna

degradation on transcript quantification,” BMC Biol, vol. 12, 2014.

[95] S. Liebhaber, “mrna stability and the control of gene expression.,” no. 36,

pp. 29–32, 1996.

134



[96] P. Mehlen and A. Puisieux, “Metastasis: a question of life or death,” Nat Rev

Cancer, vol. 6, 2006.

[97] J. H. Tsai and J. Yang, “Epithelial-mesenchymal plasticity in carcinoma metas-

tasis,” Genes Dev, vol. 27, 2013.

[98] C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,”

science, vol. 331, no. 6024, pp. 1559–1564, 2011.

[99] J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-

mesenchymal transitions in development and disease,” Cell, vol. 139, 2009.

[100] R. Kalluri and R. A. Weinberg, “The basics of epithelial-mesenchymal transition,”

J Clin Invest, vol. 119, 2009.

[101] B. De Craene and G. Berx, “Regulatory networks defining emt during cancer

initiation and progression,” Nature Reviews Cancer, vol. 13, no. 2, pp. 97–110,

2013.

[102] A. Bergamaschi, Y. H. Kim, K. A. Kwei, Y. Choi, M. Bocanegra, and

A. Langerød, “Camk1d amplification implicated in epithelial-mesenchymal tran-

sition in basal-like breast cancer,” Mol Oncol, vol. 2, 2008.

[103] Y.-L. Choi, M. Bocanegra, M. J. Kwon, Y. K. Shin, S. J. Nam, J.-H. Yang,

J. Kao, A. K. Godwin, and J. R. Pollack, “Lyn is a mediator of epithelial-

mesenchymal transition and a target of dasatinib in breast cancer,” Cancer

research, vol. 70, no. 6, pp. 2296–2306, 2010.

[104] P. Papageorgis, A. W. Lambert, S. Ozturk, F. Gao, H. Pan, and U. Manne,

“Smad signaling is required to maintain epigenetic silencing during breast cancer

progression,” Cancer Res, vol. 70, 2010.

[105] A. Deshiere, E. Duchemin-Pelletier, E. Spreux, D. Ciais, F. Combes, and

Y. Vandenbrouck, “Unbalanced expression of ck2 kinase subunits is sufficient

to drive epithelial-to-mesenchymal transition by snail1 induction,” Oncogene,

135



vol. 32, 2013.

[106] J. Cai, H. Guan, L. Fang, Y. Yang, X. Zhu, and J. Yuan, “Microrna-374a

activates wnt/β-catenin signaling to promote breast cancer metastasis,” J Clin

Invest, vol. 123, 2013.

[107] K. L. Andarawewa, A. C. Erickson, W. S. Chou, S. V. Costes, P. Gascard, and

J. D. Mott, “Ionizing radiation predisposes nonmalignant human mammary

epithelial cells to undergo transforming growth factor ??-induced epithelial to

mesenchymal transition,” Cancer Res, vol. 67, 2007.

[108] T. Joyce, D. Cantarella, C. Isella, E. Medico, and A. Pintzas, “A molecular

signature for epithelial to mesenchymal transition in a human colon cancer cell

system is revealed by large-scale microarray analysis,” Clin Exp Metastasis,

vol. 26, 2009.

[109] W.-L. Hwang, M.-H. Yang, M.-L. Tsai, H.-Y. Lan, S.-H. Su, S.-C. Chang, H.-W.

Teng, S.-H. Yang, Y.-T. Lan, S.-H. Chiou, et al., “Snail regulates interleukin-

8 expression, stem cell–like activity, and tumorigenicity of human colorectal

carcinoma cells,” Gastroenterology, vol. 141, no. 1, pp. 279–291, 2011.

[110] S. Ohashi, M. Natsuizaka, S. Naganuma, S. Kagawa, S. Kimura, and H. Itoh,

“A notch3-mediated squamous cell differentiation program limits expansion of

emt-competent cells that express the zeb transcription factors,” Cancer Res,

vol. 71, 2011.

[111] F. Zijl, S. Mall, G. Machat, C. Pirker, R. Zeillinger, and A. Weinhaeusel, “A

human model of epithelial to mesenchymal transition to monitor drug efficacy

in hepatocellular carcinoma progression,” Mol Cancer Ther, vol. 10, 2011.

[112] J. M. Drake, G. Strohbehn, T. B. Bair, J. G. Moreland, and M. D. Henry, “Zeb1

enhances transendothelial migration and represses the epithelial phenotype of

prostate cancer cells,” Mol Biol Cell, vol. 20, 2009.

136



[113] O. Leshem, S. Madar, I. Kogan-Sakin, I. Kamer, I. Goldstein, and R. Brosh, “Tm-

prss2/erg promotes epithelial to mesenchymal transition through the zeb1/zeb2

axis in a prostate cancer model,” PLoS One, vol. 6, 2011.

[114] D. Kong, S. Banerjee, A. Ahmad, Y. Li, Z. Wang, and S. Sethi, “Epithelial to

mesenchymal transition is mechanistically linked with stem cell signatures in

prostate cancer cells,” PLoS One, vol. 5, 2010.

[115] H. Roca, J. Hernandez, S. Weidner, R. C. McEachin, D. Fuller, and S. Sud,

“Transcription factors ovol1 and ovol2 induce the mesenchymal to epithelial

transition in human cancer,” PLoS One, vol. 8, 2013.

[116] E. Takahashi, O. Nagano, T. Ishimoto, T. Yae, Y. Suzuki, and T. Shinoda,

“Tumor necrosis factor-α regulates transforming growth factor-β-dependent

epithelial-mesenchymal transition by promoting hyaluronan-cd44-moesin inter-

action,” J Biol Chem, vol. 285, 2010.

[117] R. Edgar, M. Domrachev, and A. E. Lash, “Gene expression omnibus: Ncbi

gene expression and hybridization array data repository,” Nucleic Acids Res,

vol. 30, 2002.

[118] J. Rung and A. Brazma, “Reuse of public genome-wide gene expression data,”

Nat Rev Genet, vol. 14, 2012.

[119] M. Pierre, B. DeHertogh, A. Gaigneaux, B. DeMeulder, F. Berger, and E. Bareke,

“Meta-analysis of archived dna microarrays identifies genes regulated by hypoxia

and involved in a metastatic phenotype in cancer cells,” BMC Cancer, vol. 10,

2010.

[120] H. M. J. Sontrop, W. F. J. Verhaegh, M. J. T. Reinders, and P. D. Moerland,

“An evaluation protocol for subtype-specific breast cancer event prediction,”

PLoS One, vol. 6, 2011.

[121] M. Chen, K. Wang, L. Zhang, C. Li, and Y. Yang, “The discovery of putative

137



urine markers for the specific detection of prostate tumor by integrative mining

of public genomic profiles,” PLoS One, vol. 6, 2011.

[122] C. J. Gröger, M. Grubinger, T. Waldhör, K. Vierlinger, and W. Mikulits, “Meta-

analysis of gene expression signatures defining the epithelial to mesenchymal

transition during cancer progression,” PLoS One, vol. 7, 2012.

[123] K. S. Button, J. P. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint, E. S. Robinson,

and M. R. Munafò, “Power failure: why small sample size undermines the

reliability of neuroscience,” Nature Reviews Neuroscience, vol. 14, no. 5, pp. 365–

376, 2013.

[124] S. Zöllner and J. K. Pritchard, “Overcoming the winner’s curse: estimating

penetrance parameters from case-control data,” Am J Hum Genet, vol. 80, 2007.

[125] J. K. Choi, U. Yu, S. Kim, and O. J. Yoo, “Combining multiple microarray

studies and modeling interstudy variation,” Bioinformatics, vol. 19, 2003.

[126] A. C. Eklund and Z. Szallasi, “Correction of technical bias in clinical microarray

data improves concordance with known biological information,” Genome Biol,

vol. 9, 2008.

[127] B. M. Bolstad, R. A. Irizarry, M. Åstrand, and T. P. Speed, “A comparison

of normalization methods for high density oligonucleotide array data based on

variance and bias,” Bioinformatics, vol. 19, 2003.

[128] A. A. Shabalin, H. Tjelmeland, C. Fan, C. M. Perou, and A. B. Nobel, “Merging

two gene-expression studies via cross-platform normalization,” Bioinformatics,

vol. 24, 2008.

[129] F. B. Baker and L. J. Hubert, “Measuring the power of hierarchical cluster

analysis,” J Am Stat Assoc, vol. 70, 1975.

[130] D. R. Rhodes, J. Yu, K. Shanker, N. Deshpande, R. Varambally, and D. Ghosh,

“Oncomine: a cancer microarray database and integrated data-mining platform,”

138



Neoplasia, vol. 6, 2004.

[131] J. J. Smith, N. G. Deane, F. Wu, N. B. Merchant, B. Zhang, and A. Jiang,

“Experimentally derived metastasis gene expression profile predicts recurrence

and death in patients with colon cancer,” Gastroenterology, vol. 138, 2010.

[132] M. Schmidt, D. Böhm, C. Törne, E. Steiner, A. Puhl, and H. Pilch, “The

humoral immune system has a key prognostic impact in node-negative breast

cancer,” Cancer Res, vol. 68, 2008.

[133] C. Hatzis, L. Pusztai, V. Valero, D. J. Booser, L. Esserman, A. Lluch, T. Vidaurre,

F. Holmes, E. Souchon, H. Wang, et al., “A genomic predictor of response and

survival following taxane-anthracycline chemotherapy for invasive breast cancer,”

Jama, vol. 305, no. 18, pp. 1873–1881, 2011.

[134] S. Glück, J. S. Ross, M. Royce, E. F. McKenna, C. M. Perou, and E. Avisar,

“Tp53 genomics predict higher clinical and pathologic tumor response in operable

early-stage breast cancer treated with docetaxel-capecitabine ??,” Trastuzumab

Breast Cancer Res Treat, vol. 132, 2012.

[135] C. Desmedt, F. Piette, S. Loi, Y. Wang, F. Lallemand, and B. Haibe-Kains,

“Strong time dependence of the 76-gene prognostic signature for node-negative

breast cancer patients in the transbig multicenter independent validation series,”

Clin Cancer Res, vol. 13, 2007.

[136] K. Shedden, J. Taylor, S. Enkemann, M. Tsao, T. Yeatman, W. Gerald, S. Es-

chrich, I. Jurisica, T. Giordano, D. Misek, et al., “Director’s challenge consortium

for the molecular classification of lung adenocarcinoma,” Gene expression-based

survival prediction in lung adenocarcinoma: a multi-site, blinded validation study.

Nat Med, vol. 14, no. 8, pp. 822–827, 2008.

[137] H. Okayama, T. Kohno, Y. Ishii, Y. Shimada, K. Shiraishi, and R. Iwakawa,

“Identification of genes upregulated in alk-positive and egfr/kras/alk-negative

139



lung adenocarcinomas,” Cancer Res, vol. 72, 2012.

[138] B. S. Taylor, N. Schultz, H. Hieronymus, A. Gopalan, Y. Xiao, and B. S. Carver,

“Integrative genomic profiling of human prostate cancer,” Cancer Cell, vol. 18,

2010.

[139] D. Sean and P. S. Meltzer, “Geoquery: a bridge between the gene expression

omnibus (geo) and bioconductor,” Bioinformatics, vol. 23, 2007.

[140] G. R. Grimmett, “On the number of clusters in the percolation model,” Journal

of the London Mathematical Society, vol. 2, no. 2, pp. 346–350, 1976.

[141] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A.

Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P.

Mesirov, “Gene set enrichment analysis: A knowledge-based approach for inter-

preting genome-wide expression profiles,” Proceedings of the National Academy

of Sciences, vol. 102, pp. 15545–15550, oct 2005.

[142] S. Yokoyama and H. Asahara, “The myogenic transcriptional network,” Cell

Mol Life Sci, vol. 68, 2011.

[143] D. K. Reaves, K. D. Fagan-Solis, K. Dunphy, S. D. Oliver, D. W. Scott, and

J. M. Fleming, “The role of lipolysis stimulated lipoprotein receptor in breast

cancer and directing breast cancer cell behavior,” PloS one, vol. 9, no. 3, 2014.

[144] X. Wang, J. Yang, J. Qian, Z. Liu, H. Chen, and Z. Cui, “S100a14, a mediator of

epithelial-mesenchymal transition, regulates proliferation, migration and invasion

of human cervical cancer cells,” Am J Cancer Res, vol. 5, 2015.

[145] X. Xu, B. Su, C. Xie, S. Wei, Y. Zhou, and H. Liu, “Sonic hedgehog-gli1 signaling

pathway regulates the epithelial mesenchymal transition (emt) by mediating a

new target gene, s100a4, in pancreatic cancer cells,” PLoS One, vol. 9, 2014.

[146] T. Kawahara, N. Hotta, Y. Ozawa, S. Kato, K. Kano, and Y. Yokoyama, “Quanti-

tative proteomic profiling identifies dpysl3 as pancreatic ductal adenocarcinoma-

140



associated molecule that regulates cell adhesion and migration by stabilization

of focal adhesion complex,” PLoS One, vol. 8, 2013.

[147] M. Kanda, S. Nomoto, H. Oya, D. Shimizu, H. Takami, and S. Hibino,

“Dihydropyrimidinase-like 3 facilitates malignant behavior of gastric cancer,” J

Exp Clin cancer Res CR, vol. 33, 2014.

[148] Y. Li, Y. Zeng, S. M. Mooney, B. Yin, A. Mizokami, and M. Namiki, “Resistance

to paclitaxel increases the sensitivity to other microenvironmental stresses in

prostate cancer cells,” J Cell Biochem, vol. 112, 2011.

[149] K. Steketee, “Ziel-van der made acj, van der korput hagm, houstmuller ab,”

Trapman J A bioinformatics-based functional analysis shows that the specifically

androgen-regulated gene SARG contains an active direct repeat androgen response

element in the first intron J Mol Endocrinol, vol. 33, 2004.

[150] J. Milara, T. Peiro, A. Serrano, and J. Cortijo, “Epithelial to mesenchymal

transition is increased in patients with copd and induced by cigarette smoke,”

Thorax BMJ Publishing Group Ltd, vol. 68, 2013.

[151] N. S. Nagathihalli, P. P. Massion, A. L. Gonzalez, P. Lu, and P. K. Datta,

“Smoking induces epithelial-to-mesenchymal transition in non-small cell lung

cancer through hdac-mediated downregulation of e-cadherin,” Mol Cancer Ther,

vol. 11, 2012.

[152] K. R. Fischer, A. Durrans, S. Lee, J. Sheng, F. Li, and S. T. C. Wong, “Epithelial-

to-mesenchymal transition is not required for lung metastasis but contributes to

chemoresistance,” Nature Nature Research, vol. 527, 2015.

[153] X. Zheng, J. L. Carstens, J. Kim, M. Scheible, J. Kaye, and H. Sugimoto,

“Epithelial-to-mesenchymal transition is dispensable for metastasis but induces

chemoresistance in pancreatic cancer,” Nature Nature Publishing Group, vol. 527,

2015.

141



[154] E. McKiernan, E. W. McDermott, D. Evoy, J. Crown, and M. J. Duffy, “The

role of s100 genes in breast cancer progression,” Tumor Biol, vol. 32, 2011.

[155] P. Mak, I. Leav, B. Pursell, D. Bae, X. Yang, and C. A. Taglienti, “Erbeta

impedes prostate cancer emt by destabilizing hif-1alpha and inhibiting vegf-

mediated snail nuclear localization: implications for gleason grading,” Cancer

Cell NIH Public Access, vol. 17, 2010.

[156] L. I. Furlong, “Human diseases through the lens of network biology,” Trends

Genet, vol. 29, 2013.

[157] Z. Guan, G. Parmigiani, and P. Patil, “Merging versus ensembling in multi-

study machine learning: Theoretical insight from random effects,” arXiv preprint

arXiv:1905.07382, 2019.

[158] P. Patil and G. Parmigiani, “Training replicable predictors in multiple studies,”

Proceedings of the National Academy of Sciences, vol. 115, no. 11, pp. 2578–2583,

2018.

[159] S. S. Kim, C. Dai, F. Hormozdiari, B. van de Geijn, S. Gazal, Y. Park,

L. O’Connor, T. Amariuta, P.-R. Loh, H. Finucane, et al., “Genes with high

network connectivity are enriched for disease heritability,” The American Journal

of Human Genetics, vol. 104, no. 5, pp. 896–913, 2019.

[160] H. K. Finucane, B. Bulik-Sullivan, A. Gusev, G. Trynka, Y. Reshef, P.-R.

Loh, V. Anttila, H. Xu, C. Zang, K. Farh, et al., “Partitioning heritability

by functional annotation using genome-wide association summary statistics,”

Nature genetics, vol. 47, no. 11, p. 1228, 2015.

[161] S. Gazal, H. K. Finucane, N. A. Furlotte, P.-R. Loh, P. F. Palamara, X. Liu,

A. Schoech, B. Bulik-Sullivan, B. M. Neale, A. Gusev, et al., “Linkage

disequilibrium–dependent architecture of human complex traits shows action of

negative selection,” Nature genetics, vol. 49, no. 10, p. 1421, 2017.

142



[162] J. Zhu, “Sradb,” 2017.

[163] V. Lagani, A. D. Karozou, D. Gomez-Cabrero, G. Silberberg, and I. Tsamardi-

nos, “A comparative evaluation of data-merging and meta-analysis methods

for reconstructing gene-gene interactions,” BMC bioinformatics, vol. 17, no. 5,

p. S194, 2016.

[164] B. Zhang and S. Horvath, “A general framework for weighted gene co-expression

network analysis,” Stat Appl Genet Mol Biol, vol. 4, 2005.

[165] D. M. Bravata and I. Olkin, “Simple pooling versus combining in meta-analysis,”

Evaluation & the health professions, vol. 24, no. 2, pp. 218–230, 2001.

[166] C. A. Cassa, D. Weghorn, D. J. Balick, D. M. Jordan, D. Nusinow, K. E.

Samocha, A. O’Donnell-Luria, D. G. MacArthur, M. J. Daly, D. R. Beier, et al.,

“Estimating the selective effects of heterozygous protein-truncating variants from

human exome data,” Nature genetics, vol. 49, no. 5, pp. 806–810, 2017.

[167] G. Csardi and T. Nepusz, “The igraph software package for complex network

research,” InterJournal, vol. Complex Systems, p. 1695, 2006.

[168] P. Danaher, P. Wang, and D. M. Witten, “The joint graphical lasso for inverse

covariance estimation across multiple classes,” Journal of the Royal Statistical

Society: Series B (Statistical Methodology), vol. 76, no. 2, pp. 373–397, 2014.

[169] J. T. Leek, “Asymptotic conditional singular value decomposition for high-

dimensional genomic data,” Biometrics, vol. 67, no. 2, pp. 344–352, 2011.

[170] S. K. Kim, J. Lund, M. Kiraly, K. Duke, M. Jiang, J. M. Stuart, A. Eizinger,

B. N. Wylie, and G. S. Davidson, “A gene expression map for caenorhabditis

elegans,” Science, vol. 293, no. 5537, pp. 2087–2092, 2001.

[171] A. Rzhetsky and S. M. Gomez, “Birth of scale-free molecular networks and

the number of distinct dna and protein domains per genome,” Bioinformatics,

vol. 17, no. 10, pp. 988–996, 2001.

143



[172] A. Bhan, D. J. Galas, and T. G. Dewey, “A duplication growth model of gene

expression networks,” Bioinformatics, vol. 18, no. 11, pp. 1486–1493, 2002.

[173] I. K. Jordan, L. Mariño-Ramírez, Y. I. Wolf, and E. V. Koonin, “Conservation

and coevolution in the scale-free human gene coexpression network,” Molecular

biology and evolution, vol. 21, no. 11, pp. 2058–2070, 2004.

[174] M. E. Newman, “The structure and function of complex networks,” SIAM review,

vol. 45, no. 2, pp. 167–256, 2003.

[175] B. Zhang, C. Gaiteri, L.-G. Bodea, Z. Wang, J. McElwee, A. A. Podtelezhnikov,

C. Zhang, T. Xie, L. Tran, R. Dobrin, et al., “Integrated systems approach

identifies genetic nodes and networks in late-onset alzheimer’s disease,” Cell,

vol. 153, no. 3, pp. 707–720, 2013.

[176] L. J. Kogelman, S. Cirera, D. V. Zhernakova, M. Fredholm, L. Franke, and H. N.

Kadarmideen, “Identification of co-expression gene networks, regulatory genes

and pathways for obesity based on adipose tissue rna sequencing in a porcine

model,” BMC medical genomics, vol. 7, no. 1, p. 57, 2014.

[177] J. Xue, S. V. Schmidt, J. Sander, A. Draffehn, W. Krebs, I. Quester, D. De Nardo,

T. D. Gohel, M. Emde, L. Schmidleithner, et al., “Transcriptome-based network

analysis reveals a spectrum model of human macrophage activation,” Immunity,

vol. 40, no. 2, pp. 274–288, 2014.

[178] J. A. Miller, S.-L. Ding, S. M. Sunkin, K. A. Smith, L. Ng, A. Szafer, A. Ebbert,

Z. L. Riley, J. J. Royall, K. Aiona, et al., “Transcriptional landscape of the

prenatal human brain,” Nature, vol. 508, no. 7495, p. 199, 2014.

[179] M. Hawrylycz, J. A. Miller, V. Menon, D. Feng, T. Dolbeare, A. L. Guillozet-

Bongaarts, A. G. Jegga, B. J. Aronow, C.-K. Lee, A. Bernard, et al., “Canonical

genetic signatures of the adult human brain,” Nature neuroscience, vol. 18,

no. 12, p. 1832, 2015.

144



[180] M. S. Breen, A. X. Maihofer, S. J. Glatt, D. S. Tylee, S. D. Chandler, M. T.

Tsuang, V. B. Risbrough, D. G. Baker, D. T. O’Connor, C. M. Nievergelt,

et al., “Gene networks specific for innate immunity define post-traumatic stress

disorder,” Molecular psychiatry, vol. 20, no. 12, p. 1538, 2015.

[181] P. Bailey, D. K. Chang, K. Nones, A. L. Johns, A.-M. Patch, M.-C. Gingras,

D. K. Miller, A. N. Christ, T. J. Bruxner, M. C. Quinn, et al., “Genomic analyses

identify molecular subtypes of pancreatic cancer,” Nature, vol. 531, no. 7592,

p. 47, 2016.

[182] C. Gao, I. C. McDowell, S. Zhao, C. D. Brown, and B. E. Engelhardt, “Context

specific and differential gene co-expression networks via bayesian biclustering,”

PLOS Computational Biology, vol. 12, pp. 1–39, 07 2016.

[183] M. Fromer, P. Roussos, S. K. Sieberts, J. S. Johnson, D. H. Kavanagh, T. M.

Perumal, D. M. Ruderfer, E. C. Oh, A. Topol, H. R. Shah, et al., “Gene

expression elucidates functional impact of polygenic risk for schizophrenia,”

Nature neuroscience, vol. 19, no. 11, p. 1442, 2016.

[184] K. A. Hoadley, C. Yau, T. Hinoue, D. M. Wolf, A. J. Lazar, E. Drill, R. Shen,

A. M. Taylor, A. D. Cherniack, V. Thorsson, et al., “Cell-of-origin patterns

dominate the molecular classification of 10,000 tumors from 33 types of cancer,”

Cell, vol. 173, no. 2, pp. 291–304, 2018.

[185] M. V. Lombardo, H. M. Moon, J. Su, T. D. Palmer, E. Courchesne, and

T. Pramparo, “Maternal immune activation dysregulation of the fetal brain

transcriptome and relevance to the pathophysiology of autism spectrum disorder,”

Molecular psychiatry, vol. 23, no. 4, p. 1001, 2018.

145



Appendix A

Addressing confounding artifacts in
reconstruction of gene
coexpression networks

A.1 Conditions for and Proof of Convergence of
Principal Components

Lemma: Let X be a high-dimensional matrix of expression data with signal both

due to artifacts A, and due to a genuine network of linear expression relation-

ships. Then under the conditions below and provided that the node degree distri-

bution of the network follows a power-law, the principal components of X consis-

tently estimate a linear space spanning the artifacts A and not the network structure.

Proof:

Decompose a gene expression matrix with n samples and m genes Xm×n =

(x1, ...., xm)T as follows:

X = µ × 1 + ΓAA + ΓNN + U

where,

• µ = (µ1, ....., µm)T is an m dimensional column vector with µi := E [xi], i =
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1, ...., m and 1 is an n dimensional row vector of 1’s.

• There are L artifacts or confounders (L < n), forming an L × n matrix A with

an associated coefficient matrix ΓA.

• N is an m × n matrix of expression data without any network structure, with

associated m × m coefficient vector ΓN . Features i and k are share an edge if γN
ik

or γN
ki are nonzero. This represents a linear relationship between the expression

levels of genes. To avoid circularity, the diagonal entries of ΓN are set to zero.

• U is an m × n matrix of pairwise independent mean zero random noise

Based on our previous work [169], given a high-dimensional matrix with the number

of features much larger than the number of samples (m >> n) we make the following

additional assumptions about the behavior of the data in the experiment.

1. The number of non-zero entries in the network ΓN follows a power-law distri-

bution with an exponential coefficient 2 < α < 3 [82]. As we point out in the

main text power-law degree distributions have been observed in gene expression

networks, for example yeast co-expression networks [74, 83] and Caenorhabditis

elegans [170], and the preferential attachment model characteristic of scale-free

networks has been explained by gene duplication [171–173]. Further, network

inference algorithms such as WGCNA also employ this assumption.

2. The entries in the artifact and network coefficient, pre-network expression data,

and independent noise matrices have bounded fourth moment:

0 < E
[︃(︂

γAi,j

)︂4
]︃

≤ BγA

0 < E
[︃(︂

γNi,j

)︂4
]︃

≤ BγN

0 < E
[︂
(Ni,j)4

]︂
≤ BN

0 < E
[︂
(ui,j)4

]︂
≤ BU .
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Therefore, by Lyapunov’s inequality, there exist (finite) bounds B′
γA

, B′
γN

, B′
N ,

and B′
U , on the variances:

0 < Var
(︂
γAi,j

)︂
= E

[︂
(γAi,j

)2
]︂

≤ B′
γA

0 < Var
(︂
γNi,j

)︂
= E

[︂
(γNi,j

)2
]︂

≤ B′
γN

0 < Var (Ni,j) = E
[︂
(Ni,j)2

]︂
≤ B′

N

0 < Var (ui,j) = E
[︂
(ui,j)2

]︂
≤ B′

U .

This is true for most common distributions used to model gene expression data

or a suitably transformed version.

3. There exists a positive definite matrix ∆ for which the following hold:

(a) lim
m→∞

∥ 1
m

AT ΓT
AΓAA − AT ∆A∥F = 0

(b) AT ∆A has eigenvalues λ1 > .... > λL > λL+1 = .... = λn = 0

This assumption means that the batch effects and other artifacts are sufficiently

widespread as to affect a fixed and non-negligable percentage of the genes in the

data set.

Additionally, we assume without loss of generality, that expression levels of each gene

in X is centered.

4. µ = 0⃗.

5. The expression data in the absence of any network structure, N , has mean

E [N ] = 0⃗ where 0⃗ is an m-dimensional column vector. Further, in the absence of

network structure, the genes are pairwise independent. Therefore, by Assumption

2 the entries of N converge almost surely to zero.

Based on this model, we show that the principal components of the matrix X (with

a fixed n - sample size) estimate the artifacts and are not corrupted by the signal

from the network terms.
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The eigen-vectors of the matrix 1
m

XT X are equal to the right singular vectors of

the matrix X. Given observed data X, the empirical variance-covariance matrix of

the data Σ̂ takes the form:

Σ̂ = 1
m

XT X

= 1
m

(ΓAA + ΓNN + U)T (ΓAA + ΓNN + U)

= 1
m

(︂
AT ΓT

A + NT ΓT
N + UT

)︂
(ΓAA + ΓNN + U)

= 1
m

(AT ΓT
AΓAA + AT ΓT

AΓNN + AT ΓT
AU + NT ΓT

NΓAA + NT ΓT
NΓNN + NT ΓT

NU+

UT ΓAA + UT ΓNN + UT U)

= 1
m

(︂
AT ΓT

AΓAA + AT ΓT
AΓNN + NT ΓT

NΓAA + NT ΓT
NΓNN

)︂
+

1
m

(︂
AT ΓT

AU + NT ΓT
NU + UT ΓAA + UT ΓNN + UT U

)︂
= 1

m
AT ΓT

AΓAA + 1
m

AT ΓT
AΓNN + 1

m
NT ΓT

NΓAA + 1
m

NT ΓT
NΓNN+

1
m

AT ΓT
AU + 1

m
NT ΓT

NU + 1
m

UT ΓAA + 1
m

UT ΓNN + 1
m

UT U

We will show that as the number of features (i.e. genes) grows, the empirical

variance-covariance matrix, after centering by an estimate of the background variation,

converges to the same thing as if there were no network structure:

X̃unstr := ΓAA + U.

Then we can show that the principal components of the confounded matrix are

consistent estimators of the confounding variables.

Therefore, we will show that, holding the number of observations n fixed, there

exits an n × n matrix L so that:

lim
m→∞

1
m

(︂
X̃unstr)︂T

X̃unstr − σ̂2
aveI = L

lim
m→∞

1
m

XT X − σ̂2
aveI = L
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where, borrowing the notation from Leek 2011, we let VL(X) = {v1(X), ...., vL(X)} be

a matrix of the first L right singular vectors of X and Γ̂L the least squares estimates

from regressing X on VL(X). Then, we define:

σ2
ave := 1

m(n − L)∥X − Γ̂LVL(X)∥F ,

where we estimate L using a permutation approach through the ‘num.sv’ function in

the sva package.

To determine L, we write:

1
m

(︂
X̃unstr)︂T

X̃unstr − σ̂2
aveI = 1

m
(ΓAA + U)T (ΓAA + U) − σ̂2

aveI

= 1
m

(︂
AT ΓT

A + UT
)︂

(ΓAA + U) − σ̂2
aveI

= 1
m

AT ΓT
AΓAA + 1

m
AT ΓT

AU + 1
m

UT ΓAA + 1
m

T

U − σ̂2
aveI

Letting m (number of genes) grow,

lim
m→∞

1
m

(︂
X̃unstr)︂T

X̃unstr − σ̂2
aveI

= lim
m→∞

1
m

ΓT
AΓAA + lim

m→∞

1
m

AT ΓT
AU + lim

m→∞

1
m

UT ΓAA + lim
m→∞

1
m

UT U − σ̂2
aveI

= AT ∆A + lim
m→∞

1
m

AT ΓT
AU + lim

m→∞

1
m

UT ΓAA + lim
m→∞

1
m

UT U − σ̂2
aveI

Leek 2011 shows that the terms limm→∞
1
m

AT ΓT
AU + limm→∞

1
m

UT ΓAA both converge

almost surely to zero by the Kolmogorov Strong Law of Large Numbers (KSLLN).

Further, Leek 2011 uses KSLLN to show that the off diagonal elements of 1
m

UT U

converge almost surely to zero, while the diagonals converge almost surely to σ̂2
ave.

Therefore,

lim
m→∞

1
m

(︂
X̃unstr)︂T

X̃unstr − σ̂2
aveI = AT∆A,

and

L = AT ∆A.
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The limit of the empirical variance-covariance matrix is as follows:

lim
m→∞

1
m

XT X − σ̂2
aveI

= lim
m→∞

1
m

AT ΓT
AΓAA + lim

m→∞

1
m

ΓAAT ΓNN + lim
m→∞

1
m

NT ΓT
NΓAA + lim

m→∞

1
m

NT ΓT
NΓNN + −σ̂2

aveI

lim
m→∞

1
m

AT ΓT
AU + lim

m→∞

1
m

NT ΓT
NU + lim

m→∞

1
m

UT ΓAA + lim
m→∞

1
m

UT ΓNN + lim
m→∞

1
m

UT U − σ̂2
aveI

= lim
m→∞

1
m

AT ΓT
AΓAA + lim

m→∞

1
m

ΓAAT U + lim
m→∞

1
m

UT ΓAA + lim
m→∞

1
m

UT U − σ̂2
aveI+

lim
m→∞

1
m

AT ΓT
AΓNN + lim

m→∞

1
m

NT ΓT
NΓAA + lim

m→∞

1
m

NT ΓT
NΓNN + lim

m→∞

1
m

UT ΓNN + lim
m→∞

1
m

NT ΓT
NU

= AT ∆A + lim
m→∞

1
m

UT U − σ̂2
aveI + lim

m→∞

1
m

AT ΓT
AΓNN + lim

m→∞

1
m

NT ΓT
NΓAA+

lim
m→∞

1
m

NT ΓT
NΓNN + lim

m→∞

1
m

UT ΓNN + lim
m→∞

1
m

NT ΓT
NU

= AT ∆A + lim
m→∞

1
m

AT ΓT
AΓNN⏞ ⏟⏟ ⏞

(1)

+ lim
m→∞

1
m

NT ΓT
NΓAA⏞ ⏟⏟ ⏞

(2)

+ lim
m→∞

1
m

NT ΓT
NΓNN⏞ ⏟⏟ ⏞

(3)

+

lim
m→∞

1
m

UT ΓNN⏞ ⏟⏟ ⏞
(4)

+ lim
m→∞

1
m

NT ΓT
NU⏞ ⏟⏟ ⏞

(5)

We consider the convergence of (1) through (5) separately:

1.

lim
m→∞

1
m

AT ΓT
AΓNN = lim

m→∞
AT 1

m
ΓT

AΓNN

We first consider Q := 1
m

ΓT
AΓN , an L × m matrix with entries indexed by
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l ∈ {1, ..., L}, k ∈ {1, ..., m} :

qlk = Ql,k

= 1
m

m∑︂
j=1

ΓAj,l
ΓNj,k

= 1
m

m∑︂
j=1

γAj,l
γN j,k

= 1
m

∑︂
{j:γNj,k

̸=0}
γAj,l

γNj,k
+ 1

m

∑︂
{j:γNj,k

=0}
γAj,l

γNj,k

= 1
m

∑︂
{j:γNj,k

̸=0}
γAj,l

γNj,k
+ 1

m

∑︂
{j:γNj,k

=0}
γAj,l

× 0

= 1
m

∑︂
{j:γNj,k

̸=0}
γAj,l

γNj,k

Suppose that there are 0 ≤ d ≤ m indices j for which γN j,k ̸= 0, so that there

are d terms γAj,l
γNj,k

in the summation contributing to qlk. We can re-index

these terms as γAj′,l
γNj′,k

, j′ = 1, ..., d.

For any fixed k, whenever γNj,k
, necessarily genes k and j share an edge. Therefore,

given d non-zero coefficients γNj,k
, gene k has at least degree d. However, [174]

show that for scale free networks following a power-law degree distribution

pk ∼ kα−1, as assumed in our framework, the maximum degree of a vertex in

the network follows kmax ∼ m
1

α−1 , and d ≤ m
1

α−1 . Therefore, we can write each
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element as:

qlk = 1
m

∑︂
{j:γNj,k

̸=0}
γAj,l

γNj,k

= 1
m

d∑︂
j′=1

γAj′,l
γNj′,k

= d

m

1
d

d∑︂
j′=1

γAj′,l
γNj′,k

≤ m
1

α−1

m

1
d

d∑︂
j′=1

γAj′,l
γNj′,k

= m−1m
1

α−1
1
d

d∑︂
j′=1

γAj′,l
γNj′,k

= m
2−α
α−1

1
d

d∑︂
j′=1

γAj′,l
γNj′,k

= m
−(α−2)

α−1
1
d

d∑︂
j′=1

γAj′,l
γNj′,k

= 1
m

α−1
α−2

1
d

d∑︂
j′=1

γAj′,l
γNj′,k

By Assumption 1 (2 < α < 3), so that α−1
α−2 > 1 and lim

m→∞
1

m
α−1
α−2

= 0.

Now, consider the expectation of the terms inside of the summation. For any j′,

applying the Cauchy-Schwarz inequality to |γAj′,l
| and |γNj′,k

|

E
[︂
|γAj′,l

γNj′,k
|
]︂

≤
√︃

E
[︂
|γAj′,l

|2
]︂

E
[︂
|γNj′,k

|2
]︂

=
√︃

E
[︂
(γAj′,l

)2
]︂

E
[︂
(γNj′,k

)2
]︂

≤
√︂

B′
γA

× B′
γN

By Assumption 2

= B∗ where we define the bound B∗ :=
√︂

B′
γA

× B′
γN

,

and

−∞ < −B∗ ≤ E
[︂
γAj′,l

γNj′,k

]︂
≤ B∗ < ∞,

and by the Strong Law of Large Numbers,

1
d

d∑︂
j′=1

γAj′,l
γNj′,k

a.s.−−→ E
[︂
γAj′,l

γNj′,k

]︂
,
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therefore, for each l, k:

qlk ≤ 1
m

α−1
α−2

1
d

d∑︂
j′=1

γAj′,l
γNj′,k

a.s.−−→ 0

s

and

Q
a.s.−−→ 0.

Recall, the matrix of artifacts A is L × n dimensional, so that it is fixed with

respect to m, and, as shown in Assumption 5, N
a.s.−−→ 0, so that by Slutsky’s

Theorem:

lim
m→∞

1
m

AT ΓT
AΓNN = 0

2.

lim
m→∞

1
m

NT ΓT
NΓAA

By symmetry, the same argument as in (1) holds, and

lim
m→∞

1
m

NT ΓT
NΓAA = 0

3.

lim
m→∞

1
m

NT ΓT
NΓNN = lim

m→∞
NT 1

m
ΓT

NΓNN

We will first consider P := 1
m

ΓT
NΓN , an m × m matrix with entries indexed by

l, k ∈ {1, ..., m} :

plk = Pl,k

= 1
m

m∑︂
j=1

ΓNj,l
ΓNj,k

= 1
m

m∑︂
j=1

γNj,l
γN j,k
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We will consider the diagonal and off-diagonal entries of P separately. The

diagonal entries (k = l) take the form:

pll = 1
m

m∑︂
j=1

γNj,l
γN j,l

= 1
m

m∑︂
j=1

γ2
Nj,l

= 1
m

∑︂
{j:γNj,l

̸=0}
γ2

Nj,l
+ 1

m

∑︂
{j:γNj,l

=0}
γ2

Nj,l

= 1
m

∑︂
{j:γNj,l

̸=0}
γ2

Nj,l

Now, whenever γNj,l
̸= 0, by definition, genes j and l share an edge, so that d′,

the number of j such that γNj,l
̸= 0 is equal to the degree of vertex l. Following

the argument from the proof of (1) , d′ ≤ m
1

α−1 , 2 < α < 3 and:

pll = 1
m

∑︂
{j:γNj,l

̸=0}
γ2

Nj,l

= 1
m

d′∑︂
j′=1

γ2
Nj′,l

= d′

m

1
d′

d′∑︂
j′=1

γ2
Nj′,l

≤ 1
m

α−1
α−2

1
d′

d′∑︂
j′=1

γ2
Nj′,l

Again, by Assumption 1

lim
m→∞

1
m

α−1
α−2

= 0.

Further, by Assumption 2

E
[︂
γ4

Nj′,l

]︂
≤ BγN

,

so that applying the Strong Law of Large Numbers,

1
d

d′∑︂
j′=1

γ2
Nj′,l

a.s.−−→ E
[︂
γ2

Nj′,l

]︂
≤ B′

γN
,
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and for each l:

0 ≤ pll ≤ 1
m

α−1
α−2

1
d′

d′∑︂
j′=1

γ2
Nj′,l

a.s.−−→ 0.

We now consider the off-diagonal entries(k ̸= l):

plk = Pl,k

= 1
m

m∑︂
j=1

ΓNj,l
ΓNj,k

= 1
m

m∑︂
j=1

γNj,l
γN j,k

= 1
m

∑︂
{j:γNj,l

̸=0 and γNj,k ̸=0}
γNj,l

γN j,k + 1
m

∑︂
{j:γNj,l

=0 or γNj,k =0}
γNj,l

γN j,k

= 1
m

∑︂
{j:γNj,l

̸=0 and γNj,k ̸=0}
γNj,l

γN j,k

If both γNj,l
̸= 0 and γNj,k

≠ 0 then gene j shares and edge with both genes l and

k, so that d′, the number of j such that γNj,l
≠ 0 and γNj,k

̸= 0 will be bounded

by the maximum of the degrees of vertices l and k. The same argument as used

for the diagonal entries then follows:

plk ≤ 1
m

α−1
α−2

1
d′′

d′∑︂
j′=1

γNj′,l
γNj′,k

,

and

lim
m→∞

1
m

α−1
α−2

= 0.

Further, for any j′, by Assumption 2 and the Cauchy-Schwarz inequality to

|γNj′,l
| and |γNj′,k

|

E
[︂
|γNj′,l

γNj′,k
|
]︂

≤
√︃

E
[︂
|γNj′,l

|2
]︂

E
[︂
|γNj′,k

|2
]︂

=
√︃

E
[︂
(γNj′,l

)2
]︂

E
[︂
(γNj′,k

)2
]︂

≤
√︂

B′
γN

× B′
γN

and

−∞ < −(B′
γN

)2 ≤ E
[︂
γNj′,l

γNj′,k

]︂
(B′

γN
)2 < ∞,
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and by the Strong Law of Large Numbers,

1
d′′

d′′∑︂
j′=1

γNj′,l
γNj′,k

a.s.−−→ E
[︂
γNj′,l

γNj′,k

]︂
,

therefore, for each l ̸= k:

plk ≤ 1
m

α−1
α−2

1
d′′

d′′∑︂
j′=1

γNj′,l
γNj′,k

a.s.−−→ 0.

Therefore, both the diagonal and off-diagonal entries in P converge to zero, and

P
a.s.−−→ 0.

As shown in Assumption 5, N
a.s.−−→ 0, so that by Slutsky’s Theorem:

lim
m→∞

1
m

NT ΓT
NΓNN = 0

4.

lim
m→∞

1
m

UT ΓNN

This term converges almost surely to zero by the KSLLN since E [U ] = 0 and

ΓN and U have bounded fourth moments.

5.

lim
m→∞

1
m

NT ΓT
NU

This term converges almost surely to zero by the KSLLN since E [U ] = 0 and

ΓN and U have bounded fourth moments.

Therefore, all of the terms (1)-(5) converge almost surely to zero and the limit of the

empirical variance-covariance matrix is

lim
m→∞

1
m

XT X − σ̂2
aveI = AT∆A + lim

m→∞

1
m

AT ΓT
AΓNN⏞ ⏟⏟ ⏞

(1)

+ lim
m→∞

1
m

NT ΓT
NΓAA⏞ ⏟⏟ ⏞

(2)

+

lim
m→∞

1
m

NT ΓT
NΓNN⏞ ⏟⏟ ⏞

(3)

+ lim
m→∞

1
m

UT ΓNN⏞ ⏟⏟ ⏞
(4)

+ lim
m→∞

1
m

NT ΓT
NU⏞ ⏟⏟ ⏞

(5)

= AT ∆A = L
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The principal components of this matrix consistently estimate the space spanned

by the confounding artifacts as we have previously demonstrated [169].

Therefore we show that given confounded high-dimensional gene expression data

where the number of genes is much larger than the number of samples - top principal

components will consistently estimate artifacts, and not network structure.

A.2 Effect of fewer PC correction on reconstruc-
tion of co-expression networks with WGCNA
and graphical lasso

Since broad trends in co-expression may sometimes reflect distant regulatory relation-

ships between genes,to ensure that we are not removing true long range signals, we

also reconstructed networks with data corrected for one quarter and half the number

of PCs estimated by our correction method. With WGCNA, we found that using a

half of the estimated number of PCs sometimes performed better in lung and skin.

For the remaining tissues half-PC correction does reduce false discoveries compared

to uncorrected data, however using the complete number of estimated PCs performs

better (Supplementary Figure 6).

With graphical lasso networks, correcting data with fewer PCs does improve FDR

compared to uncorrected data. However, the networks built with data corrected with

complete PCs performed either better or similar to fewer number of PCs(Supplementary

Figure 7).
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Supplementary Tables

Study Network
recon-
struction
method

Correction approach

[175] WGCNA known technical factors - RIN, pH, PMI, age,
batch, preservation, and gender

[15] WGCNA none
[176] WGCNA none, voom normalization
[177] WGCNA none, quantile normalization
[178] WGCNA none, quantile normalization
[179] WGCNA batch correction
[180] WGCNA none prior to network reconstruction. After

networks were reconstructed, tested for con-
founding through module eigengene-trait corre-
lations. however these did not include technical
confounders like batch, etc.

[181] WGCNA none, tmm normalization
[182] Bayesian bi-

clustering
network learning method jointly models hidden
confounders

[183] WGCNA known technical covariates: diagnosis status,
Age of death, sex, PMI, pH, RIN, clustered
processing batch, and ancestry markers

[14] Graphical
lasso

hidden factor correction

[184] WGCNA batch correction
[185] WGCNA none, quantile normalization

Table A-I. Few studies account for artifacts during re-construction of co-expression
networks.
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Tissue Known covariate

Adipose
Subcutaneous

- Code for BSS collection site
- RNA integrity number (RIN)
- Type of nucleic acid isolation batch
- Estimated library size
- Mean coefficient of variance
- Transcripts detected
- Intronic rate
- Expression profiling efficiency
- # transcripts that have at least one read in their 5’ end
- % intragenic End 2 reads sequenced in sense direction
- gene GC%

Lung

- Autolysis score
- Code for BSS collection site
- RNA integrity number (RIN)
- Type of nucleic acid batch
- End 2 mapping rate
- 3’ 50-base normalization
- Transcripts detected
- Gap percentage
- Intronic rate
- % intragenic End 1 reads sequenced in sense direction
- % intragenic End 2 reads sequenced in sense direction

- Gene GC%

Skeletal
Muscle

- Code for BSS collection site
- Type of nucleic acid isolation batch
- chimeric pairs
- 3’ 50-base normalization
- Library size
- Intergenic rate
- Transcripts detected
- Gap percentage
- Intronic rate
- Mapped unique rate of total
- % intragenic End 1 reads sequenced in sense direction
- # transcripts that have at least one read in their 5’ end
- Duplication rate of mapped
- Gene GC%

Thyroid

- Code for BSS collection site
- Autolysis score
- Type of nucleic acid isolation batch
- RNA integrity number
- 3’ 50 base normalization
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- Library size
- Intergenic rate
- Reads designated as failed by sequencer
- Transcripts detected
- Intronic rate
- Expression profiling efficiency
- # transcripts that have at least one read in their 5’ end
- Duplication rate of mapped
- % intragenic end 2 reads sequenced in sense direction
- Gene GC%

Whole Blood

- Mapped read count
- Code for BSS collection site
- RNA integrity number (RIN)
- Time point reference for Start and End times of sample
procurement
- Chimeric pairs
- 5’ 50-base normalization
- 3’ 50-base normalization
- mean coverage per base
- Library size
- Reads designated as failed by sequencer
- Mean coefficient of variance
- Transcripts detected
- Gap percentage
- Intronic rate
- Alternative alignments
- % intragenic end 2 reads sequenced in sense direction
- Gene GC%

Table A-II. Known covariates regressed from gene-expression data for multiple covariate
based correction. The expression variance explained (adjusted R2) by these covariates was
>= 0.01.

Supplementary Figures
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Figure A-1. False discovery rates of WGCNA networks obtained at a varying cut-heights
with uncorrected, RIN corrected, multiple covariate corrected and PC corrected data. Most
tissues show considerable reduction in false discoveries after PC correction. PC correction
shows only moderate improvement on FDR in sun-exposed skin.
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Figure A-2. False discovery rates of WGCNA networks using shared list of true positives
obtained from canonical pathway database (gene pairs present in at least two pathway
databases). Each color corresponds to the correction approach, and each point in the
figure corresponds to FDR of the network at specific cut-height.
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Figure A-3. False discovery rates of graphical lasso networks using canonical pathway
databases. Networks were obtained at a varying values of penalty parameter (0.3 - 1.0).
Each color corresponds to the correction approach, and each point corresponds to the
network obtained at a specific lambda.
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positives obtained from canonical pathway database (gene pairs present in at least two
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Figure A-5. Principal component loadings of gene expression are significantly associated
with estimates of sample specific GC bias. Association was tested using a linear model.
Panel (a) shows BH adjusted p-values and (b) shows R-squared.
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Figure A-6. False discovery rates of WGCNA modules using canonical pathway databases.
Each color corresponds to the correction approach, and each point in the figure corresponds
to FDR of the network at specific cut-height. Exonic rate and gene GC% are the known
confounder used in this figure.
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Figure A-7. False discovery rates of graphical lasso networks using canonical pathway
databases. Networks were obtained at a varying values of penalty parameter (0.3 -
1.0). Each color corresponds to the correction approach, and each point corresponds to
the network obtained at a specific lambda. Exonic rate and gene GC% are the known
confounder used in this figure.
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Figure A-8. False discovery rates of networks inferred with signed WGCNA networks
using canonical pathways. Each color corresponds to the correction approach, and each
point in the figure corresponds to FDR of networks obtained at different values of power
transform β, ranging from 1 to 30.
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Figure A-9. Graphical lasso networks reconstructed after PC correction of gene expression
measurements show higher clustering coefficient compared to uncorrected networks across
all tissues. Both scale-free and small-world networks have high clustering coefficient.
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Figure A-10. Graphical lasso networks (λ = [0.3, 0.43]) reconstructed after PC correc-
tion of gene expression measurements show considerably fewer hub nodes compared to
uncorrected networks across all tissues. Scale-free networks have few hub nodes.
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Figure A-11. Graphical lasso networks reconstructed before and after PC correction of
gene expression measurements show no improvement on false negative rates.
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Appendix B

Multi-study integration to identify
global expression pat-terns and key
regulators of Epithelial to
Mesenchymal transition (EMT) in
cancer

B.1 Supplementary Figures

Figure B-1. Expression of EMT genes previously unknown in prostate cancer in integrated
cell lines data Expression of LSR (A), S100A14 (B) and DPYSL3 (C) in breast, prostate
and others (retinal pigment, liver, colon and esophageal) cancer cell lines from QN + SVA
normalized integrated data
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Figure B-2. Expression of C1orf116 in breast, prostate and others (retinal pigment, liver,
colon and esophageal) cancer cell lines from integrated data.

Estrogen Response genes: early (prostate samples) Estrogen Response genes: late (prostate samples)

A. B.

Figure B-3. Expression of Estrogen responsive genes - (A) early and (B) late in prostate
cancer cell line samples from integrated data
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Figure B-4. C1orf116 expression in clinical patient data from breast and colorectal cancer.
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B.2 Supplementary Tables

List of Antibodies
Anti-C1orf116 (HPA011888)

Anti-LSR (HPA007270)
Anti-S100A14 (HPA27613)

Anti-DPYSL3 (SAB2103348)
Anti-beta-actin (A5411) 680RD Goat anti-mouse IgG (H+L) (926-6870)

Table B-I. List of antibodies

Gene Average rank Gene Average rank
MAP7 15 HJURP 190.25
FXYD3 17.5 SPINT1 191.75
EMP3 18 RASA3 195
VCAN 19.25 FAAH 198
ACSF2 30.5 HRH1 198.25
GEM 33.75 GREM1 199

EPS8L2 34.875 MTUS1 199.25
MEF2C 35 ITM2C 199.5
MMP28 35 PLAUR 199.5

LSR 35.75 DSP 203
CDH2 36.25 JAG2 203
ZEB1 36.75 CTSD 203.25

SPOCK1 40 CD320 203.5
COL4A2 40.25 WWC1 203.5

FBN1 40.5 STAP2 204
PPL 42.25 SH2D3A 204.25
PTN 44.75 CHN1 205

GNG11 46 CTGF 206.75
GFPT2 46.5 MST1R 206.75
RGL1 46.5 COL1A2 207.5

PMP22 49.25 EML1 208.25
COL5A1 51.25 SLC22A5 209.75

ASS1 52.75 CXADR 212.25
CDH1 58 LIMK2 212.75
EXTL2 60.375 PLOD1 212.75
ERMP1 60.75 HOOK2 213.375
LLGL2 67.25 MMP14 216

KDELR3 67.75 PEA15 218.5
JUP 70.25 LOX 219.25

RAPGEFL1 74.25 EPB41L3 222.25
ELF3 74.75 MPZL2 222.25
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CLDN7 76.75 HAS2 222.75
SLIT2 77.25 KIRREL 224.75

MYO5C 80.75 PPFIBP2 224.75
MLLT11 81.75 ETS1 226.75
EDIL3 84.375 RHOQ 228.25

CELSR2 84.75 FJX1 228.375
SLC27A2 84.75 INADL 234.75
AKAP12 85.5 FBXO5 236
TIMP1 86 FOXG1 236.75
GLS2 87 TRIB2 238.75

DPYSL3 89 KCNMA1 239.25
COL6A3 90.25 PTPRF 243

SRPX 90.75 VIM 244
PCOLCE2 99.75 PVRL3 245

MAP1B 102 GJC1 245.25
TUBA1A 102.25 AP1M2 247.5
KRT15 105.5 FERMT2 247.5

EPB41L4B 105.75 SMURF2 249.125
FAM64A 110.25 POSTN 249.75

ST14 111 ORAI2 249.875
SLC22A4 111.5 LRBA 250

AKT3 115.25 RBMS3 252.5
FAP 117.5 CEP170 253.375

PDLIM7 117.5 FBN2 254.5
SNAPC1 119 CD70 254.75
HMOX1 120 BCAR3 255
HEY1 121.75 CHMP7 255.25
CLMN 122 GJA1 256.25

ALDH4A1 124.375 DDR2 258
RECK 125 SERPINE1 261.5
GRB7 126 SERPINE2 261.5
CXCL3 126.5 MOXD1 265.25
TIMP2 127.75 MCAM 265.5
TCF4 129.5 SHCBP1 266

CHST2 131 TMEM158 267.25
TRIM29 132.75 RAB25 267.5
PMAIP1 133.75 DAB2 269

OAS1 135 MBNL3 270.125
C1orf116 136 IL1RN 270.5

TOB1 138.25 COL1A1 272.25
LPAR2 138.5 DAAM1 273.5
CDH11 140 AQP3 274.625

ALDH3A2 144.5 MMP2 275.5
TRIM26 145.75 CLPX 279
ABCA12 146 PSIP1 280.75
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S100A14 146.75 DHRS1 281.25
LHFP 150.875 NMNAT2 283
AP1G2 152.25 TWF2 283.25
CDS1 152.875 ZEB2 283.875

TGFB1 154.75 PCOLCE 284.5
HSD17B8 156.75 BCL2A1 284.75
ERBB3 157.375 VAMP8 284.75
SPARC 164.25 SLC2A9 285.75
GLT8D2 166.125 NAV1 286
NCAM1 169 DTX4 288
PKP2 170.5 ENO2 290

SLC35D2 172.5 SLC25A37 290
COL6A1 172.75 ANTXR1 292.75
CYR61 173.25 CASK 294.75
FZD5 173.5 LGALS1 300.5

PLXNB1 173.5 TSPAN5 300.75
LRP8 177 CREG1 305

LRRC1 177.25 FZD2 306.25
WNT5A 179.5 SCNN1A 306.375
MAPK13 180 DDR1 307

JAM3 181 CLN3 308.375
CD59 183 ECH1 310
PRSS8 183.5 SLC27A3 314

SULT1A1 189.25 CEBPA 314.5

Table B-II. List of top 200 ranked differentially expressed genes

Genes common with Groger et. al
CDH1
CDH11
CDH2
CDS1

COL1A1
COL5A1
COL6A1
COL6A3
CTGF

CXADR
ELF3
EML1
EMP3
FBN1
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FXYD3
HAS2
JUP

KRT15
LOX
LSR

MAP1B
MAP7
MMP2
MPZL2
MTUS1
PKP2

PLXNB1
PMP22

PPL
PRSS8
RECK

SERPINE1
SERPINE2
SLC22A4
SLC27A2
SPINT1
SPOCK1

TMEM158
TUBA1A

VCAN
VIM

WNT5A
ZEB1

Table B-III. Common genes with Groger et. al. study and 200 DE genes
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