
NETWORK MODELING AND OPTIMIZATION FOR

ENERGY AND SUSTAINABLE TRANSIT

by

Olufolajimi Oke

A dissertation submitted to Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

May 2016

© 2016 Olufolajimi Oke

All Rights Reserved



Abstract

Energy and transportation systems are integral to our infrastructure. Along with

other types of networks, critical challenges constantly arise, particularly with regard

to accessibility, efficiency, optimality, and sustainability. In this dissertation, we use

mixed integer programming, data mining and mixed complementarity techniques to

address some of these challenges. We have developed an improved schematic mapping

algorithm to facilitate the process of network representation for a variety of systems

beyond transportation. We also discover fundamental patterns in bicycle ownership

on a global scale with implications for sustainable urban planning and public health

outcomes. Finally, we model the fast-growing crude oil market in North America,

implementing scenarios that point to integrated approaches to exports, pipeline in-

vestments and targeted rail restrictions as most viable for addressing medium-term

oil transportation concerns. The methods we employ are generalizable to other types

of energy and transit systems, and beyond. Finally, we discuss the importance of

these methods to newer applications.

Dr. Kavi Bhalla, Reader

Dr. James Guest, Reader

Dr. Sauleh Siddiqui, Advisor
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Preface

The work described in this dissertation aims to highlight the importance of transporta-

tion and energy systems, and to unify them through the applications of optimization

and equilibrium modeling methods in conjunction with those of knowledge and data

discovery. It delves into the details of three major projects I have embarked upon in

the course of my doctoral studies.

My interest in schematic mapping arose from a bike route optimization project

I developed for my advisor, Sauleh Siddiqui’s Equilibrium Problems in Systems En-

gineering course. In my efforts to visualize the solutions within the network in my

model, I realized the importance of automated schematic mapping and began to in-

vestigate recent efforts in the field. Dr. Siddiqui motivated me to push this further,

and our results are presented here.

The lack of integration of bicycling in many urban transit systems also captured

my attention. I began to investigate models for bicycle traffic. Along the way, Dr.

Siddiqui and Dr. Bhalla alerted me to an opportunity to investigate trends in bicycle

ownership. Up to that point, there was a void in the academic literature regarding

bicycle ownership patterns on a global scale, and it was clear that understanding

ownership would be useful for researchers and planners alike. Dr. Bhalla was instru-

mental in guiding me through the data gathering process. Along with the invaluable

collaboration of Dr. David Love, we spent the next two years developing a model to
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unearth information from a sparse dataset. Our results received widespread domestic

and international press coverage, and we hope others can build on this work.

With the oil boom in the U.S. and Canada garnering attention in the energy

circles, especially with the high-profile crude-by-rail spills, we decided to contribute

to solving this problem. Daniel Huppmann had earlier developed an equilibrium

model for the global energy market. Using that as a basis, we built a model for the

North American crude oil market (NACOM) that is able to track the flow of heavy

and light oils along different modes of transportation with granularity at the U.S.

state level. I worked for over a year under the guidance of Dr. Huppmann and Dr.

Siddiqui in building this new model, while also assisted by my undergraduate advisees

Max Marshall and Ricky Poulton. With NACOM, we test ran several scenarios to

investigate how best to mitigate the crude-by-rail problem.

I have presented various portions of this work over the past three years at the

Institute for Operations Research and Management Sciences Annual Meeting, Mod-

eling and Optimization: Theory and Applications hosted at Lehigh University, the

International Symposium on Mathematical Programming, among other internal and

external speaking engagements.

Baltimore, April 2016
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CHAPTER1
Introduction

Our world is a complex web of interacting systems, all of which impact our lives and

our world in one way or the other. These systems or networks include structures,

transportation networks, energy grids and markets. In order to track behavior and

ensure better outcomes, models are often employed to describe system behavior. Data

collection and analyses can be critical to model formulation. Representation is also

important to handle user interactions. Rich bodies of work have been developed over

the past 100 years to model and solve problems with a systems framework. In this

dissertation, we describe research that focuses on network models in transportation

and energy. The methods, however, have wide-ranging applications to other types

of systems. In this century, governments, policymakers, scientists and engineers, are

scrambling to tackle national issues with respect to population, health, climate and

resource management. Efficient modeling techniques can contribute toward providing

solutions to numerous problems that have existed or that continue to emerge. The

systems surrounding transportation and energy, in particular, are of great interest,

as they are more often than not subject to arbitrary policy decisions and influenced

by various competing concerns.

In the next section, we detail the methods the author has studied and employed
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in understanding and modeling systems. The section following highlights the areas

where these have been applied, advances made and new knowledge created. The final

section describes the layout of the dissertation.

1.1 Background and methods

1.1.1 Multiobjective mixed integer programming

Multiobjective mixed integer programs (MOMIPs) are a class of tools that apply

the principles of multiobjective optimization (MOO) to models that involve integer

variables (Mixed Integer Programs).

Multiobjective optimization

Multiobjective optimization is a broad field that historically developed from theoretic

and applied work in the mathematical sciences, engineering and economics [107].

Engineers often have to solve problems in which a combination of objectives or criteria

must be met with practical, logistical and fiscal considerations. Economists search for

equilibria in markets, points at which demand is satisfied while utility or welfare and

profits are maximized. The advancement of game theory is also considered influential

in MOO development, as it is primarily concerned with finding optimal decision-

making strategies in various situations.

In most MOO applications, there do not exist single globally optimal points for

all objectives, and even if there were, they are often impractical to determine. Para-

doxically, therefore, points of efficiency are of primary interest, wherein a palette of

tradeoffs among preferences can be examined from the standpoint of the decision

maker. The concept of maximum “ophelimity” first described by Pareto [147] in his

1906 treatise describes the point in a feasible space where a simultaneous improve-

ment in the objective of interest for all entities in the system is impossible; as such
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any variation from such a point to optimize utility for one particular entity would re-

sult in a worsening for another or more entities. Thus, according to Pareto, points of

maximum ophelimity are “collectively” optimal for all the entities at the same point.

Following Pareto, this concept has since developed to precisely and robustly describe

“optimality” in multiobjective space [97, 100, 5, 207]. Such points are called Pareto

[optimal] points and the set of such points make up a Pareto set and are formally

defined thus [107]:

Definition 1. Given a set of objective functions Fi ∈ F and a set of points x in

feasible region X. A point x∗ ∈ X is a Pareto point if it satisfies the following

necessary and sufficient conditions:

i. Fi(x) ≤ Fi(x
∗) for all Fi ∈ F

ii. Fi(x) < Fi(x
∗) for some Fi ∈ F

Other interchangeable terms for Pareto or efficient points include “admissible,”

“noninferior” and “nondominated,” of which the latter is the prevailing alternative

term in the modern literature [44].

Various approaches have been developed in solving multiobjective problems [107].

In the weighting or weighted-sum method [107, 207], the objective is formulated as the

scalar product of a vector of objectives and a corresponding vector of scalars whose

values may be chosen as a measure of the importance of each objective in the problem.

However, the points obtained by this method are not always guaranteed to be Pareto

optimal. The lexicographic method [107, 175] allows for a sequential optimization

of each objective by order of importance. The bounded objective function finds the

optimal point for the designated objective of greatest importance, while the bounds

of the other objectives constrain the overall problem. Following this method, the

ε-constraint method proposed by Haimes et al. [70], addresses the choice of upper

bounds in the constraints in order to guarantee Pareto optimality. Goal programming,
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initially developed by Charnes et al. [27], and its several variations, solves for efficient

points by minimizing deviations from predefined objective function values or goals.

Das and Dennis [35] introduced the normal boundary intersection (NBI) to produce

an evenly spaced Pareto set. Siddiqui et al. [167] developed a modification to improve

the efficiency of NBI.

Computing the Pareto set for a given MOO application can be an expensive

task. Continuing developments therefore focus on improving efficiency. Among these,

Mavrotas [109], Mavrotas and Florios [110] developed the augmented ε-constraint al-

gorithm (AUGMECON2). In AUGMECON2, lexicographic optimization is first used

to generate a payoff table for the objectives, whose gridded granularity is determined

by the user. Following this, the ε-constraint method is then employed within a frame-

work of heuristics to generate the Pareto set, the density determined by the number

of grids afore-specified.

One of the advances demonstrated in this dissertation is the application of AUG-

MECON2 in an MOMIP for schematic mapping, as described in Chapter 2.

Mixed integer programs

A mixed integer program (MIP) is an optimization problem whose objective (linear,

quadratic or otherwise) space is defined by a mixture of discrete and continuous

variables. Discrete variables allow for the modeling of choice or the combination of

specific actions as related to a given problem. A general definition is given below

[104].

Definition 2. A mixed integer [linear] program is of the form:

max
∑
j∈C

cjxj +
∑
j∈I

cjxj (1.1)

subject to
∑
j∈C

aijxj +
∑
j∈I

aijxj ≤ bi i = 1, ...,m (1.2)
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lj ≤ xj ≤ uj j ∈ C ∪ I (1.3)

xj ∈ R j ∈ C (1.4)

xj ∈ Z j ∈ I, (1.5)

where C is the index set of continuous variables and I the index set of integer variables.

MIP models are indispensable to tackling engineering and operations problems

including those that deal with location, scheduling, and assignments. MIPs are NP-

complete, but various algorithms have been developed to solve them. These methods

have arisen from the subfields of set theory, cutting planes and enumeration. The

branch and bound (B&B) approach, an enumeration method, has evolved as a robust

solution technique for MIPs.

1.1.2 Mixed complementarity problems

The concept of complementarity is central to conditions for equilibria and optimal-

ity [49]. In various systems, be they structural, economic, social, among others, the

existence of an equilibrium can be represented by the mathematical definition of com-

plementarity, which in the geometric context is equivalent to orthogonality. Before

giving the formal definition of a complementarity problem, we will illustrate it with

the classic example of a Wardorp equilibrium.

Wardrop equilibrium

In 1952, traffic engineer John Wardrop postulated in his first principle that traffic a

given network may ultimately attain an equilibrium in which the travel times on all

the used paths for an origin-destination pair used are equal and the shortest possible.

In other words, network users (drivers, for instance) will be unable to improve their

travel times by choosing a different route in such a situation [202].
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Thus, let i ∈ I be the origin-destination (OD) node pairs in a given network

G(N ,A), with nodes n ∈ N and arcs a ∈ A. Also, we define Pi as the set of paths

p for each OD pair i. For each path p, the flow is given by fp while the travel time

along the path is given by Tp(f). The function Tp can be generalized to account

for other costs and interferences and can therefore be considered a disutility, delay

or latency function. For the sake of this example, we consider it a generalized travel

time function of the flow in the entire network f (vector of the path flows fp). Finally,

the minimum time (also possibly generalized as a cost) to travel from one origin node

to its respective destination nodes is ti.

Now, according to Wardrop’s first principle, f is an equilibrium for all OD pairs

i ∈ I and all paths p ∈ Pi if fp > 0 ⇐⇒ ti = Tp(f) and fp = 0 ⇐⇒ Tp(f) >= ti.

These statements can be rewritten thus:

f · (T (h)− ti) = 0 (1.6)

f ≥ 0 (1.7)

T (h)− ti ≥ 0 (1.8)

if we consider T (h) as the vector ⟨T1(h),T2(h), . . . ,Tp(h)⟩. The above relations con-

cisely state that at equilibrium, the travel times on all used paths are the minimum

for the OD pair they connect. Equation (1.6) expresses the orthogonality of f and

(T (h)− ti), while (1.7) and (1.8) are their respective nonnegativity bounds. In fact,

these relations can even more compactly given as

0 ≤ f ⊥ T (h)− ti ≥ 0 (1.9)

where f ⊥ T (h)− ti is simply a restatement of (1.6).

TheWardrop example has been shown to represent an instance of Nash Equilibrium: a
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steady-state point at which no player can improve their current situation by selecting

an alternate strategy. The problem of interest in a Wardrop user equilibrium is

usually to find the flow distribution f that achieves this. Other extensions can be

made to incorporate congestion, intermodal impedance, and thereby solve for related

quantities.

Given this illustration, we can now define the nonlinear complementarity problem

(NCP) as follows:

Definition 3. For a function F : Rn → Rn, find x ∈ Rn such that

x ≤ 0 ⊥ F (x) ≥ 0 (1.10)

where the operator ⊥ indicates a zero dot product.

In NCP, the vector variable x is strictly nonnegative. The mixed complementarity

problem (MCP) is a generalization that allows for the inclusion of both free variables

and nonnegative variables, hence the term “mixed.” According to Gabriel et al. [57],

the prevalent form is given below.

Definition 4. Given a function F : Rn → Rn, find x ∈ Rn1 and y ∈ Rn2 such that

for each i ∈ {1, . . . ,n1} and j ∈ {1, . . . ,n2}

xi ≤ 0 ⊥ Fi(x, y) ≥ 0 (1.11)

Fj+n1(x, y) = 0, yj free (1.12)

Another instance that arises is having lower and upper bounds for the variables in

question besides 0 or ∞.

The versatility of the MCP framework is multifold. We have established its utility

in modeling equilibrium problems (e.g. Wardrop, Walrasian, Nash, market, structural,

among others). Also of significance is the natural equivalence of the MCP and the
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system of first-order optimality conditions for a constrained optimization problem,

commonly referred to as Karush-Kuhn-Tucker (KKT) conditions. These were inde-

pendently derived by William Karush, and Kuhn and Tucker [95].

Given a general constrained optimization problem [133]:

min
x∈Rn

f(x) s.t.

⎧⎪⎪⎨⎪⎪⎩
ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I
(1.13)

where f : Rn → Rn, ci, i ∈ E are equality constraints and ci, i ∈ I are the inequality

constraints.

The KKT conditions for (1.13) are as follows

∇xL(x∗,λ∗) = 0 (1.14)

λ∗
i ci(x

∗) = 0 i ∈ E ∪ I (1.15)

λ∗
i ≥ 0 i ∈ I (1.16)

ci(x
∗) ≥ 0 i ∈ I (1.17)

ci(x
∗) = 0 i ∈ E (1.18)

where ∇xL(x∗,λ∗) is the Lagrangian defined as

∇xL(x∗,λ∗) = ∇f(x∗)−
∑

i∈A(x∗)

λ∗
i∇ci(x

∗) (1.19)

The set A indexes the active constraints. The vector λ∗
i is the Lagrange multiplier.

We see the orthogonality in (1.15), which indicates that either the Lagrange multiplier

is 0 or the respective constraint is active (i.e. i ∈ A). As such, (1.15) are known as

the complementarity conditions of the KKT system of equations and inequalities.

The complementarity can be strict, i.e. λ∗
i > 0, ensuring that the possibilities are not

inclusive for the inequality constraints (of importance in algorithm development).
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The necessity of the KKT conditions can be proven by Farkas’ lemma, which states

that given a vector in Rn, only one of the following alternatives hold: (i) the vector

exists in a given convex cone K; (ii) there exists a separating hyperplane between the

vector and the cone K.

Thus, we see that the KKT system of an optimization problem can be formulated

as an MCP. The MCP can therefore be applied to an even broader suite of problems.

This utility has especially been exploited in the modeling of energy markets. Gabriel

et al. [57] detail these applications and their significance in recent years.

Various algorithms have been developed to solve MCPs. They are largely based

on modifications to the Newton method. A widely used solver is PATH, developed

by Ferris and Munson [50] in the late 1990s and now available across a variety of

platforms.

1.1.3 Data mining and pattern discovery

Data mining refers to the body of work concerned with gathering and discovering

useful information from datasets. These data are often multidimensional and may

contain numerous bits. Various learning models have been developed to discover

rules and patterns within otherwise inscrutable data, with applications ranging from

healthcare to social networks. With respect to data mining, learning is divided into

two broad categories: supervised and unsupervised. The category of interest here is

unsupervised learning, in which “clustering” is a major technique. Clustering is the

process of measuring the separation of elements in a dataset and then grouping those

elements based on the collective closeness within defined groups [89]. Two examples

of clustering methods are k-means clustering and hierarchical clustering.

Hierarchical methods are often desirable, as they produce the overall tree struc-

ture of the dataset. Within hierarchical clustering are a set of agglomerative methods,

so-called as they employ a “bottom-up” approach. Examples of hierarchical agglom-
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erative clustering (HAC) include: the weighted pair group method with arithmetic

means (WPGMA), the unweighted pair group method with arithmetic means (UP-

GMA), the method of complete linkages, the method of single linkages and the Ward

method.

1.2 Applications and contributions

In this section, we detail the systems applications of the methods described in Sec-

tion 1.1. We also highlight the importance and contributions of the work the author

has carried out, both under his advisor and in collaboration with other researchers.

There are three major areas of application: network representation, bicycle trans-

portation, and oil market modeling and transport. In each of these cases, a corre-

sponding journal article has either been published or submitted for review.

1.2.1 Network maps

Every system with which users must interact on a regular basis must have as acces-

sibility as its hallmark. Infrastructure systems, in particular, must be accessible and

navigable in order to be user-friendly and thereby serve their purpose. Ease of naviga-

bility is even more critical in transportation systems, where users require information

to utilize the network infrastructure. Historically, maps have served as a represen-

tation tool for networks of all kinds: electric, geographic, conceptual, among others.

Schematic mapping arose from a need to provide the most effective representation

within a set of practical constraints. As will be discussed in Chapter 2, the Tabula

Peutigeriana, a schematic map of the Roman road network, is one of the earliest ones

in recorded history [181].

With advancement in graph theory and computational methods, various algo-

rithms were developed to tackle the schematic map drawing problem. An early effort
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described by Hong et al. [75] employed a combination of algorithms based on field

attraction principles to create schematic maps quickly. Others efforts have since fol-

lowed. Notably, Nöllenburg and Wolff [134] developed a mixed integer program to

solve this problem.

In furthering this work, we have enhanced the mixed integer formulation with a

justified simplification of the objective framework. We also apply the augmented ε-

constraint method in order to generate the complete Pareto set of mapping solutions

for a given problem, which is a first in this field.

The importance of schematic mapping is growing beyond its historic origins in

the urban rail transit domain. Hahn and Weinberg [69] showed that the same rules

of representation could be used to visualize the progression of disease in the human

body. Another exciting development is the recent multiyear iteration of the Edinburgh

Inntertube Map, a schematic representation of the bikeways in the city. While this

work has purely been from a design standpoint, there are promising applications of

the same optimization for bicycle transit networks, which are of increasing interest

as sustainability is gaining deserved attention in planning and policy spheres.

1.2.2 Sustainable transit: bicycles

As efforts are being renewed toward sustainable urban communities and safe and clean

streets, a resurgence in bicycle ownership and usage would be a welcome development

[87, 159, 117]. In keeping with this pattern, policymakers are promoting schemes to

further improve cycling conditions in various locales [34]. Some of these include

increasing the level of cycling infrastructure, investing in bike sharing programs and

raising awareness toward bicycle safety. An important factor affecting the usage of

bicycles is availability. For many, especially in places where sharing programs are

inaccessible, household ownership becomes a determining factor of bicycle access and

activity.
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In the first undertaking of its kind on a global scale, we mined household ownership

data, discovering patterns that shed more light on national bicycle ownership trends

from 1989 to 2012. In particular, ownership could be broadly classified into four

levels, while the overall trend indicated a decline which was more pronounced in the

150 countries studied, excluding India and China [140].

1.2.3 Crude oil

Crude oil production in the United States has experienced a major boom in recent

years. With the proliferation of horizontal drilling technologies—of which hydraulic

fracturing predominates—domestic production increased in North Dakota, Texas,

Colorado and Montana. This boom also brought with it several problems. One of

great economic and environmental concern is the increasing use of rail to transport

crude from the oil fields to the refiners. Numerous accidents and their consequent oil

spills and related damage have resulted from increased rail shipments. There have also

been growing concerns that grain shipments are often displaced or relegated in favor

of the more lucrative crude payload. The energy analysts have so far been unable to

provide concrete explanations as to why rail has edged out pipeline as the mode of

choice for the growing thousands of barrels being extracted. Some have hypothesized

that rail is cheaper and more accessible, hence its excessive use. However, no in-depth

policy solutions to the current problem have been proffered, although a thorough

inquiry into the situation has been undertaken [54]. The initial research question this

project therefore aims to explore is the market and distribution network for domestic

crude oil in the United States. We have developed the very first crude oil model for

the U.S. hope to provide answers and policy recommendations to maximize welfare

among the prevailing players.
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1.3 Outline

Chapter 2 describes the author’s work in schematic mapping as an application of two

multiobjective optimization tools: mixed integer programming and the augmented

ε-constraint method. This was conducted under the supervision of Dr. Sauleh Sid-

diqui and the work has been published in Computers & Operations Research [139].

In Chapter 3, we describe a data mining approach toward identifying trends in bicy-

cle ownership around world, making the case for its importance in policymaking in

sustainable transit. The author conducted this project under the guidance of Drs.

Bhalla, Love and Siddiqui, and their results have been published in Journal of Trans-

port & Health [140]. A mixed complementarity program formulation applied to the

North American crude oil market and its capability to predict impacts of possible mit-

igating interventions in the transportation network are detailed in Chapter 4. The

author has written much of the content of this chapter as an article which is currently

in review for publication [142]. The research was completed with Drs. Huppmann and

Siddiqui, and with the assistance of Max Marshall and Ricky Poulton.

In closing, we reiterate the foundational importance of the research described in

this dissertation and provide a few promising examples for future directions (Chap-

ter 5).
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CHAPTER2
Optimal network representation via

schematic mapping

2.1 History and impact

A schematic map is a linear cartogram of a given network, which simplifies com-

plexity and facilitates orientation through symbolic representation. Schematization

therefore increases visual impact and makes it easier to digest information. Distor-

tion is regularly employed to make this possible. Figure 2.1 illustrates the influence

of schematization on a network user. A well-designed map is readily accessible and,

through regular interaction, a user is ultimately able to virtually recreate the image of

the network through a process known as “mental mapping” [66] to hasten the process

of navigation.

Schematic map drawing dates back centuries. A classic example is the Tabula

Peutingeriana from the fifth century—a representation of the Roman road network

across three continents [181] notable for its use of symbolism and distortion. In

modern times, the power of schematization has been most visible in the representation

of electric circuits and in the mapping of modern urban transit networks. Harry
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Figure 2.1 Impact of schematization

Beck’s work in schematizing the London Underground map over a 30-year period

beginning in the 1930s set standards that are still relevant today [60, 146]. Beck’s

representation did away with the curves of previous maps and replaced these with

piecewise straight lines oriented in multiples of 45◦ (a scheme now termed octilinear).

Beck also significantly enlarged the congested central portion of the map to make it

more readable [60] (see Figure 2.2). Subsequent official revisions to the Underground

map by Beck and others rarely departed from his original ideal. The majority of

the metro maps created after Beck’s effort also followed his design cues [146], and a

comparative study of these maps reveals a consistent set of principles often referred

to as “metro map rules.” Beyond metro networks and transportation systems in

general, schematic maps have been found to be effective in other areas. They have

been successfully used to represent cancer pathways [69], as well as organizational

structures and project plans [178]. Schematic maps have broad applications, as they

are useful for visualizing pathways in networks of all kinds.

Producing a good schematic map can be an expensive and time-consuming process

[10]. The best diagrams are usually created by professional designers with the aid of

computer graphics software. Any represented network may undergo changes during
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Figure 2.2 Central sections of the 1908 edition of the London Underground map and

Beck’s first schematic version published in 1933 [60]

its lifespan, and the needs and perceptions of its users will also vary with time. These

usually require modifications to its schematic map. A procedure that can therefore

automate the schematization process to give consistent results subject to specified

requirements in real time would be ideal and efficient. (Efforts in this area of research

are detailed in Section 2.2.) Of interest is Nöllenburg and Wolff’s multiobjective

mixed integer program implementation [134].

In this chapter, we describe improvements on Nöllenburg and Wolff’s method—a

reduction in the number of objective functions and a relaxation of integer constraints—

for better performance. Essentially, we reduced a mixed integer program to a mixed

binary linear program and implemented a method of finding the entire set of non-

dominated (Pareto optimal) solutions, which is critical as not all Pareto optimal so-

lutions can be obtained by the weighting method approach employed by Nöllenburg

and Wolff. We also establish a framework for analysis and decision-making in the

Pareto space of equally efficient solutions. Finally, we show through some examples

how schematic maps can be automated for a variety of applications. This work has

been published in the journal, Computers & Operations Research [139].
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2.2 Background and related work

Over the past 60 years, important insights have been gained in the automation of

schematic maps. Purchase et al. [154] conducted a study that underscored the impor-

tance of aesthetics in schematization. In particular, their work proved that minimal

line crossings and bends make maps easier to use and remember. In their review,

Avelar and Hurni [10] motivate the importance of good design in schematizing trans-

portation networks, and they propose a standardization in representation.

Tamassia [182] developed an algorithm that utilized the network properties of

graphs to solve the problem of embedding a graph in a rectilinear grid. The prob-

lem was modeled in terms of minimum cost flow and the solution preserved topology

while minimizing the bend count. Tamassia’s work [182] did much to characterize

important graphical elements of schematic maps, and also generalized the implemen-

tation for k-gonal graphs. Avelar and Müller [11] proposed an iterative algorithm

for schematic map generation that also preserved input topology. They showed that

topological accuracy1 could be maintained using relatively simple geometric analyses,

as opposed to elaborate techniques. Their formulation also emphasized the role of

the designer in setting constraints for aesthetics and legibility. Cabello et al. [23] de-

scribe a generalized procedure for schematizing transport maps using a path-endpoint

framework. Their approach, which runs in linearithmic time, preserves the original

layout but terminates if no correct solution can be found.

Metro maps are a subset of schematic maps. Much of the work done in automating

metro map drawings is generally transferrable to schematic maps, which tend to

follow similar rules. Hong et al. [75] were the first to completely automate metro map

graph layouts, and they demonstrated this through the use of various force-directed

1“Topological accuracy” refers to the relative positioning of the nodes and edges in a schematic
realization compared to the original layout of the network. A topologically accurate representation
retains the face structure of the input. This concept is further described in Section 2.3.
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algorithms. Hong et al.’s implementation neither preserved the topology of the input

embedding nor produced octilinear solutions. Ribeiro et al. [157] also used a force-

directed implementation to automatically draw schematic maps. Their results are

efficiently produced and aesthetically pleasing, and they focus on using spider maps

in representing transit networks. Stott et al. [179] later introduced a hill-climbing

algorithm within a multiobjective optimization framework to solve the metro map

automation problem. Their optimizer gave improved results, but octilinearity was

not enforced and optimality could not be guaranteed. Wolff [203], Nöllenburg and

Wolff [134] then developed a multiobjective mixed integer program to solve the metro

map drawing problem. Like Stott et al. [179], Nöllenburg and Wolff [134] used the

weighting method [107] to find optimal octilinear results.

While Nöllenburg and Wolff’s multiobjective formulation is a significant improve-

ment compared to previous efforts and is able to produce good unlabeled maps, there

is room for further development. Nöllenburg and Wolff used the weighting method,

which may ignore potentially desirable solutions [167]. Their triobjective model,

while elegant, does not lend itself easily to analysis of the solution space. Finally,

the coordinate integrality requirements unnecessarily slowed down their method. We

sought to address these issues by simplifying their model, relaxing coordinate inte-

ger constraints, and implementing an augmented ε-constraint method developed by

Mavrotas and Florios [110] to determine the set of efficient solutions and analyze the

objective space.

Multiobjective mixed integer programs (MOMIPs) have been successfully used

to model numerous real-life problems. For example, Scaparra and Church [162] de-

veloped a two-level approach to a mixed-integer program for infrastructure manage-

ment. Much important work has been done in finding non-dominated solutions to

optimization problems, and several algorithms have been tailored to their specific ap-

plications [47, 172]. In the area of visual representation, Cano et al. [25] introduced a
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novel metaheuristic approach to solving the problem of proportionally symbolic car-

tograms. Mart́ı and Estruch [108] also proposed a heuristic method for solving the

edge-crossing minimization problem.

Various other research problems related to automated schematic map drawing

have also been tackled, such as those dealing with bend minimization and path sim-

plification [43, 14]. In a departure from convention, Fink et al. [52] have proposed

a “curvilinear” drawing approach which has produced metro maps using a force-

directed algorithm. Hurter et al. [81] have also created a schematic automation

method specifically for air traffic control routes. They use simulated annealing to

solve a cost minimization model that penalizes crossings, density and distortion.

2.2.1 Why automation is important

It has been amply demonstrated that distortion, when correctly applied, can greatly

enhance the mental perception of a network [154, 179, 10]. The best diagrams still

require significant manual effort to produce and usually at great expense [10]. For

example, the London Underground network map took over three decades to attain

the widely accepted form that has not changed much since the 1950s [60]. This is

why computer automated drawings are crucial for modern applications. With the

emergence of modern mobile technology, demand is ripe for dynamic maps that can

toggle layered information. Here, we focus on static maps, but we keep in mind

that advances in computing technology will mean that complex problems will be

increasingly solvable in real time. The computer-automated process in schematic

diagramming can save significant amounts of time and money in map making, with a

potential for impact in transit network design [68], understanding disease progressions

[69], and visualizing complex plans [178] and pathways.

Guo [68] has shown that schematic maps influence how passengers perceive and

utilize a transit network. Taking the London Underground network as an example,
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it can be argued that passengers’ favorable disposition to a network is affected by

how it is represented, a phenomenon Guo coins as the “map effect.” In the case of

bicycle networks, numerous efforts, both personal and official, have been made to

schematize their maps in the hopes of boosting ridership. An automated solution to

this can significantly increase the production of schematic maps. Bicycle networks

are of particular interest [166], as urban sustainability through reduced automobile

congestion and increased public health benefits [135] are critical outcomes of positive

network perceptions.

2.2.2 Contributions and improvements

The work presented here is significant in that it shows we can generate schematic so-

lutions much quicker by simplifying, reformulating, and tightening the multiobjective

model presented by Nöllenburg and Wolff [134]. In particular, we relax the integral-

ity constraints on the coordinate variables to achieve this efficiency. We still obtain

proven optimal solutions, and we show this through three numerical examples and

two applications.

An important characteristic of an automatic schematization tool is to provide

a useful starting point for a designer to produce a final representation, as comput-

ers have limited decision-making ability. Beyond manually selecting weights to obtain

tailored solutions, we show how the ε-constraint method of solving multiobjective pro-

grams can be used to efficiently generate a Pareto frontier of non-dominated solutions.

Specifically, we adapt Mavrotas and Florios’ augmented ε-constraint implementation

[110]. Our results show how a framework can be developed for evaluating desirable

schematic diagrams from a set of efficient (Pareto optimal) solutions. This is the first

time this method has been used in solving the schematic map drawing problem, and

we believe this is a critical development in that all Pareto points—which may not

always be found by varying weights—can be obtained by the user or designer.
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Automatic schematic map drawing has largely been presented within the sphere

of metro map drawing. This is understandable, as much of the interest in this sub-

ject arose from efforts to automate metro maps. In this chapter, we implement our

method on the Vienna Underground as a case study. However, we go further to il-

lustrate how the automatic schematic method can also be applied to disease pathway

representation. We hope that our efforts will spur further work in broadening the

applications of automatic schematic mapping.

2.3 The schematic drawing problem

First, we provide a summary of important symbols and definitions (Table 2.1). The

Table 2.1 Important symbols and their definitions

G(V ,E) planar input graph, as a function of V and E
(G,L) possible metro graph
Γ drawing operator
Π(v) geographic location of each vertex v in the plane
L set of lowest number of paths linking all vertices in G (line cover)
L metro line (element in L)
E set of edges e in graph
V set of vertices v in graph G
F set of faces f in graph
l number of lines in G
m number of edges of G
n number of vertices of G
r number of faces of G

schematic map drawing problem is then formally defined as follows:

Definition 5. Find the best drawing Γ of the graph (G,L) subject to schematic

rules, where G(V ,E) is a planar input embedding Π(v) of a set V of vertices and a

set E of edges, with L the set of lines or line cover of G.

The vertices v ∈ V and edges e ∈ E constitute the topology of G. Together, these

elements divide the graph into bounded zones known as faces, where each face f is an
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element of F , the set of all faces. Trailing or circumferential edges collectively make

up the unbounded external face [182]. A graph can thus be further described by a list

of the edges, in circular order, occurring in each face—a planar representation [182].

The sets of vertices, edges and faces in a planar graph are related by Euler’s formula:

|E|+ 2 = |V |+ |F | (2.1)

The nature of the schematic rules enforced depend on the type of map being

drawn. In this chapter, we restrict ourselves to the Beck-inspired diagram whose

aesthetics are encapsulated within the following major guidelines:

(a) Octilinearity: all edges must originate at angles that are multiples of 45◦. This

necessitates that the output be on an octilinear grid with four axes: x (0◦),

y (90◦), z1 (45
◦) and z2 (−45◦).

(b) Bend avoidance: Along each line, bends must avoided as much as possible. Ob-

tuse bends are favored over acute or right ones.

(c) Topological correctness: The relative positions of vertices and their connectivities

must remain the same, for the sake of readability and mental mapping. In other

words, the face structure of the solution is identical to that of the input.

(d) Edge uniformity and spacing: Edge lengths should be kept as even as possible.

Nonadjacent edges must also keep a minimum distance to ensure clarity.

(e) Edge shifting: Imposing an optimal octilinear output necessitates linear distor-

tion. Edges are allowed to be shifted in keeping with this geometry as long their

relative positions to other adjacent edges are maintained.

A few of these guidelines are illustrated in Figure 2.3.

We do not address the labeling problem here. If labels were to be included,

however, they would ideally not overlap and would be grouped into blocks with the
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(a) Edge octlinearization

=⇒

(b) Line bend minimization

✗

✓

(c) Topology preservation

Figure 2.3 Illustration of three guidelines under consideration for schematization

same orientations. Line colors should also be optimally distinguishable, but this

component is not included in our implementation. In the mixed integer formulation

that will be discussed in the following section, guidelines (a), (c) and (d) are modeled

as hard constraints since they are strict requirements. Guidelines (b) and (e) are

however modeled as objective cost functions or soft constraints, as they describe

aesthetic preferences.

2.4 Mixed integer program formulation

The mixed integer program presented in this chapter develops the model introduced

by Nöllenburg and Wolff [134] into a multiobjective mixed binary linear program.

Unlike Nöllenburg and Wolff’s formulation, which has three objective cost functions,

ours utilizes only two, namely: shift and bend. We eliminate their “total edge length”

cost function, replacing this with an upper bound on edge lengths ℓmax. This can have

the same value for all edges, or take on different values based on the edge or face prop-

erties (as we demonstrate in the Vienna Metro and cancer pathway examples). The

conversion to a biobjective problem facilitates analyses, especially regarding tradeoffs

on a two-dimensional Pareto frontier. Notably, we also find that it is not necessary

to impose integer constraints on the vertex coordinates. The subsequent relaxation

greatly speeds up solve times, as we will demonstrate. Numerical evidence indicates

that Pareto optimal solutions will remain on the octilinear grid, and we obtain them
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faster with integrality relaxation in place.

The bend and shift costs describe the objective functions that address the aesthetic

considerations of schematic maps in the Beck style [60]. The objectives are subject

to three sets of hard constraints that deal with the following properties: octilinearity

and edge length, circular ordering and nonadjacent edge spacing. We describe each

set of constraints in detail. Before this, we introduce the geometric and combinatorial

framework for the input problem layout.

2.4.1 Coordinate space for octilinear grid

To facilitate constraint formulation, Nöllenburg and Wolff proposed two new axes

in the ±45◦ directions, namely z1 and z2. Each vertex v can thus be referenced by

four coordinates: x(v), y(v), z1(v), z2(v), although only the first two are sufficient to

locate the vertex. The new axes are related to the conventional ones in the following

manner:

z1(v) =
x(v) + y(v)

2

z2(v) =
x(v)− y(v)

2

(2.2)

This definition reinforces the L∞ metric used as the basis for the grid. Thus, all

vertices at the corner of a unit square are equidistant from the origin as are those

centered on each side of the square. The coordinate system is shown in Figure 2.4.

It is important to note that integer coordinates (on all four axes) will always

guarantee grid placement. Our numerical results indicate that we can obtain Pareto

optimal grid-based points without specifying integer constraints on the coordinates

x, y, z1 and z2, in a departure from Nöllenburg and Wolff’s implementation [134]. By

relaxing the coordinate integer constraints

0 ≤ x(v), y(v), z1(v), z2(v) ∈ R (2.3)
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x

y
z1

z2

Figure 2.4 Quadraxial coordinate system and octilinear grid

we gain efficiency. There are still binary variables in the model that remain un-

changed. In a few examples in Section 2.5, we compare our relaxation results against

those of Nöllenburg and Wolff, highlighting significant improvements in execution

time.

We hold that optimal solutions to the schematic drawing problem will always

be found on the octilinear grid. We demonstrate this idea through a few examples.

While some planar representations can have off-grid optimal solutions, as we will

show, it appears that on-grid optimal solutions are the cheaper to compute. It is

on this basis that we motivate the relaxation of the coordinate integer constraints

Nöllenburg and Wolff imposed in their model. Our observation is that we still obtain

integer solutions but in a shorter period of time, as fewer nodes have to be traversed

during the branch-and-bound search.

Consider the graph in Figure 2.5A, which is the solution to a given input embed-

ding, where x(1) = 0, x(2) = 2 and x(3) = 4. If we fixed x(3) = 4.5 before solving,

then the solution would result in a shift of x(1) and x(2), as well (Figure 2.5B). This

is essentially a translation of the grid in order to maintain octilinearity. If we decided,

however, to keep x(2) at 2, while x(3) was also fixed at 4.5, the solution would result

in a shift of y(3) to maintain octilinearity (Figure 2.5C).

Also, moving any one of the y coordinates would result in a solution that translates
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1 2 3′

(c)

Figure 2.5 Non-integer and off-grid solutions are possible in a simple face structure such

as this one, but they are typically more costly to find.

the entire graph by the same amount. If two y coordinates are forced to be in a

position where the resulting edge cannot be octilinear, then the problem becomes

infeasible.

Non-integer edge lengths can always be forced to appear, as long as octilinearity is

not violated. Sometimes, this would result in scaling or translating the grid. In such

cases, the solution would still be considered as on a grid. As will be seen in the next

several subsections, the minimum integer edge lengths we set also encourage integer

solutions. Also, solver architecture ensures we never encounter non-integer solutions.

An optimal integer result is always favored, and even more so since we set integer

edge lengths as starting points.

To bring this point further home, we consider a second example (Figure 2.6A). This

graph has one bounded face. A possible outcome of fixing y(1) at v1′ is a translation

of the entire graph (Figure 2.6B). The solution is still essentially on a grid. While

y coordinates have non-integer values, the edges maintain integer lengths. Forcing

both x(1) and y(1) to remain at v1′′ might result in a scalar expansion of the graph,

a solution which still lies on a grid (Figure 2.6C). Scaling the grid accordingly would

mean the edge lengths essentially have integer values on the new scale.

The examples in Figure 2.5 and Figure 2.6 are simple but atypical for most real-

world applications. They both have only one unbounded face. For a graph with a

more complicated structure (two or more faces), it becomes even more difficult to find
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Figure 2.6 Fixing non-integer coordinates create solutions which retain integer edge

lengths on a translated or scaled grid

an off-grid Pareto optimal point. We consider a four-face planar graph (Figure 2.7).

A non-integer edge length may be impossible to have if adjacent edges cannot be

adjusted accordingly to retain the face structure and maintain octilinearity. If edge

e(5, 6) (in the z2 direction), for example, were to have a non-integer edge length that

was not proportional to that of e(1, 6) and e(6, 3), an octilinear structure would not

be possible.

1 2

3

45

6

Figure 2.7 A more complex face structure makes it difficult or impossible to find com-

pletely off-grid solutions

We can further motivate the existence of a drawing with integer edge lengths for

every octilinear graph of a given input embedding by assuming that all edge lengths

in such a graph are rational numbers. It is then trivial to show that there is always
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a number that can be multiplied by each edge length to produce an integer solution.

In summary, integer Pareto optimal points can be obtained without enforcing

integer constraints. The major difference in our model, compared to Nöllenburg and

Wolff’s [134], is the reduction of a mixed integer program to a mixed binary linear

program, which is demonstrably easier to solve, and the application of the augmented

ε-constraint method to find efficient solutions.

2.4.2 Sector assignments

The key building block of this formulation, which Nöllenburg and Wolff introduced,

is the sectorialization of edges. Based on the eight-direction octilinear grid, each edge

e(u, v) in the input embedding is assigned to a sector sec0(u, v) based on its angular

orientation within the grid. Thus,

sec0(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 337.5◦ ≤ ∠uv < 22.5◦

1 22.5◦ ≤ ∠uv < 67.5◦

2 67.5◦ ≤ ∠uv < 112.5◦

...

6 247.5◦ ≤ ∠uv < 292.5◦

7 292.5◦ ≤ ∠uv < 337.5◦

(2.4)

In pursuit of an optimal solution, each edge is allowed to either remain in its original

sector (sec0) or move one sector forward (sec+1) or backward (sec−1):

sec+1 = sec0+1 mod 8 (2.5)

sec−1 = sec0−1 mod 8 (2.6)
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The modular arithmetic operator (mod) in the above equations ensures that the values

of sec±1 always reamin within 0 and 7, i.e. in modulo 8. Thus, if sec0 = 7, then by

Equation (2.5), sec+1 = 0. Similarly, if sec0 = 0, then (2.6) would give sec−1 = 7.

The variable dir(u, v) holds the value of the sector each edge in the solution even-

tually takes. This disjunction sets up a combinatorial problem which necessitates the

use of binary variables α0, α+1 and α−1 for each edge, which can only take one of

three possible sectors. These variables must satisfy the relation

∑
i∈{−1,0,1}

αi(u, v) = 1 (2.7)

The directional variables are thus described as follows:

dir(u, v) =
∑

i∈(−1,0,1)

seci(u, v) · αi(u, v) (2.8)

dir(v,u) =
∑

i∈(−1,0,1)

seci(v,u) · αi(u, v) (2.9)

The direction and sector variables are directional, and all movements are represented

in modulo 8. Thus,

seci(u, v) = seci(v,u) + 4 mod 8 (2.10)

dir(u, v) = dir(v,u) + 4 mod 8 (2.11)

2.4.3 Octilinearity and edge length constraints

Further disjunctive constraints are necessary for ensuring octilinearity. For each of

the eight possible directions, they require the ordinates of the edge be equal, while

the abscissae must differ by a minimum edge length ℓmin(u, v). The constraints are

shown below for sectors 0 and 1. Similarly constructed constraints hold for the six

other sectors. They are disjunctive constraints [56], represented using a conjunction
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of linear constraints in what is termed the “big-M formulation”:

seci(u, v) = 0 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
y(u)− y(v) ≤ M(1− αi(u, v))

−y(u) + y(v) ≤ M(1− αi(u, v))

−x(u) + x(v) ≥ −M(1− αi(u, v)) + ℓmin(u, v)

(2.12)

seci(u, v) = 1 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
z2(u)− z2(v) ≤ M(1− αi(u, v))

−z2(u) + z2(v) ≤ M(1− αi(u, v))

−z1(u) + z1(v) ≥ −M(1− αi(u, v)) + ℓmin(u, v)

(2.13)

The coordinate values are bounded above by M :

x(v), y(v) ≤ M ∀v ∈ V (2.14)

If M is too large, the model might become unstable or computation time may be

lengthened. If M is not large enough, some otherwise optimal solutions may be

rendered infeasible. In our implementation, we have chosen M as

M =
∑
e∈E

e(u, v) · ℓmax(u, v) (2.15)

which gives an upper bound with the assumption that all the edges are sequentially

connected, thus spanning the map in any direction in L∞. This value has proved large

enough to accommodate all Pareto optimal points, while keeping the model stable.

In another departure from Nöllenburg and Wolff’s implementation, we assume

edge length maxima are user-defined. While Nöllenburg and Wolff minimize the sum
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of all edge lengths, we argue for setting a hard constraint on these:

x(u)− x(v) ≤ ℓmax(u, v)

−x(u) + x(v) ≤ ℓmax(u, v)

y(u)− y(v) ≤ ℓmax(u, v)

−y(u) + y(v) ≤ ℓmax(u, v)

(2.16)

We not only gain time in computation, but more critically, our formulation is now

biobjective, making it easier to analyze (two-dimensional Pareto frontier) and quicker

to solve (fewer variables).

2.4.4 Circular order constraints

An important set of constraints that preserve topology (input face structure) and

guarantee readability are the circular order constraints. They ensure that spanning

edges from a vertex retain their relative position and do not overlap. This set of

constraints is expressed as

dir(u, vj) ≤ dir(u, vj++1)− 1 + 8β(u, vj), ∀u : deg(u) ≥ 2, j = {1, 2, ..., deg(u)}

(2.17)

where
deg(v)∑
j=1

β(u, vj) = 1 ∀u : deg(u) ≥ 2 (2.18)

The order constraints only hold for vertices whose degree (number of spanning edges)

is greater than or equal to 2. We can further control the number of variables required

by restricting the application of these constraints to vertices of degree 3 or greater

and only to degree-2 vertices for which the edges are 2 or fewer sectors apart.
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2.4.5 Edge spacing constraints

Edge spacing constraints ensure a specified minimum distance dmin between nonadja-

cent edges on the same face. The binary variable γi, indexed over the 8 cardinal (or

axial) directions, ensures this minimum distance is kept in at least one direction (or

the relevant direction) for each nonadjacent same-face edge pairing. Hence,

∑
i∈{N, NW, ... , E, NE}

γ(e1(u, v), e2(u, v), f) ≥ 1 (2.19)

The big-M formulation is again employed to model disjunction. The two sets for the

north (N) and the northwest (NW) directions are given below.

y(u2)− y(u1) ≤ M(1− γN(e1, e2, f))− dmin

y(u2)− y(v1) ≤ M(1− γN(e1, e2, f))− dmin

y(v2)− y(u1) ≤ M(1− γN(e1, e2, f))− dmin

y(v2)− y(v1) ≤ M(1− γN(e1, e2, f))− dmin

(2.20)

−z2(u2) + z2(u1) ≤ M(1− γNW(e1, e2, f))− dmin

−z2(u2) + z2(v1) ≤ M(1− γNW(e1, e2, f))− dmin

−z2(v2) + z2(u1) ≤ M(1− γNW(e1, e2, f))− dmin

−z2(v2) + z2(v1) ≤ M(1− γNW(e1, e2, f))− dmin

(2.21)

The minimum spacing requirement also ensures that edge crossings are avoided.

(Please see Appendix A for a full list of the inequalities.)
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2.4.6 Cost functions and soft constraints

The optimal solution must maximize the obtuseness of all bends in each line. The

bend cost, to thus be minimized, is defined as

Cbend =
∑
L∈L

∑
uv,vw∈L

bend(u, v,w) (2.22)

This cost can be described as the sum of all the bend costs for adjacent edge pairings

in each line. Constraints are designed to assign costs of 1, 2, and 3 to bends of

135◦, 90◦ and 45◦, respectively [134]:

∆dir(u, v,w) = dir(u, v)− dir(v,w) (2.23)

bend(u, v,w) = min{|∆dir(u, v,w)|, 8− |∆dir(u, v,w)|} (2.24)

We recall that dir(u, v) ∈ {0, 1, ..., 7} denotes the sector assigned to the edge e(u, v) in

the solution. The difference ∆dir(u, v,w) between the directional variables of adjacent

edges e(u, v) and e(v,w) gives a measure of the bend angle. Since there is a wrap-

around at the modulus 8, we find the minimum of the absolute value of ∆dir and its

difference from 8 (Equation (2.25)). Linearizing this equation requires the use of two

more binary variables, δ1(u, v,w) and δ2(u, v,w), thus:

−bend(u, v,w) ≤ ∆dir(u, v,w)− 8δ1(u, v,w) + 8δ2(u, v,w)

bend(u, v,w) ≥ ∆dir(u, v,w)− 8δ1(u, v,w) + 8δ2(u, v,w)

(2.25)

Equations (2.25) simply represent the inequality

bend(u, v,w) ≥ |∆dir(u, v,w)− 8δ1(u, v,w) + 8δ2(u, v,w)| (2.26)
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As the bend cost is minimized, δ1, δ2 or both are switched on or off in order to

correctly calculate the bend cost for each edge, which will have a value of 0, 1, 2, or 3.

For instance, if two adjacent edges have dir(u, v) = 1 and dir(v,w) = 7, respectively,

then ∆dir(u, v,w) = 1 − 7 = −6. The cost of this bend would be bend(u, v,w) = 2,

where δ1(u, v,w) = 0 and δ2(u, v,w) = 1.

Each edge also incurs a cost of 1 for shifting forward or backward from its original

sector. The total shift cost of the octilinear drawing is given by

Cshift =
∑
uv∈E

shift(u, v), (2.27)

where

−M · shift(u, v) ≤ dir(u, v)− secorig(u, v) ≤ M · shift(u, v) (2.28)

For each edge e(u, v), shift(u, v) is thus a binary variable. For example, consider

sec0(u, v) = 3 for a given edge in an input embedding. If dir(u, v) = sec0(u, v) =

3, then shift(u, v) = 0. However, if dir(u, v) = sec−1(u, v) = 2 or dir(u, v) =

sec+1(u, v) = 4, then shift(u, v) = 1. The total shift cost is the sum of all shift(u, v)

for every edge e(u, v) in the graph.

2.4.7 Implementing the augmented ε-constraint method

An important question in schematic map automation is how the decision on the final

solution is made. For any given input embedding, a number of acceptable solutions

may exist. In previous multiobjective formulations, particularly the one developed by

Nöllenburg and Wolff [203, 134], the weighting method has been used to find these

points. In our modified biobjective case, this would be written as
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min : λbendCbend + λshiftCshift (2.29)

s.t.

octilinearity and edge length constraints (2.30)

circular order constraints (2.31)

edge spacing constraints (2.32)

where λbend and λshift are appropriately chosen weights for bend and shift, respectively.

This method is useful for generating a single result based on the desired weighting

combination. However, the weighting method may fail to generate the complete set

of Pareto optimal solutions, regardless of the choice of weighting combinations [167].

These supported solutions are obtained by optimizing a convex combination of the

objectives. However, unsupported Pareto optimal solutions may also exist. The

ε-constraint method is therefore necessary to fill any such gaps in finding efficient

solutions. Scaling can also be an issue in the weighting method, and one might need

to adjust the objective functions to reduce the effects of uneven matching. This is a

non-issue in the ε-constraint method [109].

We thus implement an efficient version of the ε-constraint method to (i) counter

the influence of weight scaling, (ii) relieve the user of the burden of deciding on weight-

ing combinations, and (iii) produce both nonextreme and, importantly, unsupported

Pareto optimal solutions. Our algorithm of choice is the augmented ϵ-constraint

method (AUGMECON2) developed by Mavrotas and Florios [110] and implemented

in GAMS2

The basic augmented ε-constraint method for a multiobjective problem optimizes

the first objective and successively uses the other objectives as constraints bounded by

2Earlier, Mavrotas [109] introduced the AUGMECON method, which has since been superseded
by AUGMECON2 in terms of performance.
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the values generated in a payoff table partitioned into grid intervals. AUGMECON2 is

preferred over the basic ε-constraint method for a number of reasons. First, it employs

lexicographic optimization to calculate the payoff table, thus avoiding dominated so-

lutions. Second, it ensures that only efficient (and not weakly efficient) solutions are

produced. This is implemented by replacing the inequalities for the constrained ob-

jective functions with equalities and corresponding slack variables; the main objective

is modified accordingly. Finally, AUGMECON2 [110] uses a “jump” procedure, in

which bypass coefficients are calculated from the innermost slack variables to skip

over grid locations that do not produce Pareto optimal solutions. This bypass fea-

ture improves performance, as does the “early exit loop” feature (first introduced in

AUGMECON [109]) that skips to the next row of grid points once an infeasibility is

detected. Overall, these features make Mavrotas and Florios’ augmented ε-constraint

method attractive for solving multiobjective mixed integer programs such as ours.

Our formulation is given below. The second term in Equation (2.33) is the “aug-

mentation.”

min : Cbend − ε
sshift
rshift

(2.33)

s.t.

Cshift + sshift = eshift (2.34)

eshift = ubshift −
ishiftrshift
gshift

(2.35)

where ε = 10−3 (a small scalar quantity), sshift is the slack (or surplus) variable for the

shift function, rshift is the range of the payoff table for the shift cost function (used as

a scaling factor), and eshift is the RHS of the constrained shift function, whose value

depends on the grid location in the payoff table. ubshift is the upper bound of the shift

function Cshift, and ishift ∈ {0, 1, ..., gshift}, where gshift is the number of grid intervals

determined by the user. The complete Pareto frontier is obtained when gshift := rshift.
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Fewer grid points would result in shorter computation times but would give a sparser

Pareto frontier [110]. The user, therefore, may want to carefully consider the selection

of grid intervals, especially when solving large problems.

Using AUGMECON2, we obtain a Pareto frontier that enables us to visually and

quantitatively evaluate the tradeoff between shift and bend across all the noninferior

solutions.

2.5 Preliminary evaluation

We present three working examples to evaluate the performance of our implementa-

tion, compared to the earlier work of Nöllenburg and Wolff. The three examples are

introduced in order of increasing complexity.

2.5.1 Minimal example

This first minimal example consists of four vertices and two lines (red and green).

Figure 2.8 shows the input embedding and the original sectors to which each edge

belongs. For ease of reference, we have assigned numerical labels to the vertices. From
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(a) Input embedding
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(b) Initial sectors of the edges

Figure 2.8 Minimal example: 2 lines, 3 edges, 4 vertices, 1 face; {l,m,n, f} = {2, 3, 4, 1}

Figure 2.8b, we see that edge e(2, 3) is originally positioned at an angle slightly greater
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than 22.5◦ to the horizontal. It is thus assigned to sector 1, that is sec0(2, 3) = 1.

The circled numbers in Figure 2.8b denote the sector numbers from 0 to 7. Similarly,

edge e(2, 4) lies within ±22.5◦ of 90◦, hence it is assigned to sector 2: sec0(2, 4) = 2.

Table 2.2 shows the sector assignments for each edge. In each case, sec−1 and sec+1 is

also shown. In the solution(s), each edge can be assigned to any of the three sectors

through the directional variable dir(u, v), as long as none of the hard constraints are

violated.

Table 2.2 Sector parameters for each edge

edge uv sec−1(u, v) sec0(u, v) sec+1(u, v)

1-2 7 0 1

2-3 0 1 2

2-4 1 2 3

Vertex 2 has three spanning edges, thus:

deg(2) = 3 (2.36)

It is clear that in this model, edges e(1, 2) and e(2, 3) will not overlap under any

circumstances (see Equation (5.9)). The circular order constraints, (2.17) and (5.7),

however, ensure that other edge pairs e(2, 3) and e(2, 4) or e(1, 2) and e(2, 4) never

overlap. The edge spacing constraints are not under consideration here, as there are

no nonadjacent edge pairs.

The optimal solutions to this input embedding are trivial (Figure 2.9). In the first

solution (Figure 2.9A), {Cbend,Cshift} = {0, 1}, while in the second (Figure 2.9B),

{Cbend,Cshift} = {1, 0}, since all three edges retain their original sector positions.

These two figures show that while mathematical models can produce Pareto op-

timal solutions, humans remain the best equipped to decide which solutions are de-

sirable. Pareto point (a) has zero line bends but it sacrifices relative accuracy in
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(a) {Cbend,Cshift} = {0, 1} (b) {Cbend,Cshift} = {1, 0}

Figure 2.9 Pareto optimal solutions to minimal example

the positioning of edge e(2, 3). For the decision-maker who does not consider a 135◦

bend a problem but prioritizes accuracy in representation, then the preferred solution

would be (b).

2.5.2 Dual-line network

We present a second example that still has only 2 lines but with a more complex

structure. This dual-line network has 2 faces, 7 edges and 7 vertices (Figure 2.10).

The internal face is bounded by the edges (2, 3), (3, 5), (2, 4) and (4, 5). There are

several nonadjacent same-face edge pairings in this example, thus making the edge

spacing constraints (Equations (2.19), (2.20)) relevant.

2

1

4

3 5

6

7

Figure 2.10 Dual-line network: 2 lines, 7 edges, 7 vertices, 2 faces; {l,m,n, r} = {2, 7, 7, 2}

Table 2.3 shows the sector assignments for all seven edges. We recall that the angle

between two vertices u and v is measured counterclockwise from the horizontal. From

Figure 2.10, it is clear that sec0(3, 5) = 0. For this and the other edges, Equation

(2.4) is used to determine the sector assignments.
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Table 2.3 Sector parameters for each edge in the dual-line network

edge uv sec−1(u, v) sec0(u, v) sec+1(u, v)

1-2 7 0 1

2-3 1 2 3

2-4 0 1 2

3-5 7 0 1

4-5 1 2 3

5-6 0 1 2

5-7 7 0 1

Our augmented ε-constraint implementation generates three Pareto optimal solu-

tions (Figure 2.11). Solution (a) has the lowest bend cost but it also has the highest

shift cost, illustrating why solutions with smoother lines may appear increasing dis-

similar to the original map. Solution (c) has no shifted edges, but it has the costliest

bends. A designer, for instance, might be dissatisfied with the amount of geometric

distortion in Solution (b), especially those of edges e(1, 2) and e(5, 7), in which case

they may decide to increase their lengths. Other factors, such as the placement of

geographic features or label positioning, can influence the choice of a solution.

(a) {Cbend,Cshift} = {2, 2} (b) {Cbend,Cshift} = {3, 1} (c) {Cbend,Cshift} = {5, 0}

Figure 2.11 Solutions to dual-line network

The graph of the Pareto frontier in Figure 2.12 visualizes the tradeoff between

shift and bend for the three solutions. A graphic such as this one would be useful

in evaluating the merits of each representation relative to the others. Since this

example is still relatively simple, the solutions may seem obvious, not necessarily
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Figure 2.12 Pareto frontier for dual-line network solutions

requiring automated assistance to generate. The Pareto frontier, however, enables

human involvement in the decision-making process.

2.5.3 Four-line network

This four-line example is more robust with a structure likely to be found in an actual

network. It has 13 edges, 11 vertices and 4 faces (Figure 2.13).

Figure 2.13 Four-line network: 4 lines, 13 edges, 11 vertices, 4 faces; {l,m,n, r} =

{4, 13, 11, 4}

Five Pareto optimal points exist (Figure 2.14), and our method enables us to

visually compare them alongside one another (Figure 2.15). Solution (e) has zero

shift, and while it may be more appealing due to its similarity to the input embed-

ding, the other solutions are equally valid and worthy of consideration. For instance,

41



2.5 Preliminary evaluation Schematic mapping

(a) {Cbend,Cshift} = {3, 4} (b) {Cbend,Cshift} = {4, 3}

(c) {Cbend,Cshift} = {5, 2} (d) {Cbend,Cshift} = {7, 1} (e) {Cbend,Cshift} = {9, 0}

Figure 2.14 Pareto optimal solutions to four-line network

solution (a) has the lowest bend objective value and may be regarded by some as

easiest to navigate. We checked with the weighting method and found that of the five

Pareto points, solution (d) is unsupported, and may not have been found without

the augmented ε-constraint method.
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Figure 2.15 Pareto frontier for four-line network
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2.5.4 Preliminary evaluation

We solved the examples described above on a 2.3GHz Intel i7 machine (16 GB RAM).

The examples were programmed in GAMS and Python and solved with the CPLEX

12.6 solver. Our tests show that relaxing the integer constraints on the coordinates

and simplifying the model to a biobjective one produces identical optimal results to

Nöllenburg and Wolff’s method [134] but in much less computational time. Using

the AUGMECON2 [110] method also has the added benefit of generating multiple

efficient solutions, including those unsupported, in a single run. In the augmented ε-

constraint formulation, we chose unit-spaced grid intervals spanning the range of the

shift objective. For the minimal example, we used only 2 grid points. In the dual-line

and four-line networks, we used 3 and 5 grid points, respectively. The performance

benefit of using fewer grid points is not readily apparent for these examples, since

they are small. However, using the maximum possible number of grid points (equal

to the range of the shift objective plus 1) will always produce the complete Pareto

set for a given problem in our formulation.

In order to highlight our improvements, we compare the performance of three

methods (Table 2.4). The first, N&W–wm3, is Nöllenburg and Wolff’s model—

triobjective with coordinate integer constraints—implemented using the weighting

method. The second, O&S–wm2, is our improved model—biobjective with integer co-

ordinates relaxed—also implemented using the weighting method only for the sake of

direct comparison to Nöllenburg and Wolff’s method. The third, O&S–augmecon2,

is the augmented ε-constraint implementation of our improved model. We note again

that the integer relaxation only affects the coordinate variables. The binary variables

(α, β, δ1, δ2, γ, shift) remain intact, as they are essential in formulating the disjunc-

tive constraints. Relaxing the integrality constraints reduces the number of nodes

visited in the branch-and-bound algorithm used by the CPLEX MIP solver.
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Table 2.4 Description of methods compared for performance (N&W – Nöllenburg and

Wolff; O&S – Oke & Siddiqui)

Method Objective functions Integer constraints Optimization approach

N&W–wm3 3 Yes weighting method

O&S–wm2 2 No weighting method

O&S–augmecon2 2 No augmented ε-constraint method

Generally, both our implementations demonstrate better performance than that of

Nöllenburg and Wolff, as shown in Table 2.5. Comparing the weighting approaches,

ours (O&S–wm2) solves to optimality in 15% less time for both the minimal and

dual-line network examples. For the four-line network, there is a 30% decrease in

execution time between N&W–wm3 and O&S–wm2. With O&S–augmecon2, we

obtain multiple unique solutions in each single run. Considering the average execution

time per solution, we observe a decrease in performance for the minimal example. This

is not the case for the dual- and four-line networks, where we record a performance

gain of 24% and 61%, respectively, in comparison to N&W–wm3. The efficiency of

AUGMECON2 increases substantially as the problem grows in size, and this is more

telling for large networks, as our case studies will show.

Table 2.5 Average execution time per unique solution for three numerical examples, using

three implementations; N&W – Nöllenburg and Wolff (3 objectives); O&S – Oke

& Siddiqui (2 objectives)

Minimal Example Dual-line Network Four-line Network

Method Solutions

generated

per run

Execution

time per

solution (s)

Solutions

generated

per run

Execution

time per

solution (s)

Solutions

generated

per run

Execution

time per

solution (s)

N&W–wm3 1 0.778 1 1.069 1 1.767

O&S–wm2 1 0.661 1 0.913 1 1.188

O&S–augmecon2 2 1.145 3 0.810 5 0.682
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2.6 Evaluation on existing networks: two case studies

Our goal for improving the performance of this model is to increase its accessibility and

scalability, such that it can be effectively applied over a broad range of situations. We

therefore apply our method to the Vienna Underground network in Vienna, Austria,

and to a cancer pathway map [69].

2.6.1 Vienna Metro

The Vienna Metro network has 5 lines, 90 edges, 84 vertices and 8 faces. Figure 2.16

shows the geographic layout and the official schematic version of the metro.

(a) Vienna Metro (geographic layout) (b) Vienna Metro (official layout) [153]

Figure 2.16 Geographic and official layouts of the Vienna Metro network

First, we used the weighting method based on our improvements (biobjective

mixed binary) to find a single solution to the network. We compared our results

to those obtained via Nöllenburg and Wolff’s triobjective mixed integer model, also

implemented within our framework. One set of constraints that generates the most

variables in this model is the edge spacing constraint group. Especially in metro

networks, these constraints are mostly relevant when there are pendant (trailing)
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edges on the external face of a graph. They are also important for preventing interior

faces from being too small in a final solution. In this example, we are able to solve

the network using the weighting method without even calling upon the edge spacing

constraints. In this case, Nöllenburg and Wolff’s model execution time is 1.7 times

as long as ours. When we enforce the edge spacing constraints, however, Nöllenburg

and Wolff’s model takes 14 times as long as ours to solve to optimality (Table 2.6).

Table 2.6 Execution times for the Vienna Metro problem, with λbend : λshift = 7 : 3; N&W

– Nöllenburg and Wolff (3 objectives); O&S – Oke & Siddiqui (2 objectives)

Vienna (no edge spacing constraints) Vienna (with edge spacing constraints)

Method Objective cost

{Cbend,Cshift}
Execution time
per solution

(s)

Objective cost

{Cbend,Cshift}
Execution time

per solution

(m:s)

N&W–wm3 {16, 25} 10.7 {16, 25} 28:41

O&S–wm2 {13, 28} 6.2 {13, 28} 2:39

For these tests, we used the weighting ratio λbend : λshift = 7 : 3. In every case, the

weights add up to 1. Thus, in O&S–wm2, λbend = 0.7 and λshift = 0.3. We point out

that in the N&W–wm3 case, we have an additional objective function—total edge

length—to consider. So, in order to maintain the same bend-shift weighting ratio for

the sake of comparison, we use λlength = 0.2, while λbend = 0.56 and λshift = 0.24. The

solutions obtained via the implementations O&S–wm2 and N&W–wm3 are fairly iden-

tical, but that of O&S–wm2 (Figure 2.17a) appears to be more spatially optimized,

since we do not minimize the sum of edge lengths. The triobjective Nöllenburg and

Wolff implementation, N&W–wm3, generates solutions that lie on a three-dimensional

Pareto frontier, which explains why its solution {16, 25} is not optimal in O&S–wm2

or O&S–augmecon2. With this particular weighting ratio, dispensing with the edge

spacing constraints does not affect the solutions for both O&S–wm2 and N&W–wm3

(Figure 2.17). This implies that edge spacing constraints may not always be required.

However, if they are not enforced, certain solutions may feature crossing violations
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(a) O&S–wm2; {Cbend,Cshift} = {13, 28} (b) N&W–wm3; {Cbend,Cshift,Clength} = {16, 25, 186}

Figure 2.17 Vienna solutions computed via the weighting approach; λbend : λshift = 7 :

3. N&W – Nöllenburg and Wolff (3 objectives); O&S – Oke & Siddiqui (2

objectives)

that alter the face structure of the graph. We observe this for a bend-shift weighting

ratio of 1 : 1 in O&S–wm2. There is a clear edge violation between pendant edges on

the green and orange lines in the solution generated (Figure 2.18). The edge spacing

Figure 2.18 Edge crossing violation (O&S–wm2). λbend : λshift = 1 : 1 and

{Cbend,Cshift} = {24, 13}

constraints must therefore be consistently enforced, especially for O&S–augmecon2,

as we cannot always predict where they will be redundant. For the Vienna network,
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however, the edge spacing constraints can be restricted to pairs of nonadjacent pen-

dant edges on the external face.

We then solve the Vienna network via O&S–augmecon2. The Pareto frontier

obtained is shown in Figure 2.20. To generate the complete Pareto set, we use integer-

spaced grid points spanning the range of the shift objective. In this case, the number

of grid points is given by

ng = max{Cshift} −min{Cshift}+ 1 = 38− 1 + 1 = 38 (2.37)

There are 27 Pareto points in the complete set, five of which are displayed in Fig-

ure 2.19. A single run took 70 minutes to execute (an average of 2:36 minutes per

solution), using four threads in CPLEX. Eight of these solutions were found to be sup-

ported, that is, they could be found using the weighting method. We checked this first

by manually varying the weights in steps of 0.1. We then used the Gather-Update-

Solve-Scatter (GUSS) extension in GAMS [91] to solve 39 scenarios generated from

sequential weighting combinations. The augmented ε-constraint method was there-

fore indispensable in obtaining the other 19 unsupported Pareto optimal solutions.

In this case of the Vienna network, the decision-maker might determine that any

existing pool of efficient solutions intermediate between (d) and (f) are likely to

be very similar, but if such solutions (high number of bends but similar to original

layout) are of interest, then more grid points could then be chosen. Furthermore, the

AUGMECON2 algorithm can be modified to have unequal grid intervals, so that more

solutions can be generated within the area of interest. The initial layout of the Pareto

set and the corresponding solutions enable the decision-maker to be more acquainted

with the solution space, and further steps can be taken from there regarding the

choice or discovery of a final satisfactory solution.

An important innovation Harry Beck introduced in his creation of the London
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(a) {Cbend,Cshift} = {10, 38} (b) {Cbend,Cshift} = {13, 28} (c) {Cbend,Cshift} = {18, 19}

(d) {Cbend,Cshift} = {24, 13} (e) {Cbend,Cshift} = {32, 9} (f) {Cbend,Cshift} = {48, 1}

Figure 2.19 Pareto optimal points for the Vienna Underground network

Underground map [60] was the magnification of the central portion of a transit map,

which tended to be denser with a higher concentration of tracks and lines. This central

clustering is clearly visible in the geographically accurate map of the Vienna system

(Figure 2.16a). Beck not only evened out distances between stations on his map but

also increased the relative distances of central stations, creating the iconic “vacuum

flask” shape that is a highlight of the London map (Figure 2.2). This type of distortion

is perhaps more critical for transit networks, where interchanges tend to cluster at

one or more central locations. We can correct for this in the Vienna implementation

by doubling the minimum edge length ℓmin(u, v) for those edges found in the smaller

interior faces. At the same time, we decrease the maximum edge length ℓmax(u, v)
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Figure 2.20 Pareto frontier for Vienna metro network (obtained via O&S–augmecon2).

Points encircled in red are the supported solutions. Points in blue are shown

in Figure 2.19.

Figure 2.21 Vienna Pareto optimal point with central magnification emphasized;

{Cbend,Cshift} = {17, 37}

constraint for the pendant (trailing) edges on the exterior face. These refinements

ensure that the solution is spatially balanced with no visual overcrowding. They

can be consistently applied in solving similar transit networks. The effects of this

in our solution (Figure 2.19) may not be too evident, but we could always increase

the bounds of these constraints for more desirable results, thereby creating other

classes of solutions (Pareto frontiers). Figure 2.21 illustrates a solution we obtained
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by properly addressing this issue. The edges in the four smallest faces have greater

edge lengths than those on the external face.

2.6.2 Cancer pathway

Our second example is the “subway map of cancer pathways” developed by Hahn and

Weinberg, and designed by Bentley [69] (Figure 2.22). While it is already a schematic

map, we apply our method here to see if we can obtain comparable or better Pareto

optimal points within our framework of requirements. Our implementation has 9

lines, 51 vertices, 56 edges and 6 faces.

Figure 2.22 Subway map of cancer pathways Hahn and Weinberg [69]

Pathways, such as this one, may be challenging to model, as they tend to have

more vertices with spanning edges than typical metro networks. The edge spacing

constraints are essential here, as these also prevent edge crossings. In solving the

Vienna metro network, we restricted the edge spacing constraints to the pendant

edges on the external face. In this example, however, there are pendant edges on

the internal faces, as well. Thus, we extend the application of the constraints to

non-incident pairs of pendant and non-pendant edges in the same faces.

Using the AUGMECON2 implementation, we obtain the complete Pareto set in

165 minutes. A few selected solutions are shown in Figure 2.23. Unsurprisingly,
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(a) {Cbend,Cshift} = {21, 17} (b) {Cbend,Cshift} = {26, 10} (c) {Cbend,Cshift} = {28, 8}

(d) {Cbend,Cshift} = {31, 5} (e) {Cbend,Cshift} = {33, 3} (f) {Cbend,Cshift} = {37, 1}

Figure 2.23 Selected Pareto optimal points for the cancer pathway

one of the Pareto points (solution (D) in Figure 2.23) is nearly identical to the

input embedding (Figure 2.22), which indicates how well-designed the cancer map

is. However, we now have a range of elegant solutions from which to choose. The

complete Pareto frontier is shown in Figure 2.24, and it consists of 15 points. We note

that all the pendant edges have an upper bound of length 4, while all other edges

have a maximum length of 8 imposed. Changing any of these bounds would produce

a Pareto set with a different range of solutions, which could also be explored.

As we have seen from the examples of the Vienna Underground and the Hahn and

Weinberg cancer pathway, metro maps do not always share similar properties with

other pathway or network representations. Depending on the nature of the applica-

tion, certain considerations (for instance, edge length or edge spacing restrictions)
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Figure 2.24 Pareto frontier for Hahn and Weinberg cancer pathway (obtained via O&S–

augmecon2). Solutions corresponding to the points in blue are shown in

Figure 2.23.

may be more relevant. To facilitate the versatile deployment of this model, a frame-

work must be developed for standardizing constraints to accommodate all possible

design specifications. We can fine-tune our implementation to eliminate or reduce

programming inefficiencies and lower execution times.

2.7 Summary and avenues for further research

We have shown in this chapter that relaxing integrality constraints, simplifying the

problem to two objective functions, and reformulating certain equations leads to

obtaining more Pareto optimal solutions to the schematic map drawing problem than

current methods. Moreover, the computational time to obtain solutions is greatly

reduced. We built on Nöllenburg and Wolff’s implementation and simplified their

model to a biobjective mixed binary linear problem and obtained Pareto optimal

solutions much quicker. We developed three hypothetical examples to demonstrate

our results. We were also able to test our implementation on two real-world examples.

A new development we have shown is the ability to compute a complete Pareto set for
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a schematic drawing problem, using Mavrotas and Florios’ augmented ε-constraint

method (AUGMECON2). This implementation allows for multiple supported and

unsupported efficient solutions to be generated in a single run, enabling decision-

makers to quickly evaluate potential candidates for schematic mapping solutions. We

have also demonstrated that AUGMECON2 is preferred to the weighting method

used by Nöllenburg and Wolff, as it guarantees finding all Pareto optimal solutions,

including those that are nonextreme and unsupported.

A problem that remains open is a formal theoretical proof in support of the conjec-

ture that integer optimal solutions can be found without enforcing coordinate integer

constraints in this framework. Also up for future consideration is the exploration

of alternatives to the big-M formulation. Various methods have been developed to

model disjunctivity, which features in the octilinearity and edge spacing constraints

of this model. Care must be taken in determining the size of M , and in our imple-

mentation, it is equivalent to the maximum total edge length (Equation (5.8)). Thus

far, this has worked well, but we would like to implement and test the merits of the

Reformulation Linearization Technique (RLT). Khurana et al. [93] have demonstrated

success in applying RLT to mixed 0-1 programs. We expect that implementing this

would significantly increase performance in our case. Also in consideration is an

attempt to reformulate this problem as a mathematical program with equilibrium

constraints (MPEC). Siddiqui and Gabriel [169] developed a method that employs

Schur’s decomposition using type-1 special-ordered set (SOS1) variables to provide

global optima for MPECs. The challenge in this case, would be devising ways to

remodel the schematic requirements as complementarity constraints. If we succeed in

doing this, we will then compare the performance of Siddiqui and Gabriel’s method

with the numerical relaxation approach for MPECs formulated by Steffensen and

Ulbrich [176]. Also, Vincent et al. [199] have recently refined a branch-and-bound

algorithm (initially developed by Mavrotas and Diakoulaki [111]) for solving our spe-
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cific program class (mixed binary linear programs). We hope to adapt this to the

map drawing problem as well. We note that we have not addressed the issue of non-

uniqueness in this implementation. Alternate solutions for a given objective value

could be found by initializing the program from different starting points. Also, we

could explore the fixing of one or more nodes to tighten the feasible space. Further

investigation would be necessary for a proper resolution and characterization of the

impact of non-uniqueness on our solutions.

We hope to continue efforts to improve the performance of this algorithm and ex-

pand the applications of automatic schematic mapping. A few new rules may have to

be developed along the way depending on the network in question. For example, bicy-

cle and bus networks have slightly different specifications compared to those of urban

rail. (We highlight the Edinburgh bicycle network example in Subsection 2.7.1). Ul-

timately, we are interested in creating a dynamic user-friendly optimization tool that

would be accessible for professional and public use in a wide variety of situations, and

also able to produce solutions that address relevant considerations to facilitate the

decision-making process. In order to fully realize this, we could leverage the existing

body of research in human and social interactions with maps to design experiments

that would seek to measure the effectiveness of a schematic map in various contexts.

Nöllenburg and Wolff [134] described their approach to including the human element

in their schematic map solutions. They created a survey tool to test the satisfac-

tion of human subjects on various maps in order to determine which factors were of

importance in a schematic solution. This experimental concept could be further ex-

panded and then integrated into our algorithm. We could thereby develop a method

for determining the relevant portions of the Pareto space to discover not only the best

efficient solutions, but also those that would be of the greatest benefit to the users.
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2.7.1 The Edinburgh Innertube Map

In 2006, Edinburgh based journalist Tom Allan got lost on bike ride through some

of the city’s forgotten pathways. Over the next few years, he conceived a plan for

a system through which ridership could be encouraged by highlighting the network

of cycle paths around the city, especially the lesser known ones created from defunct

railway lines and towpaths. A schematic map would be the key to this. Allan,

however, realized that user feedback would be critical to its success. An interactive

website would therefore be an integral part of this project.

With the help of Mark Sydenham, a bicycle charity manager, and Martin Baillie,

a graphic designer, the Innertube Map was born [2]. The design framework is based

on the metro map metaphor as described in this chapter. The current version of

the map is shown in Figure 2.25. Sydenham is credited for creating the layout and

rules for the map, whileBaillie designed the final output. The nodes represent entry

or departure points in each of the paths. The website [180] allows users to obtain

more information about the various points on the map. Users can also share their

stories and experiences. A blog provides news on events along various stops on the

map. The feedback also informs updates to the Innertube. The entire system is a

vibrant interface that further establishes the map’s purpose as an accessibility tool

to a network that might otherwise have remained underutilized. 70,000 print copies

of the Innertube Map have also been reportedly distributed since 2011 [180], and the

project appears to have been a success on all fronts.

With an automated design tool developed from the program described in this

chapter, the Edinburgh experience could perhaps be replicated faster in other cities.

Schematic mapping for bicycle networks will likely grow in demand as bicycles become

increasingly popular for sustainable transit. As communities across the globe grapple

with environmental issues, emission-free transport must receive greater consideration
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CANONMILLS – TRINITY
• Cross with caution at Lower Granton Road/

Trinity Crescent junction.

NEW TOWN – THE SHORE

HAYMARKET – OCEAN TERMINAL / THE SHORE
• Tram engineering works near Balbirnie Place – expect

disruption. Exit at West Coates Terrace for Haymarket Station. 
• Route uses Victoria Park between Craighall Road and 

Ferry Road.

HAYMARKET – CRAMOND
• Beyond Cramond, route not paved. Can be muddy, 

with steps in places.

HAYMARKET – SILVERKNOWES / DALMENY

FOUNTAINBRIDGE – RATHO
• Route uses Union Canal towpath. Give way to pedestrians.
• Beware, path narrows in places.

THE MEADOWS

ROSEBURN – EDINBURGH PARK
• Use caution crossing Balgreen Road. 
• Path uses Water of Leith path near Murrayfield 

– caution when wet and muddy.
• Tram construction works the length of route 

– expect disruption

ROSEBURN – BALERNO
• Route uses Water of Leith Path – caution when 

wet and muddy. Path narrow in places.

HOLYROOD – MUSSELBURGH
• Steps at Brunstane Station. Route uses Holyrood Park.

LEITH – PORTOBELLO
• USE CAUTION CROSSING SEAFIELD ROAD

See Spokes Map for details of crossing.
• Steps onto path on south side of road. 
• Some of route not paved – caution when wet and muddy.
• Along Portobello Promenade, give way to pedestrians. 

Junction

Steps

THE ROUTES
        

          

• All routes shown are continuous, off-street
traffic-free paths with dedicated cycle
crossings at road junctions unless marked
otherwise. The routes shown are not
geographical, but are as accurate as possible.
Distances between exits are indicative and 
not to scale.

• Other cycle routes exist, please consult the
Edinburgh Spokes map for more detailed
street mapping.

• All the exits shown are step free, unless
marked otherwise. Other exits with steps are
not shown – please consult the Spokes map.

• All routes are shared with pedestrians 
– please cycle with respect.

• Signage varies along the routes, and does 
not necessarily follow the logic of this map.

• To report faulty lights, missing signs, broken
glass etc, please call 0800 23 23 23 or email
clarence@edinburgh.gov.uk

• National Cycle Routes                            
go through Edinburgh, using many of the
routes on this map. See sustrans.org.uk
for more details.

MAKING THE MOST OF THE INNERTUBE MAP®…

75 754761

With comments about this map, including suggestions,
omissions etc, email innertube@thebikestation.org.uk

Under construction

On-street signposted route

By road between two paths
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Figure 2.25 The Edinburgh Innertube Map of cycle paths. Each line (differentiated by

color) represents a connected path. The vertices denote entry/exit points in

the paths. [180]

in the planning of integrated transport systems. The next chapter describes the appli-

cation of data mining methods in the discovery of patterns that will be fundamental

to current and future efforts to improve the availability and usage of bicycles across

the world, which could be an important element in the development emission-free

transportation systems.
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CHAPTER3
Data mining for sustainable transit:

bicycle ownership

3.1 Motivation

Bicycles have persisted as an accessible means of human-powered travel for more

than 125 years, taking root in various parts of the world. Since the late 19th century,

bicycles have also been regarded as a vehicle for social change, for instance, empow-

ering women’s emancipation [73]. The advent of paved roads in the United States

is attributed in large part to the activism of cyclists who formed the Good Roads

movement in the 1880s [156, 73].

In the past century, however, both developed and developing countries have un-

dergone rapid transitions towards motorization, many of which have placed cycling

at a disadvantage [163, 96]. At the same time, major shifts in population health

trends have occurred. Infectious disease in infants are now less important than non-

communicable diseases (NCDs) and adult injuries [123, 106]. NCDs and injuries now

comprise 94% of all deaths in China, 65% in India, and 34% in sub-Saharan Africa

[106]. The growth of motorization has led to a rise in injuries from road traffic crashes,
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increasing vehicular air pollution, and declining physical activity [17]. Moreover, those

living in densely populated and rapidly urbanizing areas receive far more exposure to

vehicular air pollution. Given these circumstances, there is an urgent need to tackle

the growth of NCDs and injuries globally. Collaborations between transportation

scientists and engineers, urban planners, and public health researchers will be crucial

in this regard, and these are already taking place [188, 152].

The adoption of bicycle-friendly policies by Denmark in the 1970s was effective in

reducing traffic fatalities and managing energy-environment issues [51]. In the next

several decades, as other areas followed suit, these measures were investigated and

proven by researchers. The usage of bicycles was thus established as a virtuous cycle

initiator with a number of positive feedback loops [99]. Notably, cycling as a mode of

transportation both reduces vehicular atmospheric pollution and road traffic conges-

tion [46]. Furthermore, cycling is important to the concept of a “livable city” [61], as

it integrates easily with other modes of transit and can stimulate local businesses via

the addition of new cycling routes [105]. From a public health perspective, cycling

promotes wellness [138], and its benefits outweigh its risks [38, 158]. The more cyclists

are present, the safer the roads become, in accordance with the “safety in numbers”

hypothesis [87]. On a global scale, cycling as a form of zero-emissions transportation

can help fight climate change [204, 13, 165].

Globally, there is ample information about motor vehicles, as nearly every coun-

try tracks vehicle registration—some for tax purposes—and global data are gathered

by various agencies, including the International Road Federation, the World Bank

(via World Development Indicators), the World Health Organization (Global Status

Reports on Road Safety), among others. Bicycles, however, have never been system-

atically counted and presented in the peer-reviewed literature. We not only compile

data on household bicycle availability, but we also apply statistical and data mining

techniques to discover patterns and obtain new information regarding bicycle owner-
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ship. The work described in the following sections of this chapter has been published

in the Journal of Transport & Health [140]. An extension of this work is also currently

under review in the Annals of Operations Research [141].

3.2 Methods

3.2.1 Data collection

We obtained data on percentage bicycle ownership (PBO) from national and interna-

tional surveys conducted at various times from 1971–2012 in 150 countries. However,

we only consider for analysis the years 1989–2012, as only four countries have data

available prior to 1989. Our sources for household bicycle ownership data include the

World Health Surveys [145], Demographic and Health Surveys [40], Malaria Indica-

tor Surveys [39], Integrated Public Use Microdata Services [119], International Crime

Victim Surveys [67], Multiple Indicator Cluster Surveys [86, 85], and the India Na-

tional Census [82]. We also had data available from the Southern and Eastern Africa

Consortium for Monitoring Educational Quality [173, 174], but we did not include

these in our analyses, as the respondents were schoolchildren and not representative

of the national populations. Table B.1 lists the surveys mined for our analyses, indi-

cating the contribution of each source to the dataset. Figure 3.1 shows the number

of datapoints obtained from each country, showing the density and geographical dis-

tribution of the survey data obtained. (Table B.1 contains a list of all the countries

for which data were collected.) Table 3.2 summarizes the objectives and sampling

methodologies of the contributing surveys, most of which were global in scope. All

were nationally representative, employing probability sampling of census enumeration

areas (EAs) or otherwise determined zones, except for the INC, which involved an

actual count. The household bicycle ownership questions vary little. Based on these,

the survey data are fairly comparable.
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Table 3.1 Survey sources for bicycle ownership data and the number of countries and

country-years available from each.

Survey source Acronym Years Countries Country-
years

Demographic and Health Surveys [40] DHS 1990-2011 68 169
Enquête Démographique et de Santé et à Indicateurs
Multiples [83]

EDSM 2006 1 1

India National Census [82] INC 2001, 2011 1 2
Integrated Public Use Microdata Services [119] IPUMS 1990-2006, 08, 09 21 26
Integrated Survey on the Welfare of the Population
[84]

IBEP 2008-2009 1 1

International Crime Victim Surveys [67] ICVS 1989-2002 62 130
Malaria Indicator Surveys [39] MIS 2006-2009 3 3
Multiple Indicator Cluster Surveys 4 [86] MICS4 2010-2011 17 17
Multiple Indicator Cluster Surveys 3 [85] MICS3 2005-2009 39 39
Study on Global Ageing and Adult Health [144] SAGE 2007-2011 5 12
World Health Surveys [145] WHS 2002 65 65

We also collected household population numbers for the country-years in our

dataset where available. Our sources primarily included [119] and the United Na-

tions [189, 191]. In cases where direct household numbers were unavailable for certain

country-years, we used a simple heuristic to find an approximation from nearest val-

ues or multiply average household sizes and corresponding national population [206]

totals. (Please refer to Section B.1 for more details on this process.)

3.2.2 Cluster analysis

The bicycle ownership data obtained1 were sparse and time series varied considerably

in length from one country to another. To find similarities in ownership across geo-

graphical regions, clustering presented itself as an effective pattern recognition tool

[89]. Hierarchical or agglomerative clustering relies on a matrix of pairwise distances

between vectors in the dataset, which were nontrivial to compute in our case due to

their nonalignment. The number of clusters must also be specified.

First, we used the dynamic time warping algorithm [160, 62] to obtain distance

alignments between countries. Using the goodness-of-fit test proposed by [116], we

then found the best agglomerative clustering method, which produced the minimum

1The data and supporting code are available at ce.jhu.edu/sauleh/obls-gbu
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Table 3.2 Comparison of survey methodologies. Data collection methods include: pa-

per and pen interviews (PAPI), computer-assisted person interviews (CAPI),

computer-assisted field editing (CAFE) and face-to-face interviews (F2F). Re-

sponses choices include: “yes” (Y), “no” (N), “do not know” (DNK), “un-

known” (U) and “not in universe” (NIU). For SAGE and WHS, 50+ and 18+

indicate that only household members at those respective ages and above were

sought as respondents.

Sur-
vey

Purpose Scope Inter-
view
methods

Question Re-
sponse
Choices

Question
Type

Sampling

DHS Monitor or
evaluate
popula-
tion, health,
nutrition
indicators

Global PAPI,
CAPI,
CAFE

Does any mem-
ber of this
household own:
A bicycle?

Y/N Household
Characteris-
tics

Clusters/
census enu-
meration
areas; respon-
dents: women
15-49 yrs,
men 15-59 yrs

ICVS Crime and
victimization
analysis;
perceptions
of safety and
security

EU,
Global

CATI,
F2F

bicycle owner-
ship

Y/N/
DNK

Screening Random
sampling and
selection

INC Census India F2F Bicycle N/A Household
asset avail-
ability

None

IPUMS
National
censuses

Global Various Various Y/N/
U/NIU

N/A Probability
sampling

MICS3,
MICS4

MDG mon-
itoring;
wellbeing
of women,
children

Africa,
Asia,
South
America

F2F Does any mem-
ber of your
household own:
A bicycle?

Y/N Household
Characteris-
tics

Probability
sampling of
EAs

MIS Track
malaria
intervention
impact

At-risk
malaria
popula-
tions

F2F Does any mem-
ber of this
household own:
A bicycle?

Y/N Household
Characteris-
tics

Probability
sampling of
EAs

SAGE
Older adult
population
health

Global CAPI,
CATI,
F2F,
PAPI

Does your
household or
anyone in your
household
have...? A
bicycle?

Y/N Permanent
Income
Indicators
(Assets)

Used exist-
ing national
framework;
50+ house-
holds targeted

WHS Monitor
critical na-
tional health
outcomes

Global F2F,
PAPI

Does anyone
in your house-
hold have: A
bicycle?

Y/N Permanent
Income
Indicators

Probability
sampling
by strata;
18+ private
households
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Figure 3.1 World map indicating the number of surveys (datapoints) obtained in each of

the 150 countries for which household bicycle ownership data were available.

(Only one datapoint was available for South Sudan, and that is accounted for

by Sudan’s tally of 2 datapoints for the purposes of this map.)

separation between the original distance matrix and that obtained from the tree.

Of four possibilities, the unweighted pair-group method with arithmetic means (UP-

GMA) emerged as the best fit. The gap statistic and test [185] determined the optimal

number of clusters for the data. We performed ordinary least squares regression on

the PBO in each cluster but found no significant temporal dependencies on bicycle

ownership. Thus, we used the rolling mean with five-year windows to observe possible

ownership trends. From household estimates for all the country-years, we were able

to determine a lower bound on the number of available bicycles in the world.

3.2.3 Dynamic time warping alignment

The dynamic time warping (DTW) algorithm was first introduced by [15]. Sakoe and

Chiba [160] notably used it as a tool for aligning speech patterns for recognition. In

this case, it provides a means of calculating the separation between our nonaligned

points for each country, as the years do not all coincide. We use the package developed

by Giorgino [62] to execute the DTW algorithm in our program. A brief explanation
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is provided below.

Consider two time series A and B (a test and a reference) with P and Q observa-

tions, respectively. Elements ai and bj reside in series A and B, respectively. DTW

computes a warping curve ϕ(k) with M elements, each mapped from A and B. Thus,

ϕ(k) = (ϕa(k),ϕb(k)) (3.1)

ϕa(k) ∈ {1, ...,P} (3.2)

ϕb(k) ∈ {1, ...,Q} (3.3)

The optimal deformation (alignment) minimizes the “average accumulated distortion”

dϕ between the warped series.2 The deformation D is given as

D(A,B) = min
ϕ

dϕ(A,B) (3.4)

where the distortion dϕ is

dϕ(A,B) =
1

C ϕ

M∑
k=1

d(ϕa(k),ϕb(k))cϕ(k), (3.5)

with cϕ(k) the weighting coefficient in each step and Cϕ the normalization constant.

The warping functions ϕa and ϕb are constrained for monotonicity, continuity and

endpoint matching.

The output of DTW is robust, but we are only interested in obtaining the mini-

mum cumulative distance for each possible pair of time series in our data. The result,

which we call the dissimilarity matrix DM , is of size 150 × 150. However, since it

is symmetric, there are only 11 325 unique entries, including a zero diagonal. We

normalize the dissimilarity matrix D by dividing all its elements by the maximum

2The function dϕ may not be strictly convex and, as such, this would give rise to the possibility of
multiple solutions to the optimal deformation. However, the since the value of the deformation is the
only item of interest, the impact of non-uniqueness in this instance has not been further explored.
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value element.

3.2.4 Finding the clustering method of best fit

There are several well-defined hierarchical or agglomerative clustering methods, each

using a different distance algorithm to determine how new clusters are added to the

forest. We perform the clustering procedure using four methods, namely: method

of complete linkages, method of single linkages, unweighted pair group method with

arithmetic means (UPGMA), weighted pair-group method with arithmetic means

(WPGMA).

Using the fitness measure defined by [116] (who showed that their measure was

superior to the established cophenetic correlation coefficient measure), we find that

the UPGMA method gives the best fit clustering. The measure in question is the

greatest singular value of difference between the original distance matrix D and the

ultrametric matrix U (reordered distance matrix based on the clustering method).

A threshold for λ can also be estimated [116]:

λ = ||D − U ||2 ≤ θ = 2σ
√
N , (3.6)

where σ2 is the sum of the variances of D and U . A λ value less than the threshold

indicates U is reasonably close to D. For all four methods, λ > θ (Table 3.3). This

Table 3.3 Goodness-of-fit test for hierarchical/agglomerative clustering methods

Method λ θ λ/θ

Single linkage 2723.7 347.8 7.83
Complete linkage 4551.8 759.7 5.99
UPGMA 883.2 423.1 2.09
WPGMA 966.1 434.7 2.22

is not surprising considering the sparsity of our data. However, we observe that the

method that also minimizes the λ/θ ratio is the best fit, which in this case is UPGMA.
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Table 3.4 lists the countries in each of the four clusters found using the unweighted

pair-group method. The corresponding dendrogram is shown in Figure 3.2.

Table 3.4 Countries in the four groups determined by clustering with UPGMA.

Group 1

ISO Country

AUT Austria
BFA Burkina Faso
DNK Denmark
FIN Finland
DEU Germany
NLD Netherlands
NOR Norway
SVN Slovenia
SWE Sweden

Group 2

ISO Country

ARG Argentina
AUS Australia
BEL Belgium
BLZ Belize
BRA Brazil
KHM Cambodia
CAN Canada
CHN China
CRI Costa Rica
CZE Czech Republic
ECU Ecuador
EST Estonia
FRA France
GUY Guyana
IDN Indonesia
IRL Ireland
ITA Italy
JPN Japan
LAO Laos
LUX Luxembourg
MKD Macedonia
MUS Mauritius
MMR Myanmar
NZL New Zealand
POL Poland
ZZZX Serbia
SVK Slovakia
CHE Switzerland
THA Thailand
TTO Trinidad and Tobago
ARE United Arab Emirates
USA United States
URY Uruguay
VNM Vietnam

Group 3

ISO Country

AFG Afghanistan
ALB Albania
BLR Belarus
BEN Benin
BOL Bolivia
BIH Bosnia and Herzegovina
CHL Chile
COL Colombia
CIV Cote d’Ivoire
HRV Croatia
GMB Gambia
GRC Greece
GNB Guinea-Bissau
HND Honduras
HUN Hungary
IND India
ISR Israel
LVA Latvia
LTU Lithuania
MWI Malawi
MYS Malaysia
MDV Maldives
MLI Mali
MLT Malta
MEX Mexico
MNE Montenegro
PAK Pakistan
PAN Panama
PRY Paraguay
PRT Portugal
KOR Republic of Korea
MDA Republic of Moldova
RUS Russia
ESP Spain
LKA Sri Lanka
SUR Suriname
TZA Tanzania
TGO Togo
TUN Tunisia
TUR Turkey
UGA Uganda
UKR Ukraine
GBR United Kingdom
VEN Venezuela
ZMB Zambia

Group 4

ISO Country

AGO Angola
ARM Armenia
AZE Azerbaijan
BGD Bangladesh
BTN Bhutan
BWA Botswana
BGR Bulgaria
BDI Burundi
CMR Cameroon
CAF Central African Republic
TCD Chad
COM Comoros
COG Congo
COD Congo DRC
DJI Djibouti
DOM Dominican Republic
EGY Egypt
ERI Eritrea
ETH Ethiopia
GAB Gabon
GEO Georgia
GHA Ghana
GTM Guatemala
GIN Guinea
HTI Haiti
IRQ Iraq
JOR Jordan
KAZ Kazakhstan
KEN Kenya
KGZ Kyrgyzstan
LBN Lebanon
LSO Lesotho
LBR Liberia
MDG Madagascar
MRT Mauritania
MNG Mongolia
MAR Morocco
MOZ Mozambique
NAM Namibia
NPL Nepal
NIC Nicaragua
NER Niger
NGA Nigeria
PER Peru
PHL Philippines
ROM Romania
RWA Rwanda
STP Sao Tome and Principe
SEN Senegal
SLE Sierra Leone
SOM Somalia
ZAF South Africa
SSD South Sudan
SDN Sudan
SWZ Swaziland
TJK Tajikistan
TLS Timor-Leste
TKM Turkmenistan
UZB Uzbekistan
VUT Vanuatu
YEM Yemen
ZWE Zimbabwe

3.2.5 The gap test

While there are rules of thumb (involving root functions) for finding the number of

clusters in a dataset, various methods have been developed to find the optimal group
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Figure 3.2 Dendrogram of UPGMA clustering
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number based on the structure of the dataset. We use a quantity referred to as the

gap statistic [185] to find the optimal number of clusters. The gap statistic is defined

as

Gapn(k) = E∗
n{log(Wk)} − log(Wk), (3.7)

where Wk is the within-cluster sum of pair-wise distances. The expected value

E∗
n{log(Wk)} is determined by a Monte Carlo simulation of several samples of the

dissimilarity matrix (obtained using a uniform distribution), from which log(W ∗
k ) is

the calculated. If we let B be the number of Monte Carlo samples generated, then

the gap statistic can be redefined as

Gapn(k) =
1

B

∑
b

log(W ∗
kb)− log(Wk) (3.8)

We define a simulation error term εk such that

εk = sdk

√(
1 +

1

B

)
, (3.9)

where sdk is the standard deviation of the reference datasets.

sdk =

√ 1

B

∑
b

{
log(W ∗

kb)−
1

B

∑
b

log(W ∗
kb)

}2

(3.10)

The optimal number of clusters k̂ is chosen as the smallest k such that

Gap(k) ≥ Gap(k + 1)− εk+1 (3.11)

The gap statistic algorithm can be briefly described as follows:

(1) Using any given clustering method (in our case, the best-fit agglomerative

method) and varying the number of clusters k from 1 through K, find within-
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Figure 3.3 Gap curve; optimal cluster number k̂ = 4, chosen as smallest local maximum

cluster sum of squares Wk for the dissimilarity matrix

(2) Assume a uniform distribution and produce B instances of the dissimilarity

matrix. Again, using the method of choice, we cluster each of these datasets,

in each case finding Wkb for b = 1, ...,B and k = 1, ...,K.

(3) Compute the gap estimate

Gapn(k) =
1

B

∑
b

log(W ∗
kb)− log(Wk) (3.12)

(4) Find the simulation error term

εk =

√ 1

B

∑
b

{
log(W ∗

kb)−
1

B

∑
b

log(W ∗
kb)

}2(
1 +

1

B

)
, (3.13)

(5) Choose the number of clusters k̂ such that

k̂ = argmin
k

Gap(k) subject to Gap(k) ≥ Gap(k + 1)− εk+1 (3.14)
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Figure 3.4 The observed and expected values E∗
n( ) of log(Wk), where Wk is the within-

cluster sum of squares for k clusters. log(Wk) falls rapidly for k < k̂ and less so

for k > k̂. Given the gap statistic Gap(k) and the test value Gap(k+1)−εk+1,

we consider cluster numbers at which the gap statistic is greater than the test

value. Then we choose the smallest value of k at which this happens. In this

case, the k value of interest is 4.

We choose B = 1000 for our dataset and obtain the gap curve shown in Figure 3.3.

An “elbow heuristic” suggests k̂ = 4. But the final step in the algorithm formalizes

this choice, as shown in Figure 3.4.

Further detail on data collection and a table of the post-processed data (Table B.3)

are provided in Appendix B, which also includes percentage bicycle ownership trend

plots for each of the 150 countries analyzed (Figure B.1).

3.3 Results

Household bicycle ownership rates were compiled for 150 countries from survey data.

There were wide variations in bicycle ownership across different countries. In 2010,

for example, Burkina Faso had a high household percentage bike ownership (PBO)

of 84.2%, while Armenia had a low value of 4%. Even within the same region, there

can be wide disparities. For instance, Ethiopia had a PBO of 2.3% in 2011, while
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Uganda (also in East Africa) had a PBO of 37.1%, about 12 times greater. Temporal

variations at the country level can also be substantial. China, perhaps, exhibits the

most dramatic variation here. In 1992, China had a PBO of 97.2%, indicating that

there was at least one bicycle available in almost every household. This statistic

had dropped (by nearly half) to 48.7% by the year 2007 but then rose to 63.2% (an

increase of about 30%) in 2009. Figure B.1 shows bicycle ownership trends for each

of the countries in this study.
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Figure 3.5 Bicycle ownership trends (1989–2012) for the four groups determined by clus-

tering analyses. In each plot, the thick line represents the rolling mean (in

a five-year window) of the population-weighted annual median bicycle owner-

ship (gray points; the thin lines are the individual time series for the member

countries).

In spite of this variation in bicycle ownership among the 150 countries, we were

able to identify four distinct ownership levels using cluster analysis methods. Groups
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1, 2, 3, and 4 had an average weighted PBO of 81%, 60%, 40%, and 20%, respectively.

Group 1 comprises the countries with the highest PBO values (Figure 3.5A). There

are only 9 in this group: the Scandinavian countries, the Netherlands, Germany,

Austria, Slovenia (all in Europe), and Burkina Faso in West Africa. There are 34

countries in Group 2 (Figure 3.5B). They include, notably, USA, Canada, Brazil,

Argentina, Uruguay, China, Australia, New Zealand and several European nations

(e.g. France, Ireland, Italy, Luxembourg and Poland). Group 3 includes Russia and

parts of Eastern Europe, the United Kingdom, four nations in the African Rift Valley

system (Malawi, Tanzania, Uganda and Zambia) and five in West Africa (four of which

are border states to Burkina Faso), the Indian subcontinent, Maritime Southeast Asia,

Mexico, Chile and other South American countries, and Panama and Nicaragua in

Central America (Figure 3.5C). The lowest PBOs are to be found in most West,

Central, and North African nations, as well as the Middle East and Central Asia.

These make up Group 4, (Figure 3.5D). There are 45 countries in Group 3 and 62 in

Group 4.

The world map (Figure 3.6) enables us to visually compare countries within their

geographical region. We clearly see that Burkina Faso is an outlier in the entire

African continent. Peru and the Philippines also stand out as the only Group 4

countries in South America and Southeast Asia, respectively.

From 1989 through 2012, the global household-weighted PBO averaged 42% (Fig-

ure 3.7A). The median PBO was weighted by the number of households available for

each year analyzed. India and China together account for over a third of the world’s

population [20], and on average, they make up close to a quarter of the household

population analyzed in this study. We therefore plot the household-weighted median

PBO for these two nations separately (Figure 3.7B). The rest of the world accounts

for an average PBO of 37% (Figure 3.7C).

Finally, we determine a conservative lower bound on the number of bicycles cur-
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Figure 3.6 World map showing countries color-coded by cluster. The weighted mean

percentage household bicycle ownership is shown next to each group label.

The red countries have the highest ownership numbers. Data were unavailable

for the white portions of the map (notably in North Africa and the Middle

East). South Sudan is not shown on the map, but it is also in Group 4, as is

Sudan.

rently available for use globally. An estimated 1.25 billion households (averaged over

the years 1989 to 2012) make up the 150 countries we studied. These account for 80%

of the estimated number of households in the world. [190] Using the mean weighted

PBO values for each cluster (multiplied by the corresponding household population

of each), we estimate that there are at least 580 million bicycles currently in the

possession of the world’s households.

3.4 Discussion

In each of the clusters we discovered, the availability of bicycles by household has

remained largely unchanged since 1990. Forty percent of the 150 countries considered

occupy the group with the lowest PBO. Only 6% of the countries are in the top-ranked

group. Household ownership is understandably low in places generally geographically

inhospitable to bicycles, such as deserts and mountainous regions, i.e., Central Asia,

the Sahara, and so forth. Interestingly, wealth is not always an indicator of bicycle
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148 countries (without India and China)

Figure 3.7 Global trends in bicycle ownership from 1989 to 2012 for (A) all 150 countries

analyzed, (B) India and China, and (C) all countries excluding India and

China. The points in gray are median ownership levels weighted by the number

of households surveyed in each year. The lines are the rolling means within a

5-year window.

availability. Notably, the United Kingdom with one of the world’s highest per capita

GDP [205] sits in Group 3, which collectively has a PBO of 40%. Attitudes, safety

and poor infrastructure may have contributed to the relatively low level of ownership

in the UK [201], compared to its neighbors (see Figure 3.6).

Beyond ownership levels, each cluster shows characteristic behavior (Figure 3.5).

Group 1 has the most stable trend, and its member nations have had long-existing

bicycle prioritization policies. Of note, 8 of the 9 Group 1 countries (those in Eu-

rope) are proximate. Group 2 also has a largely static trend. The mean number of

households in this group is half a billion, which is about 40% of the households in
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the dataset. The Group 3 PBO trend has a trough of 30% in 1994 and a peak of

48% in 2006. Similarly, Group 4 pits at 14% in 1998 before rising to a maximum of

25% in 2004. Group 3, however, has a more pronounced post-peak decline (by 10

percentage points in 2011) compared to Group 4 (3 percentage points in 2011). The

overall outlook in all four clusters is therefore flat or declining. We note, however,

that no statistically significant trend can be observed for any of the ownership plots.

Worldwide, bicycle availability at the household level did not experience any sig-

nificant increases or decreases (Figure 3.7A), as it hovered around a weighted average

of 42%. We see from Figure 3.7B that China and India together also exhibit a flat

trend in ownership, excepting the initial decline in the early 1990s. However, their

mean weighted PBO of 54% is 12 percentage points greater than the global average.

For the other 148 countries, the mean weighted PBO is 5 percentage points less than

the global average. We note, however, that in these countries bicycle availability de-

clined by a half during the period under consideration, from an average PBO of 60%

in 1989 to 32% in 2012 (Figure 3.7C).

Since India and China are the most influential nations (with regard to household

population) in Groups 3 and 2, respectively, it may be instructive to observe their

respective outcomes for bicycle ownership. We can also examine the success story of

Burkina Faso in West Africa, which has an average PBO of 78%, over three times

the unweighted regional average of 26%. Although one of the poorest nations in the

world, Burkina Faso has invested substantially in cycling infrastructure (on a scale

perhaps not seen in other African nations), and its positive attitudes toward cycling

have been well documented [200]. Cycling is also popular in Burkina Faso as a sport

(for example, Tour du Faso since 1987 [9]) and as a tourist activity—further evidence

for the widespread acceptance of bicycles in the country. However, the popularity of

cycling does not always indicate household bicycle availability, as exemplified by Peru

in Group 4. Cycling and mountain biking have been growing as a sport in Peru, and it
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remains a highly-desired destination for bicycle tourists [90], due in part to its sights

and scenic routes. Yet, only 20% of Peruvian households own bicycles, compared

to the much higher South American average of 52%. Similarly, in Southeast Asia,

where the mean ownership is 49%, the Philippines stands out with a low 23% mean

ownership level. Congestion, poor roads and inadequate planning have all contributed

toward making bicycling unpopular [65]. However, like in Peru, mountain biking has

gained popularity in recent years both among residents and visitors, and investments

are now being made to improve cycling infrastructure in certain areas.

3.5 Summary and future work

While our study was not able to assess bicycle usage, we have found that about four-

tenths of households around the world have within arm’s reach a powerful tool for low-

carbon transportation and healthy physical activity. Governments, with the help of

public health experts, health and transport geographers [37], and other stakeholders,

can harness and mobilize cyclists as change agents by developing policies that support

bicycle education, infrastructure, and a culture of safety for all road users. Socio-

spatial factors, which have been shown to be of significance in characterizing bicycle

usage patterns [71], must also be taken into consideration in understanding ownership

trends. We do acknowledge, however, that ownership does not necessarily imply

usage, and herein lies a limitation of the survey data we have currently compiled.

Nevertheless, tracking bicycle ownership and usage should be a priority for countries

and cities wanting to increase exercise and urban livability, thus reducing NCDs and

the carbon footprint of their populations.

National health surveys are robust multi-year data sources that could have many

unintended applications. Here, we have used them to develop global estimates of

household bicycle ownership. Through data alignment and clustering techniques, we
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identified four characteristic ownership groups and trends. It would be useful to inves-

tigate how broader ownership patterns might depend on variations in climate, develop-

ment and economic prosperity across the clusters. Further collaboration between the

public health and transportation fields on the analyses of nationally-available datasets

is possible and can be mutually beneficial for advancing priorities within both fields.

For example, further research could be undertaken to identify the determining factors

of bicycle ownership, motor vehicle ownership, and their interdependencies. These

national surveys will also help to identify countries or regions on new in-depth case

studies of bicycle usage can be conducted.

More households will purchase bicycles for regular use with the availability of

good supporting infrastructure and systemic attitudes. The findings detailed in this

chapter are encouraging, as they also highlight the importance of attitudes and values

to improving the adoption of cycling, as changes to these can be achieved at a lower

cost than large-scale infrastructural advancements. As efforts are turning toward

renewable energy systems and sustainable transit however, challenging problems still

need to be addressed in our current systems, especially those for non-renewable energy

sources. In the next chapter, we discuss a model that analyses crude oil movements

and can serve as a tool for reducing the environmental impact of the industry over

the next two decades.
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CHAPTER4
A North American crude oil market

model: NACOM

4.1 Motivation

The United States experienced a major upsurge in the production of crude oil begin-

ning in 2009. This has been largely attributed to the advancement in drilling technolo-

gies (namely hydraulic fracturing, or “fracking”) that has made it commercially viable

to exploit tight shale oil in the Bakken formation (North Dakota) and in the Permian

Basin (Texas, New Mexico). The impact of this technology on the U.S. and global

natural gas markets has been extensively studied [114, 115] but economic-engineering

modeling of the crude oil sector has received less attention in the academic litera-

ture. Kilian [94] provides a comprehensive background on the effects of this “shale

revolution” on prices and infrastructure in the U.S. Heavy oil production has also

been expanding across North America, particularly in Canada [21, 74]. Investments

in transport infrastructure, especially pipelines, have not kept up with the ramped

up pace of production. The rail network has thus filled this void. It has also come

under increased pressure as production in the oil sands of Western Canada has been
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on the rise, and Canadian exports to the United States via rail nearly quadrupled

from 46 kbpd (kilobarrels per day) in 2012 to 161 kbpd in 2014 [127]. A major con-

sequence of the increased demand on rail infrastructure has been the rise of crude oil

accidents. While pipelines do spill more gallons per incident, crude-by-rail spills have

had more devastating impacts, as the rail lines often run next to rivers or through

densely populated areas.

In order to better understand the United States crude oil market and provide

policy recommendations toward mitigating the crude-by-rail problem, we have de-

veloped NACOM (North American crude oil market model), via which we simulate

the resulting market equilibria under a range of different policy measures over the

medium term, and the detailed engineering-economic model allows us to track crude

oil movements by mode and at a spatial disaggregation level of U.S. states. The

scenarios we have designed to aid the investigation are: restricting rail loading and

flows, pipeline investments, the lifting of the U.S. export ban on crude oil, and a com-

bination of these three policies. The producers and consumers (refiners) are Eastern

and Western Canada, Mexico, and the states that make up 95% of the United States

supply-demand crude oil market. The time periods considered in NACOM are 2012,

2015 and 2018. In an attempt to account for differences in crude oil qualities, we con-

sider light-sweet and heavy-crude oil types. The implications of this differentiation

are significant as demand and transportation are constrained by the quality of the

crude.

4.2 Review of related work

Over the past several decades, several models have been built to study the global

crude market, often with a view to understanding price movements and impacts. In

1974, Kennedy [92] published a global oil model incorporating all sectors from the
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producers to the end-users, but with a focus on prices and tax effects. Krichene [98]

developed a crude oil and natural gas model (2002) that served as a historical analysis

of the global market from 1918 to 1999. More recently, a Global Oil Trade Model was

constructed by Alkathiri et al. [1], which they used to explore the impact of supplier

diversification on oil importer profits. Huppmann and Holz [80] presented a numeri-

cal Stackelberg Nash-Cournot partial-equilibrium numerical model to investigate the

global crude oil market. Their one-period model was structured as a mixed com-

plementarity problem, and it accounted for pool market behavior by ensuring price

equivalence within specified demand hubs. Kilian [94] provides a detailed assessment

of the current production boom in the U.S. crude oil industry, particularly with re-

gard to prices and infrastructure. Most recently, Langer et al. [101] have developed

a partial-equilibrium model that details refining technologies and explores the global

impact of lifting the U.S. crude oil export ban.

Notably, Uri and Boyd [192] developed a linear model for the U.S. oil market in

order to examine the effects of price on imports. However, no modeling attempt with

multimodal flow granularity and distinction by crude quality in the North American

oil market currently exists in the academic literature. The development of NACOM is

a step toward filling this void, especially as it allows us to track equilibrium crude oil

movements in detail within the medium term and thereby compare scenario outcomes

at the U.S. state level. The transportation modes we consider are the waterways, rail-

ways and the pipeline network. A major effort in the development of NACOM, besides

data gathering, went into calibrating the parameters, including costs of production,

investments and transportation, in order to obtain valid results.

As new crude-by-rail regulation and pipeline projects are being proposed to im-

prove the infrastructure level of service as well as reduce the environmental impact of

the crude oil industry from production to refining or export, NACOM can serve as a

viable testing ground for a counterfactual scenario assessment of the impacts of these
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measures. The model development, methods, scenarios and results are described in

the following sections. This work is currently under review for publication as at the

time of writing [142].

4.3 Model description

The model presented here has been built on a partial-equilibrium framework, Multi-

mod, developed by Huppmann and Egging [79] to analyze the global energy market.

It incorporates endogenous investments and fuel substitution, Nash-Cournot market

power, storage operations, and seasonal variability.

In this adaptation, we are concerned with granularity within the United States and

interactions within the North American market. The players therein are restricted to

the suppliers, which are synonymous with the producing nodes, and independent arc

operators. We do not consider storage operators and transformation operators, as we

limit consumption to the refining industry and do not include a further representation

along the downstream value chain. We have also assumed perfect competition and, as

such, the suppliers always exhibit profit-taking behavior. There are 14 supply nodes

in the model, 10 of which are U.S. states. Eastern Canada, Western Canada, Mexico

and “Rest of the World” are the remaining four. All the aforementioned states are

also included as consumers, with the addition of 14 other states within the U.S.

The following sections describe the general execution of the model and relevant

parameters in the data initialization process.

4.3.1 Model implementation

Complementarity modeling has grown in importance owing to its ability to capture

the complex interactions in energy markets [57]. Mixed complementarity problems

(MCPs) generalize equilibria and nonlinear programs, and they can be solved by a
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variety of Newton-based methods. In a competitive marketplace, each player’s opti-

mization problem can be expressed as a set of Karush Kuhn Tucker (KKT) equations.

The concatenation of the KKT conditions yields an MCP, and the solution to this

system of equations is a market equilibrium of the underlying non-cooperative game.

We consider the North American crude oil market within an MCP framework, with

the KKT conditions formulated from the optimization problems of the suppliers, the

arc operators and the demand sector. The program is in GAMS, a high-level modeling

language [59]. Data initialization, variable declarations and parameter assignments

make up the first step. An algorithm is then called to reduce the size of the problem

by excluding extraneous variables. As a feasibility check (to ensure total demand can

be met), the program solves an overall cost minimization problem. Initial points for

the supply prices are assigned from the solution. An automated iterative calibration

algorithm is then run in order to match consumption at all nodes to reference levels,

manipulating the end-use cost parameters in the process.

The program utilizes the PATH solver [50] to obtain an equilibrium to the non-

cooperative game between market participants. We manually calibrate the model

parameters such that the results coincide with reference production and regional

transportation quantities for the base year (2012) and subsequent projected years

(2015, in part, and 2018). This process is nontrivial, as it requires the adjustment of

costs, both for production and transportation.

We provide a complete formulation of the equilibrium model, as pertaining to this

dataset. There are three sets of optimization problems relating to the supply side,

transportation and the demand sector, each with their own sets of constraints. These

are detailed in the following three subsections (Subsection 4.3.2, Subsection 4.3.3,

Subsection 4.3.4). The MCP is formulated as a set of KKT conditions (not enumer-

ated) solved simultaneously. The relevant set descriptions are given in Table 4.1. We

have limited the notation only to those essential in the current model. For further
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discussion and detail on the basic model framework, please refer to Huppmann and

Egging [79].

Table 4.1 Selected sets and mappings

y ∈ Y Years

s ∈ S Suppliers

n, k ∈ N Nodes

a ∈ A Arcs

a ∈ A+
ne ⊆ A Arcs ending at node n transporting fuel e

a ∈ A−
ne ⊆ A Arcs starting at node n transporting fuel e

d ∈ D Demand sector

e, f ∈ E Crude oil qualities

4.3.2 Supply side profit maximization

The supplier maximizes profit from the quantity of product qD sold at market price

pD, taking into account costs of production, transportation, emissions and future

investment in production capacity (4.1). The term costPyse(·) represents the production

cost function, while pA and pG are the unit equilibrium prices of fuel transported via

the arcs and production-based emissions, respectively. The variables qA and qP are the

quantities produced and transported, respectively, emsP is the emission intensity, and

invP and zP are the unit investment costs and the size of the investment (expansion

of capacity), respectively.

max
qP ,qA

qD,zP

∑
y∈Y
n∈N
e∈E

dfy

⎛⎝pDyneq
D
ysne − costPyse(·)−

∑
a∈A+

ne

pAyaeq
A
ysae − pGynemsPyseq

P
yse − invPysez

P
yse

⎞⎠
(4.1)

The production cost function (4.3.2) is logarithmic [63, 78] in order to better model

the behavior of the marginal cost (4.3), which becomes prohibitive as production

83



4.3 Model description NACOM

approaches capacity, and the decreasing effect the investment has on future costs of

production (4.4).

costPyse(·) =
(
linP

yse + golPyse
)
qPyse + qudP

yse(q
P
yse)

2

+ golPyse

(
ĉapP

yse − qPyse

)
ln

(
1−

qPyse

ĉapP
yse

)
(4.2)

∂costPyse(·)
∂qPysne

= linP
yse + 2qudP

yseq
P
yse − golPyse ln

(
1−

qPyse

ĉapP
yse

)
(4.3)

∂costPyse(·)
∂zPŷse

= golPyseavl
P
ysedep

P
ŷyse

[
ln

(
1−

qPysne

ĉapP
yse

)
+

qPysne

ĉapP
yse

]
, ŷ < y (4.4)

ĉapP
yse = avlPyse

(
capP

yse +
∑
y′<y

depP
y′ysez

P
y′sne

)
(4.5)

The supplier profit maximization problem is subject to the following constraints:

qPyne ≤ avlPyne

(
capP

yne +
∑
y′<y

depP
y′ynez

P
y′ne

)
(αP

yne) (4.6)

qDyne = (1− lossPne)q
P
yne +

∑
a∈A+

ne

(1− lossAa )q
A
ysae −

∑
a∈A−

ne

qAysae (ϕyne) (4.7)

zPyne ≤ expP
yne (ζPyne) (4.8)∑

y∈Y

qPyne ≤ horPne (γP
ne) (4.9)

(4.6) and (4.9) are both production capacity constraints. The first constraint bounds

production to the availability of combined capacity (initial and expanded). The sec-

ond simply ensures that total production over all time periods considered does not

exceed proven reserves. Constraint (4.7) ensures nodal mass balance, while also ac-

counting for fuel transport losses. (4.8) sets a maximum for invested capacity expan-

sion.
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4.3.3 Fuel transport profit maximization

The independent arc operators seek to maximize profit by transporting fuel through

their respective arcs, which are multifuel. The model allows for multiple crude oil

types to be transported on any arc simultaneously. In computing the profit for each

arc, the price pA, less the cost of operating the arc trfA, is multiplied by the flow fA,

while taking investment costs into account (4.10). Emissions and related costs are

not considered.

max
fA,zA

∑
y∈Y

dfy
[(
pAya − trfAya

)
fA
ya − invAyaz

A
ya

]
(4.10)

s.t.

fA
ya ≤ capA

ya +
∑
y′<y

depA
y′yaz

A
ya (τAya) (4.11)

zAya ≤ expA
ya (ζAya) (4.12)∑

s∈S,e∈E

qAysae = fA
ya (pAyae) (4.13)

The constraints provide bounds for flow (4.11) and capacity expansion (4.12) in each

arc. The decision to invest in expanding arc capacity is undertaken if the cost invA

of doing so is less than the dual τA of the flow constraint. The arc usage price pA is

determined by the market clearing constraint equation (4.13).

4.3.4 Demand sector welfare maximization

On the demand side, the goal is utility maximization from energy use in the demand

sector, which in our case is represented solely by the refining industry. This produces
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a quadratic problem (4.14), which can be linearized using first order conditions.

max
QD

∑
y∈Y
n∈N
e∈E

[
intDn − 1

2
slpD

nd

(∑
f∈E

effD
ynfQ

D
ynf

)]
effD

yneQ
D
yne − pDyneQ

D
yne

− euccDyneQ
D
yne − 1

2
euclDyne(Q

D
yne)

2 − pGynemsDyeQ
D
yne

(4.14)

The derivation gives an inverse demand price function:

pDyne = effD
yne

[
intDyn − slpD

nd

( ∑
s∈S,f∈E

effD
yneq

D
ysf

)]

− euccDyne − euclDyne

(∑
s∈S

qDyse

)
− pGynemsDye

(4.15)

The final price pD consists of the efficiency weighted composite price of the energy

supply (the first term in (4.15)), where slpD and intD are the slope and intercept,

respectively, of the energy supply demand function. End-use costs for each fuel are

also taken into account by a linear function parametrized by euclD (linear term) and

euccD (constant term)1. The final term in (4.15) represents the emission costs of

refining (or, in general, fuel consumption).

4.3.5 A note on multiplicity of equilibria

While the functions defined in this model are convex, they are not all strictly so. Thus,

the equilibrium point obtained in any instance of solving the model is not guaranteed

to be unique. Alternate equilibria may be found by initializing the program from

different points. Owing to the nature of the capacity constraints and other network

constraints, we hypothesize that the differences that might exist among multiple

equilibria may only be found in the arcs that are used and these may not be significant

1See Appendix C. in Huppmann and Egging [79] for a robust discussion on how the end use costs
are calculated in the model.
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enough to produce marked changes in the outcome of interest. However, more work

will be required to characterize and address the issue of non-uniqueness in NACOM.

4.3.6 Data initialization

We set 2012 as the base year for NACOM, which proceeds for two subsequent periods

in steps of 3 years, i.e. 2015 and 2018. All quantities are expressed in kilobarrel per day

(kbpd) units. An annual discount factor of 91% and 95% is applied to investment

decisions for producers and arc operators, respectively. Initial prices and all other

monetary values are in 2012 U.S. dollar terms. 100% capacity availability is assumed

for all producers (thus avlP = 1 in all cases). An energy service efficiency of 98%

is assumed for all consumption nodes. We do not consider seasonal variations in

either production or consumption patterns. Details on our data are provided in the

following section.

4.4 Data collection and methods

Data on U.S. crude oil production and consumption (refining) were obtained from the

U.S. Energy Information Administration (EIA) [196]. Domestic supply and demand

projections are given by the EIA’s Annual Energy Outlook 2015 [194]. Similar data

for Canada are obtained both from the National Energy Board [126] and the Cana-

dian Association of Petroleum Producers (CAPP) [24]. Global supply and demand

quantities (including projections), including those for Mexico, are obtained from the

International Energy Statistics on petroleum compiled by the EIA [195]. The EIA

also annually tracks regional crude movements across the country (and to and from

Canada) by barge, rail and pipeline. However, further information on pipeline and

rail loading capacities are only available from private sources. A list of all the nodes

and arcs in model are given in Table C.4 and Table C.5 in the Appendix. We se-
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lected 2012 as the base year, as this was when rail movements of crude oil across the

continent first rose to prominence after the oil boom.

4.4.1 Crude oil production

The U.S. has been a dominant player in the global crude oil market. Production

peaked in the 1970s, and the subsequent decline persisted until 2009. The decline

was a result of various factors: the institution of the crude oil export ban in 1978, the

availability of cheaper oil from external suppliers and the increasing costs of domestic

production. Canada also historically relied on the U.S. to export its oil to other

markets [103]. Over time the industry in the U.S. converged to a market equilibrium

under these conditions. Major refineries invested in technologies to improve capacity

for the medium-heavy oil being imported from the Gulf States. The shale oil boom

has again repositioned the United States as a major oil producer, but challenges have

arisen in terms of refining and transporting this additional volume, which is of the

light-sweet variety [94]. The trend in U.S. crude oil production is shown in Figure 4.1.
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Figure 4.1 U.S. crude oil field production (Source: EIA)
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Western Canada is also an influential player, its growth primarily driven by heavy

oil exploited from the sands of Alberta. Much of this oil finds its way down to the

Gulf of Mexico for refining or exportex. Eastern Canada predominantly produces

light crude. It also supplies some refiners along the East Coast of the United States,

while receiving shipments from Western Canada as well.

Mexico’s crude oil production industry is run by the state-owned Petróleos Mex-

icanos (Pemex) [164]. Mexico is a net exporter of crude, producing close to 3 mbpd

(million barrels per day) in 2012, and consuming only about half (for refining). How-

ever, it has to import refined gasoline to satisfy domestic demand. The United States

is the top destination for Mexican crude, of which over 50% is of the heavy-sour grade

[164, 155].

We considered the states that account for 95% of total U.S. output. Estimates of

light-to-heavy yield ratios were made based on industry reports and other surveys.

Offshore production in the Gulf of Mexico was attributed to Texas, and California

also includes offshore production off the southwestern coast of the United States. In

2012, North Dakota and Texas were the fastest growing crude oil suppliers in the

country [112]. Figure 4.2 shows the 2012 quantities for the suppliers. Production for

the rest of the world was excluded from this diagram for clarity.

4.4.2 Refining and demand

The United States currently must refine or store all its domestically produced crude

oil. Many of the U.S. refineries are situated next to waterways or in close proximity

to the production field. Canada refines some of its oil and exports to the U.S. much

of the remainder. Mexico is a net exporter of crude, shipping heavy oil to the U.S.

and to the rest of the world. The U.S. therefore has the largest refining capacity on

the continent.

We consider demand as crude oil refining for the purposes of this implementation of
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Figure 4.2 Production (supply) nodes, showing split between light-sweet and heavy-sour

crudes

NACOM. Refining capacities for the U.S. are available from the EIA, as are estimated

utility rates. From these, we can obtain the quantities of crude oil consumed at the

nodes of interest. Data on API gravity averages of crude oil inputs to refineries enable

us to calculate yield rates for light and, consequently, heavy crudes. For Canada, the

relevant data were obtained from the Canadian Fuels Association [6].

The demand quantities at each node are show in Figure 4.3 for the base year 2012.

The quantity for the rest of the world is again excluded here for clarity.

4.4.3 Transportation

The transfer of crude oil from the oil fields and production sites to and from refiners

both within and outside North America occurs via land and water bodies. On land,

pipelines, trains and trucks are used to transport crude. We do not consider the

share of truckage, as it is insignificant compared to the other two. On water, tankers

ply the sea routes while barges transport crude along the river system, of which the

Mississippi is the most important. Intermodal exchanges also occur at certain nodes,

e.g. rail to barge, tanker to pipeline, and so forth. In the following subsections,
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Figure 4.3 Refining (demand) nodes, indicating yield of light-sweet crude to heavy-sour

crude

we outline the data collection process for the arcs in each mode, while providing a

context for their importance in the market.

Railway

As discussed earlier, crude oil producers both in Canada and the United States have

become increasingly reliant on trains to move oil to the refineries (Figure 4.4). All the

production and consumption nodes, except for Alaska and Mexico, were considered as

loading and unloading points for rail crude oil loads. Auxiliary rail nodes were then

modeled at these points and in the intervening U.S. states. Initially, all arcs con-

necting auxiliary rail nodes were assigned unconstrained capacities, while the loading

and unloading arcs were constrained. During calibration, some auxiliary arcs were

constrained in order to obtain base-case flows matching closely to observed reference

values.
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Figure 4.4 Rail movements of U.S. crude (Source: EIA)

The rail capacity data were obtained from a myriad of industry publications2, as

compiled by Oil Change International [137] and providing the unloading and loading

capacities of crude oil facilities in the United States and Canada. We aggregated the

loading and unloading capacities for each of the regions under consideration. Some

of the facilities were operational but had no listed capacities. The missing data were

filled using average capacities of the facility type. The scope of the rail network

considered for the model is shown in Figure 4.5.

Pipelines

Historically, the crude oil pipeline network in the U.S. and Canada developed to

transport oil from Canada toward the Gulf of Mexico, while capacity was increased

within the Gulf region itself to facilitate movement between storage and refining

facilities. Cushing, Oklahoma, became established as a trading and storage hub for

both Canada and the U.S. In 2012, operators delivered over 20 mbpd of crude oil

2These include: RBN Energy, Hart Energy, Genscape, BNSF, Canadian Pacific, Canadian Na-
tional, Meritage Midstream, Howard Energy Partners, and Rangeland Energy
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Figure 4.5 Map of internodal rail arcs in the model. The nodes AK (Alaska), MX (Mexico)

and RW (Rest of World) are not shown, as they do not currently have any

rail links with the other nodes. The U.S. states labeled are producing and

demand nodes. Directionality is not indicated in this diagram but the solid

lines indicate that the represented arc is bidirectional.

via pipeline in the United States. This value increased by 11.3% in 2013 [7]. The

rate of increase in pipeline delivery in 2014 was also identical at 11.6% [8]. On

average, pipelines have consistently accounted for 80% of the modeshare in crude oil

transportation in the United States since 2000 [55]. They are therefore a vital part

of the U.S. crude oil infrastructure.

The process for gathering pipeline data began by consulting maps of established

and functioning pipelines [24, 33] Most of the major pipelines in the U.S. and Canada

are owned by various private corporations.3 Capacities were obtained from avail-

able databases of the oil corporations operating the respective pipelines. Intranodal

pipelines were not considered. A scheme of the pipeline network for the model is

3Some of the major systems and pipeline operators include: Colonial, Enbridge/Lakehead, Key-
stone, Marathon, Mid-Valley, Pony Express, Seaway, Spearhead, and TransCanada.
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shown in Figure 4.6.

On average, transporting crude oil via pipeline costs $5 per barrel [54]. Initial

operational costs for each arc were then varied as a function of pipeline mileage. The

mileage values were taken from individual corporation websites when available and

estimated from digital maps otherwise. Some pipelines only provided capacity values

at the terminals, and further investigation was required to ascertain the presence

of major refineries between the terminals in order to properly account for changes

in capacity. The pipelines were disaggregated to include separate arcs connecting

refineries in different US states. The total capacity value of each pipeline was used

as the initial capacity for the individual arcs thus created. In cases where multiple

pipelines connected two nodes, capacities were aggregated into a single arc. As with

the costs, pipeline capacities were modified during calibration to match baseline flows.

Figure 4.6 Map of internodal pipeline arcs in the model. Directionality is not indicated.

The nodes AK (Alaska), MX (Mexico) and RW (Rest of World) are not shown,

as they do not currently have any pipeline links with the other nodes. The

U.S. states labeled are the supply or demand nodes included in the model.
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Waterways

Domestic transportation of crude oil through inland waterways (chiefly via the Mis-

sissippi and Ohio river systems) occurs via river-going barges, which typically have a

capacity of 30 barrels. Coastal transport of crude oil, for instance, from Washington

to California, is undertaken by tank barges or seagoing barges, which have a larger

capacity of 90 barrels [53]. Imports and exports are undertaken by tankers, which

have a greater capacity. Some refineries in Eastern Canada obtain shipments from the

Gulf of Mexico, while some pipeline and rail movements bound for Canada originate

from the northern U.S. states.

Due to the Jones Act, vessels shipping domestic crude oil must be built and owned

by U.S. interests [53]. This severely restricts the domestic waterway shipping of crude

oil and increases the costs by as much as three times that of using a foreign-owned

vessel carrying foreign oil. Thus, in some situations, some refiners find it cheaper to

import crude oil than to buy it from other regional suppliers who would have to ship

it by barge to them [53].

Data on major inland routes were obtained from Ref. [53]. These routes connect

states along the Mississippi and Ohio river systems. From the same source, we ob-

tained initial shipping costs as well. We differentiated between tankers, river-going

barges and seagoing barges, the key factor being the operational cost. Alaska, Cal-

ifornia and Washington were assigned incoming arcs from the Rest of the World, as

were nodes in the Gulf and on the East Coast (New Jersey, Texas, and others). East-

ern Canada also has outgoing arcs to the U.S. eastern refineries, while Mexico has

outgoing arcs to the Gulf states and the Rest of the World. Mexico and the Rest of

the World are the only nodes in the model with a single mode of transport (ship)

available to them.
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4.4.4 Model calibration

Significant effort went into calibrating the model to produce results that matched

observed quantities and prices for the base year of 2012. As production, transport and

consumption figures for individual states (nodes) were not always readily available,

regional data (by the Petroleum Administration Defense District system) were used as

reference (see Section C.5 for further background on the PADD system). In addition,

it was useful to describe a region (Canada) including both the Eastern Canada and

Western Canada nodes for the purpose of flow calibration. The classification of the

producing and refining nodes by region is given in Table 4.2.

Table 4.2 Regions designated in the model

Region Supply and demand nodes

CAN Eastern Canada, Western Canada
MEX Mexico
ONA Rest of World
PADD1 Delaware, New Jersey, Pennsylvania
PADD2 Kentucky, Minnesota, North Dakota, Ohio, Tennessee
PADD3 Kansas, Louisiana, Mississippi, Oklahoma, Texas
PADD4 Colorado, Montana, New Mexico, Wyoming
PADD5 Alaska, California, Washington

For the base year 2012, NACOM captured 82%, 85% and 91% of overall interre-

gional rail, pipeline and waterway movements, respectively. The details are given in

Section C.6. We have calibrated the model to EIA forecasts that are still based on

an assumption of a crude oil export ban, and our scenarios therefore compare two

futures: one with a ban (based on official projections), and the new status quo given

our own results.
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4.5 Results

Our results show that NACOM can be a useful tool for analyzing the the domestic

crude oil market in the United States, and in particular, providing solutions to transit

problems in the network. In the following subsections, we discuss the base case and

four scenarios that investigate potential pathways for containing crude-by-rail flows

while highlighting the capabilities of the model. The scenarios are as follows:

(i) Restricting rail flows from the Bakken region/North Dakota

(ii) Investing in pipeline capacity from the U.S. Midwest

(iii) Lifting the U.S. crude oil export ban

(iv) A concurrent implementation of the policies in (i), (ii) and (iii)

In each of the scenarios, all investment variables remained unchanged from the base

case throughout the entire time horizon under investigation. Further, all the base

year variables were fixed at base case levels in the scenarios. These steps allowed for

consistent comparisons among all the cases.

4.5.1 The base case

Base case flows via rail and pipeline, according to the model, are depicted in Figure 4.7

and Figure 4.8. Intrastate activity is not accounted for in either of these figures.

Furthermore, the arcs are drawn from centroid to centroid in each state and may

therefore not reflect the geographical reality of the route represented.

Much of the rail movement in the U.S. originated from the Northern Plains/Bakken

region, which includes Montana and North Dakota. From the Midwest, trains were

used to deliver crude oil to East Coast refineries. Rail also helped to lift both heavy

and light crude to the Gulf of Mexico for refining or exporting. Along the West

Coast, trains from Western Canada delivered crude oil to the Washington refineries

and traversed California to deliver oil to neighboring states. Canada also depended
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Figure 4.7 Rail movements of crude oil in the base year 2012. The size of the node labels

indicate the larger of the quantities of crude leaving or entering the respective

node.

on rail to move crude from west to east. While heavy oil production has surged in

Western Canada, the absence of cross-country crude oil pipeline system has paved

the way for the rise in crude-by-rail shipments across the country. Eastern Canada

also sent crude by rail to New York refineries.

The pipeline system in 2012 primarily conveyed oil from Western Canada to the

Midwest, and some ultimately to the Gulf Coast. Pipelines also moved oil through the
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Figure 4.8 Pipeline movements of crude oil in the base year 2012. The size of the node

labels indicate the larger of the quantities of crude leaving or entering the

respective node.

Rockies (Montana, Wyoming, Colorado) toward Kansas and Oklahoma. Waterway

movements are not shown. However, 3000 kbpd was imported into the Gulf of Mexico

from the rest of the world in 2012, according to the model, while 800 kbpd and 900

kbpd were shipped into PADD1 (U.S. East Coast) and PADD3 (U.S. Gulf of Mexico)

refineries, respectively. Mexico exported 240 kbpd to the rest of the world and 975

to PADD3. Canada sent 20 kbpd from its eastern shores to the rest of the world,
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while 75 kbpd left for U.S. East Coast refineries. Other smaller barge movements

were captured, notably the 58 kbpd from PADD2 to PADD3, which represents traffic

along the Mississippi river system. These quantities compared to reference values are

visualized in C.6, Figure C.4.

4.5.2 Restricting crude-by-rail flows

In this scenario, we investigate the effects of directly capping rail flows from the

Bakken region of North Dakota. The motivation behind this design was the growing

concern over the rise of crude-by-rail transportation across the heart of the country. In

many instances, issues have been raised regarding the displacement of grain shipments

by increasing crude oil loads. Also, the movement of crude-by-rail through Califor-

nia has been one of great concern, due to the fact that the rail lines pass through

densely populated areas and close to water resources [32]. Most importantly, the

rising number of crude-by-rail accidents have spurred the authorities to take action.

In August 2015, the U.S. Department of Transportation and Transport Canada

jointly announced a “Final Rule” to govern the transit of crude oil via rail [150]. The

stipulations provided by the Rule were adopted by the the Pipeline and Hazardous

Materials Safety Administration (PHMSA) and the Federal Railroad Administration

(FRA), with input from the National Transportation Safety Board (NTSB). The

Rule aims to improve rail shipping standards by imposing speed reductions, tank car

upgrades, enhanced braking requirements, routing regulations and stricter product

classification. It has however been met with criticism from both industry and public

administration representatives, who argue that the regulations are inadequate or too

costly and disruptive to implement [122, 121].

A thorough implementation of this Rule will likely reduce crude-by-rail move-

ments, especially from the Bakken region, and may encourage more pipeline deploy-

ment. To simulate the impact of these restrictions, we set rail arc capacities originat-
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ing from the North Dakota area to half the equilibrium rail transportation quantities

in the base case. We choose North Dakota as it is a key driver of the growth in

crude-by-rail shipments.

This scenario results in a disappearance of all westward U.S. rail movements and

those between the PADD5 nodes in 2015 (Figure 4.9A, B). While rail transportation

in PADD5 is not completely eliminated in 2018, activity is limited only to California,

Nevada and Washington, as compared to the base case in which all the nodes are

involved in rail movements of crude oil (Figure 4.9C, D). Yet, in 2015, total U.S.

internodal rail flows in this scenario are only 5 kbpd less than in the base case (∼1%

decrease). One reason for this is the utilization of an alternate rail pathway for the

crude oil from North Dakota to meet the demand in the Eastern U.S. in the absence of

sufficient pipeline capacity. By 2018, however, the impact of this restriction is seen in

a 21% reduction in overall U.S. rail movements from 9620 to 7554 kbpd. Meanwhile,

pipeline throughput increases by nearly 1600 kbpd.

4.5.3 Pipeline investments in the U.S. Midwest

The pressure on U.S. oil transport infrastructure stemming from the Northern Plains

has not only been due to increased oil production from the Bakken formation. West-

ern Canada’s flourishing industry (driven by oil sands exploration in Alberta) has also

contributed to rising demand for transfer to refineries and export terminals. As there

is yet no pipeline connection from Alberta to Canada’s eastern shores and little ca-

pacity to Canada’s west coast, unrefined crude from the oil sands is transported to the

gulf via pipeline through the Northern Plains, ultimately to the Gulf of Mexico. How-

ever, pipeline investments have not kept up with the rising production [103]. Where

feasible, barge and rail flows have grown accordingly. The Keystone XL pipeline was

proposed by TransCanada to boost capacity for throughput to the Gulf but this was

rejected in 2015 [36]. A major player in the North American oil transit industry,
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A B

C D

Figure 4.9 (A) Rail flows in the base case, 2015 (B) 2015 rail flows in the scenario “Cap-

ping Rail Flows From Bakken Region” in which surrounding rail capacities are

set to half of the base case flows through those arcs. (C) Rail flows in the base

case, 2018 (D) Rail flows of crude oil in 2018 under the scenario “Capping Rail

Flows From Bakken Region.”

TransCanada has also proposed the Energy East pipeline, with a maximum capacity

of 1100 kbpd [18], to convey heavy crude from Alberta to Quebec. A decision on this

project will be made by 2016. Like that of Keystone XL, the Energy East proposal

has been met with mixed views amid concerns on possible impacts on communities

and the environment vis-à-vis potential safety benefits over crude-by-rail transport
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[131, 143].

A B

C D

Figure 4.10 (A) Rail flows in the base case, 2015 (B) 2015 rail flows in the scenario “U.S.

Midwest Pipeline Investments” in which new pipelines are built to convey oil

from North Dakota both to the east and west. (C) Pipeline flows in the base

case, 2015 (D) Pipeline flows of crude oil in 2015 under the scenario “U.S.

Midwest Pipeline Investments.”

While we closely follow ongoing pipeline developments in Canada, we shall initially

focus on examining the situation in North Dakota, which has been the epicenter of

outflows largely responsible for the growth in crude-by-rail shipments. North Dakota

has approved the 12-inch 100 kbpd NST Express pipeline, scheduled to be in service
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by late 2016, to transport Bakken crude to Montana [171]. The massive 30-inch

570 kbpd Dakota Access Pipeline (DAP) is also on track to come online toward the

end of 2016 [184]. The DAP will provide access to terminals in Illinois. Notably,

TransCanada has also proposed the Upland Pipeline to carry up to 300 kbpd from

North Dakota to Saskatchewan, but the Upland is not expected to join the pipeline

network until 2020 if the project obtains the requisite approval [132, 186].

Given this outlook, we develop a scenario in which pipeline capacity in the U.S.

Midwest is expanded in both the eastern and western directions. Specifically, we add

new pipeline connections from Michigan to New Jersey (eastward), and from Montana

to Washington (westward). We also double pipeline capacity from North Dakota to

Montana. The impact of these investments is seen in a transfer of 548 kbpd of heavy-

sour crude to the new Montana-Washington pipeline in 2015. In 2018, this pipeline

carries 60 kbpd of heavy-sour crude and 131 kbpd of light-sweet crude. These in turn

result in a reduction of crude-by-rail flows originating from the Bakken region (i.e.

North Dakota). Yet, overall rail flows increase by 13% in 2015. These are due to the

movements of about 200 kbpd heavy-sour crude between Texas and Louisiana and

also of 400 kbpd heavy-sour crude between Washington and Oregon, with half of this

volume going on to California. However, we see that there are fewer rail movements

within PADD5 and between PADD4 and PADD5. In 2018, reductions in the total

interregional rail flows are realized—a 9% decrease from 9620 kbpd to 7123 kbpd.

The newly added pipeline from Michigan to New Jersey, however, is left unused

both in 2015 and 2018, indicating that it may not be a viable investment due to the

relative cost of transfer. The rail and pipeline flows in 2015 compared to the base

case are shown in Figure 4.10.
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4.5.4 Lifting the U.S. crude oil export ban

The United States effectively banned domestic crude oil exports when President Ger-

ald Ford signed the Energy Policy and Conservation Act into law in 1975 [198, 102].

At the time, the country was experiencing a decline in oil production. Moreover, it

had recently endured an economic crisis when OPEC imposed a retaliatory oil export

embargo on the U.S. National sentiment was therefore understandably in favor of

shoring up reserves and increasing domestic supply. Canada was exempt from this

ban [19]. Thus, any unrefined oil from the U.S. invariably finds its way to Canada.

Alaska had also been exempt from the ban since 1995, but its export volumes began

to dwindle in the late 1990s [41]. Only in 2014, after a decade-long hiatus, did it send

its first export shipment—784 kilobarrels to South Korea [125] (about 2 kbpd).

Considering the recent boom in U.S. domestic production, the ban had been in-

creasingly perceived to be more of a hindrance than a boon [31]. A large portion

of new crude oil supplies is of the light-sweet variety, for which refining capacity is

not readily available at the source. Thus, producers have had to incur expensive

transportation costs to deliver crude oil to refineries. Experts argued that an end

to this export restriction could only benefit the economy [42] and increase the com-

petitiveness of the U.S. oil industry. More crucially, authorizing crude oil exports

could also relieve demand on strained transit infrastructure, especially rail. Notably,

the U.S. Congress supported a motion to lift the ban in December 2015 [76]. The

spending bill including a provision authorizing exports of domestically produced oil

was finally passed and signed into law before the end of the year, thus ending the

40-year prohibition [149].

We investigate the impact of lifting this decades-long ban by implementing a

scenario in which shipping capacity is added from U.S. coasts to the rest of the

world. These shipping arcs are incident from California, Washington (West Coast),
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Louisiana, Texas (Gulf of Mexico) and New Jersey (East Coast) in the model scenario.

Under this scenario, Texas (which also represents the Gulf of Mexico in this model)

exports 405 kbpd in 2015 and 324 kbpd in 2018. (Alaska also exports 5 kbpd in both

years, but it was exempt from the ban and its exports are therefore present in the

base case, as well.) More significant, however, is the reduction in imports into these

regions. The net imports via waterways can thus be seen as an indicator of the new

export volumes (Table 4.3). These movements, however, do not reduce the pressure

Table 4.3 Net imports of crude oil into the U.S. via ship (tankers) in the base case [BC]

compared to those in the “U.S. crude oil export ban lifted” scenario [EBL], for

the years 2015 and 2018.

Incoming Region 2015 2018
BC (kbpd) EBL (kbpd) % drop BC (kbpd) EBL (kbpd) % drop

PADD1 630 630 0 860 675 22
PADD3 4050 2395 41 4350 2585 41
PADD5 1245 1160 7 1364 516 62

on the rail network as intra-U.S. flows increase by 12% from 7122 kbpd in 2015

(base case) to 7945 kbpd. In 2018, a similar trend is observed with a 22% rise from

9620 kbpd to 11750 kbpd in U.S. crude oil movements. The quantity transported

via pipeline also increases accordingly while the volume of waterway transportation

decreases. This result indicates that the opening of the global market to U.S. would

lead to increased land transport in order to satisfy demand.

4.5.5 U.S. exports, Midwest pipeline investments and Bakken rail

caps

This scenario is a simultaneous implementation of the three policies already consid-

ered: capping rail flows from the Bakken region, building two pipelines—one from

North Dakota and the other from Michigan, and lifting the U.S. crude oil export ban.

In 2015, the new Michigan-New Jersey pipeline is utilized to supply 164 kbpd
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of heavy-sour crude to the East Coast, which replaces oil tanker movements from

Eastern Canada. Meanwhile, the other new pipeline from Montana to Washington

transports 367 kbpd of the same quality of crude. Accordingly, net imports in PADD5

fall to 805 kbpd, a 35% decrease compared to the base case. With the Bakken rail cap

in effect, intra-U.S. rail movements drop by 2% to 6995 kbpd, as intra-U.S. pipeline

movements increase by 37% to 5279 kbpd.

In 2018, the capacity of the newly added Montana-Washington pipeline is fully

utilized. Exports to the Rest of the World from PADD5 are registered at a value of

336 kbpd. About two-thirds of this volume is light-sweet oil from the Bakken region.

Meanwhile, actual imports fall to 356 kbpd, reducing net crude imports at PADD5

to 20 kbpd.

Net imports at PADD3 in both years are slightly higher than in the “U.S. Crude

Oil Export Ban Lifted” scenario but still considerably lower than in the base case

(less 31% and 33%, respectively). A similar situation can be seen for PADD1 in 2018.

In terms of intra-U.S. rail flows, however, the key result is a 26% reduction relative

to the base case. With no restrictions on exports, the new pipelines and the rail caps

result in more oil being transported to PADD5, making the region more important

as an exporter of crude. Thus, less crude oil moves to PADD3 and thereby reducing

the crude-by-rail impact in the U.S.

4.6 Discussion

Crude-by-rail flows within the U.S. are reduced under the “Capping Bakken Rail

Flows” and “U.S. Midwest Pipeline Investments” scenarios, but these improvements

are not realized until 2018, with decreases of 21% and 9% respectively. In the coun-

terfactual scenario analysis for the year 2015, restricting the rail capacities from the

Bakken Region results in only a 1% reduction. We note that while the pipeline in-
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vestments result in a 13% increase in rail flows in 2015, the impact is only limited to

two pairs of neighboring states: Texas-Louisiana and Washington-Oregon. Thus, the

ability to analyze flows at the U.S. state level will be important for more accurate

determinations of the environmental effects of crude oil transportation.

In the “U.S. Oil Export Ban Lifted” scenario, rail flows increase in both years,

indicating that simply lifting the crude oil export ban in the U.S. will not solve the

crude-by-rail problem in the medium term. However, when this is done in conjunction

with pipeline investments and Bakken rail caps, maximum reductions in overall U.S.

rail flows are realized, both in 2015 and 2018. Table 4.4 shows the relative rail

Table 4.4 Changes in crude-by-rail [CBR] scenario flows relative to the base case among

the U.S. nodes (states) in 2015 and 2018.

Scenario 2015 CBR flow 2018 CBR flow
(kbpd) % change (kbpd) % change

Base Case 7123 0 9620 0
Capping Bakken Rail Flows 7128 −1 7554 −21
U.S. Midwest Pipeline Investments 8077 +13 8771 −9
U.S. Oil Export Ban Lifted 7945 +12 11750 +22
U.S. Exports+Midwest Pipelines+Bakken Rail Caps 6992 −2 6147 −26

flow changes across the scenarios. The modal shares in each scenario are compared

in Figure 4.11. In all the scenarios considered, there is no significant difference in

consumer welfare with respect to the base case. This indicates that no one scenario

has a particular advantage for the benefit of the refining sector.

Generally, these results show that in the near-to-medium term, restricting loading

capacities from the Bakken region (North Dakota) is a consistently effective means

of containing crude-by-rail flows. Investing in pipeline capacity from the same region

will also eventually contribute to reducing crude-by-rail movements. A joint imple-

mentation of these strategies, however, provides the best mitigation of crude-by-rail.
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Figure 4.11 Multimodal interstate (U.S.) crude oil flows by scenario

4.7 Summary

We have presented a medium-term model of the North American crude oil market with

U.S. state level granularity, which is a first in the literature to capture distinct crude

oil qualities and the different modes of transportation across the continent. A key

aspect of this effort was the investigation of the reduction of crude by rail with a focus

on flows originating from the Bakken region in North Dakota. Two scenarios were

implemented in this regard. We also considered the lifting of the U.S. crude oil export

ban. Finally, we investigated a fourth scenario in which the policies of the first three

scenarios are jointly implemented. Our results show that capping the rail flows from

North Dakota or investing in pipeline capacity from the same area can help reduce

the rail throughput in the United States. While only lifting the export ban results in

increased rail flows, combining the export ban lifting with pipeline investments and

rail caps provides the lowest crude-by-rail flows in the medium term up to 2018. All

scenarios were similarly beneficial to the refining sector. These outcomes suggest that
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integrated approaches are more likely to be successful in tackling the crude-by-rail

problem.

We have not fully treated the issue of emissions and quantifying the environmental

impact of crude oil transportation. This is certainly a growing concern that deserves

a considerable amount of thought, and NACOM remains relevant in addressing this

issue. In our subsequent effort, we can then consider the environmental factors in

each of the scenarios we design. An important development in the last year was

the creation of the Oil Climate Index (OCI) [64]. This would be valuable in future

work to quantify the environmental impact of crude oil production in North America,

particularly with regard to climate. To further address the environmental risks of

moving crude oil, an important enhancement of this model would be the inclusion of

a mechanism to determine the monetary cost of transporting crude oil with regard

to oil spill incidents. These incident costs could be further linked to various metrics,

such as public health, quality of life and economic activity. This undertaking would

involve additional data collection and statistical analyses. However, through this

work, NACOM could be adapted as an even more powerful tool for robust scenario

analyses toward improving infrastructure resilience and public health outcomes at

various scales, up to the national level in the United States and eventually for the

North American continent.

With regard to crude oil types, we differentiated between the heavy and light

qualities. On the production side, the heavy-to-light ratios were obtained from various

industry reports and estimated otherwise. U.S. refining capacities for both qualities

were calculated from average API gravity values of refined crude in each state as

reported by the EIA. A report recently released by the American Fuel & Petroleum

Manufacturers provides details on U.S. regional crude oil refining capacites and output

by quality [3]. Future work could incorporate these results along with the data also

collected by Langer et al. [101] in their study.
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At this stage of development, the model does not account for storage. Along with

Cushing, Oklahoma, which serves as a major hub of crude oil movements originating

both in Canada and the U.S., there are other major holding facilities, notably the

Louisiana Offshore Oil Port system (LOOP) that influence market dynamics [124].

In recent years, storage has become a major concern in the industry as capacity is

being stretched [94, 197]. Obtaining data on storage capacities and modeling the hub

activity at Cushing is an improvement we hope to make in the subsequent iteration of

this modeling effort. This will also enable us to better capture the complex movements

between the U.S. Midwest and the Gulf of Mexico.

One other promising avenue for future work is the combination of NACOM with

other models currently being developed for natural gas [48] and biofuels [30, 168] in

North America. We can then consider the effects of fuel substitution and obtain a

better picture of the oil and gas market in the United States. Further, in light of

the complex unfolding of all these developments in the industry, we can develop more

robust scenarios to provide more insight and detail, not only in the United States,

but also in Canada and Mexico.

Critical advances have been made in U.S. energy policy, and the viability of renew-

ables, such as biofuels, is rising. Yet, crude oil will remain a major component of the

U.S. energy landscape for the next several decades [161]. In Canada, crude oil is still

considered a mainstay of the nation’s economy, as investments in production capacity

and transportation continue to grow [136, 74]. With proper reform, Mexico’s oil in-

dustry can overcome current inefficiencies to transform its energy sector and economy

[164, 45]. The recently approved crude oil swap between the U.S. and Mexico is also

expected to be mutually beneficial to U.S. exporters and Mexico refiners [22]. Given

all these trends, there will exist a need in the near-to-medium term to find the best

intersections for policy and market decisions to minimize the environmental impact

of crude oil production and transportation on the continent.
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CHAPTER5
Conclusion and outlook

In the preceding three chapters, we have described approaches to solve systems prob-

lems using optimization, data mining and modeling methods. We have seen the

importance of schematic mapping and the promise it holds for increasing user access

to transportation networks of increasing complexity, and even to other non-transit

pathways. Bicycling has been proven to be a key element of sustainable development,

urban transport, and safe and healthy lifestyles. Our work has shown that globally,

household ownership is on the decline, yet the results also provide answers to the

nature of the patterns that currently exist, while indicating avenues for discovering

how to replicate successes across various locations. As concerns over the climate

grow, various nations are looking to diversify their energy sources with greater atten-

tion and investments being made in renewable energy, especially biofuels. However,

crude oil may remain an important piece of the global energy industry for the next

quarter century, as production has surged in North America in the last six years,

notwithstanding the decline in prices. To provide solutions to one of the pressing

issues in the industry today—crude-by-rail—we developed the first oil market model

for North America that incorporates multiquality and multimodal movements, im-

plementing scenarios to find the best strategy for sustainably reducing the volume of
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crude transported via rail in the medium term. Further directions for even more ro-

bust policy decisions will involve an integrated modeling approach to include natural

gas and biofuels, in combination environmental and climate impact assessment tools.

Transportation and energy are invariably linked. Transportation systems require

energy to operate. Energy systems cannot exist without supporting transportation

networks. As with all physical systems, the consumers or users play a key role in

energy and transit. With the proliferation of technology and modern means of com-

munication, consumers can now interact with markets and networks in a variety of

ways and for a motley of applications. As a result, social network analysis is be-

coming increasingly important as we seek to understand and tackle new challenges

in the systems of the present and the near future. Bicycle sharing systems have been

growing in popularity in the past decade, while the prospect of a major shift to au-

tonomous electric vehicles is likely to become reality in next two decades. Integer

programming models naturally lend themselves to solving problems associated with

systems incorporating these two modes of travel, as they are poised to become fixtures

in sustainable transit and energy programs.

In Section 5.1, we describe recent trends in bicycle sharing and autonomous vehicle

systems research. We further illustrate a realistic application of the methods described

in this dissertation to the partial development of a hypothetical autonomous electric

vehicle taxi network (Section 5.2). Finally, in Section 5.3, we motivate social network

modeling through the example of the “small-world problem.”

5.1 Modeling the next generation of transit systems

Bicycle sharing programs have become of staple of major urban centers across the

world. In the United States, the growth of bikesharing has been remarkable. In 2010,

there were only 7 cities or areas with active programs, notably Washington D.C.,
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Minneapolis, Denver and Chicago. With 114 stations, Washington D.C. boasted the

largest system. In 2012, the number of U.S. urban areas with bikeshare programs

grew to 27. In 2013, this number grew by nearly 50% to 40 areas, with New York

narrowly edging out the D.C. area in terms of size, with 330 stations. The most recent

data (from 2014) shows there are 44 active systems in the country. San Diego, Seattle

and Miami are the major latest additions. Chicago, New York and D.C. remain the

largest networks with 300, 328 and 347 stations, respectively. [16]

Sustained efforts in realizing the feasibility of autonomous (self-driving) [electric]

vehicles has increased the anticipation of environmentally friendly driving systems.

In particular, a taxi system of AVs servicing a network is one such realization. As

with bikeshare, issues of charging station location and fleet management would have

to be considered. Gacias and Meunier [58] have demonstrated an MIP and simulation

approach in the development of such a system. Chen et al. [29] used an agent-based

modeling (ABM) approach to investigate the operations of a shared autonomous

electric vehicle fleet (SAEV). They have also explored issues of fleet reallocation and

pricing through a similar approach [28]. Beyond these, there is a growing body of

work regarding AV-based transportation systems as they certainly will be key to the

future sustainable transit.

The rapid expansion of these systems have given rise to problems of design, lo-

cation, fleet size and management, among others. Integer programming and other

optimization methods remain highly relevant to providing solutions to these issues.

Moreover, data mining and machine learning will be increasingly important in provid-

ing information on user preferences to better customize services. Schematic maps will

be useful for efficient visualizations of the rapidly growing bicycle sharing networks.

New paradigms will have to be developed for dynamic and customized situations, as

users will require solutions for navigation and connectivity.

To illustrate these potential applications, we describe the development of a data
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mining process and optimization model for an autonomous vehicle fleet network in

the following section.

5.2 Development of an autonomous vehicle taxi net-

work

Consider a city planning to phase out its existing taxi system in favor of an au-

tonomous fleet of electric vehicles that can be summoned by passengers within the

city. This new fleet would contribute to reduced carbon emissions and improve the

quality of life of the city’s inhabitants. It would also complement existing urban

transit systems serving city, which might include a bike network and a subway. For

efficiency and cost minimization, the city would need to obtain data to establish de-

mand patterns to inform the design of the new network. Models would also need to

be implemented to solve problems for station and fleet allocation. As a general rule

for the quality of service of this network, the city would like to ensure that passenger

wait times never exceed 7 minutes.

5.2.1 Data for network design

One approach for data collection would be to install GPS tracking devices in a sample

of taxis servicing the city. This number may be chosen to reflect the percentage of

taxi demand the government hopes to satisfy with automated vehicles (AVs). These

devices would also be able to record entry points and exit points for passengers. It

would appear that taxis typically have devices that already do this, so the necessary

information could be tracked and obtained from the taxis in the sample.

The data collection can be performed over a period of several months (6–10,

for instance) or even a year or two, depending on time constraints. Afterwards, a

predictive model can be developed to estimate the origin-destination pairs and the
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respective trip demand in the network. Density-based clustering can be performed

to aggregate node locations in the network. Choices for the predictive model could

be ARIMA (autoregressive integrated moving average) [120] or an artificial neural

network model [88]. The model would provide forecasts for the specified time periods.

Based on the nature of the demand, the length of the time periods can be adjusted

in order to best capture ground truth.

5.2.2 Charging station location

Here we want to find the minimum number of charging stations to be located in

the network in order to satisfy demand and to meet the required level of customer

satisfaction (at most 7 minutes wait time for vehicle to reach the origin).

First, we define the following sets:

i, j, k ∈ N demand points (origin, destination and possible charging station location)

v ∈ V vehicles

We assume, for now, that the number of vehicles is unconstrained. We also assume

that all vehicles are at charging stations when not executing a trip.

Further, we define xi as the decision variable that a given node i in the network

will be selected as the location for a charging station. The decision variable governing

whether a vehicle v is summoned from node i to service a trip at j is given as zvij.

Thus, we have the mixed integer program:

min
∑
i∈N

xi (5.1)

s.t.

xi, zvij ∈ {0, 1} (5.2)

zvijT (i, j) ≤ 7 +M(1− xi) (5.3)∑
v∈V

∑
i∈N

zvij =
∑
k∈N

djk (5.4)
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where M is chosen as large constant (a good choice would be: M = maxT (i, j)) and

djk is the number of trips demanded from origin j to destination k.

Constraint (5.2) ensures x and z are binary, thus dictating that only one charging

station can be placed at a node and that only one vehicle is used per trip. The

maximum wait time constraint (5.3) applies when a vehicle is chosen from a node that

in the solution is selected as a charging station. The final constraint (5.4) guarantees

that demand is met at each node.

This model is formulated for a given time period in the network. It does not con-

sider the temporal differences (with respect to the demand) within the period, which

is a limitation. Another observation is this: even though demand is satisfied, the num-

ber of stations that results from this formulation, while optimal, may not be efficient.

For the sake of simplicity, we have not considered maximizing demand or utilizing

the concept of covering to maximize demand (service) at the nodes surrounding each

charging station.

Since the model is defined for only one time period, it could be run for all the time

periods (since demand will vary) and then the superset of charging stations (deter-

mined in all the executions) chosen as the operating minimum, if feasible. Otherwise,

the largest minimum can be elected.

5.2.3 Fleet size optimization

Assuming that the charging stations have been located, we can now define two new

subsets Sb,Se ⊂ N , which contain the nodes that serve as charging stations. Sb and

Se both consist of the same nodes, but having them in different sets enables us to

track vehicles leaving a charging station at the beginning of an upcoming trip and

those entering a charging station at the end of a just completed trip. In similar

fashion, we define the sets O and D, which consists of the same nodes but grouped

into origin and destination.

117



5.2 Development of an autonomous vehicle taxi network Conclusion and outlook
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Sb O D Se
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Figure 5.1 Diagram of flow model for fleet size minimization in an autonomous taxi net-

work. The capacity of each edge is 1, and the flow along each edge is binary.

To solve for the minimum fleet size, we employ a network flow model in a directed

acyclic graph G(W ,E). The vertices w ∈ W are in Sb,O,D and Se, with the addition

of a source node s and a sink node t. (See Figure 5.1.) The directed arcs e ∈ E

connect:

(i) all the nodes in Sb to those in O, based on the assumption that in this network,

an AV can reach any demand point from a charging station;

(ii) nodes in O to those in D, as determined by the OD pairs in the trip demand

information;

(iii) all nodes in D to every possible node in Se, also assuming that an AV can be

recharged at any station after it completes its trip;

(iv) the source node s to all the nodes in Sb;

(v) all the nodes in Se to the sink t.

Only outflows are allowed from s, and only inflows are allowed into t. We do not

need a decision variable for vehicle selection in this formulation, as each flow value

represents the vehicles moving from one node to another. The model formulation is

shown below.
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min v (5.5)

s.t.∑
i∈Sb

xsi = v (5.6)

∑
i∈Se

xit = v (5.7)

∑
j∈O,D

xij −
∑

j∈O,D

xji = 0 (5.8)

∑
i∈Sb

xsi −
∑
i∈Sb

xij ≥ 0 (5.9)

xijT (i, j) ≤ 7 ∀i ∈ Sb, j ∈ O (5.10)

xij = di ∀j ∈ O (5.11)

xij ≥ 0 (5.12)

xij ∈ Z (5.13)

Constraints (5.6) and (5.7) ensure that the entire AV fleet is available for circula-

tion in the network. The balance equation (5.8) ensures that the number of outgoing

vehicles from from an origin or destination node is equal to the number of incoming

vehicles at that same node. This ensures that no vehicle is left idling at any node in

O or D. For the nodes in Sb (charging stations), the balance constraint is relaxed.

Instead the net outflow is bounded below by zero, which allows for some AVs to

remain in the charging stations. Constraint (5.10) guarantees that the customer sat-

isfaction requirement is met (wait times for vehicle arrival do not exceed 10 minutes).

Meanwhile, (5.11) imposes demand fulfillment at each origin node. Finally, (5.12)

and (5.13) are integrality and positivity constraints on the flow variables.

This model has been assumed for the specified time period. Since overall network

and nodal demand might vary in each period, it should be run for all the time periods
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with the average minimum fleet [integer] value computed and compared to the greatest

possible minimum value produced in all the runs. The final choice can then be chosen

as the greater of the two, for a robust determination.

One limitation of this framework is that temporal differences within the period

have not been accounted for. Thus, total trip times (which include wait time and

charging time) are not considered, nor is the prospect of reusing a vehicle for another

trip if its prior trip time is considerably shorter compared to the length of the period

and with regard to the start times of other trips demanded within the period. Total

trips demanded within each period are therefore assumed to be satisfied at the same

time.

5.2.4 Dealing with congestion

The traffic conditions can be used to activate a new set of congestion constraints in

the optimization program. Each time new estimates are generated, the model can be

executed to provide an updated fleet size.

One idea on how to accomplish this would be to calculate the change in travel

times between the affected origin and destination times. These in turn can be used to

estimate a reduction (for instance, using a friction factor) in the number of trips de-

manded from affected points in each time period. In reality, demand may not decline

with congestion, but it is likely that not all requested trips may be resolved, especially

if the AVs cannot get to the origin nodes in time and still holding the assumption of

maintaining customer satisfaction through the 7-minute wait time maximum. Thus,

it makes sense to account for this effect by reducing the trips demanded at the affected

points accordingly. Running the optimization routine would then result in a lower

minimum fleet size. The excess vehicles can also be taken out at the most congested

nodes. Each time a rerun produces a greater fleet minimum than the previous run,

more vehicles must be added to the fleet to make up the difference.
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It may also be necessary to account for the cost of removing and adding vehi-

cles to the fleet. This must be minimized—placing this minimization problem as a

constraint (or sub-problem) may help govern the nodes chosen for de-allocation or

re-allocation. Furthermore, a threshold can be designed at which these actions are

ultimately triggered. This can be in the form of a minimum number of traffic updates

required for a removal or addition, or it could be based on the rate of change of traffic

conditions.

5.3 Social network analytics

A host of network models have been developed to study social interactions in various

contexts. These models have been borne out of the growing complexity of modern

networks in which scientists and engineers have been able to draw behavioral parallels

with more fundamental systems.

5.3.1 The small-world problem

One of the earliest investigations into the structure of social connections was per-

formed by Milgram [118] in the famous small-world problem. The experiment was

conducted by selecting a random sample of participants in Wichita, Kansas, to send

a package to the same target in Cambridge, Massachusetts, simply by passing it on

to someone most likely to know (or know someone who knew) the target. The only

condition was that each immediate link in the chain had to know each other on a

first-name basis.

Travers and Milgram [187] conducted a similar study with a more technical exper-

imental design using a sample population from Omaha, Nebraska, and to a different

target also in Cambridge, Mass. The empirical results established the historical “six

degrees of separation” rule, as the median number of links in all completed chains in
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the Nebraska study was 5.

While these studies did not provide detailed information on the structure of

these social associations, they sparked decades of further work in unearthing these

patterns—the how, why, what, when and where.

5.3.2 Applications and potential for systems research

Various properties can be of interest when a system is modeled as a social network.

Some of these include patterns of growth and resilience, which are relevant within

the contexts of academia [170, 130], infrastructure and population [183, 26, 177, 12].

Measures of influence of the nodes in a network are also consequential [4]. If the

nodes already belong to certain groups, another property of interest is mixing, which

is concerned with nature of the connectedness of nodes by their groupings [129].

Mixing patterns can provide insight into the associational behaviors of entities in a

network [128, 72, 151].

In the last few decades, social network models have enabled us to understand

and harness these pattern discoveries in order to strengthen and improve our systems

beyond energy and transportation. As we seek robust and sustainable solutions for

the systems that gird our infrastructure and ultimately support our survival, deeper

integrations of these various modeling and representation approaches will be critical

to addressing the challenges we face today and those of a rapidly approaching future.
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APPENDIXA
Schematic mapping program

formulation

We provide a summary of the variables and equations that make up the mixed binary

linear program described in Chapter 2. For further background, the reader is referred

to [134] and [110].

Table A.1 Parameters, variables and sets in schematic mapping program

Symbol Description

x(u), y(u), z1(u), z2(u) coordinate variables

δk(u, v,w), i ∈ {1, 2} binary variables for bend cost

γc(e1, e2, f), c ∈ {N ,NE, ...,NW} binary variables for edge spacing in

each cardinal (axial) direction

i ∈ {−1, 0, 1} positional index: original position or

one sector back or forward

αi(u, v) binary variable that switches position

for sector and direction

seci(u, v) i ∈ {−1, 0, 1} sector assignment for edge
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dir(u, v) directional variable indicating sector

chosen in solution

bend(u, v,w) bend cost for edges uv and vw

shift(u, v) shift cost per edge

M large constant used in modeling dis-

junctivity

ℓmax(u, v), ℓmin(u, v) upper and lower bounds on length of

edge uv

dmin minimum spacing between vertices on

nonadjacent edge pairs

β(u, vj), j ∈ {1, ..., deg(u)} set of vertices of specified lower bound

of degree

ε = 10−3 augmentation factor in AUGMECON2

ε-constraint method

sshift slack variable for shift function in

AUGMECON2

rshift range of shift payoff table values in

AUGMECON2

eshift RHS of equality constraint computed

from payoff table

ubshift upper bound of shift function in payoff

table

ishift ∈ {0, 1, ..., gshift} steps for grid points in AUGMECON2

gshift number of desired grid intervals for

AUGMECON2

λbend weighting factor for bend function
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λshift weighting factor for shift function

Objective functions:

Cbend =
∑
L∈L

∑
uv,vw∈L

bend(u, v,w) (A.1)

Cshift =
∑
uv∈E

shift(u, v) (A.2)

Augmented ε-constraint formulation (O&S–augmecon2):

min : Cbend − ε
sshift
rshift

(A.3)

s.t.

Cshift + sshift = eshift (A.4)

eshift = ubshift −
ishiftrshift
gshift

(A.5)

General constraints (*)

Weighting method formulation (O&S–wm3):

min : λbendCbend + λshiftCshift (A.6)

s.t.

General constraints (*)

General constraints (*):

∆dir(u, v,w) = dir(u, v)− dir(v,w) (A.7)

bend(u, v,w) = min{|∆dir(u, v,w)|, 8− |∆dir(u, v,w)|} (A.8)
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−bend(u, v,w) ≤ ∆dir(u, v,w)− 8δ1(u, v,w) + 8δ2(u, v,w)

bend(u, v,w) ≥ ∆dir(u, v,w)− 8δ1(u, v,w) + 8δ2(u, v,w)

(A.9)

−M · shift(u, v) ≤ dir(u, v)− secorig(u, v) ≤ M · shift(u, v) (A.10)

M =
∑
e∈E

e(u, v) · ℓmax(u, v) (A.11)

sec0(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 337.5◦ ≤ ∠uv < 22.5◦

1 22.5◦ ≤ ∠uv < 67.5◦

2 67.5◦ ≤ ∠uv < 112.5◦

3 112.5◦ ≤ ∠uv < 157.5◦

4 157.5◦ ≤ ∠uv < 202.5◦

5 202.5◦ ≤ ∠uv < 247.5◦

6 247.5◦ ≤ ∠uv < 292.5◦

7 292.5◦ ≤ ∠uv < 337.5◦

(A.12)

sec+1 = sec0+1 mod 8 (A.13)

sec−1 = sec0−1 mod 8 (A.14)

seci(u, v) = seci(v,u) + 4 mod 8 (A.15)∑
i∈{−1,0,1}

αi(u, v) = 1 (A.16)

Octilinearity and edge length constraints

dir(u, v) =
∑

i∈{−1,0,1}

seci(u, v) · αi(u, v) (A.17)

dir(v,u) =
∑

i∈{−1,0,1}

seci(v,u) · αi(u, v) (A.18)

dir(u, v) = dir(v,u) + 4 mod 8 (A.19)
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seci(u, v) = 0 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
y(u)− y(v) ≤ M(1− αi(u, v))

−y(u) + y(v) ≤ M(1− αi(u, v))

−x(u) + x(v) ≥ −M(1− αi(u, v)) + ℓmin(u, v)

(A.20)

seci(u, v) = 1 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
z2(u)− z2(v) ≤ M(1− αi(u, v))

−z2(u) + z2(v) ≤ M(1− αi(u, v))

−z1(u) + z1(v) ≥ −M(1− αi(u, v)) + ℓmin(u, v)

(A.21)

seci(u, v) = 2 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x(u)− x(v) ≤ M(1− αi(u, v))

−x(u) + x(v) ≤ M(1− αi(u, v))

−y(u) + y(v) ≥ −M(1− αi(u, v)) + ℓmin(u, v)

(A.22)

seci(u, v) = 3 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
z1(u)− z1(v) ≤ M(1− αi(u, v))

−z1(u) + z1(v) ≤ M(1− αi(u, v))

z2(u)− z2(v) ≥ −M(1− αi(u, v)) + ℓmin(u, v)

(A.23)

seci(u, v) = 4 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
y(u)− y(v) ≤ M(1− αi(u, v))

−y(u) + y(v) ≤ M(1− αi(u, v))

x(u)− x(v) ≥ −M(1− αi(u, v)) + ℓmin(u, v)

(A.24)

seci(u, v) = 5 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
z2(u)− z2(v) ≤ M(1− αi(u, v))

−z2(u) + z2(v) ≤ M(1− αi(u, v))

z1(u)− z1(v) ≥ −M(1− αi(u, v)) + ℓmin(u, v)

(A.25)

seci(u, v) = 6 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x(u)− x(v) ≤ M(1− αi(u, v))

−x(u) + x(v) ≤ M(1− αi(u, v))

y(u)− y(v) ≥ −M(1− αi(u, v)) + ℓmin(u, v)

(A.26)
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Schematic mapping program formulation

seci(u, v) = 7 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
z1(u)− z1(v) ≤ M(1− αi(u, v))

−z1(u) + z1(v) ≤ M(1− αi(u, v))

−z2(u) + z2(v) ≥ −M(1− αi(u, v)) + ℓmin(u, v)

(A.27)

x(v), y(v) ≤ M ∀v ∈ V (A.28)

x(u)− x(v) ≤ ℓmax(u, v)

−x(u) + x(v) ≤ ℓmax(u, v)

y(u)− y(v) ≤ ℓmax(u, v)

−y(u) + y(v) ≤ ℓmax(u, v)

(A.29)

Circular order constraints

dir(u, vj) ≤ dir(u, vj++1)− 1 + 8β(u, vj), j = {1, 2, ..., deg(u)} (A.30)

deg(v)∑
j=1

β(u, vj) = 1 ∀u : deg(u) ≥ 2 (A.31)

Edge spacing and crossing constraints

∑
c∈{N,..., NE}

γ(e1, e2, f) ≥ 1 (A.32)

x(u2)− x(u1) ≤ M(1− γE(e1, e2, f))− dmin

x(u2)− x(v1) ≤ M(1− γE(e1, e2, f))− dmin

x(v2)− x(u1) ≤ M(1− γE(e1, e2, f))− dmin

x(v2)− x(v1) ≤ M(1− γE(e1, e2, f))− dmin

(A.33)
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Schematic mapping program formulation

z1(u2)− z1(u1) ≤ M(1− γNE(e1, e2, f))− dmin

z1(u2)− z1(v1) ≤ M(1− γNE(e1, e2, f))− dmin

z1(v2)− z1(u1) ≤ M(1− γNE(e1, e2, f))− dmin

z1(v2)− z1(v1) ≤ M(1− γNE(e1, e2, f))− dmin

(A.34)

y(u2)− y(u1) ≤ M(1− γN(e1, e2, f))− dmin

y(u2)− y(v1) ≤ M(1− γN(e1, e2, f))− dmin

y(v2)− y(u1) ≤ M(1− γN(e1, e2, f))− dmin

y(v2)− y(v1) ≤ M(1− γN(e1, e2, f))− dmin

(A.35)

−z2(u2) + z2(u1) ≤ M(1− γNW(e1, e2, f))− dmin

−z2(u2) + z2(v1) ≤ M(1− γNW(e1, e2, f))− dmin

−z2(v2) + z2(u1) ≤ M(1− γNW(e1, e2, f))− dmin

−z2(v2) + z2(v1) ≤ M(1− γNW(e1, e2, f))− dmin

(A.36)

−x(u2) + x(u1) ≤ M(1− γW(e1, e2, f))− dmin

−x(u2) + x(v1) ≤ M(1− γW(e1, e2, f))− dmin

−x(v2) + x(u1) ≤ M(1− γW(e1, e2, f))− dmin

−x(v2) + x(v1) ≤ M(1− γW(e1, e2, f))− dmin

(A.37)

−z1(u2) + z1(u1) ≤ M(1− γSW(e1, e2, f))− dmin

−z1(u2) + z1(v1) ≤ M(1− γSW(e1, e2, f))− dmin

−z1(v2) + z1(u1) ≤ M(1− γSW(e1, e2, f))− dmin

−z1(v2) + z1(v1) ≤ M(1− γSW(e1, e2, f))− dmin

(A.38)
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Schematic mapping program formulation

−y(u2) + y(u1) ≤ M(1− γS(e1, e2, f))− dmin

−y(u2) + y(v1) ≤ M(1− γS(e1, e2, f))− dmin

−y(v2) + y(u1) ≤ M(1− γS(e1, e2, f))− dmin

−y(v2) + y(v1) ≤ M(1− γS(e1, e2, f))− dmin

(A.39)

z2(u2)− z2(u1) ≤ M(1− γSE(e1, e2, f))− dmin

z2(u2)− z2(v1) ≤ M(1− γSE(e1, e2, f))− dmin

z2(v2)− z2(u1) ≤ M(1− γSE(e1, e2, f))− dmin

z2(v2)− z2(v1) ≤ M(1− γSE(e1, e2, f))− dmin

(A.40)
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APPENDIXB
Further information on methods, data

and code for bicycle ownership study

I clarify aspects of our extraction and processing of survey data in Section B.1. Sec-

tion B.2 contains plots of the bicycle ownership values for all the 150 countries ana-

lyzed, while Section B.3 includes the complete reference dataset. All the scripts (writ-

ten in Python and R) and resources can be found at ce.jhu.edu/sauleh/obls-gbu,

and the organizational structure of the code is provided in Section B.4.

B.1 Data collection from household surveys

In this section, we describe how household bicycle availability and household popu-

lation data was collected and processed from sources listed.

B.1.1 Survey mining

Initially, we obtained bicycle ownership data from the surveys shown in Table B.1

conducted in various countries over 1970–2012. We used 1989 as the starting year

for our analyses, as data for preceding years was only available for Chile, Indonesia,
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B.1 Data collection from household surveys Further information: bicycle study

Malaysia and Thailand. In these surveys, the relevant inquiry determined in a binary

fashion if the households had one bicycle (or more) available. Many survey records

were accessed using Stata and then compiled into a spreadsheet. Appendix A contains

ownership data plots for all the countries, indicating the survey source of each point.

Table B.1 Survey sources for bicycle ownership data. *Sources 12, 13 and 14 were un-

used, as they were educational surveys conducted on school children and not

nationally representative of households.

ID Source Acronym Years
con-
ducted

1 World Health Surveys [145] WHS 2002
2 Demographic and Health Surveys [40] DHS Multiple
3 Malaria Indicator Surveys [39] MIS 2006-7,

2008-9
4 Integrated Public Use Microdata Services [119] IPUMS Multiple
5 International Crime Victim Surveys [67] ICVS 1989-

2002
6 India National Census [82] INC 2001,

2011
7 Multiple Indicator Cluster Surveys 4 [86] MICS4 2010-

2011
8 Multiple Indicator Cluster Surveys 3 [85] MICS3 2005-

2009
9 Study on Global Ageing and Adult Health [144] SAGE 2007-

2011
10 Integrated Survey on the Welfare of the Population [84] IBEP 2008-

2009
11 Enquete Demographique et de Sante et a Indicateurs Multiples

[83]
EDSM 2006

*12 Southern & Eastern Africa Consortium for Monitoring Edu-
cational Quality [174]

SACMEQ3 2005

*13 Southern & Eastern Africa Consortium for Monitoring Edu-
cational Quality [173]

SACMEQ2 1999

*14 Southern & Eastern Africa Consortium for Monitoring Edu-
cational Quality [173]

SACMEQ1 1995

The educational surveys conducted by the Southern and Eastern Africa Consor-

tium for Monitoring Educational Quality (SACMEQ) were found to not be indicative

of the national populations in comparison with data from other surveys, since the

primary respondents were school pupils. The SACMEQ results were therefore not

included in our analyses. For some countries, ownership data was available from mul-

tiple surveys within the same year. In initializing the data, we took the average value

of the country-years where this was the case (for example, Vietnam had data avail-

able from both WHS and DHS in 2002). Also, data from any of the countries in the
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B.1 Data collection from household surveys Further information: bicycle study

United Kingdom (England, Northern Ireland, Scotland and Wales) was taken as rep-

resentative of the UK. Finally, the International Crime Victim Surveys (ICVS) 1996

datapoint for Yugoslavia was considered valid for Macedonia. We therefore ended up

with 150 countries after this pre-processing step.

There are a total of 452 data points. Table B.2 lists the initial countries in our

dataset and their corresponding three-letter acronyms (ISO) before pre-processing.
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B.1 Data collection from household surveys Further information: bicycle study

Table B.2 Initial country names for which data was available. For analyses, Yugoslavia

was considered as Macedonia, West Germany was taken as Germany, and Eng-

land, Northern Ireland, Scotland and Wales were all considered as the United

Kingdom. Data for Seychelles and Zanzibar was only available from the unused

educational surveys, hence they do not appear in the final analyses.

Country ISO Country ISO Country ISO

Afghanistan AFG Greece GRC Peru PER
Albania ALB Guatemala GTM Philippines PHL
Angola AGO Guinea GIN Poland POL

Argentina ARG Guinea-Bissau GNB Portugal PRT
Armenia ARM Guyana GUY Republic of Korea KOR
Australia AUS Haiti HTI Republic of Moldova MDA
Austria AUT Honduras HND Romania ROM

Azerbaijan AZE Hungary HUN Russia RUS
Bangladesh BGD India IND Rwanda RWA

Belarus BLR Indonesia IDN Sao Tome and Principe STP
Belgium BEL Iraq IRQ Scotland XSC

Belize BLZ Ireland IRL Senegal SEN
Benin BEN Israel ISR Serbia ZZZX

Bhutan BTN Italy ITA Seychelles SYC
Bolivia BOL Japan JPN Sierra Leone SLE

Bosnia and Herzegovina BIH Jordan JOR Slovakia SVK
Botswana BWA Kazakhstan KAZ Slovenia SVN

Brazil BRA Kenya KEN Somalia SOM
Bulgaria BGR Kyrgyzstan KGZ South Africa ZAF

Burkina Faso BFA Laos LAO South Sudan SSD
Burundi BDI Latvia LVA Spain ESP

Cambodia KHM Lebanon LBN Sri Lanka LKA
Cameroon CMR Lesotho LSO Sudan SDN

Canada CAN Liberia LBR Suriname SUR
Central African Republic CAF Lithuania LTU Swaziland SWZ

Chad TCD Luxembourg LUX Sweden SWE
Chile CHL Macedonia MKD Switzerland CHE
China CHN Madagascar MDG Tajikistan TJK

Colombia COL Malawi MWI Tanzania TZA
Comoros COM Malaysia MYS Thailand THA

Congo COG Maldives MDV Timor-Leste TLS
Congo DRC COD Mali MLI Togo TGO
Costa Rica CRI Malta MLT Trinidad and Tobago TTO

Cote d’Ivoire CIV Mauritania MRT Tunisia TUN
Croatia HRV Mauritius MUS Turkey TUR

Czech Republic CZE Mexico MEX Turkmenistan TKM
Denmark DNK Mongolia MNG Uganda UGA
Djibouti DJI Montenegro MNE Ukraine UKR

Dominican Republic DOM Morocco MAR United Arab Emirates ARE
Ecuador ECU Mozambique MOZ United Kingdom England and Wales XWA

Egypt EGY Myanmar MMR United Kingdom Northern Ireland XNI
England XWA Namibia NAM United Kingdom Scotland XSC
Eritrea ERI Nepal NPL United States USA
Estonia EST Netherlands NLD Uruguay URY

Ethiopia ETH New Zealand NZL Uzbekistan UZB
Finland FIN Nicaragua NIC Vanuatu VUT
France FRA Niger NER Venezuela VEN
Gabon GAB Nigeria NGA Vietnam VNM

Gambia GMB Northern Ireland XNI Yemen YEM
Georgia GEO Norway NOR Yugoslavia YUG

Germany DEU Pakistan PAK Zambia ZMB
Germany West ZZZY Panama PAN Zanzibar ZZZU

Ghana GHA Paraguay PRY Zimbabwe ZWE

134



B.2 Percentage bicycle ownership trends Further information: bicycle study

B.1.2 Household data

The Integrated Public Use Microdata Services [119] and World Health Surveys [145]

records also contained estimates of the number of households in respondent countries,

but for countries in other surveys we had to obtain these numbers from the United

Nations [189], the United Nations Economic Commission for Europe (UNECE) [191]

and other miscellaneous sources. We only searched for household populations in the

years for which bicycle ownership data were available. In cases where household

population numbers were not available, we estimated the number of households by

multiplying the average household size by the population of the country (obtained

from World Bank databases [206]). For countries where household numbers were not

available in certain years, we used data for the closest earlier year.

The processing of household data is summarized in the following steps:

1. Search for number of households for countries by year.

2. If household data are not available for a country in a given year, use data for

the closest earlier year.

3. If, for a certain year, step 2. is infeasible within a 20-year span, use the maximum

household population available for that country in any year

4. If the number of households for a certain country is completely missing for a

required year, take the average household size, and multiply by its population

in that year to estimate the number of households.

B.2 Percentage bicycle ownership for each country

Figure B.1 shows individual bicycle ownership plots for each of the countries studied.

The survey sources have also been labeled (refer to Table B.1). For all instances
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B.2 Percentage bicycle ownership trends Further information: bicycle study

in which more than one datapoint was available for a country-year (e.g. Dominican

Republic-2002), we used an average in the pre-processing stage, but multiple country-

years are shown in these plots to indicate survey diversity.
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Figure B.1 Bicycle ownership trends by country



B.2 Percentage bicycle ownership trends Further information: bicycle study

1990 1995 2000 2005 2010
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 b

ic
y
cl

e
 o

w
n
e
rs

h
ip ICVS

W
HS

AUT - Austria

1990 1995 2000 2005 2010
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 b

ic
y
cl

e
 o

w
n
e
rs

h
ip

ICVS

DHS

AZE - Azerbaijan

1990 1995 2000 2005 2010
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 b

ic
y
cl

e
 o

w
n
e
rs

h
ip

M
ICS3

DHS

BDI - Burundi

1990 1995 2000 2005 2010
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 b

ic
y
cl

e
 o

w
n
e
rs

h
ip

ICVS

ICVS

ICVS
W

HS

BEL - Belgium

1990 1995 2000 2005 2010
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 b

ic
y
cl

e
 o

w
n
e
rs

h
ip

DHS

DHS
DHS

BEN - Benin

1990 1995 2000 2005 2010
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 b

ic
y
cl

e
 o

w
n
e
rs

h
ip

DHS

DHS

W
HS

DHS

IPUM
S

DHS

BFA - Burkina Faso

Figure B.1 Bicycle ownership trends by country (cont)
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B.3 Reference data Further information: bicycle study

B.3 Reference data

B.3.1 Processed dataset

Table B.3 is the processed reference dataset, detailing the Year, country (ISO abbre-

viation), percentage bicycle ownership (PBO), estimated number of households and

the corresponding cluster or group number.

Table B.3 Bicycle ownership data. (“PBO” represents “percentage bicycle ownership”

Year ISO PBO Households Group Year ISO PBO Households Group

1989 AUS 47.00 7,760,322 2 2002 BRA 57.62 44,776,740 2

1989 BEL 54.79 3,608,178 2 2002 CHL 53.10 4,861,150 3

1989 CAN 60.72 8,281,530 2 2002 CHN 76.53 315,281,800 2

1989 CHE 62.48 2,543,540 2 2002 CIV 34.90 3,122,656 3

1989 DEU 72.27 26,977,920 1 2002 COG 8.85 575,082 4

1989 ESP 38.54 18,083,690 3 2002 COM 6.71 98,412 4

1989 FIN 82.64 1,781,771 1 2002 CZE 42.76 3,950,868 2

1989 FRA 52.31 19,392,640 2 2002 DEU 76.60 38,718,000 1

1989 GBR 31.56 20,200,000 3 2002 DNK 88.59 2,459,203 1

1989 IDN 62.52 34,315,135 2 2002 DOM 10.66 2,473,750 4

1989 JPN 70.88 51,842,307 2 2002 ECU 61.27 3,542,220 2

1989 NLD 87.86 5,111,000 1 2002 ERI 10.50 807,844 4

1989 NOR 66.61 1,523,508 1 2002 ESP 64.02 14,289,460 3

1989 USA 59.69 94,226,820 2 2002 EST 30.31 566,669 2

1990 COL 27.40 5,710,460 3 2002 ETH 2.39 15,239,290 4

1990 IDN 44.52 39,501,372 2 2002 FIN 85.00 2,354,082 1

1990 PAK 32.90 16,106,550 3 2002 FRA 60.03 23,808,072 2

1990 THA 59.59 11,813,400 2 2002 GEO 27.98 1,243,158 4

1991 CMR 15.70 1,756,460 4 2002 GHA 31.07 3,970,970 4

1991 DOM 3.80 1,222,400 4 2002 GRC 30.12 3,674,380 3

1991 IDN 40.20 39,501,372 2 2002 HRV 43.71 1,477,377 3

1991 MYS 41.34 3,909,600 3 2002 HUN 34.12 4,545,040 3

1991 PER 18.20 8,216,750 4 2002 IDN 44.20 51,249,710 2

1991 TZA 21.50 4,726,160 3 2002 IND 64.11 172,254,285 3

1991 YEM 3.70 1,845,684 4 2002 IRL 50.04 1,400,400 2

1992 ARG 67.60 11,996,510 2 2002 ISR 35.25 1,849,800 3

1992 AUS 59.07 7,760,322 2 2002 ITA 65.63 21,978,000 2

1992 BEL 65.61 3,953,125 2 2002 KAZ 28.83 4,160,216 4

1992 BRA 51.26 34,694,413 2 2002 KEN 36.33 6,342,120 4

1992 CAN 67.53 10,018,270 2 2002 LAO 53.90 1,023,107 2

1992 CHL 39.57 3,739,640 3 2002 LKA 44.69 407,065 3

1992 CHN 97.23 315,281,800 2 2002 LUX 64.04 171,953 2

1992 CRI 69.18 561,860 2 2002 LVA 17.98 802,848 3

1992 CZE 82.01 4,051,583 2 2002 MAR 31.21 4,459,460 4

1992 EGY 19.59 17,404,140 4 2002 MEX 53.21 22,268,196 3

1992 EST 65.64 597,100 2 2002 MLI 62.06 1,618,800 3

1992 FIN 83.44 2,036,732 1 2002 MMR 52.84 10,616,662 2

1992 GBR 50.39 21,576,100 3 2002 MOZ 22.15 4,655,396 4
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B.3 Reference data Further information: bicycle study

Table B.3 Bicycle ownership data. (“PBO” represents “percentage bicycle ownership”

Year ISO PBO Households Group Year ISO PBO Households Group

1992 GEO 18.93 1,243,158 4 2002 MRT 4.92 368,429 4

1992 IDN 56.59 39,501,372 2 2002 MUS 75.34 344,785 2

1992 IND 25.56 143,400,000 3 2002 MWI 39.16 2,290,050 3

1992 ITA 63.53 25,007,000 2 2002 MYS 44.49 4,778,200 3

1992 MAR 9.90 3,433,680 4 2002 NAM 18.43 16,839 4

1992 MDG 3.50 2,666,065 4 2002 NLD 89.48 6,934,263 1

1992 MWI 21.20 1,862,700 3 2002 NOR 80.51 1,961,548 1

1992 NAM 19.70 21,283 4 2002 NPL 35.89 4,586,995 4

1992 NER 4.70 1,134,000 4 2002 PAK 50.77 19,579,910 3

1992 NLD 90.35 6,061,000 1 2002 PHL 30.88 15,118,900 4

1992 NZL 62.49 1,443,636 2 2002 PRT 39.22 5,176,860 3

1992 PHL 24.77 11,561,260 4 2002 PRY 38.60 1,238,082 3

1992 POL 77.33 11,970,440 2 2002 RUS 22.85 52,711,375 3

1992 RUS 43.11 54,560,627 3 2002 RWA 10.39 1,917,190 4

1992 RWA 6.40 1,530,410 4 2002 SEN 16.20 1,079,990 4

1992 SEN 6.20 799,040 4 2002 SVK 55.89 2,071,743 2

1992 SVK 85.33 1,832,484 2 2002 SWE 84.88 4,448,746 1

1992 SVN 79.31 640,195 1 2002 TCD 23.07 1,118,597 4

1992 SWE 88.97 4,141,450 1 2002 TUN 30.17 1,458,100 3

1992 TUN 38.89 1,458,100 3 2002 TUR 31.45 16,446,644 3

1992 TZA 35.92 4,726,160 3 2002 TZA 42.02 8,417,680 3

1992 UGA 44.64 3,391,660 3 2002 UGA 39.96 5,292,710 3

1992 ZMB 19.10 1,295,010 3 2002 UKR 49.05 17,609,200 3

1993 BFA 66.80 1,452,690 1 2002 URY 71.03 1,180,670 2

1993 BGD 15.90 19,711,240 4 2002 VNM 81.55 17,804,633 2

1993 ESP 29.85 11,845,520 3 2002 ZAF 27.67 11,202,529 4

1993 GHA 16.10 5,702,340 4 2002 ZMB 39.58 1,862,250 3

1993 KEN 22.10 4,497,220 4 2002 ZWE 34.28 2,834,287 4

1993 PER 17.45 5,647,650 4 2003 BFA 78.00 1,631,770 1

1993 ZAF 23.89 17,258,500 4 2003 BOL 43.60 2,394,750 3

1994 CAF 11.50 802,163 4 2003 GHA 23.10 3,970,970 4

1994 CIV 26.20 2,584,056 3 2003 HTI 10.49 2,196,330 4

1994 ESP 24.48 11,845,520 3 2003 KEN 29.30 6,342,120 4

1994 HTI 9.20 1,147,920 4 2003 MAR 25.40 4,459,460 4

1994 IDN 45.40 39,501,372 2 2003 MDG 16.00 3,748,972 4

1994 ZWE 18.00 2,562,478 4 2003 MOZ 32.60 4,788,785 4

1995 COL 41.50 7,743,210 3 2003 NGA 32.70 43,404,000 4

1995 EGY 14.70 17,404,140 4 2003 PHL 19.70 15,118,900 4

1995 ERI 7.20 642,983 4 2004 BGD 24.20 26,259,590 4

1995 EST 67.27 597,100 2 2004 CMR 18.20 1,756,460 4

1995 GTM 22.80 1,980,924 4 2004 LSO 3.00 422,371 4

1995 IDN 52.98 38,612,325 2 2004 MWI 40.00 2,290,050 3

1995 KAZ 17.30 4,391,759 4 2004 PER 21.30 5,647,650 4

1995 MLI 37.20 1,365,150 3 2004 SLE 7.59 825,180 4

1995 UGA 34.20 3,391,660 3 2004 TCD 21.50 1,206,619 4

1996 ALB 50.22 791,830 3 2004 TZA 38.30 8,417,680 3

1996 ARG 67.41 11,996,510 2 2005 ALB 22.30 733,860 3

1996 AUT 81.14 3,093,200 1 2005 ARM 5.20 819,290 4

1996 BEN 42.60 764,000 3 2005 BDI 13.01 124,911 4

1996 BGD 19.30 19,711,240 4 2005 COD 24.20 7,945,294 4

1996 BOL 49.61 1,779,260 3 2005 COG 5.90 620,467 4

1996 BRA 61.34 34,694,413 2 2005 EGY 14.50 12,707,870 4

163
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Table B.3 Bicycle ownership data. (“PBO” represents “percentage bicycle ownership”

Year ISO PBO Households Group Year ISO PBO Households Group

1996 CAN 66.62 10,820,055 2 2005 ETH 1.20 16,594,169 4

1996 CHE 76.21 2,958,940 2 2005 GEO 8.16 1,173,675 4

1996 COM 2.50 84,521 4 2005 GIN 25.00 1,107,770 4

1996 CRI 65.06 561,860 2 2005 HND 39.30 1,444,000 3

1996 CZE 70.30 3,692,134 2 2005 HTI 17.50 2,196,330 4

1996 DOM 3.30 1,222,400 4 2005 IDN 44.28 52,300,392 2

1996 FIN 91.00 2,180,934 1 2005 IND 51.10 207,800,000 3

1996 FRA 61.97 22,616,500 2 2005 KHM 68.30 2,235,130 2

1996 GBR 49.30 21,576,100 3 2005 MDA 27.20 1,391,655 3

1996 GEO 28.31 1,243,158 4 2005 MKD 57.66 501,963 2

1996 HUN 45.90 4,387,780 3 2005 MNE 29.36 180,517 3

1996 IDN 68.80 38,612,325 2 2005 MNG 15.77 557,950 4

1996 IND 36.83 164,870,000 3 2005 NIC 31.99 1,193,390 4

1996 KGZ 35.08 2,493,770 4 2005 RWA 11.00 1,917,190 4

1996 LVA 36.41 859,823 3 2005 SEN 12.80 1,079,990 4

1996 MKD 63.11 501,963 2 2005 SLE 7.47 825,180 4

1996 MKD 48.11 501,963 2 2005 TJK 23.94 1,047,000 4

1996 MNG 18.05 427,830 4 2005 UKR 50.34 17,417,500 3

1996 NLD 91.13 6,468,682 1 2005 ZWE 25.10 2,849,907 4

1996 NPL 19.50 4,586,995 4 2005 ZZZX 51.62 2,521,190 2

1996 PER 23.00 5,647,650 4 2006 AGO 17.90 3,567,168 4

1996 PHL 13.57 13,621,900 4 2006 AZE 6.90 1,817,460 4

1996 POL 66.86 12,501,802 2 2006 BEN 39.50 936,000 3

1996 PRY 56.97 1,091,489 3 2006 BFA 80.72 2,362,060 1

1996 ROM 19.18 7,288,460 4 2006 BGD 24.98 28,716,961 4

1996 RUS 44.43 54,560,627 3 2006 BIH 36.10 1,067,120 3

1996 SWE 89.26 4,243,980 1 2006 BLZ 71.55 79,272 2

1996 TCD 11.80 900,913 4 2006 CAF 18.89 1,010,551 4

1996 TZA 31.90 4,726,160 3 2006 CIV 43.14 3,307,568 3

1996 UGA 44.04 3,391,660 3 2006 CMR 15.23 3,453,630 4

1996 USA 59.68 98,990,000 2 2006 DJI 8.98 125,006 4

1996 UZB 20.00 4,466,346 4 2006 EGY 16.28 17,404,140 4

1996 ZAF 28.27 9,938,010 4 2006 GHA 3.47 3,970,970 4

1996 ZMB 24.60 1,295,010 3 2006 GMB 44.24 158,032 3

1996 ZWE 27.11 2,656,078 4 2006 GNB 35.73 274,086 3

1997 BGR 32.50 2,964,577 4 2006 GUY 55.17 188,979 2

1997 BLR 36.40 3,873,139 3 2006 IRQ 15.01 2,654,020 4

1997 BWA 20.42 404,706 4 2006 KAZ 21.78 4,160,216 4

1997 COL 72.83 7,743,210 3 2006 KGZ 23.19 1,109,633 4

1997 HRV 56.72 1,544,250 3 2006 LAO 47.21 1,087,809 2

1997 IDN 47.50 38,612,325 2 2006 LBN 3.76 1,019,955 4

1997 JOR 8.90 973,430 4 2006 MLI 46.20 1,618,800 3

1997 KGZ 10.30 2,493,770 4 2006 MWI 43.21 2,290,050 3

1997 LTU 55.49 1,356,826 3 2006 NAM 15.20 16,839 4

1997 MDG 5.30 3,115,051 4 2006 NER 10.20 1,559,000 4

1997 MLT 41.47 119,479 3 2006 NPL 32.70 4,586,995 4

1997 MOZ 15.00 4,075,813 4 2006 PAK 40.70 19,579,910 3

1997 SEN 8.60 799,040 4 2006 SOM 1.85 1,860,314 4

1997 SVK 60.53 1,832,484 2 2006 SUR 40.82 134,001 3

1997 SVN 79.64 640,195 1 2006 SWZ 9.50 172,414 4

1997 UKR 32.73 36,235,710 3 2006 TGO 33.91 1,184,551 3

1997 VNM 74.40 10,684,460 2 2006 THA 57.60 16,541,700 2

164
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Table B.3 Bicycle ownership data. (“PBO” represents “percentage bicycle ownership”

Year ISO PBO Households Group Year ISO PBO Households Group

1997 YEM 4.30 2,397,618 4 2006 TTO 50.07 352,291 2

1998 BFA 77.20 1,631,770 1 2006 UGA 37.50 5,292,710 3

1998 CIV 29.60 2,890,724 3 2006 UZB 33.73 5,093,894 4

1998 CMR 13.30 1,756,460 4 2006 VNM 75.92 17,804,633 2

1998 GHA 17.40 5,702,340 4 2006 YEM 9.32 3,079,242 4

1998 GTM 26.70 2,121,248 4 2007 BGD 26.30 28,716,961 4

1998 IND 47.80 164,870,000 3 2007 CHN 48.65 2,226,546 2

1998 KEN 23.90 4,497,220 4 2007 DOM 1.50 2,473,750 4

1998 NER 4.80 1,246,000 4 2007 GHA 24.10 3,970,970 4

1998 NGA 6.14 43,404,000 4 2007 IDN 47.20 52,300,392 2

1998 NIC 18.50 828,150 4 2007 IND 64.38 207,800,000 3

1998 PHL 24.10 13,621,900 4 2007 LBR 4.10 688,360 4

1998 TGO 34.20 962,647 3 2007 NGA 27.62 36,840,000 4

1998 ZAF 16.90 9,938,010 4 2007 PER 21.60 8,216,750 4

1999 BGD 20.30 19,711,240 4 2007 RWA 12.20 1,917,190 4

1999 DOM 4.10 1,222,400 4 2007 UKR 40.40 17,341,100 3

1999 GIN 14.90 1,107,770 4 2007 ZAF 14.21 17,258,500 4

1999 KAZ 14.00 4,391,759 4 2007 ZMB 40.60 1,862,250 3

1999 NGA 24.20 43,404,000 4 2008 AGO 8.70 3,815,508 4

1999 TZA 32.30 4,726,160 3 2008 ALB 21.40 791,830 3

1999 ZWE 20.00 2,776,844 4 2008 BOL 36.60 2,394,750 3

2000 ALB 57.03 791,830 3 2008 CHN 60.87 2,226,546 2

2000 ARM 6.60 819,290 4 2008 EGY 9.80 17,404,140 4

2000 AUS 57.99 7,760,322 2 2008 GHA 33.86 3,970,970 4

2000 AZE 5.40 1,706,909 4 2008 IND 33.80 207,800,000 3

2000 BEL 72.90 4,237,775 2 2008 KEN 30.10 6,342,120 4

2000 BGR 22.62 2,964,577 4 2008 KHM 67.99 2,895,620 2

2000 BLR 38.49 3,855,016 3 2008 MDG 22.60 4,331,909 4

2000 CAN 67.28 10,820,055 2 2008 MOZ 40.05 5,484,945 4

2000 CHE 73.43 3,303,540 2 2008 MWI 44.83 2,998,640 3

2000 COL 60.51 7,743,210 3 2008 NGA 22.90 43,404,000 4

2000 CZE 58.43 3,854,791 2 2008 PHL 23.50 15,118,900 4

2000 DNK 87.52 2,438,307 1 2008 SDN 7.61 5,972,988 4

2000 EGY 14.00 12,707,870 4 2008 SEN 15.00 1,079,990 4

2000 EST 66.33 582,089 2 2008 SLE 10.50 825,180 4

2000 ETH 0.80 14,384,357 4 2008 SSD 25.10 1,322,742 4

2000 FIN 94.69 2,295,386 1 2008 STP 13.60 33,772 4

2000 FRA 64.44 23,808,072 2 2008 VUT 11.66 42,527 4

2000 GAB 3.40 194,000 4 2008 ZAF 13.19 1,322,742 4

2000 GBR 53.55 24,396,000 3 2009 CHN 63.12 2,226,546 2

2000 GEO 11.74 1,107,722 4 2009 GUY 52.10 192,853 2

2000 HRV 58.27 1,544,250 3 2009 KEN 29.45 8,952,300 4

2000 HTI 13.90 1,147,920 4 2009 LBR 3.00 688,360 4

2000 HUN 52.39 4,387,780 3 2009 LSO 2.10 422,371 4

2000 KHM 52.50 2,235,130 2 2009 MDV 39.90 43,197 3

2000 KOR 42.61 17,339,422 3 2009 MEX 36.93 25,469,850 3

2000 LTU 38.94 1,356,826 3 2009 TLS 11.00 194,962 4

2000 LVA 42.85 802,848 3 2009 ZWE 21.73 2,889,891 4

2000 MNG 21.10 557,950 4 2010 ARM 4.00 819,290 4

2000 MWI 43.40 2,290,050 3 2010 BDI 20.50 124,911 4

2000 MYS 33.17 4,778,200 3 2010 BFA 84.20 2,362,060 1

2000 NAM 17.60 21,283 4 2010 BTN 6.18 127,942 4
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Table B.3 Bicycle ownership data. (“PBO” represents “percentage bicycle ownership”

Year ISO PBO Households Group Year ISO PBO Households Group

2000 NLD 90.90 6,801,008 1 2010 CHN 62.97 2,226,546 2

2000 PAN 42.60 843,460 3 2010 COD 21.26 9,145,758 4

2000 PER 22.00 5,647,650 4 2010 COL 33.30 10,570,899 3

2000 PHL 21.44 15,118,900 4 2010 KHM 65.50 2,895,620 2

2000 POL 68.85 13,431,700 2 2010 MEX 32.88 29,036,410 3

2000 PRT 40.01 4,283,100 3 2010 MWI 43.80 2,998,640 3

2000 ROM 17.94 7,288,460 4 2010 NPL 23.94 4,586,995 4

2000 RUS 39.90 54,560,627 3 2010 PAK 45.96 19,579,910 3

2000 RWA 7.60 1,530,410 4 2010 RWA 15.20 1,917,190 4

2000 SWE 90.21 4,363,284 1 2010 SEN 16.60 1,079,990 4

2000 THA 46.37 16,541,700 2 2010 SLE 10.25 825,180 4

2000 TKM 13.10 882,631 4 2010 SUR 38.42 139,246 3

2000 UGA 38.80 3,391,660 3 2010 SWZ 7.96 172,414 4

2000 UKR 23.75 17,679,600 3 2010 TGO 32.34 1,313,752 3

2000 USA 56.89 123,688,760 2 2010 TZA 43.30 8,417,680 3

2001 ARG 72.49 10,408,520 2 2010 ZWE 22.60 2,932,057 4

2001 BEN 45.50 841,000 3 2010 ZZZX 57.16 2,521,190 2

2001 BOL 43.78 2,394,750 3 2011 AFG 31.82 3,933,172 3

2001 IND 43.67 172,254,285 3 2011 BGD 25.40 33,092,620 4

2001 KHM 62.95 2,235,130 2 2011 BLZ 70.92 79,272 2

2001 MLI 49.50 1,618,800 3 2011 CMR 14.70 3,453,630 4

2001 NIC 25.70 828,150 4 2011 ETH 2.30 19,475,612 4

2001 NPL 26.10 4,586,995 4 2011 HND 33.30 1,707,000 3

2001 SVN 79.25 640,195 1 2011 IND 44.82 207,800,000 3

2001 VEN 29.96 6,460,800 3 2011 IRQ 23.28 2,654,020 4

2001 ZMB 29.50 1,862,250 3 2011 KAZ 24.78 4,391,759 4

2002 ARE 66.35 642,224 2 2011 LBN 10.10 1,095,697 4

2002 AUT 84.85 3,314,200 1 2011 NGA 21.57 43,404,000 4

2002 BEL 72.77 4,319,040 2 2011 NPL 39.70 4,586,995 4

2002 BFA 79.07 1,631,770 1 2011 UGA 37.10 5,292,710 3

2002 BGD 26.71 26,259,590 4 2011 VNM 68.63 24,613,613 2

2002 BIH 47.61 1,206,791 3 2012 BIH 45.58 1,206,791 3

B.4 Code organization

The code for analyzing these data was written primarily in Python (using the IPython

[148] system, along with the Pandas [113] and Matplotlib [77] packages), and it is

available with other data resources at ce.jhu.edu/sauleh/obls-gbu.

Along with the main file (main-v3.py), supporting modules contain functions to

carry out the tasks as listed below:
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B.4 Code organization Further information: bicycle study

(1) initialize.py: Initialize data into dataframe

(2) alignment.py: Perform alignment using DTW algorithm and obtain separation

matrix

(3) clustering.py: Hosts the functions that perform the goodness-of-fit and gap

tests, and then perform the actual clustering to put the countries in groups

(4) household.py: Interpolation and data-reading functions to compute household

statistics for each country

(5) viz.py: Visualization functions (maps, plots, etc) to make sense of data and

results.

(6) summaries.py

An R script—gaptest.R—was also written to execute the gap test, but it is called

from within the gapTest function in the clustering module.

The raw bicycle ownership data (organized into a spreadsheet) and other required

elements (household data, shape files, etc) are stored in the resources directory. All

tabular output is kept in tables, and visual output is stored in Images.
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APPENDIXC
Mathematical formulation of North

American crude oil model (NACOM)

Here, we provide a complete formulation of the equilibrium model for the North

American crude oil market presented in Chapter 4. There are three optimization

problems relating to the supply side, transportation and the demand sector, each with

their own sets of constraints. These are detailed in the following three subsections.

The MCP is formulated as a set of KKT conditions (not enumerated in this section)

solved simultaneously. For further discussion on the basic model framework, please

refer to Huppmann and Egging [79].
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C.1 Acronyms used in Chapter 4

We describe the acronyms that appear frequently in Chapter 4 below in Table C.1.

Table C.1 Acronyms and abbreviations used with regard to the crude oil model

Acronym Full meaning Notes

API American Petroleum Institute [gravity] measure of crude
oil quality

CAPP Canadian Association of Petroleum Producers
EIA Energy Information Administration United States
GAMS General Algebraic Modeling System
KKT Karush-Kuhn-Tucker in reference to

first-order opti-
mality conditions

MCP Mixed Complementarity Problem class of problems
to which this
model belongs

NACOM North American crude oil model
OPEC Organization of the Petroleum Exporting Countries
PADD Petroleum Administration Defense District
Pemex Petróleos Mexicanos Mexico state-

run petroleum
company
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C.2 Further model nomenclature

A complete enumeration of the parameters and variables used in this model are given

in Table C.2 and Table C.3, respectively.

Table C.2 Model parameters

Transportation (Arcs)

capAya capacity, arc a in year y

depAya depreciation of arc capacity expansion

expAya capacity expansion limit, arc a year y

invAya unit investment costs, arc capacity expansion

lossAa loss rate, transit via arc a

trfAya tariff, arc a in year y

Production

avlPyne availability factor, production capacity

golPyne logarithmic term, production cost function

horPyne production horizon (reserves)

linPyne linear term, production cost function

lossPsne loss rate, production, node n, fuel e

qudPyne quadratic term, production cost function

Demand

effD
yne efficiency, demand satisfaction, fuel e

emsDye GHG emission during fuel e consumption, node n

euccDyne constant term, end use cost function

euclDyne linear term, end use cost function

intDyn intercept, inverse demand function, node n

slpDyn slope, inverse demand function, node n
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Table C.3 Variables

Production

αP
ysne production capacity constraint dual

γPysne production horizon constraint dual

qPysne quantity produced

zPysne production capacity expansion

Transportation (Arcs)

fA
ya operator arc flow

pAya arc capacity market clearing price

qAysa quantity transported, arc a

τAya arc capacity constraint dual

zAya arc capacity expansion dual

ζAya arc capacity expansion limit dual

Demand
pDyne final demand price of fuel e

qDysne quantity sold to refinery sector

Other
fG
yn quantity of GHG emissions at node g

ϕA
ya mass balance constraint dual

C.3 List of nodes

Table C.4 lists the nodes in the model, their abbreviations and their regions.

Table C.4 List of nodes, their abbreviations and regions in the model.

Node Abbreviation Region Producer Consumer

Alabama AL PADD3 0 0

Alaska AK PADD5 1 1

Arizona AZ PADD5 0 0

Arkansas AR PADD3 0 0

California CA PADD5 1 1

Colorado CO PADD4 1 1

Connecticut CT PADD1 0 0

Delaware DE PADD1 0 1

District of Columbia DC PADD1 0 0

Eastern Canada EC CAN 1 1

Florida FL PADD1 0 0

Georgia GA PADD1 0 0

Hawaii HI PADD5 0 0

Idaho ID PADD4 0 0

Illinois IL PADD2 0 1

Indiana IN PADD2 0 1

Iowa IA PADD2 0 0

Kansas KS PADD2 1 1

Kentucky KY PADD2 0 1
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Table C.4 List of nodes, their abbreviations and regions in the model.

Node Abbreviation Region Producer Consumer

Louisiana LA PADD3 1 1

Maine ME PADD1 0 0

Maryland MD PADD1 0 0

Massachusetts MA PADD1 0 0

Mexico MX MEX 1 1

Michigan MI PADD2 0 0

Minnesota MN PADD2 0 1

Mississippi MS PADD3 0 1

Missouri MO PADD2 0 0

Montana MT PADD4 0 1

Nebraska NE PADD2 0 0

Nevada NV PADD5 0 0

New Hampshire NH PADD1 0 0

New Jersey NJ PADD1 0 1

New Mexico NM PADD3 1 1

New York NY PADD1 0 0

North Carolina NC PADD1 0 0

North Dakota ND PADD2 1 1

Ohio OH PADD2 0 1

Oklahoma OK PADD2 1 1

Oregon OR PADD5 0 0

Pennsylvania PA PADD1 0 1

Rest of World RW ONA 1 1

Rhode Island RI PADD1 0 0

South Carolina SC PADD1 0 0

South Dakota SD PADD2 0 0

Tennessee TN PADD2 0 1

Texas TX PADD3 1 1

Utah UT PADD4 0 0

Vermont VT PADD1 0 0

Virginia VA PADD1 0 0

Washington WA PADD5 0 1

West Virginia WV PADD1 0 0

Western Canada WC CAN 1 1

Wisconsin WI PADD2 0 0

Wyoming WY PADD4 1 1

Alabama Rail Terminal AL R PADD3

Alaska Rail Terminal AK R PADD5

Arizona Rail Terminal AZ R PADD5

Arkansas Rail Terminal AR R PADD3

California Rail Terminal CA R PADD5

Colorado Rail Terminal CO R PADD4

Connecticut Rail Terminal CT R PADD1

Delaware Rail Terminal DE R PADD1

District of Columbia Rail Terminal DC R PADD1

Eastern Canada Rail Terminal EC R CAN

Florida Rail Terminal FL R PADD1

Georgia Rail Terminal GA R PADD1

Hawaii Rail Terminal HI R PADD5

Idaho Rail Terminal ID R PADD4

Illinois Rail Terminal IL R PADD2

Indiana Rail Terminal IN R PADD2
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Table C.4 List of nodes, their abbreviations and regions in the model.

Node Abbreviation Region Producer Consumer

Iowa Rail Terminal IA R PADD2

Kansas Rail Terminal KS R PADD2

Kentucky Rail Terminal KY R PADD2

Louisiana Rail Terminal LA R PADD3

Maine Rail Terminal ME R PADD1

Maryland Rail Terminal MD R PADD1

Massachusetts Rail Terminal MA R PADD1

Michigan Rail Terminal MI R PADD2

Minnesota Rail Terminal MN R PADD2

Mississippi Rail Terminal MS R PADD3

Missouri Rail Terminal MO R PADD2

Montana Rail Terminal MT R PADD4

Nebraska Rail Terminal NE R PADD2

Nevada Rail Terminal NV R PADD5

New Hampshire Rail Terminal NH R PADD1

New Jersey Rail Terminal NJ R PADD1

New Mexico Rail Terminal NM R PADD3

New York Rail Terminal NY R PADD1

North Carolina Rail Terminal NC R PADD1

North Dakota Rail Terminal ND R PADD2

Ohio Rail Terminal OH R PADD2

Oklahoma Rail Terminal OK R PADD2

Oregon Rail Terminal OR R PADD5

Pennsylvania Rail Terminal PA R PADD1

Rhode Island Rail Terminal RI R PADD1

South Carolina Rail Terminal SC R PADD1

South Dakota Rail Terminal SD R PADD2

Tennessee Rail Terminal TN R PADD2

Texas Rail Terminal TX R PADD3

Utah Rail Terminal UT R PADD4

Vermont Rail Terminal VT R PADD1

Virginia Rail Terminal VA R PADD1

Washington Rail Terminal WA R PADD5

West Virginia Rail Terminal WV R PADD1

Western Canada Rail Terminal WC R CAN

Wisconsin Rail Terminal WI R PADD2

Wyoming Rail Terminal WY R PADD4

173



C.4 Transportation arcs in the model NACOM

C.4 Transportation arcs in the model and their initial

parameter values

The arc data gathered for the model are shown in Table C.5. Some parameters were

later adjusted for calibration purposes.

Table C.5 Transportation arcs for crude oil included in the model.

Outgoing Node Incoming Node Type Tariff Capacity Capacity Constrained

AK CA Ship 6 0 0

AK RW Ship 2 0 1

AK WA Ship 6 0 0

AL R FL R Rail 2.15 0 0

AL R GA R Rail 1.4 0 0

AL R MS R Rail 1.35 0 0

AL R TN R Rail 1.45 0 0

AR MS BargeR 5.5 0 0

AR R LA R Rail 1.61 0 0

AR R MO R Rail 1.56 0 0

AR R MS R Rail 1.49 0 0

AR R OK R Rail 1.61 0 0

AR R TN R Rail 1.78 0 0

AR R TX R Rail 2 0 0

AZ R CA R Rail 2.27 0 0

AZ R NM R Rail 1.72 0 0

AZ R NV R Rail 2.14 0 0

AZ R UT R Rail 2.1 0 0

CA CA R Load 1 40 1

CA RW Ship 2 0 1

CA R AZ R Rail 2.27 0 0

CA R CA UnLoad 1 215.76 1

CA R NV R Rail 1.48 0 0

CA R OR R Rail 2.52 0 0

CO CO R Load 1 140.99 1

CO OK Pipeline 4.86 75 1

CO R CO UnLoad 1 6 1

CO R KS R Rail 1.96 0 0

CO R NE R Rail 1.99 0 0

CO R NM R Rail 1.71 0 0

CO R OK R Rail 2.12 0 0

CO R UT R Rail 1.87 0 0

CO R WY R Rail 1.64 0 0

CT R NY R Rail 1.22 0 0

DE DE R Load 1 0 1

DE R DE UnLoad 1 145 1

DE R MD R Rail 1.09 0 0

DE R PA R Rail 1.24 0 0

EC DE Ship 1.5 0 0
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Table C.5 Transportation arcs for crude oil included in the model.

Outgoing Node Incoming Node Type Tariff Capacity Capacity Constrained

EC EC R Load 1 0 1

EC NJ Ship 1.5 0 0

EC NY Ship 1.5 0 0

EC PA Ship 1.5 0 0

EC RW Ship 4 0 0

EC R EC UnLoad 1 240 1

EC R MI R Rail 7.88 0 0

EC R MN R Rail 9.01 0 0

EC R NY R Rail 3.35 0 0

EC R VT R Rail 2.88 0 0

EC R WC R Rail 6 0 0

FL R AL R Rail 2.15 0 0

FL R GA R Rail 1.92 0 0

GA NC Pipeline 4.81 860 1

GA R AL R Rail 1.4 0 0

GA R FL R Rail 1.92 0 0

GA R SC R Rail 1.36 0 0

GA R TN R Rail 1.36 0 0

IA R IL R Rail 1.57 0 0

IA R MN R Rail 1.61 0 0

IA R MO R Rail 1.58 0 0

IA R NE R Rail 1.63 0 0

IA R SD R Rail 1.86 0 0

IA R WI R Rail 1.55 0 0

ID R MT R Rail 1.64 0 0

ID R NV R Rail 2.06 0 0

ID R OR R Rail 12.93 0 0

ID R UT R Rail 1.76 0 0

ID R WA R Rail 13 0 0

ID R WC R Rail 10.39 0 0

ID R WY R Rail 1.94 0 0

IL IL R Load 1 0 1

IL IN Pipeline 4.8 2,620 1

IL KY Pipeline 4.82 256 1

IL MS BargeR 5.5 0 0

IL OH Pipeline 4.78 290 1

IL R IA R Rail 1.57 0 0

IL R IL UnLoad 1 312.04 1

IL R IN R Rail 1.3 0 0

IL R KY R Rail 1.71 0 0

IL R MO R Rail 1.49 0 0

IL R WI R Rail 1.64 0 0

IN IN R Load 1 0 1

IN MI Pipeline 4.85 2,620 1

IN R IL R Rail 1.3 0 0

IN R IN UnLoad 1 0 1

IN R KY R Rail 1.37 0 0

IN R MI R Rail 1.6 0 0

IN R OH R Rail 1.41 0 0

KS KS R Load 1 0 1

KS OK Pipeline 4.78 230 1

KS R CO R Rail 1.96 0 0
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Table C.5 Transportation arcs for crude oil included in the model.

Outgoing Node Incoming Node Type Tariff Capacity Capacity Constrained

KS R KS UnLoad 1 32 1

KS R MO R Rail 1.56 0 0

KS R NE R Rail 1.43 0 0

KS R OK R Rail 1.26 0 0

KY KY R Load 1 0 1

KY R IL R Rail 1.71 0 0

KY R IN R Rail 1.37 0 0

KY R KY UnLoad 1 0 1

KY R MO R Rail 2.04 0 0

KY R OH R Rail 1.48 0 0

KY R TN R Rail 1.13 0 0

KY R VA R Rail 1.61 0 0

KY R WV R Rail 1.21 0 0

LA LA R Load 1 10 1

LA MS BargeS 5.5 0 0

LA RW Ship 2 0 1

LA TN BargeR 6.8 0 0

LA TN Pipeline 4.84 1,200 1

LA TX Pipeline 4.8 325 1

LA R AR R Rail 1.61 0 0

LA R LA UnLoad 1 687.23 1

LA R MS R Rail 1.36 0 0

LA R TX R Rail 1.83 0 0

MA R NY R Rail 1.37 0 0

MA R RI R Rail 1 0 0

MD R DE R Rail 1.09 0 0

MD R PA R Rail 1.19 0 0

MD R VA R Rail 1.22 0 0

MD R WV R Rail 1.52 0 0

ME EC Pipeline 4.78 300 1

MI EC Pipeline 4.85 40 1

MI NJ Pipeline 4.86 0 1

MI R EC R Rail 4.88 0 0

MI R IN R Rail 1.6 0 0

MI R OH R Rail 1.51 0 0

MI R WI R Rail 1.61 0 0

MN MN R Load 1 0 1

MN R EC R Rail 5.01 0 0

MN R IA R Rail 1.61 0 0

MN R MN UnLoad 1 0 1

MN R ND R Rail 1.73 0 0

MN R SD R Rail 1.68 0 0

MN R WC R Rail 11.2 0 0

MN R WI R Rail 1.53 0 0

MO MS BargeR 5.5 0 0

MO R AR R Rail 1.56 0 0

MO R IA R Rail 1.58 0 0

MO R IL R Rail 1.49 0 0

MO R KS R Rail 1.56 0 0

MO R KY R Rail 2.04 0 0

MO R NE R Rail 1.9 0 0

MO R OK R Rail 1.79 0 0
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Table C.5 Transportation arcs for crude oil included in the model.

Outgoing Node Incoming Node Type Tariff Capacity Capacity Constrained

MO R TN R Rail 1.88 0 0

MS MS R Load 1 0 1

MS PA BargeS 5 0 0

MS R AL R Rail 1.35 0 0

MS R AR R Rail 1.49 0 0

MS R LA R Rail 1.36 0 0

MS R MS UnLoad 1 50 1

MS R TN R Rail 1.62 0 0

MT MT R Load 1 0 1

MT WA Pipeline 4.86 0 1

MT WY Pipeline 4.81 145 1

MT R ID R Rail 1.64 0 0

MT R MT UnLoad 1 0 1

MT R ND R Rail 2.25 0 0

MT R SD R Rail 2.41 0 0

MT R WA R Rail 20.43 0 0

MT R WC R Rail 9.82 0 0

MT R WY R Rail 1.79 0 0

MX AL Ship 0.4 0 0

MX LA Ship 0.4 0 0

MX MS Ship 0.4 0 0

MX NJ Ship 4 0 0

MX RW Ship 1.5 0 0

MX TX Ship 0.4 0 0

NC NJ Pipeline 4.86 860 1

NC R SC R Rail 1.28 0 0

NC R TN R Rail 1.66 0 0

NC R VA R Rail 1.37 0 0

ND IL Pipeline 4.91 2,620 1

ND MT Pipeline 4.75 145 1

ND ND R Load 1 1,262.99 1

ND R EC R Rail 2 17 1

ND R MN R Rail 1.73 0 0

ND R MT R Rail 2.25 0 0

ND R ND UnLoad 1 0 1

ND R SD R Rail 1.51 0 0

ND R WC R Rail 10.39 0 0

NE OK Pipeline 4.8 591 1

NE R CO R Rail 1.99 0 0

NE R IA R Rail 1.63 0 0

NE R KS R Rail 1.43 0 0

NE R MO R Rail 1.9 0 0

NE R SD R Rail 1.51 0 0

NE R WY R Rail 2.19 0 0

NJ NJ R Load 1 0 1

NJ RW Ship 2 0 1

NJ R NJ UnLoad 1 101.47 1

NJ R NY R Rail 1.25 0 0

NJ R PA R Rail 1.29 0 0

NM NM R Load 1 173.98 1

NM TX Pipeline 4.9 400 1

NM R AZ R Rail 1.72 0 0
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Table C.5 Transportation arcs for crude oil included in the model.

Outgoing Node Incoming Node Type Tariff Capacity Capacity Constrained

NM R CO R Rail 1.71 0 0

NM R NM UnLoad 1 0 1

NM R OK R Rail 2.14 0 0

NM R TX R Rail 2.43 0 0

NV R AZ R Rail 2.14 0 0

NV R CA R Rail 1.48 0 0

NV R ID R Rail 2.06 0 0

NV R OR R Rail 2.26 0 0

NV R UT R Rail 1.73 0 0

NY R CT R Rail 1.22 0 0

NY R EC R Rail 4.85 0 0

NY R MA R Rail 1.37 0 0

NY R NJ R Rail 1.25 0 0

NY R PA R Rail 1.34 0 0

OH LA BargeR 5.5 0 0

OH OH R Load 1 24 1

OH TX BargeR 5.5 0 0

OH R IN R Rail 1.41 0 0

OH R KY R Rail 1.48 0 0

OH R MI R Rail 1.51 0 0

OH R OH UnLoad 1 56.76 1

OH R PA R Rail 1.44 0 0

OH R WV R Rail 1.09 0 0

OK IL Pipeline 4.91 913 1

OK LA BargeR 5 0 0

OK OK R Load 1 722.97 1

OK TX Pipeline 3.11 850 1

OK R AR R Rail 1.61 0 0

OK R CO R Rail 2.12 0 0

OK R KS R Rail 1.26 0 0

OK R MO R Rail 1.79 0 0

OK R NM R Rail 2.14 0 0

OK R OK UnLoad 1 176.76 1

OK R TX R Rail 0.99 0 0

OR CA BargeS 5 0 0

OR WA BargeS 5 0 0

OR R CA R Rail 2.52 0 0

OR R ID R Rail 5.93 0 0

OR R NV R Rail 2.26 0 0

OR R OR UnLoad 1 200 1

OR R WA R Rail 1.43 0 0

PA KY BargeR 5.5 0 0

PA LA BargeR 5.5 0 0

PA MS BargeS 4 5.3 1

PA PA R Load 1 0 1

PA R DE R Rail 1.24 0 0

PA R MD R Rail 1.19 0 0

PA R NJ R Rail 1.29 0 0

PA R NY R Rail 1.34 0 0

PA R OH R Rail 1.69 0 0

PA R PA UnLoad 1 275 1

PA R WV R Rail 1.57 0 0
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Table C.5 Transportation arcs for crude oil included in the model.

Outgoing Node Incoming Node Type Tariff Capacity Capacity Constrained

RI R MA R Rail 1 0 0

RW AK Ship 2 0 0

RW AL Ship 2 0 0

RW CA Ship 1.5 0 0

RW DE Ship 2 0 0

RW EC Ship 4 0 0

RW LA Ship 2 0 0

RW MS Ship 2 0 0

RW MX Ship 2 0 0

RW NJ Ship 2 0 0

RW NY Ship 2 0 0

RW PA Ship 2 0 0

RW TX Ship 2 0 0

RW WA Ship 2 0 0

SC R GA R Rail 1.36 0 0

SC R NC R Rail 1.28 0 0

SD R IA R Rail 1.86 0 0

SD R MN R Rail 1.68 0 0

SD R MT R Rail 2.41 0 0

SD R ND R Rail 1.51 0 0

SD R NE R Rail 1.51 0 0

SD R WY R Rail 2 0 0

TN IL Pipeline 4.78 1,200 1

TN TN R Load 1 0 1

TN R AL R Rail 1.45 0 0

TN R AR R Rail 1.78 0 0

TN R GA R Rail 1.36 0 0

TN R KY R Rail 1.13 0 0

TN R MO R Rail 1.88 0 0

TN R MS R Rail 1.62 0 0

TN R NC R Rail 1.66 0 0

TN R TN UnLoad 1 0 1

TN R VA R Rail 1.85 0 0

TX EC Ship 2 0 0

TX GA Pipeline 4.93 860 1

TX LA BargeR 5 0 0

TX MS BargeR 5 0 0

TX NJ Ship 5 0 0

TX NY BargeS 5 0 0

TX OH Pipeline 5 300 1

TX OK Pipeline 4.85 720 1

TX PA BargeS 6 0 0

TX RW Ship 2 0 1

TX TX R Load 1 741.95 1

TX R AR R Rail 2 0 0

TX R LA R Rail 1.83 0 0

TX R NM R Rail 2.43 0 0

TX R OK R Rail 1.74 0 0

TX R TX UnLoad 1 752.51 1

UT R AZ R Rail 2.1 0 0

UT R CO R Rail 1.87 0 0

UT R ID R Rail 1.76 0 0
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Table C.5 Transportation arcs for crude oil included in the model.

Outgoing Node Incoming Node Type Tariff Capacity Capacity Constrained

UT R NV R Rail 1.73 0 0

UT R WY R Rail 1.72 0 0

VA R KY R Rail 1.61 0 0

VA R MD R Rail 1.22 0 0

VA R NC R Rail 1.37 0 0

VA R TN R Rail 1.85 0 0

VA R WV R Rail 1.08 0 0

VT R EC R Rail 4.38 0 0

WA OR Pipeline 4.81 295 1

WA RW Ship 2 0 1

WA WA R Load 1 0 1

WA R ID R Rail 2.5 0 0

WA R OR R Rail 1.43 0 0

WA R WA UnLoad 1 163 1

WA R WC R Rail 10.38 0 0

WC MN Pipeline 4.96 880 1

WC MT Pipeline 4.99 145 1

WC ND Pipeline 4.93 2,620 1

WC NE Pipeline 4.92 591 1

WC WC R Load 1 990.46 1

WC WY Pipeline 4.93 280 1

WC R EC R Rail 6 0 0

WC R ID R Rail 10.39 0 0

WC R MN R Rail 11.2 0 0

WC R MT R Rail 9.82 0 0

WC R ND R Rail 10.39 0 0

WC R WA R Rail 10.38 0 0

WC R WC UnLoad 1 7 1

WI R IA R Rail 1.55 0 0

WI R IL R Rail 1.64 0 0

WI R MI R Rail 1.61 0 0

WI R MN R Rail 1.53 0 0

WV KY BargeR 5.5 0 0

WV LA BargeR 5.5 0 0

WV TX BargeR 5.5 0 0

WV R KY R Rail 1.21 0 0

WV R MD R Rail 1.52 0 0

WV R OH R Rail 1.09 0 0

WV R PA R Rail 1.57 0 0

WV R VA R Rail 1.08 0 0

WY IL Pipeline 4.99 280 1

WY KS Pipeline 4.84 230 1

WY WY R Load 1 555 1

WY R CO R Rail 1.64 0 0

WY R ID R Rail 1.94 0 0

WY R MT R Rail 1.79 0 0

WY R NE R Rail 2.19 0 0

WY R SD R Rail 2 0 0

WY R UT R Rail 1.72 0 0

WY R WY UnLoad 1 0 1
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C.5 The Petroleum Administration for Defense Dis-

tricts

Figure C.1 Petroleum Administration for Defense Districts (Source: EIA [193])

The Petroleum Administration Defense Districts (PADDs) were historically drawn

up to organize gasoline distribution during wartime rationing [193], but they have now

been established as the baseline for recording and analyzing crude oil movements in

the U.S. (Figure C.1), especially by the Energy Information Administration. As

described in Subsection 4.4.4, we use the PADD regional crude oil movement data

as the basis for calibrating base case flows through the U.S. We also occasionally use

them in highlighting regional changes at various points in Chapter 4.
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C.6 Model and reference flow comparisons

To validate our model, we compare flows to reference data at the regional level, which

is the best resolution available. The interregional flows in the base year 2012 for each

of the modes are shown in Figure C.2, Figure C.3 and Figure C.4.

Figure C.2 Comparison of model and reference interregional flows via rail in 2012
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Figure C.3 Comparison of model and reference interregional flows via pipeline in 2012
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Figure C.4 Comparison of model and reference interregional flows via tanker/barge in

2012
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[47] Augusto Eusébio and José Rui Figuiera. Finding non-dominated solutions in

191

http://fuelfix.com/blog/2014/09/29/rare-alaskan-crude-shipment-heads-to-south-korea/
http://fuelfix.com/blog/2014/09/29/rare-alaskan-crude-shipment-heads-to-south-korea/
http://dx.doi.org/10.1007/978-3-540-89646-3_3
https://gupea.ub.gu.se/bitstream/2077/36949/1/gupea_2077_36949_1.pdf
https://gupea.ub.gu.se/bitstream/2077/36949/1/gupea_2077_36949_1.pdf


Bibliography

bi-objective integer network flow problems. Computers & Operations

Research, 36(9):2554–2564, 2009.

[48] Felipe Feijoo, Daniel Huppmann, Larissa Sakiyama, and Sauleh Siddiqui.

North American natural gas model impact of cross-border trade with Mexico.

Discussion Paper 1553, German Institute for Economic Research (DIW

Berlin), 2016.

[49] M. C. Ferris and J. S. Pang. Engineering and economic applications of

complementarity problems. SIAM Review, 39(4):669 – 713, December 1997.

[50] Michael C. Ferris and Todd S. Munson. Complementarity problems in GAMS

and the PATH solver. Journal of Economic Dynamics and Control, 24(2):165

– 188, 2000.

[51] Fietsberaad. Continuous and integral: The cycling policies of Groningen and

other European cycling cities. Publication Number 7, Dutch Bicycle Council,

Utrecht, The Netherlands, 2006.

[52] Martin Fink, Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Julian
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[131] CBC News. Hydro-Québec raises concerns about Energy East pipeline, March

2015. URL http://www.cbc.ca/news/canada/montreal/hydro-qu%C3%

A9bec-raises-concerns-about-energy-east-pipeline-1.2982723.

[132] Blake Nicholson and James MacPherson. TransCanada to seek U.S. approval

for $600m Upland pipeline. CBC News, February 2015. URL

http://www.cbc.ca/news/canada/calgary/

transcanada-to-seek-u-s-approval-for-600m-upland-pipeline-1.

2964374.

[133] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer

Series in Operations Research and Financial Engineering. Springer, New York,

NY, second edition, 2006.
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