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Abstract

Computational modeling of the human brain has long been an important goal of

scientific research. The visual system is of particular interest because it is one of the

primary modalities by which we understand the world. One integral aspect of vision

is object representation, which plays an important role in machine perception as well.

In the human brain, object recognition is a part of the functionality of the ventral

pathway. In this work, we have developed a computational and statistical techniques

to characterize object representation among this pathway. The understanding of how

the brain represents objects is essential to developing models of computer vision that

are truer to how humans perceive the world.

In the ventral pathway, the lateral occipital complex (LOC) is known to respond

to images of objects [31]. Neural recording studies in monkeys have shown that the

homologue for LOC represents objects as configurations of medial axis and surface

components [25, 49, 65]. In this work, we designed and implemented novel experiment

paradigms and developed algorithms to test whether the human LOC represents

medial axis structure as in the monkey models. We developed a data-driven iterative
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sparse regression model guided by neuroscience principles in order to estimate the

response pattern of LOC voxels. For each voxel, we modeled the response pattern as

a linear combination of partial medial axis configurations that appeared as fragments

across multiple stimuli. We used this model to demonstrate evidence of structural

object coding in the LOC. Finally, we developed an algorithm to reconstruct images

of stimuli being viewed by subjects based on their brain images. As a whole, we apply

computational techniques to present the first significant evidence that the LOC carries

information about the medial axis structure of objects, and further characterize its

response properties.

Primary Reader: Prof. Gregory D. Hager

Secondary Reader: Prof. Charles E. Connor

Secondary Reader: Prof. Russell H. Taylor
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Chapter 1

Introduction

Understanding the workings of the human brain is an ongoing pursuit. The visual

system in particular plays a huge role in perception, and thus characterizing its be-

havior is key to this understanding. While the behavior of earlier visual areas is

rather well understood, higher-level areas in the visual system remain hard to define,

especially in humans. Even in areas where the general capability of the region is

known, the way it specifically translates a given stimulus into brain signals is harder

to define. Since earlier visual areas (e.g. V1) code for visual stimuli in more direct

ways, there is a large body of work identifying those areas. Higher level areas have

more complex schema for representing visual information, and thus the exact way

they represent visual information isn’t know, even though their general task is. In

general, how the human brain represents structural characteristics of objects is not

well-defined. Neurophysiological work in monkeys has led to significant understand-

1



CHAPTER 1. INTRODUCTION

ing of these representations, however due to the invasive nature of this process it is

not applicable to humans.

Technological advancements in the past few decades have made such analyses pos-

sible, enabling non-invasive measurement of brain activity. The key tool for mapping

out the functionality of the human brain in this manner is functional magnetic res-

onance imaging (fMRI). Measuring blood flow to parts of the brain using magnetic

fields caused by blood oxygenation differences, fMRI has made it possible to image

the human brain as it operates. Use of fMRI has enabled us to delineate brain areas

based on their functional characteristics. The problem with fMRI is that it measures

a complex signal that is affected by many factors, and it requires precise experiment

design and statistical analysis to truly leverage to its full extent. Higher visual areas

that are purely functionally defined are especially difficult to image and model. These

statistical analyses and experiment protocols must be driven by algorithms and tools

created specifically for the purposes of each experiment and visual area. In this work

we will discuss a set of computational models, experiment paradigms and software

developed for the purpose of measuring and modeling activity in the human lateral

occipital complex.
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1.1 Motivation

This dissertation is concerned with the problem of developing a computational

model of how the visual cortex represents object structure. If the visual stimulus

an eye receives can be thought of as analogous to a 2-dimensional image, the func-

tionality of early visual areas could be described as a direct product of the image’s

pixel content, based on linear filters. Further along the ventral pathway, in higher

visual areas, the exact nature of how the visual stimulus is represented is unknown.

Specifically, it is known that the lateral occipital complex (LOC) represents structural

information for visual stimuli in some fashion, but a concrete parametrization has not

been established.

This is partly due to challenges associated with fMRI. Unlike neurophysiological

recordings, fMRI does not directly measure the activity of neurons. Instead, it mea-

sures the blood oxygenation level changes in a unit of 3-dimensional space known

as a volumetric pixel (voxel). This signal is a function of the neural response, but

not in a direct fashion. The activity of neurons causes blood flow to blood vessels

contained within the voxel, which increases the oxygenation within the voxel. This

signal is called the blood-oxygen-level-dependent (BOLD) signal. Studies measuring

the electrophysiological signal from a certain region and the fMRI BOLD signal from

that region have shown a direct correlation between those signals, which means fMRI

can be used as an extremely coarse approximation for neural recordings.

While fMRI is an essential tool for analyzing functionality of brain areas, it is
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also one with many limitations. The spatial resolution of a voxel is limited to a

few milimeters, which means that a voxel usually contains hundreds of thousands of

neurons. As a result, trying to ascertain fine behavior of the brain is challenging.

The BOLD response to a given stimulus is not a value that is trivially extractable

either. Scanners are prone to magnetic interference and drift in signal, subjects often

get uncomfortable and move within the scanner, and BOLD signal is inherently noisy.

To counteract this, clever experiment design and computational models are necessary

for obtaining meaningful information from fMRI.

The task of defining object representation in the LOC is difficult in itself. While

work in monkeys shows that the homolog for LOC, inferotemporal cortex (IT) codes

for objects in terms of shape, orientation and position in a continuous manner, the

limitations of fMRI mean that such a parametrization is too fine to verify in humans.

To obtain a robust characterization of the BOLD signal for any given stimulus, many

repetitions of the image need to be shown to participants, and to define a ”shape

space” where shapes are parametrized sufficiently requires many different stimuli to

be shown. Coupled with limitations on the attention span of participants, this requires

solving experimental design challenges that explore both the depth and breadth of any

given parametrization within the mimimum amount of time. Such an experiment de-

sign would also require the development of special-purpose methods to accommodate

and implement it.

Given a robust stimulus set and an efficient experiment, there still remains the
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task of preparing, then analyzing this data to show evidence of the parametrization

being a valid way of representing how the LOC responds to object images. Once

this parametrization is established with a computational model, it would need to be

tested to ensure its validity and specificity. The viability of the computational model

would also need to be verified separately.

Our goal is to design an fMRI experiment that can provide robust enough signal for

a set of objects that are varied enough to be parametrized such that we can show ev-

idence for coding of object structure in LOC using statistical analyses. Such analyses

would establish the LOC as a brain area that codes for object shapes in a parametric

fashion. The establishment of such a coding would enable the reconstructing of visual

stimuli based on fMRI images. This would set the path for future research in explor-

ing a more concrete representation of the function of LOC in humans, and be the

next step in modeling the visual system after the early areas. These goals, however,

come with significant computational challenges. The experiment design would require

algorithms to generate visual stimuli specific to the task of modeling LOC activity,

and experiment suite to interface with fMRI scanners and run the procedure facili-

tating the experiment. The fMRI data, once acquired, would require processing with

imaging and registration methods to be ready for statistical analysis. The analyses

themselves would require the development of a statistical modeling algorithm that

takes into account the nature and domain of the data. Finally, the reconstruction

process would also require the design of an algorithm for this specific purpose.
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1.2 Proposed Approach

Concretely, the problems we are attempting to solve are:

How can we design an experiment paradigm and computationally im-
plement this paradigm in practice? How can we algorithmically create a
visual stimulus set for use in fMRI to incite the LOC? How can we prepare
LOC images using pre-processing and registration methods for statistical
analysis? How can we design an algorithm to model the activity of LOC
voxels based on object parameters, and how can we validate these algo-
rithms? Can we reconstruct stimuli subjects are viewing based on their
brain activity using these methods?

The approach we take in this work to solve this problem is based on work in monkeys,

showing that neurons in the IT code for object structure in terms of curvature, ori-

entation and polar position. Since the LOC is the human homolog for IT, we expect

there to be similar representation of object structure in LOC. To do this, we need to

develop a stimulus set consisting of images that contain variations in structure similar

to the coding of IT. Due to limitations of fMRI, this stimulus set should be one that

contains many presentations of each stimulus, and should represent a large enough

variety of parameters within ”structure-space” to be able to cut through noise and

other fMRI artifacts. Such a stimulus set would be difficult to design by hand, so

we would need to design an algorithm to generate these stimuli based on parameters,

then use this algorithm to help us choose an optimal stimulus set.

In order to make the statement that this structural coding parametrization is

specific to the function of LOC, it is necessary to show that this parametrization is

inapplicable in brain areas that code for similar shapes in different ways, and that
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other non-structural parametrizations aren’t applicable in the LOC. The visual word-

form area (VWFA), which codes for letter-like shapes similar to the medial axis stimuli

that this work relies on, is a good candidate for the former analysis. Conversely,

existing work shows that V1 codes for objects with a spectral coding based on Gabor

Wavelet Pyramids (GWP), and showing that this coding does not work on LOC

voxels would be a candidate for the latter. To further solidify this parametrization

as a model for the behavior of LOC, it is also necessary to demonstrate that this

parametrization can be used to reconstruct stimuli being viewed by subjects based

on activity in their LOC. We will need to design an algorithm that is capable of fitting

statistical models to all of these brain areas and object parametrizations, given the

degenerate data conditions of fMRI.

To achieve all of this, it is necessaryto design an experiment where an abundance of

images can be delivered to subjects within the constraints of a scanning run. It is also

important to leverage as much data as possible from each scan, both in terms of time

and spatial resolution. This will require very precise experiment design. Such exper-

iment design requires the development of a software tool that is highly configurable

and temporally precise. The design of this tool also needs to be intertwined with the

stimulus generation process. Following that, the data needs to be pre-processed in a

way that takes into account the limitations of the experiment and goals of the anal-

ysis. These pre-processing steps also require the design of a pre-processing software

tool developed with the constraints imposed by the other aspects of the process in
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mind.

Our goals translate to the following questions. These are the questions we need to

answer in order to provide evidence of the lateral occipital complex coding for object

structure:

1. How can we create computational methods based on neuroscience principles that

are capable of preparing stimuli and executing an fMRI experiment to obtain

data about very fine features from a complex brain area?

2. How can we use conventional registration methods to pre-process narrow-field-

of-view fMRI images and identify certain brain areas?

3. Can we develop a computational model that can describe the activity of LOC

voxels informed by a structural parametrization of medial axis stimuli?

4. Can we develop an algorithm that uses the parametrization of medial axis stimuli

to reconstruct images being viewed by a subject from their LOC voxel activity?

The goal of this thesis is to answer these four questions. This thesis will be laid out

in the following fashion. Chapter 2 will address the first challenge. We will discuss

our experiment design and imaging paradigm as motivated by neuroscience, and the

implementation details of the methods we designed to facilitate them. Chapter 3

will address the second challenge. We will detail the process we use to take the

raw output of the fMRI scanner and turn it into data that can be interpreted in a

spatial and temporal fashion. Chapter 4 will begin addressing the main point of this
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work, which is the third challenge. We will develop a computational model for how

shape parameters can be used to explain the behavior of LOC voxels, and validate

our model. Finally, Chapter 5 will complete the argument from the previous chapter

by addressing the last challenge, validating the parametrization by developing an

algorithm that can predict stimuli being viewed by the subjects.

1.3 Thesis Statement

Informed by neuroscience principles and knowledge, it is possible to computa-

tionally model the human lateral occipital complex’s activity with a model based on

parametrizing the medial axis structure of objects.

1.4 Overview of Contributions

This thesis is composed of four key contributions. These contributions provide new

approaches to addressing the challenges outlined above, starting with the ultimate

goal of building a computational model of human LOC activity, followed by the

algorithms and principles developed to facilitate this goal.
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1.4.1 Contribution 1

A Computational Model For Explaining The Activity of LOC Voxels

Using Medial Axis Parametrization of Stimuli Our first contribution is showing

that the activity of LOC voxels can be modeled using a data-driven sparse linear

regression algorithm that reduces overfitting computational model based on structural

parametrization of medial axis object stimuli.

1.4.2 Contribution 2

Reconstructing Stimulus Images from LOC Activity Our second contribu-

tion is the development of an algorithm for reconstructing stimulus images from LOC

voxel activity.

1.4.3 Contribution 3

Experiment Paradigms For Identifying Object Representation in LOC

Our third contribution is a set of experiment paradigms, algorithms and tools for cre-

ating visual stimuli and facilitating an fMRI experiment with them, with the purpose

of facilitating Contributions 1 and 2.
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1.4.4 Contribution 4

High Resolution Visual Cortex Imaging Our fourth contribution is a set of

principles and an imaging paradigm conducting fMRI experiments designed specifi-

cally to acquire and process higher-than-normal resolution images of the visual cortex

using conventional scanners, and the process for registering these images.

1.5 Attribution

The entirety of this work was done by the author under the guidance of Charles

E. Connor and Steven Yantis. Anthony W. Sali and Brian A. Anderson assisted with

the experiment design in chapter 2 and pre-processing in 3. The narrow-view fMRI

technique was developed with the guidance of Zach Reagh and Michael Yassa.

1.6 Notation and Definitions

In this section we will define terms and acronyms that are commonly used through-

out this work.

• BOLD - Blood-oxygen-level dependent signal. The method with which fMRI

images are acquired.

• fMRI - Functional Magnetic Resonance Imaging.

• GLM - Generalized Linear Model.
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• HRF - Hemodynamic Response Function. The curve that characterizes the

change in BOLD signal as a result of neuron stimulation.

• IT - Inferotemporal Cortex. The homolog of LOC in monkeys.

• LOC - Lateral Occipital Complex. A human visual area that is thought to

respond to images of objects.

• Medial Axis - The medial axis of an object is the set of all points having more

than one closest point on the object’s boundary. In the context of this work,

we use it to refer to our stimuli which consist of straight and curved lines.

• Tesla - Unit of magnetic field. Generally used to refer to the strength of an

fMRI scanner.

• Voxel - Volumetric Pixel. Three-dimensional analogue of a pixel.

• VWFA - Visual Word-Form Area. A human visual area that is thought to

respond to images of words.
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Chapter 2

Experiment and Stimulus Design

Our goal in this chapter is to design a stimulus set and parametrization along with

an fMRI experiment in order to be able to characterize the responses in LOC in

terms of object structure. Both of these tasks require the development of specialized

software tools, and these tools are intertwined in their functionality and operation.

While there is a significant amount of work concerned with creating stimuli that can

be parametrized and mapped to earlier brain areas, the complexity of the function

of LOC means that a different approach is necessary. Characterizing such a complex

behavior requires a more expansive stimulus set.However, with increased complexity

in the stimulus design comes a need to make a large stimulus set to cover the space

of objects to be parametrized. Creation of such a stimulus set by hand would be

inefficient, thus requiring a program to generate and select stimuli.

When it comes to the experiment, each stimulus also needs to be presented several
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times to eliminate fMRI noise and artifacts, and thus the number of stimulus pre-

sentations to the subject during the fMRI experiment grows quickly. As the number

of presentations increases, the length of the experiment also increases, which means

subjects need to spend long periods of time in the scanner. The longer subjects stay

in the scanner, the easier it is for them to get distracted and lose focus, hence the

experiment should be designed to account for all these factors. While numerous previ-

ous works have designed experiments to address similar problems, the fineness of the

parametrization this work is looking to formulate requires a more focused experiment

software created specifically for this problem.

The rest of the work in this thesis depends entirely on the strength of the ex-

periment, the stimulus set and the parametrization, as without a set of data that is

robust enough to overcome the challenges associated with fMRI, it is not possible to

infer meaningful information from series of fMRI images. Without a good enough

signal-to-noise ratio, the statistical modeling of the brain’s activity will fail, and re-

construction will not work, thus the cognitive paradigms, neurologically-based stimuli

and the programs developed to facilitate them in this chapter are key to the entirety

of the work.
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2.1 Overview

In this chapter we will discuss the steps we took to designing the principles of the

stimulus set to be used in the rest of the work and the algorithm used to generate

these stimuli. We will also describe the experiment paradigm used to display these

stimuli to the subjects in ways to maximize the amount of information that can

be obtained from a scan, and the development of the software that facilitates this

paradigm. There are several design elements which will be explored:

1. Design, number and complexity of stimuli to present

Our initial study showed that using many stimuli that are complex is not

tractable. This chapter will expand upon the algorithmic generation process of

the stimuli, the initial study and explain how we arrived at the final stimulus

set.

2. Timing of stimulus presentations

In tandem with the amount of stimuli, the timing of the presentations of

stimuli is an additional consideration. Subjects can only spend a limited amount

of time in the scanner, and in this chapter we will discuss how we balanced these

factors.

3. The cognitive task demanded from the subject during the experiment

Due to the length of the experiment, picking a cognitive task that is engaging
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yet not too demanding is necessary. This chapter will describe the cognitive task

asked of subjects during the experiment, and the design of a paradigm to ensure

their attention.

4. The structure of the experiment

Efficient procedures for dividing the experiment into parts and structuring

those parts both help reduce overall experiment duration and improve subject

comfort. This chapter will describe the process of designing the overall structure

of the experiment with all of the mentioned elements being considered, and our

technical implementation designed to address these concerns.

5. The technology used to display the stimuli

The physical setup of the equipment used to perform the experiment is

integral to designing the structure of the experiment and programming the

software used to construct it. This chapter will enumerate the equipment used

and detail how they were used to achieve the desired final result.

6. The fMRI scanner image acquisition parameters

The fMRI scanner is often taken for granted in fMRI trials, with many

studies using traditionally accepted settings for image acquisition. Our findings

indicated that we needed more signal clarity from the scanner. This chapter

will describe the steps taken to acquire special-purpose fMRI images for our

experiment.
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Another consideration parallel to the above is identifying the LOC and the VWFA

in the brain. Since LOC and VWFA are functionally defined areas, anatomical mark-

ers in brain images are unreliable for determining their locations. Thus, a functional

localizer [31, 57] must be used to find voxels associated with these areas. Functional

localizers also require each of the above design elements to be realized separately.

More specifically, this chapter will discuss the design process for the stimuli in

depth, including the basis it has on prior work, the algorithm developed for generating

and presenting these stimuli to the subject during the experiment, the design of the

experiment and software created to facilitate this design, an experiment that was

performed as a preliminary analysis to iterate on the stimuli, the lessons learned

from that experiment, three more experiments that were conducted based upon the

findings from the initial experiment, and the changes made to those experiments and

paradigms.

Section 2.3 will discuss the overall structure of the experiment and the equipment

used during it. This section includes our contribution to image acquisition techniques

for the image the visual cortex, specifically the lateral occipital complex in high res-

olution. Section 2.4 will discuss our stimulus design, motivated by the experimental

goals and considerations for the rest of this work. This section includes the algo-

rithms used to generate and select stimuli. Section 2.5 will describe the design of

our experiment’s overall structure and cognitive task, taking into account time con-

siderations and feedback from our preliminary experiments. Section 2.6 will describe
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the design and implementation of functional localizers we use in our experiments to

identify what brain regions to target for analyses in the rest of this work. This sec-

tion also includes our novel English VWFA localizer derived from the French-based

work of Szwed et al. [57]. Section 2.7 will detail the design and implementation of

our software that implements all of the experiment protocols. Section 2.8 will discuss

the specific issues that came up during individual experiments and how we overcame

them and what we learned from them. We will then discuss our contributions and

findings in this chapter and how they can be used for future experiments and be

applied to other use cases.

2.2 Related Work

The space of performing fMRI experiments is quite large and well-established.

Here we will focus on studies we were informed by or have based our approaches on.

Specifically, this section can be broken down into several categories. General-purpose

works that helped inform our fMRI design, and special-purpose studies that have

helped us target specific brain areas or derive stimuli.

2.2.1 Experiment design

Many of the key techniques of experiment design in functional magnetic resonance

imaging have been outlined by the seminal work of Huettel et al. [24]. Our work
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follows the guidelines set by them and Smith et al. [56] with respect to experiment

design. Both works have established standards for how stimuli should be presented,

in terms of timing, randomization, stimulus blocks and subject response expectations.

Buxton et al. [5] have defined how the fMRI signal responds to stimuli over time, and

our experiment design in regards to timing has been directly influenced by trying to

account for these principles. While these works, and many others have presented the

groundwork for experiment design in fMRI, each experiment is unique in terms of the

constraints that have to be managed. For our studies, we needed to run exceptionally

long experiments, which required both significant planning and some trial-and-error

in addition to knowledge obtained from the previous works in the field.

One of the novel contributions of this chapter is the paradigm for imaging the

visual cortex in high resolution. Yassa et al. [66] have established a technique for

imaging the hippocampus at a higher resolution than normal. Typically, 3 Tesla

scanners, which are widely used in fMRI studies, allow for voxels of size 3mm ×

3mm × 3mm. Yassa et al. use different parameters to narrow down the field of

view of the scan, which lets them acquire for voxels of size 1.5mm×1.5mm×1.5mm.

However, the areas this study will image are larger than the hippocampus, to the point

that they do not fit within the field of view of the hippocampal scan. Our approach

involved careful positioning of the field of view and adjusting its parameters to fit all

the regions we needed into the image.

There have been many cognitive tasks designed to ensure subjects pay attention
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to the stimuli being presented for the prolonged duration of experiments. In some

experiments, the task itself is the goal. However, in our experiment, the task is a

distractor and the real goal is to have subjects attending to the visual stimuli. As

such, we have sought a simple, non-intrusive task design. The one-back task, proposed

originally by Kirchner [29] was used. The one-back task requires subjects to retain

stimuli in short-term memory. While doing so for visual stimuli, they also engage

higher visual areas to retain the images [39]. This task is very appropriate for our

experiments as a result.

A key aspect of our imaging studies is narrowing down the window of voxels being

looked at for the analysis. Kourtzi and Kanwisher [31], Kourtzi and Kanwisher [32],

Kourtzi et al. [33], Grill-Spector et al. [19], Amedi et al. [1] have all demonstrated

evidence of object shape representation in the LOC. These works have also provided a

variety of approaches towards identifying voxels found within the LOC with functional

localizers. In this work, we follow the design established by Kourtzi and Kanwisher

[31].

Similarly to localizing the LOC, we also seek to identify voxels found within the

visual word-form area. Szwed et al. [57] have described a robust method of localizing

the VWFA, and we follow their approach. However, their work is with a French

audience and using a French text corpus, and our work adapts their approach to an

English audience.

All the programming in this section was done with Python, and the visualization
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software was written with the OpenGL wrapper pyglet [23].

2.2.2 Neurophysiology Studies Motivating Stimu-

lus Design

Our goal in this work is to find a parametrization for structural coding of object

shape in the human LOC. This approach however, is motivated by work in monkeys.

Since it is difficult if not impossible to perform neuron recording studies on humans,

the motivation for the parametrization comes from work done in the field of monkey

neurophysiology. Specifically, the inferotemporal cortex is considered the homolog of

the LOC in monkeys [37]. Thus, understanding the IT is critical to deciphering the

LOC. In this section we will discuss monkey work that has explored the IT and other

relevant areas.

Evidence of the inferotemporal cortex as a visual area goes back to the 1950s,

with work by Pribram and Barry [51] and Wilson [64] showing ablation of inferior

temporal regions in monkey impairs visual function. Further work by Dubner and

Zeki [17] has solidified the IT as an area that receives inputs from the primary visual

area (V1) relayed by V2 and V4. More detailed ablation studies by Dean [15], Gross

et al. [20] and Mishkin [40] have shown that ablating the IT specifically impairs visual

discriminiation or recognition of objects. Tanaka et al. [58] have demonstrated that

there is a specific coding for objects of differing structural parameters. This finding
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is key to our work because it establishes the IT as an area that codes for structural

properties of objects.

There has been more recent work in trying to exactly establish how the IT codes

for object shape. Pasupathy and Connor [49] have demonstrated evidence for a para-

metric coding of object shapes in monkeys. They have also used this coding to

reconstruct the stimuli being viewed using the neuronal spike information. This has

given us motivation to try to describe a similar parametric framework for LOC voxels,

treating them similarly to how Pasupathy et al. have treated neurons. In addition,

their reconstruction approach has inspired the methods we will apply on Chapter 5.

Brincat and Connor [4] have described a quantitative model for how the IT codes for

straight and curved shape fragments that compose stimuli. Our approach builds on

their work, as we will also use fragments to compose stimuli, and we will attempt

to model the responses to those fragments in terms of their curvature. The work by

Yamane et al. [65] has uncovered an IT coding for three-dimensional object shape and

spatial configurations. While the limitations of fMRI mean that a parametrization

as wide as Yamane et al.’s would be too ambitious for our study (as we shall discuss

in this chapter), we have also integrated findings from their work in an attempt to

address spatial variations in fragments. We will include fragments in different po-

lar positions with respect to the fixation point in our model. Hung et al. [25] have

provided a framework that demonstrates medial axis shape coding in IT. While finer

parametrizations based on globular shape curvature (as per the previous studies dis-
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cussed) would have been too complex to discern with fMRI, medial axis shapes are

very well-defined and can be discretized much more effectively. As such, our work

has also adopted a medial axis stimulus design.

2.3 Experiment Setup And Equipment

Many of the design choices in this chapter are based on limitations and capabilities

of fMRI. In order to justify those choices, we need to discuss the physical setup of the

experiment, the equipment used including the details of the fMRI scanner, the setup

for displaying the stimuli to the subject, and the image acquisition parameters. This

section will also include information regarding fMRI image acquisition principles and

how those relate to design choices made in the experiment.

Scanning was conducted at the F. M. Kirby Center for Functional Brain Imaging

located in the Kennedy Krieger Institute, Baltimore, MD. fMRI data were acquired

using a 3-Tesla Philips Gyroscan MRI scanner equipped with a 32-channel SENSE

head coil using both higher-order shims and parallel acceleration techniques. Func-

tional images were collected using a T2*-weighted high-speed echo-planar single-shot

pulse sequence. T2 weighting requires a longer time resolution (TR), which is the

time period in which the slices in the image are excited and allowed to demagnetize.

Neuron response times are in the order of milliseconds, whereas the Haemodynamic

Response Function (HRF) that is measured by fMRI peaks at 4-6 seconds and sta-
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bilizes at after 10 seconds. Due to the fact that the HRF is a well-defined, smooth,

continuous function, increasing the time resolution does not make a significant dif-

ference in signal quality, unless stimuli are being presented very rapidly. While there

are fMRI experiments with block designs that show many stimuli in quick succession,

in fact our functional localizers do this, such experiments are generally designed to

observe activity in an area and not to characterize said activity. Since our objective

was to isolate and model the response to each stimulus, we did not use an experiment

design with very fast stimulus presentations. As a result, we used a TR of 2000ms.

The scans used a field of view of 96× 96mm, flip angle of 70◦, SENSE factor of 2, TE

of 30 ms, and resolution of 3 mm isotropic for the initial experiment, then 1.5mm for

subsequent experiments. Each EPI pulse sequence began with 4 dummy pulses that

were not recorded in order to allow magnetization to reach steady-state.

In the original experiment, we had acquired full-brain images with a voxel resolu-

tion of 3mm× 3mm× 3mm = 27mm3. We also used a randomly-staggered stimulus

presentation timing in order to prevent the subject from predicting the presentation

time of the next stimulus. The staggering used was a 2/4/6/8 second timing between

each presentation (with an average of 4), with 1.5 seconds of each presentation show-

ing the stimulus, and the rest of the time a blank screen. The reason for the blanking

in between stimuli is tied to our experiment design, which will be discussed in section

2.5. After conclusions drawn from the initial study (detailed further in Section 4.3),

we realized that the stimulus timing could be set to a constant value because of the
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way the data is analyzed, so we set it to 4 seconds for every stimulus.

Results from the initial study (discussed in Section 4.3) showed that we needed

more resolution from our images. Without changing to a higher-Tesla scanner, which

causes more fatigue in subjects and sometimes incites minor discomfort like numbness

in the extremities, our options within the same scanner were limited. Inspired by the

technique Yassa et al. [66] use for imaging the hippocampus, we designed a novel

imaging scheme. While the overall amount of information acquired by the scanner is

fixed, one can reduce the field of view. The effect of this is that, instead of imaging the

whole brain we can image part of it, and that would let us have smaller voxels, which in

turn meant more information per voxel. For further scans, we used 1.5mm×1.5mm×

1.5mm = 3.375mm3 voxels. However, this required precisely positioning the field of

view to the areas we were interested in imaging. In this imaging scheme, 26 axial slices

were first aligned to the AC-PC plane and then positioned to include the inferior-

most portions of occipital cortex. The resulting volumes thus provided only partial

acquisitions of the brain but were targeted to include visual areas V1-V4 and LOC.

This is a non-trivial change to the hippocampal acquisition technique. Since the visual

cortex is larger than the hippocampus, it requires careful consideration of imaging

parameters and FOV alignment on a per subject basis to capture it in its entirety.

While the hippocampal acquisition can be used without obliquely aligning the FOV,

our approach only works when aligned with the axis of the visual cortex, which creates

additional challenges in the registration step that will be further explored in Section
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3.4. An image comparing a regular scan to our novel acquisition paradigm can be

seen in Figure 2.1.

The visual stimuli were displayed using an Epson PowerLite 7600p projector with

a custom zoom lens onto a screen mounted at the end of the magnet bore behind

the participant’s head. Participants viewed the screen by way of a mirror mounted

to the head coil at a distance of about 72cm from the screen and 11.5cm from the

eyes. Responses were recorded using a custom-built, fiber-optic push button box.

The experiment was set up so that the subject would focus on a fixation point at the

center of the screen at all times. Stimuli were displayed at exactly the size to fit in the

fovea, since more neurons are dedicated to representing the fovea than any other part

of the visual field. As a result, stimuli were sized to be 2 deg of visual field around

the fixation point. Images were displayed via a Python image presentation software

we built. In addition to displaying stimuli, the software also recorded button presses

from the subject as demanded by the cognitive task. We additionally collected a

high-resolution structural MPRAGE scan with a field of view of 240 × 240mm, flip

angle of 9◦, TR of 12 s, TE of 5.9 s, matrix size of 384× 384, and 0.65 mm isotropic

resolution. SENSE parallel imaging was used in two directions (2 × 1.5), yielding

an overall volume of 231 slices. This scan was used to target our high-resolution-

limited-FOV scans, and also to anatomically register the fMRI runs to statistical

atlases.

Four neurologically healthy Johns Hopkins University graduate students (2 female)
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(a) Image acquired with a 3 Tesla scanner using voxels of size 3mm× 3mm× 3mm.

(b) Image acquired with a 3 Tesla scanner using voxels of size 1.5mm× 1.5mm× 1.5mm.

Figure 2.1: Comparison of a regular fMRI image with voxels of size 3mm × 3mm × 3mm
acquired with a 3 Tesla scanner to our paradigm that uses voxels of size 1.5mm×
1.5mm × 1.5mm acquired with the same scanner. The field of view is aligned
along the visual cortex. Note the oblique angle of the high resolution image.
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with normal or corrected-to-normal visual acuity participated in the study (one in the

initial study, three in the finalized study). Participants were compensated at a rate of

$25 per hour and provided written informed consent. All procedures were approved by

the Johns Hopkins School of Medicine Institutional Review Board and were conducted

in accordance with the principles outlined in the Declaration of Helsinki.

2.4 Stimulus Shape Generation

Pasupathy and Connor [49]’s work in monkeys shows that inferotemporal cortex

codes for object shape in both letterlike medial axis stimuli and surfaces of globular

shapes. However, such work, being based on neurophysiological recording experiments

with monkeys, has the luxury of being able to present hundreds of stimuli in quick

succession, which is not the case with fMRI. As a result of limitations described in

section 2.3, we were limited by time in terms of how quickly we could display stimuli.

Since fMRI experiments can only last so long before subjects get fatigued and lose

focus, the minimum time between stimuli inherently caps how many stimuli we can

possibly display.

Feedback from subjects and prior experience dictated that 90 to 120 minutes was

the longest time we could feasibly run an fMRI experiment that requires attention,

depending on how the experiment is structured. Depending on how conservative the

timing between stimuli is set to be and how much rest time the subjects are allowed,
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this means somewhere between 1000 and 1500 images could be presented to the

subject. To counteract fMRI noise issues and other artifacts, several presentations of

the same stimulus image were necessary. Originally, we were optimistic about being

able to obtain good signals from our experiments, so we decided to use 200 unique

stimuli presented five times each. While this later proved to be too ambitious, being

limited to 200 stimuli still was a constraint on stimulus variety and design.

Due to the limitation on stimulus set size, we chose letter-like medial axis stimuli,

as per Figure 2.2. Whereas globular stimuli would have to be parametrized by splines

with free parameters, medial axis stimuli could simply be broken down into parts

with a few discrete parameters which could be more easily extracted from fewer

presentations. Medial axis stimuli we used were combinations of straight lines and

90-degree arcs, connecting at the tips. The stimuli were designed to have a center,

and lines or arcs coming out of that center.

As mentioned before, the IT in monkeys is the homolog for LOC. Since previous

work has shown that object shape, be it globular or medial axis, is coded for in the IT

in terms of polar position, orientation and curvature, we wanted our parametrization

to reflect this. Straight line fragments going out from the origin at four cardinal

directions represent the polar positions at 0, 90, 180 and 270 degrees. Arc fragments

going out from the origin at the four cardinal directions, due to being a quarter-

arc, end at the polar positions of 45, 135, 215 and 305 degrees and represent those

positions. For curvature, we had three values. Straight line fragments represent zero
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curvature, arcs that start from the origin and go left represent negative curvature,

and arcs that go right represent positive curvature. Finally, the directions that the

outside of the arcs face represent the orientations of 45, 135, 215 and 305 degrees,

and the directions each straight line faces represent the orientations of 0, 90, 180 and

270 degrees. This gives us a three-dimensional discrete parameter space.

The process used to generate the stimuli can be seen in Algorithms 1 and 2.

Algorithm 1 takes as input the desired number of stimuli in the stimulus set, the

”depth” of the stimuli (which denotes how many levels the farthest stimuli can be

away from the center), and the desired size of a fragment. The last parameter will be

addressed in Section 2.8. The first algorithm simply calls the second algorithm four

times (once for each quadrant), checks if the generated stimulus contains at least two

fragments, then repeats this process until enough stimuli are generated.

The second algorithm recursively generates fragments while checking for conflicts.

It uses a global two-dimensional array end points to keep track of locations visited

in the 2D grid. Whenever a new fragment is placed, an entry is created on this grid

at the coordinates of the end point of the fragment, and the value is set to the depth

of the fragment. Whenever a new fragment is to be placed, the algorithm checks

this global grid to see if the end point of the candidate fragment clashes with a pre-

existing fragment. The algorithm works by choosing a random set of directions to

explore based on the direction of the parent fragment. For each of these directions, it

randomly considers adding zero, one or multiple of the following: a straight line, a left
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curved arc or a right curved arc. It checks for conflicts for these candidate fragments,

and if they are placeable, it places them and calls itself on the new position, reducing

the amount of depth allowed for its child. At the end, once all children have been

placed, it recursively returns a list of all child fragments. This list can then be parsed

by the experiment presentation software in Section 2.7 and displayed to the subjects.

This software was written with Python 3.2.

Algorithm 1: Stimulus set generation

Function generate stimuli(num stimuli, max depth,part size)
valid stimuli← 0;
stimuli← [];
while valid stimuli < num stimuli do

global end points[][]← ∅;
end points[0][0]← 1;
fragments← [];
fragments+ = place fragment(0, 0, 0,max depth, part size);
fragments+ = place fragment(0, 0, 90,max depth, part size);
fragments+ = place fragment(0, 0, 180,max depth, part size);
fragments+ = place fragment(0, 0, 270,max depth, part size);
if max(end points) > 1 ∧ size(fragments) > 1 then

valid stimuli← valid stimuli+ 1;
stimuli+ = [fragments];

return stimuli;
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Algorithm 2: Recursive stimulus fragment generation

Function place fragment(x, y, parent facing,depth left,part size):
depth left← depth left− 1;
if depth left == 0 then

return [];

children← [];
directions← choose random subset(parent facing, parent facing −
90, parent facing + 90);

foreach facing in directions do
valid fragments← [end point];
[straight x, straight y]←
[x+ part size ∗ cos(facing), y + part size ∗ sin(facing)];

[left x, left y]←
[x+part size∗

√
2∗cos(facing+45), y+part size∗

√
2∗sin(facing+45)];

[right x, right y]←
[x+part size∗

√
2∗cos(facing−45), y+part size∗

√
2∗sin(facing−45)];

choices← [random bit(), random bit(), random bit()];
if choices(0) ∧ end points[straight x, straight y] == ∅ then

end points[straight x, straight y]← end points[x, y] + 1;
valid fragments← valid fragments‖[straight line];

if choices(1) ∧ end points[left x, left y] == ∅ then
end points[left x, left y]← end points[x, y] + 1;
valid fragments← valid fragments‖[left arc];

if choices(2) ∧ end points[right x, right y] == ∅ then
end points[left x, left y]← end points[x, y] + 1;
valid fragments← valid fragments‖[right arc];

foreach fragment in valid fragments do
if fragment == straight line then

children+ =
place fragment(straight x, straight y, facing, depth left, part size);

else if fragment == left arc then
children+ = place fragment([left x, left y, facing +
90, depth left, part size);

else if fragment == right arc then

children+ = place fragment([right x, right y, facing −
90, depth left, part size);

return children
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Figure 2.2: Samples from the original stimulus set. Fixation point is displayed as it was
presented to the subjects, and it highlights the fact that many stimuli had
quadrants with no fragments in them. The original stimulus set had stimuli
that went at most two fragments deep from the fixation point.

The original stimulus design we used consisted of fragments coming out of the

center at one of four cardinal directions, then as a second level, fragments coming out

of the center also had a chance to have fragments coming out from their other edge,

with the same parameters. In the original experiment we used stimuli that could go

up to two levels deep, however subsequent analyses revealed that these stimuli were

too complex to extract signal from the brain images they correlate with, so for future

experiments we reduced stimulus complexity to one level deep.

Stimuli were parametrized by listing each fragment in the stimulus as a point in

this 3D space in a vector whose length depended on the complexity of the stimulus.

When we were using two-level-deep stimuli, there were more possibilities for the

values each stimulus could represent in the 3D space, as the second level of fragments

could end up in different polar positions or orientations, however that representation
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ended up being too complex based on our results from the initial experiment. The end

result using one-level-deep stimuli was a 8-by-3-by-8 set of possibilities in the position-

curvature-orientation space. Given that we had rules against fragments starting at

the same point to also end at the same point in order to prevent closed shapes, the

space was not fully populated by our stimulus set.

Even with the restrictions, this meant more than a hundred unique stimuli were

possible. We imposed a further set of rules on stimulus complexity, as we learned

from our initial experiment that stimuli that had too many fragments did not drive

good signal in the brain. As a result, we limited the stimuli to have at lest two

and at most three fragments. We were able to control these values by changing the

parameters of Algorithm 1. Due to timing limitations discussed in Section 2.5, we

ended up deciding to use 60 stimuli, so we used 15 unique stimuli and their four

cardinal rotations. Since the parametrization is not rotationally invariant, this filled

our quota of 60 stimuli. Some stimuli, when rotated 180 degrees, were identical to

themselves, but we kept both rotations in for consistency. We also included blank

presentations to use as contrast in our statistical analyses.

2.5 Cognitive Task Design

The way an fMRI experiment is designed is critical to how useful the data ex-

tracted from it will be. Improper timing of stimulus presentations, tasks that do not
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Figure 2.3: The entire stimulus set used for the final experiment.

direct the subject’s attention properly, and many other factors can severely hamper

the effectiveness of an experiment. In this section we will explain the choices we’ve

made regarding stimulus presentation timing, stimulus size, experiment structuring

and the cognitive task that the subjects were asked to perform. These choices will

inform the requirements of the experiment presentation software we will describe in

Section 2.7.

The goal of the experiment is to model the behavior of LOC, which is believed

to perform a visual task but one beyond pure image processing. If LOC worked like

earlier visual areas, for example V1, there would be no cognitive task demanded of the

subject. But due to the fact that there is a higher level of processing at work in the

LOC, the subjects need to attend to and visually examine the stimuli. Our objective

was to design a task would make the subjects attend to the images. Conversely, we

did not want the subject to pay too much attention to the stimuli and have their
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minds wander, thus we wanted to obtain a balance between presenting the stimulus

long enough for subjects to visualize them, but short enough for them to not think

too much about them.

The task design we chose to fulfill these criteria is a ”one-back matching task”.

An n-back task is a commonly used cognitive neuroscience experiment, and for our

purposes we used n = 1. In this type of task, subjects are presented with a stream

of stimuli, then at any point in time, a query stimulus is presented, then the subject

is asked to determine whether the nth previous stimulus was identical to the query

stimulus. While this type of design is used in many experiments, it required some

modifying for the experiment we needed to conduct.

Since we need subjects to attend to the structure of the images being presented, we

wanted to eliminate purely V1-based strategies where the brain can easily do image-

matching between two pictures viewed in rapid succession. Specifically, there are

several strategies we needed to eliminate so that the subjects were forced to compare

the shapes of the stimuli presented and not simply the appearances:

1. Matching the overall luminance of the two stimuli

2. Matching the general structure of the two stimuli

3. Mentally overlaying the two stimuli to find small differences

Traditionally, the last strategy is easily eliminated by moving the stimuli around

the field of view while the subject is asked to focus on a fixed point. This allows
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researchers to have stimuli appear in visual areas connected to different neurons, which

means visual-matching strategies wouldn’t work. However, since what we believe

about the functionality of LOC is that it’s not invariant to position, this means that

stimulus positioning would be an additional factor to introduce to the experiment,

which we wanted to avoid. Instead, we decided to keep the fixation point unchanged

at all times and introduce variation in stimulus sizing, as IT, the monkey homolog

for LOC, is invariant to size - even the position of object parts is represented in polar

coordinates and thus don’t change as the object changes size.

In addition to size changes, we used a scheme of displaying the stimuli for 1.5

seconds and then blanking the screen for the rest of the interval, which both helped

prevent visual matching strategies and also prevents subjects from spending too much

time thinking about the stimulus which can cause extraneous brain activity in higher

level areas, causing distraction. Having the query stimulus differ in size also eliminates

the problem of luminance-based strategies, since if the background is constant and

only the stimulus changes size, the overall luminance of the image will be different

regardless of whether the query stimulus is identical to the previous stimulus or not.

Our query stimuli were 20% the size of regular stimuli, which meant they were still

easily discernible yet visibly different. This requirement was why we designed the

stimulus size as a parameter of Algorithm 2.

This only leaves the problem of subjects matching the general shape of the stimuli

and not paying attention to the structural details, which we combated by having the
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query stimuli vary only slightly. As described in section 2.4, our stimuli have 1-3

fragments per quadrant, and 4 quadrants per stimulus. Each fragment can be one of

the following three shapes: straight line, left-curving-arc, and right-curving arc. As

previously mentioned, each of those fragments are assigned a curvature value of 0, -1

and 1. The variation we introduce in the query stimuli that should be responded to

as ”different” is modifying a single fragment’s curvature by 1 point, or adding a single

fragment with a curvature that is 1 point off from one of the existing fragments. In

practice, this was done by going into the data generated by Algorithm 1, and selecting

a maximum-depth fragment, and changing its value, based on the availability of the

end points grid. If the fragment was a straight line fragment, it was changed to be an

arc, and if it was an arc, it was changed to be a straight line. 10% of our stimuli were

designed as query stimuli, and were randomly inserted into the experiment. Half of

those queries were positive (query stimulus identical to previous), and the rest were

negative (query stimulus different from previous).

Since the cognitive task of responding to queries is not the true factor being

measured in the experiment, we wanted to eliminate the complexities of operating a

button response box with multiple buttons. We used a single-button response box

that sent its response over the serial port, and subjects were asked to press the button

when the query stimulus was identical to before, and they were asked to not respond

if the query was different. Our experimentation confirmed this approach to be a valid

one for capturing the attention of the subjects, as over the four experiments, the
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(a) The one-back task for the main experiment. On the left, we have a positive match,
where the trial stimulus is a smaller version of the previous stimulus, and the subject
is required to press the button. On the right, the trial stimulus is different by a single
fragment, thus the subject is not required to press the button.

(b) The viewing task for the LOC localizer. The subject is not required to press a button
and instead they are to passively view the images that appear in quick succession. On
the left, we have the intact images. On the right, we have the scrambled images.

Figure 2.4: Demonstration of the one-back task for main experiment and the viewing task
of the localizer runs. Stimuli are presented at a time interval, and the subject
is required to attend to them.
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amount of total mistakes made was 3. Subjects were not told about the true nature

of the experiment (that the queries were irrelevant and it was a scheme designed to

get them to pay attention to the shapes), as we wanted them to pay attention to the

task and be ready for a query stimulus at any time. The performance of each subject

can be seen in Table 2.1.

Subject TP Presses FP Presses
1 48/50 0
2 49/50 0
3 50/50 1

Table 2.1: The performance of each subject on the one-back task. True Positive and False
Positive presses from each subject are denoted.

As mentioned in section 2.4, the HRF is a significant constraint on stimulus timing.

Given that the more subjects get fatigued in scanners, the more their performance

decreases and the more they move (which results in registration errors), keeping the

experiment as short as possible was our goal. Our initial experiment included 1000

stimulus presentations (200 unique, 5 repetitions) at an average of 4 seconds per

stimulus. Including the 100 queries (10% of total presentations), the total number of

presentations goes up to 1100. That meant and experiment that lasts at least 4400

seconds (approximately an hour and 15 minutes) not including the time between runs,

dummy pulses, localizers and structural scans. The design of the first experiment was

to have approximately 4 and a half minute runs, with a 30 second break in between.

That meant 68 presentations per run (including 4 dummy acquisitions that take 8

seconds), totaling at 15 runs. With 15 runs at 5 minutes each, and 15 minutes for
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the localizer (see section 2.6.1) and the structural scan, that meant an experiment

that would last over 90 minutes. We considered this to be an acceptable length for

an experiment.

As we will discuss in Chapter 4, the initial experiment was not successful in

acquiring good enough data to perform statistical analyses, so we decided to modify

our experiment design significantly. We decided to include a visual word-form area

(VWFA) localizer as described in section 2.6.2. We moved to a design with 60 stimuli

presented 20 times, which meant 1200 stimulus presentations. Adding 120 query

presentations as 10% of total stimuli brought the number to 1320, and we added 20

blank presentations to use as contrast in our statistical analysis. That brought up

the total number of presentations to 1340. With 4 seconds per stimulus, the pure

presentation time was 5360 seconds, or 1 hour and 30 minutes. If we were to divide

this experiment up into runs the same way as the first experiment, it would take 20

runs (100 minutes), and adding 15 minutes for the structural scan and LOC localizer,

then 7 more minutes for the VWFA localizer, the experiment would take well over

2 hours. Including approximately 15 minutes of setup time, the experiment would

last over 2 hours and 30 minutes. This was undesirable for fatigue and cost reasons,

since scanner time was bookable in 30 minute increments, which would lead to us

having to book 3 hour scans. Feedback from our initial subject indicated that we

could have longer runs with less breaks in between, and the subject even expressed

preference for a design like this. As a result, we decided to modify our runs so that
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they last 9 minutes each, with 10 seconds of rest in between. This meant 10 runs with

134 presentations each, which meant the overall experiment would be 1 hour and 45

minutes long. With 15 minutes of setup time, the experiment’s total length would be

two hours long, and this was the ceiling for how long we wanted the experiments to

take, thus we decided this paradigm would be the one to be used for our three final

experiments.

2.6 Localizer Experiment Designs

Whole-brain images are often not very useful for determining a parametrization

for the function of highly specific areas. While whole brain imaging is used in works

where a model is being built based on a general percept without a specific brain

area targeted, works that try to determine the functionality of a single area need

to specifically target those areas. While certain areas, especially earlier areas like

V1 can be defined anatomically, purely anatomical markers aren’t generally the sole

basis upon which fMRI analyses depend. Even for clearly defined areas, a data-driven

approach is more reliable on individual brains and helps verify structural assumptions

made by researchers.

In the case of this work, we are looking at the LOC, which is an area that is

defined functionally, thus a functional localizer is necessary to isolate voxels that

belong to this area. LOC localizers are well-documented in literature, and involve
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contrasting the brain signals induced by images of objects against signals induced by

pixel-scrambled versions of those images. In order to verify that our parametrization

of stimuli is represented uniquely in LOC, we also decided to localize voxels belonging

to the VWFA and to show that the parametrization doesn’t work on those voxels.

VWFA codes for words and letterlike objects, which is what our stimuli are based on,

but instead of parametrizing such shapes in a structural breakdown, it works based on

identifying shapes as a whole. Showing that the same shape parametrization works

in LOC but not in VWFA would increase the strength of our argument, hence our

decision to localize both areas.

In this section we will discuss the implementation of both localizers using the same

imaging hardware and setup as discussed in section 2.3. The requirements of these

experiments will inform the design of our software tool, discussed in Section 2.7.

2.6.1 LOC Localizer Design

In order to be able to identify voxels in the LOC, we used a localizer approach

established by Kourtzi and Kanwisher [31]. The structure of our experiment was

mostly similar to theirs, with the main difference being the images used and the

scrambling process. This section will consist of highlighting the relevant parts of

Kourtzi and Kanwisher [31] and Grill-Spector et al. [19] and our changes to their

paradigm.

The LOC’s functionality is known to be related to object images, and the localizer
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exploits that knowledge. This area of the brain responds to images of objects, but

images containing the same pixel content rearranged spatially so that no discernible

object is present does not elicit a response. The localizer is computed by contrasting

images of the brain while the subject is looking at objects, against images of block-

scrambled images of the same objects. We used the Columbia University COIL-100

image dataset by Nene et al. [46] for pictures of small household objects with no

background. 20 object images were converted to grayscale, then scaled to 160x160

pixels after cropping them to a similar ratio of image-size-to-object-size as in [19].

The images were divided into a 20x20 grid, and each block in the grid was randomly

relocated to another position using MATLAB. We ensured that no block would be

in the same location as it was before, and also no two blocks who were originally

adjacent were adjacent in the final image.

Using the Python software described in section 2.5, we displayed localizer stimuli

to the subjects. As per the design in Kourtzi and Kanwisher [31], we used a block

design where images of objects were shown in quick succession, followed by scrambled

images in quick succession. More specifically, images of household objects were shown

with a 0.2 second presentation time followed by a 0.6 second blank time in 16-second

blocks. Stimuli were presented in a random order within that block. Following the

intact-image block, a scrambled-image block of 16 seconds was displayed immediately

after. The third block was a 16-second-long blank. These blocks were repeated, with

the scrambled and intact blocks switching places every repetition, for a total of 8
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times each. With each group of blocks taking 48 seconds, 8 groups, and startup time,

the localizer runs took about 7 minutes.

2.6.2 VWFA Localizer Design

In order to determine that our model of object structure is unique to the LOC and

doesn’t work in other brain areas, we wanted to investigate other areas that could

similarly code for images like ours. It is suspected that the VWFA codes for words

and letters [57] (further discussion in Section 2.2), thus we decided to use a VWFA

localizer as a sanity check for our models. Our localizer is based on the work of [57]

and our LOC localizer described in section 2.6.1. This section will discuss the changes

made to the localizer paradigm based on previous work and the implementation of

the localizer.

Prior work in VWFA localization used images of words, generated from letters

that have 45% of their luminance removed by deleting unsalient segments of them.

Two approaches have been used by Szwed et al. [57]: removing the midsegments of

letters, or removing the vertices. We decided that removing the midsegments was

more appropriate for our ideas, as the edges provided sharp curvature changes which

we thought would be more appropriate as a comparison point for the functionality

of LOC. Szwed et al. used a French corpus for their approach. For our purposes, we

needed to use English words instead. Following their approach, words were selected

from a database of contemporary American English [62]. Neutral nouns with 6-8
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letter length that had an occurrence rate of over a million were considered. The final

selection of words can be seen in Table 2.2.

PEOPLE SCHOOL SYSTEM NUMBER MOTHER WINDOW
FRIEND MEMBER MINUTE HEALTH MOMENT WORKER
POLICY MARKET EFFECT RESULT COURSE LEADER
MATTER STREET CHURCH LETTER THEORY ANIMAL

Table 2.2: The set of nouns used for the VWFA localizer. 6-letter neutral English nouns
with an occurence rate of over a million in the database of contemporary Amer-
ican English [62]

Images of these words were created using the font provided by Szwed et al. [57].

Those images were then loaded into MATLAB. We developed a bounding box based

approach to scramble the stimuli. Stimuli were to be scrambled so that no frag-

ment was in its original place, and no fragment was touching any other fragment.

This was achieved by segmenting fragments out of the image with using connected

components, defining bounding boxes for each fragment, randomly jittering fragment

positions, then shuffling fragment positions until a non-conflicting arrangement is

achieved (conflicts included fragments that were too close to each other, which was

resolved by setting bounding boxes 5 pixels larger than the actual shape in each

direction).

Similar to the LOC localizer, the Python software described in section 2.7 was

used to display VWFA localizer stimuli to the subjects. Combining the experiment

design of the LOC localizer and in Szwed et al. [57] As per the LOC localizer, we

used a block design where intact words were shown in quick succession, followed by

46



CHAPTER 2. EXPERIMENT AND STIMULUS DESIGN

Figure 2.5: The entire stimulus set used for the VWFA localizer. Note that inside the
scanner these stimuli were legible, which does not come across as well in this
format. Subjects were asked post-experiment if they were able to read all the
words, and they responded positively.

scrambled words in quick succession. More specifically, the intact words were shown

with a 0.4 second presentation time followed by a 0.1 second blank time in 12-second

blocks. Stimuli were presented in a random order within that block. Following the

intact-word block, a scrambled-word block of 12 seconds was displayed immediately

after. The third block was a 12-second-long blank. These blocks were repeated, with

the scrambled and intact blocks switching places every repetition, for a total of 8

times each. With each group of blocks taking 36 seconds, 8 groups, and startup time,

the VWFA localizer runs took about 5 minutes.
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2.7 Experiment Software

So far, in this chapter, we have described several different experiment paradigms.

We will build a software tool that will facilitate our experiments, informed by these

requirements. Specifically, here are the design considerations that our software tool

will need to address:

1. Interfacing with the experiment hardware.

This includes the fMRI scanner, response box and projector

2. Precision

The software must be able present both fast-paced and slower stimuli over

short and long runs without time drift.

3. Flexibility

The software must be able to accommodate the variety of experiment de-

signs we have proposed throughout this chapter.

We will now discuss these considerations and the steps we took in our design to

address them. We will also describe the overall structure of the experiment, and

consequently the flow of the software. The Python program was built using pyglet

[23], an OpenGL wrapper.

The fMRI scanner, subject response button and the projector were all controlled

through a Cedrus RB-830 response box as seen in Figure 2.6. This device has several
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Figure 2.6: The Cedrus RB-830 response box used in our experiments. This device sends
all fMRI-related signals over the serial port.
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modes of communication through the serial port. We used ”Presentation” mode. In

this mode, the scanner sends a pulse to the response box, which is sent over the

serial port as the single ASCII character ’6’. This also light up the button 6 on the

box, which can be used to verify synchronization with the software. Our subject

response button was a single-button device, and whenever the subject pressed the

button, it sent a single ASCII character ’1’ through the serial port. This immediately

creates a design concern. Polling the serial port too often would slow the software,

and potentially block. Polling it too rarely would mean the possibility of missing the

scanner start pulse on time, which would cause desynchronization. Interfacing with

the scanner to synchronize runs and receive button input was done with PySerial.

While PySerial has recently added supprot for asynchronous I/O, it is considered an

unstable experimental features, thus we did not rely on it. Instead, we used pyglet’s

handle-based update loop. Pyglet programs run based on an event dispatcher. This

dispatcher can be configured to run handle functions based on either a trigger, or

a schedule. We solved this problem by introducing a state machine and a variable

update rate based on the state of the program. When polling for the scanner start

pulse, the software will update at a half millisecond rate, otherwise it will update at

a 1-millisecond rate. This gives us high precision when we need it, and performance

when we don’t need as much precision. This addresses both the concern of interfacting

with the hardware and the concern of precision.

Displaying of the stimuli is handled by a combination of regular updates and a
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schedule. The presentation software receives the pulse from the fMRI machine to start

an experiment run, waits 8 seconds for the 4 dummy pulses, then starts displaying

stimuli with the predetermined presentation times. Using test runs on the dummy

scanner (see Section 2.8), we had designed the software such that whenever a stimulus

is displayed, it would schedule the display of the next stimulus. We discovered that

over hundreds of presentations throughout two hours, this would accumulate latency

and end up several seconds off by the end of the scan. This was unacceptable to us.

Instead, we used the time between the sync pulse and actual scans afforded by the

dummy pulses to pre-schedule every single presentation. We calculated the timing of

every stimulus, and set up a handler to display, hide and switch out each stimulus

ahead of the actual presentations. Through several timing tests on the dummy scanner

(that each lasted two hours), we were able to achieve millisecond-accuracy with this

approach. The design of this state machine can be seen in Figure 2.7.

During a functional run, while the software is in the stimulus displaying state, we

use pyglet’s OpenGL drawing primitives and the output of our stimulus generation

algorithm described in Section 2.4 to dynamically generate image stimuli. The ad-

vantage of dynamically drawing the stimuli is that it is faster to use OpenGL routines

to draw polygons based on data already loaded in memory, than it is to load images

from disk, then rasterize them as bit maps on a pixel-per-pixel basis. This also gives

us the ability to generate new stimuli and immediately display them on the fly. This

also makes the software have a small space footprint.
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Figure 2.7: The state machine used by the software. Initially, the program runs a loop as
it waits for the scanner pulse. Then, when the pulse is received, it schedules
all stimulus-related activities, and gives the scheduler control. The scheduler
ensures a regular update loop, in addition to calling stimulus-related event han-
dles when needed. When the run is over, the subject is given a brief period to
rest, after which the software starts waiting for a pulse again.
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Our design of the state machine is inherent flexibility. This paradigm can be

used to implement both the functional run, and also the localizers. By changing the

set of stimuli used to either the medial axis stimuli we generated in Section 2.4, the

LOC localizer stimuli we generated in Section 2.6.1 or the VWFA localizer stimuli

we generated in Section 2.6.2, and setting the timing values as described in each

respective section, our program can perform either task with ease. This addresses the

flexibility concern.

While this state machine can handle individual functional runs or localizer runs,

we also needed the software to handle the entire experiment. As such, we used a larger

scale state machine based on the experiment designs we have discussed throughout

this chapter. Figure 2.8 demonstrates the overall flow of the software. Each localizer

or functional block within this figure represents an instance of Figure 2.7.

This software tool we have designed is flexible, precise, cross-platform, efficient

and portable. Our tool can easily be extended to other types of experiments and

even non-visual stimuli. The design of this software is motivated by all the factors

described in this chapter, which are all building towards the end goal of developing a

computational model for the activity of the LOC. These presentation approaches are

intertwined with the design of the stimuli, which will be the most important facet of

Chapters 4 and 5.
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Figure 2.8: Flow of the experiment. Black lines indicate the signal’s start pulses, which
trigger each part of the run. Red lines are the stimuli being displayed through
the projector. Blue lines are the subject’s responses, which are a button press
depending on a query stimulus presented.
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2.8 Complications And Configurations Of

Experiments

While the experiment design is quite concrete in theory, certain aspects of the

experiments needed a significant numberof offline tests without subjects and on-the-

fly adjustments to certain parameters. In this section we will discuss the parameters

of the experiments that weren’t discussed in previous sections, the dry runs without

subjects, and any other configurations or changes to the software made during the

experiments, either proactively, or in response to issues that arose during the process.

The Kennnedy-Krieger Institute has a dummy scanner with a button box and

projector where the experiment setup was tested before any live runs were performed.

This dummy scanner is a replica of the real scanning environment including projection

dimensions and response box, however the scanner itself does not work or make any

noise. Instead, one can simulate the scanner’s behavior by pressing the button ’6’

on the response box. While the code was originally displaying images in 1920x1080

pixel resolution, test runs on this setup revealed that the projector had issues with

resolutions above 1024x768, so the experiment software was reconfigured to output

images at that resolution. Considering we wanted our stimuli to fit within 2 deg

of visual angle, the distance of the scanner from the subject, and the depth of the

stimulus set, the part size of fragments (the parameter in Algorithm 1) was set to

34.13 pixels. Consequently, the ”trial” stimuli discussed in Section 2.5 were of the
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size 6.826 pixels.

Another issue discovered during the course of the dry runs was that if there was

an exception in the code or a situation that required the experiment to be suspended,

the software could not be started at an arbitrary point in the run. This was rectified

by adding to the software the ability to signify a starting point through the command

line.

The first attempt at our initial experiment failed due to technical reasons beyond

our control. It was during this experiment that we discovered the stimulus scheduling

issue mentioned in Section 2.3. It would have been possible to recover the data by

retroactively computing the timing delay and aligning the brain images temporally

accordingly, however that ended up not being necessary. Due to inclement weather

conditions the day before the scan, air humidity in the scanning area had changed

significantly, throwing the magnetic calibration of the scanner off. As a result, all

scans performed on that day had checkerboard artifacts and were effectively unusable

for any analysis. It still served as a useful trial run for the setup and technical

aspects of the experiment. Another experiment was run shortly after that, which is

the experiment that is referred to as the ”initial experiment” throughout this work.

After concluding from the analysis of the first experiment (as explained in section

2.3 that full-brain images with 27mm3 voxels weren’t sufficient in their resolution,

we decided to use the switch to the partial-brain images with 3.375mm3 voxels. We

ran a trial study with no experiment just to test out the feasibility of thos image
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Figure 2.9: Image of the acquisition FOV. The yellow box indicates the limits of the FOV.
In this instance the angle of the visual cortex wasn’t very oblique, but we had
other scans where the field was up to -45 off degrees from the X-axis of the
left image. The blue areas were used as virtual fixtures to constrain the FOV
placement and weren’t used for purposes of the analyses.

acquisition method. This method was originally used to image the hippocampus by

Yassa et al. [66], and we weren’t certain if it would be able to encapsulate the visual

areas we needed to image. We ran the study and were able to visually determine that

the field of view was large enough to contain most visual areas, especially ones we

were interested in, given some manipulation.

The next experiment was the first after the changes to the paradigm, however

we encountered another potential problem this time. While the narrow field of view

was large enough to image the visual areas of the brain sufficiently, the head of the

participant who we ran the pilot study for the new imaging technique was significantly

smaller than the subject that participated in this experiment. We were eventually

able to manipulate the positioning of the scanning window to include all relevant
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areas. The VWFA localizer was also included in our experiment design after this

particular study, thus this subject does not have any data regarding that paradigm.

The next two experiments went without any issues and we were able to acquire

all the data we needed successfully.

2.9 Conclusions

A key and often underestimated aspect of fMRI experiments is the experiment

design. The quality of the experiment directly affects the quality of the data. In this

chapter we have tackled problems related to designing our fMRI experiment. The first

challenge we faced was determining fMRI scanner parameters and paradigms to get

the highest possible image quality and the most data out of a two-hour window. We

achieved this by running an initial experiment, then using information from that. Us-

ing this initial experiment we determined the best length for an individual run within

a scan, and how many images to acquire during that window. We also implemented

a novel imaging paradigm for acquiring high-resolution images of the visual cortex

based on prior hippocampal imaging techniques. We built a Python software tool to

interface with the scanner and deliver stimuli for the subjects to view. There were

unforeseen complications during the experiments, like scanner failures and challenges

with implementing our scanning paradigm, but we were able to overcome them.

The second challenge tackled within this chapter was the design of the stimuli. No
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prior studies have demonstrated a parametrization of the responses of the human LOC

to visual stimuli. With no prior human studies to rely on, we designed a stimulus set

to achieve this goal. Inspired by neuron studies on monkeys, we used medial axis line

fragments to compose letter-like shapes. We developed an algorithm for generating

sets of stimuli based on the monkey work. Using the results of that algorithm we

performed an initial study to test the viability of our stimuli, then improved our

stimulus set based on findings from the initial study.

The next challenge to be addressed was the means by which the subjects’ attention

was to be directed and maintained. Since the experiments are nearly two hours long,

keeping subjects attending is non-trivial. We have designed a non-intrusive one-back

task to direct the attention of subjects as they attend to visual stimuli. The task

itself was used as a distraction to keep subjects paying attention to every stimulus.

The last experiment design issue in this chapter was using functional localizers.

In order to derive a parametrization for activity in the LOC, we needed to iden-

tify voxels in that region. For this, we integrated existing localizing techniques into

our experiment design. Similarly, as a way to demonstrate the exclusivity of our

parametrization to the LOC, we used a VWFA localizer. Part of the design of the

VWFA localizer involved adapting the original experiment that was designed with

French letters to English.

Finally, we have created an experiment paradigm encompassing all these aspects,

and built a software suite to implement the paradigm. The design of this suite takes
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into account all of the challenges we have faced throughout this chapter.

The specific contributions of this chapter are as follows:

1. A stimulus parametrization composed of medial axis fragments, designed to

model lateral occipital complex activity.

2. An algorithm to generate stimuli based on the parametrization.

3. An experiment structure for delivering those stimuli to subjects and maintaining

their attention.

4. An efficient and flexible software for conducting fMRI experiments based on our

design principles.

5. A high-resolution fMRI imaging paradigm to view the visual cortex with 80

times the per-voxel resolution.

6. An English adaptation of the the visual word-form area functional localizer by

Szwed et al. [57].

Using our parametrization, we will show evidence for structural coding in the

LOC by developing a computational in further chapters. This stimulus set and the

algorithm that generates it can be used in future studies to derive more information

about the functionality of the LOC. The same stimuli can be used in monkey studies

to show a correlation between coding in the inferotemporal cortex and human LOC.

Future studies can also build upon our generation process to seek even finer or broader
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parametrizations. Our experiment structure can be utilized by others as well, as it is

not unique to the LOC. Any visual stimulus study on higher visual areas can employ

the same paradigm to deliver a large amount of stimuli in a two-hour period. Our

design is flexible enough to implement modules for our software for other types of

experiments easily as well. Our high-resolution imaging of the visual cortex can be

used in the future by other studies that seek to map out the functionality of visual

areas. Most studies in the visual cortex have used scans that are lower resolution

than our paradigm allows, and this technique provide an improved look at areas that

have already been explored. As scanning technology improves, the base resolution

of scanners will increase as well, which means more complex parametrizations of the

LOC that build upon our stimuli can be achieved. Finally, while there are other

localizers for the VWFA, the approach proposed by Szwed et al. [57] and refined by

us is very simple and robust, and can be used by future studies with ease.
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Preprocessing of fMRI Data

In Chapter 2 we created an fMRI experiment paradigm in order to determine the

location of the LOC and try to develop a model for how it represents object structure.

The next logical step in this approach is analyzing the data. However, before being

able to conduct any modeling of the activity of the LOC, the first step is to pre-process

the fMRI data. This step involves taking the raw data output of the fMRI machine

and turning it into information viable for statistical processing. The processing for

each participant was done independently of other participants. For the purposes

of this chapter, the steps taken will be described for a single participant. Unless

otherwise noted, the process is identical for each subject.
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3.1 Overview

There are many challenges that need to be addressed before fMRI data becomes

interpretable. The raw file output from the scanners is in a sequential form, which

means it does not carry any spatial or temporal connotations. Performing analyses

on the data in this format would be infeasible. The data outputby the scanner

includes header files, which include information on the parameters of the scanner

during acquisition. The header files also include information on how each image

in the scan was acquired, so these files can be used to transform the data into a

format that is more suited for processing that takes into account spatiotemporal

factors. However, simply transforming the image into a voxel format doesn’t solve

all challenges involved with fMRI preprocessing. As described in Chapter 2, our

experiments take nearly two hours. Within this duration, subjects inevitably move

their heads. In addition to subject movement, the superconducting magnet of the

fMRI machine has its magnetic field drift, which affects the signal over the course

of time [24]. These factors, coupled with baseline fMRI noise, inconsistency in the

brain’s response to individual stimuli, and other fMRI properties mean that several

additional steps are necessary even for basic fMRI experiments. Typically, the steps

to address these issues would include registering the brain images to each other, then

correcting for factors like drift and noise via fitting a linear model. Additionally, the

Hemodynamic Response Function, which dictates how fMRI values change on the

onset of a stimulus, needs to be modeled together with stimulus presentation timings
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to extract out activation values for individual stimuli. The goal of this chapter is

to detail the approaches taken to prepare raw fMRI data for analysis in following

chapters.

As mentioned in Section 2.3, we use a novel fMRI acquisition paradigm that results

in partial-brain images with unconventional positioning. This makes registration more

complicated than usual. This chapter will discuss the techniques used for cros-modally

registering oblique, narrow-FOV fMRI images to whole-brain MRI images. Section

3.3 will discuss the format of the data as produced by the scanner, and how that

data is transformed into voxel coordinates. Section 3.4 details our contributions in

the approach used to register images acquired with our novel visual cortex imaging

paradigm (as described in Section 2.3) to a baseline.

Even with a partial-brain acquisition like our approach, fMRI analyses that target

specific brain areas don’t use the entire set of voxels that have been acquired from

the scanner, as there are a lot of voxels outside the target area in these images. Such

extraneous voxels do not contribute meaningful information and confound legitimate

analyses, thus it is common to use functional localizers to narrow down the set of

voxels to ones that are within the targeted brain area. In Section 3.5 we describe

the approach we use to model the activity of the areas we are looking to analyze in

this work with localizers. We also describe how we use these models to eliminate

noise, drift and other factors. In Section 3.6 we discuss how we use the data prepared

throughout this chapter to model each voxel’s response to each of our stimuli described
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in Section 2.4. The results of this model will be used in the following chapters. Finally,

we discuss the lessons learned while developing the approaches in this chapter and

how they can be applied to future analyses.

3.2 Related Work

There is an extensive body of work dedicated to pre-processing functional magnetic

resonance images. Similarly to 2, in this section we will establish some basic principles

that are commonly accepted in the field, then proceed to discuss sources that are closer

in application to our experiments.

The textbooks by Huettel et al. [24], Smith et al. [56] and Ashby [2] have all

expansively described the canonical steps to be taken to acquire, register, pre-process

and prepare fMRI images for analysis. While this work will follow many of the key

steps from those works, the unique nature of our image acquisition and several other

factors require extra steps to be taken. This chapter will focus on the relevant parts

from these works, and contribute to improve upon those steps.

The work of Robert Cox is very important to the field of fMRI analysis. The soft-

ware package, Analysis of Functional NeuroImages (AFNI) [11, 13] has facilitated all

aspects of fMRI processing. Over the years, it has evolved with the addition of many

scripts and other functionality. It is still the de facto set of tools for analyzing fMRI

images [12]. While the entirety of our preprocessing, and consequently the entirety of
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this chapter was performed with AFNI, the tools aren’t capable of handling all kinds

of data with no external manipulation. Especially given our limited field of view,

oblique-acquisition technique described in Section 2.3, AFNI’s out-of-the-box algo-

rithms failed. This chapter will focus on how we used the set of capabilities provided

by AFNI to achieve the steps of preprocessing that is considered inconsequential in

more conventional studies. Specifically, AFNI’s implementation of Saad et al. [53] is

used to register functional brain images to structural scans multi-modally, and it even

has a parameter for partial registration, however our scan is too oblique and narrow

for that tool to work without tweaking.

As it is the case with Chapter 2, we rely on functional localizers to identify voxels

in the LOC and the visual word-form area. The process of extracting the localizer

information from the voxel data using a general linear model is intertwined with the

experiment design. As such, for the LOC localizer we will refer to the works of Kourtzi

and Kanwisher [31], Kourtzi and Kanwisher [32], Kourtzi et al. [33], Grill-Spector

et al. [19], Amedi et al. [1] once more. Specifically, for the localizer experiment we

followed the design established by Kourtzi and Kanwisher [31], and for the calculation

of the localizer we shall follow their work as well.

Similarly to localizing the LOC, our visual word-form area localizer calculations

are also intertwined with the way the experiment is designed. We used the localizer

approach described by Szwed et al. [57] in Chapter 2, and as such we will be following

their work for the process of localization as well.

66



CHAPTER 3. PREPROCESSING OF FMRI DATA

We follow guidelines for proper fMRI research practice described in Poldrack et al.

[50]. Many fMRI studies report Talairach coordinates for their data, which are used

for describing locations of brain areas using common atlases. These coordinates are

often ambiguous and potentially unreliable. As per Poldrack et al., we use Brodmann

areas as defined by the AFNI toolbox to report our localizer findings. We are also

explicit about how our localizer ROIs are determined.

3.3 fMRI Data Format

As described in Section 2.3, fMRI data were acquired using a 3-Tesla Philips

Gyroscan MRI scanner. The data format outputby Philips scanners is PAR/REC.

Each run of the scanner produces a pair of files, one .par file, and its accompanying

.rec file. The REC file contains the raw data from the scanner, and the PAR file

is the header containing details about the data, the scanning and other auxiliary

information. REC files are difficult to interpret on their own, as the data is simply

stored in a linear fashion, regardless of the acquisition’s dimensions, direction and

timing. The information contained in the PAR file, which is generated from the

parameters of the scanner, is necessary to convert the data into a readable format.

Specifically, the PAR file contains the following key information, among others

that are not relevant to the preprocessing step:

1. Number of slices
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fMRI images are acquired in sequences of two-dimensional slices along the

Z-axis that form a 3D image when composited together. Each 2D image is a

slice.

2. Repetition time (TR)

Time Resolution is the time period in which the slices in the image are

excited and allowed to demagnetize.

3. Number of dynamics (how many TRs)

How many 3D images in total were acquired. This number, multiplied with

TR, gives the total length of the run.

4. Scan resolution in voxels, X and Y dimensions

The size of each 2D image in terms of voxels.

5. Field of view in all three directions, in millimeters

The total physical size of the acquisition volume.

6. Slice position in millimeters

This is the 3D location of the center of the scanning volume with respect

to the scanner.

7. Slice angulation in degrees

This is the 3D angle of the scanning volume with respect to the scanner.
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The file also contains individual entries for each image acquired, detailing its

position and other parameters. Other information contained in the file includes details

of the experiment, like subject name and date, data types for numeric values found

in the file, and more. However, the parameters enumerated above are the requisite

information necessary for converting the raw fMRI data into a more readable format.

The Analysis of Functional NeuroImages (AFNI) software package (Cox [11]) is

used for most steps detailed in this chapter. AFNI is a set of C scripts with command

line arguments that is commonly used to process and visualize fMRI images.

Each of the 10 functional runs, the structural scan, the Lateral Occipital Complex

localizer and the Visual Word Form Area localizer (for subjects where it was used)

were converted into AFNI’s BRIK/HEAD format pair. For each run, the BRIK file

contains voxel data, and the HEAD file contains metadata. The AFNI script to3d

was used for this. The above parameters found in the PAR file are sufficient for to3d,

so a Python script was written to parse PAR files and call the to3d program with the

appropriate parameters. The script takes the linear hexadecimal data outputted by

the scanner and converts it into three-dimensional voxel data.
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3.4 Registration

fMRI data can not be interpreted as-is directly out of the scanner. There are

several factors that prevent proper analysis. These factors must be accounted for and

fixed before the data is usable. This section will address these issues and how they

were dealt with.

The prime problems that arise in fMRI experiments are:

1. Subject head movement throughout scan

2. Baseline noise of the scanner

3. Scanner signal drift over time

4. Inconsistency of individual voxel activation values

5. The Hemodynamic Response Function

The first issue to be addressed is the movement of the subject’s head throughout

the scan. Since our scan takes nearly two hours, it is natural that the subject’s

head will move during this process even though they are stabilized inside the head

coil with pieces of foam. To track the activity of a voxel throughout the scan, we

need to be able to either track its movement throughout the scan, or register every

image acquired throughout the experiment to a base image. In addition, in order

to verify our localizer results a posteriori via anatomical knowledge, we need to be

able to transform our brain images to a statistical atlas. The elegant solution to this
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problem is registering every brain image to a base image that is registered to an atlas,

and re-sampling every voxel from every image to fit the voxels in our base image.

Normally the task of registering brain images to an atlas is rather trivial. AFNI

has a script named align epi anat.py that takes two datasets, one structural and

one functional and aligns them using Local Pearson Correlation [53]. Typically, the

structural data would be an atlas or the base structural scan acquired along with the

functional images, and the functional data would be the fMRI runs themselves. This

script works very well for traditional purposes; however, in our case it fails.

Since we use partial brain acquisitions with the FOV being rotated from the base

acquisition axes of the scanner in all 3 directions, and the inherent difficulty associated

with registering images across modalities, every automated functional-to-structural

registration algorithm we tried failed. These algorithms aren’t typically designed to

deal with partial brain images, and even those that have parameters designed to

account for this case don’t deal with a FOV as limited as ours. Because of this, we

needed to develop our own method for registering our images.

As mentioned in Section 3.3, the parameters of the FOVs alignment can be ex-

tracted from the PAR files. While these do not account for the head movement

between the structural scan and the first functional scan, they can be used as a start-

ing point. Using these coordinates as a starting point to bootstrap the registration

process, the functional image closest in time to the structural scan was registered to

the whole-brain structural image. Then every other functional image was adjusted
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with the FOV parameters, and subsequently registered to the first functional im-

age. This registration was also verified by qualitative interpretation in addition to

quantitative metrics. This process is demonstrated in Figure 3.1.

All 10 runs of the experiment were concatenated into a single run. These post-

registration images are used for the purposes of the analyses, but for anatomical

comparison, they still need to be mapped to an atlas. This is achieved by first reg-

istering the structural image to the atlas, then applying the transformation obtained

from that registration to the first functional image registered to the structural scan as

per above. Following the registration of the functional initial image to the structural

image, every functional image was registered to the initial functional image to correct

for subject head movement and resampled. This gives us a set of functional images

all aligned to an atlas. For the purposes of the analyses in Chapter 4, we did not

warp our data to an atlas as we didn’t want to introduce nonlinear transformations

to the data. However, this approach was essential for verifying the accuracy of the

voxels selected by the localizers as described in the following section.

Further steps of processing include skull stripping, which is removing the parts

of the image that are not brain matter. The voxels that correspond to skull tissue

introduce a lot of noise to fMRI, and they can confound statistical analyses, so they

are removed using the AFNI script 3dSkullStrip. The script operates in three steps.

First, it does pre-processes the volume to remove artifacts and repositions the brain

image. Then it uses the BET algorithm by Smith [55] to expand a spherical surface
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iteratively until it envelops the brain volume. Finally, it uses masks to extract the

brain matter volume from the skull volume it separately detects.

A comparison of the skull-stripped and unprocessed structural image can be seen

in Figure 3.1. As expected, the skull stripping algorithm failed with our narrow

functional images, so we computed the strip on the structural image, then applied

the same mask to the functional images post-registration.
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Figure 3.1: The registration process.
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3.5 Localizers And Noise

In order to narrow down the voxels we will be conducting our analysis on and only

select voxels that produce useful information, we will be using an LOC localizer. In

addition, to ensure the uniqueness of our parametrization to LOC, we will be using

a VFWA localizer. The implementation of these localizers is discussed in detail in

Section 2.6. In this section we will discuss how the data acquired during the localizer

runs is interpreted and how the voxels associated with the localizer are identified.

The main principle behind functional localizers is contrasting the activity of the

brain when it is viewing images that the area one is looking for is believed to be coding

against activity of the brain while it is viewing images that go against that charac-

terization. Voxels that respond strongly to the desired images and do not respond to

the negative images are selected. In other words, the localizer is a statistical model

that uses the Hemodynamic Response Function as a kernel, the presentations of each

image as a regressor with target images having positive weights and the ”scrambled”

images as negative weights.

More specifically, the localizers were modeled with a generalized linear model

(GLM), where the data in each voxel were modeled as the time series:

Z(t) = K(t) ? S(t) + b+ ε (3.1)

where t is time, Z(t) is the BOLD time series, K(t) is the HRF kernel, S(t) is the
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stimulus time series, b is the set of regressors that are of no interest (null hypothesis,

constant, scanner signal drift, etc.) and ε is noise, and ? is the convolution operator.

This equation is to be solved for K(t), resulting in obtaining coefficients for the sets

of regressors. The localizer data is modeled with Ordinary Least Squares (OLSQ)

regression, with S(t) being defined by localizer stimulus presentation times, where

intact stimuli are represented with positive sign and scrambled stimuli are represented

with negative sign. Alternatively, we can write this equation as:

Z = X × β (3.2)

by absorbing the convolution and extra regressors into X, and solving for β. See Fig-

ure 3.2 for a visual representation of this equation. The AFNI tool 3dDeconvolve was

used for this. Following standard AFNI practices and using their methods, a second-

degree polynomial was used to fit the null hypothesis, which was used to account for

noise and drift. Voxel values were z-scored to account for temporal inconsistencies

like magnetic drift. Voxels that have an F-statistic with p ≤ 0.01 are selected, then

are clustered spatially using 6-nearest neighbors, and clusters with a size of less than

20 voxels were eliminated. This procedure results in a voxel mask that is used to

functionally identify the targeted brain areas.
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Figure 3.2: Depiction of the GLM model for an imaginary voxel with time-series Z predicted
by a design matrix X including regressors of interest e.g., 3 tasks task regressors
and seven nuisance regressors e.g., six motion parameters and one linear drift
of unknown amplitude, and an error term. Figure adapted from [43]

3.5.1 LOC Localizer Results

For the LOC localizer, as mentioned in Section 2.6.1, 20 object images were used

as positive regressors in the localizer, and 20 scrambled object images were used

as negative regressors. The null hypothesis is the polynomial fit that accounts for

the noise and other nuisance regressors. The f-statistic of the GLM in each voxel

was thresholded for p ≤ 0.01 and a 6-nearest-neighbor clustering scheme in three

dimensions was used with a minimum size of 20 voxels. The purpose of this clustering

was to eliminate noise by filtering out clusters of activity with less than 20 voxels,
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which is a commonly used technique in fMRI analysis. That means the smallest area

that our approach allows for would be a cube with each side being 3
√

20 ≈ 2.71 voxels

wide, with our 1.5mm voxel size that would mean the smallest possible area would be

4mm3. This is slightly larger than what most LOC studies have used as the size of

an individual voxel (3mm3) so it is not a stringent criterion. The three subjects each

had unilateral areas of the brain selected by the localizer, as can be seen in Figure

3.3. The subjects had regions of size 107, 83 and 124 voxels selected. These areas

were also verified both through visual assessment and AFNI’s brain area localization

tool. AFNI confirmed these areas to be in Brodmann Area 19, which is where the

LOC is located [37].

(a) The raw result of the GLM before
thresholding.

(b) The f-statistic of the GLM results
thresholded by p ≤ 0.01, then clus-
tered with a minimum cluster size of
20 voxels.

Figure 3.3: LOC localizer GLM results for Subject 1. The color map from green to red
indicates the f-statistic of the GLM.
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3.5.2 VWFA Localizer Results

For the VWFA localizer, as mentioned in Section 2.6.2, 24 word images were used

as positive regressors in the localizer, and 24 scrambled word images were used as

negative regressors. Similar to the aproach for the LOC localizer, the f-statistic of the

GLM was thresholded for p ≤ 0.01 and a clustering scheme was used with a minimum

size of 20 voxels. As it is the case with the LOC localizer, this means the smallest

area that our approach allows for would be a cube with each side being 3
√

20 ≈ 2.71

voxels wide, with our 1.5mm voxel size that would mean the smallest possible area

would be 4mm3. This is slightly larger than what most VWFA studies have used as

the size of an individual voxel (3mm3) so it is not a stringent criterion. With the

VWFA localizer, we came up with the idea to include it after we ran the experiment

with the first subject. As such, only the second and third subjects have their VWFA

localized. The three subjects each had unilateral areas of the brain selected by the

localizer, as can be seen in Figure 3.4. The subjects had regions of size 72 and 93

voxels selected. These areas were also verified both through visual assessment and

AFNI’s brain area localization tool. AFNI confirmed these areas to be in Brodmann

Area 37, which is where the VWFA is located [22].

79



CHAPTER 3. PREPROCESSING OF FMRI DATA

(a) The raw result of the GLM before
thresholding.

(b) The f-statistic of the GLM results
thresholded by p ≤ 0.01, then clus-
tered with a minimum cluster size of
20 voxels.

Figure 3.4: VWFA localizer GLM results for Subject 2. Note that the images for Subject
2 were acquired at a very oblique angle (as per Section 2.8) and thus are being
viewed from an unconventional perspective. The color map from green to red
indicates the f-statistic of the GLM.
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3.6 Extracting Stimuli

Since fMRI is inherently noisy and unstable, stimuli need to be presented several

times to obtain a consistent model of the response to any given stimulus. Due to

this, as explained in Section 2.5, we display each stimulus 20 times to the subject.

This introduces the issue of modeling the brain’s response to each individual stimulus.

Similar to Section 3.5, we model each voxel’s response to each stimulus using a GLM.

However, the difference in this section is that we use only voxels selected by the

localizers for this analysis. Using the clustering results from each localizer, we create

a mask of voxels for this GLM to be applied to. The process is otherwise identical,

and Figure 3.2 also applies here. After the GLM is fit, the coefficients for each

stimulus are extracted. AFNI’s 3dmaskdump function is used to create a plaintext

file containing a # voxels×# stimuli matrix with each voxel’s activation value (the

coefficient assigned by the GLM) for each stimulus.

Once this process is completed for the voxels selected by the LOC localizer, it is

repeated for the voxels selected by the VWFA localizer, and it is saved in a separate

file for the analysis in Section 4.5.2.

3.7 Conclusions

Our goal with this chapter was to take the raw fMRI images acquired using the

approaches of Chapter 2 and prepare them for the statistical analyses described in
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Chapters 4 and 5. In more conventional fMRI experiments, these steps are relatively

simple. The functional images are registered to a structural image acquired during the

same scanning run, motion-corrected, then a general linear model is fit onto the blood-

oxygen-level dependent signal provided by the scanner, modeling the hemodynamic

response function and eliminating noise, drift and other irrelevant features. Studies

that require functional localizers simply include an additional GLM to identify voxels

that respond specifically to the stimuli being presented. In this work, however there

was a complication that we needed to address. Since our high-resolution scan that we

proposed in Chapter 2 had a very narrow field of view and a very oblique acquisition,

none of the registration algorithms that were commonly used worked. As a result, we

had to improve the registration process to account for these images. We also adapted

a French visual word-form area localizer into English, and validated its performance

on identifying VWFA voxels.

The contributions in this chapter are directly tied to those from Chapter 2, as

they are consequences of those methods. As such, this chapter serves less as a series

of contributions, and more as a validation of the contributions introduced in the

previous chapter, and steps tying those results to the following chapter. Future work

that seeks to build on the high-resolution acquisition can refer to the technique used

in this work to register fMRI images. Additionally, this chapter served to show that

our adaptation of the VWFA localizer proposed by Szwed et al. [57] to English is

viable.
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Chapter 4

Statistical Modeling Of Structural

Representation In LOC

As has been mentioned, the ultimate goal of this thesis is to derive a parametrization

of shapes that is in line with how the lateral occipital complex models visual stimuli

based on structural parameters. Everything so far in this thesis has been leading up

to this analysis. In Chapter 2 we designed and conducted an fMRI experiment to

obtain brain images that such a parametrization will be derived from and validated

by. These experiments focused on highlighting nuances in medial axis shaped objects

based on their structural information. Following those experiments, we used a variety

of techniques in Chapter 3 to take the raw fMRI data and pre-process it into a format

where stimulus-based information can be harnessed. We then described approaches

we followed to extract stimulus values from the transformed images by modeling the
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brain’s response patterns to presentations and localizers. In this chapter, we will

address the true challenge, that of developing a computational model for the voxel

activations derived from the previous chapters in a manner consistent with a structural

parametrization of the visual stimuli presented to the subjects. Furthermore, we

will seek to show that this parametrization is applicable exclusively to the LOC, by

showing that it’s not applicable to other brain areas, and that parametrizations that

describe the functionality of other areas do not apply to the LOC.

4.1 Overview

As a result of the experiments in Chapter 2 and the pre-processing in Chapter 3,

we have a set of voxel activation values for each subject. Specifically, for each subject

we have a # voxels− by −# stimuli matrix of values that describe the response of

each LOC voxel to each stimulus. For the secondary analysis, we also have a similar

matrix for Visual Word-Form Area voxels, but our primary concern for the majority

of this chapter is the LOC. These matrices will be used for all analyses within this

chapter. We seek to derive a parametrization of object shapes that, with the fitting

of a statistical model, can be used to describe the activity of the LOC voxels in

response to the corresponding visual stimuli. While there has been previous work

that has shown that the LOC has a role in recognizing objects, no previous work

has attempted to actually model the behavior of the LOC in terms of mapping its
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responses directly to parameters derived from visual stimuli. In monkeys, work has

shown that the inferotemporal cortex, which is the homolog of the LOC, represents

visual object stimuli in terms of medial axis and surface component parameters. The

goal of this chapter, and ultimately this work is to establish a link between the work

done on monkeys in the IT and our experiments by showing evidence for the LOC

describing object parameters in a manner consistent with the functionality of IT.

This chapter is specifically concerned with modeling the activity of voxels found

within the LOC in terms of medial axis shape components that represent parametric

breakdowns of the visual stimuli used in Chapter 2. Chapter 5 will be focused on

the inverse approach of reconstructing stimulus images from voxel activations. As

a whole, these two chapters serve to provide evidence of structural coding of object

shape in the LOC. Within the scope of this chapter, the process was to ascertain the

validity of the data acquired and prepared throughout this work, then trying to derive

a model that establishes a link between the stimuli and the activations elicited by

them. This process was non-trivial, as conventional statistical modeling approaches

failed for a variety of reasons. We will discuss the steps taken to arrive at the final

parametrization and modeling method. We will also show that this parametrization

is specific to the LOC, and it is a parametrization that describes the activity of the

LOC better than other parametrizations of visual stimuli.

Section 4.3 will be concerned with demonstrating the viability of the data obtained

as a result of Chapter 3’s approach. More specifically, Section 4.3.1 will describe the
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attempts at extracting information from the stimulus set used in the initial experiment

(described in Chapter 2) using signal detection theory, and the lessons learned from

the failure of these attempts. Section 4.3.2 will then show the improvements in results

in the final studies compared to the previous section. Section 4.4 will detail the

steps taken to arrive at the model that is the most significant computational novel

contribution of this chapter. This will include models tried as candidates for the

process, their results, and discussion of why they may have failed. Section 4.4.1 will

provide a novel computational model for fitting our data, and use an independent data

set to verify the performance of the model. Following the derivation of a model Section

4.5 will describe the approaches taken to demonstrate the statistical effectiveness and

uniqueness of the model. In particular, Section 4.5.1 will describe the several cross-

validation techniques used to validate the model and their results. Section 4.5.2 will

compare the effectiveness of the developed model when applied to voxels identified

by the LOC localizer to its effectiveness when applied to voxels identified by the

VWFA localizer. Section 4.5.3 will demonstrate the performance of a Gabor Wavelet

Pyramid model, which is the de facto technique for modeling the activity of voxels in

the early visual system, on LOC voxels, and compare it to our method. Finally, we

will discuss the novel approach we have developed for modeling, the results obtained

within the chapter, the significance of these findings, and how this model and these

findings can be applied to future work.
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4.2 Related Work

There is a large body of work concerned with statistically modeling functional

magnetic resonance images. As these modeling techniques span a vast variety of

studies with different goals, it is difficult and possibly superfluous to attempt to

address them all. The relevant studies fall into several categories. First, we will

go over works that establish guidelines for fMRI analyses in all domains. Then, we

will discuss the primate neurophysiology work that was the inspiration for and set

the goals for our approach. Following that, we will examine fMRI studies on other

relevant visual areas of the human brain that either help us justify our approach or

provide a measure to test against. Finally, we will address work in statistics that has

guided our approach.

4.2.1 General Guidelines For fMRI Analyses

As it has been the case with chapters 2 and 3, the key textbooks on fMRI anal-

yses are important in this chapter as well. Many of the key techniques for statistical

analysis of fMRI have been outlined by the seminal work of Huettel et al. [24], Smith

et al. [56] and Ashby [2]. These texts provide guidelines for the kinds of statistical

models that are best used with fMRI images, how to avoid pitfalls that are specific

to the domain, and bets practices. Many modern fMRI studies apply Multi-Voxel

Pattern Analysis, established by Norman et al. [47]. MVPA is a set of approaches
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focusing on pattern-classification from a multi-variate perspective, focusing on groups

of voxels as a whole instead of individual voxels. While we apply some of the wis-

dom from MVPA studies, our end goal is parametrization and not classification. As

such, we need to look at our data with a finer lens than whole-brain or whole-region

approaches. Combined with the neurophysiology work that motivates our approach

(discussed in Section 4.2.2), this makes the MVPA approach unsuitable for this work.

The Science paper by Mitchell et al. [41] is an important work in the field of fMRI for

several reasons. The authors used whole-brain fMRI images to derive a fit a model

to features learned from nouns. They were able to predict brain images and used

a leave-two-out scheme for validating their results, which we will also use and com-

pare our results to. While their approach is based on multi-voxel pattern analysis and

whole-brain images, it is still worth considering their approach. Our early approaches

based on linear regression and its variants were inspired by theirs, even though our

final model was different.

Even though our analysis is unconventional in some ways, we still follow guidelines

for proper fMRI research practice described in Poldrack et al. [50]. We use several

statistical tests to support our conclusions, and as per previous chapters, we have

been explicit about the steps taken to arrive at our results.
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4.2.2 Neurophysiology Studies On Object Struc-

ture

As explained in Chapter 2, the primary motivations for our work come from

monkey studies concerned with describing how the inferotemporal cortex codes for

object structure. Since deriving a similar parametrization for LOC is the primary

goal of this chapter, it is important to reiterate some of the background work here.

Since the inferotemporal cortex is considered the homolog of the LOC in monkeys

[37], the coding we will propose for the LOC is dependent on understanding how IT

neurons code for object structure.

Studies as early as Pribram and Barry [51] and Wilson [64] have shown via abla-

tion of inferior temporal regions in monkeys that these areas hold a visual function.

Dubner and Zeki [17] have shown that the IT receives inputs from the primary visual

area (V1) relayed by V2 and V4. Further studies by Dean [15], Gross et al. [20] and

Mishkin [40] have shown via ablation that the IT specifically affects visual discrimi-

nation or recognition of objects. Perhaps the most important finding that establishes

the groundwork for this work is by Tanaka et al. [58], demonstrating a specific coding

for objects of differing structural parameters in IT.

Recent work in monkey IT has shown evidence of parametrization for specific char-

acteristics of objects based on structural components. Parametric coding of object

shapes in monkeys has been shown in Pasupathy and Connor [49]. Neuron recod-
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ings have enabled the authors to reconstruct stimuli being viewed, and this work will

also follow a similar design, but with fMRI voxels instead. This chapter will use the

information for modeling voxel activity, but Chapter 5 will further detail reconstruc-

tion. The IT has been shown to code for combinations of straight and curved shape

fragments by Brincat and Connor [4]. The authors have used a model to describe

the response to stimuli as parametrized by such fragments, which this chapter will

also focus on. We will attempt to model the responses to those fragments in terms

of their curvature. Yamane et al. [65] have developed a coding for three-dimensional

object shape and spatial configurations based on IT neuron responses. Due to fMRI

limitations a parametrization with the complexity of Yamane et al.’s is out of reach

(see Chapter 2 for discussion of fMRI limitations), we have taken into account the

spatial variations of fragments as a factor in our parametrization, specifically polar

positions of fragments around the visual fixation point. The most directly relevant

work to our is Hung et al. [25], who have used medial axis stimuli to demonstrate

that the tuning function of IT neurons can be modeled using fragments of such stim-

uli. While globular shape curvature (as per the previous studies discussed) based

parametrizations would have been too complex to gather enough data for an fMRI

parametrization, medial axis shapes are much more suited for a discrete analysis like

ours. As a result, our work has uses medial axis stimuli as described in Chapter 2.
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4.2.3 fMRI Studies On The Visual Cortex

4.2.3.1 Early Visual Areas

In the past decade or so, there has been an increasing focus on trying to

parametrize the activity of voxels in earlier visual areas. The V1 has been the fo-

cus of most of these studies, as the functionality of the V1 is both well-documented

and similar between monkeys and humans. Many studies have shown that the V1

codes for visual stimuli in terms of spatial frequencies, color and orientation [61].

Specifically, Gabor Wavelets have been used to characterize the way V1 neurons (and

consequently voxels) respond to images with a sparse coding [48]. Singh et al. [54] es-

tablished using fMRI on the primary visual area (V1) with their seminal work. They

demonstrated spatial frequency based coding using noninvasive imaging, correlating

what neuron recording studies have shown. This justifies our approach in modeling

LOC voxels with models that are based on IT neurons.

Several recent fMRI studies have used Gabor wavelet based approaches to

parametrize the functionality of voxels in early visual areas. As mentioned earlier,

a large amount of fMRI work is based on classifying brain activity. Unconstrained

reconstruction is a more challenging task. Miyawaki et al. [42] have reconstructed

binary image patches using such an approach. Looking at early visual areas and

parametrizing image stimuli with Gabor wavelets, they fit a model to voxel activa-

tions to predict images associated with them. Their approach is relevant to this work

91



CHAPTER 4. STATISTICAL MODELING OF STRUCTURAL
REPRESENTATION IN LOC

in two avenues. Firstly, it demonstrates the possibility of using a parametric approach

to modeling voxel activities, and secondly, it provides an early visual cortex model

for which to compare our approach against. By comparing the parametrization this

work proposes against one that targets a different visual area, we will show that the

LOC does not code for images in the same fashion as the V1. In addition, Miyawaki

et al. have used letter-like stimuli similar to our medial axis shapes, which makes

the comparison between the performance of the two models more compelling and

convincing. Similarly, Naselaris et al. [45] and Vu et al. [63] have demonstrated the

further viability of Gabor-based models on early visual areas.

Another group of ground-breaking work is the research of Jack Gallant and col-

laborators. Their work, specifically Kay et al. [28], Kay and Gallant [27], Naselaris

et al. [44], Naselaris et al. [45] and Vu et al. [63] has used fMRI of early visual areas

to reconstruct natural images being viewed by subjects. These works have used Ga-

bor wavelet decompositions to parametrize images, then use a bag-of-words inspired

model to reconstruct images being viewed by the subject. These works have helped

us refine our approach greatly, and we have used their data as a measuring tool to

compare our results to. They have also demonstrated the power of fMRI as a tool

that can be used to gain significant understanding of voxel activities with statistical

models.
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4.2.3.2 Lateral Occipital Complex

The Lateral Occipital Complex is a relatively under-explored area of the brain in

fMRI when compared to earlier areas like V1. The area is smaller compared to the

V1, and its functionality is of a higher order, which means that it is more complex and

harder to analyze. Despite this, there have been a few studies in this area, ascertaining

its function. One of the first fMRI studies to explore the area was Malach et al. [37],

showing that the area does not respond to spatial frequencies, but instead responds

to images of objects. Similarly, Grill-Spector et al. [18], Kourtzi and Kanwisher [31],

Grill-Spector et al. [19], Kourtzi and Kanwisher [32], Amedi et al. [1] and Kourtzi

et al. [33] have all shown evidence for LOC responding specifically to images of intact

objects. This is consistent with our understanding of how IT works, which gives us

justification to explore a parametrization of LOC similar to those of IT.

4.2.3.3 Visual Word-Form Area

The visual word-form area is also a relatively under-explored area of the brain.

Since it is considered to be exclusive to humans, monkey studies do not provide much

insight into its functionality. Cohen et al. [9] was one of the early fMRI studies to

explore the area. Price and Devlin [52] disputed the existence of the area citing their

functional imaging study where the area was activated even when not viewing words,

however further studies have erased this doubt. Examples of such studies include

Hillis et al. [22], Cohen and Dehaene [8], Kronbichler et al. [34], Dehaene and Cohen
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[16] and many others. Szwed et al. [57] have provided a robust and comprehensive

exploration of the area, and we follow their methodology. These studies have shown

that the VWFA codes for letters with meaning, and does not respond to simple letter-

like fragments. We will be looking at the VWFA to validate our model, in order to

show that the parametrization that we derive is exclusive to the LOC and does not

apply to other higher visual areas that respond to similar shapes.

4.2.4 Statistical Modeling Techniques

The novel modeling approach we will propose is based on expanding concepts

introduced by stepwise regression. Even though stepwise regression is commonly

used as a way to model data ([3, 7, 10, 35] and many more) Jennrich and Sampson

[26] and Thompson [60] have pointed out that it can be prone to overfitting data, and

can lead to greedy solutions. As a result, we will be extremely careful to avoid this

case, setting strict constraints for our convergence, and performing extensive cross-

validation tests to verify our results. Additionally, we will propose a novel algorithm

based on stepwise regression that addresses some of its shortcomings by training on

two groups kept independent of each other to prevent overfitting either.
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4.3 Ascertaining The Distinguishability

Of Stimuli

While the generalized linear model obtained in Section 3.6 represents the activa-

tions of each voxel in response to each stimulus, we have yet to determine whether

those activations contain any useful information or are statistically distinguishable

from each other. The goal of this section is to analyze this set of data to determine

its usability for future analyses that form the core of this work.

4.3.1 Initial Study

This part of the process was originally developed when we had our initial data,

as referenced in Chapter 2. When we acquired that data, we skipped this step and

went straight to trying to model the voxel activations based on our parametrization

of the stimuli. We tried many approaches to modeling; however none of them yielded

meaningful results, statistically or otherwise. We began to suspect that the data

itself wasn’t good enough, that there might be some factor that was a barrier to this

modeling. We set out to examine this data to great extent, in order to discern the

cause of the issue and improve the stimulus set and/or experiment design for the

following studies.

Before delving into any type of parametrization, we wanted to see if the stimuli

were differentiable in terms of the voxel activation values each of them evoked. We
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used several approaches to determine this. First, we approached this problem from

an analysis of variance (ANOVA) perspective. We treated each stimulus label as a

group, and each voxel’s response to that stimulus a sample of that group. Our aim

in this analysis was to see if the groups had distributions that were distinguishable,

which would mean we could easily model the response of the brain to each stimulus.

Unfortunately, this ANOVA yielded a p-value of p = 0.41, which was not conclusive.

In light of this, we decided to proceed to further, more nuanced analyses.

Our initial idea for parametrization was to map every stimulus to a set of points in

the three-dimensional space of curvature, orientation and polar position as envisioned

in Section 2.4. This experiment was done with the two-level-deep stimuli, so each

stimulus could have two to a dozen fragments. With the results of the stimulus-

based approach being inconclusive, we decided to examine whether the signals were

differentiable on a fragment basis, considering our parametrization was based on

fragments. We measured the sensitivity index (d′) of the presence of each fragment.

More specifically, for each fragment, we separated the stimulus set into two groups. A

group of stimuli that contain the fragment and a group of stimuli that don’t contain

it. Using the d′, we compute a Receiver Operating Characteristic curve, and computer

the area under the ROC curve. We use the area under ROC as a measure of how well

the stimuli are distinguishable based on this parametrization.

As this analysis didn’t yield conclusive results, we began to suspect that the

signals for each stimulus or fragment potentially weren’t easily differentiable, but
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Figure 4.1: Plot of the area under the ROC curve for each fragment from the initial exper-
iment. The fragments are sorted by the area under ROC value.
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they could be modeled instead. We turned to the monkey inferotemporal cortex

work by Pasupathy and Connor [49] for guidance. In that work, they derive a tuning

function for each neuron, which is a function for describing how the neuron responds

to any stimulus. The resulting tuning maps they derive for each neuron resemble

combinations of Gaussian distributions, thus we decided to replicate their work by

using a Gaussian Mixture Model to describe each voxel’s activity. For each voxel, we

aim to solve:

p(x | λ) =
192∑
i=1

wi N (x | µi,Σi) (4.1)

w.r.t
192∑
i=1

wi = 1 (4.2)

λ = {wi, µi, Σi} i = 1, · · · , 192 (4.3)

Where x is the vector of the voxel’s responses to each stimulus, wi, i = 1, · · · , 192 are

the mixture weights, one for each possible position in our feature space (as described

in Section 2.4), and N (x | µi,Σi) the component Gaussian density functions:

N (x | µi,Σi) =
1

(2π)D/2 | Σi |1/2
exp {−0.5(x− µi)′} (4.4)

with D the number of stimuli, mean vector µi and covariance matrix Σi.

We solve Equation 4.3 for λ using the Expectation Maximization algorithm. The

EM Algorithm works by iterating between two steps. In the expectation step, we
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compute wij using Equation 4.5 where wij is the membership weight of point j in

cluster i. Then, in the maximization step, we compute new values for µi, Σi using

Equation 4.6. Where N is the number of voxels.

wij =
pi(xj‖µi,Σi)wi∑192

m=1 pm(xj‖µi,Σi)wj
(4.5)

ŵi =

∑N
j=1wij

N
µ̂i = (

1

Ni

)
N∑
j=1

wijxjΣ̂i = (
1

Ni

)
N∑
j=1

wij(xj − µ̂i)(xj − µ̂i)′ (4.6)

Given the weights and parameters for each voxel’s model, we are now tasked with

validating these models. We choose two approaches to measure the validity of this

model: leave-one-out cross-validation and leave-two-out cross validation. For the

first approach, we separately leave out each stimulus from the set of stimuli, then use

models learned from the remaining stimuli to try to predict each voxel’s response to

each left-out stimulus. In this method, we use Normalized Root-Mean-Square Error

as the metric. The results from the leave-one-out test were not encouraging.

As can be seen in Figure 4.2, the residual error percentage was very high, with a

vast majority of cases being having somewhere around 80%-90% residual error.

The second test employed was leave-two-out cross-validation. As used in Mitchell

et al. [41], this analysis is a benchmark for validating the predictive power of models

learned from fMRI data. Following Mitchell et al. we use the following scheme, where

we leave out two stimuli from the set, train the models on the left-in stimuli, then
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Figure 4.2: Leave-One-Out results. Each color represents a different LOO trial, and their
residual error percentage according to NRMSE is displayed. Voxels are not
sorted. The error percentage is quite high for all trials.
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use the models to predict the voxel activation patterns for the left-out stimuli. We

compare the predicted values for the left-out stimuli to their observed values:

cossim(A1, P1) + cossim(A2, P2)
?
> cossim(A1, P2) + cossim(A2, P1) (4.7)

Where Ai=1,2 are the actual voxel activation patterns for the left out stimuli, and

Pi=1,2 are the predicted voxel activation patterns for the left out stimuli based on the

model. cossim(X, Y ) = X·Y
‖X‖‖Y ‖ is the cosine similarity. If the inequality holds, the

model was marked as ”correct”. With this scheme, choosing by chance is at 50%.

Combining the accuracy of all leave-out trials, the result was 50.8%, which was a poor

result.

All of our efforts to validate the parametrization we derived were unsuccessful.

We suspected several potential causes for the failures. The resolution of our scans

was likely not high enough to get enough specificity to determine a parametrization

as complex as we designed. Our stimulus set was quite large and didn’t span the

set of possible configurations well enough despite using a sizable amount of stimuli.

We didn’t have enough repetitions for each stimuli displayed to the subjects in our

experiment design. As a result, we redesigned our experiment, our stimulus set and

our parametrization. We increased the scanning resolution, reduced stimulus com-

plexity and increased number of presentations per stimulus to increase the quality of
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signal we obtain for each stimulus. This process is detailed in Chapter 2. With the

improved design, we were able to acquire data that is more robust, which is detailed

in the next section.

4.3.2 Final Studies

With the second set of experiments, which also ended up being the final experi-

ments, our aim was to boil down the parametrization to a simpler scheme so that we

could get more useful signal from our scans. How the second experiments differ from

the initial experiment is explained in more detail in Chapter 2. Once we have this new

set of data and pre-processed it as described in Chapter 3, we moved on to similar

analyses to those in Section 4.3.1. Since our stimulus set uses a fragment alphabet

that is significantly simpler compared to the initial experiment, we decided against

trying to parametrize exact values of curvature, orientation and polar position. In-

stead, we turned our parametrization into a binary presence descriptor. Stimuli are

each represented by a binary vector with the length of the fragment alphabet, where

each element of the vector denotes whether a given fragment is a part of the stimulus

or not. This simplifies our model greatly without sacrificing any descriptive power

given the set of stimuli we have, which increases the usefulness of the signal we ob-

tain. This change in parametrization was motivated by the d′ analysis of the previous

experiment, and the fact that our stimulus set spans a much smaller space of possible

stimuli, which would restrict the rank of any model we would derive based on actual
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angle values. Limiting our parametrization in this manner allowed us to use a model

that doesn’t have to account for variability in fragment terms per stimulus, so we can

use regression-based models.

Figure 4.3: The set of all fragments used in our final model, except for the ”blank” frag-
ments. The figure is arranged such that every row is one quadrant (demon-
strated by the graphic on the first column) and the fragments in each column
are consecutive 90 deg rotations of each other. The first five fragments in each
row are the individual fragments, the rest are compound fragments.

Following the new experiments and parametrization, we performed the previous

d′-based ROC analysis on each of our new experiments. The results, as seen in Figure

4.4 were notably more promising than the initial experiment.

4.4 Developing a Computational Model

After validating our data and shown that it contains discernibly different signal

for fragments, our next task was to develop a model for the activations of LOC voxels

based on the fragment composition of stimuli causing those activations. Following

the neurological results in Pasupathy and Connor [49], we decided to model the
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Figure 4.4: Plot of the area under the ROC curve for each fragment from the final experi-
ment, compared to the initial experiment. The fragments are sorted by the area
under ROC value. Note that the initial study had 200 fragments, and the final
study has 44, so the initial study’s curve is resampled down to 44 points for the
purposes of this comparison using linear interpolation. The original curve can
be seen in Figure 4.1

activations of each voxel in response to the stimuli in terms of a linear combination

of the fragments contained within that voxel as such:

Z = βX + ε (4.8)

Where Z is the N×60 activation pattern of N voxels as per section 3.6, β is the N×F

matrix of coefficients to be estimated for fragments, and X the F × 60 binary matrix
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of fragment presences per stimulus as described in section 4.3.2, and ε is noise. N is

the number of voxels selected by the localizer, and F is the number of fragments that

are used in the alphabet. Since each voxel is treated as independent, this equation

can be broken down into Zi = βiX where Zi is the response pattern of voxel i to each

stimulus, and βi is the vector of coefficients for that voxel.

The simplest way to solve Equation 4.8 would be linear regression. However,

there is a complication that arises when trying to set up the regression. In the

parametrization, there are five unique single-component fragments per quadrant, and

their four rotations around the origin. However, in the stimulus set, we have allowed

multiple fragments to occupy the same quadrant, creating compound fragments. Since

we envision our model working on a per-quadrant basis, if we are to use a vector’s value

to binarily denote whether a quadrant contains a fragment, that model encounters

issues when multiple fragments are present in the same quadrant. This introduces a

nonlinearity to the model. There are two solutions to this issue. We could either use a

nonlinear model with the base fragments to account for the compound fragments, or

we could use a linear model and introduce extra terms for the compound fragments.

We ended up choosing the latter approach for several reasons. It’s a simpler model,

which is more elegant and has grounding in the neurology work; it’s computationally

easier to formulate and solve and most models in fMRI have been linear models; and

it makes the reconstruction process, which we will address in Chapter 5 more elegant

as well. While we initially chose the linear-model-nonlinear-fragments approach, once
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the analysis was done, we also went back after the fact and tried the other approach,

which can be seen in Section 4.5. The results were not distinctly different, so for the

sake of elegance and consistency with literature, we converged on the linear model.

In addition to compound fragments, we have also added an ”empty fragment” for

each quadrant signifying the absence of a fragment in that quadrant.

We have tried several approaches towards solving Equation 4.8. While many of

our approaches have failed, it is still important to detail their failures here in order

to justify the final approach.
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Figure 4.5: The residual error percentage according to NRMSE of applying a linear regres-
sion solution to Equation 4.8. Voxels are not sorted.
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As mentioned earlier, the first approach we tried was linear regression. We at-

tempted to solve Equation 4.8 using MATLAB’s linear least squares solver with the

QR decomposition. As can be seen in Figure 4.5, the results were not very strong.

We initially suspected that this might be due the the problem being ill-posed and the

variables correlated (which is the care for our compound fragments), hence we opted

to try Tikhonov regularization, also known as ridge regression as such:

minimize
β

‖Z − βX‖2 + ‖Γβ‖2 (4.9)

β̂ = (X ′X + Γ′Γ)−1X ′Z (4.10)

Where Γ = αI is the Tikhonov matrix, α the regularization term and I the identity

matrix. β̂ is the solution to the minimization problem. Note that for α = 0 this

solution is identical to the least squares solution. We have tried different values for

α to exploit different assumptions about the data, but these attempts proved to be

unfruitful as well.

To understand why these approaches failed, we went back and examined the as-

sumptions we have made about the data. In the monkey work by Pasupathy and

Connor [49], IT neurons each code for a small selection of orientations, positions and

curvatures. Trying to fit a model with the assumption that each neuron will explain

each stimulus does not work. Based on that, we supposed the same might be applica-

ble to LOC voxels. Namely, expecting each voxel to respond to every fragment, and
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Figure 4.6: The residual error percentage according to NRMSE of applying a ridge regres-
sion solution to Equation 4.8. Voxels are not sorted.

by extension every stimulus is not consistent with neurological knowledge. Consid-

ering approaches like ridge regression are geared against setting coefficients to zero,

they do not fit well with our approach. Thus we turned to approaches that seek

solutions with small amounts of coefficients.

The most commonly used technique for regression that seeks to reduce the number

of elements in the model is the least absolute shrinkage and selection operator, also

known as the lasso. In its most general form, the lasso operates by adding the L1-norm

of the coefficient matrix as a penalty into the minimization. This penalty term works
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to ensure the sparseness of the model. This approach was inspired by neuroscience

work that shows early visual cortex using a sparse coding scheme for stimuli [48].

minimize
β

‖Z − βX‖2 + λ|β|1 (4.11)

Where λ is the weight parameter. One issue for consideration with the lasso is the

weighting of the penalty term compared to emphasizing the fit of the model. Thus,

we experimented with many different values for λ.
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Figure 4.7: The residual error percentage according to NRMSE of applying lasso. Only Sub-
ject 1’s results are displayed as they were the best. The mean NRMSE across all
voxels is calculated, with the error bars showing cross-validation performance.
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As can be seen in Figure 4.7, lasso did not perform significantly better than other

approaches. It also performs poorly when using cross-validation, (our cross-validation

approach discussed in Section 4.5). Considering our data is still quite noisy, it is

expected that the lasso isn’t robust enough to model it. Thus we developed several

alternative approaches.

One particular method of calculating a regression with a small number of compo-

nents is stepwise regression. This is an iterative procedure that starts with a linear

fit, then adds to or removes from the model’s terms by forcibly settingcoefficients to

zero, then re-fits a new model based on the new set of terms. It can be used to find

an approximate solution for Equation 4.11 using Algorithm 3.

Algorithm 3: Backwards Stepwise Regression

Data: Voxel activation pattern for voxel i: Zi;
Binary fragment presence matrix: X ;
Threshold for convergence: τ ;

Result: Fragment coefficients: βi
while model not converged do

Solve Zi = βiX + ε for βi using OLSQ;
S ← Sum-squared-error (SSE) of current fit;
for f ← 1 to 44 do

β̂if ← βi;

β̂if [f ]← 0;

Solve Zi = β̂ifX + ε for β̂if using OLSQ;

Ŝf ← SSE of current fit;

find f such that Ŝf is smallest;

if τ > abs(S − Ŝf ) then

βi ← β̂if ;

else model has converged;

The parameter τ in Algorithm 3 gives a more explicit degree of control over
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selection of the number of variables than λ in Equation 4.11. However, Algorithm 3

is greedy, as it selects the best model achievable by removing a single coefficient at

each step. The advantage of stepwise regression is its iterative nature, where we can

use each step to make adjustments that would otherwise be difficult to make with

other models. Since our input data is in binary format, it is quite degenerate. This

is why gradient-based optimization solutions don’t perform well with our data. Since

Algorithm 3 iteratively applies a model selection approach, it is suited for dealing

with degenerate data like ours.
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Figure 4.8: The residual error percentage according to NRMSE of applying the BSR ap-
proach in Algorithm 3
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4.4.1 Developing A Novel Modeling Approach

Up until this point, we have used existing modeling approaches to characterize the

parametrization of the stimuli into the fragments. Since overfitting was a concern with

using stepwise regression, we wanted to improve the ability of the model to represent

groups of stimuli separated from each other. In other words, we wanted to split the

data into two groups, learn a model on one group, then improve the model based the

performance of the model on the other group. More specifically, we took Algorithm

3 and changed the check in its update step. While the model learned in each step

is still based on the inside group, the variable selection is based on outside-group

performance, balancing the ability of variables to fit the data well and the ability to

explain variance in novel variables. The formulation of the problem would essentially

be:

Z = {Z1, Z2} where Zi are the groups of data (4.12)

X = {X1,X2} where Xi are the variables (4.13)

minimize
β

‖Z1 − βX1‖2 + λ|β|1 − ηR2(Z2,X2, β) (4.14)

where R2(Z,X , β) = 1− ‖Z − βX‖
2

‖Z −Z‖2
(4.15)

where Z is the mean of Z, η is the weighting for the fitting of the outside group, R2

is the coefficient of determination. If we adapt Algorithm 3 to solve this equation

iteratively, we would get Algorithm 4.
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Algorithm 4: Two-Group Fitting

Data: Voxel activation patterns for voxel i: Z1i, Z2i;
Binary fragment presence matrices: X1,X2;

Result: Fragment coefficients: βi
while model not converged do

Solve Z1i = βiX + ε for βi using OLSQ;
R2 ← R2(Z2i,X2, βi);
for f ← 1 to 44 do

β̂if ← βi;

β̂if [f ]← 0;

Solve Z1i = β̂ifX1 + ε for β̂if using OLSQ;

R̂2
f ← R2(Z2i,X2, βi);

find f such that Rd ← R2 − R̂2
f is smallest;

if τlower < Rd then

βi ← β̂if ;

else model has converged;

In our case, we have chosen eight of the most complex stimuli in our set as the

”outside” group Z2i. The difference of Algorithm 4 from Algorithm 3 is that the

variable selection step is decided by the value of β that best explains the fit in the

outside group, while the fit itself is still computed from the inside group. This process

still computes the fitting based entirely on the inside group, but it eliminates com-

ponents from the model based on their ability to explain not just data in the same

group but also data in the outside group. If the outside group were also included in

the model to begin with, the algorithm would easily overfit to the parameters of the

entire data set. Its fit quality in training data is comparable to that of Algorithm

3, but it performs noticeably better on test data. Note that we don’t actually have

a parameter η in our algorithm. Similar to how our BSR algorithm eliminates the
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need to choose a λ parameter while estimating a solution to the L1 regularized re-

gression problem, this algorithm eliminates the need for η. Instead, the role of those

parameters is mimicked by our convergence parameter τ . This eliminates the need

to find an optimal parameter to balance several constraints, instead focusing on a

convergence threshold. Algorithm 4 will pick the same set of coefficients in the same

order regardless of τ , the only thing τ changes is when the algorithm stops. Another

implicit parameter is to choose how to separate the data into two groups. In practice,

we’ve found that separating out about 10% of the data works well, and that 10%

should ideally be the most nonlinearly represented samples in the data set. This has

a double advantage, as such features often destabilize the linear regression part of

the algorithm, and putting them in the R2 clause allows them to affect the model’s

quality without making the linear solution account for outliers in its linear solver

step. Our approach is to pick these samples by their variance.

Figure 4.9 demonstrates the fitting quality of our approach, and Figure 4.10

demonstrates a comparison of all approaches discusses so far, averages across sub-

jects. Since the subjects have a different amount of voxels selected, their NRMSE

values from their corresponding plots have been resampled via linear interpolation for

the purposes of visualization.

It is worth noting that the final models selected by our algorithm have in the

range of 3-6 coefficients selected per voxel. This is relevant for drawing parallels to

monkey work. Pasupathy and Connor [49] have shown that neurons in a cluster code
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Figure 4.9: The residual error percentage according to NRMSE of applying the TGF ap-
proach in Algorithm 4

for around 2-4 specific curvature/orientation/position tunings. This comparable level

of sparsity provides a neurological justification for the representative nature of our

models. A sample operation of the algorithm can be seen in Figure 4.11.

4.4.2 Advantages of Two-Group Fitting

Our algorithm developed in Section 4.4.1 is designed to prevent overfitting by

separating the data into two groups and fitting only on one of them while improving

performance on the other. In this way, certain variables are completely left out
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Figure 4.10: The residual error percentage according to NRMSE of applying each approach.
The NRMSE curves are averaged across each subject via resampling, then dis-
played against each other. Note that our TGF algorithm performs comparably
to Backwards Stepwise Regression.

of the fitting process, eliminating their influence into the regression, yet they still

have a degree of control over the process via variable selection. We have tested our

data with a publicly available data set separated into training and test groups to

validate our claim. We have trained linear regression, Algorithm 3 and Algorithm

4 on the BlogFeedback Data Set by Buza [6], and used the models to predict each

testing example. This data set has 280 features derived from blog comments, being

mapped to the value of how many comments will be received in the next 24 hours.
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Since this data set is also highly discontinuous, it is a good test of our algorithm’s

capabilities. We left out 20 features that had the highest variance among the 280.

Figure 4.12 shows the performance of each algorithm measured by R2 comparison

between actual and predicted test data. We have both shown the actual comparisons

and the comparison of each curve sorted among itself to demonstrate performance.

4.5 Validating The Model

A key aspect of our approach in this chapter is that we aren’t trying to find the

best fit for our data, we are trying to show that this parametrization of stimuli val-

idates our hypothesis about the functionality of the LOC. As such, cross-validation

is an essential tool for our aims. If we can train a model that, given two separate

sets of data, can perform well on the left-out data, then we can say with confidence

that our parametrization is valid. Towards this end, we will take several steps. The

first step is to develop a model based on the ability to explain left-out data. The

next step is to show that our parametrization is unique to the LOC, which we shall

demonstrate by applying it to a brain area similar in function. By demonstrating that

the parametrization is unique to LOC, we are able to make the claim that we are

identifying functionality specific to that brain area instead of whole-brain function-

ality. Finally, we also need to show that other parametrizations don’t work for LOC,

so we will show that parametrizations established for the V1, whose functionality has
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been mapped, don’t explain our stimuli. With these, we will be able to confirm the

thesis statement and the confirm the link between monkey IT models, showing that

the LOC indeed codes for object structure in a manner that other brain areas don’t.

4.5.1 Cross-Validation Analyses

A good test of a model’s ability to represent the inherent patterns of the data and

a safe guard against overfitting is cross-validation. Leave-N-Out cross-validation is a

very common technique used for model evaluation. For the purposes of this work, we

will use several values for N, specifically 1, 2 and 6. With leave-one-out and leave-

six-out, we will assess the ability of the model to predict what left-out voxel patterns

look like, and with leave-two-out we will assess how well can models trained on the

rest of the data can decide between left-out stimuli pairs, as per Mitchell et al. [41].

4.5.1.1 Leave-One-Out Cross-Validation

For leave-one-out (LOO) cross-validation, we leave out one of 60 stimuli, train

on the 59 left-in stimuli, then assess the quality of the predicted voxel pattern used

NRMSE. This gives us 60 tests to evaluate, one for each stimulus. We measure the

quality of the model by leaving each stimulus out, which gives us a set of 60 predicted

values. We then compare the set of actual stimulus values to the predicted stimulus

values for each voxel. We do this by computing the R2 correlation coefficient between

the predicted and actual value of the stimulus set for each voxel. We also performed
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a randomization test to assess significance, randomly scrambling the stimulus labels

10,000 times for each LOO trial and compared the resulting R2 value to p = 0.05.

4.5.1.2 Leave-Two-Out Cross-Validation

With leave-two-out (L2O) cross-validation, we leave out two stimuli, train on the

58 left-in stimuli, then assess the model’s ability to make a binary choice between the

actual values of the left-out stimuli and the predicted values using cosine similarity,

repeating the approach in Section 4.3.1. The decision is made using Equation 4.7.

There are
(
60
2

)
= 1770 L2O trials in this case. Since this is a binary choice, chance

is at 50%, and through 10,000 randomized stimulus label assignments for each trial,

we found the significance point (p = 0.05) to be at 62.3%. The overall accuracy of all

binary choices across all L2O trials was 65.65%, which is comparable to the results

of Mitchell et al. [41] and above significance.

Subject Accuracy
1 65.40%
2 66.10%
3 65.45%

Average 65.65%
Significance 62.30%

Chance 50.00%

Table 4.1: The accuracy of choosing between the predicted values of two left-out stimuli.
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4.5.1.3 Leave-Six-Out Cross-Validation

For leave-six-out (L6O) cross-validation, we leave out groups of six stimuli out

of 60, train on the 54 left-in stimuli, then assess the quality of the predicted voxel

patterns used NRMSE. The reason for leaving six stimuli out was have groups large

enough to eliminate every appearance of certain compound fragments, and assess

whether the models can work even if left-out stimuli have fragments within them that

the left-in data set does not contain. In this case, we would normally have
(
60
6

)
=

50063860 trials, which would be quite intractable, especially with randomization tests

using 10,000 different scramblings. Instead, we decided to intelligently leave out

stimuli, leaving stimuli out in groups in a specific pattern. Our scheme was to leave

out the same rotation of six stimuli, for each rotation and every possible combination

of stimuli. We did not leave out different rotations of different stimuli, or all rotations

of a single stimulus (since our model is fragment-based, it doesn’t have a particular

preference to every instance of a single stimulus being removed). This led to 4×
(
15
6

)
=

5× 5005 = 20020 trials, which was a lot more manageable. Similar to the L1O case,

we also performed a randomization test to assess significance, randomly scrambling

the stimulus labels 10,000 times for each trial and compared the resulting R2 value

to p = 0.05.
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4.5.2 Applying Our Model To The Visual Word-

Form Area

Considering that our aim is to derive a model for the functionality of the LOC, the

model should be unique to the LOC and not work in other, similar brain areas. Oth-

erwise, the model derived could not be claimed to specifically describe the role of the

LOC. Instead the derived parametrization would be a general-purpose model, which

would go against the hypothesis of structural coding being the functional definition of

the LOC. The role of the V1 is already well-established to be different. Another area

similar in function to the LOC is the Visual Word-Form Area. If we were to show

that our model, based on a parametrization of shapes using curvature, orientation

and polar position, works on LOC voxels and does not work on VWFA voxels, it

would strengthen our argument that this model is a depiction of the role of the LOC.

Without this, it could be argued that this model does not uniquely identify the ca-

pabilities of LOC voxels, which would imply that VWFA also has a role in structural

object coding. Such a result would be inconsistent with current understanding of the

roles of these areas based on neuroscience research as per section 4.2.2, which could

imply that our model is erroneous. Eliminating this possibility by showing that the

model does not explain the behavior of VWFA voxels is critical. As such, we have

identified voxels in the VWFA in Section 3.5. Using the same parameters, stimuli and

design as per Section 4.4.1, we try to fit a model to the VWFA voxels. The results
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of this approach can be seen in Figure 4.16. As it is quite clear, our parametrization

performs very poorly in VWFA voxels, it does not go beyond significance levels.

4.5.3 Applying V1 Models To The LOC

Similar to using our parametrization on VWFA voxels to show that it is unique to

the LOC, we also need to show that our parametrization does a better job of describing

LOC voxel activity than models for other brain areas. Out of similar visual areas, only

V1 has a significant body of work in terms of describing its functionality. As discussed

in Section 4.2, it is commonly accepted that V1 voxels perform a Gabor Wavelet

decomposition on the visual signal. Specifically, Naselaris et al. [44] have characterized

the activity of V1 voxels using a Gabor Wavelet Pyramid to parametrize images, then

learned a mapping between coefficients of the wavelets and the fMRI images. We

applied the same approach to our stimulus images, breaking them down with a GWP

decomposition following the work of Naselaris et al., and applied our model to learn a

mapping. This model performed poorly in comparison to the fragment-based model

that we have proposed, not going beyond significance levels. These results can be

seen in Figure 4.17.
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Figure 4.11: A demonstration of the Two-Group Fitting algorithm for a sample voxel. Every
row represents the weights assigned to each fragment at a particular iteration,
with a gradient from red to black denoting normalized values between 1 and
0. At each step, one fragment is removed from the model by setting its weight
to zero.
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(a) The correlation coefficient between the predicted and actual value of the blog testing
set according, compared across linear regression, backwards stepwise regression and
two-group fitting.
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(b) The correlation coefficient between the predicted and actual value of the blog testing set
according, compared across linear regression, backwards stepwise regression and two-
group fitting. The curves are each sorted within themselves to demonstrate performance
differential between approaches.

Figure 4.12: The correlation coefficients between the predicted and actual value of the stim-
ulus set according to Leave-Six-Out analyses for each voxel for each subject.
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Figure 4.13: The correlation coefficient between the predicted and actual value of the stim-
ulus set according to Leave-One-Out analyses for each voxel.
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(a) The correlation coefficient between the predicted and actual value of the stimulus set
according to Leave-Six-Out analyses for each voxel for Subject 1.
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(b) The correlation coefficient between the predicted and actual value of the stimulus set
according to Leave-Six-Out analyses for each voxel for Subject 1.
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(c) The correlation coefficient between the predicted and actual value of the stimulus set
according to Leave-Six-Out analyses for each voxel for Subject 1.

Figure 4.14: The correlation coefficients between the predicted and actual value of the stim-
ulus set according to Leave-Six-Out analyses for each voxel for each subject.
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Figure 4.15: The correlation coefficient between the predicted and actual value of the stim-
ulus set averaged across all L6O analyses for each voxel for each subject.
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Figure 4.16: Performance of the structural parametrization on VWFA voxels compared to
the LOC voxels.
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Figure 4.17: Performance of the V1-parametrization compared to the structural
parametrization on LOC voxels.
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4.6 Conclusions

The goal of this chapter, and ultimately of this work is to provide evidence for

structural coding of object shape in the lateral occipital complex voxels. We designed

a set of medial axis stimuli and an experiment structure to this end in Chapter 2.

In the following chapter, we extracted voxel information to be used to this end from

raw fMRI data. The specific objective of this chapter was to derive a method of

parametrizing the stimuli in a way analogous to how inferotemporal cortex neurons

in monkeys code for similar shapes, then validate that LOC voxels also respond to

visual stimuli in a manner consistent with this parametrization using a computational

model. After an initial experiment with a complex stimulus set failed, we settled

on the final set of stimuli, each being composed of two to three individual medial

axis fragments. We divided this parametrization into four quadrants, and created a

binary vector of presences for each fragment in each quadrant. With three unique

fragments representing different curvature values, used at differing angles and in each

quadrant, we were able to use these parts to approximate a parametrization that

spanned curvature, orientation and polar position values.

Following the establishment of the parametrization, we set out to show that this

parametrization could be used to develop a computational model for how LOC voxels

respond to visual stimuli. We tried several models, and eventually developed our

own algorithm that separates the data into two groups and learns a linear regression

on one group that eliminates terms from its model based on how it performs on the
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other group. By using this approach, we were able to improve performance of our

algorithm compared to existing methods. Since we were concerned about overfitting,

we developed a series of leave-N-out cross-validation tests, and demonstrated the

robustness of our model.

To further cement that this parametrization is specific to the LOC, we conducted

two further tests. We applied the same parametrization using our model to voxels

found within the visual word-form area and demonstrated that the behavior of voxels

in this area cannot be adequately explained by such a parametrization. This strength-

ened our claim that this structural parametrization is particular to the behavior of

the LOC. The second test was to apply parametrizations derived from models of early

visual areas to the voxels found in LOC. This was done in order to show that the

behavior of LOC is distinct from early visual areas, and our parametrization is more

appropriate for describing LOC voxels than other approaches. The results validated

our hypothesis in this case as well.

These results are significant, as they are the first results demonstrating the human

LOC coding for object shapes in a parametric fashion. While prior studies have shown

that LOC voxels respond to object images, our work is the first to explore how these

voxels respond to object images based on characteristics of those images. These

preliminary findings could lead to further exploration of the LOC and mapping of its

functionality using more in-depth studies that utilize higher resolution scanners, span

more subjects and wider parametrizations. Additionally, further neuronal recording
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studies on monkeys can be linked to LOC experiments, bridging yet another link

between the species by solidifying the homology between these areas.

Furthermore, the two-group fitting algorithm we proposed can be used as a general

machine learning technique for fitting data (in our case brain voxels) that is generated

by degenerate input. This is an iterative linear regression algorithm that solves for a

sparse set of coefficients without requiring a parameter to balance sparsity against fit

quality. We have demonstrated the viability of the algorithm on our own fMRI data

and on a publicly available dataset.
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Chapter 5

Reconstruction Of Stimuli Using

fMRI Images

In the previous chapters, we designed and performed experiments, then analyzed

the resulting data with the goal of showing evidence for structural coding of me-

dial axis shape in the Lateral Occipital Complex. More specifically, in Chapter 4

we derived a parametrization and designed an algorithm to model the activations of

LOC voxels. Using this model, we were able to describe the behavior of the sub-

jects’ brains as a result of visual object stimuli being presented as a function of the

structural fragments present within the stimuli better than any other known model,

and with statistical significance. To complete the picture, the next step would be to

follow the parametrization in the other direction, namely using voxel activations to

predict the stimuli being viewed by the subjects based on the structural fragments
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they’re composed of. In this chapter, we will address this problem. We will de-

velop a reconstruction algorithm that takes into account the nature of the data and

parametrization.

5.1 Overview

In previous chapters, we have designed and conducted an experiment to create

a model for how voxels in the Lateral Occipital Complex respond to images being

shown to the subject, based on a parametrization representing curvature, orientation

and polar position. We have developed a computational model that sought to explain

the behavior of voxel activity using a fragment-based parametrization of our stimuli.

However, that approach only validates our hypothesis in one direction. Being able

to predict brain activity from fragments validates part of our assumption. The other

direction is also important, namely the ability to predict stimuli based on voxel acti-

vations. In this chapter we develop a novel computational model for reconstructing

the stimuli being viewed by a subject based on the activity of their LOC voxels. It is

worth noting that in this chapter we are not trying to validate the statistical model

we fit onto the voxels. Our aim in this chapter is to validate our hypothesis that states

the LOC codes for visual stimuli based on orientation, curvature and polar position.

As such, this chapter will not focus on models developed in Chapter 4. Instead it

will be using a hypothesis-driven approach to predict likely candidates for fragments
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and use those to reconstruct the stimuli. The entirety of this chapter will be devoted

to discussing and validating our novel contribution to reconstructing stimulus images

from LOC voxel activations.

In Section 5.3, we will describe the procedure used to reconstruct images of left-

out stimuli using our novel approach. Section 5.3.1 will discuss the approach used

to calculate the presence probability of each fragment in a stimulus being predicted.

Section 5.3.2 will describe the major contribution of this chapter, the algorithm with

which candidate fragments are selected based on the ranking derived from their pres-

ence probabilities. Section 5.4 will discuss the results of the reconstruction process

and their validation. Section 5.5 will discuss potential future applications of these

findings. Finally, Section 5.6 will explore the implications of the novel algorithm in

this chapter, its potential uses, lessons learned from its development and future work.

5.2 Related Work

In this chapter, we will be providing more results supporting our argument that

the LOC codes for images based on structural fragments. As such, it is important to

return some of the work visited in Section 4.2. We will address the relevant works,

and contextualize them within the scope of this chapter.
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5.2.1 Neurophysiology Studies On Object Struc-

ture

As explained in Chapter 2, the primary motivations for our work come from

monkey studies concerned with describing how the inferotemporal cortex codes for

object structure. Since deriving a similar parametrization for LOC is the primary

goal of this chapter, it is important to reiterate some of the background work here.

Since the inferotemporal cortex is considered the homolog of the LOC in monkeys

[37], the coding we will propose for the LOC is dependent on understanding how IT

neurons code for object structure. Thus, this section will be reiterating some of the

discussion from Section 4.2. However, some of the works cited will be contextualized

from a reconstruction perspective instead.

Studies as early as Pribram and Barry [51] and Wilson [64] have shown via abla-

tion of inferior temporal regions in monkeys that these areas hold a visual function.

Dubner and Zeki [17] have shown that the IT receives inputs from the primary visual

area (V1) relayed by V2 and V4. Further studies by Dean [15], Gross et al. [20] and

Mishkin [40] have shown via ablation that the IT specifically affects visual discrimini-

ation or recognition of objects. Perhaps the most important finding that establishes

the groundwork for this work is by Tanaka et al. [58], demonstrating a specific coding

for objects of differing structural parameters in IT.

Recent work in monkey IT has shown evidence of parametrization for specific char-
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acteristics of objects based on structural components. Parametric coding of object

shapes in monkeys has been shown in Pasupathy and Connor [49]. Neuron recod-

ings have enabled the authors to reconstruct stimuli being viewed, and this work will

also follow a similar design, but with fMRI voxels instead. Pasupathy et al. have

fit Gaussians to the tuning responses of neurons to predict the stimulus eliciting the

neural spike pattern. Since fMRI is less direct than neuronal recordings, and since

our stimuli are discrete instead of continuous (due to fMRI limitations discussed in

Chapter 2), their approach is inapplicable as-is to ours. However, we will imitate

their method in a manner, as we will be predicting a presence probability for each of

our discrete fragments given a novel stimulus. Our prediction method is inspired by

their approach.

The IT has been shown to code for combinations of straight and curved shape

fragments by Brincat and Connor [4]. The authors have used a model to describe

the response to stimuli as parametrized by such fragments, which is the inspiration

for our approach. Our work also uses straight lines and curved lines. Their work

has line fragments joining at edges to create closed shapes, whereas our work has line

fragments going out from the fixation center, and closed shapes will not be allowed by

our reconstruction algorithm. The reasoning for this is based on Brincat et al.’s work,

as they have demonstrated that continuous shapes are represented differently from

discontinuous shapes, and we did not have enough experiment time to represent both

shape types within our stimulus set. Closed shapes also create curvature ambiguities,
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whereas medial axis lines are unambiguous in terms of their curvature. Hence the

most directly relevant work to our is Hung et al. [25], who have used medial axis

stimuli to demonstrate that the tuning function of IT neurons can be modeled using

fragments of such stimuli. As a result, our work has uses medial axis stimuli as

described in Chapter 2.

Yamane et al. [65] have developed a coding for three-dimensional object shape

and spatial configurations based on IT neuron responses. Due to fMRI limitations a

parametrization with the complexity of Yamane et al.’s is out of reach (see Chapter 2

for discussion of fMRI limitations), we have taken into account the spatial variations of

fragments as a factor in our parametrization, specifically polar positions of fragments

around the visual fixation point.

5.2.2 fMRI Studies On The Visual Cortex

5.2.2.1 Early Visual Areas

The fMRI studies in visual cortex are directly relevant to our work in this chapter,

as many of them focus on reconstructing either stimuli being viewed or classifying

images and predicting a class for the image being viewed. Our approach leans more

towards the latter, as our stimulus set is discrete. However, our approach takes

inspiration from both, and it is important to reiterate some of these studies.

Several recent fMRI studies have used Gabor wavelet based approaches to
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parametrize the functionality of voxels in early visual areas. As mentioned earlier,

a large amount of fMRI work is based on classifying brain activity. Unconstrained

reconstruction is a more challenging task. Miyawaki et al. [42] have reconstructed

binary image patches using such an approach. Looking at early visual areas and

parametrizing image stimuli with Gabor wavelets, they fit a model to voxel activa-

tions to predict images associated with them. Miyawaki et al. have used letter-like

stimuli similar to our medial axis shapes, however their approach is dependent on

voxels within the primary visual cortex (V1), and the functionality of that area is

very well-understood due to neuron recording studies in animals, and the high corre-

lation of animal V1 to human V1. Due to LOC being a higher level visual area, such

correlations are not as obvious, and voxel activity is significantly harder to record.

As such, we were not able to use a parametric reconstruction. The original stimulus

set we described in 2.4 was more suited towards such an approach, however we were

unable to obtain enough signal from this area to achieve such a reconstruction.

More relevant to our approach is the research of Jack Gallant and collaborators.

Their work, specifically Kay et al. [28], Kay and Gallant [27], Naselaris et al. [44],

Naselaris et al. [45] and Vu et al. [63] has used fMRI of early visual areas to reconstruct

natural images being viewed by subjects. These works have used Gabor wavelet

decompositions to parametrize images, then use a bag-of-words inspired model to

reconstruct images being viewed by the subject. Since their approach is classification-

based, their approach was a direct inspiration for ours.

141



CHAPTER 5. RECONSTRUCTION OF STIMULUS IMAGES FROM FMRI
IMAGES

5.3 The Reconstruction Process

In this section, we will provide an overview of the procedure used for reconstructing

stimuli from voxel activations. In the following sections, we will explain in detail what

each of these steps entail. In Section 4.3.2, we have demonstrated that the activations

caused by stimuli can be distinguished to some extent depending on which fragments

they contain. The first step of our reconstruction is based on this, calculating the

probability of the presence of each fragment. The second step is picking candidate

fragments and the final step is verifying the results.

5.3.1 Computing Candidate Fragments

The first step of the reconstruction process involves calculating a presence prob-

ability for each fragment given a novel stimulus. The existing data is separated into

two clusters per fragment, one cluster containing voxel activations of stimuli where

the fragment is present, and the other containing voxel activations of stimuli where

the fragment is absent. The activation value of the novel stimulus is projected onto

the line between the means of both clusters for each fragment, then the probability

of the fragment’s presence is computed as the position of that projection on the line,

as seen in Figure 5.1 Repeating this process for every fragment gives us a vector of

probabilities for the novel stimulus.
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Figure 5.1: Projecting the novel stimulus onto the line between the means of the present
and absent clusters.

5.3.2 Rank-Based Fragment Selection

Following the computation of the presence probability of each fragment in Section

5.3.1, we must make a decision and choose fragments from the list of probabilities.

This process is not trivial. As such, we have developed a procedure for picking the cor-

rect fragments given a list of probabilities. As mentioned in Sections 2.5 and4.4, our
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parametrization works on an assumption of quadrants, with stimuli being constructed

of four quadrants containing 0-3 fragments each. Given that we have integrated an

”empty fragment” for each quadrant and compound fragments that consist of multi-

ple individual fragments, we can reduce that assumption to each quadrant containing

exactly one fragment. This simplifies the task of picking candidates for each quad-

rant, as having to decide between picking a single fragment versus multiple fragments

would complicate the algorithm immensely. This is yet another benefit of choosing a

”compound fragments using a linear model” approach as per Section 4.4.

Once the presence probabilities are calculated, the fragments are ranked in de-

scending order of probability. Ideally, we could pick the highest ranked fragment

from each quadrant and that would give us the final shape. In practice, this doesn’t

work as well, due to noise other imperfections in the data. Picking the highest ranked

fragment from each quadrant can lead to invalid shapes, for example shapes that have

conflicting fragments, closed loops (which aren’t allowed by our rules) or other such

”illegal” configurations. To combat this, we iterate over every possible choice for a

quadrant, going from the highest ranked to the lowest ranked.

Given the fMRI responses to the stimulus set Y , for fragment fi, the responses

can be separated into two clusters. One for responses to stimuli that contain the

fragment, and one for stimuli that don’t contain the fragment. The means of these

clusters will be denoted as µpi, µai where p denotes the cluster where the fragment

is present, and a denotes the cluster where it is absent. The vector between these
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two cluster centers is given by Mi = µpi − µai. Given a novel response pattern x̂, the

probability of the stimulus that generated that response containing fragment i can

be denoted:

p(fi‖x̂, Y ) =
Mi · Xi
‖Xi‖

(5.1)

where Xi = x−µai. For the sake of convenience, we will denote p(fi‖x̂, Y ) = ρ(fi). As

mentioned previously, our parametrization separates fragments into four quadrants.

We will denote fragments belonging to these clusters as Fj where j = 1 · · · 4 and

F1 = {f1 · · · f11}, F2 = {f12 · · · f22, F3 = {f23 · · · f33, F4 = {f34 · · · f44}. Given a

novel stimulus, our goal then is to solve the following integer programming problem:

max
a,b,c,d

ρ(fa) + ρ(fb) + ρ(fc) + ρ(fd)

subject to conflicts(fa, fb, fc, fd) = 0

where fa ∈ F1, fb ∈ F2, fc ∈ F3, fd ∈ F4

(5.2)

where conflicts() is a function that returns the number of conflicts that would occur if

a stimulus was generated from the chosen fragments. This function can be expressed

as sets of linear equations with a variable for each fragment. We have developed

Algorithm 5 to solve the problem given in Equation 5.2.

Algorithm 5 was used to reconstruct stimuli from the corresponding activation

patterns. The functions called within are: Project To Line(N,
−→
AP ), which projects

the point N onto the line defined by the vector ÂP . The mean-projection procedure is
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Algorithm 5: Rank-based Reconstruction

Data: Voxel activation pattern Z;
Binary fragment presence vector for stimulus i: Xi;
Novel stimulus activation pattern: N ;
Fragment list: F ;

Result: List of fragments predicted to be present in stimulus i
P ← 044×1;
foreach fragment f do

A← Zi where stimulus i doesn’t contain f ;
P ← Zi where stimulus i contains f ;
µa ← mean(A);
µp ← mean(P );
−→
AP ← µa − µp;
n← Project To Line(N,

−→
AP );

P [f ]← (1− n
µa+µp

);

[P, order]← Descending Sort(P );
selection size← 4;
conflicts← True;
while conflicts do

c list← order[1 . . . selection size];
candidates← Enumerate NChooseK(c list, 4);

for i← 1 to
(
selection size

4

)
do

selection← candidates[i];
conflicts← Check Conflicts(F [selection]);
if ¬conflicts then return selection;

selection size← selection size+ 1;
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demonstrated in Fig. 5.1. Descending Sort(P ) sorts the elements of P in descending

order and returns the sorted list along with a vector of indices describing the sorting

arrangement, Enumerate NChooseK(c list, 4) returns a list of all possible combina-

tions of choosing 4 elements from c list, and Check Conflicts(P [selection]) looks in

the 4-long vector P ([selection]) and returns a boolean indicating whether there are

conflicts in constructing a stimulus from those fragments. The conflict checking was

done by having a list of unallowed configurations and doing a check against them.

Once the algorithm provides the list of fragments to be used to reconstruct a

stimulus, the images of those fragments are composited in order to create the recon-

structed stimulus image. For examples see the next section.

5.4 Results

For testing and validation of our results, we used the same leave-six-out scheme

used in Section 4.5.1.3. The difference in this section is that the stimulus parameters

are the values being predicted and the fMRI activation patterns are the input into

the algorithm. Also, we only used 10 sets of leave-6-out groups, so that each stimulus

is only left out once. We picked leave-out groups to ensure that left-out stimuli had

minimal to no overlap with left-in stimuli. Using this approach, we applied Algorithm

5 to each left-out stimulus. As mentioned in Section 5.3.1, the end result of the

algorithm is, for each stimulus, a list of fragment probabilities for each quadrant.
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While the reconstructed stimuli can be assessed visually, another way to assess the

quality of the reconstruction is looking at the rank sum. For each quadrant, we rank

the fragments according to their presence probability in descending order. Given

that we already know the correct fragment for each quadrant, we can find where the

correct fragment is ranked within this sorted list. For each stimulus, we assign its

rank-sum to be the sum of the ranks of the correct fragments across all quadrants.

This means that a perfectly reconstructed stimulus would have rank-sum of 4, and a

stimulus that has the correct fragments ranked lowest would have a rank sum of 44

(given 11 fragments per quadrant, including the blank fragment). It is worth noting

that the list of possible configurations is larger than 44, in fact it is 114. However,

the rank-sum approach acts more like a distance-based metric, as all configurations

that are off by one fragment are equally ranked. This would mean that predicting all

quadrants incorrectly would have the same score as predicting 3 quadrants correctly

but assigning a very-low-rank prediction to the fourth. The results for this analysis

can be seen in Figure 5.2. As such, an alternative approach to visualizing these

results can provide more information. The number of correctly predicted quadrants

for each stimulus is thus displayed in Figure 5.3. As a counterpart to the rank-sum

analysis, this measure does not represent how poorly mispredicted a given fragment

is. Due to this, a reconstruction that predicts the correct fragment as the second-

most-likely candidate would receive the same score as one that predicts the same

fragment as the least-likely candidate. To get a complete understanding of these
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results, one must view both metrics in tandem. In our case, most incorrect predictions

weren’t too far removed from the correct ranks, so these two metrics have provided

similar results. We have also measured the significance of the reconstruction results

against 10,000 randomized trials. As can be seen in Figure 5.4, our reconstructions

where at least two quadrants are correctly predicted are also statistically significant.

Alternatively, reconstructions with a rank sum of over 38 also all have statistical

significance. It is worth noting that the reconstruction prefers more complex stimuli,

and it performs poorly in stimuli where there are two blank quadrants. We presume

this is due to the fact that it is difficult to differentiate a lack of fMRI response caused

by blank quadrants from fMRI noise. In general, we have found that responses to

presence are much more strongly driven than responses to absence. Figure 5.5 shows

a comparison between a reconstructed stimulus set and the actual stimuli. This

comparison shows the tendency of the representation to favor curved fragments and

avoid blank fragments. Visual inspection reveals that even stimuli that have incorrect

predictions generally preserve the overall structure of the stimulus for the most part.

An additional result to consider is the rate at which fragments are mis-predicted

as each other. To this extent we created a ”confusion matrix”, counting how many

times across the stimulus set has a particular fragment been incorrectly labeled as

another given fragment. Figure 5.6 displays this matrix.

149



CHAPTER 5. RECONSTRUCTION OF STIMULUS IMAGES FROM FMRI
IMAGES

0 5 10 15 20 25 30 35 40 45 50 55 60

Stimuli

32

36

40

44

R
a
n
k
-
s
u
m

Rank-sum analysis

Subject 1
Subject 2
Subject 3

Figure 5.2: The rank sum of each stimulus for each subject. Perfect reconstruction would
have a rank of 44.
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Figure 5.3: The number of correctly predicted fragments for each stimulus.

Figure 5.4: The correlation coefficients between the predicted and actual value of the stim-
ulus set according to Leave-Six-Out analyses for each voxel for each subject.
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Figure 5.5: Comparison of a reconstruction set (below) to the stimulus set (above). For
most fragments, even when they are incorrectly predicted, their appearance is
close to the actual fragment.
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Figure 5.6: The confusion matrix displaying how many times a given fragment has been
mis-predicted as another fragment within the 60 stimuli.
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(a) The presence probability plot for stimulus 5. The predicted
fragments are highlighted with green circles, and the actual
fragments are highlighted with red crosses.

(b) Actual image of stimulus 5. (c) Reconstructed image of stimulus 5.

Figure 5.7: Demonstrating the reconstruction of stimulus 5. The fragment presence predic-
tions by Algorithm 5 are displayed, and the actual stimulus is shown alongside
the reconstructed version. This reconstruction has an error in the second and
fourth quadrants, which correspond to the quadrants facing 90 and 270 degrees,
respectively. In both cases, instead of predicting an empty fragment, the algo-
rithm predicted a straight line. In general, the algorithm seems to not favor
predicting empty fragments.
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(a) The presence probability plot for stimulus 6. The predicted
fragments are highlighted with green circles, and the actual
fragments are highlighted with red crosses.

(b) Actual image of stimulus 6. (c) Reconstructed image of stimulus 6.

Figure 5.8: Demonstrating the reconstruction of stimulus 6. The fragment presence predic-
tions by Algorithm 5 are displayed, and the actual stimulus is shown alongside
the reconstructed version. This reconstruction has an error in the first quad-
rant, facing 0 degrees. Again, the algorithm prefers a straight line over an
empty fragment. However, in this case it is able to correctly predict and empty
fragment in the third quadrant, facing 180 degrees.
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For Stimulus 33, Subject 2
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(a) The presence probability plot for stimulus 33. The predicted
fragments are highlighted with green circles, and the actual
fragments are highlighted with red crosses.

(b) Actual image of stimulus 33. (c) Reconstructed image of stimulus 33.

Figure 5.9: Demonstrating the reconstruction of stimulus 33. The fragment presence predic-
tions by Algorithm 5 are displayed, and the actual stimulus is shown alongside
the reconstructed version. This stimulus is reconstructed accurately. The algo-
rithm does better with three-fragment stimuli than it does with two-fragment
stimuli, as can be seen in Figure 5.4.
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Fragment Presence Probability
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(a) The presence probability plot for stimulus 45. The predicted
fragments are highlighted with green circles, and the actual
fragments are highlighted with red crosses.

(b) Actual image of stimulus 45. (c) Reconstructed image of stimulus 45.

Figure 5.10: Demonstrating the reconstruction of stimulus 45. The fragment presence pre-
dictions by Algorithm 5 are displayed, and the actual stimulus is shown along-
side the reconstructed version. Similar to Figure 5.7a, the algorithm predicts
a straight line in place of an empty fragment.
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(a) The presence probability plot for stimulus 57. The predicted
fragments are highlighted with green circles, and the actual
fragments are highlighted with red crosses.

(b) Actual image of stimulus 57. (c) Reconstructed image of stimulus 57.

Figure 5.11: Demonstrating the reconstruction of stimulus 57. The fragment presence
predictions by Algorithm 5 are displayed, and the actual stimulus is shown
alongside the reconstructed version. This stimulus is reconstructed accurately.
The algorithm does better with three-fragment stimuli than it does with two-
fragment stimuli, as can be seen in Figure 5.4.
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5.5 Practical And Future Applications

Biological understanding of vision has long driven computer vision algorithms.

One of the most commonly used feature detectors, SIFT, by Lowe [36] is based on how

the primary visual cortex models images. There is a plethora of biologically-driven

computer vision algorithms [21]. Understanding how the human brain represents im-

ages is key to developing algorithms that are better able to replicate human behavior.

As such, a method of reconstructing objects based on brain images would open up

new avenues for image processing. This has long been a goal of neuroscience.

Given more data, it could be possible to build a more complete model of how ob-

jects are constructed in the visual cortex. Neuron recording studies trace the signal

caused by visual stimuli throughout several brain areas to see how the representation

of images evolves. With a more robust parametrization, we could create a link be-

tween the spectral coding of images in early visual areas and the structural coding.

This could provide a great leap in developing naturally-driven computer vision algo-

rithms. There is work, for example by Zhu and Mumford [67] that tries to build a

complete model of describing images, starting from local features, moving to struc-

tural descriptors, then to semantic constructs. This is analogous to how the human

brain works, and developing a model based on brain imaging that fills in the gaps of

this research would let vision algorithms represent images similarly to how humans

do so.

This could also lead to, with the improvement of scanning technology, ”mind
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reading” - recreating one’s thoughts, or at least the visual imagery they’re thinking

of, from their brain images. Work has shown that these visuals code not only for

images being viewed but also being mentally imagined [59]. These technologies could

help disabled patients communicate with vastly improved effectiveness. It can also

be used for general communication, robot operation, and improved diagnostics of

neurological conditions. These developments could also potentially be used against

one’s will, possibly extracting images they are thinking about without their consent.

While these applications seem far away, there is already work in using fMRI for lie

detection, and many legal questions facing its admissibility in court [14, 30, 38]. As

technology develops, we will be forced to answer these questions. As a more specific

example directly relevant to this work, an vastly improved version of the medial axis

reconstruction approach could possibly be used to extract blueprints or diagrams

from the mind of an unwilling participant. As such, to quote Naselaris et al. [44],

”We believe that researchers in this field should begin to develop ethical guidelines

for the application of brain-reading technology.”

5.6 Conclusions

As per Chapter 4, the goal of this chapter is to provide evidence for structural

coding of object shape in the lateral occipital complex voxels using fMRI. The previous

chapter was focused on modeling the activity of voxels found in the LOC, using our
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proposed medial axis stimuli (discussed in Chapter 2). This chapter focused on the

same problem from the opposite direction, namely using voxel activation values to

predict parameters of stimuli being viewed by the subject. Towards this end, we have

developed an algorithm based on the fragment-driven parametrization proposed in

Chapter 4. Given a novel stimulus, the algorithm calculates the presence probability

of each fragment in the novel stimulus based on comparing the voxel activation values

of stimuli containing the fragments to those who don’t. Ranking these probabilities

and post-processing the ranks, we obtain a prediction for each left-out stimulus. For

15 out of 60 stimuli, we have been able to reconstruct the stimuli perfectly, and for

25 out of 60 stimuli (averaged across subjects), we have been able to reconstruct the

stimuli with a single error. We have then evaluated the quality of our results, and

demonstrated their statistical significance against randomized trials. Even when the

reconstructions had an error or two, they still performed better than significance.

Only with stimuli that contained two fragments did the algorithm perform poorly.

We attribute this to the unwillingness of the algorithm to assign empty fragments to

quadrants, as it would be denoting a lack of activity, which is not well represented in

our model.

Similarly to Chapter 4, these results are of significance, as they yet again show that

modeling the behavior of human LOC using a structural parametrization of image

stimuli is possible. In addition, this parametrization is viable enough to reconstruct

the stimuli being viewed by the subjects, in some cases perfectly or with minor errors.
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Similarly to the previous chapter, these preliminary findings could lead to further

exploration of the LOC and mapping of its functionality. Moreover, these findings can

lead to a greater understanding of how the brain parametrizes visual stimuli, leading

to building a model of how each step in the visual system breaks down images. There

are several studies done in the primary visual area (V1) or other early visual areas

that reconstruct stimuli being viewed by subjects using fMRI, and there is a body of

work demonstrating that some of these areas code for images using Gabor wavelets.

Building upon these models with a model of the next level in visual processing can also

lead to more biologically-driven computer vision algorithms. Many popular computer

vision algorithms are based on understanding of visual areas (SIFT, for example [36]).

Building upon the understanding of these algorithms by using neurologically-driven

approaches can provide not just information about the human brain, but also better

image processing algorithms that mimic human vision more accurately.
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Conclusions

The overarching goal of this thesis is to demonstrate that the lateral occipital com-

plex in humans codes for images of objects in a structural fashion. More specifically,

it is to demonstrate a structural parametrization of medial axis stimuli and build

a computational model describing fMRI images of the LOC in response to stimuli

derived from this parametrization. In Chapter 1 we specified four key challenges that

needed to be addressed to achieve this goal. We now recap each of these challenges,

and discuss our contributions and findings for addressing those challenges:

1. How can we create computational methods based on neuroscience principles that

are capable of preparing stimuli and executing an fMRI experiment to obtain

data about very fine features from a complex brain area? We approached this

problem by designing and testing an experiment paradigm, and using an exist-

ing imaging technique in a new context to acquire high-resolution fMRI images.
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Our experiment design allows us to show over a thousand stimuli to our sub-

jects over a two hour period, while keeping them attending to the task at hand.

Experiments that last this long are quite uncommon, so we performed an ini-

tial study to judge viability, and improved on our findings afterwards. This

experiment paradigm can be used for any cognitive task based visual fMRI

experiment. Our high resolution imaging technique can be used to image the

visual cortex in more detail than any previous study done on 3 Tesla scanners,

which are the industry standard. We also designed an algorithm to generate

medial axis stimuli based on neurophysiology work in monkeys. We then took

these principles and developed a software framework to facilitate these experi-

ments. We designed this framework with flexibility and performance in mind,

for usage in future experiments.

2. How can we use conventional registration methods to pre-process narrow-field-

of-view fMRI images and identify certain brain areas? Since we used an un-

conventional imaging technique, steps that would have been simple in normal

experiments were non-trivial for us. We needed to register our narrow images

to full-brain structural images. We addressed this issue by utilizing meta-data

acquired from the scanner to bootstrap the registration process. This step is

essential for the usage of our imaging paradigm. Additionally, we implemented

functional localizers to identify the lateral occipital complex and visual word-

form area. For the former, we implemented an existing method with a novel
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image data set, and for the latter we adapted a French-based localizer using an

English text corpus. We then verified the correctness of both of these localizers.

3. Can we develop a computational model that can describe the activity of LOC

voxels informed by a structural parametrization of medial axis stimuli? To an-

swer this question, we developed a method of parametrizing our stimuli based

on their structural fragments. We then tried several computational modeling

approaches to find a fit between the voxel activations and parameters. Eventu-

ally we developed our own fitting method with an algorithm inspired by neuron

recording work on monkeys, then demonstrated that the parametrization is

valid using this algorithm. We verified our results using extensive cross valida-

tion. We then demonstrated that this parametrization is specific to the LOC

by showing that it doesn’t work on the visual word-form area. In addition,

we tried a popular model that’s used for other visual areas and showed that

it doesn’t work in the LOC. These findings show the first evidence for medial

axis structure coding in LOC, and demonstrate that such a parametrization can

be used to describe the activity of voxels in this area. We also validated the

performance of our algorithm with an independent data set.

4. Can we develop an algorithm that uses the parametrization of medial axis stimuli

to reconstruct images being viewed by a subject from their LOC voxel activity?

To answer this question, we developed a reconstruction algorithm that predicts
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the probability of a fragment being present in a novel stimulus based on our

parametrization. We then used this algorithm and cross-validation to recon-

struct left-out stimuli. We were able to achieve moderate success in doing so.

We then demonstrated the significance of these results and explored further

avenues for this work.

6.1 Discussion of Contributions

To put the work in this thesis into context, we will briefly describe the current

state of neuroscience, specifically the understanding of the human brain. Early visual

areas are well-understood both in terms of functionality and how they implement

that functionality. The V1 is known to code for basic image properties like spatial

frequencies, orientation and color. Many neuronal recording experiments in animals

have mapped out the V1 in terms of how it works, and these studies are easily extend-

able to humans because of the similarities between human V1 and the V1 of several

animals. many fMRI studies have shown specifically how the V1 responds to images

using Gabor wavelet decompositions, correlating the animal study similarities. There

have even been studies that reconstruct images being viewed by subjects by imaging

their V1. The higher visual areas are less understood. Intermediate areas like V2 and

V3 are still similar enough to animals, and their functionality is simple enough that

several fMRI studies have used voxels from those areas to categorically reconstruct
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images being viewed by subjects. While these aren’t exact reconstructions of images,

they employ a bag-of-words approach to composite images based on class labels.

Higher areas area less understood, though. The lateral occipital complex, which

receives inputs from the aforementioned areas, had not been parametrized before this

work.

Work in monkeys has demonstrated that the inferotemporal cortex, which is con-

sidered to be the homolog of LOC, has shown that it codes for objects in a structural

manner. Human fMRI studies also show that it responds to intact object images

and doesn’t respond to scrambled versions of the same images. It’s also known not

to be a semantic area. However, no study before has been able to describe how it

exactly codes for shapes. Using knowledge gained from monkey studies, we’ve de-

veloped a preliminary parametrization that models how the LOC codes for medial

axis shapes. This is the first human study to demonstrate such results, and thus it

lays the groundwork for understanding how the next step in the human visual system

processes stimuli. This work unlocks the possibility for future studies to explore in

depth the workings of the LOC, and is the first work to propose and demonstrate

the validity of a parametrization of the activity of LOC voxels. In addition to being

able to describe voxel activity, our parametrization can be used to go in the other

direction and reconstruct stimuli being viewed by subjects from their fMRI images.

While the approach isn’t perfect, it is the first proof of concept that it is possible

to reconstruct images using information from LOC voxels. This is an unprecedented
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result that opens up avenues for future studies to explore this area.

In addition to these scientific contributions, we have developed several methods to

facilitate these contributions. We have developed an experiment paradigm to perform

visual fMRI experiments. We’ve created a software framework for conducting fMRI

experiments, driven by the needs of specific neuroscience goals. We’ve created a

stimulus set, its parametrization, and an algorithm for generating stimuli based on this

parametrization. These stimuli have been used for demonstrating the functionality

of the LOC. We have also developed an imaging paradigm to acquire high resolution

fMRI images. We have developed registration methods to use these images in the

same manner as normal fMRI images. We have implemented an LOC localizer using a

publicly available image data set. We have also developed an English VWFA localizer

based on a French study. These tools, experiment paradigms and software principles

will be invaluable for future fMRI studies, especially ones looking to replicate the

approach we’ve demonstrated in this work and build on it. We have also developed a

fitting method for explaining LOC voxel activity using our stimulus parametrization.

This fitting method can be used for highly structured data all being generated by a

rigid process, and it is designed to prevent overfitting. Finally, we have developed

a reconstruction algorithm to predict the stimuli being viewed by subjects based on

their LOC voxel activity.
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6.2 Limitations

Now we will briefly discuss the limitations of our current work. Our approach

was still greatly limited by the amount of data we could acquire. Until scanner

technology improves, we are still bound by the resolution and others artifacts of the

scanner. As a result, our stimulus set is limited, and our parametrization is rather

simplistic. Exploring a greater range of fragments possibilities was our original goal,

but we were unable to acquire good enough data to do so. 7 Tesla scanners are

available at some facilities, however they give subjects physical discomfort in long

experiments due to the intense magnetic field, which is why we avoided them, given

that our experiments are extremely long. In the future, as scanners get less intrusive

and more accurate, better results will be achievable.

Additionally, the fitting approach we use is not a very efficient algorithm. Its

complexity is O(C4N) where C is the number of fragments and N is the number

of stimuli. This is because least squares takes O(C2N) time, and at each step we

compute a least squares for the possibility of removing each fragment, and we do

this for at most C iterations. This is not an efficient algorithm, but the iterative

approach of the algorithm is key to solving the overfitting problem. Combined with

the fact that we ran tens of thousands of randomized trials to compute the statistical

significance of our result, this approach was extremely time-consuming, even when

run in parallel. The algorithm was implemented in MATLAB for convenience, and

an implementation in a more efficient language would help in the long run. Deriving
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a solver for the algorithm that is based on optimization theory instead of an iterative

solver could help as well, but given the non-convex nature of the problem, the solver

could be problematic as well.

The reconstruction algorithm is limited by certain biases in the data. A fuzzy

reconstruction algorithm that takes into account these biases and uses information

from multiple fragments to predict a probability for each fragment could be imple-

mented. However, given that our data is currently limited to 60 unique stimuli and

that we want to validate our algorithm with cross-validation, this approach leads to

data being too fragmented to develop a robust model from. With better scanning,

we could obtain more data and implement such an algorithm.

It would have been possible to ask subjects to come in for multiple session to

record more data from them, but this approach is known to be extremely unreliable

for fMRI experiments and most of the time it amplifies noise instead of providing

more signal. For simpler visual areas this would have been feasible, but for the LOC

we were barely able to get any signal at all. To be able to confound the signal from

the noise with multiple experiments, we would need better scanning technology.

6.3 Future Work

We have successfully shown preliminary evidence of structural coding in the lateral

occipital complex. We have also developed an experiment paradigm and modeling
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and reconstruction algorithms to demonstrate the validity of this paradigm. However,

these results are preliminary, as they are not 100% reliable as predictors, and they

are limited in scope.

Unfortunately, in terms of experimentation, there isn’t much that can be done

until scanner technology improves. We might have been too ambitious with the

parametrization of even our latest stimulus set, and a future study could further

reduce the complexity of their stimulus set in order to demonstrate more robust

results from simpler data. Now that there is evidence that the LOC structurally

codes for object shapes, future studies can try stimuli that are not medial axis-based

for different parametrizations. The monkey IT papers could provide insight into where

future LOC studies can go. Globular shapes or 3D shapes could be another avenue

to explore. The reconstruction algorithm can be further improved as well, given a

different parametrization scheme. Our stimulus generation algorithm can easily be

improved with the introduction of new stimulus design principles.

The imaging paradigm we’ve developed can be used to reiterate existing visual

cortex studies with higher resolutions to achieve improved results. The works that

have parametrized and reconstructed stimuli from the V1 can make use of this scan-

ning technique to obtain more accurate results. Our experiment paradigms can be

extended to similar studies, and our framework could be developed into a full-fledged

cross-platform neuroscience/cognitive science experimentation suite.

The two-group fitting algorithm we’ve developed can be used as a sparse fitting
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algorithm that doesn’t depend on a λ parameter to balance sparseness against fitting,

and is more robust to changes in the data due to the two-group manner taking into

account data that isn’t being included by the linear model. As the sparseness of

the model is driven by the quality of the fit instead of an external parameter, this

approach can be used in a more data-driven manner.

The reconstruction approach we’ve developed demonstrates that the human brain

represents visual stimuli as a combination of parts based on curvature, orientation

and polar position. This representation can be used to develop an object recognition

algorithm that describes images based on structural components that make objects

up. There is already work done in this area by Zhu and Mumford [67]. These results

provide further justification towards building a semantic model based on objects com-

posed of structural parts. In the long term, understanding of LOC and other brain

areas will lead to developing a computational model of the entire human brain.
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