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Abstract

Experimental and epidemiological evidence supports the role of chronic arsenic

exposure in a broad scope of adverse health effects at a wide range of exposure levels.

However, little is known regarding arsenic metabolism and health risk. The objective

of this dissertation was to investigate the role of arsenic metabolism in mortality,

diabetes, and kidney disease.

First, we conducted a systematic review of the epidemiologic evidence

examining the relation between arsenic metabolism and cancer, cardiovascular

diseases, and adiposity. We identified 12 eligible studies for cancer, 9 for

cardiovascular diseases, and 7 for adiposity. The higher proportion of

monomethylarsonate [MMA%] in the urine tended to be associated with cancer and

cardiovascular disease risk, whereas the lower MMA% tended to associated with an

increase in adiposity. However, rather heterogeneous statistical approaches and

limited prospective evidence prevented a conclusive inference from this review. In

variability analysis, the range of between-population variation in MMA% is relatively

narrow compared to the proportion of inorganic arsenic [1As%] and dimethylarsinate

[DMA%] in urine.

Second, we measured arsenic metabolism defined by relative proportions of

inorganic arsenic, MMA and DMA over their sum in the baseline urine of Strong



Heart Study participants aged 45-74 years to evaluate the role of arsenic metabolism
in all-cause, cardiovascular disease and cancer mortality. The adjusted hazard ratio of
all-cause mortality for an interquartile increase in DMA% was 1.16 (95% CI 1.01-
1.33) when it substituted i1As% whereas MMA% did not explain the risk of all-cause
mortality. For cardiovascular mortality, the adjusted hazard ratio for an interquartile
change increase in MMA% was 1.52 (1.16-1.99) and 1.17 (1.01-1.35) when it
substituted 1As% and DMA%, respectively. For cancer mortality, the adjusted hazard
ratio for an interquartile increase in MMA% was 0.73 (0.55-0.98) and 0.81 (0.67-

0.97) when it substituted 1As% and DMA%, respectively.

Third, we examine the prospective association between arsenic metabolism and
diabetes in the Strong Heart Study. The adjusted hazard ratios of diabetes for an
interquartile range increase in MMA% was 0.69 (95% CI 0.52-0.90) and 0.76 (0.65-
0.89) when it was substituted for 1As% and DMA%, respectively. The association
between arsenic metabolism and diabetes was similar by age, sex, study site, obesity,

and the sum of inorganic and methylated arsenic concentrations.

Fourth, we evaluated the role of arsenic metabolism in the development of
chronic kidney disease among Strong Heart Study participants without baseline
kidney disease. Incident kidney disease was defined by estimated glomerular filtration

rate(eGFR) <60 ml/min/1.73m? with a drop in eGFR > 25%. The adjusted hazard



ratio for an interquartile range increase in MMA% was 1.76 (95% CI 1.26-2.47) and

1.22 (1.02-1.45) when it was substituted for iAs% and DMA%, respectively. And

when an interquartile range increase in DMA% with a corresponding decrease in

1As%, the adjusted hazard ratio was 1.83 (95% CI 1.29-2.61).

In conclusion, arsenic metabolism was significantly associated with the risk of

mortality, diabetes, and kidney disease and the associations were independent of total

chronic arsenic exposure. Our results support that urine biomarkers of arsenic

metabolism may reflect individual susceptibility to arsenic-related health effects and

provide a novel perspective on the dynamic modeling of arsenic metabolism. In

addition to replicating these finding across diverse populations and geographical areas

to advance risk assessment and risk management of arsenic, future research needs to

evaluate mechanisms for the connection between arsenic metabolism and health

outcomes.
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INTRODUCTION

Specific aims

Arsenic metabolism refers to the process of how arsenic is methylated and
transformed into arsenic metabolites in the human body. There is a substantial inter-
individual variation in arsenic methylation efﬁciency.l’ % The biological meaning
underlying this variation, however, remains poorly understood. Increasing
epidemiologic evidence supports arsenic metabolism as an important determinant of
individual susceptibility to the adverse effects of inorganic exposure including
cancers’, cardiovascular diseases®, and diabetes mellitus (DM).5 Most studies were
cross-sectional and case-control in design with relatively small samples and high
levels of arsenic exposure. For US populations, arsenic exposure is pervasive through
drinking water and foods especially in small rural communities affected by low-to-
moderate arsenic levels in drinking water 57 The associations between low-moderate
arsenic exposure, cardiovascular disease, and type 2 DM has been recently reported in
both cross-sectional and prospective studies.*!! Yet, little is known about the impact
of low-moderate arsenic exposure in all-cause mortality and kidney diseases and
large prospective evidence examining the association between arsenic metabolism and
non-cancer outcomes at levels of arsenic exposure relevant to US populations is

lacking.



The first objective of this project is to evaluate the role of arsenic metabolism
in mortality from all-cause, cardiovascular disease, and cancer among participants
in the Strong Heart Study (SHS). Starting in 1989, the SHS recruited resident
members in American-Indians (age 45-74 years) from communities in Arizona,
Oklahoma and the North and South Dakotas to investigate the development of
obesity, diabetes and cardiovascular diseases.'” The second objective is to estimate
the association of arsenic metabolism and arsenic exposure on incident diabetes. The
increasing prevalence of type 2 DM poses a major public health challenge and
diabetes is strongly associated with all-cause mortality, cardiovascular morbidities,
and ends stage renal disease.'” '* Although large evidence supports the role of arsenic
exposure in the development of diabetes,'” the debate about the causality of the
association remains unsettled, especially at low-moderate levels of arsenic exposure.'®
Especially, very few studies have evaluated the role of arsenic metabolism in the
development of diabetes. The third objective is to evaluate the role of arsenic in the
development of chronic kidney diseases (CKD). Chronic kidney disease is a
significant global health issue with prevalence 8-16% worldwide and the burden of
CKD is also rising due to multiple organ complications and increased all-cause and

. .. 17-19 . . . . . .
cardiovascular mortality. Growing evidence links inorganic arsenic exposure to



diverse renal injuries including proteinuria®’, chronic kidney disease®', and proximal
tubular dysfunction .** Characterizing the potential role of arsenic exposure and
arsenic metabolism provides a novel perspective on CKD prevention. Given the
widespread exposure to arsenic and the high mortality rate and high incident diabetes
in American Indians, our study can inform integrated risk assessment of arsenic

toxicity and arsenic metabolism and advance the prevention of diabetes and CKD.

The specific aims of this dissertation are the following:

1. To conduct a systematic review of the epidemiologic association between
arsenic metabolism and cancer, cardiovascular disease and adiposity/diabetic
phenotypes. While an increasing number of studies have evaluated the
association between arsenic metabolism and disease, no systematic review has
been previously conducted on this topic.

2. To evaluate the association of long-term arsenic exposure and metabolism
with all-cause, cardiovascular, and cancer mortality. Arsenic exposure was
assessed based on the sum of inorganic, monomethylated (MMA) and
dimethylated (DMA) arsenic species in urine. Arsenic metabolism was assessed
based on the relative proportion of inorganic arsenic, MMA and DMA over their
sum. We have previously confirmed the long-term stability of urine arsenic

concentrations and methylation patterns over 10 years in this population,



supporting the use of a single urine sample to assess arsenic internal dose and
metabolism in this study.”’ Causes of death were determined by the SHS Mortality
Review Committee based on the standardized mortality surveillance procedures,
including discharge summary of the terminal hospital admission, medical reports,
autopsy, and pathology report if available®.

To evaluate the association of long-term arsenic exposure and metabolism
with the incidence of type 2 diabetes. We hypothesized that inorganic arsenic
exposure is associated with increased risk of incident diabetes as arsenic has been
linked to various diabetogenic mechanisms including beta-cell dysfunction and
systemic insulin resistance.”**® We also hypothesized that different arsenic
methylation capacity predisposes the individual to incident diabetes. We used the
measures of arsenic exposure and metabolism described in aim 1 to evaluate the
prospective association between arsenic exposure, arsenic metabolism and
incident diabetes. Diabetes will be defined according to the latest World Health
Organization (WHO) guideline using measures currently available for all SHS

participants at baseline and up to 2 follow-up visits.*’

To evaluate the association of long-term arsenic exposure and metabolism
with incident chronic kidney diseases. We hypothesized that vascular

inflammation and endothelial dysfunction induced by inorganic arsenic may be



associated with the development of chronic kidney diseases®’. We also
hypothesized that differential arsenic biotransformation capacity links to different
incident CKD risk. We used the measures of arsenic exposure and metabolism
described in aim 1 to evaluate the incidence of CKD among participants with
baseline estimated glomerular filtration rate higher than 60 ml/min/1.73m” CKD
was defined by four commonly adopted definitions in cohort studies including 1)
an eGFR less than 60 ml/min/1.73m?; 2) an eGFR less than 60 ml/min/1.73m? and
a drop in eGFR of at least 25%; 3) an eGFR less than 60 ml/min/1.73m” and a
drop in eGFR of at least 25% and with macroalbuminuria (urine albumin-
creatinine ratio > 300 mg/g creatinine); 4) doubling serum creatinine levels or

28,29

progression to end-stage renal disease (ESRD)™™“". Associations were adjusted

for risk factors of cardiovascular diseases including hypertension and diabetes.

The SHS is the largest population-based study of diabetes and cardiometabolic
diseases in American Indians (Figure 1)'**°. Exposure to a wide range of low-
moderate inorganic arsenic, a high mortality rate, a high burden of diabetes and
obesity and a low seafood exposure make an excellent opportunity to study the
adverse health effects of inorganic arsenic in this population with the potential to
generalize study results to the general U.S. population which also has low-moderate

arsenic exposure and a high burden of obesity.



Figure 1. SHS clinic visits, follow-up and data to be used in the proposed study

Visit 1 Visit 2 Visit 3
1989 - 91 1993 -95 1998 - 99
I $ 1 >

Demographics
Blood chemistries
Urine arsenic species Loss follow up N=166
N=3,974 Death, N=892

94%
L

Retention rate

Overview of arsenic metabolism

Biotransformation of arsenic in human

Inorganic arsenic is metabolized in the human body. After absorption, the
inorganic forms (arsenate and arsenite) are methylated into monomethylarsonate
[MMA] and dimethylarsinate [DMA]) mainly in the liver and excreted in the urine
through kidney (Figure 2).31’ 32 Among many proposed arsenic biotransformation

33-38 . - - -
, two inorganic arsenic metabolic pathways have been commonly

pathways
described: 1) Classical oxidative methylation pathway (Challenger pathway)
involving sequential steps from As[V]) — arsenite (As[III]) — monomethylarsonate
(MMA[V]) — monomethylarsonite (MMA[III]) — dimethylarsinate (DMA[V]) —
dimethylarsinite (DMA[III])* ***%; 2) Alternate reductive methylation pathway

(Hayakawa pathway) involving the conjugation between arsenite(As[II1]) and

glutathione(GSH) from transsulfuration pathway and a subsequent methylation from



arsenotriglutathione(As[II1](GS);) — monomethylarsenodiglutathione
(MMA[III](GS),) — dimethylarsenoglutathione (DMAT[III](GS)).** The oxidation of
MMA[IIT](GS), and DMA[IIT|(GS) to MMA[V] and DMA[V] could be separated and
does not have to be sequential.*** Overall, the exact biotransformation pathway of
arsenic remains not fully understood after about 60 years of research in this domain,
Cullen et al. recently summarized various perspectives on arsenic biomethylation and
concluded that the Challenger pathway remains the most rational possibility.*® The
relative toxicities of the arsenic metabolites has been proposed based on genotoxicity
largely from cell culture studies in the following rank: MMA[III] > DMA[III] >
As[III] > As[V] > MMA[V] > DMA[V].*’ However, the feasibility to generalize this

toxicity rank to the human population is unknown.
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Determinants of arsenic metabolism

In humans, the average distribution of arsenic metabolites in urine is 10-30%
inorganic arsenic, 10-20% MMA and 60-80% DMA,*"* with both substantial intra-
individual and inter-individual variation.***” Similar to other biochemical methylation
processes, the contributions of both genetic and environmental factors to the inter-
individual variability of arsenic metabolism are widely acknowledged.*® Probably, the
most well-known genetic variation involving the arsenic methylation efficiency is the
genetic polymorphism around the arsenic methyltransferase (AS3MT, previously
CYT19) gene, which has been supported by both genome-wide association studies
(GWAS) and candidate gene studies.*** Environmental factors may also influence
the arsenic metabolism though the underlying mechanisms remain unclear.®>° Several
external environmental factors including arsenic exposure dose, smoking, alcohol
drinking, and nutrition status have been related to the individual variation of arsenic
metabolism profile.>® Although there was no conclusive evidence to support causal
relationships between these external factors and methylation capacity, recent progress
has been made regarding the role of nutritional modification (e.g. folate
supplementation) in enhancing arsenic methylation efficiency to mitigate arsenic
toxicities.”’ On the other hand, internal environmental factors including age, sex,

pregnancy, co-morbidities, and body mass index have been linked to the modification



50,52, 53 . . .
>~ " However, inconsistent results were reported in

of arsenic methylation capacity.
the current literature suggesting a need to refine study design and statistical

methodology to better clarify the associations among arsenic metabolism, age, sex,

pregnancy, and body fat composition.™

Health effects of arsenic metabolism

Certain patterns of arsenic metabolism have been linked to the risk of
developing cancer, cardiovascular disease, and adiposity. For instance, higher
MMA% and lower DMA% in urine has been related to increased risk of cancer’*°
and cardiovascular disease.””>® The increased risk of cancer and cardiovascular
disease associated with higher MMA% in urine may be related to the high toxicity of
MMA[II1], which is also associated with insulin resistance in adipocytes.” > DMA
has long been regarded as a less toxic arsenic specie, although DMA [III] has been
recently linked to the prevalence of diabetes in studies from Mexico and Bangladesh.™
% However, recent research has also connected lower MMA% and higher DMA%
with an increase in adiposity. As an up-to-date review of existing studies is lacking,

we conducted a systematic review (Chapter 2) to describe key gaps in current arsenic

metabolism research and inform future research needs and opportunities.
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Crosstalk between arsenic metabolism and one-carbon metabolism.

The main biochemical pathway to facilitate the arsenic metabolism is one-
carbon metabolism composed of three major units: folate cycle, methionine cycle, and
transsulfuration pathway (figure 3).65’ 66 perturbation of these cycles has been linked
to increased risk of mortality, cancer, and cardiovascular diseases and may also
influence the efficiency of arsenic metabolism.®> " For malnourished populations in
Bangladesh, the methylation capacity can be enhanced with short-term folate
supplementation.”’ Conversely, arsenic exposure may also disturb the dynamic
balance of one-carbon metabolism and its associated biochemical reactions including
DNA methylation, redox regulation including homocysteine and glutathione

72
6.65.70-72 15 advance our

metabolism, and other xenobiotic metabolic pathways.
understanding of how arsenic metabolism interacts with one-carbon metabolism, the
fundamental step is to examine the association between arsenic metabolism and a

spectrum of disease phenotypes related to one-carbon metabolism. This dissertation

aims to inform biological meaning of arsenic metabolism and explore the complexity

and challenges of the integrated risk assessment of arsenic.
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Abstract
Objective To systematically investigate the role of arsenic metabolism in the
development of cancer, cardiovascular diseases, adiposity, and diabetic phenotypes and

characterize the variation of arsenic metabolism in different populations worldwide.

Design Systematic review of observational studies

Data sources Medline/PubMed and EMBASE for relevant studies from inception to

April 2014.

Eligibility criteria for selecting studies Observational studies that assessed the
association between arsenic metabolism and health outcomes of interest including cancer,

cardiovascular disease, and adiposity/diabetic phenotypes.

Results Twenty eight studies met the inclusion criteria, 12 on cancer, 9 on
cardiovascular diseases, and 7 on adiposity and diabetic phenotypes. The median with
interquartile range for 1As%, MMA%, and DMA% was 11.2 (7.8-14.9), 13(10.4-13.6),
and 74.9(69.8-80.0), respectively. MMA% has the lowest inter-population variance and
per doubling change in urine arsenic concentration was associated with 0.02% (95% CI, -
0.7~0.6). For cancer, the patterns of a higher MM A% and a lower DMA% was associated
with higher risk of developing all-site, urothelial, lung and skin cancers. For
cardiovascular disease, a higher MM A% was associated with higher risk of carotid
atherosclerosis and cardiovascular diseases but not hypertension. For adiposity and
diabetic phenotypes, the pattern of a lower MMA% and a higher DM A% was associated

with higher body mass index and higher metabolic syndrome risk.
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Conclusion Although certain specific methylation patterns were identified to associate
with disease risk, scopes and conclusions are constrained due to small sample size,
limited prospective evidence, and inconsistent statistical approach. Relative constant
MMA% across diverse populations is a novel finding from the mechanistic and

evolutionary perspectives. More population evidence is needed to confirm our findings.
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Introduction

Inorganic arsenic exposure through drinking water and food is a global
environmental health problem.! Chronic arsenic exposure affects multiple organ systems
resulting in various cancers and cardiovascular diseases, and maybe also in respiratory
disease, diabetes, and kidney disease’. The World Health Organization (WHO) and U.S.
Agency for Toxic Substances and Disease Registry (ATSDR) have ranked arsenic as top
priority for rigorous risk assessment and exposure control.>* Arsenic risk assessment,
furthermore, is complicated by inter-individual variation in arsenic metabolism. After
absorption, inorganic arsenic (arsenate and arsenite) is methylated into monomethylated
and dimethylated arsenic compounds (MMA, DMA), which are then excreted through the
kidney together with inorganic arsenic’. The average distribution of arsenic metabolites
in urine has been reported to be 10-30% inorganic arsenic, 10-20% MMA and 60-80%
DMA, with substantial inter-population and intra-population variations®”. Higher levels
of MMA% and lower levels of DM A% have been related to cancer and cardiovascular

10-13

outcomes in populations from Taiwan, Bangladesh and Argentina ~ . Lower levels of

MMA% and higher levels of DMA%, on the other hand, have been related to higher body

- . 14-16
mass index and metabolic syndrome ™ .

Arsenic metabolism is tightly connected to one-carbon metabolism,'” which is

composed of three key cycles including the methionine cycle, the folate cycle, and the

18,19

cysteine-cystathionine cycle ™. The major methyl donor in the body, S-

adenosylmethionine (SAM), is generated through the methionine cycle, to facilitate more
than 50 methylation reactions in the body, including DNA methylation and arsenic

20,21

methylation. The methionine cycle is completed by the re-methylation of

16



homocysteine back to methionine, through the folate cycle,” or by irreversibly degrading
homocysteine into cysteine.” Dysfunction of the methionine cycle has been linked to

. . . . . . 19.24
chronic diseases including cancer and cardiovascular disease.

The cysteine-
cystathionine cycle involves the glutathione-transsulfuration pathway and generates anti-
oxidant thio buffers, which are critical to maintain intracellular reduction-oxidation
status.”” This pathway may also assist arsenic methyltransferase (AS3MT) to reductively
methylated inorganic arsenic®'. The imbalance of redox status has also been linked to

2627 cardiovascular disease™®, and diabetes®®. The intertwined

cancer metabolism
relationship between arsenic metabolism and one-carbon metabolism may explain the
individual susceptibility toward arsenic toxicity. Arsenic methylation pattern may also be
used to estimate the gene-environment interaction.

An increasing number of studies have evaluated the role of arsenic metabolism in
the development of cancer,’”"" cardiovascular diseases," adiposity'®, and diabetes®*. The
available evidence, however, has not been formally and comprehensively evaluated. Our
study objectives were, first, to conduct a systematic review to examine the role of arsenic

metabolism in the development of cancer, cardiovascular disease, diabetes and adiposity,

and second, to characterize the arsenic metabolism in different populations worldwide.

Methods

Search strategy and study selection
The systematic search and review processes were conducted in accordance with
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

Statement criteria®. We searched PubMed/Medline and EMBASE for original
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epidemiologic studies investigating the role of arsenic metabolism in the risk of cancer,
cardiovascular disease, and diabetes. For arsenic metabolism, we used the following
MeSH terms: “arsenic”, “methylation”, “metabolism”, “arsenic metabolism”, “arsenic
methylation” combining with other specific text-word terms related to the key research
concepts. During the screening, evidence investigating the association between arsenic
metabolism and diabetes was limited. Therefore, we also included studies using adiposity
or prediabetes as main end point of interest. (Supplementary table 1) shows the full
search strategies. The search period was January 1966 through February 2014. There
were no language restrictions. We also manually reviewed the reference lists from
relevant original research.

Our primary exclusion criteria to screen records were: 1) publications contain no
original research (reviews, editorials, non-research letters); 2) case reports and case
series; 3) studies did not measure cancer, cardiovascular disease, diabetes (including
prediabetes and metabolic syndrome), or adiposity (including obesity and body mass
index); 4) studies did not have information on arsenic metabolism, as measured in urine
(percentage [%] or ratios of urine arsenic metabolites). The secondary exclusion criteria
included: 1) Lack of report of the association between arsenic metabolism and the study
outcome; 2) Studies focused only on arsenic-related skin lesions (pre-malignancy); 3)
pregnant population; 4) Duplicate study source population with same study design and
outcome of interest.

To characterize the arsenic metabolism across human populations worldwide, we

selected 19 studies from the current and the previous review’ based on the following
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criteria: 1) sample size larger than 30(2 studies were excluded); 2) For with studies with

the same or overlapping population, we selected studies with largest sample size.

Data abstraction

Two authors, C.C. Kuo and C.W. Tsai, independently abstracted data from the
articles that met the selection criteria. They developed a data extraction form to record
the study characteristics (authors, journal, years of publication, country, study design, and
objectives); the participant characteristics (study population (general vs. occupational)
and number of participants); outcome definitions; measure of arsenic metabolism (% or
ratio of urine arsenic metabolites, continuous and/or categorical); and the results of the
association analysis from the statistical models adjusted for the most covariates. To
assess study quality, we adapted the criteria used by Longnecker et al. for observational
studies (supplementary figure 2-4 ). Two authors, C.C. Kuo and C.W. Tsai, also
conducted risk of bias assessment for each study. The disagreement was resolved by
consensus. The domains related to exposure assessment, outcome definition and
statistical modeling including covariate adjustment were considered to be important for

this review.

Statistical Methods

Study characteristics, population characteristics, outcome definitions, exposure
measures, association measurements, and statistical models were summarized in a
consistent manner. In each study, the following items were abstracted (or derived if not
directly reported): the mean age and percentage of men, arsenic metabolism (percentage
or ratio of urine arsenic metabolites) and urine total arsenic levels. For studies providing

the median or geometric mean, the arsenic metabolism of the largest subgroup were used;
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otherwise, data from pooled analyses were recorded. For studies only providing risk
estimates among subgroups (interaction table), the relative risks were recalculated using
pooled data. Both arithmetic and compositional geometric mean and variance were
estimated. The relationship between total urine arsenic level and arsenic metabolism were
evaluated using compositional data analysis (CoDa).** All statistical analysis were

performed using packages, ggtern and compositions, in R 3.0.0.

Results

Twenty eight studies met the inclusion criteria, 12 on cancer, 9 on cardiovascular
diseases, and 7 on adiposity and diabetic phenotypes (Supplementary figure 1). All
studies were in English. The medians with interquartile range for i1As%, MMA%,
DMAY%, and total urine arsenic concentration were 11.2 (7.8-14.9), 13(10.4-13.6),
74.9(69.8-80.0), and 100(50.8-206.5), respectively. The compositional geometric mean
for 1As%, MMA%, and DMA% was 11.3, 12.3, and 76.4, respectively. The distribution
and variability of arsenic metabolism worldwide were summarized in figure 1 and 2.
Individually, MMA% has the lowest inter-population variance (Figure 2).
Compositionally, the largest variance occurred between 1As% and methylated arsenic
species (MMA% and DMA%)(Supplementary figure 5). In univariable regression
analysis, per doubling change in urine total arsenic level was associated with a 2.1%
(95% (I, 0.8-3.5) increase in 1As%, 0.02% decrease (95% CI, -0.7~0.6) in MMA%, and
a 1.9% (95% CI -3.7~-0.2) decrease in DMA%. The findings were consistent with the

statistical results from compositional data analysis (Supplementary figure 6).
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Cancer

10,35,36

Of the 12 studies, 3 were prospective cohort studies and 9 were case-control

studies. Only five studies were conducted outside of Taiwan (Table 1).!'2%31373% Of

these five studies, the study populations were from Argentina and the United States''~",
Chile®', East Europe®®, and United States.''”’ Studies from Putai township of Chiayi
County and Tainan County in Taiwan (n=6) were from previous Blackfoot Disease
(BFD) endemic area, characterized by high arsenic exposure in drinking water (>100
ug/L).m’35’3(”39'41 In contrast, only one study from Taipei City/County (n=1) was
considered as low arsenic exposure (<100 pg/L in drinking water).** Study populations
from Argentina, California and Nevada in the US, and Chile were exposed to low-to-
moderate arsenic levels (<100 pg/L in drinking water).'!"! Study populations from New
Hampshire, US and Eastern Europe were exposed to low-to moderate arsenic levels
(<100 pg/L).*™** A total of 5 studies evaluated the risk of urothelial cancers, five studies
assessed skin cancer as the primary study outcome and two studies examined the risk of
lung cancer(Table 1). One study from Taiwan reported the association between arsenic
metabolism with all cancer incidence.*®** Most studies validated outcomes based on
pathological and medical information (Table 1).

Arsenic metabolism was assessed based on the proportions of arsenic species in
the urine (1As%, MMA%, and DMA%) in 11 studies and based on the primary
methylation index (PMI, the ratio of MMA over i1As) and secondary methylation index
(SML, the ratio of DMA over MMA) in 6 studies (all of them from Taiwan). One of three

studies that reported PMI showed a positive association between PMI and the risk of

urothelial carcinoma.** All three studies that reported SMI suggested a negative
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association between SMI and urothelial cancers.*'*** For 1As%, most studies from
Taiwan showed a positive association between iAs% and cancer although one study
conducted in Chile did not find the same pattern.”’ For MMA% and DMA%, five of 7
studies reporting both MMA% and DMA% supported that the pattern of a higher
MMAY% and a lower DMA% was associated with higher risk of developing all-site™,

urothelial®>*, lung®' and skin cancers.***

Cardiovascular disease

12,45 '48, two from

Five of nine enrolled studies were conducted in Taiwan
Bangladesh"***, and two from China(Table 2).°*°' All study populations were considered
to have high arsenic exposure( >100 pug/L in drinking water). Three of the nine studies

13,47,48

were prospective cohort studies , and the other six were cross-sectional. The study

45,47,50,51 46,48,49
1’1=4), ,47,50, 3), ,48,

outcomes included hypertension ( carotid atherosclerosis (n=
incident cardiovascular diseases (n=1)"’, and peripheral arterial disease (n=1)."
Hypertension was defined using well-established guidelines. The diagnosis of carotid
atherosclerosis and peripheral vascular disease were based on extracranial carotid
Doppler ultrasound evaluation and ankle-brachial index (ABI), respectively.

Most studies from Taiwan and Bangladesh reported both i1As%, MMA%, and
DMA% and methylation indices including PMI and SMI. For iAs% and DMA%, all
studies showed no significant association with the cardiovascular outcomes of interest.

45,47,50,51
; however,

For MMAY%, there was no association with hypertension in all studies
a higher MMA% was associated with higher risk of cardiovascular diseases in

Bangladesh."” Only one of 3 studies measuring intimal thickness supported that a higher

MMAY% was associated with higher risk of carotid atherosclerosis (Table 2).* Among 4
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studies evaluating the association between methylation indices (PMI and SMI) and
various cardiovascular outcomes, only one found a positive association of PMI and a

negative association of SMI with incident CVD."

Adiposity and diabetic phenotypes
Seven studies evaluated the associations between arsenic metabolism and
adiposity and diabetes related outcomes (Table 3). All studies were published after 2010

and were in English. Study populations were from Bangladesh, Mexico'***™,

15,54 15,32

Taiwan ", and the United States.'® Two studies were case-control studies and the
rest of the studies were cross-sectional in design. Most study populations were exposed
to moderate-high arsenic levels (>100ug/L in drinking water) except populations from
Taipei, Taiwan>* and the Strong Heart Study cohort (Arizona, Oklahoma, North/South
Dakota, US)."® Three studies evaluated diabetes or metabolic syndrome as the primary

15,32,52 . [ . .
== three studies assessed the association between arsenic metabolism and

outcome
body mass index (BMI)'*'*** and one study reported the risk of having obesity in
adolescents.” The definitions of diabetes were slightly different. The study from Mexico
defined diabetes based on fasting glucose levels and self-reported physician diagnosis,
while the study from Bangladesh used self-reported physician diagnosis exclusively.

In the two studies examining the relationship among diabetes, obesity and arsenic
metabolism measured by proportions of arsenic metabolites in urine, there was no

significant association.***

However, a significant association between the pattern of a
lower MMA% and a higher DMA% and higher metabolic syndrome risk was found in a
study from Taiwan.'” Three studies using BMI as primary end point all reported that

lower MMAY% associated with a higher BMI.'*'*3
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Four studies reported PMI and SMI in addition to the proportions of arsenic
species. Three of them evaluated the association between PMI and SMI with diabetes and
the metabolic syndrome. Only one study found a lower PMI and a higher SMI were
associated with the risk of metabolic syndrome." A fourth study evaluated SMI with

BMI, and found that higher SMI was associated with higher BMI."

Discussion

This systematic review identified a significant gap between toxicological
understanding of arsenic metabolism and its epidemiological application in risk
assessment. Most studies had a small sample size and were assessed as being unclear or
high risk of bias especially for studies were conducted based on exposure-by-subgroup
interaction analysis. In addition, the lack of consensus over an appropriate standardized
statistical model for estimating the arsenic metabolism makes the interpretation of the
results challenging. Although most studies consistently supported a higher MMA% and a
lower DMA% were associated with the risk of developing cancer, the result should be
cautiously generalized to other populations as 7 of 12 enrolled studies were conducted in
Taiwan from the same research group with significant overlaps in study population. For
cardiovascular diseases, the research group in Bangladesh found a positive prospective
association between MMA% and incident cardiovascular diseases and a positive cross-
sectional association between MMAY% and carotid atherosclerosis. However, no studies
found any association between hypertension and arsenic metabolism. For adiposity, a
consistent negative association between MMA% and BMI were found in all studies used

BMI as the primary outcome measurement. However, the role of arsenic metabolism in
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the development of diabetes and obesity remains inconclusive due to insufficient data and
limited statistical power.

Substantial inter-population variability of arsenic metabolism has been recognized
in two previous studies.®”> However, those studies analyzed few populations from China,
Chile, Mexico, and Taiwan. In the current review, we found MMA% has less variability
compared to iAs% and DMA% across diverse populations. In addition, MMA% is the
only composition of arsenic metabolism that is not affected by the arsenic exposure
(Supplementary figure 6). This finding implied that the first methylation process of
arsenic in human body is tightly regulated and the second methylation process might play
an adaptive role in the arsenic metabolism. Genetic polymorphism has been considered a
major determinant in large inter-individual variability of the arsenic methylation pattern.
The external factors such as arsenic exposure status may be equally important in
adjusting arsenic metabolism and high arsenic exposure may impede the overall
methylation capacity in human while also keep relative constant MMA%. More research
is needed to explore the biological meaning of this unique phenomenon.

Several important observations remain to be explained. First, the interaction
between arsenic exposure levels and arsenic metabolism is not clearly determined. For
example, in studies of urothelial carcinoma or bladder cancer, a higher MMA% was
associated with the risk of developing urothelial cancers even in the study populations

. . L. . 3542
with low levels of arsenic exposure (Taipei, Taiwan).””

However, this pattern was only
observed in studies of skin cancer with high arsenic exposure but not in a study with low

. 37 . . . .
arsenic exposure.”’ Second, the discrepancy in results between prospective studies and

the cross-sectional studies in cancer and carotid atherosclerosis risk raise the concern that
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disease outcome may modify the profile of arsenic metabolism. Future studies with large
sample size, appropriate baseline arsenic metabolism estimation, and sufficient long-term
follow-up may help verify the prospective association between arsenic metabolism and
disease of interest. Third, interpretation of methylation indices (both PMI and SMI) is
challenging. It is difficult to predict whether the numerator or the denominator will have
dominant effect to drive the methylation indices. Developing a simple and interpretable
modeling of arsenic metabolism is a research priority. Fourth, appropriate statistical
modeling of arsenic metabolism remains unsettled. For instance, thirteen of 28 studies
(46.4%) in our review adjusted arsenic exposure to evaluate the effect of arsenic
metabolism. As arsenic exposure may be a potential confounder and also a strong risk
factor for many outcomes of interest, adjusting arsenic exposure facilitates the
interpretation of the statistical results. In addition, each composition of arsenic
metabolism is constrained to 1 because they are normalized artificially to the sum of
inorganic and methylated arsenic species. Handling compositional data using modern
statistical methods designed for unconstrained data may lead to inappropriate inferences.
Although compositional data analysis (CoDa) is almost unknown in the field of
biomedical research and its applicability in biomedicine remains unclear, incorporating
CoDa in the sensitivity analyses in arsenic metabolism research may be useful to gauge
the robustness of the statistical results using conventional approaches.

The biological meaning of arsenic metabolism may be beyond the susceptibility
of arsenic toxicity and may be the maker to estimate both genetic control of sensitivity to
the environment and environmental control of gene expression (the gene-environment

interaction). The interplay between one-carbon metabolism, arsenic metabolism, and
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DNA methylation provides an opportunity to explore the genomic coding, metabolism
regulation, and phenotype expression from a mechanistic perspective.24 Increasing
evidence supports the association between arsenic exposure and global DNA methylation
status.’®’ Moreover, mathematical modeling to handle the complexity of one-carbon
metabolism and the interaction between the one-carbon and arsenic metabolism has been
initiated.”®> The challenge of future research is to integrate metabolism modeling and

epigenomics to evaluate current biomarkers and identify novel markers.

Conclusion

This is the first systematic review evaluating the current evidence examining the
association between arsenic metabolism and different chronic disease outcomes.
Although certain specific methylation patterns were identified as associated with increase
disease risk, scopes and conclusions are constrained due to small sample size, limited
prospective evidence, and inconsistent statistical approaches. Conducting large
prospective cohort studies in populations exposed to a wide range of arsenic exposure
levels is critical to better characterize the dynamic of arsenic metabolism and factors that
influence the individual metabolism patterns. Relative constant MM A% across diverse
populations is a novel and interesting finding from the mechanistic and evolutionary
perspectives. More population evidence is needed to confirm this finding. Using a family-
based case-control study is important to investigate the role of candidate-gene in arsenic
toxicity and arsenic metabolism as such a study design would effective eliminate the
concern of population stratification confounding.®® Understanding the biological and

epidemiological meaning of arsenic metabolism could significantly improve the risk
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assessment of arsenic toxicity and provide a potential tool for disease prediction,

prevention and control.
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Table 1. Studies of arsenic metabolism and cancer.

1 Design Population  Outcome Arsenic iAs% MMA% DMA% PMI SMI Adjustment
author, Cases/ - Men (%) exposure - - Mean (SD) - Mean (SD) - Mean - Mean (SD) Factors
year Non - Age range - Sample Mean(SD) - Highest vs. - Highest vs. (SD) - Highest vs.
Case - Level - Highest lowest lowest - Highest lowest
vs. lowest categories categories vs. lowest categories
categories - RRe (95% - RRe (95% categories - RRe (95%
-RRe (95% CI) CI) -RRe CI)
CI) (95% CI)
Chung CcO Putai, All-site cancer - Urine -7.5(7.5) -13.0(8.9) -79.5(12.7) NR -9.4(84) Age, sex,
2009 17/191 Taiwan (cancer registry) - mean total  ->5.9 vs. -.2>10.8vs. ->82.4vs ->74vs. education
-36.1% arsenic 78.2  <5.9 <10.8 <§2.4 <7.4
- Mean 46.5 pg/L - 0.6 (0.2- -2.4(0.8-9.1) - 0.9 (0.3-2.7) - 0.4 (0.1-
yrs 1.7) 1.4)
Chen cC Tainan, Urothelial - Water NR NR NR -4.8 -10.9 Age, sex,
2003 49/224 Taiwan carcinoma - mean CAE ->0.9 vs. ->4.8 vs. education,
- 63.0% (pathology) 8.5 (mg/L- <0.9 <4.8 smoking, body
->30 yrs year) - 0.7 (0.4- - 0.6 (0.3- mass index, hair
1.5) 1.2) dye, CAE
Steinmaus CC Cordoba, Urothelial - Water -16.1 (10.0) -14.6(9.7) -69.3 (16.3) NR NR Age, sex,
2006 114/114 Argentina carcinoma - low- -NR ->16.7 vs. <16.7 -NR smoking,
- 82.5% (pathology) moderate - 1.33(0.74- bombilla use
-20-80 yrs 2.39)
23/49 California Urothelial - Water -11.9 (4.9) -74.9 (6.9) Age, sex,
and Nevada, carcinoma - low- -NR -13.2(4.1) -NR smoking
uUS (pathology and moderate ->14.9 vs. <14.9
- 80.6% cancer registry) -1.19(0.38-
- 40-85 yrs 3.68)
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Pu
2007

Huang
2008

Melek
2014

Steinmaus
2010

CcC
177/313

CcO
37/928

CcC

Lung ca
94; uro-
thelial ca
117; non-
case 347

CcC
45/75

Taipei,
Taiwan

- 66.3%
-24-93 yrs

Putai,
Taiwan
-43%
->30 yrs

Northern
Chile
-69.0%
->25 yrs

Coérdoba,
Argentina
- 88.3%

- 20-80 yrs

Urothelial
carcinoma

(pathology)

Urothelial
carcinoma
(cancer registry)

Urothelial
carcinoma
(medical records)

Lung cancer

(medical records)

Lung cancer
(medical records)

- Urine

- mean sum
iAs, MMA,
and DMA

30.0 (ng/g
creatinine)

- Urine

- Median
sum iAs,
MMA, and
DMA 63.7

pg/L

- Water

- Lifetime
average
arsenic
109.3 pg/L

- Water
- low-
moderate

-5.9(6.9) -9.9 (10.1)
->5.2vs. ->92vs.<3.0
<24 -2.8(1.6-4.8)
-1.2(0.7- - p-trend
2.0) <0.0001
_p_
trend=0.7
-59 -11.3
->8.0 vs. ->15.6 vs. <8.4
<4.3 - 1.7 (0.7-4.0)
- 1.4 (0.5- - p-trend=NS
3.6)
_p_
trend=NS
-9.6 (6.3) -10.8 (4.8)
->10.8 vs. ->12.5vs.<8.5
<10.8 - Urothelial ca.
- Urothelial 2.0(1.2-3.5)
ca.
0.3 (0.2- - Lung ca.
0.5) 3.3 (1.8-6.0)
- Lung ca.
1.1 (0.7-
1.8)
-15.7(5.5) -15.5(6.7)
-NR - >17.2 vs.
<11.8
-2.6 (1.0-6.5)
- p-trend=0.04

-84.2 (12.6)
->092.5vs.
<85.0
-0.4(0.2-0.7)
- p-trend
=0.004

-81.4

->85.7 vs.
<76.0
-0.3(0.1-0.9)
_p_
trend=<0.05

-80.0 (8.3)

->83.9 vs.

<83.9

- Urothelial ca.
1.7 (1.1-2.6)

- Lung ca.
0.6 (0.4-1.1)

- 68.7 (9.6)
-NR

-3.3(11.3)
->2.0vs.
<0.3
-3.1(1.7-
5.6)

- p-trend
<0.001

-1.9
->2.8vs.
<13

-0.8 (0.4-
2.0)

_p_
trend=NS

NR

NR

-12.9(29.7)
->12.7 wvs.
<4.8
-0.3(0.2-
0.6)

_p_
trend=0.001

-7.0
->9.8 vs.
<4.8
-0.5(0.2-
1.3)

_p_
trend=NS

NR

NR

Age, sex,
education,
alcohol,
ethnicity,
pesticide usage

Age, sex,
education,
smoking, CAE

Age, sex,
smoking

Age, sex,
smoking,
drinking water
arsenic exposure
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Hsueh Cco Putai, Skin cancer - Water -10.7(6.2) -24.6(11.2)

1997 33/621 Taiwan (pathology) - Artesian -NR -CAE>20 &
-42% well 700- MMA%>26.7
->30 yrs 930 pg/L vs. CAE<20 &
MMA%=<26.7
-24.0 (2.6-
225.2)
Yu cC Putai, Skin cancer* - Urine -12.3 -15.5
2000 26/26 Taiwan (dermatologists’ - Meansum  ->2.27 vs ->15.5vs
-26.9% diagnosis) iAs, MMA, <2.27 <15.5
- Mean 63.4 and DMA -3.5(0.7- -5.5(1.2-24.8)
yrs 55.7 ppb 16.9)
Chen CcC Tainan, Skin cancer - Urine - 7.4 (6.6) -13.0(10.9)
2003 76/224 Taiwan (pathology) -Meansum -NR - Highest vs.
-59.7% iAs, MMA, lowest tertile
->30 yrs and DMA -1.4(0.6-3.4)
43.5 ng/L - p-trend=NS
Gilbert- CcC New Squamous cell - Urine -~6.4 -~9.7
Diamond  470/447 Hampshire,  carcinoma - Mean sum - - continuous
2013 (0N (pathology) iAs, MMA,  continuous  variable
-59.1% and DMA variable - No association
- 25-74 yrs 5.0 pg/L - No
association
Leonardi CC Hungary, Basal cell - Water -7.6 -15.8
2012 529/540 Romania, carcinoma - Lifetime -NR - Per 10pg/L
and (pathology) average iAs lifetime 1As
Slovakia conc. 1.2 conc. Increase
-482% pg/L among
-30-79 yrs (median) MMA%<15.8
1.0 (0.9-1.2) ;
MMA% >15.8
1.2 (1.1-1.4)

647 (13.3)
-NR

-72.2
-<72.2vs
>72.2°
-3.25(1.1-
10.0)

-79.6 (16.3)
- Highest vs.
lowest tertile
-0.8(0.3-1.9)
- p-trend=NS

-~80.8

- continuous
variable

- No
association

-76.6

- Per 10pg/L
lifetime iAs
conc. Increase
among
DMA%<76.6
1.2 (1.1-1.4);
DMA% >76.6
1.0 (0.9-1.2)

-33(2.3)
-NR

NR

-4.3 (8.8)
->3vs<l1

- 1.3 (0.6-
2.9)
_p-
trend=NS

-~1.5
continuous
variable

- No
association

NR

3.6 (4.6)
-NR

NR

-10.7 (11.5)
->04vs. <
5

-0.9 (0.4-
2.1)
- p-
trend=NS

-~8.3

- continuous
variable

- No
association

NR

Age, sex, B-
carotene

Age, sex

Age, sex,
education,
smoking,
alcohol, body
mass index, sun
exposure, CAE

Age, sex,
education,
smoking, body
mass index,
urine creatinine,
skin reaction to
sun exposure,
water arsenic
Age, sex,
education, skin
response to 1-hr
midday sun, skin
complexion,
country

Note: *:Skin cancer refers to non-melanoma skin cancer; ¢: Lowest vs. highest categories.

31



Abbreviations of Table 1: CAE, cumulative arsenic exposure; CC, case control study; CO, prospective cohort study; DMA, dimethylarsinate; iAs, inorganic
arsenic; MMA, monomethylarsonate; PMI, primary methylation index(MMA/iAs); SMI, secondary methylation index (DMA/MMA); RRe, estimated relative
risk; SD, standard deviation; CI, confidence interval; NR, not reported ; NS, not significant
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Table 2. Studies of arsenic metabolism and cardiovascular diseases.

1 Design Population  Outcome Arsenic iAs% MMA% DMA% PMI SMI Adjustment
author, -Sample - Men (%) exposure - Mean(SD) - Mean - Mean - Mean - Mean Factors
year size (n) - Age range - Sample - Highest (SD) (SD) (SD) (SD)
- Level vs. lowest - Highest - Highest - Highest - Highest
categories vs. lowest vs. lowest vs. lowest vs. lowest
-RRe (95%  categories categories categories categories
CI) - RRe - RRe - RRe - RRe
(95% CI) (95% CI) (95% CI) (95% CI)
Tseng CS Putai, Peripheral vascular - Urine -7.9 (6.8) -13.7(8.2) -784 -2.9(7.9) -9.9(15.0)  Age, sex, alcohol,
2005 54/425 Taiwan disease (ankle- - Mean sum -NR -NR (11.1) -NR -NR body mass index,
-45.9% brachial indices) iAs, MMA, -NR cholesterol
->30 yrs and DMA
75.8 pg/L
Wu NCC Ilan, Carotid - Water NR -NR NR NR NR Age, sex,
2006 163/163 Taiwan atherosclerosis( IMT -<0.15~ ->16.5vs. smoking, total
-54.3% >1.0mm or the 3590 pg/L <9.9 cholesterol,
- >40 yrs presence of ECCA - 1.1 (0.6- hypertension,
plaque) 1.9) CAE
Huang CS Putai, Hypertension (a mean - Urine -8.3(7.6) -13.6(8.7) -78.1(12.2) -3.1(8.0) -11.7 Age, sex,
2007 372/499 Taiwan SBP >140 mmHg ora - Mean sum ->8.0vs. ->15.5 vs. ->85.3 vs. ->2.7vs. (31.0) smoking, alcohol,
-44.0% mean DBP > 90 iAs, MMA, <4.5 <8.1 <75.8 <1.2 ->9.8 vs. body mass index,
->30 yrs mmHg) and DMA -1.2 (0.8- - 1.0 (0.7- -1.1(0.7- -0.9 (0.6- <4.9 triglyceride, CAE
76.6 pg/L 1.9) 1.6) 1.6) 1.3) - 1.1 (0.7-
1.7)
Huang CS Putai, Carotid - Urine -7.2(7.4) -14.0(8.7) -78.9 -3.3(4.5) -13.3 Age, sex,
2009 121/183 Taiwan atherosclerosis (IMT - Mean sum - Case vs. - Case vs. (11.9) - Case vs. (47.1) smoking,
-52.0% >1.0mm or the iAs, MMA, control control - Case vs. control - Case vs. hypertension,
- >30 yrs presence of ECCA and DMA - No - No control - No control diabetes, total
plaque) 79.6 ng/L difference difference -No difference - No cholesterol, total
difference difference urine arsenic
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Wang
2011

Chen
2013

Chen
2013

Li
2013

CcO
110/242

CS

959

CCO
369/1,109
(subcort)

CS
182/487

Putai,
Taiwan
-42.1%
- >40 yrs

Araihazar,
Bangladesh
-40.3%
->18 yrs

Araihazar,
Bangladesh
-50.6 %
->18 yrs

Inner
Mongolia,
China
-42.6%

- Mean 49.7

yrs

Hypertension (a mean
SBP >140 mmHg or a
mean DBP > 90
mmHg or on anti-
HTN medication)

Carotid IMT as a
continuous dependent
variable

Fatal and nonfatal
cardiovascular disease
(medical records,
death certificate,
outcome assessment
committee)

Hypertension (a mean
SBP >140 mmHg or a
mean DBP > 90 mmHg
or on anti-HTN
medication)

- Water

- mean CAE
11.8 (mg/L-
year)

- Urine

- Mean sum
iAs, MMA,
and DMA
259.5 ngl/g
cre

- Urine

- Mean sum
iAs, MMA,
and DMA
272.3 nglg
creatinine

- Water

- geometric
mean CAE
0.02-2.9
(mg/L-year)

-NR
->17 vs.
<10

-0.7 (0.3-
1.6)

- 155

- Per 10%
change
-p=4.1 (-4.1-
12.3)

-15.5(6.9)
- [17.4-
69.3] vs.
[0.3-12.4]
- 1.1(0.7-
1.6)

-6.3-11.4
- per %
change

- Water
arsenic
levels
(ng/L)
<10: 0.8
(0.3-2.3)
10-50: 1.5
(0.6-3.9)
>50: 2.0
(1.0-4.1)

-NR
->12vs. <
6

-0.6 (0.3-
1.3)

-13.0

- Per 10%
change
-p=12.1
(0.4-23.8)

-13.2(5.2)
- [14.4-
33.8] vs.
[0.2-10.3]
- 1.6(1.1-
2.2)

-12.5-14.0
- per %
change

- Water
arsenic
levels
(ng/L)
<10: 0.5
(0.05-4.5)
10-50: 0.8
(0.1-7.1)
>50: 1.8
(0.4-7.9)

-NR
->0.81 vs.
<0.71

- 1.4 (0.6
3.2)

-71.6

- Per 10%
change
-p=-6.3 (-
12.8-0.2)

-71.3 (8.7)
- [75.6-
99.2] vs.
[27.9-68.6]
- 0.8 (0.5-
1.1

-67.5-73.9
- per %
change

- Water
arsenic
levels
(ng/L)
<10: 0.8
(0.1-6.9)
10-50: 0.1
(0.002-4.4)
>50: 0.04
(0.002-0.8)

NR

-0.98

- per 1-unit
change
-B=1.5(-
5.2-8.1)

- 1.0 (0.8)
- [1.06-
19.57] vs
[0.01-0.66]
0.9 (0.6-
1.3)

NR

NR

-6.7

- per 1-unit
change
-p=1.2(-
2.8-0.4)

-6.0(3.1)
-[7.2-32.3]
vs. [1.4-4.8]
-0.5(0.3-
0.9)

NR

Age, sex, body
mass index,
glucose

Age, sex,
education,
smoking, body
mass index,
systolic blood
pressure, diabetes

Age, sex,
education,
smoking, alcohol,
specific gravity-
corrected arsenic
level

Age, sex,
smoking, alcohol,
body mass index,
diabetes
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Li CS Shanxi, Hypertension (a mean - Urine -9.5-9.6 -12.8-133  -69.5 NR NR Age, sex,

2013 168/436 China SBP >140 mmHgora - geometric ->15.8 vs. ->16.4 vs. ->79.1 vs. smoking, alcohol,
-42.2% mean DBP > 90 mmHg mean sum <73 <11.9 <68.7 body mass index
-Mean 49.5  or on anti-HTN iAs, MMA, - 1.5(0.9- - 1.00 (0.- -0.7 (0.4-
medication) and DMA 2.5) 1.7) 1.2)
135.6-178.3
ug/g cre

Abbreviations: CAE, cumulative arsenic exposure; CO, prospective cohort study; CCO, case-cohort study; CS, cross-sectional study; NCC, nested case control
study; DMA, dimethylarsinate; iAs, inorganic arsenic; MMA, monomethylarsonate; PMI, primary methylation index(MMA/iAs); SMI, secondary methylation
index (DMA/MMA); IMT, intimal-medial thickness; ECCA, extra-cranial carotid artery; HTN, hypertension; SBP, systolic blood pressure; DBP, diastolic blood
pressure; RRe, estimated relative risk; SD, standard deviation; CI, confidence interval; NR, not reported
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Table 3. Studies of arsenic metabolism, adiposity and diabetes

1 Design  Population Outcome Arsenic iAs% MMA% DMA% PMI SMI Adjustment Factors
author,  Cases/ - Men (%) exposure - Mean(SD) -Mean(SD) -Mean(SD) -Mean(SD) - Mean(SD)
year NC - Age range - Sample - Highest - Highest - Highest - Highest - Highest
- Level vs. lowest vs. lowest vs. lowest vs. lowest vs. lowest
categories categories categories categories categories
-RRe (95% -RRe (95% -RRe (95% -RRe (95% -RRe (95%
CI) CI) CI) CI) CI)
Gomez- CS Arizona, USA  MMA% and - Urine -~12.1 -~10.6 -~77.4 NR -~8.5 Age, smoking,
Rubio and DMA/MMA - Mean sum -NR - dependent - NR - dependent  ethnicity, location,
2011 624 Sonora, (SMI) iAs, MMA, variable variable total urine arsenic
Mexico and DMA - B of BMI - B of BMI level, AS3MT7388,
- 0% 53.6 pg/L =-0.02 (p =0.02 (p AS3MT M287T
->6 yrs value <0.01) value <0.01)
Del CS Zimapan and DM ( - Urine NR NR NR -13 -5.6 Age, sex, obesity,
Razo 25/233 Lagunera, FBG >126 - Mean sum - per IQR - per IQR hypertension
2011 Mexico mg/dL, OGTT iAs, MMA, change change
-32.6% >200 mg/dL, self- and DMA - 1.0 (0.9- - 1.4 (0.9-
->5 yrs reported 41.2 pg/L 1.1) 2.1)
diagnosis, or DM
medication)
Su CS Taipei, Taiwan  Obesity - Urine -44 -4.8 -90.5 NR NR -
2012 101/202  -53.1% (National -Meansum - Obese vs. - Obese vs. - Obese vs.
- 6-12 yrs guideline) iAs, MMA, normal normal normal
and DMA weight weight weight
30.0 ng/g - No - No - No
creatinine difference difference difference
Gomez- CS Sonora, MMA% - Urine - 143 -11.6 (4.2) -74.1 NR NR Age, indigenous
Rubio Mexico - Mean sum - dependent American proportion,
2012 746 -32.3% iAs, MMA, variable haplotypes of
->6 yrs and DMA - Women alleles7388 and
170.4 ppb (506) M287T, total urine
- B of BMI arsenic
=-0.02 (p
value <0.01)

36



Chen CC
2012 111/136
Nizam CC
2013 140/180
Gribble CS
2013

3,663

Putai, Taiwan
-42.9%
- 240 yrs

Faridpur,
Bangladesh
- 40.6%

- 220 yrs

Arizona,
Oklahoma,
N/S Dakota,
USA (Strong
Heart Study)
-41.1%
-45-74 yrs

Metabolic
syndrome (meet 3
or more Adult
Treatment Panel
III criteria)

DM (self-reported
diagnosis and
HbAlc > 7%)

1As%
MMA%
DMA%

- Urine

- Mean sum
iAs, MMA,
and DMA
43.5 png/g
creatinine

- Urine

- Mean sum
iAs, MMA,
and DMA
242.6 ng/L

- Urine

- Mean sum
iAs, MMA,
and DMA
~10 pg/L

-17.0 (16.2)
-NR

-9.6

- DM vs.

non-DM

- No

difference
(p value

=0.35)

-79

- BMI > 35
vs. <25

- Difference
of mean

-10.1(9.0)
->11.3 vs.
<5.8
-0.35(0.2-
0.7)

-94

- DM vs.

non-DM

- No

difference
(p value

=0.08)

-13.9

- BMI > 35
vs. <25

- Difference
of mean
MMA%
--4.0 (-
4.5~-3.5)

-72.8 (19.1)
->81.9vs.
<724
22.0(1L.1-
3.9)

-81.0

- DM vs.

non-DM

- No

difference
(p value

=0.14)

-77.8
-BMI>35
vs. <25

- Difference
of mean
DMa%
-57
(4.8~6.5)

-0.8(0.7)
->0.9 vs.
<0.4
- 0.4 (0.2-
0.8)

-1.3

- DM vs.

non-DM

- No

difference
(p value

=0.37)

NR

-17.9 (31.9)
->12.0 vs.
<6.1
-2.6(1.4-
5.1)

-10.6

- DM vs.

non-DM

- No

difference
(p value

=0.09)

NR

Age, betal nut
chewing

Age, sex, smoking,
body mass index,
family history of
diabetes, income,
duration of drinking
water, water arsenic

Age, sex, education,
smoking, alcohol,
specific gravity-
corrected urine
arsenic

Abbreviations: BMI, Body mass index (kg/mz); CC, case-control study; CS, cross-sectional study; DMA, dimethylarsinate; iAs, inorganic arsenic; MMA,
monomethylarsonate; PMI, primary methylation index(MMA/iAs); SMI, secondary methylation index (DMA/MMA); DM, diabetes mellitus; FBG, fasting blood
glucose; OGTT, oral glucose tolerance test; IMT, intimal-medial thickness; HbA1c, hemoglobin Alc; RRe, estimated relative risk; SD, standard deviation; CI,

confidence interval; NR, not reported
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Table 4. Summary of arsenic methylation pattern for different health outcomes.

Health outcomes iAs% MMA% DMA% PMI SMI
Cancer

All-site cancer

Chung 2009 J ) J NR \§
Lung cancer

Steinmaus 2010 NR ™ NR NR NR
Melek 2014 0 ™ l NR NR
Skin cancer

Hsueh 1997 NR T NR NR NR
Yu 2000 0 ™ W NR VAN
Chen 2003 NR 0 s 0 s
Leonardi 2012 NR T VAN NR NR
Gilbert-Diamond 2013 ~ T l T >
Urothelial cancer

Chen 2003 NR NR NR { 2
Steinmaus 2006 NR 0 NR NR NR
Pu 2007 T ™ N ™ NS
Huang 2008 ) ) J J J
Melek 2014 \’ ™ ™ NR NR
Cardiovascular disease

Chen 2013 0 ™ \§ J J
Carotid atherosclerosis

Wu 2006 NR T NR NR NR
Huang 2009 \’ ) \§ ™ J
Chen 2013 0 ™ \2 0 J
Hypertension

Huang 2007 0 VAN 0 J )
Wang 2011 J J ) NR NR
Li 2013 ) ) \’ NR NR
Li 2013 T VAN ) NR NR
Adiposity and diabetes

Body mass index

Gomez-Rubio 2011 NR W NR NR ™
Gomez-Rubio 2012 NR W NR NR NR
Gribble 2013 W b ™ NR NR
Obesity

Su 2012 d J 0 NR NR
Metabolic syndrome

Chen 2012 NR A ™ W ™
Diabetes mellitus

Del Razo 2011 NR NR NR VAN T
Nizam 2013 N d T > T

Note: arrows stand for the direction of association; double arrows stand for the direction of

significant association (p<0.05); <>, null association; NR, not reported.
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Figure 1. The distribution of arsenic metabolism across populations worldwide.
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Figure 2. The variability of arsenic metabolism across populations worldwide.
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Supplementary table 1. PubMed and EMBASE database search strategies for arsenic metabolism and outcomes of interest

| Database ' Medline/PubMed
 Date : April 3,2014
Strategy We combined the results for three major concepts(#1 to #3 below using “AND”) with restriction to human studies (#4

- using “NOT”)

#1. Arsenic

: "Arsenic"[Mesh] OR "Arsenic Poisoning"[Mesh] OR "Arsenicals"[Mesh] OR "Arsenic"[tw] OR "Arsenic Poisoning"[tw] OR

#2. Metabolism "Metabolism"[Mesh] OR "metabolism" [Subheading] OR "Metabolic Networks and Pathways"[Mesh] OR "Carbohydrate

[6,265,772] Metabolism"[Mesh] OR "Lipid Metabolism"[Mesh] OR "Glucose Metabolism Disorders"[Mesh] OR "Secondary
Metabolism"[Mesh] OR "Lipid Metabolism Disorders"[Mesh] OR "Pyruvate Metabolism, Inborn Errors"[Mesh] OR "Purine-
Pyrimidine Metabolism, Inborn Errors"[Mesh] OR "Phosphorus Metabolism Disorders"[Mesh] OR "Metal Metabolism,
Inborn Errors"[Mesh] OR "Amino Acid Metabolism, Inborn Errors"[Mesh] OR "Steroid Metabolism, Inborn Errors"[Mesh]
OR "lron Metabolism Disorders"[Mesh] OR "Metabolism, Inborn Errors"[Mesh] OR "Lipid Metabolism, Inborn
Errors"[Mesh] OR "Energy Metabolism"[Mesh] OR "Carbohydrate Metabolism, Inborn Errors"[Mesh] OR "Calcium
Metabolism Disorders"[Mesh] OR "Methylation"[Mesh] OR "DNA Methylation"[Mesh] OR “Arsenic metabolism” OR
“Arsenic methylation”

#3. Health [Cancer]

outcome cancer[sb] OR

measures [Cardiovascular diseases]

[7,339,336] "Atherosclerosis"[Mesh] OR "Carotid Artery Diseases"[Mesh] OR "Coronary Artery Disease'[Mesh] OR "Cardiovascular

Diseases"[Mesh] OR "Myocardial Infarction"[Mesh] OR "Stroke"[Mesh] OR "Cerebrovascular Disorders"[Mesh] OR
"Peripheral Vascular Diseases"[Mesh] OR "Peripheral Arterial Disease"[Mesh] OR "Mortality"[Mesh] OR atherosclerosis
OR arteriosclerosis OR "cardiovascular disease" OR “cardiovascular diseases” OR "myocardial infarction" OR stroke OR
“cerebrovascular disease” OR "peripheral vascular disease" OR "peripheral arterial disease" OR mortality OR “blackfoot
disease” OR “infarct*” OR “ischemia” OR “ischemic heart disease” OR “heart diseases” OR

[Body mass index and diabetes]

"obesity"[mh] OR "body mass index"[mh] OR "weight gain"[mh] OR "adipogenesis"[mh] OR "adipose tissue"[mh] OR
"adipokines"[mh] OR "adiponectin"[mh] OR "leptin"[mh] OR resistin[mh]) OR ("diabetes mellitus"[mh] OR "glucose
metabolism disorders"[mh] OR "insulin"[mh] OR "insulin resistance"[mh] OR "blood glucose"[mh] OR "islets of
langerhans"[mh]) OR “body composition”
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#4. Animal Study : ["animals"[MeSH Terms] NOT ("humans"[MeSH Terms] AND "animals"[MeSH Terms])]
[3,874,066]

| Database |EMBASE |
Date April 3,2014
Strategy We combined the results for three major concepts(#1 to #3 below using “AND”) with restriction to human studies (#4
using “NOT”)
#1. Arsenic 'arsenic'/exp OR 'arsenic poisoning'/exp OR arsenic AND poisoning OR 'arsenicals'/exp OR arsenicals OR arsenite OR
[18,740] ~ arsenate
#2. Metabolism : 'metabolism'/exp OR metabolism OR 'methylation'/exp OR methylation OR 'arsenic methylatoin' OR 'arsenic metabolism'
- [7,482,077]
#3. Health [Cancer]
outcome 'cancer'/exp OR cancer OR 'neoplasm'/exp OR neoplasm OR 'malignancy' OR 'malignant' OR 'carotid artery diseases'/exp
measures OR 'carotid artery diseases' OR 'coronary artery disease'/exp OR 'coronary artery disease' OR 'cardiovascular
[8,000,035] diseases'/exp OR

[Cardiovascular diseases]
'cardiovascular diseases' OR 'myocardial infarction' OR 'myocardial infarction'/exp OR stroke OR 'stroke'/exp OR 'stroke'
OR 'cerebrovascular disorders' OR 'cerebrovascular disorders'/exp OR 'peripheral vascular diseases' OR 'peripheral
vascular diseases'/exp OR 'peripheral arterial diseases' OR 'peripheral arterial diseases'/exp OR 'mortality' OR
'mortality'/exp OR 'atherosclerosis'/exp OR 'atherosclerosis' OR atherosclerosis OR 'arteriosclerosis'/exp OR
'arteriosclerosis' OR arteriosclerosis OR 'blackfoot disease'/exp OR 'blackfoot disease' OR 'infarct'/exp OR 'infarct' OR
infarct OR 'ischemia'/exp OR 'ischemia' OR ischemia OR 'ischemic heart disease'/exp OR 'ischemic heart disease' OR 'heart
disease'/exp OR 'heart disease' OR
[Body mass index and diabetes]
'diabetes' OR 'diabetes'/exp OR diabetes OR 'obesity' OR 'obesity'/exp OR obesity OR 'body mass index'/exp OR 'body
mass index' OR 'weight gain'/exp OR 'weight gain' OR 'adipogenesis' OR 'adipogenesis'/exp OR adipogenesis OR 'adipose
tissue'/exp OR 'adipose tissue' OR 'adipokines' OR 'adipokines'/exp OR adipokines OR 'adiponectin' OR 'adiponectin'/exp
OR adiponectin OR 'leptin' OR 'leptin'/exp OR leptin OR 'resistin' OR 'resistin'/exp OR resistin OR 'glucose metabolism
disorders'/exp OR 'glucose metabolism disorders' OR 'insulin' OR 'insulin'/exp OR insulin OR 'insulin resistance'/exp OR
'insulin resistance' OR 'blood glucose'/exp OR 'blood glucose' OR 'islets of langerhans'/exp OR 'islets of langerhans' OR
'body composition'/exp OR 'body composition'

#4. Animal Study  'animal'/exp NOT (‘animal'/exp AND 'human'/exp)
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' [4,289,239]
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Supplementary figure 1. Flow diagram of study selection process.

Records identified through
Medline/PubMed (n=3412) and EMBASE
(n=2101)

B Duplicate records removed (n=773)
B Non-Human records manually removed (n=2718)

Records Screened
(n=2022)

Records removed based on primary exclusion criteria (n=1919)

B No original data

B Case reports or case series

B No relevant outcome measurements

B No data on urine proportions of arsenic species

Records eligible for complete review

(n=104)

Records removed based on secondary exclusion criteria (n=76)

M No analysis of the association between arsenic
metabolism and outcomes of interest (n=58)

B Studies focus on arsenic-related skin lesions (n=7)

B Pregnant population (n=1)

B Duplicate study source population with same study
design and outcome of interest (n=10)*

Studies included in qualitative synthesis (n= 28)

B Cancer (n=12)
O Skin cancer (n=5)
O Lung cancer (n=2)
O Urothelial carcinoma (n=5)
O Overall cancer (n=1)

M Cardiovascular disease (n=9)
O cardiovascular disease (composited outcome) (n=1)
O Carotid atherosclerosis (n=2)
O Hypertension (n=4)
O Peripheral vascular disease (n=1)

B Body mass index and diabetes (n=7)
O Body mass index (n=3)
O Diabetes mellitus (n=2)
O Metabolic syndrome {n=1)
O Obesity (n=1)
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Supplementary figure 2. Quality criteria applied and evaluation of the design and data analysis issued in selected studies on the

relation between arsenic metabolism and cancers.

All studies
Did the authors report all proportions of arsenic metabolism?

Did the authors report both primary and secondary arsenic methylation indices ?

Were outcomes based on objective tests or standard criteria in > 90% of study

participants?
Did the authors present internal comparisons within study participants?

Did the authors control for potential confounding risk factors at least including

age, sex, and smoking?

Did the authors control for total arsenic exposure?
Follow-up studies

Was loss to follow up independent of exposure?

Was the intensity of search of disease independent of exposure status?
Case-control and cross-sectional studies?

Were the data collected in a similar manner for all participants?

Were the same exclusion criteria applied to all participants?

Was the time period over which cases and noncases or exposed and

nonexposed participants were interviewed the same?

Was the interviewer blinded with respect to the case status of the person

interviewed?

Was the response rate among non-cases at least 70%?

Were all cases interviewed within 6 months of diagnosis?

Was the study based on incident cases of diseases?

Were noncases people who, had they developed the disease, would have
been cases?
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Supplementary figure 3. Quality criteria applied and evaluation of the design and data analysis issued in selected studies on the
relation between arsenic metabolism and cardiovascular diseases.

Tseng 2005
Wu 2006
Huang 2007
Huang 2009
Wang 2011
Chen 2013
Chen 2013
Li2013

Li 2013

All studies
Did the authors report all proportions of arsenic metabolism?
Did the authors report both primary and secondary arsenic methylation indices ?
Were outcomes based on objective tests or standard criteria in > 90% of study
participants?
Did the authors present internal comparisons within study participants?
Did the authors control for potential confounding risk factors at least including
age, sex, and smoking?
Did the authors control for total arsenic exposure?

Follow-up studies
Was loss to follow up independent of exposure? _
Was the intensity of search of disease independent of exposure status? -

Case-control and cross-sectional studies
Were the data collected in a similar manner for all participants? |
Were the same exclusion criteria applied to all participants? |
Was the time period over which cases and noncases or exposed and |
nonexposed participants were interviewed the same?
Was the interviewer blinded with respect to the case status of the person -
interviewed?
Was the response rate among eligible participants or non-cases at least 70%? O
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Supplementary figure 4. Quality criteria applied and evaluation of the design and data analysis issued in selected studies on the
relation between arsenic metabolism and adiposity/diabetic phenotypes.
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Supplementary table 2. Variation array of the analyzed compositions of arsenic metabolism from 19 studies.

iAs% MMA% DMA%
iAs% — 0.21 0.27 Log-ratio
MMA% 1.09 — 0.06 variance
DMA% 6.78 6.22 —
Mean Compositional Ratio
Compositional 11.3 12.3 76.4

mean

48



Supplementary figure 5. Coda-dendrogram of the isomeric log-ratio(ilr) basis for the compositions of arsenic metabolism. The
horizontal green lines are proportional to the variance of each balance and the largest variance corresponds to the first balance
comparing the inorganic arsenic and methylated arsenic species (MMA+DMA). The first and second balances (green boxes) point out
larger presence of methylated arsenic species and DMA, respectively.
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Supplementary figure 6. The regression lines between estimated urine total arsenic levels and compositional components of arsenic
metabolism.
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Abstract

Context: The role of arsenic metabolism in mortality remains unclear and relevant
evidence is scarce.

Objective: To assess the prospective association between arsenic metabolism and all-
cause, cardiovascular, and cancer mortality in American Indian population exposed to
low-moderate levels of arsenic

Design, Setting, and Participants: Prospective cohort study in 3,600 American Indian
participants aged 45 to 75 years living in Arizona, Oklahoma, and North and South
Dakota. The sum of urine inorganic arsenic (arsenite and arsenate), monomethylated
(MMA), and dimethylated (DMA) arsenic compounds at baseline was used as the
biomarker of inorganic arsenic exposure from multiple sources. The proportions of urine
inorganic arsenic (arsenite and arsenate, iAs), MMA and DMA over the sum of inorganic
and methylated species, expressed as 1As%, MMA%, and DMA%, was used to evaluate
arsenic metabolism.

Main outcome measures: All-cause, cardiovascular, and cancer mortality. Causes of
death were determined by the Strong Heart Study Mortality Review Committee.
Results: The median (interquartile range) for inorganic arsenic%, MMA% and DMA%
was 8.0 (5.6 to 11.0), 14.0 (10.8 to 17.6) and 77.7 (71.9 to 82.6), respectively. The
adjusted hazard ratio of all-cause mortality for an interquartile change increase in DMA%
was 1.16 (95% CI 1.01-1.33) when it substituted iAs% whereas MMA% did not explain
the risk of all-cause mortality. For cardiovascular mortality, the adjusted hazard ratio for
an interquartile change increase in MMA% was 1.52 (1.16-1.99) and 1.17(1.01-1.35)

when it substituted 1As% and DMA%, respectively. For cancer mortality, the adjusted
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hazard ratio for an interquartile increase in MMA% was 0.73 (0.55-0.98) and 0.81 (0.67-
0.97) when it substituted i1As% and DMA%, respectively.

Conclusion: Different patterns of arsenic metabolism profile are significantly associated
with all-cause, cardiovascular and cancer mortality and the effects are independent of
levels of arsenic exposure. More experimental and epidemiological evidence are needed
to acquire more in-depth insights into the biological and clinical meaning of arsenic

metabolism.
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Background

Inorganic arsenic exposure is a major public health problem worldwide.' Indeed,
chronic exposure to inorganic arsenic through water and foods has been associated with
diverse chronic diseases including various forms of cancerz, cardiovascular diseases™ 4,
diabetes™ °, and kidney dysfunction’ at a wide range of arsenic exposure levels.

Chronic arsenic exposure has also been related to increased mortality, including

all-cause®, cancer” '°, and cardiovascular disease mortalitylo'13

in many parts of the world
including Argentina, Bangladesh, Chile, Taiwan, and the USA. Most studies used arsenic
concentrations in well water or individual urine total arsenic concentrations as primary
exposure matrices. Few studies, however, have systematically evaluated the role of
arsenic metabolism in all-cause and disease-specific mortality. In humans, the average
distribution of arsenic metabolites in urine is 10-30% inorganic arsenic [iAs], 10-20%

monomethylarsonate [MMA], and 60-80% dimethylarsinate [DMA], with substantial

inter-individual variation.'* " Higher MMA% and lower DMA% in urine have been

16, 17 18, 19

related to increased risk of various cancers and cardiovascular diseases, although
some studies showed no or inconsistent association. In addition, recent studies have
connected increased urine DMA% with increased prevalence of diabetes®™ and
adiposity.”! Possible mechanisms underlying a differential role for arsenic methylation
patterns on disease outcomes could be related to one-carbon metabolism and methylation

dysregulation.”> %

Understanding how arsenic methylation capacity is associated with
mortality risks and whether the association is different by cause of death could be useful

to arsenic risk assessment as well as to increase our understanding of arsenic toxicity

mechanisms.

54



In this study, we examined the association of arsenic exposure and arsenic
metabolism with the risk of mortality, including all-cause, cardiovascular and cancer
mortality, in the Strong Heart Study, a large population-based prospective cohort with

12,24 We also evaluated whether the association between

almost 20 years of follow-up.
arsenic metabolism and mortality was beyond the association with arsenic exposure

levels.

Methods

Study population

The Strong Heart Study is a population-based cohort study that examined risk
factors of cardiovascular mortality and morbidity in American Indians from Arizona,
Oklahoma and North and South Dakota. Overall, 4549 men and women aged 45-74 years
of age were enrolled between 1989 and 1991.%* All eligible individuals were invited to
participate in Arizona and Oklahoma, whereas a cluster sampling procedure was applied
in North and South Dakota.>*** The overall participation rate was 62%.* The study
population was stable during the follow-up period due to low migration rates and strong
cultural and community links among SHS participants.?® Compared with nonparticipants,
participants were similar in age, body mass index, and prevalence of self-reported
diabetes but were more likely to be female and to have self-reported hypertension.”> The
Indian Health Service, institutional review boards, and participating tribes approved the

study protocol. All participants provided informed consent.
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For this study, we used data from 3,973 participants with sufficient urine available
for arsenic measurements at the baseline visit. We then excluded 228 participants with
some arsenic species data (inorganic arsenic, MMA or DMA) below the limit of
detection, as arsenic metabolism cannot be evaluated at undetectable arsenic exposure
levels, 5 missing smoking status, 2 missing education, 8 missing alcohol drinking status,
16 missing body mass index, 26 missing waist-hip ratio, 15 missing hypertension status,
66 missing estimated glomerular filtration rate, and 7 missing baseline fasting glucose
level, leaving 3,600 participants for this analysis. Included participants were similar to

those who were excluded because of missing data (data not shown).

Data collection

Baseline clinical information included a personal interview, physical examination,
fasting blood test, and spot urine sample collection.* Socidemographic (age, sex, and
education) and lifestyle (smoking and alcohol status) information was collected by
trained and certified interviewers using standardized questionnaires.”* Physical
examination measurements (height, weight, waist and hip circumferences, and systolic
and diastolic pressures) and bio-specimen collection (blood and urine) were conducted by
centrally trained nurses and medical assistants following a standardized protocol.*
Detailed procedures of clinical and laboratory examinations have been published.*
Participants were asked to fast for 12 hours before blood samples were collected in the
morning, at baseline and in the two subsequent visits. Serum creatinine was measured by
an alkaline-picrate rate method.** Estimated glomerular filtration rate at baseline was

derived from the 4-variable isotope dilution mass spectrometry Modification of Diet in

Renal Disease Study equation.”” Spot urine samples were collected in the morning and
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were frozen with 1 to 2 hours of collection. The biospecimens were stored at -70°C or
lower before analyses.” Urine creatinine and specific gravity levels were measured by an
automated alkaline picrate method and Leica TS 400 total solid refractometer (Leica

Microsystems, Buffalo, USA), respectively.*

Urine arsenic measurements

The urine concentrations of arsenic species in the Strong Heart Study population
were stable over a 10-year follow up (between 1989-1991 and 1998-1999), reflecting
population stability and the appropriateness of one single urine arsenic sample to
represent long-term arsenic exposure.”® Detailed analytic methods and associated quality
control procedures for arsenic analysis have been described.” Arsenic species
concentrations were determined by high-performance liquid chromatography (HPLC)
coupled to inductively coupled plasma mass spectrometry (ICP-MS) that served as the
arsenic selective detector (Agilent 1100 HPLC and Agilent 7700x ICP-MS, Agilent
Technologies, Santa Clara, California). Arsenic speciation could discriminate species
directly related to inorganic arsenic exposure (arsenite, arsenate, monomethylarsonate
[MMA], and dimethylarsinate [DMA]) from those related to organic arsenicals in seafood
(arsenobetaine as an overall marker of seafood arsenicals), which are generally
considered nontoxic.*® The limit of detection (LOD) for total arsenic and for inorganic
arsenic (arsenite plus arsenate), MMA, DMA, and arsenobetaine plus other arsenic
cations was 0.1 pg/L. The percentages of participants with concentrations below the limit
of detection were 0.03% for total arsenic, 5.2% for inorganic arsenic, 0.8% for MMA,
0.03% for DMA, and 2.1% for arsenobetaine plus other arsenic cations. Levels of arsenic

species below the limit of detection were replaced by the corresponding limit of detection
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divided by the square root of 2. An in-house reference urine and the Japanese National
Institute for Environmental Studies No. 18 Human Urine were analyzed together with the
samples. Interassay coefficients of variation for total arsenic, inorganic arsenic, MMA,
DMA and arsenobetaine plus other arsenic cations for the in-house reference urine were

4.4%, 6.0%, 6.5%, 5.9%, and 6.5%, respectively.

Arsenic exposure and arsenic metabolism

We used the sum of urine inorganic arsenic (arsenite and arsenate) and methylated
arsenic species (MMA and DMA) as the biomarker of inorganic arsenic exposure from
multiple sources.”'** Urine arsenic concentrations were divided by urine creatinine
concentrations to account for urine dilution-concentration and expressed as ug/g
creatinine. Urine concentrations of arsenobetaine and other arsenic cations were very
low (median, 0.68; interquartile range, 0.41 to 1.54 pg/g creatinine), confirming that
seafood intake was low in this sample, and indicating that DMA mainly came from

inorganic arsenic exposure.*

To assess arsenic metabolism, we used the proportions of urine iAs (arsenite and
arsenate), MMA and DMA over the sum of inorganic and methylated species, expressed

as 1As%, MMA%, and DMA%, to evaluate arsenic metabolism.

Mortality follow-up

Vital status and cause-of-death codes were determined through 2008 by annual
contact, review of hospitalization records and death certificates, and information obtained
from the National Death Index. Mortality follow up was complete in 99.8% of the study

participants. Study participants were followed from the date of the baseline examination
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until the date of death or 31 December 2008, whichever occurred first. Cause of death
were classified using the International Classification of Diseases, Ninth Revision (ICD-9)
and were grouped into 4 broad categories by the SHS Mortality Review Committee based
on the standardized mortality surveillance procedures including discharge summary of
the terminal hospital admission, medical reports, autopsy, and pathology report (if
available): cardiovascular diseases, cancer, respiratory and infectious disease, and all
other causes. For cardiovascular disease deaths, the ascertainment of the specific cause
of death was made through a central adjudication committee. Detailed definitions of the

criteria used by the central adjudication committee have been described previously.”

Statistical analyses

Urine concentrations of the sum of inorganic and methylated species were
modeled as quartiles and as log-transformed concentrations, comparing an interquartile
range. Arsenic metabolism (1As%, MMA%, and DMA%) was modeled as continuous,

comparing an interquartile range.

We used Cox proportional hazards modeling to quantify the relative hazard of
mortality associated with arsenic exposure and arsenic metabolism.*® The time scale for
survival analysis was age, facilitating adjustment for this strong predictor of mortality. To
handle left-truncation induced by time of enrollment and appropriately aligning risk sets
on the age scale, the late entry method was conducted using individual entry time (age at
baseline). All proportional hazards models were adjusted for study sites (using the
stratified Cox procedure), education level (less than high school, some high school, high
school or more), smoking status (never, former, current), alcohol drinking (never, former,
current), body mass index (continuous), and waist-hip ratio (continuous). Although we
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did not adjust for health conditions that could be in the causal pathway such as
hypertension, and diabetes, we conducted stratified analysis to explore the consistency of
the association between arsenic metabolism and mortality across levels of these
comorbidities. We will also examined whether the association between arsenic
metabolism and risk of mortality varied by sex, smoking status, body mass index (<25,
25-30, >30 kg/m?), abdominal obesity (defined by waist circumference >112 cm and >88

cm for men and women, respectively).

All statistical analyses were performed in Stata/IC, version 12 (StataCorp, College
Station, Texas) and with R, version 3.0.0 (R foundation for Statistical Computing,

Vienna, Austria [www.r-project.org]).

Results

Study population

A total of 1,559 (43.3%) participants died of any cause over 51,810.3 person-
years of follow-up; 484(13.4 %) died of cardiovascular disease (CVD), and 281 (7.8%)
died of cancer. Overall, median concentration of the sum of inorganic and methylated
arsenic species in the urine was 11.2 pg/L (interquartile range, 6.6 to 19.1 pg/L). Urine
arsenic concentrations were higher in participants from Arizona (median 14.9 pg/L),
followed by the Dakotas (12.6 pg/L) and Oklahoma (median 7.2 pg/L). The median
(interquartile range) for iAs%, MMA% and DMA% was 8.0 (5.6 to 11.0)%, 14.0 (10.8 to

17.6)% and 77.7 (71.9 to 82.6)%, respectively.
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Arsenic exposure and all-cause and cause specific mortality

Baseline urine concentrations of inorganic arsenic, methylated arsenic species
including MMA and DMA, and the sum of inorganic and methylated arsenic species
were significantly higher among participants who died during the follow-up (Table 1).
The fully adjusted hazard ratios for all-cause mortality, CVD mortality, and cancer
mortality were 1.28 (95% CI 1.16-1.41), 1.28 (1.08-1.52), and 1.15 (0.92-1.44),
respectively, for an interquartile range increase in urine concentrations of the sum of

inorganic and methylated arsenic species (Table 2).

Arsenic metabolism and all-cause mortality

Before adjustment, baseline arsenic metabolism profiles were comparable
between survivors and deceased participants (Table 1). When modeling each arsenic
metabolism biomarker one at a time, each interquartile range increase in 1As%, MMA%,
and DMA% were prospectively associated with all-cause mortality with hazard ratio 0.91
(95%C1 0.85 -0.97), 0.91 (CI 0.85-0.98), and 1.12 (1.04-1.21) in fully adjusted models,
respectively (Table 3, model 3). When modeling arsenic metabolism by including two
biomarkers at the same time, the adjusted hazard ratio of mortality for an interquartile
range increase in 1As% was 0.97 (95% CI 0.87-1.09) when it substituted MMA% and

0.93 (0.87-0.99) when it substituted DMA%.

The adjusted hazard ratio of mortality for an interquartile range increase in
MMA% was 1.03 (95% CI1 0.90-1.19) and 0.94 (0.87-1.03) when it substituted 1As% and
DMAY%, respectively. The adjusted hazard ratio of mortality for an interquartile range

increase in DMA% was 1.16 (1.01-1.33) and 1.10 (0.96-1.25) when it substituted 1As%
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and MMA%, respectively (Table 3, model 3). In dose-response analyses, increasing
DMAY% was related to increased all-cause mortality when it substituted both iAs% and
MMA% (Figure 1). 1As% was associated with lower all-cause mortality when it
substituted DM A% but not when it substituted MMA%. The association between arsenic
metabolism and all-cause mortality was stronger in participants with female gender,
diabetes, and obesity. However, the association was similar across all arsenic exposure

categories (Table 6).

Arsenic metabolism and cardiovascular disease mortality

When including each arsenic metabolism biomarker in the multivariable Cox
proportional hazards model one at a time, the fully adjusted hazard ratio of cardiovascular
diseases (CVD) mortality for each interquartile range increase in 1As%, MMA%, and
DMA% was 0.86 (95%CI 0.76 -0.97), 1.05 (CI1 0.93-1.20), and 1.07 (0.94-1.21),
respectively (Table 4, model 3). When modeling arsenic metabolism by including two
biomarkers in the Cox regression model at the same time, the adjusted hazard ratio for an
interquartile range increase in 1As% was 0.72 (95% CI 0.58-0.89) and 0.81 (0.71-0.93)
when it substituted MMA% and DMA%, respectively. The adjusted hazard ratio for an
interquartile range increase in MMA% was 1.52 (95% CI 1.16-1.99) and 1.17 (1.01-1.35)
when it substituted 1As% and DMA%, respectively. The adjusted hazard ratio for an
interquartile range increase in DMA% was 1.53 (1.16-2.00) and 0.78 (0.63-0.98) when it
substituted 1As% and MMA%, respectively (Table 4, model 3). In dose-response
analyses, increasing MMA% was related to increased CVD mortality when it substituted
both% inorganic arsenic and DMA% (Figure 2). DMA% was associated with increased

CVD mortality when it substituted 1As% but not when it substituted MMA%. The
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association between arsenic metabolism and cardiovascular mortality was similar across

all arsenic exposure categories (Table 7).

Arsenic metabolism and cancer mortality

When including each arsenic metabolism biomarker in the modeling one at a
time, the hazard ratio of cancer mortality for each interquartile range increase in 1As%,
MMA%, and DMA% was 1.02 (95%CI 0.89 -1.17), 0.84 (CI 0.70-1.00), and 1.09 (0.92-
1.29) in full adjustment models, respectively (Table 5, model 3). When modeling arsenic
metabolism by including two biomarkers in the Cox regression model at the same time,
the adjusted hazard ratio for an interquartile range increase in 1As% was 1.28 (95% CI
1.02-1.62) and 1.08 (0.95-1.24) when it substituted MMA% and DM A%, respectively.
The adjusted hazard ratio for an interquartile range increase in MMA% was 0.73 (95% CI
0.55-0.98) and 0.81 (0.67-0.97) when it substituted 1As% and DMA%, respectively. The
adjusted hazard ratio for an interquartile range increase in DMA% was 0.85 (0.65-1.12)
and 1.40 (1.04-1.87) when it substituted 1As% and MMA%, respectively (Table 5, model
3). In dose-response analyses, increasing MMA% was related to lower cancer mortality
when it substituted both% inorganic arsenic and DMA% (Figure 3). DMA% was
associated with increased cancer mortality when it substituted MMA% but not when it
substituted 1As%. The association between arsenic metabolism and cardiovascular

mortality was similar across all arsenic exposure categories (Table 8).
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Discussion

Research on the role of arsenic metabolism in all-cause mortality and cause-
specific mortality is scarce. Our study is the first study to systematically examine the
relationship between arsenic metabolism and mortality using data from a population-
based cohort. We found the substitution of iAs% by DMA% was prospectively associated
with higher all-cause mortality. The substitution of 1As% by either MM A% or DMA%
was associated with higher cardiovascular disease (CVD) mortality. The substitution of
DMA% by MMAY% was also related to higher CVD mortality. For cancer mortality, the
substitution of MMA% by either iAs% or DMA% was prospectively associated with
higher cancer mortality.

The mechanism underlying the association between arsenic metabolism and all-
cause mortality remains unclear though many biological hypotheses have been raised.*
One of the major hypothesis involves one carbon metabolism, which encompasses a
tightly interconnected metabolic network by cycling carbon units from amino acid inputs
to generate essential cellular outputs including biosynthesis, redox balance, and
methylation reactions.’” The optimal balance between nutrition and one-carbon
metabolism is critical to maintain genome stability, modulate epigenomics, and keep
cellular homeostasis and detoxification. Metabolic imbalance from methylation
dysregulation in one-carbon metabolism has been specially linked to the development of
cancer, cardiovascular diseases, and diabetes, which could potentially explain the arsenic-
related pleiotropic adverse effect. To what extent arsenic interferes with one-carbon
metabolism remains to be determined; however, inter-individual variation in arsenic

methylation profile may reflect both differential individual susceptibility toward arsenic
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exposure and differential metabolic capacity to maintain methyl balance, the fundamental
driver of various downstream physiologic reactions.*® Increasing evidence has shown that
nutrition (e.g. folic acid supplementation) can play a role in mitigating arsenic toxicity.”’
Arsenic exposure has also been associated with global DNA methylation in a number of
studies, although studies targeting on arsenic metabolism and epigenomic patterns is
limited.*>** Our findings will motivate experimental and clinical research to investigate
the biological mechanisms and potential interventions for adjusting arsenic metabolism in
risk modification and risk reduction in arsenic-related health problems.

Strengths of the current study include careful modeling of the dynamic of arsenic
metabolism, standardized protocol to ascertain mortality data over a 20-year follow-up
and high-quality laboratory methods for measuring concentrations of urine arsenic
species. This study had several limitations. First, the urine arsenic concentrations and
metabolism were measured in a single sample at baseline to represent internal doses and
individual metabolism profiles. However, we have confirmed that arsenic levels in urine
and arsenic metabolism were constant over 10 years in this population.”® Second, over-
adjustment for variables that possibly in the cause pathway (e.g. HbAlc and fasting
glucose in all-cause mortality) could not be excluded. However, multiple sensitively
analyses yielded consistent results. Third, it is possible that unknown and unmeasured
confounding may bias our findings. For example, we do not have all possible
measurements of human exposure to environmental toxicants that may modify both
arsenic metabolism profiles and risk of mortality. Finally, given the observational nature
of this study, we cannot firmly conclude that the association between arsenic metabolism

and all-cause and cause-specific mortality reflects cause and effect.
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Conclusion

This is the first study to show that specific profiles of arsenic metabolism are
associated with all-cause, cardiovascular disease, and cancer mortality. The patterns were
different for cardiovascular and cancer mortality. Understanding the differential
individual susceptibility measured by arsenic metabolism to the risk of mortality can be
critical in risk assessment of arsenic toxicity. Additional experimental and
epidemiological evidence are needed to understand the biological reasons and clinical

implications of arsenic metabolism.
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Table 1. Characteristics of Strong Heart Study participants at baseline (1989-1991).

Survivors Deaths p-value
n=2,041, 56.7% n=1,559, 43.3%
N (%) Median(IQR) N % Median(IQR)

Age, year 52.7 (48.3-58.7) 58.3 (51.4-65.5) <0.01
Male 756 (37.0) 740 (47.5) <0.01
Location <0.01

Arizona 633 (31.0) 630 (40.4)

Oklahoma 747 (36.6) 370 (23.7)

North and South Dakota 661 (32.4) 559 (35.9)
Education (yrs) <0.01

No high school 333 (16.3) 484 (31.1)

Some high school 456 (22.3) 429 (27.5)

High school or more 1252 (61.3) 646 (41.4)
Smoking (%) 0.44

Never 669 (32.8) 485 (31.1)

Former 691 (33.9) 525 (33.7)

Current 681 (33.4) 549 (35.2)
Alcohol (%) 0.25

Never 310 (15.2) 255 (16.4)

Former 868 (42.5) 621 (39.8)

Current 863 (42.3) 683 (43.8)
Body mass index 30.4 (27.1-34.6) 29.7 (26.0-33.9) <0.01
Waist-hip ratio 0.95 (0.91-0.98) 0.96 (0.93-1.00) <0.01
Waist circumference (cm) 104 (96-115) 104 (95-114) 0.81
% Body fat 37.8 (30.4-43.9) 34.5 (28.2-42) <0.01
Urine creatinine, g/L 1.28 (0.83-1.79) 1.11 (0.73-1.61) <0.01
Specific gravity 1.02 (1.015-1.024) 1.018 (1.014-1.023) 0.27
eGFR, ml/min/1.73m? 81.9 (72.7-94.1) 80.7 (68.0-93.7) <0.01
Hypertension 616 (30.2) 754 (48.4) <0.01
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Diabetes mellitus
Fasting glucose, mg/dL
HbAlc, %

Arsenic exposure

iAs + methylated arsenic*, ug/g

iAs, ug/g

MMA, pg/g

DMA, ng/g

Arsenic metabolism
iAs%

MMA%

DMA%

807 (39.5)

N=1,922

959 (61.5)
110 (98-142)
5.4 (4.9-6.6)

8.9 (5.6-14.2)
0.7 (0.4-1.3)
1.2 (0.7-2.0)
6.7 (4.2-11.0)

8.0 (5.6-11.0)
13.9 (11.0-17.4)
77.7 (72.0-82.5)

129 (103-218)
6.1(5.1-9.2)

11.9 (7.1-18.4)
0.9 (0.4-1.7)
1.6 (0.9-2.7)
9.1(5.4-14.2)

7.9 (5.6-11.0)
14.1 (10.6-17.8)
77.8 (71.7-82.9)

<0.01
<0.01
<0.01

<0.01
<0.01
<0.01
<0.01

0.37
0.59
0.40
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Table 2. Hazard ratios (95% confidence intervals) for all-cause, cardiovascular, and cancer mortality per interquartile range in urine
concentrations of inorganic arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA) and the sum of iAs, MMA and DMA
(ug/g creatinine).

Arsenic (interquartile range) Model 1 Model 2 Model 3 Model 4 Model 5
(urine creatinine) (Specific gravity) (No dilution adj.)
All-cause mortality N=3,404 N=3,404 N=3,404

iAs (0.4-1.7 pg/L)

MMA ( 0.8-2.8 pg/L)
DMA ( 5.1-14.5 ug/L)
iAs + methylated arsenic (6.6-19.1 pg/L)
Cardiovascular disease (CVD) mortality

iAs (0.4-1.7 pg/L)

MMA (0.8-2.8 ug/L)
DMA ( 5.1-14.5 pg/L)
iAs + methylated arsenic (6.6-19.1 pg/L)

Cancer mortality
iAs (0.4-1.7 pg/L)

MMA ( 0.8-2.8 pg/L)
DMA ( 5.1-14.5 ug/L)
iAs + methylated arsenic (6.6-19.1 pg/L)

1.08 (0.99-1.18)
1.15 (1.05-1.26)
1.35 (1.23-1.47)
1.33 (1.21-1.45)

0.97 (0.83-1.13)
1.20(1.02-1.42)
1.34 (1.15-1.57)
1.31(1.11-1.55)

1.15 (0.94-1.41)
1.02 (0.82-1.27)
1.17 (0.95-1.44)
1.16 (0.94-1.44)

1.03 (0.94-1.13)
1.12 (1.02-1.24)
1.31(1.19-1.43)
1.28 (1.17-1.40)

0.94 (0.80-1.11)
1.21(1.02-1.43)
1.36 (1.16-1.60)
1.29 (1.09-1.52)

1.12 (0.91-1.38)
0.98 (0.79-1.23)
1.18 (0.95-1.46)
1.16 (0.93-1.44)

1.06 (0.97-1.17)
1.11 (1.00-1.22)
1.29 (1.18-1.42)
1.28 (1.16-1.41)
N=3,542
1.02 (0.86-1.20
1.25 (1.05-1.49
1.28 (1.08-1.51
1.28 (1.08-1.52
N=3,571
1.13 (0.91-1.39)
0.99 (0.79-1.24)
1.17 (0.95-1.45)
1.15 (0.92-1.44)

)
)
)
)

1.07 (0.99-1.17)
1.08 (0.99-1.17)
1.19 (1.11-1.29)
1.18 (1.09-1.28)
N=3,542
0.93 (0.81-1.08)
1.02 (0.89-1.17)
1.02 (0.89-1.16)
1.02 (0.89-1.17)
N=3,571
1.14 (0.95-1.37)
1.01 (0.84-1.21)
1.14 (0.96-1.36)
1.13 (0.95-1.35)

0.97 (0.89-1.05)
0.96 (0.89-1.04)
1.04 (0.97-1.12)
1.03 (0.96-1.12)
N=3,542
0.88 (0.75-1.02)
0.96 (0.83-1.10)
0.96 (0.84-1.09)
0.95 (0.83-1.09)
N=3,571
1.03 (0.85-1.25)
0.91 (0.76-1.09)
1.00 (0.85-1.18)
0.99 (0.84-1.18)

Model 1: Stratified by study center and adjusted for age (age as time metric and age at baseline were treated as staggered entries) and urine creatinine (log-
transformed), sex, and education

Model 2: Further adjusted for smoking, alcohol drinking, body mass index and waist-hip ratio
Model 3: for all-cause mortality: Further adjusted for estimated glomerular filtration rate, baseline hemoglobin Alc and fasting glucose level.
for CVD mortality : Further adjusted for estimated glomerular filtration rate, LDL, diabetes(yes/no), and hypertension(yes/no)
for cancer mortality: Further adjusted for estimated glomerular filtration rate, diabetes(yes/no), and hypertension(yes/no)

Model 4: Urine creatinine level in model 3 was replaced by urine specific gravity

Model 5: Model 3 without urine creatinine
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Table 3. Hazard ratios (95% confidence intervals) for all-cause mortality per interquartile range in arsenic metabolism biomarkers (
inorganic arsenic% [iAs%], monomethylarsonate% [MMA%] and dimethylarsinate %[DMA%]). As the three biomarkers equal 100%,
models entered two biomarkers at a time. All models adjusted for the urine concentrations of sum of iAs, MMA and DMA corrected

by urine creatinine except model 4 and 5.

Arsenic metabolism (interquartile range)

One metabolism biomarker in each model
iAs%
MMA%
DMA%
Two metabolism biomarker in each model
iAs% substituted by:
MMA% (10.8-17.6)
DMA% (71.9-82.6)
MMAY% substituted by:
iAs%  (5.6-11.0)
DMA% (71.9-82.6)
DMA% substituted by:
iAs%  (5.6-11.0)
MMA% (10.8-17.6)

Model 1

0.89 (0.83-0.95)
0.91 (0.85-0.98)
1.14 (1.07-1.22)

1.08 (0.94-1.24)
1.22 (1.07-1.40)

0.94 (0.84-1.05)
1.08 (0.95-1.22)

0.90 (0.84-0.97)
0.95 (0.88-1.03)

Model 2

0.87 (0.82-0.93)
0.90 (0.84-0.97)
1.17(1.09-1.25)

1.10 (0.95-1.26)
1.26 (1.10-1.45)

0.93 (0.83-1.04)
1.09 (0.96-1.24)

0.89 (0.83-0.95)
0.95 (0.87-1.03)

Model 3

(Urine creatinine)

(N=3,404)

0.91 (0.85-0.97)
0.91 (0.85-0.98)
1.12 (1.04-1.21)

1.03 (0.90-1.19)
1.16 (1.01-1.33)

0.97 (0.87-1.09)
1.10 (0.96-1.25)

0.93 (0.87-0.99)
0.94 (0.87-1.03)

Model 4
(Specific gravity)
(N=3,404)

0.95 (0.89-1.01)
0.91 (0.84-0.98)
1.09 (1.02-1.18)

0.95 (0.83-1.09)
1.05 (0.92-1.20)

1.04 (0.93-1.16)
1.14 (1.00-1.30)

0.98 (0.91-1.04)
0.92 (0.85-1.00)

Model 5

(No dilution adj.)

(N=3,404)

0.96 (0.90-1.02)
0.90 (0.84-0.97)
1.09 (1.01-1.17)

0.91 (0.80-1.05)
1.01 (0.89-1.16)

1.07 (0.96-1.20)
1.17 (1.03-1.33)

0.99 (0.93-1.06)
0.91 (0.83-0.98)

Model 1: Stratified by study center, adjusted for age (age as time metric and age at baseline were treated as staggered entries), the sum of inorganic arsenic
and methylated arsenic concentrations (log-transformed), urine creatinine levels (log-transformed), sex, and education

Model 2: Further adjusted for smoking, alcohol drinking, body mass index and waist-hip ratio.
Model 3: Further adjusted for estimated glomerular filtration rate, baseline hemoglobin Alc and fasting glucose level.

Model 4: Urine creatinine level was replaced by urine specific gravity in model 3.

Model 5: Model 3 without urine creatinine
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Figure 1. Hazard ratios for all-cause mortality by biomarkers of arsenic metabolism. Solid lines and shaded area represent adjusted
hazard ratios based on restricted quadratic splines with 95% confidence interval using knots at the 10th, 50th, and 90th percentiles.
The solid line represents the hazard ratio for iAs% when it replaces MMA% (red line) and DMA% (blue line) in the left panel, the
hazard ratio for MMA% when it replaces iAs% (red line) and DMA% (green line) in the middle panel and the hazard ratio for DMA%
when it replaces iAs% (blue line) and MMA% (green line). The shaded areas represent 95% Cls.
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Table 4. Hazard ratios (95% confidence intervals) for cardiovascular mortality per interquartile range in arsenic metabolism

biomarkers (inorganic arsenic% [iAs%], monomethylarsonate% [MMA%] and dimethylarsinate% [DMA%]). As the three biomarkers

equal 100%, models entered two biomarkers at a time. All models adjusted for the urine concentrations of sum of iAs, MMA and

DMA corrected by urine creatinine except model 4 and 5.

Arsenic metabolism (interquartile range)

One metabolism biomarker in each model
iAs%
MMA%
DMA%
Two metabolism biomarker in each model
iAs% substituted by:
MMA% (10.8-17.6)
DMA% (71.9-82.6)
MMA% substituted by:
iAs%  (5.6-11.0)
DMA% (71.9-82.6)
DMA% substituted by:
iAs%  (5.6-11.0)
MMA% (10.8-17.6)

Model 1

0.79 (0.70-0.89)
0.97 (0.86-1.10)
1.18 (1.04-1.33)

1.57 (1.22-2.04)
1.75 (1.34-2.29)

0.70 (0.57-0.86)
0.85 (0.69-1.06)

0.75 (0.66-0.86)
1.11 (0.96-1.27)

Model 2

0.78 (0.69-0.88)
1.00 (0.88-1.14)
1.17 (1.03-1.33)

1.67 (1.29-2.18)
1.82 (1.39-2.39)

0.66 (0.54-0.82)
0.81 (0.65-1.01)

0.74 (0.65-0.85)
1.15(1.00-1.32)

Model 3

(Urine creatinine)

(N=3,542)

0.86 (0.76-0.97)
1.05 (0.93-1.20)
1.07 (0.94-1.21)

1.52 (1.16-1.99)
1.53 (1.16-2.00)

0.72 (0.58-0.89)
0.78 (0.63-0.98)

0.81(0.71-0.93)
1.17 (1.01-1.35)

Model 4
(Specific gravity)
(N=3,542)

0.94 (0.83-1.05)
1.05 (0.92-1.19)
1.02 (0.89-1.15)

1.26 (0.97-1.64)
1.23 (0.95-1.61)

0.83(0.67-1.03)
0.86 (0.68-1.08)

0.90 (0.79-1.03)
1.10(0.95-1.28)

Model 5

(No dilution adj.)

(N=3,542)

0.93 (0.83-1.05)
1.04 (0.92-1.19)
1.02 (0.90-1.16)

1.25(0.96-1.63)
1.23 (0.95-1.60)

0.86 (0.69-1.08)
0.84 (0.68-1.03)

0.90 (0.79-1.03)
1.10(0.95-1.27)

Model 1: Stratified by study center, adjusted for age (age as time metric and age at baseline were treated as staggered entries), the sum of inorganic arsenic
and methylated arsenic concentrations (log-transformed), urine creatinine levels (log-trasnformed), sex, and education

Model 2: Further adjusted for smoking, alcohol drinking, body mass index and waist-hip ratio.
Model 3: Further adjusted for estimated glomerular filtration rate, LDL, diabetes(yes/no), and hypertension(yes/no)

Model 4: Urine creatinine level was replaced by urine specific gravity in model 3.

Model 5: Model 3 without urine creatinine
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Figure 2. Hazard ratios for cardiovascular mortality by biomarkers of arsenic metabolism. Solid lines and shaded area represent
adjusted hazard ratios based on restricted quadratic splines with 95% confidence interval using knots at the 10th, 50th, and 90th
percentiles. The solid line represents the hazard ratio for iAs% when it replaces MMA% (red line) and DMA% (blue line) in the left
panel, the hazard ratio for MMA% when it replaces iAs% (red line) and DMA% (green line) in the middle panel and the hazard ratio
for DMA% when it replaces iAs% (blue line) and MMA% (green line). The shaded areas represent 95% Cls.
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Table 5. Hazard ratios (95% confidence intervals) for cancer mortality per interquartile range in arsenic metabolism biomarkers
(inorganic arsenic% [iAs%], monomethylarsonate% [MMA%] and dimethylarsinate% [DMA%]). As the three biomarkers equal 100%,
models entered two biomarkers at a time. All models adjusted for the urine concentrations of sum of iAs, MMA and DMA corrected

by urine creatinine except model 4 and 5.

Arsenic metabolism (interquartile range)

One metabolism biomarker in each model
iAs%
MMA%
DMA%
Two metabolism biomarker in each model
iAs% substituted by:
MMA% (10.8-17.6)
DMA% (71.9-82.6)
MMAY% substituted by:
iAs%  (5.6-11.0)
DMA% (71.9-82.6)
DMA% substituted by:
iAs%  (5.6-11.0)
MMA% (10.8-17.6)

Model 1

1.04 (0.92-1.19)
0.88 (0.75-1.04)
1.05 (0.89-1.23)

0.76 (0.57-1.00)
0.84 (0.65-1.09)

1.25(1.00-1.55)
1.30(0.99-1.72)

1.09 (0.96-1.24)
0.85 (0.71-1.01)

Model 2

1.01 (0.88-1.16)
0.83 (0.70-0.99)
1.10 (0.93-1.31)

0.73 (0.55-0.98)
0.86 (0.66-1.13)

1.28 (1.02-1.61)
1.41 (1.06-1.89)

1.08 (0.94-1.23)
0.80 (0.67-0.97)

Model 3

(Urine creatinine)

(N=3,571)

1.02 (0.89-1.17)
0.84 (0.70-1.00)
1.09 (0.92-1.29)

0.73 (0.55-0.98)
0.85 (0.65-1.12)

1.28 (1.02-1.62)
1.40 (1.04-1.87)

1.08 (0.95-1.24)
0.81 (0.67-0.97)

Model 4
(Specific gravity)
(N=3,571)

1.05 (0.92-1.20)
0.84 (0.70-1.00)
1.07 (0.90-1.26)

0.70 (0.53-0.92)
0.81 (0.63-1.05)

1.33 (1.07-1.66)
1.43(1.07-1.91)

1.11 (0.98-1.26)
0.80 (0.66-0.96)

Model 5

(No dilution adj.)

(N=3,571)

1.06 (0.93-1.21)
0.83 (0.70-0.99)
1.07 (0.90-1.26)

0.68 (0.52-0.90)
0.79 (0.62-1.02)

1.35(1.09-1.68)
1.45 (1.09-1.94)

1.12 (0.99-1.27)
0.79 (0.66-0.95)

Model 1: Stratified by study center, adjusted for age (age as time metric and age at baseline were treated as staggered entries), the sum of inorganic arsenic
and methylated arsenic concentrations (log-transformed), urine creatinine levels (log-transformed), sex, and education

Model 2: Further adjusted for smoking, alcohol drinking, body mass index and waist-hip ratio.

Model 3: Further adjusted for estimated glomerular filtration rate, diabetes (yes/no), and hypertension (yes/no)
Model 4: Urine creatinine level was replaced by urine specific gravity in model 3.

Model 5: Model 3 without urine creatinine
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Figure 3. Hazard ratios for cancer mortality by biomarkers of arsenic metabolism. Solid lines and shaded area represent adjusted
hazard ratios based on restricted quadratic splines with 95% confidence interval using knots at the 10th, 50th, and 90th percentiles.
The solid line represents the hazard ratio for iAs% when it replaces MMA% (red line) and DMA% (blue line) in the left panel, the
hazard ratio for MMA% when it replaces iAs% (red line) and DMA% (green line) in the middle panel and the hazard ratio for DMA%
when it replaces iAs% (blue line) and MMA% (green line). The shaded areas represent 95% Cls.
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Table 6. Adjusted hazard ratios and 95% confidence intervals for all-cause mortality comparing the 75" with 25" percentile of

inorganic arsenic%[iAs%], monomethylarsonate% [MMA%] and dimethylarsonate%[DMA%], by participant characteristics at

baseline.
Subgroup n iAs% MMA% DMA%
Substituted by Substituted by Substituted by
MMA% DMA% iAs% DMA% iAs% MMA%

Age (years)

<55 1723 0.98 (0.77-1.25) 1.23(0.97-1.55) 1.02(0.84-1.23) 1.26(1.01-1.58) 0.90 (0.80-1.02) 0.86 (0.75-0.99)

>55 1681 1.05(0.89-1.25) 1.09(0.92-1.30) 0.96 (0.84-1.10) 1.01(0.86-1.18) 0.96 (0.88-1.04) 1.00 (0.90-1.10)
p-value for interaction 0.71 0.69 0.71 0.82 0.69 0.82
Sex

Men 1423 0.95(0.79-1.15) 1.02(0.85-1.21) 1.04(0.90-1.21) 1.10(0.93-1.32) 0.99(0.91-1.08) 0.94 (0.84-1.05)

Women 1981 1.27(1.00-1.18) 1.52(1.18-1.96) 0.83(0.68-1.00) 1.05(0.86-1.28) 0.81(0.71-0.92) 0.97 (0.86-1.10)
p-value for interaction <0.01 <0.01 <0.01 0.22 <0.01 0.22
Study site

Arizona 1230 1.23(0.95-1.59) 1.43(1.11-1.83) 0.85(0.69-1.04) 1.03(0.82-1.28) 0.84(0.74-0.95) 0.98 (0.86-1.13)

Oklahoma 1023 0.92(0.66-1.28) 0.96 (0.69-1.34) 1.07(0.82-1.39) 1.10(0.83-1.46) 1.02(0.86-1.20) 0.94(0.79-1.13)

North/South Dekota 1151 0.95(0.77-1.16) 1.08(0.89-1.30) 1.05(0.89-1.23) 1.17(0.96-1.44) 0.96 (0.88-1.06) 0.90 (0.79-1.03)
p-value for interaction 0.04 0.08 0.04 0.13 0.08 0.13
Smoking

Never 1098 0.88(0.70-1.09) 0.97(0.79-1.19) 1.11(0.93-1.32) 1.19(0.94-1.52) 1.02(0.92-1.13) 0.89(0.77-1.04)

Former 1151 1.28(0.98-1.69) 1.47(1.11-1.94) 0.82(0.66-1.02) 0.99(0.78-1.25) 0.82(0.72-0.95) 1.01(0.87-1.17)

Current 1155 1.03(0.81-1.31) 1.16(0.93-1.46) 0.98(0.81-1.19) 1.11(0.89-1.39) 0.93(0.83-1.04) 0.93(0.81-1.07)
p-value for interaction 0.52 0.18 0.52 0.99 0.18 0.99
DM

No 1722 0.78 (0.65-0.96) 0.90(0.74-1.09) 1.21(1.03-1.41) 1.30(1.07-1.58) 1.06(0.96-1.16) 0.85 (0.75-0.96)

Yes 1682 1.36(1.11-1.67) 1.50(1.22-1.83) 0.78(0.67-0.92) 0.92 (0.77-1.09) 0.82 (0.74-0.90) 1.06 (0.94-1.18)
p-value for interaction <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Hypertension

No 1702 0.92 (0.75-1.12) 1.05(0.87-1.26) 1.07(0.92-1.26) 1.21(0.99-1.48) 0.98 (0.89-1.07) 0.89 (0.78-1.01)
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Yes
p-value for interaction
Obesity

BMI< 30 kg/m?

BMI> 30
p-value for interaction
Waist-hip ratio

Non-abdominal obesity*

Abdominal obesity
p-value for interaction
iAs+tMMA+DMA
<5.5ug/g
>5.5&<8.8ug/g
>8.8 & <13.9 ug/g
>13.9 ug/g
p-value for interaction
Overall

1675

1678
1726

953
2451

845
842
850
867

3404

1.11 (0.90-1.35)
0.13

0.92 (0.78-1.08)
1.32 (1.02-1.70)
0.04

0.83(0.67-1.04)
1.25(1.02-1.52)
<0.01

1.27 (0.84-1.91)

1.25 (0.90-1.73)

0.80 (0.61-1.06)

0.99 (0.79-1.25)
0.17

1.03 (0.90-1.19)

1.21 (0.99-1.48)
0.15

1.01 (0.86-1.18)
1.55 (1.20-2.00)
<0.01

0.89(0.73-1.09)
1.45 (1.19-1.78)
<0.01

1.27 (0.82-1.98)

1.28 (0.92-1.77)

1.04 (0.81-1.34)

1.17 (0.93-1.45)
0.41

1.16 (1.01-1.33)

0.92 (0.79-1.08)
0.13

1.07 (0.94-1.22)
0.80 (0.66-0.98)
0.04

1.16 (0.97-1.37)
0.84 (0.72-0.98)
<0.01

0.83 (0.60-1.14)

0.84 (0.65-1.08)

1.19 (0.96-1.48)

1.00 (0.84-1.21)
0.17

0.97 (0.87-1.09)

1.03 (0.87-1.22)
0.26

1.16 (0.98-1.36)
1.00 (0.81-1.24)
0.70

1.18 (0.96-1.46)
1.02 (0.87-1.21)
0.21

0.87 (0.64-1.19)

0.89 (0.68-1.18)

1.47 (1.13-1.93)

1.18 (0.94-1.48)
0.18

1.10 (0.96-1.25)

0.91 (0.82-1.01)
0.15

1.00 (0.92-1.08)
0.80(0.71-0.91)
<0.01

1.06 (0.96-1.17)
0.83(0.75-0.92)
<0.01

0.89 (0.71-1.10)

0.89 (0.75-1.04)

0.98 (0.86-1.11)

0.93 (0.83-1.03)
0.41

0.93 (0.87-1.00)

0.98 (0.88-1.09)
0.26

0.91(0.82-1.01)
1.00 (0.87-1.14)
0.70

0.90 (0.79-1.03)
0.99 (0.89-1.10)
0.21

1.09 (0.90-1.32)

1.07 (0.90-1.28)

0.78 (0.66-0.93)

0.90 (0.78-1.04)
0.18

0.94 (0.87-1.03)
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Table 7. Adjusted hazard ratios and 95% confidence intervals for cardiovascular mortality comparing the 75" with 25" percentile of

inorganic arsenic%[iAs%], monomethylarsonate% [MMA%] and dimethylarsonate%[DMA%], by participant characteristics at

baseline.
Subgroup n iAs% MMA% DMA%
Substituted by Substituted by Substituted by
MMA% DMA% iAs% DMA% iAs% MMA%

Age (years)

<55 1780 1.62(1.05-2.50) 1.72(1.10-2.70) 0.68 (0.48-0.96) 0.80 (0.55-1.16) 0.76 (0.61-0.95) 1.15 (0.91-1.45)

>55 1762 1.45(1.04-2.03) 1.42(1.01-1.99) 0.74(0.57-0.97) 0.79(0.59-1.04) 0.84(0.71-0.99) 1.16 (0.97-1.39)
p-value for interaction 0.56 0.51 0.56 0.75 0.51 0.75
Sex

Men 1470 1.46(1.00-2.12) 1.37(0.96-1.97) 0.74(0.55-1.00) 0.75(0.55-1.04) 0.85(0.71-1.02) 1.19 (0.98-1.46)

Women 2072 1.91(1.27-2.86) 2.05(1.31-3.20) 0.60(0.43-0.83) 0.74(0.53-1.03) 0.70(0.56-0.87) 1.21 (0.98-1.50)
p-value for interaction 0.27 0.21 0.27 0.61 0.21 0.61
Study site

Arizona 1241 1.98(1.30-3.03) 2.18(1.37-3.49) 0.58(0.41-0.81) 0.74(0.52-1.05) 0.68 (0.53-0.86) 1.21(0.97-1.51)

Oklahoma 1095 1.47(0.81-2.64) 1.39(0.75-2.56) 0.74(0.46-1.18) 0.76(0.47-1.21) 0.85(0.62-1.15) 1.19(0.89-1.61)

North/South Dekota 1206 1.16(0.79-1.70) 1.18(0.82-1.68) 0.89(0.66-1.20) 0.93(0.65-1.34) 0.92(0.77-1.10) 1.05(0.83-1.32)
p-value for interaction 0.02 0.03 0.02 0.10 0.03 0.10
Smoking

Never 1136 1.28(0.84-1.96) 1.27(0.82-1.95) 0.82(0.59-1.15) 0.85(0.57-1.26) 0.89(0.72-1.10) 1.11(0.86-1.42)

Former 1194 2.46 (1.46-4.12) 2.20(1.28-3.79) 0.49(0.32-0.74) 0.53(0.36-0.80) 0.67(0.51-0.88) 1.49(1.16-1.92)

Current 1212 1.17(0.75-1.83) 1.36(0.88-2.09) 0.88(0.62-1.26) 1.06(0.71-1.57) 0.86 (0.69-1.06) 0.97 (0.75-1.24)
p-value for interaction 0.11 0.13 0.11 0.17 0.13 0.17
Hypertension

No 1791 1.42(0.95-2.13) 1.28(0.88-2.13) 0.76(0.55-1.04) 0.74(0.50-1.08) 0.88(0.73-1.07) 1.21(0.95-1.55)

Yes 1751 1.69(1.20-2.38) 1.83(1.27-2.63) 0.66 (0.50-0.86) 0.80 (0.60-1.05) 0.74 (0.62-0.89) 1.15 (0.97-1.37)
p-value for interaction 0.16 0.04 0.16 0.83 0.04 0.83
Obesity

BMI< 30 kg/m2 1743 1.29(0.92-1.82) 1.26(0.90-1.76) 0.82(0.62-1.07) 0.84(0.61-1.14) 0.89(0.75-1.06) 1.12(0.92-1.36)
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BMI> 30

p-value for interaction

Waist-hip ratio

Non-abdominal obesity*
Abdominal obesity
p-value for interaction

iAs+tMMA+DMA
<55 pg/g

>5.5&<8.8ug/g
>8.8 & <13.9 ug/g

>13.9 ug/g

p-value for interaction

Overall

1799

997
2545

884
888
887
883

3404

1.83 (1.20-2.80)
0.29

1.14 (0.71-1.82)
1.73 (1.24-2.42)
0.17

1.40 (0.72-2.72)

1.12 (0.64-1.95)

1.36 (0.79-2.35)

1.98 (1.26-3.11)
0.36

1.52 (1.16-1.99)

1.87 (1.21-2.91)
0.20

1.11(0.71-1.74)
1.78 (1.25-2.53)
0.14

1.21(0.58-2.51)

1.15 (0.66-2.02)

1.52 (0.92-2.52)

2.11 (1.29-3.44)
0.25

1.53 (1.16-2.00)

0.62 (0.44-0.87)
0.29

0.90 (0.62-1.31)
0.65 (0.50-0.84)
0.17

0.77 (0.45-1.30)

0.91 (0.59-1.42)

0.78 (0.51-1.20)

0.58 (0.41-0.83)
0.36

0.72 (0.58-0.89)

0.72 (0.51-1.01)
0.66

0.91 (0.60-1.36)
0.75(0.57-0.98)
0.40

0.71 (0.44-1.16)

0.97 (0.59-1.58)

0.93 (0.56-1.53)

0.72 (0.49-1.05)
0.78

0.78 (0.63-0.98)

0.73 (0.59-0.91)
0.20

0.95 (0.76-1.19)
0.75 (0.63-0.89)
0.14

0.91 (0.63-1.31)
0.93 (0.70-1.23)
0.81 (0.63-1.04)
0.69 (0.54-0.88)
0.25
0.81(0.71-0.93)

1.23 (0.99-1.53)
0.66

1.06 (0.82-1.38)
1.20(1.01-1.43)
0.40

1.24 (0.91-1.69)

1.02 (0.75-1.39)

1.05 (0.76-1.43)

1.23 (0.97-1.57)
0.78

1.17 (1.01-1.35)
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Table 8. Adjusted hazard ratios and 95% confidence intervals for cancer mortality comparing the 75" with 25" percentile of

inorganic arsenic%[iAs%], monomethylarsonate% [MMA%] and dimethylarsonate%[DMA%], by participant characteristics at

baseline.
Subgroup n iAs% MMA% DMA%
Substituted by Substituted by Substituted by

MMA% DMA% iAs% DMA% iAs% MMA%
Age (years)
<55 1796 0.73(0.41-1.30) 0.95(0.55-1.63) 1.28(0.81-2.01) 1.55(0.89-2.68) 1.03 (0.78-1.35) 0.76 (0.54-1.07)
>55 1775 0.72(0.52-1.00) 0.80(0.59-1.09) 1.30(1.00-1.69) 1.35(0.96-1.90) 1.12(0.96-1.30) 0.83(0.67-1.03)
p-value for interaction 0.62 0.99 0.62 0.44 0.99 0.44
Sex
Men 1483 0.70(0.47-1.05) 0.86(0.59-1.25) 1.33(0.96-1.83) 1.51(1.01-2.27) 1.08(0.89-1.30) 0.77 (0.60-0.99)
Women 2088 0.78(0.50-1.21) 0.87(0.57-1.34) 1.22(0.86-1.73) 1.29(0.84-1.99) 1.07 (0.86-1.33) 0.85 (0.65-1.12)
p-value for interaction 0.60 0.71 0.60 0.64 0.71 0.64
Study site
Arizona 1252 0.84(0.44-1.63) 0.93(0.50-1.73) 1.14(0.68-1.93) 1.22(0.67-2.20) 1.04(0.76-1.42) 0.88(0.61-1.29)
Oklahoma 1104 0.69 (0.34-1.40) 0.87(0.43-1.78) 1.34(0.77-2.35) 1.57(0.84-2.93) 1.07 (0.75-1.54) 0.75 (0.51-1.12)
North/South Dekota 1215 0.75(0.52-1.10) 0.90(0.64-1.27) 1.25(0.93-1.69) 1.41(0.93-2.13) 1.05(0.89-1.25) 0.81(0.62-1.05)
p-value for interaction 0.87 0.83 0.87 0.83 0.83 0.83
Smoking
Never 1144 0.69(0.42-1.12) 0.70(0.46-1.07) 1.35(0.91-1.99) 1.27(0.71-2.28) 1.20(0.97-1.48) 0.86 (0.59-1.24)
Former 1204 0.87(0.47-1.59) 1.00(0.56-1.80) 1.12(0.69-1.81) 1.26(0.72-2.20) 1.00(0.74-1.34) 0.87 (0.61-1.23)
Current 1223 0.83(0.53-1.29) 0.97(0.64-1.48) 1.16(0.81-1.65) 1.31(0.85-2.01) 1.01(0.82-1.25) 0.84(0.64-1.11)
p-value for interaction 0.79 0.61 0.79 0.72 0.61 0.72
DM
No 1819 0.60(0.41-0.87) 0.73(0.51-1.04) 1.51(1.12-2.03) 1.65(1.12-2.42) 1.17(0.98-1.41) 0.73(0.57-0.93)
Yes 1752 0.94 (0.58-1.54) 1.06 (0.67-1.69) 1.05(0.71-1.54) 1.16(0.73-1.84) 0.97(0.77-1.22) 0.91(0.68-1.22)
p-value for interaction 0.12 0.16 0.12 0.24 0.16 0.24
Obesity
BMiI< 30 kg/m? 1756 0.70 (0.50-0.97) 0.85(0.63-1.15) 1.33(1.02-1.73) 1.50(1.04-2.15) 1.08(0.93-1.26) 0.77 (0.62-0.97)
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BMI> 30 kg/m?
p-value for interaction
Waist-hip ratio

Non-abdominal obesity*

Abdominal obesity
p-value for interaction
iAs+MMA+DMA
<55 pg/g
>5.5&<8.8ug/g
>8.8 & <13.9 ug/g
>13.9 ug/g
p-value for interaction
Overall

1815

1002
2569

897
891
893
890

3404

0.97 (0.57-1.67)
0.15

0.68 (0.43-1.06)
0.87(0.59-1.30)
0.18

0.78 (0.34-1.81)

1.10 (0.52-2.35)

0.51 (0.32-0.81)

0.90 (0.51-1.60)
0.40

0.73 (0.55-0.98)

1.02 (0.60-1.73)
0.19

0.75 (0.50-1.14)
0.99 (0.67-1.46)
0.12

0.81(0.34-1.94)

1.15 (0.53-2.51)

0.68 (0.46-0.99)

1.03 (0.60-1.76)
0.51

0.85 (0.65-1.12)

1.02 (0.67-1.57)
0.15

1.36 (0.95-1.95)
1.11 (0.81-1.53)
0.18

1.22 (0.62-2.38)

0.92 (0.51-1.69)

1.70 (1.18-2.46)

1.08 (0.69-1.71)
0.40

1.28 (1.02-1.62)

1.06 (0.66-1.71)
0.28

1.39 (0.90-2.17)
1.22 (0.84-1.78)
0.48

1.21 (0.63-2.33)

0.98 (0.52-1.87)

1.95 (1.13-3.38)

1.21 (0.69-2.12)
0.58

1.40 (1.04-1.87)

0.99 (0.76-1.29)
0.19

1.15 (0.94-1.42)
1.01 (0.83-1.23)
0.12

1.11(0.72-1.71)

0.93 (0.63-1.38)

1.22 (1.01-1.47)

0.99 (0.75-1.29)
0.50

1.08 (0.95-1.24)

0.96 (0.71-1.30)
0.28

0.81(0.61-1.07)
0.88 (0.69-1.12)
0.48

0.89 (0.59-1.34)

1.01 (0.67-1.51)

0.65 (0.46-0.93)

0.89 (0.62-1.27)
0.58

0.81 (0.67-0.97)
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Abstract

Objective

Little is known regarding arsenic metabolism in diabetes development. We investigated
the prospective associations of low-moderate arsenic exposure and arsenic metabolism

with diabetes incidence in the Strong Heart Study.

Research Design and Methods

A total of 1,694 diabetes-free participants aged 45-75 years were recruited in 1989-1991
and followed through 1998-1999. We used the proportions of urine inorganic
arsenic(iAs), monomethylated(MMA), and dimethylated(DMA) over their sum
(expressed as 1As%, MMA%, and DMA%) as the biomarkers of arsenic metabolism.
Diabetes was defined as fasting glucose >126 mg/dL, 2—h glucose >200 mg/dL, self-

reported diabetes history, and self-reported use of anti-diabetic medications.

Results

Over 11,263.2 person-years of follow-up, 396 participants developed diabetes. Using the
leave-one-out approach to model the dynamics of arsenic metabolism, we found
increasing MMAY% was associated with decreased diabetes incidence. The hazard ratios
(95% CI) of diabetes incidence for an IQR change in MMA% were 0.69 (0.52, 0.90) and
0.76 (0.65, 0.89) when 1As% and DMA% were, respectively, left-out of the model.
DMAY% was associated with increased diabetes incidence only when MMA% decreased
(left-out from the model), but not when 1As% decreased. i1As% was also associated with

increased diabetes incidence when MMA% decreased. The association between MMA %
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and diabetes incidence was similar by age, sex, study site, obesity, and arsenic exposure

status.

Conclusions

Arsenic metabolism, in particular lower MMA%, was prospectively associated with
increased incidence of diabetes. Research is needed to evaluate whether arsenic
metabolism is related to diabetes incidence per se, or through its close connections with

one-carbon metabolism.
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Background

Humans are exposed to inorganic arsenic through drinking water, food, dust, and
ambient air.' Increasing epidemiologic and experimental evidence supports a role for
inorganic arsenic in the development of diabetes mellitus.”> At high arsenic levels (>150
pg/L in drinking water), evidence from Taiwan and Bangladesh supports an association
with diabetes, although most studies are cross-sectional and there are concerns about
measures of arsenic exposure and the definition of diabetes in some studies.” * At low-
moderate arsenic levels, recent evidence from Mexico and the United states, including
cross-sectional™ ® and prospective studies”® support the role of arsenic in diabetes

development.

Little is known, however, about the association between arsenic metabolism and
diabetes. After absorption, inorganic arsenic (1As; arsenate and arsenite) is methylated,
primarily in the liver, to form monomethylated (MMA) and dimethylated (DMA) arsenic
compounds, which are excreted into the urine together with iAs.” '* Higher MMA% and

11-13 and

lower DMA% in urine have been related to increased risk of cancer
cardiovascular disease in studies from Taiwan and Bangladesh.'* !> The increased risk of
cancer and cardiovascular disease associated with higher MM A% in urine may be related
to the high toxicity of MMA (III).'® ' DMA is regarded as a less toxic arsenic species, as
DMA is more rapidly excreted through the urine compared to inorganic arsenic.'™ "’

DMA (III), however, has been recently linked to the prevalence of diabetes in cross-

sectional studies from Mexico and Bangladesh.”** Higher DMA% and lower MMA%

has also been related to obesity in studies from Mexico and the US,?" ** although the

temporality of these associations is unclear. In addition, arsenic metabolism is tightly
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connected with one-carbon metabolism,” which has been implicated in both cancer

24,25 26,27

development and cardiovascular disease, and may also play a role in diabetes.
These findings highlight the need to properly evaluate the role of arsenic methylation

profiles in diabetes development.

In this study, we investigated the associations of low-moderate arsenic exposure
and arsenic metabolism with diabetes in the Strong Heart Study (SHS). The SHS is a
population-based prospective cohort study of cardiometabolic diseases among 3
American Indian communities in rural Arizona, Oklahoma, and North and South Dakota
(“the Dakotas™).” In participants from Arizona and the Dakotas, drinking water was
probably the major source of inorganic arsenic while in participants from Oklahoma, diet,
including rice, flour and other grains, was probably the main source. Urine arsenic
concentrations and measures of arsenic metabolism were stable in SHS participants
during the time of follow-up, supporting the use of urine arsenic as a suitable surrogate
for chronic arsenic exposure and metabolism.” In the SHS, we recently found that higher
inorganic arsenic exposure was associated with higher diabetes prevalence,’ supporting
the need to further investigate the prospective associations between arsenic exposure and

metabolism with diabetes incidence.

Method

Study population
In 1989-1991, the Strong Heart Study examined 4,549 American Indian men and

women aged 45 to 74 years at baseline enrollment from 13 tribes and communities.*® All

87



community members were invited to participate in Arizona and Oklahoma, whereas a

cluster sampling procedure was used in the Dakotas.*"*

The overall participation rate
was 62%. Compared with nonparticipants, participants were similar in age, body mass
index, and prevalence of self-reported diabetes but were more likely to be female and to
have self-reported hypertension.*” Participants were invited to subsequent clinical visits
between 1993 and 1995, and between 1998 and 1999.>"** The SHS population is very
stable, with low migration rates due to strong cultural and social links in the

community.” The Indian Health Service, institutional review boards, and participating

communities approved the study protocol. All participants provided informed consent.

The prevalence of diabetes in the Strong Heart Study in 1989-1991 was 50%. For
this study, we used data from participants free of diabetes and with sufficient urine
available for arsenic measurements at the baseline visit (N=1,986) (Supplementary figure
1). We further excluded 117 participants lost during follow up or missing both fasting
glucose and 2-hour plasma glucose data during follow-up, 105 participants with inorganic
or methylated arsenic species below the limit of detection as it is difficult to estimate
arsenic methylation in these participants, and 70 participants missing other variables of

interest leaving 1,694 participants for this analysis.

Data Collection

Baseline clinical information consisted of a personal interview, physical
examination, fasting blood sample, and spot urine sample.’' Sociodemographic (age, sex,
and education) and lifestyle (smoking and alcohol status) information was collected by
trained and certified interviewers using standardized questionnaires.’' Physical

examination measurements (height, weight, waist and hip circumferences, and systolic
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and diastolic pressures) and bio-specimen collection (blood and urine) were conducted by
centrally trained nurses and medical assistants following a standardized protocol.”
Detailed procedures of clinical and laboratory examinations have been described.”!
Estimated glomerular filtration rate at baseline was calculated using the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) formula.** Participants were asked to
fast for 12 hours before blood samples were collected in the morning, at baseline and in
the two subsequent visits. Spot urine samples were also collected in the morning and

were frozen with 1 to 2 hours of collection. The biospecimens were stored at -70°C or

31
lower before analyses.

Diabetes measurements

Fasting plasma glucose level was determined by a hexokinase method at MedStar
Health Research Institute, Washington, DC. A 2-hour, 75g oral glucose tolerance test was
performed on all participants except those who were under insulin therapy, remained with
poor glycemic control on oral medication, or had a fasting glucose level greater than 225
mg/dL determined by Accu-Chek II (Baxter Healthcare, Grand Prairie, Texas).”!
Glycated hemoglobin was measured at the laboratory of the National Institute of Diabetes
and Digestive and Kidney Diseases Epidemiology and Clinical Research Branch,
Phoenix, Arizona, by a high-performance liquid-chromatographic (HPLC) method.
Diabetes was defined as a fasting plasma glucose >126 mg/dL, plasma glucose >200
mg/dL 2-h after ingestion of 75 g oral glucose load, self-reported diabetes history, and

self-reported use of insulin or oral hypoglycemic medications.
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Urine arsenic

To assess long-term arsenic exposure, we measured urine arsenic species after
confirmation that concentrations were stable over a 10-year period.29 Detailed analytic
methods and associated quality control procedures for arsenic analysis have been
published.® Arsenic species concentrations were determined by high-performance liquid
chromatography (HPLC) coupled to inductively coupled plasma mass spectrometry (ICP-
MS) that served as the arsenic selective detector (Agilent 1100 HPLC and Agilent 7700x
ICP-MS, Agilent Technologies, Santa Clara, California). Arsenic speciation can
discriminate species directly related to iAs exposure (arsenite, arsenate,
monomethylarsonate [MMA], and dimethylarsinate [DMA]) from those related to
organic arsenicals in seafood (arsenobetaine as an overall marker of seafood arsenicals),
which are generally considered nontoxic.”® Urine concentrations of arsenobetaine and
other arsenic cations were very low (median, 0.71; interquartile range, 0.41 to 1.69 ng/g
creatinine), confirming that seafood intake was low in this sample, and indicating that
DMA mainly came from inorganic arsenic exposure.’’ The limit of detection for total
arsenic and for iAs (arsenite plus arsenate), MMA, DMA, and arsenobetaine plus other
arsenic cations was 0.1 pg/L. Because a major goal of the study was to evaluate the role
of arsenic metabolism in diabetes development, we excluded participants with 1As
(5.2%), MMA (0.8%) and DMA (0.03%) below the limit of detection. An in-house
reference urine and the Japanese National Institute for Environmental Studies No. 18
Human Urine were analyzed together with the samples. Interassay coefficients of
variation for iAs, MMA, DMA and arsenobetaine for the in-house reference urine were

6.0%, 6.5%, 5.9%, and 6.5%, respectively.35
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Statistical methods

We used the sum of urine inorganic (iAS; arsenite and arsenate) and methylated
arsenic species (MMA and DMA) as the biomarker of inorganic arsenic exposure from
multiple sources. We used the proportions of urine iAs, MMA and DMA over the sum of
inorganic and methylated species, expressed as 1As%, MMA%, and DMA%, to evaluate
arsenic metabolism. We graphically described the distribution of arsenic metabolism in
people with and without diabetes using a triplot, a diagram with 3 axis that is well-suited

to represent arsenic metabolism (Figure 1).

The prospective associations between arsenic exposure and arsenic metabolism
with incident diabetes were evaluated by Cox proportional hazards models. Arsenic
exposure was evaluated based on the urinary concentration of the sum of inorganic and
methylated arsenic species. We also evaluated the urinary concentration of iAs, MMA
and DMA in separate models. Arsenic metabolism was evaluated as 1As%, MMA% and

20.38,39 we first entered each arsenic metabolism

DMAY%. Similar to previous studies,
biomarker alone in the regression model together with the sum of inorganic and
methylated arsenic species to adjust for arsenic exposure. Entering each biomarker alone
is difficult to interpret, as the increase in iAs, for instance, could be related to a decrease
in either MMA or DMA. To address this problem, we used a “leave-one-out” approach.
In this method, two biomarkers are entered at a time, e.g. 1As% and MMA%, leaving out
the third one, DM A%, while holding constant urine arsenic concentrations. In the
example, the regression coefficients for i1As% and MMA% estimate the hazard ratio

associated with an increase in 1As% by decreasing DM A%, and with an increase in

MMAY% by decreasing DMA%, respectively. This method is used in the nutrition
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literature to estimate the specific contribution of different macronutrients beyond their
contribution to total energy intake as well as in the hematology literature to estimate the

specific contribution of different blood cell types beyond total cell count.***!

All arsenic variables were modeled per interquartile range increment (in the log
scale for urine arsenic species concentrations and in the original scale for % species) and
using restricted cubic splines. We also modeled them using quartiles with similar findings
(data not shown). The time scale for survival analysis was age. To handle left-truncation
induced at time of enrollment and appropriately aligning risk sets on the age scale, the
late entry method was conducted using age at baseline as the individual entry time.
Models were adjusted progressively. Initially, we adjusted for sex and education (no high
school, some high school, and high school or more). We then adjusted further for
smoking and alcohol drinking status. Finally, we further adjusted for body mass index
and waist—hip ratio. All models were adjusted for urine creatinine to account for urine
dilution. In an alternative analysis we adjusted for specific gravity instead of urine
creatinine. Both models yielded similar results (models for specific gravity are not
shown). We confirmed that the proportional hazards assumption was fulfilled based on

Schoenfeld residuals.

We conducted additional sensitivity analyses to evaluate the robustness of our
primary findings. First, we evaluated the prospective associations of arsenic exposure and
arsenic metabolism with incident diabetes by fitting generalized gamma distributions to
survival times. Model selection was based on the Akaike Information Criterion (AIC) and
estimates for the shape parameter indicated that log-normal distributions were

appropriate. This approach yielded consistent findings as the Cox proportional hazards
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model (data not shown). Second, because mortality rate was high in the SHS
population,* we conducted competing risk analysis of death based on Fine and Gray’s
method, which yielded similar statistical inference.*’ We also used generalized gamma
modeling to describe the competing relationship between mortality and incident diabetes
according to arsenic exposure status (supplementary figure 2).** Third, we repeated the
analysis for arsenic exposure including participants who had iAs, MMA or DMA below
the limit of detection (LOD) by replacing levels below the LOD by the LOD divided by

the square root of 2, also with similar findings (not shown).

All statistical analyses were performed in Stata/IC, version 12 (StataCorp, College
Station, Texas) and R, version 3.0.2 (R Foundation for Statistical Computing, Vienna,

Austria [www.r-project.org]).

Results

The median urine concentration of inorganic plus methylated arsenic species was
10.2 pg/L (interquartile range, 6.1 to 17.7 pg/L). Urine arsenic concentrations were
higher in participants from Arizona (median 14.3 pg/L), followed by the Dakotas (11.9
ug/L) and Oklahoma (median 7.0 pg/L ). The median (interquartile range) for 1As%,
MMA% and DMA% was 8.3 (5.7 to 11.3)%, 15.2 (11.7 to 18.8)% and 76.4 (70.3 to
81.4)%, respectively. Men, participants from the Dakotas, current smokers and
participants with lower body mass index had higher MMA%, and correspondingly lower

DMAY% (Figure 2).
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Over 11,263.2 person-years of follow-up, 396 participants developed diabetes.
Diabetes incidence was 35.2 per 1000 person-years. Participants with incident diabetes
were more likely to be female, from Arizona, and obese at baseline (Table 1). Younger
age was borderline associated with incident diabetes (p-value 0.05). Urine concentrations
of inorganic plus methylated arsenic were similar in participants with and without
incident diabetes. Participants with incident diabetes had lower MM A% and higher
DMAY% compared to those without incident diabetes (Table 1, Figure 1). Arsenic
exposure, assessed as the summed concentrations in urine of inorganic and methylated
arsenic species or as each of the individual arsenic species, was not associated with
incident diabetes in any of the multivariable adjusted models (Table 2 and Supplement

Figure 3).

For arsenic metabolism, the multi-adjusted hazard ratio (95% CI) of diabetes
incidence per IQR in arsenic metabolism biomarkers entered one-by-one in the model
(conventional approach) was 1.00 (0.87-1.14) for 1As%, 0.79 (0.68-0.92) for MMA% and
1.17 (1.00-1.36) for DMA% (Table 3, model 4). Using the leave-one-out approach, we
confirmed that increasing MM A% was associated with decreased diabetes incidence. The
hazard ratios (95% CI) of diabetes incidence for an IQR change in MMA% were 0.69
(0.52, 0.90) and 0.76 (0.65, 0.89) when 1As% and DMA% were, respectively, left-out of
the model (Table 3, model 4). Consistently, increasing MMA% was related to decreased
diabetes incidence in flexible dose-response analyses when either i1As% or DMA% were
left-out of the model (Figure 3). DMA% was associated with increased diabetes
incidence only when substituted for MM A% and 1As% was associated with increased

diabetes incidence only when substituted for MMA% (Table 3, Figure 3).
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The association between MMAY% and diabetes incidence was similar by age, sex, study
site, obesity, and the sum of inorganic and methylated arsenic concentrations

(Supplementary table 1).

Discussion

Arsenic metabolism, but not inorganic arsenic exposure, was prospectively
associated with diabetes incidence in American Indians from Arizona, Oklahoma and
North/South Dakota. Higher iAs% and DMA% in urine, because of lower MMA%, was
associated with higher diabetes incidence. Consistently, higher MMA% was associated
with lower risk of diabetes. The associations persisted after adjustment for
sociodemographic factors, smoking, alcohol, kidney function, and measures of adiposity.
These novel findings support that arsenic metabolism patterns, in particular lower
MMA%, may be a predisposing factor for diabetes. Arsenic exposure, measured by the
concentration of inorganic plus methylated arsenic species in urine, however, was not
associated with diabetes incidence in our study population. The study was conducted in a
population with a high burden of obesity and diabetes® and characterized by low-to-

moderate arsenic exposure levels.

Non-genetic determinants of arsenic metabolism include sex (women have higher
DMA% than men), smoking (never smokers generally have higher DMA% than current
smokers), nutritional status (dietary folate and vitamin deficiencies are associated with
lower DMA%), and BMI (obese participants have higher DMA%).” In women, MMA%

46, 47

decreases and DM A% increases during pregnancy. While the risk of gestational
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diabetes is also increased, a connection with changes in arsenic metabolic patterns during

8% Interestingly, in our study the arsenic metabolic pattern

pregnancy is unknown.
associated with increased diabetes risk paralleled that observed during pregnancy, i.e.,
lower MMA% and higher DMA%. Genetic determinants, especially variants in arsenic
(III) methyltransferase (4S3MT), have also been related with arsenic methylation patterns

in urine.””>" Additional research is needed to evaluate whether genetic variants play a

role in the connection between arsenic metabolism profile and diabetes.

Little is known about arsenic metabolism and diabetes as compared to its role in
cancer and cardiovascular disease.'* **™° In those studies, conducted mostly in Taiwan
and Bangladesh, higher MMA% was associated with the development of lung™,
bladder’ and skin™ cancers and with cardiovascular disease including atherosclerosis
and peripheral vascular disease.'* > In one small case-control study from Bangladesh,
higher DM A% was associated with increased prevalence of diabetes, although the
association was not statistically significant.”” High BMI has also been significantly
associated with low MMA% and high DMA% in urine in adults from Mexico and the
Strong Heart Study.?"** In our study, adjusting for baseline BMI and waist-hip ratio
slightly attenuated the association between arsenic metabolism and incident diabetes,
although the association remained. How this specific pattern (low MMA% with either
high 1As% or DMA%) may affect individual susceptibility to endocrine and metabolic

diseases remains unclear.

Substantial experimental research supports the role of arsenic exposure in diabetes
development.”> Experimental studies, in general, have not focused on differences by

arsenic metabolism. High MMA% may be considered as a marker of insufficient
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methylation capacity to DMA. Recent experimental studies have shown that methylation
could be a bio-activation process, with DMA(III) being a potent and highly toxic
dimethylated arsenic species.’® >’ DMA(III) was found to impair insulin signaling and

- 17,58
glucose homeostasis.'”

In a cross-sectional study from Mexico, the concentrations of
DMAC(III) in urine were associated with diabetes.’ In our study, similar to other large
epidemiologic studies, we measured total MMA and DMA, as MMA(III) and DMA(III)

are unstable in urine and quickly revert to their pentavalent forms.>

The association of arsenic metabolism with diabetes could also be related to one
carbon metabolism, as S-adenosylmethionine (SAM) is the methyl donor for arsenic
metabolism.”* °° Recent experimental evidence has shown that SAM plays an important
role in lipogenesis and in the development of diabetes.”® " ®* An in vitro study in
Caenorhabditis elegans, an experimental model for human diseases and metabolic
pathways,*” * found that the synthesis of SAM regulated the expression of genes
required for adequate lipid metabolism.®' In HepG2 human hepatocytes, the optimal
balance between SAM and S-adenosylhomocystine (SAH) was critical to maintain
appropriate expression of gluconeogenic enzymes.* In addition, in a cross-sectional
study of 50-75 year old adults from the Netherlands (N=648), plasma SAM was
positively associated with fat mass and truncal adiposity, although reverse causation
could not be excluded.®® We cannot discount the possibility that arsenic metabolism acts
as a marker of one carbon metabolism. In any case, our findings indicate that more
research is warranted to understand the impact of arsenic methylation and other

methylation processes related to one-carbon metabolism on the development of diabetes.
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In our study, we found no association between arsenic exposure and incident
diabetes, although cross-sectionally we had found an association.® Inorganic arsenic and
its methylated metabolites may induce diabetes by impairing insulin production by
pancreatic B3 cells or inhibiting basal or insulin-stimulated glucose uptake by peripheral

10-66 Relevant mechanisms by which arsenic could affect 8-cell function and

tissues.
insulin sensitivity include oxidative stress, glucose uptake and transport,
gluconeogenesis, adipocyte differentiation, calcium signaling, and epigenetic effects.” '°
A number of recent studies have reported a prospective association between arsenic

378 It is possible that arsenic exposure is not a risk

exposure and diabetes development
factor for diabetes in our population. At the same time, the presence of an association
between arsenic exposure and diabetes cross-sectionally but not prospectively could be
related to competing risk of premature death and differential survival bias that may mask
the true association in our population. Because arsenic was strongly associated with
diabetes at baseline and the prevalence of diabetes at baseline was 50%,” another possible
explanation for the lack of association is that the pool of susceptible participants is too
small for the association to be seen prospectively. In support of this possibility, age was

not positively associated with diabetes incidence either (Table 1). BMI, however,

remained a strong risk factor.

Strengths of our study include standardized protocol to collect data over the
follow-up, high-quality laboratory methods for measuring concentrations of urine arsenic
species at baseline and careful modeling of the dynamic of arsenic metabolism including
the leave-one-out approach. This study had several limitations. First, the urine arsenic

concentrations and metabolism were measured in a single sample at baseline to represent
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internal doses and individual metabolism profiles. However, we have confirmed that
arsenic levels in urine and arsenic metabolism were constant over 10-years in this
population.”” Second, adjustment for adiposity could induce over-adjustment as obesity
may be in the causal pathway between arsenic metabolism and diabetes. Finally, our
population was between 40 and 74 years of age and the burden of diabetes at baseline
was already 50%. It is thus possible that participants susceptible of developing diabetes at
baseline were different from the source population. Studies in younger populations with a

lower prevalence of diabetes at baseline are needed.

In conclusion, arsenic metabolism, in particular low MMA%, was associated with
increased incidence of diabetes and could reflect individual susceptibility for diabetes
development. Arsenic metabolism is related to one-carbon metabolism, and could be
functioning as a surrogate measure of one-carbon metabolism. Research is needed to
assess the relationship between arsenic metabolism and diabetes in different populations,
evaluate the diabetogenic role of arsenic metabolism in experimental settings, and clarify
whether the development of diabetes is related to arsenic metabolism specifically or to

one-carbon metabolism in general.
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Table 1. Characteristics of Strong Heart Study participants free of diabetes at baseline (1989-1991).

No DM event DM events p-value
n=1,298, 76.6% n=396, 23.4%
N (%) Median(IQR) N % Median(IQR)

Age, year 54.6 (48.8-61.8) 53.3 (48.5-60.3) 0.05
Male 610 (47.0) 153 (38.6) <0.01
Location

Arizona 255 (19.7) 114 (28.8) <0.01

Oklahoma 504 (38.8) 109 (27.5)

North and South Dakota 539 (41.5) 173 (43.7)
Education (yrs) 0.06

No high school 230(17.7) 91 (23.0)

Some high school 305 (23.5) 89 (22.5)

High school or more 763 (58.8) 216 (54.6)
Smoking (%) 0.05

Never 353 (27.2) 126 (31.8)

Former 398 (30.7) 129 (32.6)

Current 547 (42.1) 141 (35.6)
Alcohol (%) 0.19

Never 158 (12.2) 61 (15.4)

Former 499 (38.4) 154 (38.9)

Current 641 (49.4) 181 (45.7)
Body mass index 28.0(25.0-31.9) 30.9(28.1-35.3) <0.01
Waist-hip ratio 0.94 (0.89-0.98) 0.96 (0.92-0.99)  <0.01
Waist circumference (cm) 98 (91-107) 106 (98-116) <0.01
% Body fat 33.3(27.1-40.8) 38.5(31.1-44.3) <0.01
Urine creatinine, g/L 1.3(0.8-1.8) 1.2 (0.9-1.7) 0.80
eGFR, ml/min/1.73m* 81.3(71.6-92.7) 81.1(70.8-93.7) 0.48
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Fasting glucose, mg/dL 100 (93-107) 106 (98-113) <0.01

HbAlc, % N=1,214 5.0 (4.7-5.4) N=375 5.3 (4.9-5.7) <0.01
Arsenic exposure

iAs + methylated arsenic*, 8.7 (5.3-13.8) 9.1(5.9-14.0) 0.32
;ng,{gug/g 0.7 (0.4-1.4) 0.7 (0.4-1.3) 0.87
MMA, ug/g 1.3(0.8-2.2) 1.2 (0.8-2.1) 0.58
DMA, ug/g 6.4 (4.0-10.3) 7.0 (4.4-11.2) 0.16
Arsenic metabolism

iAs% 8.4 (5.7-11.6) 8.1(5.7-10.7) 0.09
MMA% 15.5 (12.0-19.1) 14.0 (11.2-17.1)  <0.01
DMA% 75.9 (69.6-81.3) 77.4(72.6-81.9) <0.01

Abbreviations: iAs, inorganic arsenic including arsenate and arsenite; DM, diabetes mellitus; DMA, dimethylarsinate; eGFR, estimated glomerular
filtration rate; HbAlc, hemoglobin Alc, MMA, methylarsonate;

101



Table 2. Hazard ratios (95% confidence intervals) for incident diabetes per interquartile range in urine concentrations of inorganic
arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA) and the sum of iAs, MMA and DMA (ug/g creatinine).

Arsenic (interquartile range) Model 1 Model 2 Model 3 Model 4

iAs (0.4-1.4 pg/g) 0.87 (0.74-1.01) 0.86(0.74-1.01) 0.88(0.75-1.04) 0.95(0.81-1.12)
MMA ( 0.8-2.2 ug/g) 0.78 (0.66-0.91) 0.76 (0.64-0.89) 0.77 (0.65-0.90) 0.85 (0.72-1.00)
DMA ( 4.0-10.5 pg/g) 1.00 (0.86-1.17) 0.95(0.81-1.11) 0.96(0.82-1.13) 0.98 (0.83-1.15)

iAs + methylated arsenic (5.5-13.9 pug/g) 0.94 (0.81-1.09) 0.89 (0.76-1.05) 0.91(0.77-1.07) 0.95(0.81-1.11)
Model 1: Stratified by study center and adjusted for age (age as time metric and age at baseline were treated as staggered entries)
Model 2: Further adjusted for sex, education
Model 3: Further adjusted for smoking, alcohol drinking
Model 4: Further adjusted for body mass index and waist-hip ratio
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Table 3. Hazard ratios (95% confidence intervals) for incident diabetes per interquartile range in arsenic metabolism biomarkers
( inorganic arsenic% [iAs%], monomethylarsonate% [MMA%] and dimethylarsinate [DMA%]). As the three biomarkers equal
100%, models entered two biomarkers at a time. All models adjusted for the sum of iAs, MMA and DMA (ug/g creatinine).

Arsenic metabolism (interquartile range) Model 1 Model 2 Model 3 Model 4
Conventional approach

iAs% (5.7-11.3) 0.88 (0.78-1.00) 0.91(0.80-1.04) 0.92(0.81-1.05) 1.00(0.87-1.14)
MMA% (11.7-18.8) 0.69 (0.60-0.80) 0.70(0.60-0.81) 0.70(0.61-0.82) 0.79 (0.68-0.92)
DMA% (70.3-81.4) 1.35(1.17-1.55) 1.33(1.15-1.53) 1.31(1.13-1.52) 1.17(1.00-1.36)

Leave-one-out approach
1 iAs% corresponds to:

JMMA% (11.7-18.8) 1.37(1.11-1.69) 1.39(1.13-1.70) 1.40(1.14-1.72) 1.35(1.09-1.67)

JDMA% (70.3-81.4) 1.01 (0.89-1.15) 1.03(0.91-1.17) 1.04(0.92-1.19) 1.09 (0.95-1.24)
MMMAY% corresponds to:

JiAs% (5.7-11.3) 0.67 (0.52-0.88) 0.66 (0.51-0.86) 0.66 (0.50-0.85) 0.69 (0.52-0.90)

JDMA% (70.3-81.4) 0.69 (0.59-0.80) 0.69 (0.59-0.81) 0.69 (0.59-0.81) 0.76 (0.65-0.89)
"DMA% corresponds to:

JiAs% (5.7-11.3) 0.97 (0.76-1.25) 0.94(0.73-1.21) 0.92(0.71-1.19) 0.85(0.65-1.11)

JMMA% (11.7-18.8) 1.80 (1.41-2.31) 1.79(1.40-2.29) 1.79(1.39-2.29) 1.54 (1.19-1.98)

In the conventional approach, each arsenic metabolism biomarker (iAs%, MMA%, and DMA%) is entered alone in the model. In the leave-one-out
approach, two arsenic metabolism biomarkers are entered in the model. In that model, an increase in each arsenic metabolism biomarker corresponds to a
decrease in the biomarker that is left out of the model. For instance, an increase in iAs% corresponds to a decrease in MMA% when we include DMA% in
the model and leave MMA% out. The magnitude of the association for iAs% when MMA% is left-out will be the same but in opposite direction as for
MMA% when iAs% is left-out. Both in the conventional approach and in the leave-one-out approach we adjusted for the sum of inorganic and methylated
arsenic concentrations in urine to hold arsenic exposure levels constant.

Model 1: Stratified by study center, adjusted for age (age as time metric and age at baseline were treated as staggered entries) and adjusted for the sum of
inorganic arsenic and methylated arsenic concentrations.

Model 2: Further adjusted for sex and education.

Model 3: Further adjusted for smoking and alcohol drinking status.

Model 4: Further adjusted for body mass index and waist-hip ratio.
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Figure 1. The triplot presents the distribution of arsenic metabolism biomarkers in participants with and without incident
diabetes (red dots and grey dots, respectively). The large red and grey solid dots represent the compositional arsenic
metabolism mean for participants with and without incident diabetes, respectively. Inorganic arsenic (iAs) % is presented along
the blue axis, monomethylarsonate (MMA) % along the red axis and dimethylarsinate (DMA) % along the green axis.

&
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Figure 2. Median (IQR) of arsenic metabolism biomarkers by participant characteristics. The squares reflect the median for each
arsenic metabolism biomarker and is proportional to sample size. The horizontal lines represent the interquartile range. The dashed
vertical lines represent the overall median.
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Figure 3. Hazard ratios for incident diabetes by arsenic metabolism biomarkers. Solid lines (shaded area) represent adjusted hazard
ratios (95% confidence intervals) based on restricted quadratic splines with knots at the 10", 50", and 90™ percentiles. The
reference value was set at 10" percentile of each arsenic metabolism biomarker. The solid line represents the hazard ratio for iAs%
when it replaces MMA% (red line) and DMA% (blue line) in the left panel, the hazard ratio for MMA% when it replaces iAs% (red line)
and DMA% (green line) in the middle panel, and the hazard ratio for DMA% when it replaces iAs% (blue line) and MMA% (green line)
in the right panel.
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Supplementary table 1. Adjusted hazard ratios and 95% confidence intervals for the diabetes incidence comparing the 75" with 25"

percentile of the sum of iAs, MMA and DMA (ug/g creatinine) and the % of monomethylarsonate [MMA%], by participant

characteristics at baseline.

Subgroup n iAs+tMMA+DMA P value MMA%** P value for
(ng/g creatinine) for interactio
interactio n
n

Age (years)
<55 902 0.88 (0.72-1.08) 0.47 0.80 (0.65-1.00) 0.31
>55 792 1.00 (0.77-1.28) 0.67 (0.52-0.87)

Sex
Men 763 1.12 (0.87-1.43) 0.36 0.84 (0.66-1.07) 0.72
Women 931 0.86 (0.70-1.06) 0.69 (0.55-0.87)

Study site
Arizona 369 0.96 (0.68-1.34) 0.91 0.68 (0.48-0.96) 0.52
Oklahoma 613 0.94 (0.68-1.29) 0.69 (0.50-0.94)
North/South Dekota 712 0.95 (0.76-1.18) 0.85(0.67-1.07)

Smoking
Never 479 0.77 (0.57-1.03) 0.31 0.81(0.60-1.11) 0.72
Former 527 1.14 (0.85-1.53) 0.68 (0.50-0.91)
Current 688 1.03 (0.80-1.33) 0.83 (0.63-1.09)

Obesity
Non-obese (BMI< 30 kg/mz) 993 0.84 (0.65-1.07) 0.39 0.73 (0.58-0.93) 0.62
Obese (BMI> 30) 701 1.02 (0.82-1.26) 0.76 (0.61-0.95)

Waist-hip ratio
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Non-abdominal obesity* 625 1.01 (0.70-1.45) 0.75 0.64 (0.45-0.91) 0.23

Abdominal obesity 1069 0.94 (0.79-1.13) 0.79 (0.66-0.96)
iAs+tMMMA+DMA
< 5.5 ug/g creatinine 426 - 0.89 (0.63-1.28) 0.80
> 5.5 & < 8.8 ug/g creatinine 421 - 0.63 (0.45-0.89)
>8.8 & < 13.9 ug/g creatinine 424 -- 0.73 (0.52-1.02)
> 13.9 ug/g creatinine 423 - 0.74 (0.53-1.03)
Overall 1694 0.94 (0.80-1.11) 0.76 (0.65-0.89)

*Abdominal obesity is defined as waist circumference>102 cm and >88 cm for men and women, respectively.
**In this model we adjusted for inorganic arsenic % and left out dimethylarsinate % (i.e. an increase in MMA% corresponds to a decrease in
DMA%)
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Supplementary figure 1. Flow chart of participant selection.
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Abbreviations: iAs, inorganic arsenic; DMA, dymethylarsinate; FBG, fasting blood glucose; MMA, monomethylarsonate; OGTT, oral glucose tolerance test.
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Supplementary figure 2. The mixture of generalized gamma distributions summarized the cumulative incidence of both diabetes and
death in participants with highest and lowest quartile of arsenic exposure.
Brief Methods

The main competing event in our study was death. A total of 97 women and 128 men without developing diabetes died
between 1989-1991 and December 31, 1999. Uncensored observations correspond to either the time when a participant developed
diabetes or to the time when a participant died during follow-up. If it is the proportion of the total population of participants who
developed diabetes and 1- 1t is the complementary proportion of patients who died without developing diabetes, we used a mixture
according to i and 1- it of two generalized gamma distributions to model time to diabetes development and time to death.* We used
the 3-parameter generalized gamma distribution (B for location, o for scale, and k for shape) for this analysis because of its flexibility
to accommodate various hazard patterns. We modeled time to diabetes development with a generalized gamma distribution with
density f(t), and the times to death with another generalized gamma distribution with density g(t). Hence, if T denotes the time to
either diabetes development or death, the proportion with T < t is given by:

Pr(T < t) = Pr(T < t,event = diabetes) + Pr (T < t,event = death) = n[1—-F(t)]+ (1 —n) [1 - G(t)]

where F and G were the survival functions corresponding to the f and g densities, respectively.  [1 — F(t)] is the cumulative
incidence of diabetes and (1 — ) [1 — G(t)] is the cumulative incidence of death. The detailed analysis procedure has been
described.? Publicly available algorithms at the Johns Hopkins STATPEI website (www.statepi.jhsph.edu) facilitated the development
of the maximal likelihood function to fit these types of mixture models.

Competing risk graph using generalized gamma model — Sum of iAs and methylated As

Full Saturated Model Incident diabetes Death
% B1 o1 K1 B> o2 K2 AIC
Reference group (Quartile 1) 0.727 2.60 0.95 0.0001 2.56 0.87 1 5506.978
Arsenic (Quartile 2) 0.645 2.36 0.92 0.0001 2.65 0.60 1
Arsenic (Quartile 3) 0.809 2.55 1.00 0.0001 1.90 0.64 1
Arsenic (Quartile 4) 0.471 2.05 0.72 0.0001 2.83 0.80 1
Reference:
1. Cox C, Chu H, Schneider MF, Munoz A. Parametric survival analysis and taxonomy of hazard functions for the generalized

gamma distribution. Statistics in medicine. 2007;26:4352-4374
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2. Checkley W, Brower RG, Munoz A, Investigators NIHARDSN. Inference for mutually exclusive competing events through a
mixture of generalized gamma distributions. Epidemiology. 2010;21:557-565
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Supplementary figure 3. Hazard ratios for incident diabetes by urine arsenic concentrations. Solid lines represent adjusted hazard
ratios based on restricted quadratic splines for the log-transformed sum of inorganic and methylated arsenic species, with knots at
the 10th, 50th, and 90th percentiles (3.8, 8.8, and 21.7 g/g creatinine, respectively). The dotted lines represent upper and lower 95%
Cls. The reference was set at the 10th percentile of the arsenic distribution (3.8g/g creatinine).
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Abstract

Context: The role of arsenic metabolism in kidney disease remains unclear and relevant
evidence is scarce.

Objective: To assess the prospective association between arsenic metabolism and
kidney disease in American Indian population exposed to low-moderate levels of arsenic.
Design, Setting, and Participants: Prospective cohort study in 3,143 American Indian
participants aged 45 to 75 years living in Arizona, Oklahoma, and North and South
Dakota. The sum of urine inorganic arsenic (arsenite and arsenate), monomethylated
(MMA), and dimethylated (DMA) arsenic compounds at baseline was used as the
biomarker of inorganic arsenic exposure from multiple sources. The proportions of urine
inorganic arsenic (arsenite and arsenate, iAs), MMA and DMA over the sum of inorganic
and methylated species, expressed as iAs%, MMA%, and DMA%, was used to evaluate
arsenic metabolism.

Main outcome measures: Kidney disease was determined by estimated glomerular
filtration rate (eGFR), eGFR drop greater than 25%, macroalbuminuria, and renal
replacement therapy requirements.

Results: The median (interquartile range) for inorganic arsenic%, MMA% and DMA%
was 8.3 (5.8t0 11.2), 13.9 (10.8 to 17.4) and 77.5 (71.7 to 82.5), respectively. In multi-
adjusted Cox proportional hazards model, the hazard ratio of incident kidney disease
defined by reduced eGFR for an interquartile range increase in 1As% was 0.62 (95% CI
0.49-0.78) and 0.73 (0.63-0.85) when it substituted MMA% and DM A%, respectively.
The adjusted hazard ratio was 1.23 (1.06-1.43) for an interquartile increase in MMA%

with a corresponding decrease in DMA%. The results were robust to different kidney
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disease definitions. The effects of replacing iAs% by MMA% or DMA% on the risk of
developing kidney disease displayed a linear dose-response relationship and were
enhanced among obese participants defined by body mass index higher than 30 kg/m”.
Conclusion: Arsenic metabolism is independently and prospectively associated with the
development of chronic kidney disease. Integrating the information of arsenic
methylation capacity is therefore important for arsenic risk assessment. More research is
needed to verify our results and further explore the pathogenesis of arsenic-related kidney
injury from the viewpoints of systemic metabolism, epigenomics, and the interaction with

other potential environmental nephrotoxicants.
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Background

Arsenic (As) is a naturally-occurring element found in rock, soil and water and
extensively used in anthropogenic activities leading to its ubiquitous presence in the
environment. In addition to the well-recognized adverse effects of inorganic arsenic
including carcinogenicity, cardiovascular toxicity, and diabetogenic potential, recent
research has found the association between inorganic arsenic and chronic kidney
disease (CKD)."? Although the molecular mechanisms underlying the pleiotropic
effects of long-term arsenic exposure remains poorly understood, arsenic metabolism
is considered to play a critical role as the elimination process of arsenic involving an
interplay between arsenic methylation and one-carbon metabolism, a complex
metabolic network linking to diverse diseases such as cancer and cardiovascular
diseases.” In humans, absorbed inorganic arsenic (arsenate and arsenite) is primarily
methylated in the liver to form monomethylated (MMA) and dimethylated (DMA)
arsenic compounds, which are excreted into the urine with unchanged inorganic
arsenic. The proportion of arsenic species in urine is 10-30% for inorganic arsenic,
10-20% for MMA, and 60-80% for DMA with substantial inter-individual variation.*
> Increasing evidence has supported the different arsenic methylation patterns may
associate with certain diseases and physiologic status. Higher MMA% in urine has
been related to increased risk of cancer and cardiovascular disease while higher

1,68 o
"™ However, little is known

DMA% has also been related to diabetes and obesity.
about the association between arsenic metabolism and CKD.

CKD is a key determinant of poor health outcomes and imposes significant

financial costs on health care system.” '° The prevalence of CKD defined by reduced
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estimated filtration rate (¢GFR< 60 ml/min/1.73m?) or albuminuria (urine albumin-
to-creatinine ratio > 30 mg/g) is 10% to 15% of adults in developed countries such as
United States'', Europe'?, and Asia'” and may be even higher in developing countries
including China'* and the Central America.'® The US Surgeon General’s latest report,
Healthy People 2020, has recognized CKD as an important public health issue and
recommended systemic preventive strategies including early detection and effective
treatment of CKD.'® The first three leading causes of CKD in the United States
include diabetes, hypertension, and glomerulonephritis.'"” However, the epidemiology
of CKD is not consistent across countries. For instance, less than 20% of incident
patients with end stage renal disease (ESRD) in Norway, Netherlands, and Russia are
related to diabetes in contrast to about 45% and 60% in United States and Singapore,
respectively.'” The disproportionally high prevalence of diabetes among ESRD
patients in certain countries supports the hypothesis that individual susceptibility to
CKD may be intertwined with genetic and environmental factors such as pollution,
nutritional or lifestyle transition, population growth and urbanization, or alteration of
population age structure.'®

This study examined the association between arsenic exposure and arsenic
metabolism with incident CKD in the Strong Heart Study (SHS). Understanding the
role of arsenic metabolism in the development of CKD is important to approach risk
assessment from a differential-susceptibility perspective. The connection between
arsenic metabolism and one-carbon metabolism may offer an opportunity for
prevention strategies to ameliorate arsenic toxicity and modify individual

susceptibility to CKD.
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Methods

Study population

The Strong Heart Study (SHS) is a population-based study examining
cardiovascular diseases and diabetes in men and women aged 45 to 74 years between
1989 and 1991 in 13 American Indian tribes and communities from Arizona, Oklahoma,
and North and South Dakota." All eligible community members were invited to
participate in Arizona and Oklahoma, whereas a cluster sampling technique was applied
in the Dakotas." The overall participation rate was 62%, and a total of 4,549 participants
were enrolled. Participants were then invited to subsequent clinical visits between 1993
and 1995 and between 1998 and 1999. The SHS was a stable population with low
migration rate over the follow-up period as most adults live in the community of their
birth and have strong cultural and social links in the community.*”*' Compared to
nonparticipants, participants were similar in age, body mass index, and self-reported
diabetes but were more likely to be female and to have self-reported hypertension.”* The
Indian Health Service, institutional review boards, and participating tribes approved the
study protocol. All participants provided informed consent.

We used data from 3,973 participants with sufficient urine available for arsenic
quantification at the baseline visit. We further excluded 228 participants with some
arsenic species data (inorganic arsenic, MMA or DMA) below the limit of detection, 5
missing education, 10 missing smoking or alcohol drinking status, 42 missing body mass
index or waist-hip ratio, 67 missing baseline estimated glomerular filtration rate (¢GFR)

or urine albumin-creatinine ratio (UACR), and 151 missing both eGFR measures during
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follow-up, leaving 3,470 eligible participants. . We then excluded 327 participants with
reduced eGFR < 60 ml/min/1.73m” or end stage renal disease (ESRD) on renal
replacement therapy at baseline, leaving 3,143 participants in this analysis. Included
participants were similar to those who were excluded because of missing data (data not

shown).

Data collection

Baseline clinical information included a personal interview, physical examination,
fasting blood test, and spot urine sample collection."”” Socidemographic (age, sex, and
education) and lifestyle (smoking and alcohol status) information was collected by
trained and certified interviewers using standardized questionnaires.”” Physical
examination measurements (height, weight, waist and hip circumferences, and systolic
and diastolic pressures) and bio-specimen collection (blood and urine) were conducted by
centrally trained nurses and medical assistants following a standardized protocol."’
Detailed procedures of clinical and laboratory examinations have been published."
Participants were asked to fast for 12 hours before blood samples were taken in the
morning, at baseline and in the two subsequent visits. Spot urine samples were also
collected in the morning and were frozen with 1 to 2 hours of collection. The
biospecimens were stored at -70°C or lower before analyses.' Urine creatinine was

measured by an automated alkaline picrate method. Specific gravity was measured with a

Leica TS 400 total solid refractometer (Leica Microsystems, Buffalo, USA).

Kidney function measurements
Serum creatinine measures were conducted by a single core laboratory and

determined by automated alkaline picrate methodology.*® The estimated glomerular
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filtration rate (eGFR) was estimated by using the Modification of Diet in Renal Disease
Study equation:**
eGFR (mL/min/1.73m%)= 186.3 X (Serum creatinine) '>* x (Age) ***
X 0.742 (if female)
X 1.210 (if African-American) [not applicable in our

study]

Urine albumin and creatinine were measured at the Laboratory of the National
Institute of Diabetes and Digestive and Kidney Diseases, Epidemiology and Clinical
Research Branch, Phoenix, AZ, by an automated nephelometric immunochemical
procedure and an automated alkaline picrate methodology, respectively.'® Urine albumin-
to-creatinine ratio (UACR) was used to estimate 24-hour urine albumin excretion.

Macroalbuminuria was defined as a UACR > 300 mg/g creatinine.”

CKD definitions

To date, an operative definition of incident CKD has not yet been explicitly
defined.?® In this study, incident CKD was defined by increasingly more specific criteria
to evaluate the sensitivity of results to different outcome definitions. First, incident cases
with a reduced eGFR were defined as an eGFR less than 60 ml/min/1.73m” at visit 2 or
visit 3. Second, incident cases with a reduced and a declining eGFR were defined as an
eGFR less than 60 ml/min/1.73m” and a drop in eGFR of at least 25% at visit 2 or visit 3
(called thereafter “impaired eGFR”). Third, incident cases with both impaired renal
function and macroalbuminuria were defined as an eGFR less than 60 ml/min/1.73m” and

a drop in eGFR of at least 25%, and urine albumin-creatinine ratio > 300 mg/g creatinine.
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Fourth, incident cases of renal failure were defined as a doubling in serum creatinine
levels or progression to end-stage renal disease (ESRD).”” ESRD was defined as a
requirement for maintenance renal replacement therapy including both dialysis and

transplantation.”®

Urine arsenic measurements

The urine concentrations of arsenic species in Strong Heart Study population was
stable over a 10-year follow up, reflecting stability in arsenic exposure and the
appropriate of one single arsenic measure to represent long-term arsenic exposure.”’
Detailed analytic methods and associated quality control procedures for arsenic analysis
have been described.” Arsenic species concentrations were determined by high-
performance liquid chromatography (HPLC) coupled to inductively coupled plasma mass
spectrometry (ICP-MS) that served as the arsenic selective detector (Agilent 1100 HPLC
and Agilent 7700x ICP-MS, Agilent Technologies, Santa Clara, California). Arsenic
speciation could discriminate species directly related to inorganic arsenic exposure
(arsenite, arsenate, monomethylarsonate [MMA], and dimethylarsinate [DMA]) from
those related to organic arsenicals in seafood (arsenobetaine as an overall marker of
seafood arsenicals), which are generally considered nontoxic.”' The limit of detection
(LOD) for total arsenic and for inorganic arsenic (arsenite plus arsenate), MMA, DMA,
and arsenobetaine plus other arsenic cations was 0.1 pg/L. The percentages of
participants with concentrations below the limit of detection were 0.03% for total arsenic,
5.2% for inorganic arsenic, 0.8% for MMA, 0.03% for DMA, and 2.1% for arsenobetaine
plus other arsenic cations. For participants with arsenic species below the LOD, levels

were imputed as the corresponding LOD divided by the square root of 2. An in-house
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reference urine and the Japanese National Institute for Environmental Studies No. 18
Human Urine were analyzed together with the samples. Interassay coefficients of
variation for total arsenic, inorganic arsenic, MMA, DMA and arsenobetaine for the in-

house reference urine were 4.4%, 6.0%, 6.5%, 5.9%, and 6.5%, respectively.

Arsenic exposure and arsenic metabolism

We used the sum of urine inorganic arsenic (arsenite and arsenate) and methylated
arsenic species (MMA and DMA) as the biomarker of inorganic arsenic exposure from
multiple sources.*** The urine arsenic concentrations were divided by urine creatinine
levels to account for urine dilution-concentration and expressed as pg/g creatinine. Urine
concentrations of arsenobetaine and other arsenic cations were very low (median 0.68;
interquartile range 0.42 to 1.50 pg/g creatinine), confirming that seafood intake was low
in this sample, and indicating that DMA mainly came from inorganic arsenic exposure.>>
We used the proportions of urine inorganic arsenic (arsenite and arsenate, iAs), MMA
and DMA over the sum of inorganic and methylated species, expressed as 1As%,

MMA%, and DMA%, to evaluate arsenic metabolism.

Statistical analyses
Urine concentrations of the sum of inorganic and methylated species were
modeled as quartiles and as log-transformed concentrations to stabilize the variability for
right-skewed variables to compare the 75th and 25th percentile (interquartile range, IQR).
Arsenic metabolism (1As%, MMA%, and DMA%) was modeled as per IQR increment.
The primary analyses used Cox proportional hazards modeling to quantify the
relative hazard of incident kidney disease associated with arsenic exposure and arsenic

metabolism.*® The time scale for survival analysis was age, allowing to control over this
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strong risk factor of chronic kidney disease. To handle left-truncation induced at time of
enrollment and appropriately aligning risk sets on the age scale, the late entry method
was conducted using age at baseline as the individual entry time. All proportional hazards
models were adjusted for study site (using the stratified Cox procedure), education level
(less than high school, some high school, high school or more), smoking status (never,
former, current), alcohol drinking (never, former, current), body mass index, waist-hip
ratio, hypertension, diabetes, and fasting glucose. We conducted stratified analysis to
explore the consistency of the association between arsenic metabolism and incident CKD

across categories of these demographic and comorbid factors.

Results

Follow-up and kidney outcomes of participants

From baseline through Dec 31, 1999, 474 (15.1 %) participants had reduced
eGFR, 330 (10.5%) had reduced eGFR and a drop in eGFR of at least 25%, 206 (6.6%)
had both impaired eGFR and macroalbuminuria, and 172 (5.5%) developed renal failure.
Overall, median concentration of the sum of inorganic and methylated arsenic species in
the urine was 11.2 pg/L (interquartile range, 6.7 to 19.6 ug/L). Urine arsenic
concentrations were higher in participants from Arizona (median 15.1 pg/L ), followed
by North and South Dakota (12.7 pg/L ) and Oklahoma (median 7.3 pg/L ). The median
(interquartile range) for iAs%, MMA% and DMA% was 8.3 (5.8 to 11.2), 13.9 (10.8 to
17.4) and 77.5 (71.7 to 82.5), respectively. Men, participants from North and South
Dakota, current smokers and participants with lower body mass index had higher iAs%

and MMA%, and correspondingly lower DMA%.
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Arsenic exposure and chronic kidney disease

Compared with the overall population, baseline urine arsenic concentrations were
higher among participants with incident kidney disease defined by reduced eGFR
(definition 1), impaired eGFR (definition 2), impaired eGFR with macroalbuminuria
(definition3), and renal failure (definition 4) (Table 1). The strength of the association
between an interquartile range increase in baseline urine arsenic concentrations and
kidney insufficiency increased from a fully adjusted hazard ratio of 1.07 (95% CI 0.90-
1.29) for participants with low eGFR (definition 1) to 1.49 (95% CI 1.10-2.01) for

participants with renal failure (definition 4) (Table 2, Model 4).

Arsenic metabolism and kidney disease

Compared with the overall population, participants with incident kidney disease
had lower baseline 1As% and MMA% but had higher DM A% (Table 1). When modeling
each arsenic metabolism biomarker one at a time in fully adjusted models, only the
association with 1As% was statistically significant (Table 3). For each interquartile range
increase in 1As%, the hazard ratio was 0.80 (95%CI 0.70 -0.92) for reduced eGFR, 0.81
(CI1 0.69-0.95) for impaired eGFR, 0.71 (0.58-0.87) for impaired eGFR and
macroalbuminuria, and 0.73 (0.58-0.92) for renal failure (Table 3, model 4).

When modeling arsenic metabolism by including two biomarkers in the model at
the same time, the adjusted hazard ratio for reduced eGFR comparing an interquartile
range increase in 1As% was 0.62 (95% CI 0.49-0.78) and 0.73 (0.63-0.85) when it
substituted MMA% and DMA%, respectively. The adjusted hazard ratio for an
interquartile range increase in MMA% was 1.81 (95% CI 1.36-2.40) and 1.23 (1.06-1.43)

when it substituted 1As% and DMA%, respectively. The adjusted hazard ratio for an
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interquartile range increase in DMA% was 1.86 (1.37-2.52) and 0.71 (0.56-0.90) when it
substituted iAs% and MMA%, respectively (Table 4, model 4). These association
patterns were consistent across all incident CKD definitions (Table 4). In dose-response
analyses, increasing MMA% and DMA% were related to increased risk of renal
impairment when they substituted iAs% (Figure 1).

The association between arsenic metabolism and incident CKD was similar by
age, sex, study site, and the sum of inorganic and methylated arsenic concentrations. The

association, however, was stronger in participants with obesity (Table 5).

Discussion

Exposure to low to moderate arsenic levels of inorganic arsenic, as measured in
urine, was prospectively associated with the development of kidney diseases. A specific
pattern of arsenic metabolism was also significantly associated with increased risk of
kidney diseases. The more arsenic is metabolized into methylated arsenic species in the
body, the higher risk of developing kidney disease. The hypothetical rationale underlying
this observation is that the unchanged form of arsenic may be less likely deposited in the
renal tissue compared to MMA and DMA or that higher 1As% may reflect the relative
inefficient arsenic methylation capacity in the renal tissue. Differential toxicity toward
renal injuries of each arsenic species is also important. However, the mechanism of
arsenic-induced renal damage remains unknown. Whether the association is causal, from
an epidemiological perspective, either primarily caused by direct renal damage (e.g.

glomurular damage or tubulo-interstitial fibrosis)> >’ or secondary to the arsenic-induced
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cardiovascular diseases or other systematic diseases (e.g. cardio-renal syndrome type 5)**
% is still largely speculative.

Our study showed that urine arsenic concentration was significantly associated
with incident CKD and the prospective associations are stronger with increasing outcome
specificity (e.g., the hazard ratio increased from 1.07 for reduced GFR to 1.49 for renal
failure). The consistent directionality and sequentially increasing effect size of the point
estimates strengthened the causal inference between arsenic exposure and kidney disease
as both information bias and possible reverse causality have been minimized by this
assessment approach. Our finding is also consistent with previous studies published in
Taiwan and Sri Lanka with low-moderate arsenic exposure.40’ 4

Regarding arsenic metabolism, only a relatively small case-control study (125
cases and 229 controls) from Taipei, Taiwan reported an association between arsenic
metabolism and chronic kidney disease in the current literature.*’ This hospital-based
case-control study, also conducted in a population characterized by low arsenic exposure
(arsenic levels in drinking water <10 pg/L), found no association between arsenic
metabolism, as measured in urine, and CKD defined by eGFR< 60 ml/min/1.73m? lasting
for at least 3 months*’. However, among study participants with a relative lower plasma
level of lycopene, they found a higher 1As%, MMA%, or DMA% was associated with
CKD, although their model did not adjust for total arsenic levels. The discrepancy in
findings between our study and the study from Taiwan may be due to the difference in
study population, study design, sampling methods, and statistical approach. Our study is
prospective, allowing us to examine the temporal relationship between baseline arsenic

metabolism and incident CKD. The stability of the Strong Heart Study Cohort and the
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high retention rate through the 10-year follow up also greatly controlled potential
selection bias. Finally, our study finding is robust to changing the definition of kidney
diseases.

The role of arsenic metabolism in human is considered to reflect both detoxication

and bioactivation.* *?

The relative potencies of the arsenicals have been proposed as
follows: DMA*" > MMA®" > As’" and As*" > MMA™" and DMA °*.*** It is therefore
challenging to predict the arsenic toxicity given the same arsenic exposure as each
individual may have different capacity to metabolize arsenic. Each arsenic species may
also have a different affinity for different tissues and different kinetics of deposition and
redistribution in the body.*® Similar to other methylation processes, the contributions of
both genetic and environmental factors to the inter-individual variability of arsenic
metabolism are widely acknowledged.*” The interplay among arsenic metabolism, global
DNA methylation and one-carbon metabolism may further elaborate the individual
susceptibility to arsenic-related diseases ranging from cancer, cardiovascular diseases, to
neurodegenerative disorders.”*° Our prospective study supported the critical role of
arsenic metabolism in developing kidney disease, suggesting that the arsenic metabolism
profile needs to be incorporated into risk assessment of arsenic exposure.

Strengths of this study include high-quality data collection and rigorous
laboratory methods for measuring concentrations of urine arsenic species.'”*°
Biomarkers of arsenic metabolism are not influenced by the variation in the dilution-
concentration of urine samples. This study also had some limitations. Both urine arsenic

concentrations and parameters of arsenic metabolism were measured once at baseline

visit (1981-1991). However, the temporal stability of arsenic metabolism has been
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confirmed in repeated samples over a 10-year period.” >’ The classifications of kidney
disease are based on single measurement at the follow up visit 2(1993-1995) and visit
3(1998-1999). However, our findings were robust to different renal outcome definitions
with high sensitivity and high specificity. Moreover, the associations were stronger for
outcomes with increasing outcome specificity. Other limitations were potential
information bias (for instance, the GFR estimation is not based on isotopic
measurements) and over-adjustment (for example, hypertension, diabetes and fasting

glucose may be in the causal pathway).

Conclusions

Both urine arsenic concentration and arsenic metabolism are independently and
prospectively associated with the development of kidney diseases. Eliminating
environmental arsenic exposure remains essential and further efforts to integrate the
information regarding arsenic methylation capacity into arsenic risk assessment are
warranted. Our study is just the very first step in investigating the public health
implications of arsenic metabolism in kidney diseases. More research is needed to verify
our results and further explore the pathogenesis of arsenic-related kidney injury from the
viewpoints of systemic metabolism, epigenomics, and the interaction with other potential

environmental nephrotoxicants.
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Table 1. Characteristics of Strong Heart Study participants at baseline (1989-1991). #

Characteristics Baseline Incident CKD Incident CKD Incident CKD Incident CKD
n=3,143 (Definition 1) (Definition 2) (Definition 3) (Definition 4)
eGFR <60 eGFR <60 eGFR <60 doubling
ml/min/1.73m’ ml/min/1.73m?> &> ml/min/1.73m” & > creatinine and
(n=474) 25% drop (n=330) 25% drop & UACR > ESRD (n=172)
300 mg/g (n=206)
Age, year 54.4 (49-61.2) 58 (52.4-64) 56.3 (50.4-63.1) 55.5 (49.8-61.8) 53.9 (48.8-59)
Male, n(%) 1,349 (42.9) 150 (31.7) 119 (36.1) 80 (38.8) 62 (36.1)
Location, n(%)
Arizona 1,106 (35.2) 192 (40.5) 165 (50.0) 115 (55.8) 111 (64.5)
Oklahoma 965 (30.7) 143 (30.2) 79 (23.9) 38(18.5) 25 (14.5)
North and South Dakota 1,072 (34.1) 139 (29.3) 86 (26.1) 53(25.7) 36 (20.9)
Education, n(%)
No high school 711 (22.6) 123 (26.0) 95 (28.8) 77 (37.4) 52 (30.2)
Some high school 749 (23.8) 118 (24.9) 88 (26.7) 50 (24.3) 47 (27.3)
High school or more 1,683 (53.6) 233 (49.2) 147 (44.6) 79 (38.4) 73 (42.4)
Smoking, n(%)
Never 997 (31.7) 171 (36.1) 111 (33.6) 70 (34.0) 57 (33.1)
Former 1,057 (33.6) 168 (35.4) 122 (37.0) 73 (35.4) 70 (40.7)
Current 1,089 (34.7) 135 (28.5) 97 (29.4) 63 (30.6) 45 (26.2)
Alcohol ,n(%)
Never 467 (14.9) 86 (18.1) 53 (16.1) 30 (14.6) 22 (12.8)
Former 1,274 (40.5) 215 (45.4) 147 (44.6) 96 (46.6) 81 (47.1)
Current 1,402 (44.6) 173 (36.5) 130 (39.4) 80 (38.8) 69 (40.1)

Body mass index
Waist-hip ratio

Waist circumference (cm)
Urine creatinine, g/L
Specific gravity

30.1 (26.6-34.5)
0.96 (0.91-0.99)
104 (95-114)
1.2 (0.8-1.7)
1.019 (1.015-

30.4 (27.0-34.3)
0.96 (0.93-1.0)
106 (97-115)
1.1(0.7-1.5)
1.019 (1.014-1.024)

30.5(27.4-34.7)
0.96 (0.93-1.0)
106 (97-117)
1.0 (0.7-1.5)
1.02 (1.015-1.026)

30.4 (27.3-34.3)
0.97 (0.94-1.0)
106 (97-116)
0.91 (0.6-1.3)
1.022 (1.016-1.029)

30.5(27.4-34.8)
0.97 (0.93-1.0)
106 (97-117)
0.9 (0.6-1.3)
1.021 (1.017-1.030)
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Serum creatinine, mg/dL
eGFR, ml/min/1.73m’
Hypertension, n(%)
Diabetes mellitus, n(%)
Fasting glucose, mg/dL*
HbAlc, %

Arsenic exposure

1.024)

0.8 (0.7-0.9)
82.5 (75.7-94.6)
1,070 (34.0)
1,503 (47.8)
115 (100-178)
5.6 (5-8)

0.9 (0.8-1.0)
77.0 (67.8-90.0)
217 (45.8)
322 (67.9)
159.5 (108-261)
7.4 (5.4-10.5)

0.8 (0.7-0.9)
81.5 (73.9-93.3)
150 (45.5)
256 (77.6)
189 (118-286)
8.9 (5.6-11.0)

0.8 (0.7-0.9)
82.3 (72.9-94.8)
97(52.9)
187 (90.8)
243.0 (152-313)
10.1 (7.6-11.3)

0.8 (0.7-0.9)
89.4 (77.5-107.4)
77(44.8)

145 (84.3)
229.5 (132-310)
9.7 (6.0-11.3)

iAs + methylated arsenic*,

10.3 (6.1-16.3)

11.8 (6.6-18.5)

12.9 (7.6-20.4)

14.6 (8.5-22.3)

14.6 (10.2-23.6)

ug/s

iAs, ug/g 0.8(0.4-1.6) 0.8 (0.4-1.5) 1.0 (0.5-1.7) 1.1 (0.6-2.0) 1.2 (0.7-2.0)
MMA, ug/s 1.4 (0.8-2.3) 1.5 (0.9-2.6) 1.7 (1.0-2.8) 1.9 (1.1-3.0) 2.0(1.3-3.0)
DMA, ug/g 7.7 (4.7-12.5) 9.2 (5.2-14.0) 10.0 (5.9-15.5) 11.1 (6.5-17.6) 11.2 (7.8-18.6)
Arsenic metabolism

iAs% 8.3(5.8-11.2) 7.1(5.1-9.9) 7.5(5.6-10.0) 7.6 (6.0-9.9) 7.8 (6.0-10.0)
MMA% 13.9 (10.8-17.4) 13.4 (10.5-16.3) 13.5(10.5-16.4) 13.6 (10.5-16.4) 13.5(10.7-16.3)
DMA% 77.5(71.7-82.5) 79.2 (73.9-83.4) 78.5(73.0-82.9) 78.4 (73.0-82.6) 78.4 (73.1-82.5)

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; UACR, urine albumin-creatinine ratio
* Continuous variables are presented as the median (interquartile range)
“n for fasting glucose is 3,137; " for HbA1c is 2,969, 444, 309, 189 and 161 for baseline, eGFR<60 mI/min/1.73m2, eGFR<60 ml/min/1.73m2 & >25% drop,
eGFR<60 ml/min/1.73m” & > 25% drop & UACR > 300 mg/g, and renal failure subgroups, respectively.
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Table 2. Hazard ratios (95% confidence intervals) for incident kidney disease per interquartile range in urine concentrations of
inorganic arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA) and the sum of iAs, MMA and DMA (pg/L) adjusted by
urine creatinine (log-transformed).

Arsenic concentrations (interquartile Model 1 Model 2 Model 3 Model 4 Model 5
range)

eGFR <60 ml/min/1.73m’

iAs (0.5-1.8 pg/L) 0.94 (0.80-1.11) 0.92 (0.78-1.09) 0.91 (0.77-1.07) 0.85 (0.72-1.01) 0.89 (0.76-1.04)
MMA ( 0.8-2.8 pg/L) 1.13 (0.95-1.34) 1.13 (0.95-1.34) 1.15 (0.96-1.37) 1.10 (0.92-1.32) 1.04 (0.90-1.20)
DMA ( 5.2-14.7 ug/L) 1.25 (1.06-1.47) 1.23 (1.04-1.45) 1.17 (0.99-1.38) 1.09 (0.92-1.29) 1.05 (0.92-1.19)

iAs + methylated arsenic (6.7-19.6 pg/L) 1.22 (1.03-1.45) 1.20 (1.01-1.43) 1.15 (0.97-1.38) 1.07 (0.90-1.29) 1.04 (0.91-1.19)
eGFR <60 ml/min/1.73m? & > 25% drop

iAs (0.5-1.8 pg/L) 1.01(0.83-1.23)  0.99(0.81-1.22)  0.96(0.78-1.17)  0.88(0.72-1.09)  0.88 (0.73-1.05)
MMA ( 0.8-2.8 pg/L) 1.21(0.98-1.48)  1.21(0.99-1.50)  1.23(1.00-1.52)  1.16(0.93-1.44)  1.01(0.85-1.20)
DMA ( 5.2-14.7 ug/L) 1.38(1.14-1.68)  1.35(1.11-1.64)  1.26(1.03-1.54)  1.15(0.94-1.42)  1.01(0.87-1.18)

iAs + methylated arsenic (6.7-19.6 pg/L) 1.35 (1.10-1.65) 1.32 (1.08-1.62) 1.25 (1.01-1.54) 1.14 (0.92-1.42) 1.00 (0.85-1.18)
eGFR <60 ml/min/1.73m” & 2 25% drop & UACR > 300 mg/g

iAs (0.5-1.8 pg/L) 1.09 (0.85-1.39)  1.06 (0.82-1.37)  1.00(0.77-1.29)  0.87(0.67-1.14)  0.86 (0.69-1.08)
MMA ( 0.8-2.8 pg/L) 1.39(1.08-1.79)  1.39(1.07-1.81)  1.40(1.07-1.84)  1.27(0.96-1.68)  1.03 (0.83-1.27)
DMA ( 5.2-14.7 ug/L) 1.64 (1.28-2.09)  1.62(1.26-2.07)  1.45(1.12-1.87)  1.23(0.94-1.61)  1.02(0.84-1.24)

iAs + methylated arsenic (6.7-19.6 pg/L) 1.58 (1.22-2.03) 1.56 (1.21-2.02) 1.41 (1.08-1.85) 1.20(0.91-1.59) 1.00 (0.82-1.23)
Renal failure

iAs (0.5-1.8 pg/L) 1.21(0.92-1.59)  1.20(0.91-1.59)  1.15(0.87-1.53)  1.02(0.76-1.37)  1.00 (0.77-1.28)
MMA ( 0.8-2.8 pg/L) 1.62 (1.23-2.14)  1.64(1.24-2.18)  1.66(1.24-2.22)  1.51(1.12-2.04)  1.20(0.94-1.52)
DMA ( 5.2-14.7 ug/L) 1.84 (1.41-2.40)  1.83(1.40-2.40)  1.70(1.29-2.26)  1.50(1.12-2.01)  1.17 (0.94-1.46)

iAs + methylated arsenic (6.7-19.6 pg/L) 1.80(1.37-2.37) 1.80(1.36-2.38) 1.69 (1.27-2.26) 1.49 (1.10-2.01) 1.17 (0.93-1.47)

Model 1: Stratified by study center and adjusted for age (age as time metric and age at baseline were treated as staggered entries), urine creatinine (log-
transformed), sex, and education

Model 2: Further adjusted for smoking, alcohol drinking, body mass index and waist-hip ratio

Model 3: Further adjusted for diabetes and hypertension

Model 4: Further adjusted fasting glucose

Model 5: Without adjust urine creatinine
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Table 3. Hazard ratios (95% confidence intervals) for incident kidney disease per interquartile range in arsenic metabolism
biomarkers (the % of inorganic arsenic [iAs%], the % of monomethylarsonate [MMA%] and the % of dimethylarsinate [DMA%]). One
biomarker was entered into model as a main predictor each time and all models adjusted for the urine concentrations of sum of iAs,
MMA and DMA corrected by urine creatinine.

Arsenic metabolism Model 1 Model 2 Model 3 Model 4 Model 5

(interquartile range)

eGFR <60 ml/min/1.73m?

iAs%  (5.8-11.2)

MMA% (10.8-17.4) 0.95 (0.83-1.08)

DMA% (71.7-82.5) 1.19 (1.04-1.36)
eGFR <60 ml/min/1.73m” & > 25% drop

0.78 (0.68-0.89) 0.78 (0.68-0.90)
0.97 (0.84-1.11)

1.18 (1.02-1.36)

0.80 (0.70-0.91)
1.04 (0.91-1.20)
1.11 (0.97-1.28)

0.80 (0.70-0.92)
1.07 (0.93-1.22)
1.09 (0.95-1.25)

0.82 (0.72-0.94)
1.07 (0.93-1.22)
1.08 (0.94-1.25)

iAs%  (5.8-11.2) 0.79 (0.67-0.92)

MMA% (10.8-17.4) 0.92 (0.79-1.08) 0.95 (0.81-1.12)

DMA% (71.7-82.5) 1.21 (1.03-1.42) 1.19 (1.00-1.40)
eGFR <60 ml/min/1.73m” & 2 25% drop & UACR 2 300 mg/g

0.79 (0.67-0.92) 0.80 (0.69-0.94)
1.05 (0.89-1.23)

1.11 (0.94-1.31)

0.81 (0.69-0.95)
1.08 (0.92-1.26)
1.08 (0.92-1.28)

0.85 (0.73-0.99)
1.07 (0.91-1.26)
1.06 (0.90-1.25)

iAs% (5.8-11.2) 0.67 (0.55-0.82)

MMA% (10.8-17.4) 0.93 (0.76-1.12)

DMA% (71.7-82.5) 1.32(1.07-1.61)
Renal failure

0.67 (0.55-0.82)
0.94 (0.77-1.15)
1.32 (1.07-1.63)

0.69 (0.57-0.85)
1.08 (0.89-1.32)
1.18 (0.96-1.46)

0.71 (0.58-0.87)
1.13 (0.93-1.38)
1.13 (0.92-1.39)

0.75 (0.61-0.91)
1.13 (0.93-1.38)
1.10 (0.90-1.36)

iAs%  (5.8-11.2)
MMA% (10.8-17.4) 0.95 (0.77-1.19)
DMA% (71.7-82.5) 1.26 (1.00-1.57)

0.71(0.57-0.89)

0.71 (0.57-0.89)
0.97 (0.77-1.21)
1.26 (0.99-1.58)

0.73 (0.58-0.91)
1.07 (0.86-1.34)
1.16 (0.92-1.46)

0.73 (0.58-0.92)
1.10 (0.88-1.37)
1.13 (0.89-1.43)

0.79 (0.63-0.98)
1.10 (0.88-1.38)
1.09 (0.86-1.38)

Model 1: Stratified by study center and adjusted for age (age as time metric and age at baseline were treated as staggered entries), urine arsenic
concentration (log-transformed), urine creatinine (log-transformed), sex, and education

Model 2: Further adjusted for smoking, alcohol drinking, body mass index and waist-hip ratio

Model 3: Further adjusted for diabetes and hypertension

Model 4: Further adjusted fasting glucose

Model 5: Without adjust urine creatinine

132



Table 4. Hazard ratios (95% confidence intervals) for incident kidney disease per interquartile range in arsenic metabolism

biomarkers (the % of inorganic arsenic [iAs], the % of monomethylarsonate [MMA] and the % of dimethylarsinate [DMA]). As the

three biomarkers equal 100%, models entered two biomarkers at a time. All models adjusted for the urine concentrations of sum of

iAs, MMA and DMA corrected by urine creatinine.

Arsenic metabolism
(interquartile range)

Model 1

Model 2

Model 3

Model 4

Model 5

eGFR <60 ml/min/1.73m?

iAs% substituted by:
MMA% (10.8-17.4)
DMA% (71.7-82.5)
MMA% substituted by:
iAs%  (5.8-11.2)
DMA% (71.7-82.5)
DMAY% substituted by:
iAs%  (5.8-11.2)
MMA% (10.8-17.4)

1.54 (1.16-2.05)
1.77 (1.31-2.39)

0.70 (0.56-0.89)
0.87 (0.69-1.11)

0.75 (0.65-0.88)
1.09 (0.94-1.26)

eGFR <60 ml/min/1.73m” & > 25% drop

1.58 (1.19-2.11)
1.78 (1.32-2.42)

0.69 (0.54-0.87)
0.85 (0.66-1.08)

0.75 (0.64-0.87)
1.11 (0.95-1.29)

1.77 (1.33-2.36)
1.86 (1.37-2.52)

0.63 (0.50-0.79)
0.74 (0.58-0.94)

0.73 (0.63-0.85)
1.21 (1.04-1.40)

1.81 (1.36-2.40)
1.86 (1.37-2.52)

0.62 (0.49-0.78)
0.71 (0.56-0.90)

0.73 (0.63-0.85)
1.23 (1.06-1.43)

1.69 (1.28-2.24)
1.73 (1.29-2.32)

0.65 (0.52-0.82)
0.73 (0.58-0.93)

0.76 (0.66-0.88)
1.21 (1.04-1.40)

iAs% substituted by:
MMA% (10.8-17.4)
DMA% (71.7-82.5)

MMA% substituted by:
iAs% (5.8-11.2)
DMA% (71.7-82.5)

DMA% substituted by:
iAs% (5.8-11.2)
MMA% (10.8-17.4)

1.44 (1.03-2.02)
1.69 (1.19-2.40)

0.74 (0.56-0.97)
0.93 (0.70-1.23)

0.77 (0.65-0.92)
1.05 (0.88-1.25)

1.52 (1.08-2.14)
1.73 (1.21-2.46)

0.71 (0.54-0.94)
0.87 (0.65-1.17)

0.76 (0.64-0.91)
1.09 (0.91-1.31)

eGFR <60 ml/min/1.73m” & 2 25% drop & UACR > 300 mg/g

1.76 (1.26-2.47)
1.83 (1.29-2.61)

0.63 (0.48-0.83)
0.73 (0.54-0.97)

0.74 (0.62-0.88)
1.22 (1.02-1.45)

1.82 (1.30-2.53)
1.84 (1.29-2.62)

0.62 (0.47-0.81)
0.70 (0.52-0.93)

0.74 (0.62-0.88)
1.25(1.05-1.49)

1.64 (1.17-2.29)
1.64 (1.16-2.31)

0.67 (0.51-0.88)
0.73 (0.55-0.98)

0.78 (0.66-0.93)
1.21 (1.01-1.45)

iAs% substituted by:
MMA% (10.8-17.4)

1.98 (1.32-2.98)

2.06 (1.36-3.11)

2.34 (1.60-3.44)

2.40(1.65-3.49)

2.23(1.51-3.29)

133



DMA% (71.7-82.5) 2.47 (1.58-3.87) 2.53(1.62-3.98) 2.56 (1.66-3.95) 2.51 (1.64-3.85) 2.25(1.47-3.46)
MMA% substituted by:

iAs% (5.8-11.2) 0.57 (0.41-0.80) 0.56 (0.40-0.78) 0.50 (0.37-0.68) 0.49 (0.36-0.67) 0.52 (0.38-0.71)
DMA% (71.7-82.5) 0.81 (0.58-1.14) 0.78 (0.55-1.11) 0.64 (0.46-0.89) 0.61 (0.44-0.83) 0.61 (0.44-0.86)
DMA% substituted by:
iAs% (5.8-11.2) 0.64 (0.51-0.80) 0.63 (0.50-0.79) 0.62 (0.50-0.78) 0.63 (0.51-0.78) 0.67 (0.54-0.82)
MMA% (10.8-17.4) 1.14 (0.92-1.40) 1.16 (0.94-1.44) 1.31(1.07-1.61) 1.36 (1.12-1.66) 1.35(1.10-1.67)
Renal failure
iAs% substituted by:
MMA% (10.8-17.4) 1.86(1.19-2.91) 1.88 (1.20-2.95) 2.09 (1.36-3.20) 2.11(1.39-3.21) 1.90 (1.22-2.96)
DMA% (71.7-82.5) 2.22 (1.37-3.59) 2.22 (1.36-3.60) 2.25(1.40-3.63) 2.23 (1.39-3.59) 1.93 (1.20-3.11)
MMA% substituted by:
iAs% (5.8-11.2) 0.60 (0.42-0.87) 0.60 (0.41-0.86) 0.55 (0.39-0.78) 0.54 (0.39-0.77) 0.59 (0.41-0.85)
DMA% (71.7-82.5) 0.81 (0.55-1.17) 0.79 (0.54-1.17) 0.68 (0.47-0.98) 0.66 (0.46-0.95) 0.68 (0.46-1.00)
DMAY% substituted by:
iAs% (5.8-11.2) 0.67 (0.53-0.86) 0.67 (0.53-0.86) 0.67 (0.53-0.85) 0.70(0.53-0.85) 0.72 (0.57-0.91)
MMA% (10.8-17.4) 1.14 (0.91-1.44) 1.15 (0.91-1.46) 1.27 (1.01-1.59) 1.29 (1.03-1.61) 1.27 (1.00-1.61)

Model 1: Stratified by study center and adjusted for age (age as time metric and age at baseline were treated as staggered entries), urine arsenic concentration
(log-transformed), urine creatinine (log-transformed), sex, and education

Model 2: Further adjusted for smoking, alcohol drinking, body mass index and waist-hip ratio

Model 3: Further adjusted for diabetes and hypertension

Model 4: Further adjusted fasting glucose

Model 5: Without adjust urine creatinine
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Table 5. Adjusted hazard ratios and 95% confidence intervals for incident kidney disease (definition 4) comparing the 75" with 25™

percentile of the % of inorganic arsenic [iAs%], the % of monomethylarsonate [MMA%] and the % of dimethylarsonate[DMA%], by

participant characteristics at baseline.

Subgroup n iAs% MMA% DMA%
Substituted by Substituted by Substituted by
MMA% DMA% iAs% DMA% iAs% MMA%
Age (years)

<55 1629 2.42(1.48-3.96) 2.32(1.26-4.27) 0.49(0.33-0.73) 0.55(0.36-0.85) 0.66(0.48-0.89) 1.44(1.10-1.89)

>55 1484 2.30(1.24-4.25) 2.55(1.34-4.87) 0.51(0.31-0.84) 0.66 (0.40-1.10) 0.63(0.45-0.86) 1.29 (0.94-1.77)
p-value for interaction 0.75 0.54 0.75 0.86 0.54 0.86
Sex

Men 1334 2.09(1.11-3.93) 2.42(1.44-4.08) 0.55(0.33-0.92) 0.64(0.37-1.12) 0.69(0.50-0.94) 1.32(0.93-1.86)

Women 1779 2.13(1.13-4.00) 2.87(1.52-5.43) 0.49(0.32-0.74) 0.68 (0.45-1.04) 0.59(0.43-0.81) 1.27(0.97-1.64)
p-value for interaction 0.81 0.81 0.81 0.45 0.81 0.45
Study site

Arizona 1094 3.30(1.98-5.49) 4.19(2.24-7.84) 0.38(0.25-0.57) 0.60(0.40-0.91) 0.49 (0.36-0.67) 1.37 (1.06-1.76)

Oklahoma 960 1.83(0.61-5.47) 1.84(0.57-5.93) 0.61(0.25-1.49) 0.69(0.29-1.61) 0.74(0.41-1.32) 1.26(0.75-2.12)

North/South Dekota 1059 1.53(0.72-3.25) 1.16(0.56-2.41) 0.71(0.38-1.31) 0.58(0.28-1.20) 0.93 (0.64-1.34) 1.40 (0.89-2.18)
p-value for interaction 0.38 0.08 0.38 0.99 0.08 0.99
Smoking

Never 983  1.99(0.97-4.05) 2.70(1.14-6.39) 0.57(0.32-1.02) 0.88(0.49-1.59) 0.61(0.40-0.94) 1.08(0.75-1.55)

Former 1052 5.62 (2.58- 5.13 (2.20- 0.25(0.13-0.46) 0.31(0.17-0.57) 0.44(0.29-0.67) 2.06(1.41-3.01)

12.25) 11.94)

Current 1078 1.98(0.91-4.31) 1.83(0.85-3.91) 0.57(0.30-1.08) 0.60(0.30-1.22) 0.74(0.51-1.08) 1.37(0.89-2.11)
p-value for interaction 0.16 0.41 0.16 0.06 0.41 0.06
Obesity

BMI< 30 kg/m” 1498 1.75(1.04-2.95) 1.70(0.97-2.97) 0.63(0.41-0.97) 0.68(0.43-1.10) 0.77(0.58-1.02) 1.26(0.95-1.69)

BMI> 30 kg/m? 1615 6.58 (3.19- 8.64 (3.81- 0.22(0.12-0.39) 0.40(0.23-0.70) 0.34(0.23-0.51) 1.75(1.25-2.45)

13.58) 19.60)
p-value for interaction 0.03 <0.01 0.03 0.43 <0.01 0.43
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2.58 (1.05-6.36)
2.33 (1.50-3.63)
0.61

2.10 (0.49-8.99)
2.50 (1.06-5.89)
3.56 (1.11-
11.43)

1.85 (1.04-3.31)
0.78
2.40 (1.65-3.49)

2.63 (1.07-6.42)
2.47 (1.47-4.14)
0.55

1.61 (0.37-7.09)
1.74 (0.65-4.69)
4.00 (1.28-
12.47)
2.20 (1.11-4.34)
0.96
2.51 (1.64-3.85)

0.46 (0.22-0.96)
0.50 (0.35-0.72)
0.61
0.55 (0.17-1.79)
0.47 (0.24-0.95)
0.36 (0.14-0.92)
0.61 (0.38-0.97)

0.78
0.49 (0.36-0.67)

0.56 (0.26-1.23)
0.62 (0.43-0.90)
0.82
0.48 (0.16-1.44)
0.39 (0.18-0.86)
0.51 (0.19-1.36)
0.81(0.49-1.33)

0.17
0.61 (0.44-0.83)

0.62 (0.39-0.97)
0.64 (0.49-0.82)
0.55
0.79 (0.38-1.65)
0.76 (0.46-1.24)
0.50 (0.28-0.88)
0.67 (0.48-0.95)

0.96
0.63 (0.51-0.78)

1.42 (0.88-2.31)

1.34 (1.06-
1.69)
0.82

1.57 (0.80-3.06)
1.78 (1.10-2.88)
1.52 (0.83-2.79)

1.14 (0.84-1.56)
0.17
1.36 (1.12-1.66)
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Figure 1. Hazard ratios for incident kidney disease (definition 2) by biomarkers of arsenic metabolism. Solid lines and shaded area
represent adjusted hazard ratios based on restricted quadratic splines with 95% confidence interval using knots at the 10th, 50th,
and 90th percentiles. The solid line represents the hazard ratio for iAs% when it replaces MMA% (red line) and DMA% (blue line) in
the left panel, the hazard ratio for MMA% when it replaces iAs% (red line) and DMA% (blue line) in the middle panel and the hazard
ratio for DMA% when it replaces iAs% (red line) and MMA% (blue line). The shaded areas represent 95% Cls.
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SYNTHESIS
Introduction

This dissertation describes the role of arsenic metabolism in a broad spectrum of
health conditions including all-cause mortality, cardiovascular disease mortality, cancer
mortality, incident diabetes, and kidney diseases based on population-based prospective
cohort data. Our study is the first to show the dynamic relationship among iAs%,
MMA%, and DMA%. The data support the hypothesis that certain profiles of arsenic
metabolism are associated with different chronic diseases. Previous evidence, conducted
mostly in Taiwan'~, found that higher MMA% and lower DMA% in urine were related
to increased risk of developing cancer and cardiovascular diseases while higher DMA%
and lower MMA% were associated with the risk of obesity and diabetes.*” Through
systematic statistical modeling, we have further advanced the understanding of the
mutual dynamics among biomarkers of arsenic metabolism and provide important
information for risk assessment and risk management of arsenic toxicity. This chapter

summarizes the results of these projects and discusses the implications of the data.

Summary of findings

In the first chapter, we conducted a systematic review to identify areas of
knowledge gap in the risk assessment of arsenic metabolism in different disease
outcomes including cancer, cardiovascular disease, obesity, and diabetes. For cancer,
although many studies supported that higher MM A% and lower DMA% were associated
with the development of cancer especially for urothelial cancer, these studies were

relatively small and most of them were conducted in Taiwan using hospital-based case-
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control study designs.? Furthermore, the associations were mostly detected in subgroup
analyses (interaction analyses) and most prospective studies did not support this
hypothesis.” '’ The role of arsenic metabolism in cardiovascular diseases remains unclear
and conflicting. However, two prospective cohort studies from Taiwan and Bangladesh
showed higher MM A% was associated with carotid atherosclerosis and cardiovascular

11,12

diseases, respectively. Few studies examined the association between arsenic

56.13-14 Decreasing MMA% was consistently linked

metabolism and obesity and diabetes.
to the increasing body mass index. However, for diabetes, no specific pattern of arsenic
methylation capacity was identified in the current literature although very few studies
have looked at this question and their sample size is relatively small. In addition, the
statistical modeling of arsenic metabolism was highly heterogeneous across the enrolled
studies and was not appropriate as all studies ignored the compositional nature of arsenic
metabolism, which made interpretation and application difficult and prevented
meaningful statistical inference.

In the second chapter, we examined the relationship between arsenic metabolism
and all-cause mortality, CVD mortality, and cancer mortality in 3,600 adults 45-75 years
old in American Indian communities from the three centers that participated in the Strong
Heart Study in the US at the baseline visit in 1989-1991 and had completed information
on urine concentrations of inorganic arsenic and methylated arsenic species. Vital status
and cause-of-death codes were determined by annual contact, review of hospitalization
records and death certificates, and information obtained from National Death Index.

Through a median follow-up of 17.3 years, 1,559 (43.3%) participants died of any cause,

484 (13.4 %) died of cardiovascular disease (CVD), and 281 (7.8%) died of cancer.
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Overall, median concentration of the sum of inorganic and methylated arsenic species in
the urine was 11.2 pg/L (interquartile range, 6.6 to 19.1pug/L). Urine arsenic
concentrations were higher in participants from Arizona (median 14.9 pg/L), followed by
the North and South Dakotas (12.6 pg/L) and Oklahoma (median 7.2 pg/L). The median
(interquartile range) for inorganic arsenic%, MMA% and DMA% was 8.0 (5.6 to 11.0),
14.0 (10.8 to 17.6) and 77.7 (71.9 to 82.6), respectively. In multi-adjusted Cox
proportional hazards model, we found the substitution of 1As% by DMA% was
prospectively associated with higher all-cause mortality. The substitution of 1As% by
either MM A% or DMA% was associated with higher cardiovascular disease (CVD)
mortality. The substitution of DMA% by MMA% was also related to higher CVD
mortality. For cancer mortality, the substitution of MMA% by either iAs% or DMA%
was prospectively associated with higher cancer mortality. In addition, we found no
significant interaction between urine arsenic concentrations and biomarkers of arsenic
metabolism.

In the third chapter, we examined the relationship between arsenic metabolism
and incident diabetes in 1,694 diabetes-free adults 45-75 years old in American Indian
communities from the three centers that participated in the Strong Heart Study in the US
at the baseline visit in 1989-1991 and had completed information on urine concentrations
of inorganic arsenic and methylated arsenic species. Diabetes was defined as a fasting
plasma glucose >126 mg/dL, venous plasma glucose 2—h after ingestion of 75 g oral
glucose load >200 mg/dL, self-reported diabetes history, and self-reported use of insulin
or oral hypoglycemic medications. The median urine concentration of the inorganic

arsenic plus methylated arsenic species was 10.2 pg/L creatinine (interquartile range, 6.1
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to 17.7 pg/L). Urine arsenic concentrations were higher in participants from Arizona
(median 14.3 pg/L), followed by the Dakotas (11.9 pg/L) and Oklahoma (median 7.0
pg/L). The median (interquartile range) for inorganic arsenic%, MMA% and DMA% was
83 (5.7to 11.3),15.2 (11.7 to 18.8) and 76.4 (70.3 to 81.4), respectively. Over 11,263.2
person-years of follow-up, 396 participants developed diabetes. Diabetes incidence was
35.2 per 1000 person-years. In multi-adjusted Cox proportional hazards model, we found
that higher MM A% in urine, either because of lower inorganic arsenic% or lower
DMAY%, was associated with lower incidence of diabetes. We found no significant
interaction between urine arsenic concentrations and biomarkers of arsenic metabolism.
In the fourth chapter, we examined the relationship between arsenic metabolism
and incident kidney disease in 3,143 adults 45-75 years old with normal renal function in
American Indian communities from the three centers that participated in the Strong Heart
Study in the US at the baseline visit in 1989-1991 and had completed information on
urine concentrations of inorganic arsenic and methylated arsenic species. Incident CKD
was defined by criteria with increasing specificity to evaluate the sensitivity of the results
to different outcome definitions. First, we defined reduced eGFR as an eGFR less than
60 ml/min/1.73m’. Second, we defined impaired eGFR as an eGFR less than 60
ml/min/1.73m” and a drop in eGFR of at least 25%. Third, we defined impaired renal
function and macroalbuminuria as an eGFR less than 60 ml/min/1.73m* with a drop in
eGFR of at least 25% and urine albumin-creatinine ratio > 300 mg/g creatinine. Fourth,
renal failure was measured by doubling serum creatinine level or progression to end-stage
renal disease (ESRD). In multi-adjusted Cox proportional hazards model, the hazard ratio

of incident kidney disease defined by low eGFR (definition 1) for an interquartile range
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increase in 1As% was 0.62 (95% CI 0.49-0.78) and 0.73 (0.63-0.85) when it substituted
MMA% and DMA%, respectively. The results were robust to different incident CKD
definitions. The effects of replacing iAs% by MMA% or DMA% on the risk of
developing CKD displayed a linear dose-response relationship and were enhanced among
obese participants defined by body mass index higher than 30 kg/m?. The risk patterns of
urine arsenic metabolism profiles can be summarized as follows: 1) When the proportions
of methylated arsenic species increased with a corresponding decrease of the proportion
of inorganic arsenic, the risk of all-cause and cardiovascular mortality and kidney
diseases increased. 2) When the proportion of monomethylated arsenic increased with a
corresponding decrease of the proportion of either inorganic arsenic or dimethylated

arsenic, the risk of cancer mortality and incident diabetes decreased (Figure 1).

Implications and Future Research

Our data support that specific patterns of arsenic metabolism are significantly
associated with the risk of mortality, diabetes, and kidney disease. Profiles of arsenic
metabolism reflect inter-individual difference in arsenic methylation capacity and may
represent the overall effect of host-environmental interaction on arsenic toxicities (figure
2). Our findings further support the theory that arsenic methylation may be a bio-
activation process rather than just detoxication and also support that different arsenic
species may have different tissue affinities and pathogenic mechanisms underlying
different disease phenotypes. Before applying our findings to arsenic risk assessment and
risk management, Bradford Hill’s causation criteria provides a framework for us to

identify the gaps and needs to establish causality and inform future research.
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1. Strength of Association.
For per interquartile increase in a specific marker of arsenic metabolism that
replaces two other markers, the hazard ratio for all-cause mortality, cause-specific
mortality, incident diabetes, and incident kidney disease ranged from 1.04 to 1.83.
This is consistent with a moderate association.

2. Temporality and consistency
The prospective evidence linking arsenic metabolism and mortality, diabetes, and
kidney disease is scarce. Our findings are not consistent with previous literature
regarding diabetes and kidney disease.” "> However, previous studies were
relatively small and very few were prospective cohort study designs, making
evidence interpretation difficult. To establish the consistency of our findings,
future research is needed to replicate our findings in different populations with a
larger sample size and consistent statistical modeling to facilitate subsequent
meta-analysis.

3. Biological gradient
In dose-response analysis, we found certain markers of arsenic metabolism are
linearly associated with the risk of certain endpoints, for instance, with chronic
kidney disease. However, for all-cause mortality, the relationship was close to a
threshold dose response.

4. Specificity
Our research is not able to support the specificity. However, relevant research
conducted in Taiwan and Bangladesh may have good opportunities to inform on

specificity. For instance, Gamble and associate found folate could modify the
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profile of arsenic metabolism; however, long-term effects of arsenic metabolism
modification remain unknown.'® In Taiwan, water intervention has been
implemented for 30 years, a careful follow-up of the change in arsenic
metabolism and the prevalence/incidence of various diseases can inform the
specificity of arsenic metabolism.'” Further investigation in this important topic is
critical to establish a risk management framework of arsenic.
Plausibility, coherence, and experiments

a. Our findings are coherent with the bioactivation theory of arsenic

methylation supported by the fact that methylated trivalent arsenicals are

highly toxic.'***

MMAC(III) is especially of interest to researchers and has
been considered more potent than arsenite from the perspective of
cytotoxicity and genotoxicity.” 2 Recently, DMA(III) was also linked to
the risk of diabetes in recent cross-sectional studies conducted in Mexico.
However, systematic evidence evaluating the risk of arsenic species
remain lacking mainly due to absence of stable measurements of
MMA(III) and DMA(III) and the lack of standardized methods to adjust
for differences in urine dilution-concentration especially at low level
arsenic exposure. In contrast, markers of arsenic metabolism (1As%,
MMA%, and DMA%) provide an unique opportunity to model individual
arsenic methylation capacity and get rid of the issues related to urine
dilution correction. However, the main challenge of adopting markers of

arsenic metabolism in risk assessment is the data interpretation, as the

pathogenesis underlying different patterns of arsenic methylation capacity
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is unknown. Our research motivates the need to conduct more
epidemiological and experimental research to study the mechanisms
underlying the risk patterns of arsenic metabolism. For instance, whether
the individual methylation capacity of arsenic is linked to the efficiency of
other methylation reactions remains unknown. Increasing evidence has
shown a tight interconnection with one-carbon metabolism; however,
other metabolic pathways may also interplay with arsenic metabolism.* In
addition, few evidence studying the genetic and environmental
determinants of arsenic metabolism in human, more research is urgently
needed for this fundamental question to assist practical risk management.
On the other hand, as the markers of arsenic methylation capacity may
represent certain genetic effects on arsenic toxicity, we may use
metabolism profiles as an instrument variable to control unknown
confounders and maximize our ability to identify causal effects.

The patterns of arsenic metabolism associated with cardiovascular
mortality and the risk of developing kidney disease are close to each other,
supporting the perspective that cardiovascular and kidney diseases may
share a common metabolic pathogenesis. On the other hand, the similar
arsenic methylation profiles between cancer mortality and incident
diabetes could be consistent with a common etiological link. These
observations are coherent with current perspectives on the etiological
connections between cardiovascular disease and kidney disease, and

- - 26,27
between diabetes and cancer, respectively.”
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6. The role of arsenic metabolism in toxicological paradigm
Previous studies suggested arsenic methylation profiles are potential markers of
host susceptibility to arsenic exposure based on mostly candidate gene association
studies and exposure-biomarker interaction analyses. In this dissertation, the role
of arsenic metabolism in the pathogenesis of mortality, diabetes, and kidney
disease may be beyond susceptibility as we found no significant statistical
interaction between arsenic exposure and arsenic metabolism. Moreover, arsenic
metabolism may be an integrated biomarker of how individuals’ susceptibility and
vulnerability status respond to arsenic exposure resulting in different tissue
retention, distribution and excretion and the patterns of this response may

predispose individuals to various clinical outcomes (Figure 2).

Conclusion

Markers of arsenic metabolism are novel risk factors of all-cause mortality,
cardiovascular mortality, cancer mortality, incident diabetes, and incident kidney
diseases. Before applying these findings in risk assessment and risk management of
arsenic toxicity, it would be critical to replicate our results in other populations with
extensive range of arsenic exposure, with longer follow-up, and with larger sample size.
At the policy level, in addition to implementing strict control of arsenic exposure, public
health efforts may focus on risk stratification and patterns of arsenic metabolism may
guide to conduct risk management and link environmental effects to individual health

care. At the community and individual levels, we need to build and solidify public
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awareness of the health risks of arsenic as there may be no safe zone regarding individual

susceptibility toward arsenic.

Figure 1. Summary of the risk patterns of urine arsenic metabolism profiles with

different clinical endpoints.
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Figure 2. The role of arsenic metabolism in the classic toxicological paradigm. SES,

socioeconomic status.
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