

Developing SQuIRE to map the landscape of interspersed

repeat expression

by

Wan Rou Yang

A dissertation submitted to Johns Hopkins University in conformity with the requirements for the

degree of Doctor of Philosophy

Baltimore, Maryland

July, 2018

© Wan Rou Yang 2018

All rights reserved

ii

Abstract

Transposable elements (TEs) are interspersed repeat sequences that make up much of the human

genome. Their expression has been implicated in development and disease. However, RNA-seq of TE

transcripts results in ambiguous multi-mapping reads that are difficult to quantify. Past approaches to

TE RNA-seq analysis have excluded these reads, aligned the reads to interspersed repeat consensus

sequences, or aggregated RNA expression to subfamilies shared by similar TE copies. Such

approaches have lost either quantitative accuracy or the genomic context necessary to understand TE

transcription and its effects. As a result, repetitive sequence contributions to transcriptomes are not

well understood. Here, we present Software for Quantifying Interspersed Repeat Expression

(SQuIRE), to date the first and only RNA-seq analysis pipeline that provides a quantitative and locus-

specific picture of interspersed repeat RNA expression. We demonstrate that SQuIRE is an accurate

and powerful tool that can be used for a variety of species. Using SQuIRE on a variety of cell and

tissue types in human and mouse data, we found that only a small percentage of TEs are transcribed,

and that differential expression of TEs includes transcription of longer TE-containing mRNAs and

lncRNAs. Our findings illustrate the importance of studying TE transcription with locus-level

resolution. SQuIRE can be downloaded at (github.com/wyang17/SQuIRE).

iii

Acknowledgements

I am fortunate to have no shortage of mentors in this journey. I am thankful to Dr. Hyam Levitsky

for his mentorship in tumor immunology and continued support as he moved into the world of

industry. I am forever grateful to my primary mentor Dr. Kathleen Burns for her unwavering belief in

me, encouragement, and excitement about my work. These two mentors have been exemplary role

models in the pursuit of rigorous science, collaborative research, and translational medicine. I am also

thankful to Dr. Sarah Wheelan for her guidance in the development of SQuIRE. This project would

not have started without her, and this work greatly improved with her as a reader. Dr. Charles Drake’s

enthusiasm for my work and its implications for understanding broader disease has given me insight

to how I plan to apply SQuIRE as I move forward in my career. I am thankful to Dr. Marc Halushka

for pushing me to believe that the development of SQuIRE stands on its own merit, and to ensure my

work is published, which has greatly advanced the work and will one day enhance my career as well.

Dr. Lindsay Horvath has been a source of insights and constructive criticism that has pushed me to be

a more rigorous and relevant scientist; this work is indebted to the generosity of her time and

collaborative spirit.

Being the member of two labs has afforded me numerous scientific colleagues that have become

great friends. I am thankful for the conversations about immunology and mouse work and fun outings

with Dr. Michael Korrer, Dr. Han Hsuan Fu, Dr. Lu Qin, Dr. Deepak Kadayakkara, and Dr. Breann

Yanagisawa from the Levitsky laboratory. I am also thankful for the support, help, and conference

adventures with Dr. Chunhong Liu, Dr. Nemanja Rodic, Dr. Lindsay Horvath, Dr. Jane Welch, and

Daniel Ardeljan. I am extremely fortunate to have mentored the amazing students Chloe Pacyna and

Angela Hu in my time here and am looking forward to seeing their careers progress. I am also

incredibly grateful for the technical assistance of Jie Fu and Jared Steranka.

iv

I would not be here if not for the support and acceptance of Dr. Robert Siliciano, Sharon Welling,

Martha Buntin and Bernadine Harper of the MD-PhD program. I am also extremely grateful to Dr.

Andrea Cox for her support and mentorship as she assumed the role of MSTP director. I am also

thankful the support of the Pathobiology Graduate program, including former director Dr. Noel Rose

and current director Dr. Lee Martin, as well as administrators Stacey Morgan and Tracie McElroy.

The journey of the PhD can be incredibly isolating without the continued support from family and

friends. I am thankful to my mother, Mei Hsiao and my brother Kevin Wu for making me the person I

am today. I am thankful to my husband’s family Janet, Robert, Matthew, Josh, Angela and Tiffany

Purkeypile for their unwavering belief in me. I am grateful to the lifelong friends I have made in

Tammy Guo, Claire Muerdter, Dr. Bipasha Mukherjee, Dr. Carolina Montano, Dr. Meghana Rao, Dr.

Breann Yangisawa, and the members of the Association of Women Student MD-PhDs (AWSM).

As a working mother the completion of my PhD would not have been possible without my nanny

Rachell Williams. Even though she is too young to understand what I do, I am grateful to my

daughter, Rowan Purkeypile, for teaching me how to always make time for what’s important. I strive

to be someone she will be proud of one day.

Most of all I am thankful to my husband, Nathan Purkeypile, for his patience, dedication, and

belief in me. We have gone on so many adventures together, and I look forward to continuing this

next phase of my life with him by my side.

v

Table of Contents

Abstract .. ii

Acknowledgements ... iii

List of Tables .. vii

List of Figures ... viii

1. Introduction .. 1

2. SQuIRE: Software for Quantifying Interspersed Repeat Expression ... 3

2.1 SQuIRE Overview .. 3

2.2 Count Algorithm ... 7

2.3 Assessing Count accuracy in simulated data .. 12

2.4 Endogenous LINE-1 detection with Count .. 19

2.5 Comparison to other software .. 25

2.6 Locus-level TE expression analysis ... 31

2.7 Benchmarking for SQuIRE’s Memory Usage and Running Time 32

2.8 Implementation ... 35

2.9 Discussion .. 35

2.10 Methods .. 37

3. Landscape of Transposable Element Expression in Human Cells ... 47

3.1 Introduction .. 47

3.2 Results .. 48

3.3 Discussion .. 73

3.4 Methods .. 73

4. Landscape of Individual TE Loci Expression in Human Cancers .. 78

4.1 Introduction .. 78

4.2 Results .. 79

4.3 Discussion .. 99

4.4 Methods .. 100

5. Conclusions .. 104

6. Appendices ... 109

Appendix A. SQuIRE website .. 109

Appendix B. SQuIRE Command-line Interface ... 124

Appendix C. SQuIRE Fetch ... 129

Appendix D. SQuIRE Map ... 139

vi

Appendix E. SQuIRE Count ... 148

Appendix F. SQuIRE Call .. 194

Appendix G. SQuIRE Draw ... 202

Appendix H. SQuIRE Seek .. 207

7. Bibliography ... 211

8. Curriculum Vitae .. 224

vii

List of Tables

Table 1. Example output from SQuIRE Count. ... 11

Table 2. % Observed/Expected before and after EM algorithm. ... 13

Table 3. EM improves TPR and PPV for young TEs. ... 16

Table 4. Non-reference table used to add L1RP plasmid sequence for TE read alignment and

count estimation. .. 22

Table 5. Bowtie1 poorly detects uniquely aligning reads in paired-end libraries. 27

Table 6. Feature comparison of RNA-seq Analysis tools for TEs ... 34

Table 7. A low percentage of TEs is expressed. Percentage of TEs within each TE order with >

20 reads and > 0.1 fpkm on at least one strand. ... 50

Table 8. Number of TE-containing transcripts that overlap a single gene categorized by their

position and strand orientation relative to the gene. ... 57

Table 9. Tissue type and RNA sequencing information of 31 cell types. 60

Table 10. RNA sequencing information of HUVEC in ribosomal RNA-depletion and poly-

adenylated mRNA selection libraries. .. 62

Table 11. Samples analyzed from GTEx and TCGA databases. ... 80

viii

List of Figures

Figure 1. Schematic overview of SQuIRE pipeline. .. 5

Figure 2. Schematic representation of the SQuIRE Count algorithm. ... 6

Figure 3. EM algorithm improves % Observed/Expected for young TEs. 14

Figure 4. Volcano plot of TE subfamily expression after L1RP transfection. 17

Figure 5. Non-reference annotation improves SQuIRE false positive rate. 18

Figure 6. Comparison of TE RNA-seq tools at the subfamily level for simulated data. 23

Figure 7. Bar plot comparison of TE RNA-seq tools compared to Nanostring data at the

subfamily level. .. 24

Figure 8. A small percentage of TE loci are expressed. ... 28

Figure 9. Differentially expressed TEs are transcribed as part of different transcript types. 29

Figure 10. Examples of intragenic TE loci differentially expressed in somatic tissues compared to

testis. ... 30

Figure 11. SQuIRE Benchmarking. ... 33

Figure 12. Precision-Recall curve of SQuIRE Count with varying confidence score thresholds. . 45

Figure 13. Most TEs are expressed on one strand. .. 49

Figure 14. Characteristics of TE expression. ... 53

Figure 15. Most TE-containing RNA transcripts extend beyond TE sequence. 54

Figure 16. Ribosomal RNA depletion of HUVEC RNA enriches for transposable elements,

particularly intronic elements, as compared to poly-adenylated mRNA selection............................... 55

Figure 17. Antisense long non-coding RNA (lncRNA) expression upstream of the ALCAM gene.

 .. 58

file:///C:/Users/wyang17/Downloads/WRY_Thesis_2018_07_24.docx%23_Toc520458523
file:///C:/Users/wyang17/Downloads/WRY_Thesis_2018_07_24.docx%23_Toc520458525
file:///C:/Users/wyang17/Downloads/WRY_Thesis_2018_07_24.docx%23_Toc520458526
file:///C:/Users/wyang17/Downloads/WRY_Thesis_2018_07_24.docx%23_Toc520458531
file:///C:/Users/wyang17/Downloads/WRY_Thesis_2018_07_24.docx%23_Toc520458532
file:///C:/Users/wyang17/Downloads/WRY_Thesis_2018_07_24.docx%23_Toc520458532
file:///C:/Users/wyang17/Downloads/WRY_Thesis_2018_07_24.docx%23_Toc520458533

ix

Figure 18. Examples of retrotransposon TE expression from individually transcribed loci (ITLs)

in adult epithelial keratinocytes (NHEK), prostate stromal cells (PrSc), skeletal muscle myoblasts

(HSMM) and cortical neurons (CNeuron). .. 61

Figure 19. Characteristics of ITLs. .. 64

Figure 20. DNA transposon ITL expression patterns across multiple cell types. 65

Figure 21. TE-containing transcribed regions can be used to group cell types by tissue and organ

type. .. 67

Figure 22. Most ITLs are expressed in only one cell type. .. 68

Figure 23. Epithelial and nervous tissue cell types express more ITLs on average than connective

tissue cell types. .. 69

Figure 24. Clustering ITL expression by cell type reveals epithelial and neuronal-specific patterns

of expression. .. 70

Figure 25. Comparison of enriched TE orders across tissue types. ... 71

Figure 26. Expression of LINE ITLs is lower in nervous tissue cell types compared to other cell

types. .. 72

Figure 27. ITL expression levels as fragments per kilobase per million reads (fpkm) is not

significantly increased in tumor samples. .. 82

Figure 28. Comparison of ITL expression level between cancer and normal by TE order and

cancer type. ... 84

Figure 29. Distinct ITLs expressed in tumor and normal samples. ... 86

Figure 30. A greater fraction of tumor samples express high numbers of ITLs per sample. 87

Figure 31. ITL permissiveness varies across cancer types. ... 88

Figure 32. Older patients have greater permissiveness to TE expression. 90

Figure 33. Likelihood of a tumor-specific ITL to belong to one of the above TE orders compared

to their presence in genome. ... 92

Figure 34. Enrichment of TE orders across different cancer types. ... 93

file:///C:/Users/wyang17/Downloads/WRY_Thesis_2018_07_24.docx%23_Toc520458544

x

Figure 35. Tumor-specific ITLs are rarely expressed across all cancer types. 95

Figure 36. Percentage (%) of samples with ITL expression verses the divergence of the ITL from

its consensus sequence. The proportion of samples showing expression is inversely correlated with %

divergence of the ITL from the consensus sequence. ... 96

Figure 37. ITLs that are expressed in more than 1 sample are more likely to be < 20% divergent

from the subfamily consensus sequence. .. 97

1

1. Introduction

Transposable elements (TEs) are self-propagating mobile genetic elements. Their insertions have

resulted in a complex distribution of interspersed repeats comprising almost half of the human

genome [1,2]. TEs propagate using either DNA (‘transposons’) or RNA intermediates

(‘retrotransposons’)[3,4]. Retrotransposons are further classified into Orders, namely long terminal

repeats (LTR), long interspersed elements (LINEs), and short interspersed elements (SINEs)[5]. A

subset of evolutionarily young subfamilies from the LINE-1 superfamily (i.e., L1PA1 or L1HS) [6],

the SINE Alu superfamily (e.g., AluYa5, AluYa8, AluYb8, AluYb9) [7], as well as composite SVA

(SINE-variable number tandem repeat (VNTR)-Alu) elements [8] remain retrotranspositionally active

and generate new polymorphic insertions [9,10]. However, most TEs have lost the capacity for

generating new insertions over their evolutionary history and are now fixed in the human population.

Even elements that have lost the potential to retrotranspose can still be transcribed from their

locations in the genome. TEs are significant contributors of promoters [11–13] and cis-regulatory

elements to the transcriptome [14–22]. Transcription of TEs has been implicated in physiological

processes in development and early embryonic pluripotency [23,24]. Conversely, TE expression can

also be subject to transcriptional silencing [25–29]. Loss of these regulatory mechanisms resulting in

dysregulated TE expression has been associated with cancer [30–32], neurodegenerative diseases[33–

37], and infertility [38–41]. However, a deeper understanding of how TE transcription impacts these

biological processes has been limited by difficulties analyzing TE transcription in RNA sequencing

(RNA-seq) data.

Due to the repetitive nature of TEs, short-read RNA sequences that originate from one locus can

ambiguously align to many TEs sharing similar sequence dispersed throughout the genome. This

problem is most significant for younger TEs; older elements have accumulated nucleotide

substitutions over millions of years that can differentiate them and give rise to uniquely aligning TE

2

reads [42]. Because of these barriers, conventional RNA-seq analyses of TEs have either discarded

multi-mapping alignments [18] or combined TE expression to the subfamily level [43–45]. Other

groups have studied active LINE-1s using tailored pipelines, leveraging internal sequence variation

and 3’ transcription extensions into unique sequence [46–48]. However, these targeted approaches do

not provide a comprehensive picture of TE expression.

To analyze global TE expression in conventional RNA-seq experiments, we have developed the

Software for Quantifying Interspersed Repeat Expression (SQuIRE). SQuIRE is the first RNA-seq

analysis pipeline available that quantifies TE expression at the locus level. In addition to RNA-seq

providing expression estimations at the TE locus level, SQuIRE quantifies expression at the

subfamily level and performs differential expression analyses on TEs and genes. We benchmark our

pipeline using both simulated and experimental datasets and compare its performance against other

software pipelines designed to quantify TE expression [43–45]. We demonstrate that SQuIRE

provides a suite of tools to ensure the pipeline is user-friendly, reproducible, and broadly applicable.

The development of SQuIRE enabled us to analyze TE expression at the locus level in normal

cells. We applied the SQuIRE pipeline to 31 primary cell lines belonging to epithelial, muscle,

connective and nervous tissue types. We were able to discern the transcriptomic contexts of TE RNA

expression. We determined that among the small percentage of TE insertions that are expressed, most

transcribed TEs are part of longer pre-mRNA or lncRNAs transcripts. Only a small percentage are

transcribed autonomously from an individual TE locus (ITL). We describe the expression patterns of

ITLs across the 31 primary cell lines to illustrate the differences between the transcription of ITLs

compared to that of longer transcripts. Our findings provide a deeper understanding of physiologic

TE expression.

3

2. SQuIRE: Software for Quantifying

Interspersed Repeat Expression

2.1 SQuIRE Overview

SQuIRE provides a suite of tools for analyzing transposable element (TE) expression in RNA-seq

data (Fig. 1). SQuIRE’s tools can be organized into four stages: 1) Preparation, 2) Quantification, 3)

Analysis and 4) Follow-up. In the Preparation stage, Fetch downloads requisite annotation files for

any species with assembled genomes available on University of California Santa Cruz (UCSC)

Genome Browser [49]. These annotation files include RefSeq [50] gene information in BED and GTF

format, and RepeatMasker [51] TE information in a custom format. Fetch also creates an index for

the aligner STAR [52] from chromosome FASTA files. Clean reformats TE annotation information

from RepeatMasker into a BED file for downstream analyses. The tools in the Preparation stage only

need to be run once per genome build. The Quantification stage includes the alignment step Map and

RNA-seq quantification step Count. Map aligns RNA-seq data using the STAR aligner with

parameters tailored to TEs that allow for multi-mapping reads and discordant alignments. It produces

a BAM file. Count quantifies TE expression using a SQuIRE-specific algorithm that incorporates

both unique and multi-mapping reads. It outputs read counts and fragments per kilobase transcript per

million reads (fpkm) for each TE locus, and aggregates TE counts and fpkm for TE subfamilies into a

separate file. Count also quantifies annotated RefSeq gene expression with the transcript assembler

StringTie [53] to output annotated gene expression as fpkm in a GTF file, and as counts in a count

table file. In the Analysis stage, Call performs differential expression analysis for TEs and RefSeq

genes with the Bioconductor package DESeq2 [54,55]. To allow users to visualize alignments to TEs

of interest visualized by the Integrative Genomics Viewer (IGV) [56] or UCSC Genome Browser, the

Follow-up stage tool Draw creates bedgraphs for each sample. Seek retrieves sequences for genomic

4

coordinates supplied by the user in FASTA format. We describe further details of the SQuIRE

pipeline in Methods.

 SQuIRE’s Count algorithm addresses a fundamental issue with quantifying reads mapping to

TEs: shared sequence identity between TEs from the same subfamily and even superfamily. When a

read fragment originating from these non-unique regions is aligned back to the genome, the read may

ambiguously map to multiple loci (“multi-mapped reads”). This is not a major problem for older

elements that have acquired relatively many nucleotide substitutions, and thus give rise to primarily

uniquely aligning reads (“unique reads”). However, TEs from recent genomic insertions that have

high sequence similarity to other loci may have few distinguishing nucleotides. Among elements of

approximately the same age, relatively shorter TEs also have fewer sequences unique to a locus.

Thus, discarding or misattributing multi-mapped reads can result in underestimation of TE

expression.

5

Green boxes with bold text represent SQuIRE tools, with the pipeline stage (Preparation, Quantification,

Analysis, and Follow-up) indicated above. Yellow represents inputs to SQuIRE. Blue represents SQuIRE

outputs.

Figure 1. Schematic overview of SQuIRE pipeline.

6

Figure 2. Schematic representation of the SQuIRE Count algorithm.

This example illustrates the quantification of RNA-seq reads from three TE transcripts with various expression

levels and transcript lengths. First, Count labels reads as unique (colored boxes) or multi-mapping (grey

boxes). Uniquely mapping reads map to unique sequence in a TE (asterisks), whereas multi-mapping reads map

to similar sequence shared by the three TEs in the example. Second, Count assigns fractions of multi-mapping

reads in proportion to the normalized unique read expression of each TE. Because TE C has no uniquely

aligning reads, it receives a fraction equal to 1/3, which is inversely proportional to the number of loci to which

the multi-mapping read aligned. Third, the multi-mapping fractions are summed with the unique reads to give

an initial total read count estimation. Finally, Count runs an Expectation-Maximization loop that reassigns

multi-mapping read fractions for each TE (E-step), and re-estimates total read counts (M-step) until

convergence

7

2.2 Count Algorithm

Previous TE RNA-seq analysis pipelines have been able to quantify TE expression at subfamily-

level resolution. The software RepEnrich [43] “rescued” multi-mapping reads by re-aligning them to

pseudogenome assemblies of TE loci and assigning a fraction of a read inversely proportional to the

number of subfamilies to which each read aligned. These multi-mapped fractions were combined with

counts of unique reads aligned to each subfamily. This approach was an advance in that it used

information from multi-mapped reads. However, this method results in assigning fractions that are

proportional to the number of subfamilies that share the multi-mapped read’s sequence, rather than each

subfamily’s approximate expression level. TEtranscripts [44] expanded on this rescue method by

assigning an initial fractional value inversely proportional to the number of TE loci (not subfamilies)

to which each read aligned. This initial fractional value was then used in an expectation-maximization

(EM) algorithm, which iteratively re-distributes fractions of a multi-mapping read among loci (E-step)

in proportion to their relative multi-mapped read abundance estimated from a previous step (M-step).

The total of multi-mapped reads and unique reads for each loci are then summed by subfamily.

However, in excluding unique reads from the EM algorithm, TEtranscripts does not incorporate

empirical high-confidence data to infer TE expression levels from unique TE alignments. Furthermore,

in calculating the relative expression level of multi-mapped reads, TEtranscripts normalizes read counts

(c) based on annotated coordinates from RepeatMasker. Thus, when the TE transcript length (lTE) is

shorter than the annotated genomic length (la), TEtranscripts calculates a transcript coverage that is

lower than the true value (ie,
c

𝑙𝑎
<

c

𝑙𝑇𝐸
 when 𝑙𝑇𝐸 < 𝑙𝑎). TEtranscripts then sums the unique and multi-

mapping counts for each subfamily.

In order to accurately quantify TE RNA expression at locus resolution, Count builds on these

previous methods by leveraging unique read alignments to each TE to assign fractions of multi-mapping

reads (Fig. 2). First, Count identifies reads that map to TEs (by at least 50% of the read length) and

labels them as “unique reads” or “multi-mapped reads”. Second, Count assigns fractions of a read to

8

each TE as a function of the probability that the TE gave rise to that read. Uniquely aligning reads are

considered certain (i.e., probability = 100%, count = 1). Count initially assigns fractions of multi-

mapping reads to TEs in proportion to their relative expression as indicated by unique read alignments.

In doing so, Count also considers that TEs have varying uniquely alignable sequence lengths. To

mitigate bias against the n number of TEs without uniquely aligning reads, these TEs receive fractions

inversely proportional to the number of loci (N) to which each read aligned. Then Count assigns the

remainder (1 −
𝑛

𝑁
) to the TEs with unique reads. To account for TEs that have fewer unique counts

due to having less unique sequence, Count normalizes each unique count (𝐶𝑈) to the number of

individual unique read start positions, or each TE’s uniquely alignable length (𝐿𝑈). Among all TEs to

which a multi-mapping read aligned, the TEs with unique reads (𝑠 ∈ 𝑇) are compared with each other.

A fraction of a read is assigned to each TE in proportion to the contribution of the normalized unique

count (
𝐶𝑈

𝐿𝑈
) to the combined normalized unique count of all of the TEs being compared (∑

𝐶𝑠

𝐿𝑠
𝑠∈𝑇)

(Equation 1). Thus, the sum of unique counts and multi-mapped read fractions for each TE provides an

initial estimate of TE read abundance based on empirically obtained unique read counts and uniquely

alignable sequence.

𝑓𝑇𝐸
𝑟 =

𝐶𝑈
𝐿𝑈

∑
𝐶𝑠

𝐿𝑠
𝑠∈𝑇

 × (1 −
𝑛

𝑁
) Equation 1

At this point, multi-mapping reads are assigned to TEs with no unique reads based only on the

numbers of valid alignments for each read. Count next refines this initial assignment by redistributing

multi-mapping read fractions in proportion to estimated TE expression. To estimate expression, Count

uses the a TE’s total read count (𝐶𝑇𝐸 = unique read counts + multi-mapped fractions from the previous

step) normalized by the effective transcript length (𝑙𝑇𝐸):
𝐶𝑇𝐸

𝑙𝑇𝐸
. The effective transcript length 𝑙𝑇𝐸 is

calculated as the estimated transcript length 𝐿𝑇𝐸 subtracted by the average fragment length aligned to

that TE + 1, (𝑙𝑇𝐸 = 𝐿𝑇𝐸 − 𝑙𝑎𝑣𝑔 + 1), as described previously [57]. All of the TEs to which a multi-

9

mapping read aligned (𝑠 ∈ 𝑇) are compared with each other. A fraction of a read is assigned to each

TE in proportion to the relative normalized total count (
𝐶𝑇𝐸

𝑙𝑇𝐸
) compared to the combined normalized total

count of all of the TEs being compared (∑
𝑇𝑠

𝑙𝑠
𝑠∈𝑇), as shown in Equation 2. Count assumes this value is

proportional to the probability that the TE gave rise to the multi-mapping read, and assigns that fraction

of a read count to the TE. Because TEs with a count fraction of less than 1 have a low probability of

giving rise to any read, those TEs are assigned a count fraction of 0. The probability that would have

been assigned to the unexpressed TE then gets reassigned to the other TEs to which the read mapped.

𝑓𝑇𝐸
𝑟 =

𝐶𝑇𝐸
𝑙𝑇𝐸

∑
𝑇𝑠
𝑙𝑠

𝑠∈𝑇

 Equation 2

After the total counts (unique and multi-mapped) of each TE are re-calculated, multi-mapped reads

can be re-assigned in subsequent iterations of expectation (assigning multi-mapped read fractions to

TEs) and maximization (summation of unique and multi-mapped fraction counts). These iterations can

be repeated until a given iteration number set by the user or until the TE counts converge (“auto”, when

all of the TEs with ≥ 10 counts change by < 1%). An example of Count output is provided in Table 1.

Further details of the Count algorithm are in Methods.

10

tx_chr
tx_start tx_stop TE_ID fpkm

tx_

strand Sample alignedsize

TE_ch

r TE_start TE_stop

TE_nam

e

milliDi

v

TE_

strand

uniq_

counts

tot_

counts

tot_

reads score

chrX 150227860 1.5E+08

chrX|150227860|1502

27918|Plat_L3:CR1:LI

NE|224|-

4228.

95 + sample1 10355420 chrX 1.5E+08 1.5E+08

Plat_L3:

CR1:LIN

E 224 - 74 2539.97 2541 99.96

chr4 35784285

3578436

3

chr4|35784285|357843

63|UCON49:L2:LINE|

206|-

3415.

7 + sample1 10355420 chr4 35784285

3578436

3

UCON49

:L2:LIN

E 206 - 112 2758.94 2759 100

chr14 94460277

9446038

2

chr14|94460277|94460

382|L1ME4a:L1:LINE

|233|+

2698.

38 - sample1 10355420 chr14 94460277

9446038

2

L1ME4a:

L1:LINE 233 + 36 2934 2934 100

chr13 100961881

1.01E+0

8

chr13|100961881|1009

62054|L2b:L2:LINE|2

83|-

2118.

35 + sample1 10355420 chr13 1.01E+08

1.01E+0

8

L2b:L2:

LINE 283 - 132 3795 3795 100

chr22 38983462

3898365

0

chr22|38983462|38983

650|MIR:MIR:SINE|3

19|+

1984.

78 - sample1 10355420 chr22 38983462

3898365

0

MIR:MI

R:SINE 319 + 44 3864 3864 100

chr3 176423408

1.76E+0

8

chr3|176423458|17642

3572|L1M5:L1:LINE|

225|+

1800.

79 - sample1 10355420 chr3 1.76E+08

1.76E+0

8

L1M5:L

1:LINE 225 + 0 3990.67 3991 99.99

11

Table 1. Example output from SQuIRE Count.

tx_start = start position of left-most read aligning to TE

tx_stop = stop position of right-most read aligning to TE

TE_ID = unique ID concatenating RepeatMasker annotation (see below): coordinates, TE name, milliDiv, and annotated strand. Each TE_ID may have up to

two entries if RNA-seq data is stranded, one for each transcribed strand

fpkm = fragments per kilobase transcribed length per million aligned fragments

tx strand = strand of TE transcription

alignedsize = number of fragments with valid unique or multi alignments

TE_start = annotated RepeatMasker start

TE_stop = annotated RepeatMasker stop

TE_strand = annotated RepeatMasker strand (orientation of TE insertion)

milliDiv = Base mismatches in parts per thousand (from RepeatMasker)

uniq_count = # uniquely aligning reads

tot_count = # uniquely aligning reads + sum of multimapping fractions aligned to TE

tot_reads = # multi-mapping reads aligned to TE

score = tot_count/tot_reads * 100, which approximates how likely the TE is expressed with at least the tot_count

12

2.3 Assessing Count accuracy in simulated data

To test the performance of Count, we simulated RNA-seq data from 100,000 randomly selected

TEs from the human GRCh38/hg38 (hg38) RepeatMasker annotation. TEs were simulated with read

coverages of ranging from 2-4000X and simulated counts ranging from 2-4,588. More details of the

RNA-seq simulation are described in Methods. We first evaluated accuracy by how closely SQuIRE

Count output corresponded to the simulated read counts (i.e., % Observed/Expected). However,

using this calculation is not meaningful for TEs with low simulated counts: a TE with 0 counts gives

an infinite value, and a reported count of 1 for a TE with 2 simulated reads gives a low 50%

Observed/Expected. Thus, we were primarily interested in ‘expressed’ simulated TEs, considering

only the 99,567 TEs with at least 10 simulated reads. Second, we evaluated SQuIRE by how often it

correctly detected simulated TE expression (i.e., true positives) or misreported unexpressed TEs (i.e.,

false positives).

To test how well SQuIRE performed leveraging only uniquely aligning read information, we first

evaluated the % Observed/Expected of TE counts with 0 E-M iterations. We found that SQuIRE

accurately assigned read counts to most TEs, with a mean % Observed/Expected of 98.79%. We

predicted that this accuracy would be lower for TEs with less uniquely alignable sequence. Indeed,

SQuIRE was less accurate for elements with less than 10% divergence (mean of 77.35 %

Observed/Expected). The most frequently retrotranspositionally active TEs (i.e., AluYa5, AluYa8,

AluYb8, AluYb9, and L1HS) had counts ranging from 48-70% Observed/Expected, with a range of

79-92% Observed/Expected at the subfamily level (Table 2). This illustrates that even without the

EM-algorithm, SQuIRE can distinguish expression from highly homologous TEs at the subfamily

level.

13

 % Observed/Expected (for i E-M iterations)

TE

order

TE

name

i = 0 i = auto E-M improvement (%)

Locus Subfamily Locus Subfamily Locus Subfamily

SINE

AluYa5 54.11 90.32 64.41 90.32 10.3 0

AluYa8 69.69 79.89 85.05 88.11 15.36 8.22

AluYb8 50.53 83.81 57.88 93.53 7.35 9.72

AluYb9 48.47 91.6 63.25 93.94 14.78 2.34

LINE L1HS 52.83 70.6 63.93 72.21 11.1 1.61

Table 2. % Observed/Expected before and after EM algorithm.

% of simulated reads that were reported by SQuIRE (% Observed/Expected) for frequently active human TEs at

the locus and subfamily level. % Observed/Expected is improved with the use of Expectation-Maximization

(EM) algorithm until convergence ("auto" number of interations) compared to no EM iterations.

14

Figure 3. EM algorithm improves % Observed/Expected for young TEs.

Running EM iterations improves the % Observed/Expected for SQuIRE Count for the frequently retrotranspositionally

active Alu (AluYa5, AluYa8, AluYb8, AluYb9) and L1 (L1HS) subfamilies compared to no EM iterations (i=0), and does

not degrade with increasing iterations (i=100). By default (i=”auto”), SQuIRE Count continues the EM-algorithm until

each TE with more than 10 reported read counts changes by less than 1%.

15

Given the low recovery of simulated counts for younger elements when relying solely on

uniquely aligning reads, we next evaluated how much adding the EM-algorithm improved Count’s

performance. We anticipated that the counts for most TEs would not change, but that younger

elements with less divergence would have improved recovery of simulated reads. Indeed, the overall

% Observed/Expected counts of TE loci increased only slightly by 0.14% to a total of 98.93%.

However, the change in % Observed/Expected of TEs was much greater for the most homologous

active elements, improving by 20.47% for young Alu elements and by 21.1% for L1HS loci (Fig. 4).

At the subfamily level, the % Observed/Expected of active TEs was improved by 8.1% for young Alu

elements and by 2.2% for L1HS (Table 2). Using updated transcript information in the EM-algorithm

is thus particularly useful for TE biologists interested in younger elements that have previously been

problematic to quantify by RNA-seq.

We also wanted to evaluate SQuIRE’s ability to distinguish whether a TE is expressed or not

expressed. To examine how well Count detected expressed TEs, we calculated the true positive rate

(TPR) as the percentage of TEs with at least 10 simulated reads that SQuIRE also reported to have ≥

10 counts. Conversely, we evaluated how often SQuIRE falsely reports TE expression by calculating

the positive predictive value (PPV) as the percentage of TEs with ≥ 10 reported counts that were in

fact simulated to have ≥10 reads. The true negative rate, or how often SQuIRE correctly reports that

a TE is not expressed, is less informative for evaluating TE estimation accuracy because the number

of TEs in the hg38 genome is so high (>4 million TEs) that the true negative value would outweigh

the false positive value [58]. Overall, SQuIRE had both a high TPR of 98.5% and high PPV of

99.4%. These values were lower for frequently retrotranspositionally active Alu elements

(TPR=68.75-83.33%, PPV= 64.29-100%) and L1HS elements (TPR=100%, PPV=62.86%) using

only unique reads for TE expression estimation (Table 3). However, using the EM algorithm

improved the TPR for Alu loci (TPR=85.22%-100%) by reducing false negative reports and the PPV

for L1HS loci (PPV=78.57%) by reducing false positives.

16

 (for i E-M iterations)

TE

order

TE

name

i = 0 i = auto

TPR PPV TPR PPV

SINE

AluYa5 68.75 91.67 85.22 82.42

AluYa8 83.33 100 100 100

AluYb8 65.7 85.19 89.66 81.3

AluYb9 81.82 64.29 90 64.29

LINE L1HS 100 62.86 100 78.57

Table 3. EM improves TPR and PPV for young TEs.

True positive rate (TPR) and positive predictive value (PPV) of SQuIRE Count for recently active human TEs.

The % TPR is the % of loci with ≥ 10 simulated reads which SQuIRE reports to have ≥ 10 read counts. This

indicates what percentage of expressed loci are detected by SQuIRE. The %PPV is the % of loci with ≥ 10

SQuIRE reads counts that in fact have ≥ 10 simulated reads. This indicates what percentage of loci are

reported to have false positive expression.

17

Figure 4. Volcano plot of TE subfamily expression after L1RP transfection.

The plot displays the log2 fold change comparison of mean read fragment counts between

samples transfected with the L1RP or empty vector and the negative log10 of each measure’s

adjusted p-value.

18

Figure 5. Non-reference annotation improves SQuIRE false positive rate.

We replicated the effects of non-reference TE expression by spiking in reads from an L1HS-expressing plasmid

(L1RP) with 99% identity to the consensus sequence. We evaluated how increasing L1RP expression (153, 302,

3091 spike-in reads) affects expression estimates of reference TEs of different L1 subfamilies. False positive

expression is implicated if a locus that previously had <10 reads has ≥ 10 reads after spike-in. % FPR is the

percentage of loci with false positive loci relative to the total number of loci with ≥ 10 SQuIRE read counts. The

FPR is robust for older L1 subfamilies with increased spike-in reads. The FPR of L1HS loci increases with

greater L1RP expression without the use of L1RP annotation in the SQuIRE pipeline. The addition of L1RP

annotation in a non-reference table reduces the change in false positive rate for L1HS after increasing spike-in

reads.

19

2.4 Endogenous LINE-1 detection with Count

To assess Count’s ability to detect endogenous LINE-1 expression using biological data, we

evaluated the expression level of LINE-1 at loci previously characterized by other methods. Because

genomic LINE-1 are typically 5’ truncated [59], Deininger et al. performed 5’ rapid amplification of

cDNA ends (RACE) on cytoplasmic HEK293 RNA to enrich for full-length (6kb) LINE-1 RNA

autonomously transcribed by the LINE-1 promoter sequence. They also performed RNA-seq on

polyA-selected cytoplasmic HEK293 RNA to identify L1 loci that have downstream polyadenylation

signal. We filtered their findings for L1 loci that had > 5 mapped RNA-seq reads from both 5’RACE

and poly-A selected RNA libraries [47] to compare with SQuIRE. We then examined the expression

reported by SQuIRE at these 33 loci in paired-end, total RNA from HEK293T cells (GSE113960).

We found that 31 (93.4%) had > 10 SQuIRE read counts, confirming their expression. This suggests

that Count can detect L1 expression in RNA-seq libraries that are not enriched for L1 loci.

Only a subset of the L1s evaluated by Deininger et al. belonged to L1HS, the youngest family of

L1s. Because L1HS loci can be retrotranspositionally active, they can generate insertions that are

polymorphic or novel compared to the reference human RepeatMasker annotation. Reads from from

transcribed TE insertions that are not present in the RepeatMasker annotation can be misattributed to

unexpressed, fixed TEs, which can result in “false positive” reports of expression at silent loci. To test

how this affects Count results for other loci within the same subfamily or related subfamilies, we

transfected HEK293T cells with an empty pCEP4 plasmid or with a plasmid containing L1RP, an

L1HS with known retrotransposition activity [60,61]. The transfection of L1RP resulted in increased

L1HS-aligning reads (254,681 reads) compared to L1HS loci in L1RP-negative cells (2,671 reads)

(Figure 5). The differences in L1HS expression in L1RP-transfected cells was higher than what we

would expect from endogenous, polymorphic insertions based on previous estimates of polymorphic

and fixed L1HS expression in HEK293T cells using unique reads within 1kb downstream of L1HS

loci [46]. Because Philippe et al. suggested that polymorphic L1HS insertions were transcribed at

levels similar to fixed full-length L1HS loci, we sought to mimic polymorphic L1HS expression

20

levels more consistent with previously reported levels. To determine comparable fixed L1HS

expression levels in our control HEK293T RNA-seq data, we examined the Count output at loci with

reported expression by Phillipe et al. (145 read counts). We then downsampled the L1RP-aligning

reads from L1RP transfected HEK293T cells to a similar number (153 reads). To simulate a range of

polymorphic L1HS expression levels, we also downsampled RNA-seq reads that aligned to the L1RP

plasmid to 2X and 20X the fixed active L1HS expression level (302 and 3,091 reads). For these

downsampled reads, we identified their other, off-target alignments to the reference genome. To

control for potential biological effects of L1RP transfection on TE counts, we ‘spiked in’ these

downsampled reads from L1RP-transfected cells into RNA-seq data from HEK293T cells transfected

with an empty pCEP4 plasmid. We then calculated the number of false positive L1 loci that became

‘expressed’ with > 10 counts after the in silico spike-in. We focused on the 3 youngest L1 subfamilies

that share the greatest homology with the L1RP sequence (i.e., L1HS or L1PA1, L1PA2, and L1PA3)

[62–64] and compared their false positive rates to older L1 loci (Fig. 6). When the alignments of 153

reads were spiked in, we found that the false positive rate (FPR) of the youngest L1 subfamilies were

comparable to each other, ranging from 34-38%. However, as the spiked in alignments increased to

302 and 3091 reads, the FPR increased for L1HS to 50.68% but not the other subfamilies. This

indicates that polymorphic L1HS expression primarily affects the alignments to L1HS loci, and not

the loci of closely related subfamilies.

L1-mapping methods [65–68] and TE insertion detection software for whole genome sequencing

[9,69–73] can identify locations of non-reference TE insertions. Validating these insertions by PCR

and Sanger sequencing can provide not only unique sequence flanking the insertion but potentially

also the TE sequence. Users can input a custom table to SQuIRE Map and Clean (Table 5) to add

non-reference TEs and their flanking sequence to the alignment index and RepeatMasker BED file.

We evaluated how incorporating the non-reference table containing information about the L1RP

plasmid affected the FPR in HEK293T cell data. We found that the FPR for L1HS only increased

21

from 36.67% with 153 reads spiked in to 39.34% with 3091 reads spiked in. Thus, adding L1RP

information improved Count’s accuracy at higher L1RP in silico expression levels.

22

Chromosome/ Vector Insertion_start Insertion_stop Strand

Subfamily:Family:

Order

Insertion_Type:

Polymorphism,

Novel,Plasmid,

Transgene Left-Flank_Seq Right-Flank_Seq TE_Seq

DA_L1RP 70 6087 + L1HS:L1:LINE Plasmid CGTTTAGTG

AACCGTCAG

ATCTCTAGA

AGCTGGGTA

CCAGCTGCT

AGCAAGCTT

GCTAGCGGC

CGCGGGG

ATCCAGACATG

ATAAGATACAT

TGATGAGTTTG

GACAAACCAC

AACTAGAATGC

AGTGAAAAAA

ATGCTTTATTT

GTGAAATTTGT

GATGCTATTGC

TTTATTTGTAA

CCATTATAAGC

TGCAATAAACA

AGTTAACAACA

ACAATTGCATT

CATTTTATGTT

TCAGGTTCAGG

GGGAGGTGTG

GGAGGTTTTTT

AAAGCAAGTA

AAACC

GGAGGAGCCAAGATGG

CCGAATAGGAACAGCT

CCGGTCTACAGCTCCCA

GCGTGAGCGACGCAGA

AGACGGTGATTTCTGC

ATTTCCATCTGAGGTAC

CGGGTTCATCTCACTAG

GGAGTGCCAGACAGTG

GGCGCAGGCCAGTGTG

TGTGCGCACCGTGCGC

GAGCCGAAGCAGGGCG

AGGCATTGCCTCACCTG

GGAAGCGCAAGGGGTC

AGGGAGTTCCCTTTCCG

AGTCAAAGAAAGGGGT

GACGGACGCACCTGGA

AAATCGGGTCACTCCC

ACCCGAATATTGCGCTT

TTCAGACCGGCTTAAG

AAACGGCGCACCACGA

GACTATATCCCGCACCT

GGCTCGGAGGGTCCTA

CGCCCACGGAATCTCG

CTGATTGCTAGCACAG

CAGTCTGAGATCAAAC

TGCAAGGCGGCAACGA

GGCTGGGGGAGGGGCG

CCCGCCATTGCCCAGG

…

Table 4. Non-reference table used to add L1RP plasmid sequence for TE read alignment and count estimation.

23

Figure 6. Comparison of TE RNA-seq tools at the subfamily level for simulated data.

Histogram of % TE subfamilies for each percentage of reported over simulated counts. SQuIRE has the tallest

and narrowest peak near 100% Observed/Expected, indicating the it is correctly attributing simulated reads to

the greatest number of subfamilies. Because TETools outputs in reads rather than fragments, its output is twice

that of the other software.

24

Figure 7. Bar plot comparison of TE RNA-seq tools compared to Nanostring data at the subfamily level.

Y-axis represents log2 fold changes of subfamily expression in testis compared to pooled somatic tissues (brain,

heart, kidney, and liver).

25

2.5 Comparison to other software

Currently published TE analysis software include RepEnrich, TEtranscripts, and TETools [43–

45]. Because none of these programs is capable of reporting TE locus expression, we performed

comparisons with SQuIRE with aggregated subfamily estimates. We used the simulated hg38 TE data

described above to compare the recovery of simulated reads to the correct subfamily among TE

quantification software (i.e., % Observed/Expected). For mapping, we ran each software’s

recommended aligner: STAR (used by SQuIRE and TEtranscripts), Bowtie 2 (used by TETools), and

Bowtie 1 (used by RepEnrich). We found that SQuIRE (99.86% ±1.46 %), TETools (100.14 ±

2.21%), and TEtranscripts (95.89 ± 16.41%) had comparable % Observed/Expected rates (Fig. 7). In

contrast, RepEnrich (108.77 ± 40.67%) reported lower counts than expected for most TEs. This is

likely attributable to RepEnrich’s recommended use of Bowtie 1, which discards discordant reads and

limits the number of attempts to align both paired-end mates to repetitive regions. To support this, we

compared how often each aligner mapped a uniquely aligning simulated read to the correct location.

We indeed found that Bowtie 1 failed to report unique reads more often in a paired-end library

compared to single-end (Table 6).

To compare SQuIRE to other TE analysis tools with biological data, we ran each pipeline on

publically available adult C57Bl/6 mouse tissue RNA-seq data [74] using GRCm38/mm10 (mm10)

TE annotation. We compared the expression of subfamilies in testis compared to pooled data from

brain, heart, kidney, and liver tissues. To independently evaluate the fold-changes of TE RNA

between testis and somatic tissues, we also used our previously published adult C57Bl/6 mouse

Nanostring results [75]. Unlike RNA-seq analysis, which infers transcript levels by counting reads,

Nanostring uses uniquely mapping probes to capture and count RNA molecules. We compared the

Nanostring log2 fold changes (log2FC) of TE subfamily expression in testis and pooled somatic tissue

to the log2FC values found by SQuIRE, RepEnrich, TEtranscripts, and TETools (Fig. 8). Because the

Nanostring probes were designed against TE consensus sequences, we do not expect exact

correspondence with the RNA-seq analysis tools. We observe instances in which all TE RNA-seq

26

tools report contrasting results from the Nanostring output (MMVL30, IAPLTR1a_Mm,

RLTR13A1). Thus in addition to comparing each pipeline with Nanostring, we also evaluated when a

result deviated from the other TE RNA-seq analysis pipelines. RepEnrich failed to detect differential

expression for the L1_mus_musculus subfamily (L1_Mm), and reported a direction of log2FC for the

MMETn subfamily that contrasted from Nanostring. TEtranscripts similarly failed to detect

differential expression of MMERVK10D3 subfamily that Nanostring and the other pipelines reported,

and reported different log2FC from Nanostring, SQuIRE and TETools for L1Mm. TETools deviated

from Nanostring and the other RNA-seq pipelines for the MERVL subfamily, reporting decreased

expression in testis while the other methods reported upregulation. SQuIRE is the only RNA-seq

pipeline that corresponded with at least two other methods for all of the subfamilies analyzed by

Nanostring, suggesting that its results were the most reliable.

27

Aligner Library
Library

(Reads)
TP FP TPR PPV

Bowtie1 Single-end 4668185 4280536 143 91.7 100

Bowtie1 Paired-end 9336370 5074922 53991 54.36 98.95

Bowtie2 Single-end 4668185 3487593 3187 74.71 99.91

Bowtie2 Paired-end 9336370 8260128 7620 88.47 99.91

STAR Single-end 4668185 4469031 15302 95.73 99.66

STAR Paired-end 9336370 9107935 20113 97.55 99.78

Table 5. Bowtie1 poorly detects uniquely aligning reads in paired-end libraries.

True positive rate (TPR) and positive predictive value (PPV) of identifying uniquely aligning reads with

different aligners. TPR=% true positive uniquely aligning reads to total reads in the library. PPV=% true

positive uniquely aligning reads to total reported uniquely aligning reads.

28

Figure 8. A small percentage of TE loci are expressed.

Histogram showing distribution of percent loci expression for TE subfamilies (among the 16

subfamilies analyzed in the previous figure). X-axis represents percentage of loci expressed.. Y-axis

represents number of subfamilies). Most TE subfamilies have only 1-2% of subfamilies expressed, all

TE subfamilies have 5% or fewer of their loci expressed. This information is lost when TE expression

analysis is done only at the subfamily level.

29

a. The X-axis represents replicates of somatic and testis tissue samples from adult C57Bl/6 mouse. The Y-

axis represents differentially expressed TE loci. The heatmap colors represent the log2 of total read counts

+1 for each TE locus. b-d. Examples of intergenic TE loci differentially expressed in testis compared to

somatic tissues. Tracks from brain, heart, kidney and liver replicates were collapsed into a single track.

The scales of count expression are shown in brackets. The RefSeq track represents annotated genes. The

RepeatMasker track represents transposable elements annotated in the reference genome. Transposable

elements colored in red belong to the subfamily indicated; dark red indicates that that RepeatMasker entry

meets significant differential expression thresholds (log2FC > 2, padj < 0.05).

Figure 9. Differentially expressed TEs are transcribed as part of different transcript types.

30

Figure 10. Examples of intragenic TE loci differentially expressed in somatic tissues compared to testis.

Replicates from brain, heart, kidney and liver are grouped in adjacent tracks. The scales of count expression

are shown in brackets. The RepeatMasker track represents TEs annotated in the reference genome.The

RefSeq track represents annotated genes. Transposable elements colored in red belong to the subfamily

indicated; dark red indicates that the TE meets significant differential expression thresholds (log2FC > 2,

padj < 0.05).

31

2.6 Locus-level TE expression analysis

With SQuIRE, we can closely examine the mouse RNA-seq data at the locus level. For the 16

subfamilies analyzed by Nanostring and the TE analysis tools, using SQuIRE we found that the

reported subfamily-level expression was due to expression from fewer than 7% of each subfamily’s

loci (Supplementary Figure S5). While most subfamilies studied by Nanostring have only 1-4

significantly differentially expressed loci (log2FC >1, padj < 0.05), the IAPLTR3 subfamily has 11

loci that are all differentially expressed in testis compared to somatic tissues (Figure 5A). To test

whether this was an enrichment relative to the representation of IAPLTR3 in the mouse genome, we

performed a Fisher’s exact test and found that IAPLTR3 loci were 10-fold more likely than expected

to be differentially expressed in testis (OR: 10.56, 95% CI: 5.25-18.97, p-value < 1.61 e-08). ERVB4-

1B, another LTR retrotransposon that exhibited high fold change by Nanostring, was not similarly

enriched among differentially expressed TE loci. In addition to a more careful analysis of which loci

are transcribed, SQuIRE enables a closer look at TE transcript structure. In examining the TE loci

with the greatest differential expression in testis, we found that the transcription of the ERVB4-1B

locus on chr13 did not extend beyond annotations for that element (Figure 5B). On the other hand, the

IAPLTR3 loci on chr14 (Figure 5C) and chr18 are part of longer transcripts that initiate outside of the

annotated TE. Altogether, this suggests while a subset of TEs may be regulated by shared TE

sequence, most differential expression of TEs is locus-specific with varying transcript structures, a

finding that was not evident until analysis at the locus level using SQuIRE.

 To further investigate the interplay between genomic context and TE subfamily, we identified

the closest genes to differentially expressed TE loci. We found a cluster of 3 loci exhibiting broad

expression across somatic tissues from the IAP1, MERVL, and MURVY LTR retrotransposon

subfamilies. When we examined the genomic context of these 3 loci, we found that all were located

within genes with known broad tissue expression (Gpbp1, Csnk2a1, Kyat1, respectively) [76], with

examples shown in Supplementary Figure S6. Another locus from the MURVY subfamily is in a

32

cluster of TEs exhibiting high testis-restricted expression. In examining the transcript overlapping the

MURVY locus, we see that the transcript initiates outside of the locus and find that the transcript is an

alternative splicing isoform with splice donors from the third and fourth exons of a gene ~5kb away

(Figure 5D). The gene, Gm11981, is a long noncoding RNA (lncRNA) known to exhibit testis-

restricted expression [76]. The different MURVY-containing transcript types illustrate how TE

transcription can vary across loci from the same subfamily. Altogether, these findings would be lost

without the use of SQuIRE to analyze TE transcription at the locus level.

2.7 Benchmarking for SQuIRE’s Memory Usage and Running Time

To benchmark SQuIRE’s memory usage and running time for RNA-seq data of different

sequencing library sizes, we subset HEK293T cell line RNA-seq data with a mean of 32, 65, and 98

million reads. We evaluated the speed and memory performance of each Quantification and Analysis

stage tool for each sequencing depth (Fig. 12) using 8 parallel threads and 64 Gb of available

memory. We found that RNA-seq library size had the greatest effect on Count, taking 8.6 hours to

complete the 3-lane library compared to 2.4 hours for the 1 lane library. The other tools took much

less time and were less affected by sequencing depth. Map took 1-2 hours for the different libraries.

Call running time was also independent of library size, but it was greater when including all TE

counts (10 minutes) compared to subfamily counts (2 minutes). We found that the memory usage of

each tool was largely independent of sequencing depth, taking between 39-40 Gb of Memory for

Map, 30-32 Gb for Count, and 7-8 Gb for Call.

33

Figure 11. SQuIRE Benchmarking.

Usage data for the main modules of SQuIRE. Time (Hours) and Memory for SQuIRE Count, Map

and Call. Mean library sizes for RNA seq data were 1 lane= 32,912,528 reads, 2 lanes= 65,573,850

reads, 3 lanes= 98,757,439 reads.

34

Table 6. Feature comparison of RNA-seq Analysis tools for TEs

 SQuIRE RepEnrich TEtranscripts TETools

Provides Locus-level TE

RNA quantification

YES -- -- --

Provides TE transcript

strand and length

YES -- -- --

Copy-and-paste

installation

YES -- -- --

Provides prerequisite

annotation files for any

species

YES -- -- --

Can incorporate non-

reference TEs

YES -- -- YES

Performs alignment

YES – uses

STAR

Recommends

Bowtie 1

Recommends

STAR

YES – uses

Bowtie 1 or

Bowtie 2

Uses genome for

alignment

YES

YES - Genome +

TE

pseudogenome

YES --

Provides gene expression

quantification

YES -- YES --

Performs differential

expression

YES -- YES YES

35

2.8 Implementation

Our efforts at making SQuIRE easy to use has resulted in multiple features in addition to its

ability to provide locus-level TE quantification (Table 7). To set up SQuIRE involves a simple

installation process in which the user can copy and paste lines of code, which includes instructions for

setting up prerequisite software. In addition, SQuIRE is the only program that downloads reference

annotation for assembled genomes available on UCSC, allowing it to be easily adaptable to a variety

of species. For genomes from non-model organisms or organism strains with high divergence from

the reference annotation, SQuIRE can also use RepeatMasker software output for even wider

compatibility. To ensure that the pipeline is streamlined and that the outputs are reproducible,

SQuIRE also implements alignment and differential expression for the user. In making SQuIRE as

user-friendly as possible, we intend to improve the reproducibility of bioinformatics in the TE field.

2.9 Discussion

We have developed Software for Quantifying Interspersed Repeat Expression (SQuIRE) to

characterize TE expression using RNA-seq data. TEs are highly repeated in the genome, which can

pose challenges for mapping reads unambiguously to specific transcribed loci. SQuIRE is the first

RNA-seq analysis software that provides locus-specific TE expression quantification while also

outputting subfamily-level expression estimates (Table 1). Our approach maximally uses information

from RNAseq studies by incorporating unambiguously mapping reads as well as ambiguously

mapping reads, optimally adjudicating alignments of the latter using an Expectation-Maximization

(EM) algorithm. SQuIRE additionally provides empiric information on the structure of each TE

transcript rather than relying on TE annotations, recognizing that TE transcripts can be shorter or

longer, and sense or antisense compared to the genomic TE. We have shown that SQuIRE correctly

attributes a high percentage of reads originating from TEs using simulated data. Although this

percentage is lower for frequently retrotranspositionally active, less divergent TEs (e.g., AluYa5,

AluYa8, AluYb8, AluYb9, L1HS), we found that implementation of the EM algorithm [44,77]

improves accuracy and lowers both false positive and false negative calls of whether a TE locus is

36

expressed. This finding also holds in biological settings, where SQuIRE is able to correctly identify

instances of full-length L1 expression in total RNA RNA-seq data from cell lines wherein previous

studies had identified these loci using a combination of 5’RACE and 3’ primer extension methods

[47]. This confirms that SQuIRE can detect the expression of TEs in the reference genome that have

in the past been problematic for global TE RNA expression analysis.

The ongoing activity of TEs also results in a significant number of mobile element insertion

variants (MEI) [9,72,78]. Numerous commonly occurring structural variants owed to

retrotransposition are missing in reference genome assemblies. SQuIRE provides users with two

options to query transcription of these repeats. First, SQuIRE can detect transcription of polymorphic

elements at the subfamily level. We have shown that SQuIRE can detect expression of the L1HS

subfamily when we express an ectopic sequence. It maintains a low false positive rate of

misattributing these reads to endogenous L1HS loci. Thus, SQuIRE can be useful for detecting

altered regulation of young TE subfamilies even when specific loci that are expressed are unknown.

Secondly, SQuIRE can directly use sequences of known, non-reference TE insertion polymorphisms

to detect locus-specific expression when these are supplied as a supplement to the reference build. For

example, in the human genome, L1HS element sites and sequences can be obtained by targeted TE

insertion mapping [65–68] or whole genome sequencing [69–71,73]. Polymorphic TE insertions have

been reported to databases such as euL1db [79], dbRIP [80] and by large studies like the 1000

Genomes Project [72]. Using SQuIRE to detect expression of user-provided, non-reference TE

sequences at these loci may be a useful feature for understanding functional consequences of these

insertion variants [81].

Finally, for older, retrotranspositionally inactive genomic repeats, SQuIRE very accurately

assesses expression. These older elements represent the vast majority of TE loci in the human genome

(>96.7%). For all TEs, SQuIRE provides the convenience of differential TE expression analysis with

both locus-specific and subfamily-aggregated outputs.

37

The SQuIRE algorithm builds on strategies used by previous TE analysis software in line. Here,

we show that SQuIRE provides additional features and improves on the accuracy of these methods, as

assessed using both simulated reads and orthogonal approaches to measure log2 fold changes in

mouse tissue comparisons. Our findings suggest that important biologic insights can be gained by

examining TE transcription at the locus level.

To date, locus-specific studies of TE expression and activity have mostly focused on identifying

transcriptionally and retrotranspositionally active L1s in the human genome [46–48,78,82–84]. These

studies have shown that rare, individual loci, widely distributed in the genome generate transcripts. In

applying SQuIRE to study locus-specific TE expression genome-wide in mouse tissues, we can see

that this paradigm is not unique to L1s or humans. It seems a limited subset of TE loci are transcribed

with complex patterns of tissue-specific expression. Furthermore, we found that the tissue expression

patterns of TE loci reflect a variety of transcriptome contexts: broadly expressed mRNA transcripts,

tissue-specific lncRNAs, and authentic TE ‘unit’ transcripts. How these TEs may affect gene

regulation or biological processes remain open questions. Genome-wide analyses of TEs have

indicated roles for cis-acting elements on transcriptional regulation [11,15,85,86], transcript splicing,

and RNA function [25,87–89]. In providing locus-level TE transcript estimations, we expect SQuIRE

will enable studies that dissect the regulatory impacts of TE and gene expression.

2.10 Methods

Software and Implementation

SQuIRE was written in Python 2 and tested with the following specific versions of software:

STAR 2.5.3a [52], BEDtools 2.25.0 [90], SAMtools 1.8 [91], StringTie 1.3.3b [53], DESeq2 1.16.1

[54], R 3.4.1 [92], and Python 2.7.9. Details of the software parameters implemented in the SQuIRE

pipeline are described in Supplemental Methods. SQuIRE was developed for UNIX environments.

We provide step-by-step instructions on our README to use the package manager Conda (conda.io)

to download the correct versions of prerequisite software for SQuIRE (e.g., Python, R [92], STAR,

38

BEDTools, StringTie, SAMtools, DESeq2). The README also instructs users how to create a non-

reference table with the exogenous or polymorphic TE sequences and coordinates that they would

like to add to the reference genome. Bash scripts to run each tool in the SQuIRE pipeline are also

available on the website. Users can fill in crucial experiment information (raw data, read length,

paired, strandedness, genome build, sample name and experimental design) into the “arguments.sh”

file, which the other scripts reference to run each step with the correct parameters.

RNA-seq simulation

We randomly selected 100,000 TEs from the hg38 Repeatmasker annotation downloaded by

Fetch. We limited our list of potential TEs to those included in TEtranscripts [44] and RepEnrich [43]

to enable comparisons between these different programs. Using the selected TE coordinates we

generated a BED file using Clean and obtained FASTA sequences using Seek. From these TE

sequences, we used the Polyester package from Bioconductor (R version 3.4.1, Huber et al. 2015)

[55] to simulate 100bp, paired-end, stranded RNA-seq reads with normally distributed fragment

lengths around a mean of 250bp. We simulated a uniformly distributed sequencing error rate of 0.5%.

TEs were simulated with a mean read coverage of 20X, with 250 TEs deviating from that mean

between 2-100 fold.

HEK293T Cell Culture, Transfection and Sequencing

Tet-On HEK293TLD (293T) cells [93] were grown at 37C, 5% CO2 in DMEM with 10% Tet-

Free FBS (Takara, Mountain View, CA) and passaged every 3-5 days as needed with regular tests for

mycoplasma contamination.

LINE expression constructs were cloned into the pCEP4 backbone (Thermo Fisher Scientific,

Waltham, MA) modified to confer puromycin resistance. Plasmids encoded either L1RP (MT302) or

had no insert [93]. For transfection, 300,000 293T cells were plated in 2 mL volume. 24 hours later,

cells were transfected using a cocktail of 2 ug plasmid DNA and 6 µL Fugene HD (Promega), and

puromycin was added 24 hours later for a total of 3 days of selection. 500,000 cells were then plated

in 3 wells each, and doxycycline was added 2 hours later (final concentration of 1 ug/ml) to induce L1

39

expression. RNA was collected after 72 hours of L1 expression using the Zymo Quick-RNA

MiniPrep kit (Zymo Research, Tustin, CA). The RNA libraries of transfected 293T cells were

prepared using the Illumina TruSeq Stranded Total Library Prep Kit with Ribo-Zero Gold (San

Diego, CA) to provide stranded, ribosomal RNA depleted RNA. The libraries were sequenced on an

Illumina HiSeq 2500, using 6 samples per lane across 8 lanes with paired-end 100bp reads. We

generated a mean of 263,127,067 paired reads per sample. The raw sequencing data were deposited to

the NCBI Genome Expression Omnibus (GEO) with accession number GSE113960.

HEK293T Cell RNA-seq Analysis and In Silico Spike-in Experiment

For detection of fixed L1 expression identified by Deininger et al. by 5’RACE and poly-A

selected RNA sequencing in HEK293 cells, we ran SQuIRE Map, Count, and Call on HEK293T cell

samples transfected with empty L1RP vector (DA5 and DA6). To determine the effect of L1RP

transfection on the false positive rate of L1 RNA estimation, we ran Map and Count on HEK293T

cells transfected with L1RP and vector. To simulate the effect of polymorphic TE expression on

typical RNA-seq samples, we downsampled a transfected (DA1) and control (DA5) sample to a

single lane per sample (average 32 million reads). To identify L1RP aligning reads in the L1RP-

transfected cell, we used SAMtools [91] to identify reads that align to the chromosome construct

provided by the non-reference table (Table 5). To downsample the L1RP-aligning reads, we used the

SAMtools “-s <INT.FRAC> ” option with 0.01, 1.001, and 3.0004 as inputs. The integer before the

decimal indicates the seed value and the number after the decimal indicates the fraction of total

alignments desired for subsampling. We then identified all alignments to the genome sharing the

same Read IDs as the down-sampled L1RP-aligning reads. We used SAMtools merge to combine the

alignments of L1RP-aligning reads with the BAM file of the HEK293T cell sample transfected with

empty vector (DA5).

TE RNA-seq tool Comparison

40

Adult C57BL/6 mouse RNA-seq data were obtained from GEO with accession number

GSE30352. All pipelines were run on a server with a maximum of 128 GB memory available and 8

threads (-p setting).

RepEnrich [43]– We obtained the hg38 annotation for RepeatMasker from the RepEnrich GitHub

website. For the mm10 annotation, we obtained the mm10.fa.out.gz RepeatMasker [51] annotation

from the RepeatMasker website. We ran the setup for RepEnrich following instructions from the

website for each genome build. We then mapped the data to the genome using Bowtie 1 [94]

according to RepEnrich’s instructions to generate separate uniquely mapping SAM and multi-

mapping read FASTQ files. These were then used for the RepEnrich software with the “–pairedend

TRUE” parameter for simulated human data, and “—pairedend FALSE” for mouse data.

TETools [45]– We generated rosette files for hg38 and mm10 for TETools by taking the

Repeatmasker annotation from Clean for the first column and the repeat taxonomy for the second

column (subfamily:family:superfamily). We used the BED file from Clean with Seek to obtain TE

FASTA sequences for generation of a pseudogenome for TETools. TETools was run with the “-

bowtie2”, “–RNApair” and “–insert 250” parameters for simulated human data and “-bowtie2”,”-

insert 76” for mouse data.

TEtranscripts [44] –We obtained hg38 and mm10 GTF annotation from the TEtranscripts

website. We aligned the data to the genome with STAR using “--winAnchorMultimapNmax 100”,”--

outFilterMultimapNmax 100” parameters for multi-mapping. We then ran TEtranscripts with the “--

mode multi” setting to utilize its expectation-maximization algorithm for assigning multi-reads for the

resulting SAM file. Since TEtranscripts analyzes TE and gene expression together, we used refGene

annotation obtained by SQuIRE Fetch for the required GTF file. We used the parameters “--format

SAM”, “--mode multi”, “--stranded yes” for simulated human data, and “--format SAM”, “--mode

multi”, “--stranded no” for mouse data.

Aligner Comparison

41

We ran the aligners Bowtie1 [94], Bowtie2 [95], and STAR [52] on the simulated TE RNA-seq

data described above. We set each aligner to output a maximum of 2 valid alignments to quickly

identify uniquely aligning reads with the parameter “-m2” for Bowtie 1, “-k2” for Bowtie 2, and “--

outSAMmultNmax 2” for STAR. We also ran STAR with the parameters “--

outFilterScoreMinOverLread 0.4 --outFilterMatchNminOverLread 0.4 --chimSegmentMin 100” to

allow for discordant alignments, which STAR excludes by default. Bowtie2 reports discordant

alignments by default, while Bowtie 1 can only report paired alignments. We used BEDTools [90] to

intersect the BAM outputs to RepeatMasker annotation to identify the TEs to which the aligners

mapped the reads. Reads that only appeared once as “uniquely aligning”. We assessed whether the

mapped TE matched the templating TE for the simulated read to determine if the uniquely aligning

reads mapped to the correct location.

Statistical Analysis

Differential expression analysis of gene and TE expression was performed using DESeq2 [54] via

the SQuIRE Call tool (see Methods). P-values were adjusted for multiple-comparisons with an FDR

cutoff of 0.1. To determine if loci belonging to the IAPLTR3 subfamily were more likely to be

differentially expressed in testis compared to other TE subfamily loci, a Fisher’s exact test was

performed. The Fisher’s exact test was chosen due to the small percentage of TE loci that are

expressed. We compared the proportion of IAPLTR3 loci in the genome that were differentially

expressed in testis to the proportion of other TE subfamily loci that were differentially expressed.

Implementation of STAR aligner in Map

Map uses parameters tailored to the alignment of TEs. By default STAR only reports reads that

map concordantly and to 10 or fewer locations. Map retains more reads mapped to TEs by reporting

reads that fully map to 100 or fewer locations (--alignEndsType EndToEnd --outFilterMultimapNmax

100 –winAnchorMultimapNmax 100). For paired-end reads, Map also reports paired reads that map

discordantly (--chimSegmentMin <read_length>) and single reads with unmapped mates (--

42

outFilterScoreMinOverLread 0.4 –outFilterMatchNminOverLread 0.4). Map can incorporate the non-

reference TE sequences and generate a FASTA file that STAR adds to the genome index with the

option “—genomeFastaFiles <fasta> ”. To provide splicing information to the tools in the Analysis

Stage, Map also uses the UCSC RefSeq gene annotation and assesses reads overlapping splice

junctions with the options “—sjdbGTFfile <gtf> --sjdbOverhang <read_length -1> --twopassMode

Basic”. Map produces a sorted BAM file that includes intron and splicing information for

downstream transcriptome assembly analysis.

Implementation of StringTie in Count

Count runs StringTie [53] using these default settings guided by RefSeq gtf obtained from UCSC

with Fetch. Count uses the “-e” StringTie option to quantify expression only to annotated transcripts

without assembly of novel transcripts. We convert the fpkm values to counts by multiplying the per-

exon coverage by exon length normalized by read length.

DESeq2 Implementation in Call

Call incorporates the Bioconductor package DESeq2 [54,55] with its suggested parameters. Users

input the sample names and experimental design (ie which samples are treatment or control), which

Call uses to find Count data and create a count matrix for annotated RefSeq genes, StringTie

transcripts and TEs. Call outputs differential expression tables and generates MA-plots, data quality

assessment plots, and volcano plots.

STAR implementation in Draw

To visualize the distribution of reads across the TE, Draw runs STAR [52] with the parameters

“–runMode input AlignmentsFromBAM –outWigType bedGraph” to provide visualization of read

alignments. It will output bedgraphs of all reads (“multi”) and only uniquely (“unique”) aligning

reads. Draw also compresses the bedgraphs into bigwig format for IGV [56] and UCSC Genome

43

Browser [96] viewing. If the RNA-seq data is stranded it will output unique and multi bedgraphs for

each strand.

Further details of Count

Count uses a combination of SAMTools [91], BEDTools [90], awk and bash within a Python

script to perform the algorithm described in the main text. Because the quantitation in SQuIRE relies

on uniquely aligning reads, SQuIRE needed to resolve three issues in identifying uniquely aligning

reads and their mapped TE location. 1) Because RepeatMasker annotation includes overlapping TE

coordinates, a read can map uniquely at one genomic location corresponding to two TE loci. Count

identifies these reads as unique by collapsing reads and their mapped TEs before labeling. The two

TEs each would receive a unique count for that TE. 2) Similarly, when SQuIRE incorporates non-

reference polymorphic TE insertions, its location can be confused with overlapping reference TE

annotation. To address this, Map uses a custom chromosome name for non-reference TEs (eg.

“chr3_poly”) during alignments. To keep read assignments to non-reference TEs separate from

assignments to annotated TEs, Count changes the non-reference chromosome name back to the

conventional name (eg “chr3”) only after collapsing reads mapped to the same location. III) For

paired-end RNA-seq data, a read pair may map concordantly in only one location, particularly if one

mate maps outside of the TE. However, one or both of the TE mapping mates may not be uniquely

aligning, and map discordantly to other locations. In this situation, Count does not label these reads

as “uniquely aligning”, but assigns a full count to the TE and discards the discordant alignments.

Users who want to further reduce false positives can use a score value provided in the Count

output. The score is the percentage of the reads aligned to the TE that contributed to the total count. A

higher score, for example 99%, suggests greater certainty in the count assignment, and that little of

the multi-mapping reads were assigned elsewhere to other TEs. Indeed, we found that this strongly

correlated with % Observed/Expected with a coefficient (r=0.94, p< 2.2e-16). When we plotted the

44

TPR and PPV using various score thresholds, we found that using a score threshold of at least 50%

maximized the combination of TPR and PPV.

45

Figure 12. Precision-Recall curve of SQuIRE Count with varying confidence score thresholds.

Precision= Σ “True positive”/ Σ “Positive”). Recall=Σ “True positive”/ Σ “True”. Positive=SQuIRE reported

the TE has a count >10. True=TE was simulated to express > 10 reads. A score threshold of >50 maximizes

precision and recall.

46

47

3. Landscape of Transposable Element

Expression in Human Cells

3.1 Introduction

Since the human genome was first sequenced, it has long been characterized as islands coding

exons surrounded by a sea of ‘dark matter’ of unknown function[1]. A large portion of that dark

matter is comprised of transposable elements. TEs are self-mobilizing DNA sequences interspersed

throughout the genome [2]. Whereas DNA transposons “cut-and-paste” their genomic sequence into a

new location, retrotransposons are TEs that mobilize using a “copy-and-paste” mechanism via an

RNA-intermediate. Retrotransposons consist of long interspersed nuclear elements (LINEs), short

interspersed nuclear elements (SINEs) and long terminal repeats (LTRs)[4]. Their method of

propagation has resulted in similar copies of shared sequence throughout the genome.

TE insertions have been critical in shaping the human genome[17,97]. TEs contain promoters,

cis-regulatory sequences, and other functional domains that affect their transcription [26,85,98–100].

These functional domains may be adapted (or ‘exapted’) by lncRNA and mRNA genes in which they

insert[14,32,100–102]. They may be transcribed as exapted exonic sequence, transient intronic

sequence, or “downstream of gene” transcription as part of longer transcripts[88,103–105]. In

contrast, TEs may also be autonomously transcribed from their own promoters. While this is

necessary for a TE to be retrotranspositonally active, TEs that have lost their ability to mobilize may

still be transcribed. We term TEs that are transcribed independent of longer transcripts as “individual

TE loci” (ITLs).

TEs can thus be expressed as part of different transcript types. However, the extent of TE

transcription in these different contexts has been heretofore unknown. The repetitive nature of TEs

has posed computational and experimental challenges for the analysis of TE transcription. Although

TEs have been associated with tissue specificity, pluripotency, and cell differentiation, past studies

48

have been primarily down at the subfamily level[15,24,106]. Without locus level information, these

studies have run the risk of conflating TE-driven transcription with background transcription as part

of pre-mRNA and lncRNA transcripts. Here, we define the landscape of TE expression in normal

human cells using our TE analysis software SQuIRE (Software for Quantifying Interspersed Repeat

Expression) to discern TEs in pre-mRNAs, lncRNAs and ITL RNAs. Our study reveals that ITLs are

transcribed from infrequent, discrete loci in complex cell- and tissue type-specific patterns.

3.2 Results

To profile TEs expressed in normal human cells, we performed RNA-seq in primary human

umbilical vein endothelial cells (HUVEC) using a stranded ribosomal RNA (rRNA) depletion library.

To obtain locus-specific estimates of TE RNA expression, we ran the SQuIRE pipeline on the RNA-

seq data. Using a stranded RNA-seq library enables detection of whether a TE is transcribed in the

sense and/or antisense direction. We observed that 16% of expressed TEs had reads on both strands,

though the read count of one strand usually outnumbered the other by at least 2-fold (Figure 13). We

focused on the TE orders with the greatest genomic contributions: long interspersed element (LINE),

short interspersed elements (SINE), and long terminal repeat (LTR) retrotransposons, and DNA

transposons (DNA)[5],[107],[108]. Out of 4,245,814 reference genome TEs within those orders,

235,409 (6%) had 20 reads and > 0.1 fpkm on at least one strand and a confidence score of >95%,

indicating high likelihood of expression (Table 7.). This represented a wide range of all but the

youngest TE subfamilies. We did not observe a strong correlation between TE age and expression (r=

0.1, P < 2e-16), suggesting that differences in TE expression were not an artifact of TE alignment

issues. We used this expressed, high-confidence subset for further analysis.

49

Figure 13. Most TEs are expressed on one strand.

Barplot of % of all TEs with low, high, or infinite absolute fold differences in expression on sense and antisense

strands. TEs with <2X fold difference in counts between strands make up 16% of TEs. TEs with an infinite fold

difference have read counts on only one strand.

50

TE Order % TEs

DNA 6.56

LINE 6.61

LTR 4.64

SINE 4.79

Table 7. A low percentage of TEs is expressed. Percentage of TEs within each TE order with > 20 reads and >

0.1 fpkm on at least one strand.

51

Figure 16. Analysis of high-confidence TE counts is representative of all but the youngest TEs.

Percent of TEs within each TE order with weighted confidence > 95% is high in TEs with divergence > 100

mismatches to consensus sequence/kb. Divergence is used as a proxy for approximating TE age.

52

The distribution of TE expression loci was disproportionate to their representation in the

genome (Figure 14a). Furthermore, we found that 99% of transcribed TEs had reads aligning beyond

the 5’ or 3’ ends of the annotated TE sequence, suggesting they were part of larger transcripts (Figure

15). To examine the distribution of expressed TEs further, we categorized them by their positions

upstream, in 5’ UTRs, introns, exons, and 3 ’ UTRs, and downstream of the nearest gene. We found

that the overwhelming majority (87%) of expressed TEs arose from introns (Figure 16a). Only 15,311

out of 204,319 (7%) intronic TEs were also found using a poly-A selection library of the same RNA,

suggesting that the rest were likely part of precursor mRNA (pre-mRNA) transcripts, consistent with

previous studies (Figure 16b)[109]. Consistent with this, rRNA depletion increased the number of

identified intergenic TEs 2-fold (Figure 16c). Relative to their representation in genomic poositions

relative to the nearest gene, TE expression was most enriched in 3’UTRs (OR = 14.88, 95% CI =

14.42-15.35, P < 2 x 10-16) and least in 5’UTRs (OR = 2.59, 95% CI = 2.35-2.84, P < 2 x 10-16), and

depleted in intergenic spaces (OR = 0.07, 95% CI = 0.07-0.08 P < 2 x 10-16) (Figure 14b). The

transcribed TEs within and downstream of genes were primarily in sense orientation to the nearest

gene (98% intragenic, 85% downstream) and independent of the annotated TE strand (Figure 14c).

The expression of downstream TEs may be the result of downstream of gene (DoG) read-through

transcription[105]. Indeed, the number and expression level of downstream TEs decreased with

distance from the nearest gene (r = -0.04 P < 1 x10-7) (Figure 14d). This was not significant for

upstream TEs, which were fewer in number (Downstream: 16,311 TEs, Upstream: 6,268). The extent

of TE expression from genes highlights that the majority of TE expression is driven by the

transcriptional mechanisms of the surrounding or upstream gene.

53

Figure 14. Characteristics of TE expression.

a) Distribution of TE expression across chromosome 1. Transposable elements are expressed

disproportionately relative to their representation in the genome. Left, stacked histogram of genomic reference

LINE, SINE, LTR, and DNA TEs on chromosome; right, stacked histogram of subset of those TEs that are

expressed (weighted confidence > 95%, counts > 20). DNA elements are represented in green, LINEs in

orange, LTRs in yellow, and SINEs in blue. b) Transposable elements of all TE orders are enriched within

genes and depleted in intergenic spaces in HUVEC. Log2 fold enrichment of % TEs expressed in ribosomal

rRNA depleted HUVEC RNA relative to their representation in the reference genome. c) The direction of

intragenic and downstream TE transcription is driven by the strand of the nearby gene. Percent of TE-

containing transcripts that are sense to the nearest gene or TE annotation. Transcripts of TEs on both strands

were treated separately. d) TE expression level in log10 of counts per kilobase annotated TE length per million

reads (fpkm) relative to distance from the nearest gene. Intragenic TEs have distances of 0, upstream TEs have

negative value distances and downstream TEs have distances greater than 0.

% TE-containing transcripts

54

Figure 15. Most TE-containing RNA transcripts extend beyond TE sequence.

Percent of all TEs that are flanked at the 5’ end, 3’ end, or both (5’ & 3’ flanked), and percent of TEs that have

no flanking expression.

55

Figure 16. Ribosomal RNA depletion of HUVEC RNA enriches for transposable elements, particularly intronic

elements, as compared to poly-adenylated mRNA selection.

a) Count of TEs arising from upstream, 5’ UTR, exonic, intronic, 3’UTR, and downstream compartments using

a ribosomal RNA depletion HUVEC library. b) Count of TEs arising upstream, 5’ UTR, exonic, intronic,

3’UTR, and downstream compartments using a poly-A selection HUVEC library. Green represents DNA

transposons, orange represents LINEs, yellow represents LTRs, blue represents SINEs. c) Number of

transcribed TEs detected by ribosomal RNA depletion library, poly-A selection library, or both. Brown colors

indicate intergenic TEs, green indicates TEs arising from genes.

56

We next set out to further characterize the longer transcripts containing TEs. As we have

previously observed, most TEs were expressed close to each other on the same strand with flanking

expression. We also observed enriched TE expression downstream of genes, which we expected were

due to read-through transcription. To treat read-through TEs as part of the same transcripts as

intragenic TEs, we joined the coordinates of all TEs within 5kb of each other on the same strand

intersected the coordinates with RefSeq gene annotations, and lncipedia and NONCODE lncRNAs

annotations. Out of 16,798 TE-containing transcripts with an average fpkm > 0.1, 3,707 (22%) were

completely intergenic, 5,051 (29%) were completely within a RefSeq gene, 4,676 (28%) overlapped

and flanked one gene, and 3,364 (21%) overlapped multiple genes. Interestingly, there were 3,633

instances of transcripts anti-sense to annotated genes, which supports reports of TE involvement in

sense-antisense pairing to regulate RNA stability [110,111],[112],[113]. Among flanking transcripts

overlapping a single gene, 13% were oriented antisense to the gene (Table 8). In looking more

closely at antisense transcripts, we noticed a subset of 11 transcripts that were > 50 kb long and > 100

kb upstream and antisense from the nearest gene. When we examined one of these transcripts near the

Activated Leukocyte Cell Adhesion Molecule gene (ALCAM) in other cell types, we found high

antisense expression at either the 5’ end or at ~500 kb intervals upstream from the gene, but not both;

there was no upstream expression when ALCAM expression was low (Figure 17). This suggested the

involvement of chromatin looping that brought the distant region close to a bidirectional promoter,

allowing for antisense transcription. When we compared 6,168 intergenic and antisense transcript

coordinates with databases of long noncoding RNAs (lncRNAs), 2,248 (36%) overlapped with

lncRNA annotation[50],[114],[115]. However, 1,235 of those lncRNAs transcripts were longer than

reported, and another 3,920 were not annotated as lncRNAs at all. A contributing factor may be our

ability to resolve repetitive content; unannotated lncRNAs had 38% more low confidence TEs (P <

0.001). SQuIRE may thus provide a bottom-up approach to mapping TE-rich lncRNA expression.

57

Position relative to gene Sense Antisense

Upstream 360 (8%) 244 (5%)

Downstream 2492 (55%) 175 (4%)

Both 1058 (23%) 177 (4%)
Table 8. Number of TE-containing transcripts that overlap a single gene categorized by their position and

strand orientation relative to the gene.

58

Figure 17. Antisense long non-coding RNA (lncRNA) expression upstream of the ALCAM gene.

Plus-strand expression is depicted as upright bars, minus-strand expression is depicted as upside-down bars.

When plus-strand gene expression at ALCAM is high in aortic smooth muscle (AoSMC), human umbilical

endothelial (HUVEC), human renal epithelial (HRE) cell types, there is also minus-strand expression initiated

in close proximity to the promoter (AoSMC), at 500kb (HUVEC), or at 1Mb (HRE) upstream. Minus-strand

expression was low or absent at these locations when ALCAM gene expression was low in the bladder smooth

muscle cell type (BdSMC). Positions of TEs and NONCODE and lncipedia tracks are shown (bottom). The

expressed TE region in HUVEC (blue, chr3:104,569,124-104,911,050) extended beyond the lncRNA

annotations in NONCODE and lncipedia databases. The expressed TE regions in AoSMC (purple,

chr3:104,569,124-104,911,050) and in HRE (green, chr3:103,486,909-105,401,256) were not annotated in

NONCODE or lncipedia databases.

59

After grouping nearby expressed TEs in HUVEC RNA into lncRNA and pre-mRNA

transcripts, we noticed single-TE intergenic transcripts. To determine if these transcripts were derived

from individual TE loci (ITLs) or low-expressing lncRNAs, we ran the SQuIRE pipeline on RNA-seq

data from additional early-passage primary cell types representing four tissue types (epithelial,

muscle, connective, and nervous tissue) for a total of 31 datasets (Table 9). Nervous tissue cells

included both non-neuronal (astrocytes, retinal pigment epithelial cells) and neuronal (cortical and

dopaminergic neurons) cells. To identify TEs that are transcribed independently from nearby gene

transcription or pervasive transcription from open chromatin, we excluded TEs expressed within 40kb

of other TEs with high confidence scores. From the remaining ungrouped individual TEs we further

excluded those that overlapped same-strand lncRNA annotation or had low-confidence TE expression

within 5kb. Using these more stringent criteria we identified 128 intergenic single-TE transcripts

(Figure 18).

60

Table 9. Tissue type and RNA sequencing information of 31 cell types.

61

Figure 18. Examples of retrotransposon TE expression from individually transcribed loci (ITLs) in adult

epithelial keratinocytes (NHEK), prostate stromal cells (PrSc), skeletal muscle myoblasts (HSMM) and cortical

neurons (CNeuron).

Plus strand expression is depicted as upright positive counts, while minus strand expression is depicted as

upside-down negative counts. ITLs have no other TE expression within at least 5 kb in either direction on the

same strand. a) Transcription of a SINE subfamily AluSz at chr12:101,230,117-101,230,409 covers much of the

length of the annotated sequence. There was no annotated lncRNA overlapping the TE. The transcript is sense

to the strand of the TE RNA intermediate. b) Transcription of a LINE element L1PA11 at chr2:198,894,019-

198,897,256 is truncated (250bp) relative to the annotated sequence length (3237bp). The transcript is sense to

the strand of the TE RNA intermediate, and antisense to an annotated, spliced lncRNA. c) Transcription of LTR

element MLT2A2 at chr5:5,090,378-5,090,926. The transcript is sense to the strand of the TE, which is the LTR

region of a HERVL element.

62

Table 10. RNA sequencing information of HUVEC in ribosomal RNA-depletion and poly-adenylated mRNA selection libraries.

63

We further characterized this class of single-TE transcripts. To assess if the type of TE

phylogeny differs between ITL TEs and intergenic lncRNAs TEs, we performed Fisher’s exact tests

to test for enrichment of TE orders categorized as an ITL or part of an intergenic lncRNA transcript

compared to the representation of each TE order among all expressed TE transcripts. Whereas non-

ITL, intergenic lncRNAs TEs were more likely to contain LTR transposons (OR = 2.46, 95% CI =

2.43-2.49, P < 2 x 10-16) and were depleted in SINEs (OR = 0.57, 95% CI = 0.56-0.58, P < 2 x 10-16),

ITLs were enriched for SINES (OR = 4.26, 95% CI = 2.88-6.43, P < 1 x 10-14) and not likely to be

LTRs (OR = 0.57, 95% CI = 0.29-1.03, P > 0.05) (Figure 19a). Expression of ITLs (mean = 2.33

fpkm, sd = 8.84 fpkm) was higher than the average non-ITL TE expression (mean =1.18 fpkm, sd =

27.52, P < 1 x 10-7) (Figure 19b). With an average of 158.54 ± 72.83 mismatches/kb, ITLs were also

younger compared to TEs from other loci (212.91 ± 81.22, P < 1 x 10-13). In contrast to gene and

lncRNA TEs, 88% of the ITL transcripts were in sense orientation with the annotated TE strand, and

only 39% were sense to the nearest gene (Figure 19c). Retotransposon ITLs were more likely to be

transcribed without flanking transcription than TEs part of larger transcripts (OR=27.06, 95% CI

=22.38-32.65, P < 2 x 10-16) and 87% initiated transcription at or downstream from the TE start.

Among all the ITLs, 8 had > 0.1fpkm and > 20 counts on both strands; 7 of them were on the

opposite strand of a longer lncRNA and could be involved in lncRNA regulation. The other was a

DNA transposon (Tigger19b) that also had the highest expression with a maximum of 118 fpkm and

2711 reads (Figure 20a). DNA transposons, although only 4% of ITLs, also differed from

retotransposon ITLs by being more likely to have flanking transcription (OR=48.75, 95% CI = 8.27-

1954.64, P < 1 x 10-12), with 98% initiating upstream of the TE sequence (Figure 20 b and c).

Nevertheless, all of the DNA ITLs were transcribed in sense to the TE strand, and nearby TEs

exhibited no expression. Together these findings suggest ITL expression is driven by neither pre-

mRNA nor lncRNA transcription.

64

Figure 19. Characteristics of ITLs.

a) SINEs disproportionately contribute to ITLs (OR=4.26, 95% CI=2.88-6.42, P< 1 x10-14) relative to other

TE orders (DNA OR=0.32, 95% CI=0.10-0.77, P< 0.01, LINEs OR=0.32, 95% 0.19-0.52, P< 1 x10-6, LTR

OR=0.57, 95% CI=0.29-1.03, P > 0.05). Other intergenic TE-containing transcripts (lncRNAs) are enriched in

LTRs (OR=2.46, 95% CI=2.43-2.49, P< 2 x10-16) and depleted in SINEs (OR=0.57, 95% CI=0.56-0.58, P< 2

x10-16) and DNA TEs (OR=0.71, 95% CI=0.70-0.72, P< 2 x10-16). Dashed line indicates an odds ratio of 1,

or no enrichment or depletion. b) Log10 fpkm ITL expression across TE orders. Dashed line represents

expression level of average non-ITL TEs (1.17fpkm). Average fpkms: DNA=27.86, LINE=7.10, LTR=0.43,

SINE=4.97. c) ITLs directionality is driven by the encoding TE rather than nearby gene or lncRNA

transcription. Percent of ITLs across all cell types that are sense to TE or gene direction is shown. Dashed line

at 50% indicates no strand bias. ITLs are most commonly sense to the annotated TE strand (87%), but not to

the nearest gene’s strand (38%).

65

Figure 20. DNA transposon ITL expression patterns across multiple cell types.

a) The highest expressing ITL (mean expression on + strand: 1340.10 reads, 52.21 fpkm) is a plus (+) strand

Tigger19 at chr3:82807390-83807468 with expression both strands. b) Odds ratio of having flanked expression

of ITLs from different superfamilies. DNA transposon ITLs are the only TE order significantly likely to have

transcripts extending beyond the 5’ and 3’ ends of the TE annotation (OR: 48.75, 95% CI= 8.27-1954.64, P <

1x10-12. Dashed line indicates equal likelihood of having and not having flanking expression among ITLs of TE

order. c) Percent of ITLs from each TE order with transcript starts initiating upstream (>15bp 5’), at (±15bp),

or downstream (>15bp 3’) of the TE annotated start.

66

To support that ITL transcripts are distinct from intergenic and gene-overlapping transcript

regions, we performed non-supervised hierarchical clustering treating using these three transcript

types. We found that we were able to accurately group the cells according to organ and tissue type

(Supplementary Fig. 9). The ITLs were overrepresented in number among all TE-containing

transcribed regions (OR 21.42, 95% CI = 11.81-38.48, P < 1 x 10-19) and were highly cell-specific.

Only five were expressed in all 31 cell types while 79 ITLs were expressed in only one cell type

(Supplementary Fig. 10). We noticed that cells of epithelial and nervous lineage expressed

significantly more ITLs on average than those derived connective tissue (Connective: 12.09, Muscle

13.88, Epithelial: 19.50, Nervous: 21.25 average ITLs, P < 0.05) (Supplementary Fig. 11). When we

examined ITL expression patterns across cells, we identified two clusters of TEs particularly involved

in characterizing epithelial and neuronal cells (Fig. 6). In addition, we found that SINEs (particularly

the Alu and MIR subfamilies) were enriched in epithelial cells (OR=1.80, 95% CI=1.17-2.81, P <

0.05) and depleted in neuronal cells (0.44, 95% CI=0.22-0.87, P < 0.05), and LINEs (particularly

L1s) were enriched in neuronal cells (OR=2.50, 95% CI =1.20-5.03, P < 0.05) and depleted in

epithelial cells (0.51, 95% CI=0.29-0.88, P < 0.05) (Supplementary Fig. 12). Despite this enrichment,

LINE expression in fpkm was significantly lower in nervous tissue cell types compared to all other

cells (nervous tissue: 1.37 fpkm, non-nervous tissue 9.06 fpkm, P < 1 x 10-7) (Supplementary Fig.

13). Studying the landscape of ITL expression suggests a complex regulation involving both TE and

cell type.

67

Figure 21. TE-containing transcribed regions can be used to group cell types by tissue and organ type.

Colors in the heatmap represent log2 fold-change from mean region fpkm expression across cell types. White

indicates absence of expression in that cell type. Transcribed regions are expressed, high-confidence TEs

grouped within 40kb of each other. Transcribed regions either overlap genes (“genic”), are intergenic, or are

ITLs as indicated on x-axis. Cell type abbreviations: HRPEpiC: retinal pigment epithelial cells; NH-A:

astrocytes; Cneuron: cortical neurons; Dneuron: dopaminergic neurons; RPTEC: renal proximal tubule cells;

HRCEpiC: renal cortical epithelial cells; HRE: renal epithelial cells; PrEC: prostate epithelial cells; HMEC:

mammary epithelial cells; NHEK-neo: neonatal epidermal keratinocytes; NHEK-Ad: adult epidermal

keratinocytes; NHBE: bronchial epithelial cells; InMyoFib: Myofibroblasts; PrSC: prostate stromal cells;

NHMC: mesangial cells; NHOst: osteoblasts; NHAC: articular chondrocytes; HPdLF: periodontal ligament

fibroblasts; NHDF-neo: neonatal dermal fibroblasts; Melano: Melanocytes; NHDF-Ad: adult dermal

fibroblasts; SKMC: skeletal muscle cells; HSMM: skeletal muscle myoblasts; AoSMC: aortic smooth muscle

cells; BdSMC: bladder smooth muscle cells; NHCF-V: cardiac fibroblasts; PrSMC: prostate smooth muscle

cells; HAEC: aortic endothelial cells; HUVEC: umbilical vein endothelial cells; HMVEC: microvascular

endothelial cells.

68

Histogram of number of ITLs expressed in various numbers of cell types.

Figure 22. Most ITLs are expressed in only one cell type.

69

Figure 23. Epithelial and nervous tissue cell types express more ITLs on average than connective tissue cell

types.

Boxplot of number of ITLs expressed per cell type in connective, epithelial, muscle and nervous tissue cell types.

The single asterisk (*) indicate significance with P < 0.05. Double asterisks (**) indicate P < 0.01.

70

Figure 24. Clustering ITL expression by cell type reveals epithelial and neuronal-specific patterns of

expression.

ITL transcripts are indicated on the x-axis and colored by TE order (green: DNA, orange: LINE, yellow: LTR,

blue: SINE). Cell types and their tissue types are indicated on the y-axis (blue: connective, green: epithelial,

red: muscle, yellow: nervous tissue cell types). Colors in heatmap represent log2 fold-change from mean ITL

expression across cell types. White indicates absence of ITL expression in that cell type. Bolded cluster lines

onthe x-axis indicate clusters particularly involved in grouping neuronal and epithelial cell types by ITL

expression. Cell type abbreviations: HRPEpiC: retinal pigment epithelial cells; NH-A: astrocytes; Cneuron:

cortical neurons; Dneuron: dopaminergic neurons; RPTEC: renal proximal tubule cells; HRCEpiC: renal

cortical epithelial cells; HRE: renal epithelial cells; PrEC: prostate epithelial cells; HMEC: mammary

epithelial cells; NHEK-neo: neonatal epidermal keratinocytes; NHEK-Ad: adult epidermal keratinocytes;

NHBE: bronchial epithelial cells; InMyoFib: Myofibroblasts; PrSC: prostate stromal cells; NHMC: mesangial

cells; NHOst: osteoblasts; NHAC: articular chondrocytes; HPdLF: periodontal ligament fibroblasts; NHDF-

neo: neonatal dermal fibroblasts; Melano: Melanocytes; NHDF-Ad: adult dermal fibroblasts; SKMC: skeletal

muscle cells; HSMM: skeletal muscle myoblasts; AoSMC: aortic smooth muscle cells; BdSMC: bladder smooth

muscle cells; NHCF-V: cardiac fibroblasts; PrSMC: prostate smooth muscle cells; HAEC: aortic endothelial

cells; HUVEC: umbilical vein endothelial cells; HMVEC: microvascular endothelial cells.

71

Figure 25. Comparison of enriched TE orders across tissue types.

Log2 odds ratio of each cell type expressing ITLs from DNA, LINE, LTR and SINE TE orders.Line represents

95% confidence intervals. Neuronal cell types are more likely to express LINE TE order ITLs (OR = 2.50, 95%

CI = 1.20-5.03, P < 0.05) and epithelial cell types are more likely to express SINE TE order ITLs (OR = 1.80,

95% CI = 1.17-2.81, P < 0.05).

*

*

72

Figure 26. Expression of LINE ITLs is lower in nervous tissue cell types compared to other cell types.

Boxplot of log10 fpkm of ITLs in connective, epithelial, muscle and nervous tissue cell types. Double asterisks

(**) indicate p-value < 0.01.

73

3.3 Discussion

 By using ribosomal-depleted, high-depth, and stranded RNA sequencing and mapping to

individual loci with our SQuIRE bioinformatics pipeline, we were able to resolve the genomic loci

and structure of TE-derived transcripts and provide the most comprehensive analysis of TE

expression in noncancerous human cells to date. While most TEs were expressed as part of pre-

mRNA transcripts and 3’ read-through, we have also identified extensive lncRNAs TE expression

and individual TE locus (ITL) expression. We have differentiated between lncRNAs and ITLs by

enriched TE phylogeny and patterns of expression across cell types, which was previously impossible

to resolve by RT-PCR, microarrays, or mapping to TE consensus sequences. We have also discovered

that ITL transcription varies by tissue type, particularly in nervous tissue cell types, which is

complementary to previous evidence of active retrotransposition in the brain[116]. By precisely

quantifying which single TEs are transcribed across normal cells, we are poised to better understand

TE expression in disease.

3.4 Methods

Primary Cell Culture. The aortic endothelial cell type (HAEC) was obtained during cardiac

transplantation and cultured as previously described[117]. All other non-neuronal primary cells were

obtained from Lonza (Walkersville, MD). All primary cells were cultured according to

manufacturer’s specifications for no more than 6 passages (Supplementary Table 3). We isolated total

RNA with the miRNeasy kit from Qiagen (Hilden, Germany) according to the manufacturer’s

protocol. We used the Agilent BioAnalyzer to assess RNA integrity and approximate RNA

concentration.

Differentiation of human embryonic stem cells cells to cortical neurons. Human cortical

neurons were differentiated from H1 hESCs (human embryonic stem cells, Wi Cell, Madison, WI)

using our recently developed RONA (rosette-type neural aggregates) method[118]. Briefly, detached

hESC colonies were grown in suspension in human ES cell medium without FGF2 (defined as

74

knockout serum replacement medium, KoSRM) in low attachment 6-well plates (Corning, Corning,

NY), supplemented with Noggin (50ng/ml ; R&D systems, Minneapolis, MN) or Dorsomorphin

(1μM, Tocris Bioscience, Bristol, UK) and SB431542 (10μM, Tocris Bioscience) from day 2 to day

6. Free-floating embryoid bodies (EBs) were attached and supplied with N2-induction medium (NIM)

containing DMEM/F12 (Invitrogen, Carlsbad, CA), 1% N2 supplement (Invitrogen), 100 μm NEAA

(Invitrogen), 1 mM Glutamax (Invitrogen), and heparin (2 μg/ml; Sigma, St. Louis, MO) from day 7

to day 16. Highly compact 3-dimensional column-like neural aggregates were collected and

maintained as neurospheres in Neurobasal medium containing B27 minus vitamin A (Invitrogen), 1

mM Glutamax 1 day. For neuronal differentiation, dissociated neurospheres were maintained in

neural differentiation medium containing Neurobasal/B27 (NB/B27, Invitrogen), BDNF (20ng/ml,

PeproTech, Rocky Hill, NJ), GDNF (20 ng/ml, Peprotech), ascorbic acid (0.2 mM, Sigma), dibutyryl

cAMP (0.5mM, Sigma).

Differentiation of human embryonic stem cells cells to dopaminergic neurons. H1 human

embryonic stem cells were cultured using a standard protocol for inactivated mouse embryonic

fibroblasts. Differentiation of hES cells to dopaminergic neurons was done as previously

described[119]. Briefly, single hES cells were cultured on Matrigel-coated plates at a density of

40,000 cells/cm2 in serum replacement media (SRM) containing FGF8a (100ng/ml, R&D Systems),

SHH C25II (100ng/ml, R&D Systems), LDN193189 (10µM, Stemgent, Cambridge, MA), SB431542

(10µM, Tocris Bioscience), CHIR99021 (3µM, Stemgent) and Purmorphamine(2µM, Stemgent) for

the first five days. Next, the cells were maintained in neurobasal medium containing B27 minus

vitamin A, 1% N2 supplement along with LDN193189 and CHIR99021 for six days. In the final

stage, a single cell suspension was made and seeded at a density of 400,000/cm2 on polyornithine

(15µg/ml) - and laminin (1µg/ml) - coated plates in neurobasal media containing B27 minus Vitamin

A, BDNF (20ng/ml), GDNF (20ng/ml), TGFβ3 (1ng/ml, R&D Systems) ascorbic acid (0.2mM),

dibutyryl cAMP (0.5mM) and DAPT (10µM, Tocris Bioscience) until maturation.

75

RNA-seq Preparation and Sequencing. The RNA libraries of all 31 cell types were prepared

using the Illumina TruSeq Stranded Total Library Prep Kit with Ribo-Zero Gold (San Diego, CA) to

provide stranded, ribosomal RNA depleted RNA. The libraries were sequenced on an Illumina HiSeq

2500, using 2 cell types per lane with paired-end 100bp reads. We generated a mean of 129,105,260

million paired reads per sample. In addition, two HUVEC RNA libraries were prepared to compare

Illumina TruSeq Stranded Total Library Prep Kit with Ribo-Zero Gold with the TruSeq RNA Library

Preparation Kit v2 kit that selects for poly-adenylated mRNA (Supplementary Table 5). These two

preparations generated a mean of 160,158,655 paired reads per sample. Reads were assessed for

sequencing quality using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and

trimming was deemed unnecessary. RNA-seq data was submitted to the NCBI database under

BioProject PRJNA321055.

SQuIRE Pipeline. We aligned the RNA-seq data using the SQuIRE Map tool, which

incorporates STAR[52] and SAMTools[91] commands. The SQuIRE Map command used the “—

read_length 100 –pthreads 8 –build hg38” parameters. We quantified TE expression using the

SQuIRE Count tool, which outputs RNA expression estimates in counts and fpkms. The SQuIRE

Count command used the “—build hg38 –pthreads 8 –strandedness 1 –EM auto” parameters.

TE analysis. We selected for TEs with a weighted confidence greater than 95%, more than 20

counts and an fpkm greater than 0.1 on either strand as high-confidence, expressed TEs. For TEs with

expression on both strands, we treated each strand separately. The relationship between age (using

divergence in base mismatches/kb from the consensus sequence as a proxy) was calculated using

Pearson’s correlation. Enrichment analysis of TEs in different gene and intergenic compartments was

conducted using Fisher’s Exact test, with p-values adjusted for multiple comparison’s using the

Benjamini-Hochberg procedure [120].

Grouping multiple TEs into transcripts in HUVEC. We used the GenomicRanges package to

group TEs with more than 1 read count within 5kb of each other on the same strand. The expression

76

level of these transcripts is the average fpkm of all TEs within each grouping. Multi-TE transcripts

were also compared to lncRNA coordinates in RefSeq, lncipedia and NONCODE databases

[50],[114],[115]. We compared the weighted confidence values of TEs in known lncRNAs to those of

other TEs using Student’s t-test with Welch’s approximation for degrees of freedom.

Identifying ITLs. We selected for TEs with a weighted confidence greater than 95%, more than

20 counts and a fpkm greater than 0.1 on either strand. We used the GenomicRanges package to

group these high-confidence, expressed TEs within 40kb of each other on the same strand. The

genomic coordinates of these groups were overlapped across 31 cell types. The expression level of

these transcribed regions is the average fpkm of all TEs within each grouping. Out of 6,088 TEs

without other high-confidence TE expression within 40kb, we further filtered out those that had

expressed TEs with any weighted confidence (including < 95%) within 5kb on the same strand. The

remaining TE loci coordinates were overlapped with Refseq, NONCODE and lncipedia databases of

lncRNAs. TE transcripts with no nearby TE expression on any cell type within 5kb and that were not

part of lncRNA annotation were considered individual TE loci (ITLs).

ITL Analysis. Enrichment of TE orders in genic, intergenic (lncRNA), and ITL TEs was

conducted using Fisher’s Exact test, with p-values adjusted for multiple comparison’s using the

Benjamini-Hochberg method. The ages of ITL and non-ITL TEs were compared using Student’s t-

test with Welch’s approximation for degrees of freedom. The likelihood of a TE being flanked was

calculated using Fisher’s Exact test, with p-values adjusted for multiple comparison’s using the

Benjamini-Hochberg method. ITL overrepresentation among transcribed regions was also calculated

with Fisher’s Exact test. The number of ITLs expressed and their average fpkm level were compared

between connective, epithelial, muscle and nervous tissues using pairwise Student’s t-tests with

Welch’s approximation for degrees of freedom, with p-values adjusted for multiple comparison’s

using the Benjamini-Hochberg method. Enrichment and depletion of ITL TE orders among different

tissue types was calculated using Fisher’s Exact test, with p-values adjusted for multiple

77

comparison’s using the Benjamini-Hochberg method.

Heatmap and clustering. The transcribed region fpkm expression of each cell type was divided

by the region’s mean fpkm expression across all cell types. Transcribed regions with a mean fpkm >

0.1 across all cell types were analyzed. We took the log2 of these values, and log values of regions

that had no expression in a cell type (log2 0 = - ∞) were replaced by a negative number larger than the

most negative log2 fold change (-15). The 400 transcribed regions with the greatest absolute sum of

these log2 fold changes were used for clustering. The Manhattan distances between cell types and TE

groups were clustered using the ward method. We used the heatmap.2 package in R (http://CRAN.R-

project.org/package=gplots) to generate heatmaps with these clusters.

78

4. Landscape of Individual TE Loci

Expression in Human Cancers

4.1 Introduction

Healthy cells maintain a steady state with protective mechanisms to prevent uncontrolled growth and

propagation of cell damage[29,121,122]. Without those protective mechanisms, some of that damage can

be mediated by unchecked transposable element expression [6,122]. Transposable elements (TEs) are

genomic sequences that have generated self-propagating insertions throughout our evolutionary history,

ultimately making up almost half of our human genome [1,2]. Even though only a few subfamilies of TEs

are still capable of self-propagation, a larger subset retain intact sequences to enable transcriptional and

translational activity[7,82]. Their transcription is inhibited by genome wide methylation of repetitive

sequences, as well as other innate molecular mechanisms of TE inhibition[123,124]. Cancer has been

linked with dysregulation of many of these mechanisms[124–128]. In addition, TE expression has been

linked to tumorigenesis and cancer progression, and increased somatic insertions have been found in

many cancer types. However, a comprehensive expression analysis of all TEs in cancer has not yet been

elucidated at the locus level.

The locus-specific study of TE expression in cancer has been limited due to past difficulties with

analyzing RNA-seq expression. Because TEs have replicated themselves by generating insertions

throughout the genome, their sequences are repetitive. Short-read alignment from next generation

sequencing can lead to an RNA-seq read mapping to multiple TE loci with shared sequence. Past RNA-

seq approaches have either discarded these multi-mapping sequences or collapsed TE quantification to the

subfamily level among multiple TE copies sharing high sequence identity[43–45,129]. To better quantify

TE expression at the locus level, we developed SQuIRE which leverages a TE locus’ uniquely mapping

reads to estimate the probability of it originating a multi-mapping read that ambiguously maps to that and

79

other locations (described in Chapter 2). In addition, TE insertions can be located within the bounds of

longer genes, so the expression of TEs and longer transcripts can be conflated. We have previously

identified TEs that are transcribed as part of longer transcripts as in which the TE’s expression is

regulated independent of the TE’s sequence, which we define as TE-extrinsic regulation. We have also

identified examples of TE-intrinsic regulation, transcripts in which the TE’s sequence is the driver of

expression, either providing promoter sequence at the start of a longer transcript or as an individually

transcribed locus (ITL). To distinguish these types of expression, we have expanded on the SQuIRE

pipeline to distinguish these types of TE regulated expression in a high-throughput manner.

To investigate TE expression in cancer, we applied SQuIRE to 752 patient cases from the Cancer

Genome Atlas (TCGA) project from 10 different cancer types[130]. To focus on TEs for which we have

high confidence that their regulation is intrinsic to the TE sequence, we focused on ITL expression rather

than including TEs in longer transcripts in our analysis. We compared ITL expression from TCGA cancer

samples to 640 healthy samples from matched tissue types from Genotype Tissue Expression project

(GTEx) [131]. In addition to comparing between tumor and normal and across cancer types, we also

correlated differences in TE expression with clinical data.

Our findings are the most comprehensive analysis of TE expression in human cancer cells. Using

SQuIRE, we are able to characterize TE expression at the locus level. This allows us to understand the

genomic source and transcript type of differentially expressed TEs in normal tissues and cancer.

Identifying differentially expressed TEs in cancer may provide sources of biomarkers and therapeutic

targets as well as shed light on tumor pathogenesis.

4.2 Results

80

Organ Type Database

Number of

Samples

Bladder normal GTEx 4

 BLCA TCGA 68

Breast normal GTEx 110

 BRCA TCGA 69

Colon normal GTEx 58

 COAD TCGA 75

Brain normal GTEx 64

 GBM TCGA 54

Kidney normal GTEx 15

 KIRC TCGA 75

Liver normal GTEx 71

 LIHC TCGA 58

Lung normal GTEx 79

 LUSC TCGA 64

 LUAD TCGA 53

Ovary normal GTEx 50

 OV TCGA 52

Pancreas normal GTEx 58

 PAAD TCGA 69

Prostate normal GTEx 66

 PRAD TCGA 52

Stomach normal GTEx 65

 STAD TCGA 63

 Total 1392

Table 11. Samples analyzed from GTEx and TCGA databases.

BLCA=bladder carcinoma. BRCA=breast carcinoma. COAD=colon adenocarcinoma. GBM=glioblastoma.

KIRC=kidney renal carcinoma. LIHC=liver hepatocellular carcinoma. LUSC=lung squamous carcinoma.

LUAD=lung adenocarcinoma. OV=ovarian serous cystadenocarcinoma. PAAD = pancreatic adenocarcinoma.

PRAD=prostate adenocarcinoma. STAD=stomach adenocarcinoma.

81

To investigate the effects of malignancy on TE regulation, we sought to characterize the

landscape of ITL expression in cancer samples. To compare between tumor and normal samples, we

selected samples TCGA from 10 different cancer types. Because adjacent normal tissue may have

molecular similarities with tumor that may not be detectable upon surgical resection, we compared TCGA

samples with samples from GTEx from the same organ type. The number of samples used in this analysis

for each organ is shown in We then ran the SQuIRE pipeline on each sample using the GRCh37/UCSC

hg19 assembly for alignment, reference gene and TE annotation. This included aligning RNA-seq data to

the genome using Map, quantifying TE expression with Count, and outputting bedgraph tracks for

visualization with Draw. To identify TEs that are transcribed as ITLs, we developed a new module, Flag,

which compares transcribed TE expression levels and coordinates from Count to RefGene annotation and

assembled transcript annotation using StringTie. Flag then evaluates if the TE is expressed as part of a

previously annotated or novel longer transcript, or if it transcribed as an ITL. More details of Flag are

described in Methods. We subset the SQuIRE output for ITLs for further characterization of TE

expression across our TCGA and GTEx samples. Because many ITLs are partially expressed, we further

filtered our analysis for “full-length” ITLs that were transcribed at >90% of the annotated length.

ITL expression is not greater in tumor samples compared to normal samples.

82

Figure 27. ITL expression levels as fragments per kilobase per million reads (fpkm) is not significantly

increased in tumor samples.

Boxplot comparison of mean expression level of ITLs between pooled cancer and pooled normal samples. ITLs

are full-length as defined as having a transcript length > 90% the annotated length.

83

84

Figure 28. Comparison of ITL expression level between cancer and normal by TE order and cancer type.

Boxplot of ITL expression as fragments per kilobase per million aligned reads (fpkm). ITLs are full-length as

defined as having a transcript length > 90% the annotated length. Student’s t-tests were performed comparing

the particular cancer type and matched normal sample from GTEx. P-values were adjusted for multiple

comparisons with an FDR < 0.05. *=p-value < 0.05. ** = p-value < 0.01 *** = p-value < 0.001. DNA=DNA

transposon, LINE=Long interspersed nuclear element, LTR=long terminal repeat retrotransposons,

SINE=short interspersed nuclear elements.

85

To determine if ITL expression is de-repressed in cancers, we first evaluated the mean ITL

expression of level as fragments per kilobase per million aligned reads (fpkm) to account for

differences in library size across samples. To see if changes in TE expression were global, we first

evaluated pooled cancer sample ITL expression compared to normal samples. We found that the

mean ITL expression was not significantly different between cancer and normal samples when

examining all cancer types (Figure 27Figure 28.). To see if this due to variations in cancer type that

reduced the ability to detect significant changes in TE expression, we then compared mean ITL

expression within each cancer type with normal samples from the same organ. We similarly found no

differences in expression within each cancer type. Finally, to assess if changes in TE expression were

specific to a subset of TE types, we parsed ITLs by their TE order phylogeny and compared between

cancer and normal samples from the same organ. With this method of analysis we found that in fact,

TEs within the same order exhibited higher mean levels of expression in normal samples than in

cancer samples in several organ types (Figure 28.).

Tumor samples are more permissive for TE expression of distinct ITLs

86

Figure 29. Distinct ITLs expressed in tumor and normal samples.

Venn diagram of numbers of distinct TE loci expressed as individual transcripts (ITLs) exclusively in tumor

samples, exclusively in normal samples, and in both tumor and normal samples.

87

Figure 30. A greater fraction of tumor samples express high numbers of ITLs per sample.

Density plot of permissiveness, or ITLs per sample expressed in tumor and normal samples.

88

Figure 31. ITL permissiveness varies across cancer types.

Boxplot comparison of ITL permissiveness across cancer types. Blue horizontal line represents average number

of ITLs per sample in tumors, and red horizontal line represents average number of ITLs per sample in GTEx

samples.

89

Because we were expecting derepression of TE expression and increased ITL expression levels,

we next sought to determine if the loci expressed in cancer were distinct from the loci expressed in

normal samples. To assess this, we identified the different ITLs expressed in tumor and normal

samples and evaluated how often they were expressed in both tumor and normal samples (Figure 29).

Among the 47,302 ITLs expressed in our cancer samples, 2,998 (6.3%) that were also expressed in

normal samples. Conversely, these ITLs expressed in tumor and normal samples represent 35% of the

8,418 ITLs expressed in normal samples. This suggests that while the overall expression levels of

ITLs does not increase in cancer, the number of distinct loci are increased. To support this, we

analyzed the number of ITLs expressed per sample and normalized for the number of cancer and

normal samples. We used the number of ITLs expressed per sample as a proxy for “permissiveness”

for TE expression. This is depicted in the density plot shown in Figure 30. As expected,

permissiveness is increased in cancer samples: 48.6 ITLs per sample in cancer compared to 15.5 ITLs

per sample in normal samples (Student’s t-test, p-value <0.05). When comparing across cancer types,

we found that particular cancer types exhibited greater permissiveness than others; in particular breast

carcinoma (BRCA), liver hepatocellular carcinoma (LIHC) and ovarian carcinoma (Figure 31).

90

Figure 32. Older patients have greater permissiveness to TE expression.

Violin plot with x-axis patients who are at least 45 years old or less than 45 years old and y-axis number of

ITLs per sample as a proxy for permissiveness to TE expression. *** = Student’s t-test, p<0.001. Number of

patients ≥ 45 years old: 1,103, Number of patients <45 years old: 1,103.

91

TCGA provides patient clinical data for their cancer samples; all cases had accompanying patient

age and sex. To evaluate if these variables correlated with ITL permissiveness. Among cancer types

with representation among both men and women, we did not find a significant difference in

permissiveness between sexes. When we plotted patient age with ITLs per sample, we found a

marked increase in ITLs among patients > 45. We performed a Student’s t-test and found that the

mean ITLs per sample was significantly greater in patients > 45 years old compared to younger

patients (> 45: 95 ITLs/sample, < 45: 51 ITLs/sample, p-value 0.000875), as shown in Figure 32.

Similarly, performing a Fisher’s Exact test confirmed that highly permissive samples (> 100 ITLs per

sample) were enriched in patients at least 45 years old, with an odds ratio of 85.16 (95% CI 58.37-

124.84, p-value <0.0001). We performed an ANOVA to determine if this relationship was dependent

on cancer type, and found no interaction between age and cancer type for ITL permissiveness.

Tumor ITLs are more likely to be LTRs and LINEs.

92

Figure 33. Likelihood of a tumor-specific ITL to belong to one of the above TE orders compared to their

presence in genome.

 Each point represents the odds ratio of ITL belonging to particular TE order from Fisher’s Exact Test

compared to the representation of all ITLs in all cancer samples. Horizontal line represents 95% confidence

interval. P-values were adjusted for multiple comparisons for a false discovery rate of <0.05.

93

Figure 34. Enrichment of TE orders across different cancer types.

Center position of each cancer type text represents the odds ratio of ITL belonging to particular TE order from

Fisher’s Exact Test compared to the representation of all ITLs in all cancer samples. P-values were adjusted

for multiple comparisons for a false discovery rate of <0.05. Only TE orders with significant enrichment in a

cancer type are depicted here.

94

To assess if particular types of ITLs are enriched in cancer compared to normal samples, we

categorized ITLs by their TE order and performed a Fisher’s Exact Test comparing if particular TE

orders were enriched in cancer among all TEs expressed in both tumor and normal samples (Figure

33). We found that LINE and LTR ITLs were more likely be expressed overall in cancers. We wanted

to see if this enrichment varied for various cancer types and performed repeated Fisher’s Exact tests

for each cancer type, adjusting for multiple comparisons for a false discovery rate of 0.05 (Figure 34).

We found that LINE ITLs were enriched in colon cancers relative to LINES in the genome, and LTR

ITLs were enriched in glioblastoma. However, SINE ITLs were enriched in pancreatic

adenocarcinoma.

Frequency of ITL expression across samples

95

Figure 35. Tumor-specific ITLs are rarely expressed across all cancer types.

Dotted line represents mean % samples expressed per ITL across all cancers.

96

Figure 36. Percentage (%) of samples with ITL expression verses the divergence of the ITL from its consensus

sequence. The proportion of samples showing expression is inversely correlated with % divergence of the ITL

from the consensus sequence.

ITLs that are expressed in > 25% samples (horizontal yellow line) appear concentrated among relatively

younger ITLs with < 20% divergence (vertical green line).

97

Figure 37. ITLs that are expressed in more than 1 sample are more likely to be < 20% divergent from the

subfamily consensus sequence.

Fisher’s exact tests were performed to evaluate odds ratio that a particular ITL is <20% divergent from the

consensus sequence. This enrichment is greatest among ITLs that are expressed in >25% of samples.

98

We next ascertained if tumor-specific ITLs were expressed more frequently across samples than

normal-specific ITLs. We found that while both tumor-specific and normal-specific ITLs were

generally sample-specific (normal mean: 1.72 samples per ITL, tumor mean 1.88 samples per ITL), a

greater percentage of tumor-specific ITLs (24.74%) were expressed in more than one sample

compared to normal sample-specific ITLs (19.71%). The mean percentage of samples expressed per

ITL was low for tumor-specific ITLs among all cancer types (Figure 35). To assess if the ITLs

expressed in permissive samples were more likely to be expressed in multiple samples, we performed

Fisher’s exact test. We did not find any interaction between sample permissiveness and ITL

frequency. This suggests that the mechanisms repressing ITL expression are not targeting particular

loci. To assess if how often an ITL was expressed in multiple samples correlated with how young the

TE locus was, we correlated number of samples expressed per ITL with % divergence from the

consensus sequence as a proxy for age (

99

Figure 36). We found the frequency of expression inversely correlated with the age (r=-0.11, p-

value < 2.2 e-16). In particular, we observed more frequently expressed ITLs among TEs with less

than 20% divergence from the consensus sequence, which we confirmed by performing a Fisher’s

exact test for enrichment of these younger TEs among different ITL expressing frequencies, while

accounting for multiple comparisons using a false discovery rate < 0.05. We categorized ITL

frequency as restricted (1 sample), rare (<10% of samples, > 1 sample) common (10-25% of samples)

and frequent (at least 25% of samples). We found that the enrichment for TEs with < 20% divergence

was greatest among the “frequent” category of ITLs expressing in > 25% of samples (Figure 37). This

suggests that younger elements are more likely to retain sequence required for intrinsic transcriptional

activity.

4.3 Discussion

Malignancy is characterized by the disruption of multiple processes that regulate

transcription[31,83,124–128,132]. Many of these processes are involved in suppressing TE

expression[15,40,121,125]. We assessed the differences in TE expression between cancer and normal

cells. In particular, we focused on the expression of individual TE loci to assess TE-intrinsic

regulation of expression rather than TE-extrinsic regulation of TE-containing longer transcripts.

Here we demonstrate that changes in TE expression in cancer samples center around the distinct

loci that are expressed compared to normal samples. We show that most ITLs expressed in tumors are

cancer-specific and patient-specific. Such locus-specific regulation has been missing with past

subfamily-level analyses of TE expression in cancer.

Moreover, we found that the ITLs that are expressed in multiple cancer samples are more likely

to be younger insertions with less sequence divergence from the consensus sequence. However, the

threshold for divergence (<20%) , equivalent to ~100 million years old, is a broader definition of a

young element among the transposable element field, which largely focuses on retrotranspositionally

active TEs[42].

100

We were surprised to find that overall TE expression levels (as fpkm) is not globally increased in

cancer compared to healthy samples. Instead, we find enhanced permissiveness to TE expression

represented by the increased numbers of isolated loci expressed per sample in cancer samples. This

suggests that dysregulation of TE transcription is largely reflected by the presence or absence of TE

expression, rather than differences in expression levels. We further determined that TEs are more

likely to be expressed in older patients. This supports findings that global hypomethylation in cancer

is age-dependent [133]. Our findings illuminate patterns of expression of TEs in cancer at the locus

level.

4.4 Methods

RNA-seq Data

We obtained a total of 752 tumor of 10 of the most common cancer types from The Cancer

Genome Atlas (TCGA) database using API download protocol. For a true normal control, we used

640 RNA-seq samples from the Genotype Tissue Expression (GTEx) database, downloaded with the

dbGaP platform. TCGA samples were converted from the downloaded BAM format to raw FastQ

files using BEDTools BAMtoFastQ[90]. These samples are all unstranded and paired-end. TCGA

RNA-seq sample read lengths ranged from 48-78 bp and GTEx samples were consistently 76 bp. We

selected for RNA-seq library sizes greater than 20 million bp.

SQuIRE RNA-seq Pipeline

 We performed SQuIRE analysis in three steps. We used Map to align RNA-seq reads to the

UCSC GRCh37/hg19 genome with STAR[52]. We then used Count to quantify the expression of

individual TEs. From the locus-specific Count outputs, we used Flag to identify individually

transcribed loci (ITLs). Details of the Flag algorithm are futher described below.

SQuIRE Flag algorithm

 We developed the SQuIRE Flag module to distinguish transcripts from individual TE loci (ITLs)

from pre-mRNA and lncRNA transcripts. It incorporates the assembler software StringTie [53].

101

Transcript assemblers use a multi-step process that first assembles transcripts on each sample, then

merges the novel annotations together, and finally runs the assembly again using the new annotation.

SQuIRE Flag follows this process while adding analysis steps to compare TE expression with

Stringtie-assembled transcript expression within each sample and then compare transcript types

across samples.

In assembly step 1, Flag uses StringTie with UCSC’s RefGene annotation for a guided

assembly of RNA-seq transcripts, to be run in parallel on all samples. We used all default settings

except we allowed a greater percentage of multi-mapped reads (-M 0.99, default = 0.95), and allowed

a wider gap between reads to be processed together (100 instead of 50). These changes allow for

greater sensitivity in including TE-containing transcripts. In assembly step 2, Flag uses the Stringtie

“transcript merge mode” to combine the output gtfs from step 1 into a single merged gtf. We used

higher stringency thresholds for this mode to reduce the identification of spurious transcripts,

requiring greater than 2.5X coverage (default =0), greater than 1 fpkm (default = 0), and a minimum

isoform fraction greater than 0.01. Assembly step 3 then uses this merged gtf to rerun a guided

Stringtie transcript assembly on each sample. SQuIRE next compares the resulting transcripts with

expressed TE count information from the SQuIRE Count outputs using BedTools Intersect and labels

them as potential ITLs, lncRNA, or pre-mRNA. Assembly Step 4 then compares the transcript labels

of TEs across all samples, so that a TE that was labeled as an ITL in one sample but an lncRNA or

read-through in another sample, is re-labeled as being transcribed from a longer transcript.

SQuIRE Flag identifies transcript type by intersecting transcribed TE coordinates with

RefSeq genes and the Stringtie transcript assembly. Expressed TEs that overlap with RefSeq

coordinates (on the same strand, if stranded) are labeled as lncRNA or pre-mRNA. TEs that are

expressed within 10kb of the nearest RefSeq gene are considered read-through. TEs that are

downstream and sense (if stranded) to the nearest gene (“DoG readthrough), and TEs that are

upstream and antisense (if stranded) to the nearest gene (“antisense_readthrough”). Novel Stringtie

102

transcripts that are >10kb from the nearest gene are compared to TE coordinates. Transcripts that

extend > 1 kb beyond the TE annotation or contain multiple TEs of different orders (a LINE and an

LTR for instance) are labeled as potential lncRNA. TEs of the same order transcribed within 1kb of

each other may be separate entries of the same element (for example the internal and LTR sequences

of the same endogenous retrovirus), so they are considered together. Similarly, if multiple TEs are

transcribed within 10kb of each other, they are labeled as potential lncRNA. SQuIRE Flag thus labels

a TE pre-mRNA, lncRNA, or read-through if they are transcribed from 1) an annotated gene 2) a

longer novel Stringtie assembled transcript 3) a collection of nearby TEs of different superfamilies.

Transposable elements of the LINE, SINE, LTR, DNA, and SVA superfamilies that are not part of

these longer transcripts are labeled as potential individual TE loci (ITL) transcripts.

Flag outputs

For each sample Flag provides the Stringtie outputs of a gtf file from steps and 1 and 3,

abundance file describing fpkm, tpm, and coverage of each stringtie transcript. Flag also creates

SQuIRE-specific files “preflag” file with intermediate data used to label transcript type, a “spliced

TE” file providing intron coordinates that overlap with TEs, and a “flag file” that provides SQuIRE

Count data, coordinate and expression information of the nearest downstream and upstream

expressed gene, the coordinates of any overlapping Stringtie transcript, the transcript type, and

whether the TE is spliced. At the project level from comparing all samples, Flag provides the merged

gtf produced by Stringtie, a combined flag file that gives final transcript and splicing labels for all

samples, and Stringtie generated gene- and transcript- level count matrices.

TE Analysis

All post-SQuIRE analysis was performed in R[92] with RStudio.[134]. To select for the

expressed, full-length ITLs, we further filtered the TEs for transcripts with > 10 counts, > .01 fpkm,

and > 90% of the RepeatMasker reference length.

103

 For TE analysis, we evaluated statistical significance using T tests and R package ggsignif

and created figures using R package ggplot2.[135] To quantify permissiveness, we counted the

number of ITLs expressed in each sample. To identify common ITLs across samples, we counted the

number of samples that express each ITL within the tissue types. We used the fpkm of ITLs in each

sample to compare ITL expression between tumor and normal samples. We investigated the

enrichment of orders and subfamilies ITLs in each tumor type compared to all samples using the

Fisher’s exact test.

104

5. Conclusions

The role of transposable elements (TEs) in the human genome has long been underestimated.

Indeed, the software RepeatMasker, which this study used to identify TE genomic locations, was

originally used for ‘masking’ TE sequences from genomic analyses[51]. Nevertheless, comparative

genomics studies have shown that TEs are major evolutionary contributors to the composition,

diversity, and function of our genome. The transposition activity of TEs presents a double-edged

sword to its host. Despite their potential to create deleterious insertions, TE mobilization can generate

gene duplications, add new functional domains to coding and noncoding genes, and provide novel

cis-regulatory sequences to modulate nearby gene activity[17,19,97,136]. Thus, rather than being

“dark matter”, TEs are a shining light critical for a deeper understanding of our genome.

Yet, despite these genomic contributions and comprising almost half of our DNA, prior to this

study a global picture of TE transcription had not been performed. TE biologists have primarily

focused on young, polymorphic elements (L1HS and young Alus). While retrotransposition activity a

priori requires TE transcription, this ignores older TEs with disrupted coding sequence that may still

retain intact promoters allowing for the generation of RNA transcripts. TE transcription has also been

studied orthogonally via evaluation of their epigenetic regulation, identifying TE sequence motifs that

promote [32,98] or repress TE transcription [27,28]. Such studies that have focused on autonomous

transcription of TEs are largely siloed from studies of TEs in other contexts. Despite being major

contributors to long noncoding RNAs (lncRNAs) [97,102], the relationship between lncRNAs

transcription and autonomous TE regulation has not been thoroughly understood. Similarly, the

retrovirology field has progressed the study of endogenous retrovirus independent of the transposon

field, resulting in conflicting nomenclature for LTR retrotransposons.

The siloing of TE-related fields contributes to an ongoing Catch-22 in understanding TE

transcription. A unified understanding of TE transcription has been hampered by the limited tools for

105

quantifying repetitive sequences in RNA-seq data. Studies of TEs have therefore focused on

orthogonal indicators of TE transcription, e.g. retrotransposition, epigenetic markers, and LINE-1 and

LTR protein expression[18,66,124,132,137,138]. In turn, the lack of studies investigating how TEs

are transcribed has limited efforts in developing software to study TE transcription, which currently

relies on genomic annotations of TE insertions. However, due to the variety of genomic contexts of

TE insertions, the genomic boundaries of a TE labeled by RepeatMasker may not fully encompass the

transcript containing the TE sequence.

Transposable element transcription has been difficult to study due to both the repetitive nature of

these sequences and the current state-of-the-art technology of RNA-seq. Whereas the exons of most

coding genes are unique to the entire genome, TEs can share sequences between multiple insertion

copies. Because of technical limitations in sequencing the entire length of RNA transcripts, RNA-seq

involves fragmenting RNA and then partially sequencing the ends of fragments. The RNA-seq reads

are then bioinformatically mapped back to the genome to determine the originating gene, and

expression levels are inferred by quantifying the number of reads. This quantification is more

difficult, then, if many (if not all) of a TE transcript’s reads are not mappable to a precise location in

the genome.

 Previous approaches to analyzing TE transcription have sidestepped such difficulties in one of

three ways. Some have discarded all multi-mapping reads and inferred transcription only from RNA-

seq reads to uniquely map to a TE locus. However, because TEs have varying divergences such that

some TEs have more uniquely alignable sequence than others, this method cannot provide a

quantitative picture of TE transcription without biasing against the representation of young TEs.

Conversely, the TE software RepEnrich [43] and TEtranscripts [44] have discarded locus-specific

information, instead aggregating TE read counts at the subfamily level. Despite allowing quantitative

comparisons of TE expression, the details of TE expression are obscured without position

information. Conclusions from using these software packages therefore cannot distinguish between

106

changes in TE transcription due to TE-specific regulation and changes in expression of TE-containing

genes that are independent of TE sequence. A third approach used by TEtools [45] attempts to resolve

alignment ambiguity in a multi-mapping TE-derived RNA-seq read by designating a single locus to

which the read aligned. However, this approach can yield many false positive alignments, particularly

for younger TEs with >99% similarity between copies. Furthermore, this underestimates the impacts

of RNA-sequencing errors, single nucleotide polymorphism (SNP) variation among TE loci, and

structural variations in non-reference TE polymorphisms that can misattribute a read to the incorrect

locus.

We developed the pipeline SQuIRE (Software for Quantifying Interspersed Expression) to build

on, extend, and improve these approaches to quantify TE expression at the locus level. Because of the

varying uniquely aligning sequence content among TEs, SQuIRE’s quantification algorithm

normalizes for this, allowing for more accurate comparisons between different TEs. This

improvement in accuracy distinguishes SQuIRE from RepEnrich and TEtranscripts, which used

similar methods to assign multi-mapping reads to TE loci, but without normalization or the use of

uniquely aligning reads. Furthermore, in determining the false positive rates for multi-mapping reads,

we tested several aligners to find an optimal approach for TEs. Expecting that the aligner would be

integral to accurate quantification of TEs, we incorporated the aligner and the optimal parameters into

the pipeline for improved reproducibility across studies that use SQuIRE. In this work, we have

demonstrated that the tools provided by SQuIRE are more accurate than past software. We have also

gone to great lengths to make SQuIRE a complete, start-to-finish pipeline that is accessible to

biologists and user-friendly.

Furthermore, unlike past approaches, SQuIRE does not assume that TE transcripts are bounded

by their genomic annotation in RepeatMasker. Instead, SQuIRE’s output indicates if the TE’s

transcript extends beyond its annotated borders or is shorter than annotated. Combining that

information with neighboring expression data allows for a true picture of the composition of TE

107

transcripts. It allows us to detect spliced TE-containing RNAs and partially-expressed TEs, like those

driven from non-canonical internal promoters. Indeed, when we applied SQuIRE to stranded, deeply

sequenced RNA data from 31 low-passage, primary cell lines, we found that individual TE loci (ITL)

transcripts are distinct from lncRNAs and mRNAs. In addition, characterizing TE-containing

transcripts not only expanded our understanding of the transcript lengths of individual TE loci, but we

also found that using SQuIRE updated the annotation of lncRNAs, identifying novel and longer-than-

reported transcripts, and mRNAs, identifying downstream-of-gene transcription. We confirmed

previous reports that lncRNAs are particularly enriched for long terminal repeat (LTR)

retrotransposons, which include endogenous retroviruses[138]. This stresses the importance of an

updated TE transcriptome annotation that can be integrated with current mRNA, lncRNA and

retroviral annotations and nomenclature.

In studying ITL transcription in more depth, we found that cell lines from epithelial and neuronal

origins were more permissive for ITL expression compared to muscle and connective tissue cell lines.

Although our analysis of ITLs is limited and may not comprehensively include all independent TE

transcription, in selecting only TEs that are not transcribed near other expressed TEs, genes or

lncRNAs, we can be reasonably confident that our examples are not due to background transcription.

Yet, in examining ITL expression levels, we found that the mean expression level of ITLs was lowest

in neuronal cells. This seeming contradiction may be an illustration of the balance of TE transcription

regulation by the host cell, to harness evolutionary beneficial functional domains, but to also mitigate

individually harmful RNA intermediates and DNA insertions. We have demonstrated that TEs are

expressed primarily as components of lncRNAs and pre-mRNA transcripts. Increased ITL

transcription in neuronal and epithelial cells may be a byproduct of host-upregulated transcription

from TE-derived promoter sequence. This may result in increased transcription of ITLs, lncRNAs,

and pre-mRNAs sharing these promoter sequences. However, this increased TE permissiveness may

108

result in RNA intermediate sequences that trigger host responses to restrict harmful TE transcription

and retrotransposition.

The disruption of this regulatory balance between TE expression and regulation may be critical to

understanding TE-related disease processes. Indeed, our findings of ITL expression in mouse and

human counters the dogma that TE expression is tightly regulated in healthy somatic cells. Instead,

our findings suggest that the regulation of TE expression is TE type and locus-specific. We find that

this sample-specific pattern persists for most ITLs in cancers. However, we observed that younger

ITLs were more likely to be expressed in multiple cancer samples. Conversely, we determined that

cancer samples that were more permissive and expressed greater ITLs per sample were more likely to

be from older patients, suggesting that age is related to deregulation of TE expression. Further work

needs to be done to investigate the sequence and contextual differences between TEs of the same

family that have different expression patterns. This may be best done in disease settings such as

cancer and other diseases featuring disrupted TE regulatory mechanisms (DICER[121], methylation

[139], RNA editing[89]), as well as animal models with different patterns of TE expression. SQuIRE

thus is a powerful tool that can enhance our understanding of the interplay between gene and TE

expression in health and disease.

109

6. Appendices

Appendix A. SQuIRE website

Software for Quantifying Interspersed

Repeat Expression

Installation

SQuIRE Pipeline Overview

SQuIRE Pipeline Options

FAQs

Example Pipeline

Installation
We recommend using Conda for SQuIRE

installation.

Conda is a package manager that installs and runs

packages and their dependencies. Conda also creates

virtual environments and allows users to switch between

those environments. The instructions below installs

Conda and creates a virtual environment in which to

install software required by SQuIRE. Following these

instructions ensures that SQuIRE has the correct software versions and dependencies and prevents

software conflicts.

1. Download Miniconda from https://conda.io/miniconda.html
o wget -c https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

o Documentation will appear as the software downloads

2. Execute the installer and add to PATH in .bashrc
o bash Miniconda3-latest-Linux-x86_64.sh
o Press ENTER key to review the Miniconda license

o Type yes to approve the license terms

o Pres ENTER key to confirm install locatino (or enter a preferred location)

o Type yes to add Miniconda2 into your PATH

3. Add PATH to .bash_profile as well
o tail -n1 ~/.bashrc >> ~/.bash_profile

4. Restart shell
o exec $SHELL

5. Create new virtual environment
o conda create --name squire --override-channels -c iuc -c bioconda -c conda-forge -c defaults -

c r python=2.7.13 bioconductor-deseq2=1.16.1 r-base=3.4.1 r-pheatmap bioconductor-vsn

bioconductor-biocparallel=1.12.0 r-ggrepel star=2.5.3a bedtools=2.25.0 samtools=1.1

stringtie=1.3.3 igvtools=2.3.93 ucsc-genepredtobed ucsc-genepredtogtf ucsc-

bedgraphtobigwig r-hexbin git=2.11.1

o Type y to proceed.

6. Activate the virtual environment
o source activate squire

o Enter this command each time you wish to use the SQuIRE pipeline

https://github.com/wyang17/SQuIRE#installation
https://github.com/wyang17/SQuIRE#pipeline
https://github.com/wyang17/SQuIRE#arguments-for-each-step
https://github.com/wyang17/SQuIRE#faqs
https://github.com/wyang17/SQuIRE#example-pipeline
https://conda.io/docs/
https://conda.io/miniconda.html
https://github.com/wyang17/SQuIRE/blob/master/images/squire.png

110

o The conda installation message may instruct the use of 'conda activate squire'.

However, this is a newer and less stable usage than "source activate squire", which

we recommend.

7. Install SQuIRE in the virtual environment
o git clone https://github.com/wyang17/SQuIRE; cd SQuIRE; pip install -e .

o The -e parameter for "pip install" automatially affects the current SQuIRE

installation, so that there is no need to re-install SQuIRE with a new version.

o To update SQuIRE, go to the SQuIRE folder and enter:
 git pull

Notes
SQuIRE was written and tested with the following specific versions of software:
 STAR 2.5.3a
 bedtools 2.27.0
 samtools 1.1
 stringtie 1.3.3b
 DESeq2 1.16.1
 R 3.4.1
 Python 2.7

If installing these software with conda is unsuccessful, we recommend installing these versions

with squire Build to ensure compatibility with SQuIRE.

 squire Build:
o squire Build -s all

https://github.com/wyang17/SQuIRE#squire-build

111

Pipeline Overview

Preparation Stage

1. Fetch: Downloads input files from RefGene and generates STAR index Only needs to be

done once initially to acquire genomic input files or if a new build is desired.

2. Clean: Filters Repeatmasker file for Repeats of interest, collapses overlapping repeats, and

returns as BED file.

*Optional: Incorporation of non-reference TE sequence *

Quantification Stage

1. Map: Aligns RNAseq data

2. Count: Quantifies RNAseq reads aligning to TEs

Analysis Stage

1. Call: Compiles and outputs differential expression from multiple alignments

Follow-up Stage

1. Draw: Creates BEDgraphs from RNAseq data

2. Seek: Reports individual transposable element sequences

An example pipeline with sample scripts is described here.

https://github.com/wyang17/SQuIRE#squire-fetch
https://github.com/wyang17/SQuIRE#squire-clean
https://github.com/wyang17/SQuIRE#non-reference-file-format
https://github.com/wyang17/SQuIRE#squire-map
https://github.com/wyang17/SQuIRE#squire-count
https://github.com/wyang17/SQuIRE#squire-call
https://github.com/wyang17/SQuIRE#squire-draw
https://github.com/wyang17/SQuIRE#squire-seek
https://github.com/wyang17/SQuIRE#example-pipeline
https://github.com/wyang17/SQuIRE/blob/master/images/overview_squire.png

112

Arguments for each step
squire Build

Use Build only if conda create does not successfully install software.

 Download and install required software (STAR, Bedtools,

Samtools, and/or Stringtie)

 Adds software to PATH

 usage squire Build -o -s STAR,bedtools,samtools,stringtie -v

Arguments:

-b, --folder
Destination folder for downloaded UCSC file(s). Optional;

default='squire_build'

-s , --

software

Install required SQuIRE software and add to PATH -

specify 'all' or provide comma-separated list (no spaces) of:

STAR,bedtools,samtools,stringtie. Optional; default = False

-v, --

verbosity
Want messages and runtime printed to stderr. Optional.

https://github.com/wyang17/SQuIRE/blob/master/images/build.png

113

Preparation Stage
squire Fetch

 Downloads required files from repeatmasker

 Only needs to be used the first time SQuIRE is used to transfer

required genomic build references to your machine

 Outputs annotation files, chromosome fasta file(s) and STAR index

 usage: squire Fetch [-h] -b <build> [-o <folder>] [-f] [-c] [-r] [-g] [-x] [-p

<int>] [-k] [-v]

 Arguments

-h, --help show this help message and exit

-b , --build UCSC designation for genome build, eg. 'hg38'

-o , --fetch_folder
Destination folder for downloaded UCSC file(s),

default folder is 'squire_fetch'

-f, --fasta
Download chromosome fasta files for build

chromosomes. Optional

-c, --chrom_info
Download chrom_info.txt file with chromosome

lengths. Optional

-r, --rmsk Download Repeatmasker file. Optional

-g, --gene Download UCSC gene annotation. Optional

-x, --index
Create STAR index (WARNING: will take a lot

of time and memory!), optional

-p , --pthreads Launch parallel threads. Optional, default = 1

-k, --keep
Keep downloaded compressed files. Optional,

default = False

-v, --verbosity
Print messages and runtime records to stderr.

Optional; default = False

https://github.com/wyang17/SQuIRE/blob/master/images/fetch.png

114

squire Clean

 Filters genomic coordinates of Repeats of interest from

repeatmasker, collapses overlapping TEs, and returns BED file and

count of subfamily copies.

 Only needs to be done at the first use of SQuIRE pipeline to clean

up the index files

 Outputs .bed file of TE coordinates, strand and divergence

 usage: squire Clean [-h] [-r <rmsk.txt or file.out>] [-b <build>] [-o

<folder>] [-c <classes>] [-f <subfamilies>] [-s <families>] [-e <file>] [-v]

Arguments

-h, --help show this help message and exit

-r , --rmsk
Repeatmasker file, default will search 'squire_fetch' folder

for rmsk.txt or .out file. Optional

-b , --build UCSC designation for genome build, eg. 'hg37'

-o , --

clean_folder

Destination folder for output BED file, default folder is

'squire_clean'

-c , --repclass

Comma-separated list of desired repeat classes (AKA

superfamilies), eg 'DNA,LTR'. Column 12 in repeatmasker

file. Can use UNIX wildcard patterns. Optional

-f , --family

Comma-separated list of desired repeat families, eg

'ERV1,ERVK,ERVL'. Column 13 on repeatmasker file. Can

use UNIX wildcard patterns. Optional

-s , --

subfamily

Comma-separated list of desired repeat subfamilies, eg

'L1HS,AluYb'. Column 11 in repeatmasker file. Can use UNIX

wildcard patterns. Optional

-e , --extra

Filepath of extra tab-delimited file containing non-

reference repeat sequences. Columns should be chr, start, stop,

strand, subfamily, and sequence. Optional; default = False

-v, --

verbosity

Print messages and runtime records to stderr. Optional;

default = False

https://github.com/wyang17/SQuIRE/blob/master/images/clean.png

115

Non-reference File Format

For known TE sequences that are not included in the reference genome, a tab-delimited file can

be provided to SQuIRE to incorporate the non-reference TEs into the analysis. This file can be

inputted into the Map and Clean steps with the --extra parameter.

The following information should be included in the file:

1. Chromosome or Plasmid Identification

 SQuIRE will add an identifier with an underscore "_" and the insertion type to distinguish the

annotation from the reference genome.

2. Insertion Start

 0-based numerical start location of the non-reference repeat.

3. Insertion End

 0-based numerical end location. For chromosome insertions, this will only be one base

different from Insertion Start.

4. Strand

 + or - Orientation of 'sense' strand of TE annotation.

5. TE classification

 Provide TE Subfamily, Family and Order, separated by colons ":".

6. Insertion Type

 Must be one of: polymorphic insertion, novel insertion, plasmid, or transgene.

7. Left-Flank Sequence

 Flanking sequence before the TE insertion.

8. Right-Flank Sequence

 Flanking sequence after the TE insertion.

9. TE Sequence

 Non-reference TE sequence.
Example File

https://github.com/wyang17/SQuIRE/blob/master/images/Non_ref_example.jpg

116

Quantification Stage
squire Map

 Aligns RNAseq reads to STAR index allowing for multiple

alignments

 Outputs .bam file

 usage: squire Map [-h] [-1 <file_1.fastq or file_1.fastq.gz>] [-2

<file_2.fastq or file_2.fastq.gz>] [-o <folder>][-f <folder>] -r <int> [-n

<str>] [-3 <int>] [-e <file.txt>] [-b <build>] [-p <int>] [-v]

Arguments

-h, --help show this help message and exit

-1 , --read1

RNASeq data fastq file(s); read1 if

providing paired end data. If more than one

file, separate with commas, no spaces. Can

be gzipped.

-2 , --read2

RNASeq data read2 fastq file(s). if

more than one file, separate with commas,

no spaces. Can be gzipped. Optional if

unpaired data.

-o , --map_folder
Destination folder for output files.

Optional, default = 'squire_map'

-f ,--fetch_folder

Folder location of outputs from

SQuIRE Fetch (optional, default =

'squire_fetch'

-r , --read_length
Read length (if trim3 selected, after

trimming; required)

-n , --name
Common basename for RNAseq input.

Optional, default = basename of read1

-b ,--build , UCSC designation

for genome build, eg. 'hg38'

(required if more than 1 build in

clean_folder)

-3 , --trim3
Trim bases from right end of each read

before alignment. Optional; default = 0

-e , --extra

Filepath of text file containing non-

reference repeat sequence and genome

information. Optional, default = False

https://github.com/wyang17/SQuIRE/blob/master/images/map_stars.png

117

Arguments

-g , --gtf
Optional GTF of genome transcripts.

For those interested in gene transcription

-p , --pthreads
Launch parallel threads. Optional,

default = '1'

-v, --verbosity
Print messages and runtime records to

stderr. Optional; default = False

118

squire Count

 Quantifies RNAseq reads aligning to TEs and genes

 Outputs counts for RefSeq genes and TEs at the locus and

subfamily levels

 usage: squire Count [-h] [-m <folder>] [-c <folder>] [-o <folder>] [-t <folder>] [-f <folder>] -r <int>

[-n <str>] [-b <build>] [-p <int>] [-s <int>] [-e EM] [-v]

Arguments:

-h, --help show this help message and exit

-m , --

map_folder

Folder location of outputs from SQuIRE Map

(optional,default = 'squire_map')

-c , --

clean_folder

Folder location of outputs from SQuIRE Clean (optional,

default = 'squire_clean')

-o , --

count_folder

Destination folder for output files(optional, default =

'squire_count')

-t , --

tempfolder
Folder for tempfiles (optional; default=count_folder')

https://github.com/wyang17/SQuIRE/blob/master/images/Count_overview.png
https://github.com/wyang17/SQuIRE/blob/master/images/count.png

119

Arguments:

-f , --

fetch_folder

Folder location of outputs from SQuIRE Fetch (optional,

default = 'squire_fetch')

-r , --

read_length
Read length (if trim3 selected, after trimming; required).

-n , --name
Common basename for input files (required if more than

one bam file in map_folder)

-b , --build
UCSC designation for genome build, eg. 'hg38' (required

if more than 1 build in clean_folder)

-p , --pthreads Launch parallel threads(optional; default='1')

-s , --

strandedness

'0' if unstranded eg Standard Illumina, 1 if first- strand eg

Illumina Truseq, dUTP, NSR, NNSR, 2 if second-strand, eg

Ligation, Standard SOLiD (optional,default=0)

-e , --EM

Run estimation-maximization on TE counts given

numberof times (optional, specify 0 if no EM desired;

default=auto)

-v, --verbosity
Want messages and runtime printed to stderr (optional;

default=False)

120

Analysis Stage
squire Call

 Performs differential expression analysis on TEs and genes

 Outputs DEseq2 output and plots

 usage squire Call [-h] -1 <str1,str2> or <str> -2 <str1,str2> or <str>

-A -B [-o] [-s] [-p] [-N] [-f] [-v]

Arguments

-h, --help show this help message and exit

-1 <str1,str2> or <str>, -

-group1 <str1,str2> or <str>

List of basenames for group1 (Treatment)

samples, can also provide string pattern common to

all group1 basenames

-2 <str1,str2> or <str>, -

-group2 <str1,str2> or <str>

List of basenames for group2 (Control)

samples, can also provide string pattern common to

all group2 basenames

-A , --condition1 Name of condition for group1

-B , --condition2 Name of condition for group2

-o , --call_folder
Destination folder for output files (optional;

default='squire_call')

-s, --subfamily

Compare TE counts by subfamily. Otherwise,

compares TEs at locus level (optional;

default=False)

-p , --pthreads Launch parallel threads(optional; default='1')

-N , --projectname Basename for project

-f , --output_format Output figures as html or pdf

-v, --verbosity
Want messages and runtime printed to stderr

(optional; default=False)

https://github.com/wyang17/SQuIRE/blob/master/images/call.png

121

Follow-up Stage
squire Draw

 Creates bedgraphs and bigwigs from RNAseq data

 usage squire Draw [-h] [-f] [-m] [-o] [-n] [-s] -b [-l] [-p] [-v]

Arguments

-h, --help show this help message and exit

-f , --

fetch_folder

Folder location of outputs from SQuIRE Fetch (optional,

default = 'squire_fetch')

-m , --

map_folder

Folder location of outputs from SQuIRE Map (optional,

default = 'squire_map')

-o , --

draw_folder

Destination folder for output files (optional;

default='squire_draw')

-n , --name
Basename for bam file (required if more than one bam file

in map_folder)

-s , --

strandedness

'0' if unstranded, 1 if first-strand eg Illumina Truseq,

dUTP, NSR, NNSR, 2 if second-strand, eg Ligation, Standard

(optional,default=1)

-b , --build UCSC designation for genome build, eg. 'hg38' (required)

-l, --normlib
Normalize bedgraphs by library size (optional;

default=False)

-p , --

pthreads
Launch parallel threads(optional; default='1')

-v, --

verbosity

Want messages and runtime printed to stderr (optional;

default=False)

squire Seek

 Retrieves transposable element sequences from chromosome fasta

files

 Outputs sequences in FASTA format

 usage squire Seek [-h] -i <file.bed> -o <file.fa> -g <file.fa or

folder.chromFa> [-v]

https://github.com/wyang17/SQuIRE/blob/master/images/draw.png
https://github.com/wyang17/SQuIRE/blob/master/images/seek.png

122

Arguments

-h, --help show this help message and exit

-i, --infile Repeat genomic coordinates, can be TE_ID, bedfile, or gff

-o, --outfile
Repeat sequences output file (FASTA), can use "-" for

stdout

-g, --genome
Genome build's fasta chromosomes - .fa file or .chromFa

folder

-v, --

verbosity

Print messages and runtime records to stderr. Optional;

default = False

123

FAQs
How do I know if my data is stranded or not?

The RNA-seqlopedia by Cresko Lab at University of Oregon outlines strand specific data in

section 3.7 Preparation of stranded libraries. You can verify the strand specificity with the researcher

who collected the data, or use an outside program like infer-experiment.py in RSeQC or the libtype

option in Salmon.

How much memory does each step require?

You can gauge how much vmem to assign to each job based on the number of reads in your

datasets.

Can SQuIRE be used on ChIP or small RNA?

SQuIRE has not yet been tested with ChIP or small RNA sequencing data, so its compatibility

has not yet been determined.

Example Pipeline
INSTRUCTIONS

1. Copy the sample_scripts folder to your project folder
o mkdir <project folder>/scripts
o cp SQuIRE/sample_scripts/* <project folder>/scripts
o cd <project folder>/scripts

2. Fill out the arguments.sh file

3. Replace "squire@email.com" in the #$ -M squire@email.com line with your email address to

get alert of script completion and memory usage

4. Submit jobs to SGE cluster (the -cwd option results in error and output files associated to stay

in your current working directory)
o qsub -cwd fetch.sh arguments.sh
o qsub -cwd clean.sh arguments.sh
o qsub -cwd loop_map.sh arguments.sh
o qsub -cwd loop_count.sh arguments.sh
o qsub -cwd call.sh arguments.sh
o qsub -cwd loop_draw.sh arguments.sh

5. If a memory or segmentation fault error occurs, edit the #$ -l mem_free and #$ -l h_vmem lines

to increase memory usage for the appropriate script.

https://rnaseq.uoregon.edu/
http://rseqc.sourceforge.net/
http://salmon.readthedocs.io/en/latest/salmon.html
mailto:squire@email.com

124

Appendix B. SQuIRE Command-line Interface

#!/bin/env python

#################### MODULES ###################

import sys

import os

import shutil

import subprocess

from subprocess import *

import argparse #module that passes command-line arguments into script

from pkg_resources import get_distribution

__version__ = get_distribution("SQuIRE").version

script_folder=os.path.dirname(os.path.realpath(__file__))

currentWorkingDirectory = os.getcwd()

sys.path.append(currentWorkingDirectory)

sys.path.append(script_folder)

import the processes to be called

import Build as s1

import Fetch as s2

import Clean as s3

import Map as s4

import Count as s5

import Call as s6

import Draw as s7

import Seek as s8

#from squire import __version__

##################################

def main():

 ## create the top level parser

 parser = argparse.ArgumentParser()

 parser._positionals.title = "SQuIRE Steps"

 parser.add_argument('--version', action="version", version=__version__, help="print SQuIRE

version number")

 subparsers = parser.add_subparsers()

 # create subparser for Download Step b, "Build"

 parser1 = subparsers.add_parser("Build", help = "Installs required software")

 parser1._optionals.title = "Arguments"

 parser1.add_argument("-b","--build_folder", help = "Destination folder for downloaded UCSC

file(s) (optional; default='squire_build')", type=str, default="squire_build", metavar = "<folder>")

 parser1.add_argument("-s","--software", help = "Install required SQuIRE software and add to

PATH - specify 'all' or provide comma-separated list (no spaces) of:

STAR,bedtools,samtools,stringtie (optional; default = False)" , type=str, metavar = "<software>",

default=False)

 parser1.add_argument("-v","--verbosity", help = "Want messages and runtime printed to stderr

(optional; default=False)", action = "store_true", default=False)

 parser1.set_defaults(func=s1.main)

 ## create subparser for Download Step 1, "Fetch"

125

 parser2 = subparsers.add_parser("Fetch", help ="Downloads input files from UCSC")

 parser2._optionals.title = "Arguments"

 parser2.add_argument("-b","--build", help = "UCSC designation for genome build, eg. 'hg37'

(required)", type=str, required = True, metavar = "<build>")

 parser2.add_argument("-o","--fetch_folder", help = "Destination folder for downloaded UCSC

file(s) (optional; default='squire_fetch')", type=str, default="squire_fetch", metavar = "<folder>")

 parser2.add_argument("-f","--fasta", help = "Download chromosome fasta files for build

chromosomes (optional; default=False)", action = "store_true", default=False)

 parser2.add_argument("-c","--chrom_info", help = "Download chrom_info.txt file with lengths

of each chromosome (optional; default=False)", action = "store_true", default=False)

 parser2.add_argument("-r","--rmsk", help = "Download Repeatmasker file (optional;

default=False)", action = "store_true", default=False)

 parser2.add_argument("-g","--gene", help = "Download UCSC gene annotation(optional;

default=False)", action = "store_true", default=False)

 parser2.add_argument("-x","--index", help = "Create STAR index, WARNING will take a lot

of time and memory (optional; default=False)", action = "store_true", default=False)

 parser2.add_argument("-p","--pthreads", help = "Launch <int> parallel threads(optional;

default='1')", type = int, metavar = "<int>", default=1)

 parser2.add_argument("-k","--keep", help = "Keep downloaded compressed files (optional;

default=False)", action = "store_true", default=False)

 parser2.add_argument("-v","--verbosity", help = "Want messages and runtime printed to stderr

(optional; default=False)", action = "store_true", default=False)

 parser2.set_defaults(func=s2.main)

 ## create subparser for Step1, "Clean"

 parser3 = subparsers.add_parser("Clean", help = "Filters Repeatmasker file for Repeats of

interest, collapses overlapping repeats, and returns as BED file.")

 parser3._optionals.title = "Arguments"

 parser3.add_argument("-r","--rmsk", help = "Repeatmasker file (optional; will search

'squire_fetch' folder for rmsk.txt or .out file by default)", type=str, metavar = "<rmsk.txt or file.out>")

 parser3.add_argument("-b","--build", help = "UCSC designation for genome build, eg. 'hg37'

(optional; will be basename of rmsk.txt file by default)", type=str, metavar = "<build>")

 parser3.add_argument("-i","--fetch_folder", help = "Destination folder for downloaded UCSC

file(s) (optional; default='squire_fetch')", type=str, default="squire_fetch", metavar = "<folder>")

 parser3.add_argument("-o","--clean_folder", help = "Destination folder for output BED file

(optional; default = 'squire_clean')", type=str, default = "squire_clean", metavar = "<folder>")

 parser3.add_argument("-c","--repclass", help = "Comma-separated list of desired repeat

class/classes, aka superfamily, eg DNA, LTR. Column 12 in repeatmasker file. Can use UNIX

wildcard patterns. (optional; default=False)", type=str, metavar = "<classes>")

 parser3.add_argument("-f","--family", help = "Comma-separated list of desired repeat

family/families, eg 'ERV1,ERVK,ERVL. Column 13 in repeatmasker file. Can use UNIX wildcard

patterns. (optional; default=False)", type=str, metavar = "<subfamilies>")

 parser3.add_argument("-s","--subfamily", help = "Comma-separated list of desired repeat

subfamilies, eg 'L1HS,AluYb'. Column 11 in repeatmasker file. Can use UNIX wildcard patterns.

(optional; default=False)", type=str, metavar = "<families>")

 parser3.add_argument("-e","--extra", help = "Filepath of extra file containing non-reference

repeat sequences. Columns should be chr, start, stop, strand, subfamily, and sequence (optional)",

type=str, metavar = "<file>", default=False)

 parser3.add_argument("-v","--verbosity", help = "Want messages and runtime printed to stderr

(optional; default=False)", action = "store_true", default = False)

 parser3.set_defaults(func=s3.main)

126

 ## create subparser for Step2, 'Map'

 parser4 = subparsers.add_parser('Map', help='Aligns RNAseq reads to STAR index allowing

for multiple alignments')

 parser4._optionals.title = "Arguments"

 parser4.add_argument("-1","--read1", help = "RNASeq data fastq file(s); read1 if providing

paired end data. If more than one file, separate with commas, no spaces. Can be gzipped.", type = str,

metavar = "<file_1.fastq or file_1.fastq.gz>")

 parser4.add_argument("-2","--read2", help = "RNASeq data read2 fastq file(s). if more than

one file, separate with commas, no spaces. Can be gzipped. (optional, can skip or enter 'False' if data

is unpaired)", type = str, metavar = "<file_2.fastq or file_2.fastq.gz>")

 parser4.add_argument("-o","--map_folder", help = "Location of SQuIRE Map outputs

(optional, default = 'squire_map')", type = str, metavar = "<folder>", default = "squire_map")

 parser4.add_argument("-f","--fetch_folder", help = "Folder location of outputs from SQuIRE

Fetch (optional, default = 'squire_fetch'",type = str, metavar = "<folder>",default="squire_fetch")

 parser4.add_argument("-r","--read_length", help = "Read length (if trim3 selected, after

trimming; required).", type = int, metavar = "<int>", required=True)

 parser4.add_argument("-n","--name", help = "Common basename for input files (optional; uses

basename of read1 as default)", type = str, metavar = "<str>",default=False)

 parser4.add_argument("-3","--trim3", help = "Trim <int> bases from right end of each read

before alignment (optional; default=0).", type = int, default = 0, metavar = "<int>")

 parser4.add_argument("-e","--extra", help = "Filepath of text file containing non-reference

repeat sequence and genome information", type=str, metavar = "<file.txt>")

 parser4.add_argument("-b","--build", help = "UCSC designation for genome build, eg. 'hg38'

(required if more than 1 build in clean_folder)", type=str, metavar = "<build>",default=False)

 # parser.add_argument("-m","--mask", help = "Separate reads from bamfile that map to

plasmid or transgene into another file (optional; default=False)", action = "store_true", default =

False)

 parser4.add_argument("-p","--pthreads", help = "Launch <int> parallel threads(optional;

default='1')", type = int, metavar = "<int>", default=1)

 parser4.add_argument("-v","--verbosity", help = "Want messages and runtime printed to stderr

(optional; default=False)", action = "store_true", default = False)

 parser4.set_defaults(func=s4.main)

 ## create subparser for Step3, 'Count'

 parser5 = subparsers.add_parser('Count', help = "Quantifies RNAseq reads aligning to TEs and

genes")

 parser5._optionals.title = "Arguments"

 parser5.add_argument("-m","--map_folder", help = "Folder location of outputs from SQuIRE

Map (optional, default = 'squire_map')", type = str, metavar = "<folder>",default="squire_map")

 parser5.add_argument("-c","--clean_folder", help = "Folder location of outputs from SQuIRE

Clean (optional, default = 'squire_clean')", type = str, metavar = "<folder>",default = "squire_clean")

 parser5.add_argument("-o","--count_folder", help = "Destination folder for output

files(optional, default = 'squire_count')", type = str, metavar = "<folder>", default="squire_count")

 parser5.add_argument("-t","--tempfolder", help = "Folder for tempfiles (optional;

default=count_folder')", type = str, metavar = "<folder>", default=False)

 parser5.add_argument("-f","--fetch_folder", help = "Folder location of outputs from SQuIRE

Fetch (optional, default = 'squire_fetch)'",type = str, metavar = "<folder>",default="squire_fetch")

 parser5.add_argument("-r","--read_length", help = "Read length (if trim3 selected, after

trimming; required).", type = int, metavar = "<int>", required=True)

127

 parser5.add_argument("-n","--name", help = "Common basename for input files (required if

more than one bam file in map_folder)", type = str, metavar = "<str>",default=False)

 parser5.add_argument("-b","--build", help = "UCSC designation for genome build, eg. 'hg38'

(required if more than 1 build in clean_folder)", type=str, metavar = "<build>",default=False)

 parser5.add_argument("-p","--pthreads", help = "Launch <int> parallel threads(optional;

default='1')", type = int, metavar = "<int>", default=1)

 parser5.add_argument("-s","--strandedness", help = " '0' if unstranded eg Standard Illumina, 1

if first-strand eg Illumina Truseq, dUTP, NSR, NNSR, 2 if second-strand, eg Ligation, Standard

SOLiD (optional,default=0)", type = int, metavar = "<int>", default = 0)

 parser5.add_argument("-e","--EM", help = "Run estimation-maximization on TE counts given

number of times (optional, specify 0 if no EM desired; default=auto)", type=str, default = "auto")

 parser5.add_argument("-v","--verbosity", help = "Want messages and runtime printed to stderr

(optional; default=False)", action = "store_true", default = False)

set which program to be associated with this parser

 parser5.set_defaults(func=s5.main)

 parser6 = subparsers.add_parser("Call",help = """Performs differential expression analysis on

TEs and genes""")

 parser6._optionals.title = "Arguments"

 parser6.add_argument("-1","--group1", help = "List of basenames for group1 (Treatment)

samples, can also provide string pattern common to all group1 basenames",required = True, type =

str, metavar = "<str1,str2> or <*str*>")

 parser6.add_argument("-2","--group2", help = "List of basenames for group2 (Control)

samples, can also provide string pattern common to all group2 basenames",required = True, type =

str, metavar = "<str1,str2> or <*str*>")

 parser6.add_argument("-A","--condition1", help = "Name of condition for group1",required =

True, type = str, metavar = "<str>")

 parser6.add_argument("-B","--condition2", help = "Name of condition for group2",required =

True, type = str, metavar = "<str>")

 parser6.add_argument("-i","--count_folder", help = "Folder location of outputs from SQuIRE

Count (optional, default = 'squire_count')", type = str, metavar = "<folder>",default="squire_count")

 parser6.add_argument("-o","--call_folder", help = "Destination folder for output files (optional;

default='squire_call')", type = str, metavar = "<folder>", default="squire_call")

 parser6.add_argument("-s","--subfamily", help = "Compare TE counts by subfamily.

Otherwise, compares TEs at locus level (optional; default=False)", action = "store_true", default =

False)

 parser6.add_argument("-p","--pthreads", help = "Launch <int> parallel threads(optional;

default='1')", type = int, metavar = "<int>", default=1)

 parser6.add_argument("-N","--projectname", help = "Basename for project,

default='SQuIRE'",type = str, metavar = "<str>",default="SQuIRE")

 parser6.add_argument("-f","--output_format", help = "Output figures as html or pdf", type =

str, metavar = "<str>",default="html")

 parser6.add_argument("-t","--table_only", help = "Output count table only, don't want to

perform differential expression with DESeq2", action = "store_true", default = False)

 parser6.add_argument("-v","--verbosity", help = "Want messages and runtime printed to stderr

(optional; default=False)", action = "store_true", default = False)

 parser6.set_defaults(func=s6.main)

128

 parser7 = subparsers.add_parser('Draw', help = """Makes bedgraphs and bedwigs from

RNAseq data""")

 parser7._optionals.title = "Arguments"

 parser7.add_argument("-f","--fetch_folder", help = "Folder location of outputs from SQuIRE

Fetch (optional, default = 'squire_fetch')",type = str, metavar = "<folder>",default="squire_fetch")

 parser7.add_argument("-m","--map_folder", help = "Folder location of outputs from SQuIRE

Map (optional, default = 'squire_map')", type = str, metavar = "<folder>", default="squire_map")

 parser7.add_argument("-o","--draw_folder", help = "Destination folder for output files

(optional; default='squire_draw')", type = str, metavar = "<folder>", default="squire_draw")

 parser7.add_argument("-n","--name", help = "Basename for bam file (required if more than

one bam file in map_folder)", type = str, metavar = "<str>",default=False)

 parser7.add_argument("-s","--strandedness", help = " '0' if unstranded, 1 if first-strand eg

Illumina Truseq, dUTP, NSR, NNSR, 2 if second-strand, eg Ligation, Standard

(optional,default=1)", type = int, metavar = "<int>", default = False)

 parser7.add_argument("-b","--build", help = "UCSC designation for genome build, eg. 'hg38'

(required)", type=str, metavar = "<build>",default=False,required=True)

 parser7.add_argument("-l","--normlib", help = "Normalize bedgraphs by library size (optional;

default=False)", action = "store_true", default = False)

 parser7.add_argument("-p","--pthreads", help = "Launch <int> parallel threads(optional;

default='1')", type = int, metavar = "<int>", default=1)

 parser7.add_argument("-v","--verbosity", help = "Want messages and runtime printed to stderr

(optional; default=False)", action = "store_true", default = False)

 parser7.set_defaults(func=s7.main)

 parser8 = subparsers.add_parser("Seek", help = """Retrieves sequences from chromosome

fasta files designated by BED file coordinates""")

 parser8._optionals.title = "Arguments"

 parser8.add_argument("-i","--infile", help = """Repeat genomic coordinates, can be TE_ID,

bedfile, or gff (required)""", type=argparse.FileType('r'), metavar = "<file.bed>", required=True)

 parser8.add_argument("-o","--outfile", help = """Repeat sequences output file (FASTA), can

use "-" for stdout (required)""", type = argparse.FileType('w'), metavar = "<file.fa>", required=True)

 parser8.add_argument("-g","--genome", help = "Genome build's fasta chromosomes - .fa file or

.chromFa folder (required)", type = str, metavar="<file.fa or folder.chromFa>", required=True)

 parser8.add_argument("-v","--verbosity", help = "Want messages and runtime printed to stderr

(optional; default=False)", action = "store_true", default = False)

 parser8.set_defaults(func=s8.main)

 ## parse the args and call the specific program

 subargs,extra_args = parser.parse_known_args()

 subargs.func(args = subargs)

 # print help usage if no arguments are supplied

 if len(sys.argv)==1 and not ext_args:

 parser.print_help()

 sys.exit(1)

if __name__=="__main__":

 main()

129

Appendix C. SQuIRE Fetch

#!/usr/bin/env python

-*- coding: utf-8 -*-

#################### MODULES ###################

from __future__ import print_function

import sys

import os

import errno

import argparse #module that passes command-line arguments into script

import subprocess

import glob

import urllib

import urllib2

import tarfile

import gzip

from datetime import datetime

import subprocess as sp

import zipfile

from urllib2 import urlopen

import re

import shutil

import tempfile

import pkg_resources

import warnings

def make_dir(path):

 try:

 original_umask = os.umask(0)

 os.makedirs(path, 0770)

 except OSError as exception:

 if exception.errno != errno.EEXIST:

 raise

 finally:

 os.umask(original_umask)

def decompress(compressed, decompressed): #Function for decompressing gzip files

 inF = gzip.open(compressed, 'rb')

 outF = file(decompressed, 'wb')

 for line in inF:

 outF.write(line)

 outF.close()

def unzip(compressed, decompressed): #unzip .zip files

 zip_ref = zipfile.ZipFile(compressed, 'r')

 zip_ref.extractall(decompressed)

 zip_ref.close()

def failed_dl(filepath): # If the path created by previous steps is empty, break

 with open(filepath) as downloadedfile:

 for i,line in enumerate(downloadedfile):

130

 if "not found" in line.lower():

 return True

 break

 elif i>10: #if past line 10

 return False

 break

def gtf_to_bed(gtf,bed):

 #convert gtf to genepred

 genepred=gtf.replace(".gtf",".genepred")

 gtftogenepredcommand_list = ["gtfToGenePred",gtf,genepred]

 gtftogenepredcommand=" ".join(gtftogenepredcommand_list)

 sp.check_call(["/bin/sh", "-c", gtftogenepredcommand])

 #convert genepred to bed

 genepredtobedcommand_list = ["genePredToBed ",genepred,bed]

 genepredtobedcommand=" ".join(genepredtobedcommand_list)

 sp.check_call(["/bin/sh", "-c", genepredtobedcommand])

def genepred_to_bed(genepred,bed,outfolder):

 refGene_temp=make_tempfile("refGenebed",outfolder)

 #convert genepred to bed

 genepredtobedcommand_list = ["genePredToBed ",genepred,refGene_temp]

 genepredtobedcommand=" ".join(genepredtobedcommand_list)

 sp.check_call(["/bin/sh", "-c", genepredtobedcommand])

 sort_commandlist = ["sort","-k1,1", "-k2,2n",genepred,refGene_temp, ">", bed]

 sort_command = " ".join(sort_commandlist)

 sp.check_call(["/bin/sh", "-c", sort_command])

 os.unlink(refGene_temp)

def genepred_to_gtf(genepred,gtf,outfolder):

 refGene_temp=make_tempfile("refGene",outfolder)

 refGene_temp2=make_tempfile("refGene2",outfolder)

 refGene_temp3=make_tempfile("refGene3",outfolder)

 genePredToGtf_commandlist = ["genePredToGtf","file",genepred,refGene_temp]

 genePredToGtf_command = " ".join(genePredToGtf_commandlist)

 sp.check_call(["/bin/sh", "-c", genePredToGtf_command])

 replace_command_list = ["awk","-v", "OFS='\\t'", """'{ gsub("stdin","hg38_refGene",$2); print $0

}'""", refGene_temp, ">", refGene_temp2]

 replace_command = " ".join(replace_command_list)

 sp.check_call(["/bin/sh","-c",replace_command])

 sort_commandlist = ["sort","-k1,1", "-k4,4n", refGene_temp2, ">", refGene_temp3]

 sort_command = " ".join(sort_commandlist)

 sp.check_call(["/bin/sh", "-c", sort_command])

 fix_gtf(refGene_temp3, gtf)

131

 os.remove(refGene_temp)

 os.remove(refGene_temp2)

 os.remove(refGene_temp3)

def make_tempfile(step, outfolder):

 tmpfile = tempfile.NamedTemporaryFile(delete=False, dir = outfolder, prefix= step + ".tmp")

 tmpname = tmpfile.name

 tmpfile.close()

 return tmpname

def find_files(folder,pattern, wildpos):

 if wildpos == 1:

 file_list=glob.glob(folder + "/" + "*" + pattern)

 elif wildpos ==2:

 file_list=glob.glob(folder + "/" + pattern + "*")

 if len(file_list) == 0:

 raise Exception("No files found in folder; please give specific " + pattern + " file")

 else:

 return file_list

def fix_gtf(infile,outfile):

 outgtf=open(outfile,'w')

 with open(infile,'r') as gtf:

 for line in gtf:

 line = line.rstrip()

 line=line.split()

 attributes=line[8:]

 attribute_col = " ".join(attributes)

 gtf_cols = "\t".join(line[:8])

 outgtf.writelines(gtf_cols + "\t" + attribute_col + "\n")

 outgtf.close()

def sort_coord(infile, outfile,chrcol,startcol):

 chrfieldsort = "-k" + str(chrcol) + "," + str(chrcol)

 startfieldsort = "-k" + str(startcol) + "," + str(startcol) + "n"

 sort_command_list = ["sort",chrfieldsort,startfieldsort, infile, ">", outfile]

 sort_command = " ".join(sort_command_list)

 sp.check_call(["/bin/sh", "-c", sort_command])

def get_basename(filepath):

 filename = os.path.basename(filepath)

 filebase = os.path.splitext(filename)[0]

 return filebase

def get_script_path():

 return os.path.dirname(os.path.realpath(sys.argv[0]))

def main(**kwargs):

132

 ######## ARGUMENTS ###########

 #check if already args is provided, i.e. main() is called from the top level script

 args = kwargs.get('args', None) # if no arguments, the below parser statements will be printed

 if args is None: ## i.e. standalone script called from command line in normal way

 parser = argparse.ArgumentParser(description = "Downloads input files from UCSC")

 parser._optionals.title = "Arguments"

 parser.add_argument("-b","--build", help = "UCSC designation for genome build, eg. 'hg38'

(required)", type=str, required = True, metavar = "<build>")

 parser.add_argument("-o","--fetch_folder", help = "Destination folder for downloaded UCSC

file(s) (optional; default='squire_fetch')", type=str, default="squire_fetch", metavar = "<folder>")

 parser.add_argument("-f","--fasta", help = "Download chromosome fasta files for build

chromosomes (optional; default=False)", action = "store_true", default=False)

 parser.add_argument("-c","--chrom_info", help = "Download chrom_info.txt file with lengths of

each chromosome (optional; default=False)", action = "store_true", default=False)

 parser.add_argument("-r","--rmsk", help = "Download Repeatmasker file (optional;

default=False)", action = "store_true", default=False)

 parser.add_argument("-g","--gene", help = "Download UCSC gene annotation(optional;

default=False)", action = "store_true", default=False)

 parser.add_argument("-x","--index", help = "Create STAR index, WARNING will take a lot of

time and memory (optional; default=False)", action = "store_true", default=False)

 parser.add_argument("-p","--pthreads", help = "Launch <int> parallel threads(optional;

default='1')", type = int, metavar = "<int>", default=1)

 parser.add_argument("-k","--keep", help = "Keep downloaded compressed files (optional;

default=False)", action = "store_true", default=False)

 parser.add_argument("-v","--verbosity", help = "Want messages and runtime printed to stderr

(optional; default=False)", action = "store_true", default=False)

 args,extra_args = parser.parse_known_args()

 ###### I/O ############

 build=args.build

 outfolder=args.fetch_folder

 fasta = args.fasta

 chrom_info=args.chrom_info

 rmsk = args.rmsk

 keep = args.keep

 gene = args.gene

 index=args.index

 pthreads=args.pthreads

 verbosity = args.verbosity

 ######### START TIMING SCRIPT ############

 if verbosity:

 startTime = datetime.now()

 print("start time is:" + str(startTime) + '\n', file = sys.stderr)# Prints start time

 print(os.path.basename(__file__) + '\n', file = sys.stderr) #prints script name to std err

 print("Script Arguments" + '\n' + "=================", file = sys.stderr) #

 args_dict = vars(args)

 for option,arg in args_dict.iteritems():

 print(str(option) + "=" + str(arg), file = sys.stderr) #prints all arguments to std err

 print("\n", file = sys.stderr)

133

 ######## CHECK IF FOLDER DOESN'T EXIST, OTHERWISE CREATE #########

 make_dir(outfolder)

 ####### DOWNLOAD CHROMOSOME FASTA FILES #########

 if fasta:

 if verbosity:

 print("Downloading Compressed Chromosome files..." + "\n", file = sys.stderr)

 chrom_loc1 = "http://hgdownload.cse.ucsc.edu/goldenPath" + "/" + build + "/" + "bigZips" + "/"

+ "chromFa.tar.gz" # Different file types depending on size/format of chromosome data

 chrom_loc2 = "http://hgdownload.cse.ucsc.edu/goldenPath" + "/" + build + "/" + "bigZips" + "/"

+ build + ".chromFa.tar.gz"

 chrom_loc3 = "http://hgdownload.cse.ucsc.edu/goldenPath" + "/" + build + "/" + "bigZips" + "/"

+ build + ".fa.gz"

 chrom_loc4 = "http://hgdownload.cse.ucsc.edu/goldenPath" + "/" + build + "/" + "bigZips" + "/"

+ "chromFa.zip"

 chrom_basename = outfolder + "/" + build

 chrom_outfolder= chrom_basename + ".chromFa"

 #Download chromosome fasta files

 chrom_name_compressed = chrom_basename + "chromFa.tar.gz"

 urllib.urlretrieve(chrom_loc1, filename=chrom_name_compressed)

 df_fail1=failed_dl(chrom_name_compressed)

 if df_fail1:

 os.unlink(chrom_name_compressed)

 chrom_name_compressed = chrom_basename + "chromFa.tar.gz"

 urllib.urlretrieve(chrom_loc2, filename=chrom_name_compressed)

 df_fail2=failed_dl(chrom_name_compressed)

 if df_fail2:

 os.unlink(chrom_name_compressed)

 chrom_name_compressed = chrom_basename + ".fa.gz"

 urllib.urlretrieve(chrom_loc3, filename=chrom_name_compressed)

 df_fail3=failed_dl(chrom_name_compressed)

 if df_fail3:

 os.unlink(chrom_name_compressed)

 chrom_name_compressed = outfolder + "/" + "chromFa.zip"

 urllib.urlretrieve(chrom_loc4, filename=chrom_name_compressed)

 df_fail4=failed_dl(chrom_name_compressed)

 if df_fail4:

 os.unlink(chrom_name_compressed)

 raise Exception("Was not able to download chromosome file from UCSC" + "\n", file

= sys.stderr)

 if verbosity:

 print("Finished Downloading Compressed Chromosome folder, Decompressing..." + "\n", file

= sys.stderr)

134

 #Unzip

 if "tar.gz" in chrom_name_compressed:

 chrom_name = chrom_outfolder

 with tarfile.TarFile.open(chrom_name_compressed, 'r') as tarredgzippedFile:

 tarredgzippedFile.extractall(path=chrom_name)

 elif "fa.gz" in chrom_name_compressed:

 chrom_name = chrom_outfolder + "/" + build + ".fa"

 decompress(compressed = chrom_name_compressed, decompressed = chrom_name)

 elif "chromFa.zip" in chrom_name_compressed:

 chrom_name = chrom_outfolder

 unzip(chrom_name_compressed,chrom_name)

 if verbosity:

 print("Finished Decompressing Chromosome folder" + "\n", file = sys.stderr)

 #Removes compressed file

 if keep == False:

 if verbosity:

 print("Deleting Compressed Chromosome folder", file=sys.stderr)

 os.remove(chrom_name_compressed)

 #filter for fasta files and filter out unwanted chromosomes

 if os.path.isdir(chrom_name): # if genome is folder and not file

 fasta_folder = chrom_name + "/" + "chroms"

 if not os.path.isdir(fasta_folder): #if chromFa folder does not have "chroms" subdirectory

 fasta_folder = chrom_name #then fasta files are in chromFa folder

 unwanted_folder = chrom_name + "/" + "unwanted" # create unwanted folder

 make_dir(unwanted_folder)

 file_list=os.listdir(fasta_folder) #list all files in unwanted folder (previously fasta folder)

 unwantedChr = ["hap", "M", "alt"]

 for i in file_list: # Cleans up unwanted characters from the files before

 i=i.rstrip()

 i_file = fasta_folder + "/" + i

 wanted_file = chrom_outfolder + "/" + i

 unwanted_file = unwanted_folder + "/" + i

 basename = os.path.splitext(i)[0]

 extension = os.path.splitext(i)[1]

 #Filter out folders, non-fasta files, unwanted chromosome fasta files

 if any(x in basename for x in unwantedChr):

 os.rename(i_file,unwanted_file) # move unwanted chromosome files to

chrom.Fa/unwanted folder

 continue

 if os.path.isdir(i):

 continue

 if i_file != wanted_file:

 os.rename(i_file,wanted_file) # move wanted chromosome files to chromFa folder

135

 if "chroms" in fasta_folder:

 os.rmdir(fasta_folder)

 if verbosity:

 print("Chromosome fasta files are in" + chrom_outfolder + "\n", file = sys.stderr)

 ####### DOWNLOAD CHROM_INFO FILE ##########

 if chrom_info:

 if verbosity:

 print("Downloading Chrom_info file..." + "\n", file = sys.stderr)

 chrom_info_loc = "http://hgdownload.cse.ucsc.edu/goldenPath" + "/" + build + "/" +

"database" + "/"+ "chromInfo.txt.gz"

 chrom_info_name = outfolder + "/" + build + "_chromInfo.txt"

 chrom_info_name_compressed = chrom_info_name + ".gz"

 #Downloads Chromosome info file

 urllib.urlretrieve(chrom_info_loc, filename=chrom_info_name_compressed)

 if verbosity:

 print("Finished Downloading Chrom_info file, Decompressing..." + "\n", file = sys.stderr)

 #Decompresses chromosome info file

 decompress(compressed = chrom_info_name_compressed, decompressed = chrom_info_name)

 if verbosity:

 print("Finished Decompressing Chrom_info file: " + "\t" + chrom_info_name + "\n", file =

sys.stderr)

 #Deletes compressed chromosome info file

 if keep == False:

 if verbosity:

 print("Deleting Compressed Chrom_info file" + "\n", file=sys.stderr)

 os.remove(chrom_info_name_compressed)

 ###### DOWNLOAD REPEATMASKER FILE #################

 if rmsk:

 if verbosity:

 print("Downloading Repeatmasker file..." + "\n", file = sys.stderr)

 rmsk_file=outfolder + "/" + build + "_rmsk.txt"

 rmsk_list=set()

 rmsk_loc="http://hgdownload.cse.ucsc.edu/goldenPath" + "/" + build + "/" + "database" + "/"

 urlpath = urlopen(rmsk_loc)

 string = urlpath.read().decode('utf-8')

 pattern = re.compile('\\brmsk.txt.gz\\b')

 filelist = pattern.findall(string)

 for filename in filelist:

 rmsk_list.add(filename)

 pattern = re.compile('chr[0-9][0-9]*_rmsk.txt.gz')

 filelist = pattern.findall(string)

136

 for filename in filelist:

 rmsk_list.add(filename)

 pattern = re.compile('chr[A-Z]_rmsk.txt.gz')

 filelist = pattern.findall(string)

 for filename in filelist:

 rmsk_list.add(filename)

 if len(rmsk_list) > 1:

 if verbosity:

 print("Multiple Repeatmasker files found, Downloading, Decompressing and combining

into a single file..." + "\n", file = sys.stderr)

 with open(rmsk_file,'wb') as outfile:

 for filename in rmsk_list:

 remotefile=urllib.urlretrieve(rmsk_loc + filename, filename=outfolder +"/" + filename)

 if verbosity:

 print("Downloading Compressed Repeatmasker file" + " " + filename + "\n",

file=sys.stderr)

 newfilename=filename.replace(".gz","")

 decompress(compressed=outfolder + "/" + filename, decompressed=outfolder + "/" +

newfilename)

 with open(outfolder + "/" + newfilename, 'rb') as inrmsk:

 shutil.copyfileobj(inrmsk, outfile)

 if verbosity:

 print("Adding to Repeatmasker file" + " " + rmsk_file + "\n", file=sys.stderr)

 #Deletes decompressed repeatmasker file

 if keep == False:

 if verbosity:

 print("Deleting Compressed Repeatmasker file" + " " + filename + "\n",

file=sys.stderr)

 os.remove(outfolder +"/" + filename)

 if verbosity:

 print("Deleting Decompressed Repeatmasker file" + " " + newfilename + "\n",

file=sys.stderr)

 os.remove(outfolder + "/" + newfilename)

 elif len(rmsk_list) == 1:

 rmsk_list=list(rmsk_list)

 filename=rmsk_list[0]

 remotefile=urllib.urlretrieve(rmsk_loc + filename, filename=outfolder +"/" + filename)

 if verbosity:

 print("Finished Downloading Repeatmasker file, Decompressing..." + "\n", file = sys.stderr)

 decompress(compressed=outfolder + "/" + filename, decompressed=rmsk_file)

 if keep == False:

 if verbosity:

 print("Deleting Compressed Repeatmasker file" + "\n", file=sys.stderr)

 os.remove(outfolder +"/" + filename)

 elif not rmsk_list:

 raise Exception("Was not able to download rmsk file from UCSC" + "\n", file = sys.stderr)

 if verbosity:

137

 print("Finished with Repeatmasker download step" + "\n", file = sys.stderr)

 ####### DOWNLOAD GENE ANNOTATIONS ##########

 if gene:

 if verbosity:

 print("Downloading RefGene file..." + "\n", file = sys.stderr)

 refGene_loc = "http://hgdownload.cse.ucsc.edu/goldenPath" + "/" + build + "/" + "database" +

"/"+ "refGene.txt.gz"

 refGene_name = outfolder + "/" + build + "_refGene.txt"

 refGene_name_compressed = refGene_name + ".gz"

 #Downloads Chromosome info file

 urllib.urlretrieve(refGene_loc, filename=refGene_name_compressed)

 if verbosity:

 print("Finished Downloading refGene file, Decompressing..." + "\n", file = sys.stderr)

 #Decompresses chromosome info file

 decompress(compressed = refGene_name_compressed, decompressed = refGene_name)

 if verbosity:

 print("Finished Decompressing refGene file: " + "\t" + refGene_name + "\n", file =

sys.stderr)

 #Deletes compressed chromosome info file

 if keep == False:

 if verbosity:

 print("Deleting Compressed refGene file" + "\n", file=sys.stderr)

 os.remove(refGene_name_compressed)

 #remove first column

 refGene_genepred=outfolder + "/" + build + "_refGene.genepred"

 removecolumn_commandlist = ["cut","-f2-",refGene_name,">",refGene_genepred]

 removecolumn_command = " ".join(removecolumn_commandlist)

 sp.check_call(["/bin/sh", "-c", removecolumn_command])

 os.unlink(refGene_name)

 if verbosity:

 print("Converting RefGene file to GTF ..." + "\n", file = sys.stderr)

 refGene_gtf=outfolder + "/" + build + "_refGene.gtf"

 genepred_to_gtf(refGene_genepred,refGene_gtf,outfolder)

 if verbosity:

 print("Finished converting RefGene file to GTF ..." + "\n", file = sys.stderr)

 if verbosity:

 print("Converting RefGene file to Bed ..." + "\n", file = sys.stderr)

 refGene_Bed=outfolder + "/" + build + "_refGene.bed"

 genepred_to_bed(refGene_genepred,refGene_Bed,outfolder)

 if verbosity:

138

 print("Finished converting RefGene file to Bed ..." + "\n", file = sys.stderr)

 ####### CREATE STAR INDEX ##########

 if index:

 chrom_folder = outfolder + "/" + build + ".chromFa"

 if not os.path.isdir(chrom_folder):

 raise Exception(str(chrom_folder) + "not found" + "\n", file = sys.stderr)

 fasta_list=find_files(chrom_folder,".fa",1)

 genome_filepath = " ".join(fasta_list)

 index_name = outfolder + "/" + build + "_STAR"

 make_dir(index_name)

 STAR_build_commandlist = ["STAR","""--runThreadN""", str(pthreads), """--runMode

genomeGenerate""","""--genomeFastaFiles""",genome_filepath,"""--genomeDir""",index_name]

 STAR_build_command = " ".join(STAR_build_commandlist)

 if verbosity:

 print("Building STAR index" + "\n", file = sys.stderr)

 print(STAR_build_command,file=sys.stderr)

 sp.check_call(["/bin/sh", "-c", STAR_build_command])

 ####### STOP TIMING SCRIPT #######################

 if verbosity:

 endTime = datetime.now()

 print('end time is: '+ str(endTime) + "\n", file = sys.stderr) # print end time

 print('it took: ' + str(endTime-startTime) + "\n", file = sys.stderr) # print total time

if __name__ == "__main__":

 main()

139

Appendix D. SQuIRE Map

#!/usr/bin/env python

-*- coding: utf-8 -*-

############MODULES#########################

from __future__ import print_function,division

import sys

import os

import errno

import argparse #module that passes command-line arguments into script

from datetime import datetime

import operator #for doing operations on tuple

from operator import itemgetter

import subprocess as sp

from subprocess import Popen, PIPE,STDOUT

import io

import tempfile

#for creating interval from start

from collections import defaultdict #for dictionary

import glob

import re

from six import itervalues

import textwrap

import shutil

####### FUNCTIONS ##############################

def isempty(filepath):

 if os.path.getsize(filepath) == 0:

 raise Exception(filepath + " is empty")

def make_dir(path):

 try:

 original_umask = os.umask(0)

 os.makedirs(path, 0770)

 except OSError as exception:

 if exception.errno != errno.EEXIST:

 raise

 finally:

 os.umask(original_umask)

def get_basename(filepath):

 filename = os.path.basename(filepath)

 filebase = os.path.splitext(filename)[0]

 return filebase

def make_tempfile(basename,step,outfolder):

 tmpfile = tempfile.NamedTemporaryFile(delete=False, dir = outfolder, prefix= basename + "_" +

step + ".tmp")

 tmpname = tmpfile.name

140

 tmpfile.close()

 return tmpname

def rev_comp(sequence):

 rev_seq = sequence[::-1]

 new_seq=""

 for base in rev_seq:

 if base == "A":

 newbase = "T"

 elif base == "T":

 newbase = "A"

 elif base == "C":

 newbase = "G"

 elif base == "G":

 newbase = "C"

 new_seq += newbase

 return new_seq

def rename_file(oldname,newname):

 shutil.move(oldname, newname)

def combine_files(file1,file2,outfile,debug):

 catcommand_list = ["cat", file1, file2, ">", outfile] #combines multi_aligned reads

 catcommand = " ".join(catcommand_list)

 sp.check_call(["/bin/sh","-c",catcommand])

 if not debug:

 os.unlink(file1)

 os.unlink(file2)

def find_file(folder,pattern,base, wildpos, needed):

 foundfile=False

 if wildpos == 1:

 file_list=glob.glob(folder + "/" + "*" + pattern)

 elif wildpos ==2:

 file_list=glob.glob(folder + "/" + pattern + "*")

 if len(file_list)>1: #if more than one file in folder

 if not base:

 raise Exception("More than 1 " + pattern + " file")

 for i in file_list:

 if base in i:

 foundfile = i

 elif len(file_list) == 0:

 foundfile = False

 else:

 foundfile = file_list[0]

 if not foundfile:

 if needed:

 raise Exception("No " + pattern + " file")

 else:

 foundfile = False

141

 return foundfile

def align_paired(fastq1,fastq2,pthreads,trim3,index,outfile,gtf,gzip,prefix,read_length,extra_fa):

 ##### ALIGN FASTQ FILE(S) TO GENOME OR REPCHR ########

 #-p16: allows hyperhreading over 16 cores

 #-t: outputs time of alignment

 #--tryhard Puts in maximal effort in finding valid alignments for paired end reads

 #-a: reports all valid alignments for reads

 #-3 trim3: trims user-specified bases from 3' end of FASTQ sequences (useful for if sequencing

read > subsequence length)

 gtf_option = []

 gzip_option = []

 extra_option = []

 if gtf:

 gtf_option = ["--sjdbGTFfile", gtf, "--sjdbOverhang",str(read_length-1), "--twopassMode",

"Basic"]

 if gzip:

 gzip_option = ["""--readFilesCommand""", "zcat"]

 if extra_fa:

 extra_option=["""--genomeFastaFiles""",extra_fa]

 add_options = gtf_option + gzip_option + extra_option

 multi_align = ["""--outFilterMultimapNmax""", "100", """--winAnchorMultimapNmax""",

"100", "--alignEndsType","EndToEnd" ,"--alignEndsProtrude","100 DiscordantPair"]

 trim = ["""--clip3pNbases""", str(trim3)]

 single_reads = ["""--outFilterScoreMinOverLread""", "0.4", """--

outFilterMatchNminOverLread""", """0.4"""]

 #single_reads=[]

 discordant = ["--chimSegmentMin", str(read_length)]

 #discordant = []

 inputs = ["""--genomeDir""", index,"""--readFilesIn""",fastq1, fastq2]

 outputs = ["""--outFileNamePrefix""", prefix, """--outSAMtype""", "BAM Unsorted", "--

outSAMattributes", "All","--outSAMstrandField", "intronMotif", "--outSAMattrIHstart", "0"]

 STARcommand_list = ["STAR","""--runThreadN""",str(pthreads)] + trim + multi_align +

single_reads + discordant + inputs + outputs + add_options

 STARcommand=" ".join(STARcommand_list)

 sp.check_call(["/bin/sh", "-c", STARcommand])

 STAR_output = prefix + "Aligned.out.bam"

 sortcommand_list = ["samtools", "sort", "-@",str(pthreads), STAR_output, prefix]

 sortcommand = " ".join(sortcommand_list)

 sp.check_call(["/bin/sh", "-c", sortcommand])

 indexcommand_list = ["samtools", "index", outfile]

 indexcommand = " ".join(indexcommand_list)

 sp.check_call(["/bin/sh", "-c", indexcommand])

142

 os.unlink(STAR_output)

 os.unlink(prefix + "Log.out")

 os.unlink(prefix + "Log.progress.out")

 rename_file(prefix + "Log.final.out",prefix +".log")

def align_unpaired(fastq,pthreads,trim3,index,outfile,gtf,gzip,prefix,read_length,extra_fa):

 ##### ALIGN FASTQ FILE(S) TO GENOME OR REPCHR ########

 #-p16: allows hyperhreading over 16 cores

 #-t: outputs time of alignment

 #-v3: allows maximum of 3 mismatches to account for population variants, increases stringency

of Tag finding

 #-a -m1: reports all valid alignments for reads with only 1 reportable alignment

 #-3 trim3: trims user-specified bases from 3' end of FASTQ sequences (useful for if sequencing

read > subsequence length)

 gtf_option = []

 gzip_option = []

 extra_option = []

 if gtf:

 gtf_option = ["--sjdbGTFfile", gtf, "--sjdbOverhang",str(read_length-1), "--twopassMode",

"Basic"]

 if gzip:

 gzip_option = ["""--readFilesCommand""", "zcat"]

 if extra_fa:

 extra_option=["""--genomeFastaFiles""",extra_fa]

 add_options = gtf_option + gzip_option + extra_option

 multi_align = ["""--outFilterMultimapNmax""", "100", """--winAnchorMultimapNmax""",

"100"]

 trim = ["""--clip3pNbases""", str(trim3)]

 inputs = ["""--genomeDir""", index,"""--readFilesIn""",fastq]

 outputs = ["""--outFileNamePrefix""", prefix, """--outSAMtype""", "BAM Unsorted", "--

outSAMattributes", "All","--outSAMstrandField", "intronMotif", "--outSAMattrIHstart", "0"]

 STARcommand_list = ["STAR","""--runThreadN""",str(pthreads)] + trim + multi_align + inputs

+ outputs + add_options

 STARcommand=" ".join(STARcommand_list)

 sp.check_call(["/bin/sh", "-c", STARcommand])

 STAR_output = prefix + "Aligned.out.bam"

 sortcommand_list = ["samtools", "sort", "-@",str(pthreads), STAR_output, prefix]

 sortcommand = " ".join(sortcommand_list)

 sp.check_call(["/bin/sh", "-c", sortcommand])

 indexcommand_list = ["samtools", "index", outfile]

 indexcommand = " ".join(indexcommand_list)

 sp.check_call(["/bin/sh", "-c", indexcommand])

 os.unlink(STAR_output)

143

 # os.unlink(prefix + "Log.out")

 # os.unlink(prefix + "Log.progress.out")

 rename_file(prefix + "Log.final.out",prefix +".log")

def get_header(bamfile,headerfile):

 samtoolscommand_list = ["samtools","view","-H", bamfile, ">",headerfile]

 samtoolscommand = " ".join(samtoolscommand_list)

 sp.check_call(["/bin/sh", "-c", samtoolscommand])

def mask_reads(infile,extra,chrom_list,basename,outfolder,pthreads,debug):

 read_dict={}

 sam_temp=make_tempfile(basename,"sam_temp",outfolder)

 ectopic_alignments = make_tempfile(basename,"ectopic",outfolder)

 ectopic_reads = infile.replace(".bam","_ectopic.bam")

 nonectopic_reads = infile.replace(".bam","_masked.bam")

 with open(extra,'r') as nonreftable:

 for line in nonreftable:

 line=line.rstrip()

 line=line.split("\t")

 chrom=line[0]

 strand=line[3]

 TE_type=line[5].lower()

 if strand=="Strand":

 continue

 if TE_type=="plasmid":

 chrom_list.append(chrom)

 elif TE_type=="transgene":

 chrom_list.append(chrom)

 get_header(infile,ectopic_reads)

 get_header(infile,nonectopic_reads)

 for chrom in chrom_list:

 search="""'"""+ '$3 ~ /' + chrom + '/' + """'"""

 dupe_command_list = ["samtools","view",infile,chrom, ">", ectopic_alignments] #skips lines if

the read has already appeared in the file

 dupe_command = " ".join(dupe_command_list)

 sp.check_call(["/bin/sh", "-c", dupe_command])

 awkcommand_list = ["samtools","view", infile, ">",sam_temp] #writes lines in

combined_tempfile that are not in unique_tempfile2 -> duplicates

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 awkcommand_list = ["awk", """'FNR==NR{a[$1]++;next}a[$1]'""", ectopic_alignments,

sam_temp, ">>", ectopic_reads] #writes lines in combined_tempfile that are not in unique_tempfile2

-> duplicates

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

144

 awkcommand_list = ["awk", """'FNR==NR{a[$1]++;next}!a[$1]'""", ectopic_alignments,

sam_temp, ">", nonectopic_reads] #writes lines in combined_tempfile that are not in

unique_tempfile2 -> duplicates

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 if not debug:

 os.unlink(ectopic_alignments)

def main(**kwargs):

 ######## ARGUMENTS ###########

 #check if already args is provided, i.e. main() is called from the top level script

 args = kwargs.get('args', None)

 if args is None: ## i.e. standalone script called from command line in normal way

 parser = argparse.ArgumentParser(description = """Aligns RNAseq reads to STAR index

allowing for multiple alignments""")

 parser._optionals.title = "Arguments"

 parser.add_argument("-1","--read1", help = "RNASeq data fastq file; read1 if providing paired

end data. If more than one file, separate with commas, no spaces. Can be gzipped. (Required for

single-end data; optional for paired-end)", type = str, metavar = "<file_1.fastq or file_1.fastq.gz>")

 parser.add_argument("-2","--read2", help = "RNASeq data read2 fastq file. if more than one file,

separate with commas, no spaces. Can be gzipped. (optional, can skip or enter 'False' if data is

unpaired)", type = str, metavar = "<file_2.fastq or file_2.fastq.gz>")

 parser.add_argument("-o","--map_folder", help = "Location of SQuIRE Map outputs (optional,

default = 'squire_map')", type = str, metavar = "<folder>", default = "squire_map")

 parser.add_argument("-f","--fetch_folder", help = "Folder location of outputs from SQuIRE

Fetch (optional, default = 'squire_fetch'",type = str, metavar = "<folder>",default="squire_fetch")

 parser.add_argument("-r","--read_length", help = "Read length (if trim3 selected, after trimming;

required).", type = int, metavar = "<int>", required=True)

 parser.add_argument("-n","--name", help = "Common basename for input files (optional; uses

basename of read1 as default)", type = str, metavar = "<str>",default=False)

 parser.add_argument("-3","--trim3", help = "Trim <int> bases from right end of each read before

alignment (optional; default=0).", type = int, default = 0, metavar = "<int>")

 parser.add_argument("-e","--extra", help = "Filepath of text file containing non-reference repeat

sequence and genome information", type=str, metavar = "<file.txt>")

 parser.add_argument("-b","--build", help = "UCSC designation for genome build, eg. 'hg38'

(required if more than 1 build in clean_folder)", type=str, metavar = "<build>",default=False)

 parser.add_argument("-p","--pthreads", help = "Launch <int> parallel threads(optional;

default='1')", type = int, metavar = "<int>", default=1)

 parser.add_argument("-v","--verbosity", help = "Want messages and runtime printed to stderr

(optional; default=False)", action = "store_true", default = False)

 args,extra_args = parser.parse_known_args()

########## I/O #########

 ###### ARGUMENTS ######

 read1=args.read1

 read2=args.read2

 outfolder = args.map_folder

 read_length = args.read_length

 fetch_folder=args.fetch_folder

 #index = args.index

 basename = args.name

145

 trim3 = args.trim3

 extra=args.extra

 build=args.build

 #gtf=args.gtf

 # mask=args.mask

 pthreads = args.pthreads

 verbosity=args.verbosity

 ######### START TIMING SCRIPT ############

 if verbosity:

 startTime = datetime.now()

 print("start time is:" + str(startTime) + '\n', file = sys.stderr)# Prints start time

 print(os.path.basename(__file__) + '\n', file = sys.stderr) #prints script name to std err

 print("Script Arguments" + '\n' + "=================", file = sys.stderr)

 args_dict = vars(args)

 for option,arg in args_dict.iteritems():

 print(str(option) + "=" + str(arg), file = sys.stderr) #prints all arguments to std err

 print("\n", file = sys.stderr)

 #### SET DEFAULTS #####

 if not read1 and not read2:

 raise Exception("read1 or read2 must be provided")

 if read2:

 if read2.lower()=="false":

 read2=False

 debug=True

 ### CHECK INPUTS#####

 index = find_file(fetch_folder,"_STAR",build, 1,True)

 gtf = find_file("squire_fetch","_refGene.gtf",build, 1,True)

 if not basename:

 basename = get_basename(read1)

 make_dir(outfolder)

 outfile = outfolder + "/" + basename + ".bam"

 prefix = outfolder + "/" + basename

 if ".gz" in read1:

 gzip=True

 else:

 gzip = False

 extra_fapath=False

 if extra:

 extra_fapath = outfolder + "/" + get_basename(extra) + ".fa"

 extra_fa=open(extra_fapath,'wb')

 if verbosity:

 print("Making fasta file from extra file" + "\n", file = sys.stderr)

146

 previous_chrom=0 #This is needed to avoid reopening chromosome sequence files, which would

make the script run time a lot longer.

 buffer_sequence = "N" * 200

 chrom_dict = {}

 seq_dict=defaultdict(str)

 maskchrom_list=[]

 with open(extra,'r') as extra_file:

 nonref_types=["polymorphism","novel","plasmid","transgene"]

 for line in extra_file:

 line = line.rstrip()

 line=line.split("\t")

 chrom=line[0]

 start = line[1]

 stop = line[2]

 strand = line[3]

 if strand.lower()=="strand":

 continue

 taxo = line[4]

 TE_type=line[5].lower()

 if TE_type not in nonref_types:

 raise Exception('TE type needs to be "polymorphism","novel","plasmid",or "transgene"')

 chrom = chrom + "_" + TE_type

 if not chrom.startswith("chr"):

 chrom="chr"+chrom

 #chrom=chrom + "_" + TE_type

 if "plasmid" in TE_type: #if plasmid

 score = "999"

 maskchrom_list.append(chrom)

 elif "transgene" in TE_type:

 score="999"

 maskchrom_list.append(chrom)

 else: #if insertion polymorphism

 score = "1000"

 left_flankseq = line[6]

 right_flankseq = line[7]

 TEsequence = line[8]

 sequence=left_flankseq + TEsequence + right_flankseq

 seq_dict[chrom] += sequence + buffer_sequence

 for chrom, sequence in seq_dict.iteritems():

 extra_fa.writelines(">" + chrom + "\n")

 new_chromseq = textwrap.fill(seq_dict[chrom],50)

 extra_fa.writelines(new_chromseq + "\n")

 extra_fa.close()

 else:

 extra_fa=None

147

 if read1 and not read2: #if single-end

 if read1.endswith(","):

 read1=read1[:-1]

 if verbosity:

 print("Aligning FastQ files " + str(datetime.now()) + "\n",file = sys.stderr)

 align_unpaired(read1,pthreads,trim3,index,outfile,gtf,gzip,prefix, read_length,extra_fapath)

 if read1 and read2:

 if read1.endswith(","):

 read1=read1[:-1]

 if read2.endswith(","):

 read2=read2[:-1]

 if verbosity:

 print("Aligning FastQ files for Read1 and Read2 " + str(datetime.now()) + "\n",file =

sys.stderr)

 align_paired(read1,read2,pthreads,trim3,index,outfile,gtf,gzip,prefix, read_length,extra_fapath)

 # if mask:

 # mask_reads(outfile,chrom_list,basename,outfolder,pthreads,debug)

 ####### STOP TIMING SCRIPT #######################

 if verbosity:

 print("finished writing outputs" + "\n",file = sys.stderr)

 endTime = datetime.now()

 print('end time is: '+ str(endTime) + "\n", file = sys.stderr)

 print('it took: ' + str(endTime-startTime) + "\n", file = sys.stderr)

###################

if __name__ == "__main__":

 main()

148

Appendix E. SQuIRE Count

#!/usr/bin/env python

############MODULES#########################

from __future__ import print_function,division

import sys

import os

import errno

import re

import argparse #module that passes command-line arguments into script

from datetime import datetime

import operator #for doing operations on tuple

from operator import itemgetter

import subprocess as sp

from subprocess import Popen, PIPE,STDOUT

import io

import tempfile

#for creating interval from start

from collections import defaultdict #for dictionary

import glob

import re

from six import itervalues

import shutil

#########INITIATE VARIABLES

RepCalc_dict = {}

subF_reads = defaultdict(int)

####### FUNCTIONS ##############################

def isempty(filepath):

 if os.path.getsize(filepath) == 0:

 raise Exception(filepath + " is empty")

def get_basename(filepath):

 filename = os.path.basename(filepath)

 filebase = os.path.splitext(filename)[0]

 return filebase

def make_dir(path):

 try:

 original_umask = os.umask(0)

 os.makedirs(path, 0770)

 except OSError as exception:

 if exception.errno != errno.EEXIST:

 raise

 finally:

 os.umask(original_umask)

149

def find_file(folder,pattern,base, wildpos, needed):

 foundfile=False

 if wildpos == 1:

 file_list=glob.glob(folder + "/" + "*" + pattern)

 elif wildpos ==2:

 file_list=glob.glob(folder + "/" + pattern + "*")

 if len(file_list)>1: #if more than one file in folder

 if not base:

 raise Exception("More than 1 " + pattern + " file")

 for i in file_list:

 if base in i:

 foundfile = i

 elif len(file_list) == 0:

 foundfile = False

 else:

 foundfile = file_list[0]

 if not foundfile:

 if needed:

 raise Exception("No " + pattern + " file")

 else:

 foundfile = False

 return foundfile

def rename_file(oldname,newname):

 shutil.move(oldname, newname)

 ####create tempfiles ###

def make_tempfile(basename, step, outfolder):

 tmpfile = tempfile.NamedTemporaryFile(delete=False, dir = outfolder, prefix= basename +

"_" + step + ".tmp")

 tmpname = tmpfile.name

 tmpfile.close()

 return tmpname

def getlibsize(logfile, infile,multi_bed,uniq_bed,paired_end,debug):

 if logfile:

 STAR_logfile=open(logfile,'r')

 for line in STAR_logfile:

 line = line.strip()

 unique_string = """Uniquely mapped reads number"""

 multi_string = """Number of reads mapped to multiple loci"""

 if unique_string in line:

 unique_libsize = int(re.search("\d+",line).group(0))

 elif multi_string in line:

 multi_libsize =int(re.search("\d+",line).group(0))

 libsize = (unique_libsize + multi_libsize)/2

 STAR_logfile.close()

 else:

 count_temp = infile + "libsize"

150

 linecountcommandlist = ["samtools", "view", infile, "|", "cut", "-f1", "|", "sort", "-

k1,1", "|" , "uniq","|", "wc -l", ">", count_temp]

 linecountcommand = " ".join(linecountcommandlist)

 sp.check_call(["/bin/sh","-c",linecountcommand])

 with open(count_temp, 'r') as count_file:

 first_line = count_file.readline()

 first_line_split = first_line.split()

 libsize = int(first_line_split[0])

 if paired_end:

 libsize = libsize/2

 if not debug:

 os.unlink(count_temp)

 return libsize

def getlinecount(first_file,name):

 count_temp = first_file +"_" + name + ".libsize"

 linecountcommandlist = ["wc","-l",first_file,">", count_temp]

 linecountcommand = " ".join(linecountcommandlist)

 sp.check_call(["/bin/sh","-c",linecountcommand])

 with open(count_temp, 'r') as count_file:

 first_line = count_file.readline()

 first_line_split = first_line.split()

 libsize = first_line_split[0]

 return int(libsize)

 # os.unlink(count_temp)

def Stringtie(bamfile,outfolder,basename,strandedness,pthreads,gtf, verbosity,outgtf):

 ###Stringtie parameters

 extra_files=True

 if strandedness ==1:

 stringtie_strand = "--rf"

 elif strandedness == 2:

 stringtie_strand = "--fr"

 else:

 stringtie_strand = ""

 if gtf:

 inputs = ["-G", gtf, bamfile]

 pct_max_fpkm=0.1

 flanklength = 10

 flankdepth = 1

 read_gap = 50

 min_tx_length=200

 max_multi_pct = .95

 min_coverage = 2.5

 TEoptions = [stringtie_strand, "-f",str(pct_max_fpkm),"-m", str(min_tx_length), "-a",

str(flanklength), "-j", str(flankdepth), "-g", str(read_gap), "-M", str(max_multi_pct), "-c",

str(min_coverage), "-e"]

151

 else:

 inputs = [bamfile]

 pct_max_fpkm=0.1

 flanklength = 10

 flankdepth = .1

 read_gap = 50

 min_tx_length=200

 max_multi_pct = 1.0

 min_coverage = 1.5

 TEoptions = [stringtie_strand,"-l",basename, "-f",str(pct_max_fpkm),"-m",

str(min_tx_length), "-a", str(flanklength), "-j", str(flankdepth), "-g", str(read_gap), "-M",

str(max_multi_pct), "-c", str(min_coverage), "-t"]

 runoptions = ["-p", str(pthreads),]

 if verbosity:

 if gtf:

 print("Running Guided Stringtie on each bamfile " + basename + " " + str(datetime.now())

+ "\n",file = sys.stderr)

 else:

 print("Running Unguided Stringtie on each bamfile " + basename + " " +

str(datetime.now()) + "\n",file = sys.stderr)

 outputs=["-o", outgtf]

 if extra_files:

 out_abund = outgtf.replace("outgtf","outabund")

 outputs= outputs + ["-A", out_abund]

 StringTiecommand_list = ["stringtie"] + runoptions + TEoptions + outputs + inputs

 StringTiecommand=" ".join(StringTiecommand_list)

 sp.check_call(["/bin/sh", "-c", StringTiecommand])

class gtfline(object):

 def __init__(self,line):

 self.line=line

 self.chrom = line[0]

 self.source=line[1]

 self.category=line[2]

 self.start = (int(line[3])-1)

 self.stop = int(line[4])

 self.score=(line[5])

 self.strand = line[6]

 self.frame=line[7]

 self.attributes=line[8].split("; ")

 for attribute_pair in self.attributes:

 self.attribute = attribute_pair.replace(" ","").split('"')

 if self.attribute[0]=="FPKM":

 self.fpkm=float(self.attribute[1])

 elif self.attribute[0]=="TPM":

 self.tpm=float(self.attribute[1])

 elif self.attribute[0]=="gene_id":

 self.Gene_ID=self.attribute[1]

 elif self.attribute[0]=="cov" :

 self.coverage=float(self.attribute[1])

152

 elif self.attribute[0]== "transcript_id":

 self.transcript_id=self.attribute[1]

 def replace_geneid(self,newgeneid):

 newgeneid=[str(x) for x in newgeneid]

 newgeneid=",".join(newgeneid)

 self.attributes[0] = "gene_id" + " " + '"' + newgeneid + '"'

 attributesout = self.attributes= "; ".join(self.attributes)

 gtfout =

[self.chrom,self.source,self.category,self.start+1,self.stop,self.score,self.strand,self.frame,attributesout

]

 self.gtfout = [str(i) for i in gtfout]

def filter_tx(infile,gene_dict,read_length,genecounts):

 with open(infile,'r') as filterin:

 header=filterin.readline()

 for line in filterin:

 if line.startswith("#"):

 continue

 line = line.rstrip()

 line = line.split("\t")

 gtf_line = gtfline(line[0:9])

 if len(line) == 9:

 if gtf_line.category=="exon":

 transcribed_length=int(gtf_line.stop) - int(gtf_line.start)

 counts =

gtf_line.coverage*transcribed_length/int(read_length)

 if counts > 0:

 gene_dict[(gtf_line.Gene_ID,gtf_line.strand)].add_counts(counts)

 gene_dict[(gtf_line.Gene_ID,gtf_line.strand)].add_tx(gtf_line.transcript_id)

 else:

 ref_line=gtfline(line[9:18])

 gene_dict[(ref_line.Gene_ID,ref_line.strand)].add_tx(gtf_line.transcript_id)

 with open(genecounts,'w') as outfile:

 for genestrand,geneinfo in gene_dict.iteritems():

 outline="\t".join(geneinfo.countsout)

 outfile.writelines(outline+"\n")

class gene_info(object):

 def __init__(self,line):

 self.Gene_ID = line[0]

 self.Gene_name = line[1]

 self.chrom = line[2]

 self.strand = line[3]

 self.start = str(int(line[4])-1) #changes from 1 base to 0-base

 self.stop = int(line[5])

 self.coverage = float(line[6])

 self.fpkm = float(line[7])

 self.tpm = float(line[8])

153

 self.counts=0

 self.tx_IDs=set()

 self.tx_ID_string=",".join(self.tx_IDs)

 self.flagout=[self.Gene_ID,self.fpkm,self.counts]

 self.countsout=[self.chrom,self.start,self.stop,self.Gene_ID,self.fpkm,self.strand,int(round(sel

f.counts)),self.tx_ID_string]

 self.countsout = [str(i) for i in self.countsout]

 def add_counts(self,counts):

 self.counts += counts

 def add_tx(self,txID):

 self.tx_IDs.add(txID)

 self.tx_ID_string=",".join(self.tx_IDs)

 self.flagout = [self.Gene_ID,self.fpkm,self.counts]

 self.countsout =

[self.chrom,self.start,self.stop,self.Gene_ID,self.fpkm,self.strand,int(round(self.counts)),self.tx_ID_st

ring]

 self.countsout = [str(i) for i in self.countsout]

def filter_abund(infile,gene_dict,notinref_dict):

 with open(infile,'r') as filterin:

 for line in filterin:

 line = line.rstrip()

 line = line.split("\t")

 if "Gene" in line[0] and "TPM" in line[-1]:

 continue

 gene_data=gene_info(line)

 if not notinref_dict:

 gene_dict[(gene_data.Gene_ID,gene_data.strand)] = gene_data

 else:

 if gene_data.Gene_ID in notinref_dict:

 gene_dict[(gene_data.Gene_ID,gene_data.strand)] =

gene_data

def intersect(bamfile,bedfile,out_bed):

 ######## INTERSECT WITH BED FILE #########################

 intersect_list = ["bedtools", "intersect", "-a",bamfile,"-b",bedfile,"-wo", "-bed",">",out_bed]

 intersect_command = " ".join(intersect_list)

 sp.check_call(["/bin/sh", "-c", intersect_command])

def intersect_flank(bamfile,bedfile,out_bed,debug):

 ######## INTERSECT WITH BED FILE #########################

 #keep read if 50% of read overlaps with TE range

 intersect_list = ["bedtools", "intersect", "-a",bamfile,"-b",bedfile,"-wo", "-bed","-f",

".5",">",out_bed]

 intersect_command = " ".join(intersect_list)

 sp.check_call(["/bin/sh", "-c", intersect_command])

def label_files(file_in,file_out, string,debug):

 command = "'{print $0," + '"' + string + '"' + "}'"

154

 pastecommandlist = ["awk", "-v", "OFS='\\t'",command,file_in, ">", file_out]

 pastecommand = " ".join(pastecommandlist)

 sp.check_call(["/bin/sh","-c",pastecommand])

 if not debug:

 os.unlink(file_in)

def combine_files(file1,file2,outfile,debug):

 catcommand_list = ["cat", file1, file2, ">", outfile] #combines multi_aligned reads

 catcommand = " ".join(catcommand_list)

 sp.check_call(["/bin/sh","-c",catcommand])

 if not debug:

 os.unlink(file1)

 os.unlink(file2)

def sort_temp(tempfile, field,sorted_tempfile,debug):

 field_command = str(field) + "," + str(field)

 sort_command_list = ["sort","-k",field_command, tempfile, ">", sorted_tempfile]

 sort_command = " ".join(sort_command_list)

 sp.check_call(["/bin/sh", "-c", sort_command])

 if not debug:

 os.unlink(tempfile)

def get_header(bamfile,headerfile):

 samtoolscommand_list = ["samtools","view","-H", bamfile, ">",headerfile]

 samtoolscommand = " ".join(samtoolscommand_list)

 sp.check_call(["/bin/sh", "-c", samtoolscommand])

def is_paired(bamfile,basename,tempfolder,debug):

 bam_temp = make_tempfile(basename,"bam_header",tempfolder)

 get_header(bamfile,bam_temp)

 with open(bam_temp,'r') as header:

 for line in header:

 if line.startswith("@CO"):

 fastq=re.search("--readFilesIn(.+)--

outFileNamePrefix",line).group(1)

 fastq_list = fastq.split()

 if len(fastq_list) > 1:

 paired = True

 else:

 paired = False

 if not debug:

 os.unlink(bam_temp)

 return paired

def find_properpair(paired_bam, proper,nonproper):

 ##### FILTER INTO CONCORDANT AND DISCORDANT/SINGLE READS ####

 #-b: output in BAM format

 #-h: keep header

 #-S: input is SAM File

 #-F4: skip unmapped reads (bit flag = 4)

155

 #-f2 = keep proper pair

 #-F2 = discard proper pair

 samtoolscommand_list = ["samtools","view","-bf2", "-o", proper, paired_bam]

 samtoolscommand = " ".join(samtoolscommand_list)

 sp.check_call(["/bin/sh", "-c", samtoolscommand])

 samtoolscommand_list = ["samtools","view","-bF2", "-o", nonproper, paired_bam]

 samtoolscommand = " ".join(samtoolscommand_list)

 sp.check_call(["/bin/sh", "-c", samtoolscommand])

def split_paired(paired_bed, paired_bed1, paired_bed2,debug):

 #separate read 1 and read2 into separate files

 awkcommand_list = ["awk","'$4 ~ v'","v='/1'", paired_bed,">", paired_bed1]

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh", "-c", awkcommand])

 awkcommand_list = ["awk","'$4 ~ v'","v='/2'", paired_bed,">", paired_bed2]

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh", "-c", awkcommand])

 if not debug:

 os.unlink(paired_bed)

def reduce_reads(read_file,new_readfile,debug):

 #Find reads aligned to same position but different TE_IDs (overlapping flanks) and merge

 prev = False

 with open(read_file,'r') as infile:

 with open(new_readfile,'w') as outfile:

 for line in infile:

 if not prev:

 prev=bedline(line)

 prev.TE_ID = prev.line_split[15]

 prev_TE_ID = prev.TE_ID

 continue

 else:

 current = bedline(line)

 current.TE_ID = current.line_split[15]

 if current.Read_ID == prev.Read_ID and current.Read_chr

== prev.Read_chr and current.Read_geno_start==prev.Read_geno_start and current.Read_geno_stop

== prev.Read_geno_stop and current.Read_strand == prev.Read_strand:

 if current.TE_ID != prev.TE_ID:

 prev_TE_ID = prev_TE_ID + "&" +

current.TE_ID

 else:

 prev.line_split[15] = prev_TE_ID

 prev.line = "\t".join(prev.line_split)

 outfile.writelines(prev.line + "\n")

 prev= current

 prev_TE_ID = current.TE_ID

 #end of loop

 prev.line_split[15] = prev_TE_ID

 prev.line = "\t".join(prev.line_split)

 outfile.writelines(prev.line + "\n")

 if not debug:

156

 os.unlink(read_file)

def get_coords(file_in,read_end,strandedness, file_out,debug):

 ####Get genomic coordinates from bed file

 temp_file_coords = file_in + "_temp_coords"

 temp_file_chr = file_in + "_temp_chr"

 temp_file_plus = file_in + "_temp_plus"

 temp_file_minus = file_in + "_temp_minus"

 temp_file_new = file_in + "_temp_new"

 coords_commandlist = ["awk", "-v", "OFS='\\t'","""'{print $1 OFS $19-$14+$2 OFS $19-

$14+$3 OFS $4 OFS $5 OFS "orig_"$6 OFS $16 OFS $23}'""",file_in, ">", temp_file_coords]

 coords_command = " ".join(coords_commandlist)

 sp.check_call(["/bin/sh","-c",coords_command])

 remove_underscore_command_list = ["awk","-v", "OFS='\\t'", """'{

gsub(/_polymorphism/,"",$1); gsub(/_novel/,"",$1);print $0 }'""", temp_file_coords, ">",

temp_file_chr]

 remove_underscore_command = " ".join(remove_underscore_command_list)

 sp.check_call(["/bin/sh","-c",remove_underscore_command])

 if not debug:

 os.unlink(temp_file_coords)

 os.unlink(file_in)

 if strandedness==0:

 strandedness=1 #change strandedness just so paired-end reads are switched to the

same strand

 if strandedness == read_end: #switch strand

 plus_command_list = ["awk","-v", "OFS='\\t'", """'{ gsub(/orig_\+/,"new_-",$6);

print $0 }'""", temp_file_chr, ">", temp_file_plus]

 plus_command = " ".join(plus_command_list)

 sp.check_call(["/bin/sh","-c",plus_command])

 minus_command_list = ["awk", "-v", "OFS='\\t'","""'{ gsub(/orig_\-/,"new_+",$6);

print $0 }'""", temp_file_plus, ">", temp_file_minus]

 minus_command = " ".join(minus_command_list)

 sp.check_call(["/bin/sh","-c",minus_command])

 new_command_list = ["awk", "-v", "OFS='\\t'","""'{ gsub("new_","",$6); print $0

}'""", temp_file_minus, ">", file_out]

 new_command = " ".join(new_command_list)

 sp.check_call(["/bin/sh","-c",new_command])

 if not debug:

 os.unlink(temp_file_chr)

 os.unlink(temp_file_plus)

 os.unlink(temp_file_minus)

 else: #keep strand

 new_command_list = ["awk","-v", "OFS='\\t'", """'{ gsub("orig_","",$6); print $0

}'""", temp_file_chr, ">", file_out]

 new_command = " ".join(new_command_list)

 sp.check_call(["/bin/sh","-c",new_command])

 if not debug:

 os.unlink(temp_file_chr)

def fix_paired(file1,file2,fixed_file1,fixed_file2, debug): #remove "/1" or "/2"

157

 remove1_command_list = ["sed", """'s@/1@@g'""", file1, ">", fixed_file1]

 remove1_command = " ".join(remove1_command_list)

 sp.check_call(["/bin/sh","-c",remove1_command])

 remove2_command_list = ["sed", """'s@/2@@g'""", file2, ">", fixed_file2]

 remove2_command = " ".join(remove2_command_list)

 sp.check_call(["/bin/sh","-c",remove2_command])

 if not debug:

 os.unlink(file1)

 os.unlink(file2)

def find_uniq(combined_tempfile, first_tempfile,unique_tempfile, multi_tempfile,debug):

 ##### SEPARATE UNIQUELY ALIGNED AND MULTI-ALIGNED READS ########

 dupe_tempfile = combined_tempfile + "_dupe"

 dupe_tempfile1 = combined_tempfile + "_dupe1"

 dupe_command_list = ["awk","'!a[$4]++'", combined_tempfile, ">", first_tempfile] #skips

lines if the read has already appeared in the file

 dupe_command = " ".join(dupe_command_list)

 sp.check_call(["/bin/sh", "-c", dupe_command])

 awkcommand_list = ["awk", """'FNR==NR{a[$0]++;next}!a[$0]'""", first_tempfile,

combined_tempfile, ">", dupe_tempfile] #writes lines in combined_tempfile that are not in

unique_tempfile2 -> duplicates

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 awkcommand_list = ["awk", """'FNR==NR{a[$4]++;next}!a[$4]{print $0}'""",

dupe_tempfile, first_tempfile, ">", unique_tempfile] #writes lines where read is in unique2 but not

multi file -> truly unique

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 awkcommand_list = ["awk", """'FNR==NR{a[$4]++;next}a[$4]{print $0}'""",

dupe_tempfile, first_tempfile, ">", dupe_tempfile1] #writes lines in read is in unique2 and multi file

-> gets first appearance of multi-aligned reads

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 #delete unneeded tempfiles

 catcommand_list = ["cat", dupe_tempfile, dupe_tempfile1, ">", multi_tempfile] #combines

multi_aligned reads

 catcommand = " ".join(catcommand_list)

 sp.check_call(["/bin/sh","-c",catcommand])

 if not debug:

 os.unlink(dupe_tempfile)

 os.unlink(dupe_tempfile1)

 os.unlink(combined_tempfile)

 os.unlink(first_tempfile)

def match_reads(R1, R2, strandedness, matched_file,unmatched_file1,unmatched_file2,debug):

 #match read1 and read2 if within 2kb of each other on same strand

 #add rough location to read_ID to reduce combinations for join

 rounded_1_v1 = R1 + "_rounded_v1"

 rounded_2_v1 = R2 + "_rounded_v1"

 newread_1_v1 = R1 + "_newread_v1"

 newread_2_v1 = R2 + "_newread_v1"

158

 rounded_1_v2 = R1 + "_rounded_v2"

 rounded_2_v2 = R2 + "_rounded_v2"

 newread_1_v2 = R1 + "_newread_v2"

 newread_2_v2 = R2 + "_newread_v2"

 matched_file_v1 = matched_file + "_v1"

 matched_file_v2 = matched_file + "_v2"

 matched_file_10k_v1 = matched_file + "_10k_v1"

 matched_file_10k_v2 = matched_file + "_10k_v2"

 unmatched_file1_v1 = unmatched_file1 + "_v1"

 unmatched_file2_v1 = unmatched_file2 + "_v1"

 roundcommand_list = ["awk", "-v", "OFS='\\t'","-v", "FS='\\t'", """'{print $0, $2/10000}'""",

"""OFMT='%.f'""", R1, ">", rounded_1_v1]

 roundcommand=" ".join(roundcommand_list)

 sp.check_call(["/bin/sh","-c",roundcommand])

 roundcommand_list = ["awk", "-v", "OFS='\\t'","-v", "FS='\\t'", """'{print $0, $2/10000}'""",

"""OFMT='%.f'""", R2, ">", rounded_2_v1]

 roundcommand=" ".join(roundcommand_list)

 sp.check_call(["/bin/sh","-c",roundcommand])

 #create new read to join on that is read/chro

 newreadcommand_list = ["awk", "-v", "OFS='\\t'","-v", "FS='\\t'", """'{print $0, $4 "/" $1 "/"

$11 "/" $6}'""", rounded_1_v1,"|", "sort -k12", ">", newread_1_v1]

 newreadcommand=" ".join(newreadcommand_list)

 sp.check_call(["/bin/sh","-c",newreadcommand])

 newreadcommand_list = ["awk", "-v", "OFS='\\t'","-v", "FS='\\t'", """'{print $0, $4 "/" $1 "/"

$11 "/" $6}'""", rounded_2_v1,"|", "sort -k12", ">", newread_2_v1]

 newreadcommand=" ".join(newreadcommand_list)

 sp.check_call(["/bin/sh","-c",newreadcommand])

 #use join not awk because awk only takes 1st hit with shared value to find match

 joincommand_list = ["join", "-j", "12", "-t", "$'\\t'", "-o",

"1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,2.10", newread_1_v1,

newread_2_v1, ">" , matched_file_10k_v1]

 joincommand=" ".join(joincommand_list)

 sp.check_call(["/bin/sh","-c",joincommand])

 pos_strand_2 = """($3 -$12 <= 500 && $3 -$12 >= 0 && $2 >= $12 && $6=="+" &&

$5!=1000 && $15!=1000)""" #insert size < 500 & end of read1 will be after beginning of read 2 &

start of read1 will be after beginning of read2

 minus_strand_2 = """($13 - $2 <= 500 && $13 - $2 >= 0 && $12 >= $2 && $6=="-" &&

$5!=1000 && $15!=1000)""" #insert size < 500 & end of read2 will be after beginning of read 1 &

start of read2 will be after beginning of read1

 poly_pos_2 = """($3 -$12 <= 500 && $3 -$12 >= 0 && $2 >= $12 && $6=="+" &&

$5==1000 && $15 !=1000) || ($13 - $2 <= 500 && $13- $2 >= 0 && $12 >= $2 && $6=="+" &&

$5!=1000 && $15==1000)||($3 -$12 <= 500 && $3 -$12 >= 0 && $2 >= $12 && $6=="+" &&

$5==1000 && $15==1000)"""

 poly_minus_2 = """($3 -$12 <= 500 && $3 -$12 >= 0 && $2 >= $12 && $6=="-" &&

$5!=1000 && $15 ==1000) || ($13 - $2 <= 500 && $13 - $2 >= 0 && $12 >= $2 && $6=="-" &&

$5==1000 && $15!=1000)||($13 - $2 <= 500 && $13 - $2 >= 0 && $12 >= $2 && $6=="-" &&

$5==1000 && $15==1000)"""#if plus strand: pos_strand 2 before insert, minus_strand 2 after; if

minus strand: minus strand_2 before insert, pos strand 2 after

 pos_strand_1 = """($13 - $2 <= 500 && $13 - $2 >= 0 && $12 >= $2 && $6=="+" &&

$5!=1000)""" #insert size < 500 & end of read2 will be after beginning of read 1 & start of read2 will

be after beginning of read1

159

 minus_strand_1 = """($3 -$12 <= 500 && $3 -$12 >= 0 && $2 >= $12 && $6=="-" &&

$5!=1000)""" #insert size < 500 & end of read1 will be after beginning of read 2 & start of read1 will

be after beginning of read2

 poly_minus_1 = """($3 -$12 <= 500 && $3 -$12 >= 0 && $2 >= $12 && $6=="-" &&

$5==1000 && $15 !=1000) || ($13 - $2 <= 500 && $13 - $2 >= 0 && $12 >= $2 && $6=="-" &&

$5!=1000 && $15==1000)||($3 -$12 <= 500 && $3 -$12 >= 0 && $2 >= $12 && $6=="-" &&

$5==1000 && $15==1000)"""

 poly_pos_1 = """($3 -$12 <= 500 && $3 -$12 >= 0 && $2 >= $12 && $6=="+" &&

$5!=1000 && $15 ==1000) || ($13 - $2 <= 500 && $13 - $2 >= 0 && $12 >= $2 && $6=="+" &&

$5==1000 && $15!=1000)||($13 - $2 <= 500 && $13 - $2 >= 0 && $12 >= $2 && $6=="+" &&

$5==1000 && $15==1000)"""#if plus strand: pos_strand 2 before insert, minus_strand 2 after; if

minus strand: minus strand_2 before insert, pos strand 2 after

 unstranded = """($13 - $2 <= 500 && $13 - $2 >= 0 && $12 >= $2) || ($3 -$12 <= 500 &&

$3 -$12 >= 0 && $2 >= $12)"""

 awk_inout_v1 = [matched_file_10k_v1, ">", matched_file_v1]

 if strandedness==1: #first strand RNA synthesis (Illumina, dUTP, NSR, NNSR)

 awkcommand_list2 = ["awk", "-v", "OFS='\\t'","-v",

"FS='\\t'","""'(""",pos_strand_2,"""||""",minus_strand_2,"||",poly_pos_2,"||",poly_minus_2,"){print

$0}'"""] #find pairs that match TE_ID and strand

 awkcommand2 = " ".join(awkcommand_list2 + awk_inout_v1)

 sp.check_call(["/bin/sh","-c",awkcommand2])

 if strandedness==2: #second strand (Ligation, standard Solid)

 awkcommand_list1 = ["awk", "-v", "OFS='\\t'","-v",

"FS='\\t'","""'(""",pos_strand_1,"""||""", minus_strand_1 ,"||",poly_pos_1,"||",poly_minus_1,""")

{print $0}'"""] #find pairs that match TE_ID and strand

 awkcommand1 = " ".join(awkcommand_list1 + awk_inout_v1)

 sp.check_call(["/bin/sh","-c",awkcommand1])

 if strandedness==0:

 awkcommand_list0 = ["awk", "-v", "OFS='\\t'","-v", "FS='\\t'","""'(""",

unstranded,""") {print $0}'"""] #find pairs that match TE_ID and strand

 awkcommand0 = " ".join(awkcommand_list0 + awk_inout_v1)

 sp.check_call(["/bin/sh","-c",awkcommand0])

 awkcommand_list = ["awk","-v", "OFS='\\t'","-v", "FS='\\t'",

"""'FNR==NR{a[$4]++;next}!a[$4]{print $0}'""", matched_file_v1,R1, ">", unmatched_file1_v1]

#writes lines in read1 that is not in matched file -> unmatched

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 awkcommand_list = ["awk", "-v", "OFS='\\t'","-v",

"FS='\\t'","""'FNR==NR{a[$4]++;next}!a[$4]{print $0}'""", matched_file_v1, R2, ">",

unmatched_file2_v1] #writes lines in read2 that is not in matched file -> unmatched

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 roundcommand_list = ["awk", "-v", "OFS='\\t'","-v", "FS='\\t'", """'{print $0, $2/100000}'""",

"""OFMT='%.f'""", unmatched_file1_v1, ">", rounded_1_v2]

 roundcommand=" ".join(roundcommand_list)

 sp.check_call(["/bin/sh","-c",roundcommand])

 roundcommand_list = ["awk", "-v", "OFS='\\t'","-v", "FS='\\t'", """'{print $0, $2/100000}'""",

"""OFMT='%.f'""", unmatched_file2_v1, ">", rounded_2_v2]

 roundcommand=" ".join(roundcommand_list)

 sp.check_call(["/bin/sh","-c",roundcommand])

160

 newreadcommand_list = ["awk", "-v", "OFS='\\t'","-v", "FS='\\t'", """'{print $0, $4 "/" $1 "/"

$11 "/" $6}'""", rounded_1_v2,"|", "sort -k12", ">", newread_1_v2]

 newreadcommand=" ".join(newreadcommand_list)

 sp.check_call(["/bin/sh","-c",newreadcommand])

 newreadcommand_list = ["awk", "-v", "OFS='\\t'","-v", "FS='\\t'", """'{print $0, $4 "/" $1 "/"

$11 "/" $6}'""", rounded_2_v2,"|", "sort -k12", ">", newread_2_v2]

 newreadcommand=" ".join(newreadcommand_list)

 sp.check_call(["/bin/sh","-c",newreadcommand])

 #use join not awk because awk only takes 1st hit with shared value to find match

 joincommand_list = ["join", "-j", "12", "-t", "$'\\t'", "-o",

"1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,2.10", newread_1_v2,

newread_2_v2, ">" , matched_file_10k_v2]

 joincommand=" ".join(joincommand_list)

 sp.check_call(["/bin/sh","-c",joincommand])

 awk_inout_v2 = [matched_file_10k_v2, ">", matched_file_v2]

 if strandedness==1:

 awkcommand2 = " ".join(awkcommand_list2+ awk_inout_v2)

 sp.check_call(["/bin/sh","-c",awkcommand2])

 if strandedness==2:

 awkcommand1 = " ".join(awkcommand_list1+ awk_inout_v2)

 sp.check_call(["/bin/sh","-c",awkcommand1])

 if strandedness==0:

 awkcommand0 = " ".join(awkcommand_list0+ awk_inout_v2)

 sp.check_call(["/bin/sh","-c",awkcommand0])

 catcommand_list = ["cat", matched_file_v1, matched_file_v2, ">", matched_file] #combines

multi_aligned reads

 catcommand = " ".join(catcommand_list)

 sp.check_call(["/bin/sh","-c",catcommand])

 awkcommand_list = ["awk","-v", "OFS='\\t'","-v", "FS='\\t'",

"""'FNR==NR{a[$4]++;next}!a[$4]{print $0}'""", matched_file,R1, ">", unmatched_file1] #writes

lines in read1 that is not in matched file -> unmatched

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 awkcommand_list = ["awk", "-v", "OFS='\\t'","-v",

"FS='\\t'","""'FNR==NR{a[$4]++;next}!a[$4]{print $0}'""", matched_file, R2, ">",

unmatched_file2] #writes lines in read2 that is not in matched file -> unmatched

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 if not debug:

 os.unlink(rounded_1_v1)

 os.unlink(rounded_2_v1)

 os.unlink(newread_1_v1)

 os.unlink(newread_2_v1)

 os.unlink(rounded_1_v2)

 os.unlink(rounded_2_v2)

 os.unlink(newread_1_v2)

 os.unlink(newread_2_v2)

 os.unlink(matched_file_10k_v1)

 os.unlink(matched_file_10k_v2)

 os.unlink(matched_file_v1)

 os.unlink(matched_file_v2)

161

 os.unlink(unmatched_file1_v1)

 os.unlink(unmatched_file2_v1)

 os.unlink(R1)

 os.unlink(R2)

def merge_coords(paired_file,merged_paired,debug): #combine coordinates for paired reads

 outfile = open(merged_paired,'w')

 with open(paired_file,'r') as infile:

 for line in infile:

 line = line.rstrip()

 line_split = line.split("\t")

 chrom = line_split[0]

 R1_start = line_split[1]

 R1_end = line_split[2]

 R1_score = line_split[4]

 R2_score = line_split[14]

 R2_start = line_split[11]

 R2_end = line_split[12]

 new_read = "paired"

 R1_proper = line_split[7]

 R2_proper = line_split[17]

 R1_uniq = line_split[9]

 R2_uniq = line_split[19]

 new_start = str(min(int(R1_start), int(R2_start)))

 new_end = str(max(int(R1_end),int(R2_end)))

 read_ID = line_split[3]

 TE_ID_1 = line_split[6]

 TE_ID_2 = line_split[16]

 if TE_ID_1 != TE_ID_2:

 new_TE_ID = TE_ID_1 + "&" + TE_ID_2

 new_score=R1_score + "&" + R2_score

 else:

 new_TE_ID = TE_ID_1

 new_score = R1_score

 strand = line_split[5]

 new_uniq="R1" + "_" + R1_start + "_" + R1_uniq + ":" + "R2" + "_" +

R2_start + "_" + R2_uniq

 new_proper = "R1" + "_" + R1_proper + ":" + "R2" + "_" + R2_proper

 insert_size=abs(int(new_end) - int(new_start))

 new_line = "\t".join([chrom,

new_start,new_end,read_ID,new_score,strand,new_TE_ID,new_proper,new_read,new_uniq])

 outfile.writelines(new_line + "\n")

 outfile.close()

 infile.close()

 if not debug:

 os.unlink(paired_file)

def find_proper(single_bed,nonproper_bed, proper_bed,debug):

162

 #separate read 1 and read2 into separate files

 awkcommand_list = ["awk","'$8 ~ v'","v='nonproper'", single_bed,">", nonproper_bed]

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh", "-c", awkcommand])

 awkcommand_list = ["awk", """'FNR==NR{a[$0]++;next}!a[$0]{print $0}'""",

nonproper_bed, single_bed, ">", proper_bed] #writes lines that are in single_bed and not in

nonproper bed (all proper alignments)

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 if not debug:

 os.unlink(single_bed)

def remove_repeat_reads(paired_bed,unpaired_bed,new_unpaired_bed, debug): #removes reads

from unpaired files that are already present in paired files

 removecommandlist = ["awk", "-v", "OFS='\\t'","'FNR==NR{a[$4]++;next}!a[$4]{print

$0}'",paired_bed, unpaired_bed, ">", new_unpaired_bed]

 removecommand = " ".join(removecommandlist)

 sp.check_call(["/bin/sh","-c",removecommand])

 if not debug:

 os.unlink(unpaired_bed)

def find_paired_uniq(multi_tempfile,paired_uniq_tempfile,new_multi_tempfile,

new_uniq_tempfile,debug):

 ##### Find reads which exclusively align as paired + uniq -> means one read is unique and

the other is multi-aligned to nearby TEs

 paired_uniq_tempfile_1 = paired_uniq_tempfile + "_1"

 new_multi_tempfile_1 = new_multi_tempfile + "_0"

 awkcommand_list = ["awk", """'$9=="paired" && $10 ~/uniq/'""", multi_tempfile, ">",

paired_uniq_tempfile_1] #writes lines labeled with "paired" and uniq

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 awkcommand_list = ["awk", """'FNR==NR{a[$0]++;next}!a[$0]{print $0}'""",

paired_uniq_tempfile_1, multi_tempfile, ">", new_multi_tempfile_1] #writes lines that are not paired

and uniq

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 awkcommand_list = ["awk", """'FNR==NR{a[$4]++;next}!a[$4]{print $0}'""",

new_multi_tempfile_1, paired_uniq_tempfile_1, ">", paired_uniq_tempfile] #writes lines in read is

in unique2 and multi file -> gets first appearance of multi-aligned reads

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 awkcommand_list = ["awk", """'FNR==NR{a[$0]++;next}!a[$0]{print $0}'""",

paired_uniq_tempfile, multi_tempfile, ">", new_multi_tempfile] #writes lines that are not paired and

uniq

 awkcommand = " ".join(awkcommand_list)

 sp.check_call(["/bin/sh","-c",awkcommand])

 new_multi_bed = open(new_multi_tempfile, 'a')

 new_uniq_bed = open(new_uniq_tempfile, 'a')

 def eval_paired_uniq(startlist,stoplist,beddict,uniqfile,multifile):

 if len(beddict)==1: #if all alignments of read are to same TE_ID

163

 TE_ID=beddict.keys()[0]

 newbedline = beddict[TE_ID]

 newbedline.Read_geno_start =str(max(start_list))

 newbedline.Read_geno_stop = str(min(stop_list))

 newbedline.write_bedline(uniqfile)

 else:

 for TE_ID, newbedline in beddict.iteritems():

 newbedline.write_bedline(multifile)

 paired_uniq_bed = open(paired_uniq_tempfile,'r')

 paired_uniq_bed.seek(0)

 prev_ID = False

 bed_dict={}

 start_list=[]

 stop_list=[]

 for line in paired_uniq_bed:

 bed_line = bedline(line)

 if not prev_ID: #if first line

 prev_ID = bed_line.Read_ID

 bed_dict={bed_line.TE_ID:bed_line}

 start_list = [int(bed_line.Read_geno_start)]

 stop_list = [int(bed_line.Read_geno_stop)]

 elif prev_ID == bed_line.Read_ID:

 bed_dict[bed_line.TE_ID] = bed_line

 start_list.append(int(bed_line.Read_geno_start))

 stop_list.append(int(bed_line.Read_geno_stop))

 else: #if new read, evaluate previous read and replace info

 eval_paired_uniq(start_list,stop_list,bed_dict,new_uniq_bed,new_multi_bed)

 #start new ID

 prev_ID = bed_line.Read_ID

 bed_dict={bed_line.TE_ID:bed_line}

 start_list = [int(bed_line.Read_geno_start)]

 stop_list = [int(bed_line.Read_geno_stop)]

 #End of loop

 eval_paired_uniq(start_list,stop_list,bed_dict,new_uniq_bed,new_multi_bed)

 if not debug: #delete unneeded tempfiles

 os.unlink(paired_uniq_tempfile_1)

 os.unlink(new_multi_tempfile_1)

 os.unlink(multi_tempfile)

 os.unlink(paired_uniq_tempfile)

def get_subF(TE_ID):

 TE_ID_components = TE_ID.split("|")

 TE_ID_subfamily = TE_ID_components[3]

 return TE_ID_subfamily

def get_strand(TE_ID):

 TE_ID_components = TE_ID.split("|")

 TE_ID_strand = TE_ID_components[5]

 return TE_ID_strand

def get_chr(TE_ID):

164

 TE_ID_components = TE_ID.split("|")

 TE_ID_strand = TE_ID_components[0]

 return TE_ID_strand

def split_subF(subF):

 if "overlap" in subF:

 subfamily_string=subF.replace("overlap:","") #remove overlap

 subfamily_string=subfamily_string.replace(".","") #remove period

 subfamily_string=subfamily_string.replace("+","") #remove strand

 subfamily_string=subfamily_string.replace("-","") #remove strand

 subfamily_list = subfamily_string.split(",")

 subfamily_list = set(subfamily_list)

 return subfamily_list

 else:

 return [subF]

def get_length(TE_ID):

 TE_ID_components = TE_ID.split("|")

 TE_ID_stop = TE_ID_components[2]

 TE_ID_start = TE_ID_components[1]

 TE_length = int(TE_ID_stop) - int(TE_ID_start)

 return TE_length

DEFINE CLASS TO CALCULATE COUNTS ###############

class RepCalc(object):

 def __init__(self, TE_ID):

 self.TE_ID = TE_ID

 self.uniqcounts = 0

 self.uniq_plus = 0

 self.uniq_minus = 0

 self.multilist = []

 self.multi_plus=0

 self.multi_minus = 0

 self.multi_u_plus=0

 self.multi_u_minus = 0

 self.multimax_plus=0

 self.multimax_minus = 0

 self.counts_plus = 0

 self.counts_minus = 0

 self.multi_counts = 0

 self.counts_tot = 0

 self.total_reads_tot = 0

 self.uniq_reads_plus = 0

 self.uniq_reads_minus = 0

 self.total_1_plus = 0

 self.total_1_minus = 0

 self.multi_u_reads_plus = 0

 self.multi_u_reads_minus = 0

 self.multi_reads_plus = 0

 self.multi_reads_minus = 0

165

 self.multi_max_reads_plus = 0

 self.multi_max_reads_minus = 0

 self.total_reads_plus = 0

 self.total_reads_minus = 0

 self.uniq_fragment_plus = 0

 self.uniq_fragment_minus = 0

 self.uniq_plus_perTagkb = 0

 self.uniq_minus_perTagkb = 0

 self.start_plus=False

 self.stop_plus=False

 self.start_minus=False

 self.stop_minus=False

 self.start_tot=False

 self.stop_tot=False

 self.efflength_plus=0

 self.efflength_minus=0

 self.length_plus=0

 self.length_minus=0

 self.length_tot=0

 self.fpkm_tot=0

 self.uniq_starts_plus=set()

 self.uniq_starts_minus=set()

 self.TEstrand = get_strand(TE_ID)

 self.read_list_plus = []

 self.read_list_minus = []

 self.total_fragment_plus = 0

 self.total_fragment_minus = 0

 self.min_fragment_plus = False

 self.min_fragment_minus = False

 self.new_counts_plus = 0

 self.new_counts_minus = 0

 self.fpkm=0

 # self.same_strandcount=0

 # self.opp_strandcount = 0

 def add_uniq(self,strand,count):

 if strand == "+":

 self.uniq_plus += count

 # self.uniq_reads_plus += count

 elif strand == "-":

 self.uniq_minus += count

 # self.uniq_reads_minus += count

 def add_multi(self,strand,read_fraction):

 count = read_fraction

 readcount=1

 if strand == "+":

 self.multi_plus += count

 # self.multi_reads_plus += readcount

 else:

 self.multi_minus += count

 # self.multi_reads_minus += readcount

166

 def add_multi_u(self,strand,read_fraction):

 count = read_fraction

 readcount=1

 if strand == "+":

 self.multi_u_plus += count

 # self.multi_u_reads_plus += readcount

 else:

 self.multi_u_minus += count

 # self.multi_u_reads_minus += readcount

 def add_read(self,read_ID,strand):

 if strand == "+":

 self.read_list_plus.append(read_ID)

 elif strand == "-":

 self.read_list_minus.append(read_ID)

 def get_fragment(self,start,stop, strand):

 start=int(start)

 stop = int(stop)

 length = stop - start

 if strand == "+":

 self.total_fragment_plus += length

 if not self.start_plus or start < self.start_plus:

 self.start_plus = start

 if not self.stop_plus or stop > self.stop_plus:

 self.stop_plus = stop

 if not self.min_fragment_plus:

 self.min_fragment_plus = length

 else:

 self.min_fragment_plus = min(length,self.min_fragment_plus)

 self.total_reads_plus +=1

 self.avg_fraglength_plus = self.total_fragment_plus/self.total_reads_plus

 else:

 self.total_fragment_minus += length

 if not self.start_minus or start < self.start_minus:

 self.start_minus = start

 if not self.stop_minus or stop > self.stop_minus:

 self.stop_minus = stop

 if not self.min_fragment_minus:

 self.min_fragment_minus = length

 else:

 self.min_fragment_minus = min(length,self.min_fragment_minus)

 self.total_reads_minus +=1

 self.avg_fraglength_minus =

self.total_fragment_minus/self.total_reads_minus

 if self.start_plus and self.start_minus: #minimum comparing False and a number

gives False

 self.start_tot = min(self.start_plus, self.start_minus)

 elif self.start_plus:

 self.start_tot = self.start_plus

 elif self.start_minus:

 self.start_tot = self.start_minus

167

 if self.stop_plus and self.stop_minus: #minimum comparing False and a number

gives False

 self.stop_tot = max(self.stop_plus, self.stop_minus)

 self.avg_fraglength_tot = (self.avg_fraglength_plus +

self.avg_fraglength_minus)/2

 elif self.stop_plus:

 self.stop_tot = self.stop_plus

 self.avg_fraglength_tot = self.avg_fraglength_plus

 elif self.stop_minus:

 self.stop_tot = self.stop_minus

 self.avg_fraglength_tot = self.avg_fraglength_minus

 def get_uniqfragment(self,start,stop, strand, read_end, read_uniq):

 start=int(start)

 stop = int(stop)

 if read_end != "paired":

 if strand == "+":

 self.uniq_fragment_plus += 1

 if start not in self.uniq_starts_plus:

 self.uniq_starts_plus.add(start)

 else:

 self.uniq_fragment_minus += 1 #add fragment length to count

 if start not in self.uniq_starts_minus:

 self.uniq_starts_minus.add(start)

 else: #if reads are paired

 uniq_list = read_uniq.split(":")

 R1_uniq_list = uniq_list[0].split("_")

 R2_uniq_list = uniq_list[1].split("_")

 R1_start = R1_uniq_list[1]

 R2_start = R2_uniq_list[1]

 R1_uniq=R1_uniq_list[2]

 R2_uniq=R2_uniq_list[2]

 # Effective uniquely alignable length

 if R1_uniq == "uniq":

 if strand == "+":

 self.uniq_fragment_plus += 1 #add to fragment count

 self.uniq_starts_plus.add(R1_start)

 if strand == "-":

 self.uniq_fragment_minus += 1 #add to fragment count

 self.uniq_starts_minus.add(R1_start)

 if R2_uniq == "uniq":

 if strand == "+":

 self.uniq_fragment_plus += 1 #add to fragment count

 self.uniq_starts_plus.add(R2_start)

 if strand == "-":

 self.uniq_fragment_minus += 1 #add to fragment count

 self.uniq_starts_minus.add(R2_start)

 ### Transcript start stop

 if strand == "+":

 if not self.start_plus or start < self.start_plus:

168

 self.start_plus = start

 if not self.stop_plus or stop > self.stop_plus:

 self.stop_plus = stop

 else:

 if not self.start_minus or start < self.start_minus:

 self.start_minus = start

 if not self.stop_minus or stop > self.stop_minus:

 self.stop_minus = stop

 if self.start_plus and self.start_minus: #minimum comparing False and a number

gives False

 self.start_tot = min(self.start_plus, self.start_minus)

 elif self.start_plus:

 self.start_tot = self.start_plus

 elif self.start_minus:

 self.start_tot = self.start_minus

 self.stop_tot = max(self.stop_plus, self.stop_minus)

 def calcuniqRep(self):

 self.efflength_plus = len(self.uniq_starts_plus)

 self.efflength_minus = len(self.uniq_starts_minus)

 if self.efflength_plus:

 self.uniq_plus_perTagkb =

self.uniq_fragment_plus/(int(self.efflength_plus)/1000)

 if self.efflength_minus:

 self.uniq_minus_perTagkb =

self.uniq_fragment_minus/(int(self.efflength_minus)/1000)

 self.uniqcounts=self.uniq_plus + self.uniq_minus

 def calcmultiRep(self,iteration):

 self.length_plus = self.stop_plus - self.start_plus

 self.length_minus = self.stop_minus - self.start_minus

 self.length_tot = self.stop_tot - self.start_tot

 if iteration ==1:

 self.total_1_plus = self.uniq_plus + self.multi_plus + self.multi_u_plus

 self.total_1_minus = self.uniq_minus + self.multi_minus +

self.multi_u_minus

 self.counts_tot = self.total_1_plus + self.total_1_minus

 tot_change = 0

 changed_strands =0

 pct_change = 0

 ###old likelihood

 if self.multi_plus:

 avg_fraglength = self.avg_fraglength_plus

 min_fraglength = self.min_fragment_plus

 if iteration > 1:

 self.old_counts_plus = self.uniq_plus + self.multi_plus +

self.multi_u_plus

 self.oldmulti_plus_perkb = self.old_counts_plus/((self.length_plus -

avg_fraglength +1)/1000)

 if self.oldmulti_plus_perkb <0:

 self.oldmulti_plus_perkb =

self.old_counts_plus/((self.length_plus - min_fraglength +1)/1000)

 self.multi_plus = self.multimax_plus

169

 self.new_counts_plus = self.uniq_plus + self.multimax_plus +

self.multi_u_plus

 if self.new_counts_plus < 1:

 self.newmulti_plus_perkb = 0

 else:

 self.newmulti_plus_perkb =

self.new_counts_plus/((self.length_plus - avg_fraglength +1)/1000)

 if self.newmulti_plus_perkb < 0:

 self.newmulti_plus_perkb =

self.new_counts_plus/((self.length_plus - min_fraglength +1)/1000)

 tot_change += abs(self.old_counts_plus - self.new_counts_plus)

 changed_strands +=1

 pct_change = tot_change/self.old_counts_plus *100

 else:

 self.oldmulti_plus_perkb = self.uniq_plus_perTagkb

 self.old_counts_plus = self.uniq_plus + self.multi_plus +

self.multi_u_plus

 if self.old_counts_plus < 1:

 self.newmulti_plus_perkb = 0

 else:

 self.newmulti_plus_perkb =

self.old_counts_plus/((self.length_plus - avg_fraglength +1)/1000)

 if self.newmulti_plus_perkb < 0:

 self.newmulti_plus_perkb =

self.old_counts_plus/((self.length_plus - min_fraglength +1)/1000)

 if self.multi_minus:

 avg_fraglength = self.avg_fraglength_minus

 min_fraglength = self.min_fragment_minus

 if iteration > 1:

 self.old_counts_minus =self.uniq_minus + self.multi_minus +

self.multi_u_minus

 self.oldmulti_minus_perkb =

self.old_counts_minus/((self.length_minus - avg_fraglength +1)/1000)

 if self.oldmulti_minus_perkb <0:

 self.oldmulti_minus_perkb =

self.old_counts_minus/((self.length_minus - min_fraglength +1)/1000)

 self.multi_minus = self.multimax_minus

 self.new_counts_minus = self.uniq_minus + self.multimax_minus +

self.multi_u_minus

 if self.new_counts_minus < 1:

 self.newmulti_minus_perkb = 0

 else:

 self.newmulti_minus_perkb =

self.new_counts_minus/((self.length_minus - avg_fraglength +1)/1000)

 if self.newmulti_minus_perkb < 0:

 self.newmulti_minus_perkb =

self.new_counts_minus/((self.length_minus - min_fraglength +1)/1000)

 tot_change +=abs(self.old_counts_minus - self.new_counts_minus)

 pct_change = tot_change/self.old_counts_minus*100

 changed_strands +=1

 else:

170

 self.oldmulti_minus_perkb = self.uniq_minus_perTagkb

 self.old_counts_minus = self.uniq_minus + self.multi_minus +

self.multi_u_minus

 if self.old_counts_minus < 1:

 self.newmulti_minus_perkb = 0

 else:

 self.newmulti_minus_perkb =

self.old_counts_minus/((self.length_minus - avg_fraglength +1)/1000)

 if self.newmulti_minus_perkb < 0:

 self.newmulti_minus_perkb =

self.old_counts_minus/((self.length_minus - min_fraglength +1)/1000)

 #reset multimax

 self.multimax_plus = 0

 self.multimax_minus = 0

 if iteration > 1:

 self.counts_tot = self.new_counts_plus + self.new_counts_minus

 if changed_strands > 0:

 return (tot_change/changed_strands)

 else:

 return 0

 def add_multimax(self,strand,read_fraction):

 count = read_fraction

 if strand == "+":

 self.multimax_plus += count

 # self.multi_max_reads_plus +=1

 else:

 self.multimax_minus += count

 # self.multi_max_reads_minus +=1

 def calc_transcript_coords(self,read_locdict):

 for read in self.read_list_plus:

 start=int(read_locdict[read][(self.TE_ID,"+")][1])

 stop = int(read_locdict[read][(self.TE_ID,"+")][2])

 if not self.start_plus or start < self.start_plus:

 self.start_plus = start

 if not self.stop_plus or stop > self.stop_plus:

 self.stop_plus = stop

 for read in self.read_list_minus:

 start=int(read_locdict[read][(self.TE_ID,"-")][1])

 stop = int(read_locdict[read][(self.TE_ID,"-")][2])

 if not self.start_minus or start < self.start_minus:

 self.start_minus = start

 if not self.stop_minus or stop > self.stop_minus:

 self.stop_minus = stop

 if self.start_plus and self.start_minus: #minimum comparing False and a number

gives False

 self.start_tot = min(self.start_plus, self.start_minus)

 elif self.start_plus:

 self.start_tot = self.start_plus

 elif self.start_minus:

 self.start_tot = self.start_minus

171

 if self.stop_plus and self.stop_minus: #minimum comparing False and a number

gives False

 self.stop_tot = max(self.stop_plus, self.stop_minus)

 elif self.stop_plus:

 self.stop_tot = self.stop_plus

 elif self.stop_minus:

 self.stop_tot = self.stop_minus

 def calc_total_reads(self):

 self.total_reads_plus = len(self.read_list_plus)

 self.total_reads_minus = len(self.read_list_minus)

 def writeRep(self,aligned_libsize, counts_file,basename,strandedness,iteration):

 if iteration ==0:

 self.total_1_plus = self.uniq_plus + self.multi_plus + self.multi_u_plus

 self.total_1_minus = self.uniq_minus + self.multi_minus +

self.multi_u_minus

 self.length_plus = self.stop_plus - self.start_plus

 self.length_minus = self.stop_minus - self.start_minus

 self.length_tot = self.stop_tot - self.start_tot

 self.counts_plus = self.uniq_plus + self.multi_plus + self.multi_u_plus

 self.counts_minus =self.uniq_minus + self.multi_minus + self.multi_u_minus

 self.total_1 = self.total_1_plus + self.total_1_minus

 self.uniq_tot = self.uniq_plus + self.uniq_minus

 self.counts_tot = self.counts_plus + self.counts_minus

 self.total_reads_tot = self.total_reads_plus + self.total_reads_minus

 self.TE_ID_tab = self.TE_ID.split("|")

 self.TE_chr =self.TE_ID_tab[0]

 if strandedness> 0:

 if self.counts_plus > 0 and self.total_reads_plus > 0 and self.length_plus > 0:

 outline = squire_bed(self.TE_chr,self.start_plus,self.stop_plus,

self.avg_fraglength_plus,"+",self.TE_ID,self.uniq_plus,self.counts_plus,self.total_reads_plus,basena

me,aligned_libsize)

 counts_file.writelines(outline.out_line + "\n")

 self.fpkm += outline.fpkm

 if self.counts_minus > 0 and self.total_reads_minus > 0 and

self.length_minus > 0:

 outline = squire_bed(self.TE_chr,self.start_minus,self.stop_minus,

self.avg_fraglength_minus,"-

",self.TE_ID,self.uniq_minus,self.counts_minus,self.total_reads_minus,basename,aligned_libsize)

 counts_file.writelines(outline.out_line + "\n")

 self.fpkm += outline.fpkm

 else:

 if self.counts_tot > 0 and self.total_reads_tot > 0 and self.length_tot > 0:

 outline =

squire_bed(self.TE_chr,self.start_tot,self.stop_tot,self.avg_fraglength_tot,

".",self.TE_ID,self.uniq_tot, self.counts_tot,self.total_reads_tot,basename,aligned_libsize)

 counts_file.writelines(outline.out_line + "\n")

 self.fpkm += outline.fpkm

172

class squire_bed(object):

 def __init__(self,chrom, start, stop, avg_fraglength,strand, TE_ID,uniq_counts,total_counts,

reads, basename, aligned_libsize):

 self.seqname = chrom

 self.source = "SQuIRE"

 self.feature = "TE"

 self.start = str(start)

 self.end = str(stop)

 self.length = stop - start

 self.score = TE_ID.split("|")[4]

 self.bed = TE_ID.split("|")

 self.strand = strand

 self.uniq_counts = str(uniq_counts)

 self.total_counts = "{0:.2f}".format(total_counts)

 self.reads = str(reads)

 self.conf = "{0:.2f}".format(total_counts/reads * 100)

 self.fpkm = (total_counts/((self.length /1000)*(int(aligned_libsize)/1000000)))

 self.aligned_libsize = str(aligned_libsize)

 self.chrom = self.bed[0]

 self.out_list = [self.chrom, self.start, self.end,

TE_ID,"{0:.2f}".format(self.fpkm),strand, basename, self.aligned_libsize] + self.bed +

[self.uniq_counts,self.total_counts, self.reads, self.conf]

 self.out_line = "\t".join(self.out_list)

class subfamily(object):

 def __init__(self,subF,multi_reads):

 self.subF = subF

 self.uniq = 0

 self.unique_copies = 0

 self.total_counts_pre = 0

 self.total_counts = 0

 self.total_reads = 0

 self.multi_reads=multi_reads

 self.fpkm=0

 # self.same=0

 # self.opp = 0

 def add_TE_count(self,RepClass,strandedness):

 self.uniq +=RepClass.uniqcounts

 self.total_counts+=RepClass.counts_tot

 self.total_counts_pre +=RepClass.total_1

 self.fpkm += RepClass.fpkm

 # if strandedness > 0:

 # self.same +=RepClass.same_strandcount

 # self.opp += RepClass.opp_strandcount

 # else:

 # self.same= "NA"

 # self.opp="NA"

 def add_copy_info(self,line):

 self.line_copies = line[1]

 self.line_length = line[2]

173

 def write_subfamily(self,outfile,basename,aligned_libsize,iteration):

 self.total_reads = self.multi_reads + self.uniq

 if self.total_reads > 0:

 self.conf = "{0:.2f}".format(self.total_counts/self.total_reads * 100)

#confidence = total counts assigned to subfamily divided by total reads

 else:

 self.conf = "NA"

 outfile.writelines(basename + "\t" + str(aligned_libsize) + "\t" + self.subF + "\t" +

self.line_copies + "\t" + str(self.fpkm) + "\t" + str(self.uniq) + "\t" +

"{0:.2f}".format(self.total_counts) + "\t" + str(self.total_reads) + "\t" + str(self.conf) + "\n")

class bedline(object):

 def __init__(self,line):

 self.line = line.rstrip() #removes white space at end of line

 self.line_split = self.line.split('\t') # returns list of items that were separated by tab in

original file

 ### Read variables #####

 col_no = len(self.line_split)

 self.Read_chr = self.line_split[0]

 self.Read_geno_start = self.line_split[1]

 self.Read_geno_stop = self.line_split[2]

 self.Read_name = self.line_split[3]

 self.Read_ID = re.split("[#/]", self.Read_name)

 self.Read_ID=self.Read_ID[0]

 self.Read_score = self.line_split[4]

 self.Read_strand = self.line_split[5]

 if col_no >=7:

 self.TE_ID = self.line_split[6]

 self.TE_ID_list = self.TE_ID.split('&')

 else:

 self.TE_ID = False

 if col_no >=8:

 self.proper = self.line_split[7]

 else:

 self.proper = False

 if col_no >=9:

 self.Read_end = self.line_split[8]

 else:

 self.Read_end = False

 if col_no >=10:

 self.uniq = self.line_split[9]

 else: self.uniq = False

 #### TE variables #####

 self.Read_length = int(self.Read_geno_stop) - int(self.Read_geno_start)

 def write_bedline(self,outfile):

174

 outline = [self.Read_chr, self.Read_geno_start, self.Read_geno_stop,

self.Read_name, self.Read_score,self.Read_strand]

 if self.TE_ID:

 outline.append(self.TE_ID)

 if self.proper:

 outline.append(self.proper)

 if self.Read_end:

 outline.append(self.Read_end)

 if self.uniq:

 outline.append(self.uniq)

 outline = "\t".join(outline)

 outfile.writelines(outline + "\n")

def uniquecount(tempBED,RepCalc_dict,read_locdict):

 unique_fragsum=0

 tempBED.seek(0)

 unique_linecount=0

 for line in tempBED:

 bed_line = bedline(line)

 if bed_line.Read_length < 25:

 continue

 unique_fragsum += bed_line.Read_length

 unique_linecount+=1

 if len(bed_line.TE_ID_list) == 1:

 ### Convert Read coordinates from Rep chrom coordinates to genomic coordinates

 #if RNAseq data was aligned to whole genome, Read_start-Seq_start=0, so the result

will be the same

 TE_id_list = bed_line.TE_ID.split('|')

 TE_start = TE_id_list[1]

 TE_stop = TE_id_list[2]

 if bed_line.TE_ID not in RepCalc_dict:

 RepCalc_dict[bed_line.TE_ID] = RepCalc(bed_line.TE_ID)

 if "uniq" in bed_line.uniq:

 RepCalc_dict[bed_line.TE_ID].add_uniq(bed_line.Read_strand,1)

 RepCalc_dict[bed_line.TE_ID].get_uniqfragment(bed_line.Read_geno_start,bed_line.Read_

geno_stop,bed_line.Read_strand,bed_line.Read_end, bed_line.uniq)

 RepCalc_dict[bed_line.TE_ID].get_fragment(bed_line.Read_geno_start,bed_line.Read_geno

_stop,bed_line.Read_strand)

 RepCalc_dict[bed_line.TE_ID].add_read(bed_line.Read_ID,bed_line.Read_strand)

 else:

 RepCalc_dict[bed_line.TE_ID].add_multi_u(bed_line.Read_strand,1)

 RepCalc_dict[bed_line.TE_ID].get_fragment(bed_line.Read_geno_start,bed_line.Read_geno

_stop,bed_line.Read_strand)

 RepCalc_dict[bed_line.TE_ID].add_read(bed_line.Read_ID,bed_line.Read_strand)

175

 else: #if two TE_IDs

 for TE_ID in bed_line.TE_ID_list:

 TE_id_list = TE_ID.split('|')

 TE_start = TE_id_list[1]

 TE_stop = TE_id_list[2]

 if TE_ID not in RepCalc_dict:

 RepCalc_dict[TE_ID] = RepCalc(TE_ID)

 if "uniq" in bed_line.uniq: #if read is unique when aligning single

end, otherwise only uniquely aligned because paired

 RepCalc_dict[TE_ID].add_uniq(bed_line.Read_strand,1)

 RepCalc_dict[TE_ID].get_uniqfragment(bed_line.Read_geno_start,bed_line.Read_geno_stop

,bed_line.Read_strand,bed_line.Read_end, bed_line.uniq)

 RepCalc_dict[TE_ID].get_fragment(bed_line.Read_geno_start,bed_line.Read_geno_stop,bed

_line.Read_strand)

 RepCalc_dict[TE_ID].add_read(bed_line.Read_ID,bed_line.Read_strand)

 else:

 RepCalc_dict[TE_ID].add_multi_u(bed_line.Read_strand,1)

 RepCalc_dict[TE_ID].get_fragment(bed_line.Read_geno_start,bed_line.Read_geno_stop,bed

_line.Read_strand)

 RepCalc_dict[TE_ID].add_read(bed_line.Read_ID,bed_line.Read_strand)

 unique_fragavg=unique_fragsum/int(unique_linecount)

 return unique_fragavg

def multicount(tempBED,RepCalc_dict, multidict,read_locdict):

 tempBED.seek(0)

 for line in tempBED:

 adj = False

 bed_line = bedline(line)

 if bed_line.Read_length < 25:

 continue

 if len(bed_line.TE_ID_list) == 1: #if read not aligned to more than one TE_ID at

same position

 if bed_line.TE_ID not in RepCalc_dict:

 RepCalc_dict[bed_line.TE_ID] = RepCalc(bed_line.TE_ID) #Initiate

Repeat class object, Add RepeatTagNo, Repeat Total Tag Length to Repeat class object

 if bed_line.Read_ID not in multidict: #if TE_ID not in multi dictionary:

 multidict[bed_line.Read_ID]={bed_line.TE_ID:bed_line.Read_strand} #For each Read_ID,

include TE it's aligned to and strand it's on

 # locdict[bed_line.Read_ID] =

{bed_line.TE_ID:[bed_line.Read_chr,str(bed_line.Read_geno_start),str(bed_line.Read_geno_stop),ad

j]} #For each Read_Id, include location of alignment

 RepCalc_dict[bed_line.TE_ID].get_fragment(bed_line.Read_geno_start,bed_line.Read_geno

_stop,bed_line.Read_strand)

176

 RepCalc_dict[bed_line.TE_ID].add_read(bed_line.Read_ID,bed_line.Read_strand)

 else: #if TE_ID in dictionary:

 multidict[bed_line.Read_ID][bed_line.TE_ID] =

bed_line.Read_strand

 # locdict[bed_line.Read_ID][bed_line.TE_ID] =

[bed_line.Read_chr,str(bed_line.Read_geno_start),str(bed_line.Read_geno_stop),adj]

 RepCalc_dict[bed_line.TE_ID].get_fragment(bed_line.Read_geno_start,bed_line.Read_geno

_stop,bed_line.Read_strand)

 RepCalc_dict[bed_line.TE_ID].add_read(bed_line.Read_ID,bed_line.Read_strand)

 else: ##if read aligned to more than one TE_ID at same position

 adj= True

 for TE_ID in bed_line.TE_ID_list:

 TE_id_list = TE_ID.split('|')

 TE_start = TE_id_list[1]

 TE_stop = TE_id_list[2]

 if TE_ID not in RepCalc_dict:

 RepCalc_dict[TE_ID] = RepCalc(TE_ID)

 if bed_line.Read_ID not in multidict: #if TE_ID not in dictionary:

 multidict[bed_line.Read_ID]={TE_ID:bed_line.Read_strand} #Initiate Repeat class object,

Add RepeatTagNo, Repeat Total Tag Length to Repeat class object

 # locdict[bed_line.Read_ID] =

{TE_ID:[bed_line.Read_chr,str(bed_line.Read_geno_start),str(bed_line.Read_geno_stop),adj]}

 RepCalc_dict[TE_ID].get_fragment(bed_line.Read_geno_start,bed_line.Read_geno_stop,bed

_line.Read_strand)

 RepCalc_dict[TE_ID].add_read(bed_line.Read_ID,bed_line.Read_strand)

 else: #if TE_ID in dictionary:

 multidict[bed_line.Read_ID][TE_ID] =

bed_line.Read_strand

 # locdict[bed_line.Read_ID][TE_ID] =

[bed_line.Read_chr,str(bed_line.Read_geno_start),str(bed_line.Read_geno_stop),adj]

 RepCalc_dict[TE_ID].add_read(bed_line.Read_ID,bed_line.Read_strand)

 RepCalc_dict[TE_ID].get_fragment(bed_line.Read_geno_start,bed_line.Read_geno_stop,bed

_line.Read_strand)

def comparedict(read_multidict, RepCalc_dict):

 for Read_ID,TE_dict in read_multidict.iteritems():

 setfraction(Read_ID,TE_dict,RepCalc_dict)

def setfraction(Read_ID,TE_dict,RepCalc_dict): #compare multi with unique

 ID_TagKb_dict = {}

177

 UnTagged_TEs = 0

 read_subF = []

 read_sum=0

 ### Use count from unique count based on strand

 for TE_ID,strand in TE_dict.iteritems():

 #adj=locdict[TE_ID][3]

 #if TE_ID is untagged, would not have any unique reads

 if strand == "+":

 if RepCalc_dict[TE_ID].uniq_plus_perTagkb==0:

 read_fraction = 1/len(TE_dict)

 RepCalc_dict[TE_ID].add_multi(strand,read_fraction)

 #RepCalc_dict[TE_ID].get_fragment(locdict[TE_ID][1],locdict[TE_ID][2],strand)

 UnTagged_TEs +=1

 read_subF.append(get_subF(TE_ID))

 read_sum+=read_fraction

 elif RepCalc_dict[TE_ID].uniq_plus_perTagkb:

 #if TE is tagged, evaluate likelihood of contribution by length of uniq Tags on

appropriate strand per Tagkb

 ID_TagKb_dict[TE_ID] =

RepCalc_dict[TE_ID].uniq_plus_perTagkb

 if strand == "-": #if TE_ID is untagged, would not have any unique reads

 if RepCalc_dict[TE_ID].uniq_minus_perTagkb==0:

 read_fraction = 1/len(TE_dict)

 read_sum+=read_fraction

 RepCalc_dict[TE_ID].add_multi(strand,read_fraction)

 #RepCalc_dict[TE_ID].get_fragment(locdict[TE_ID][1],locdict[TE_ID][2],strand)

 UnTagged_TEs +=1

 read_subF.append(get_subF(TE_ID))

 elif RepCalc_dict[TE_ID].uniq_minus_perTagkb:

 #if TE is tagged, evaluate likelihood of contribution by length of uniq Tags on

appropriate strand per Tagkb

 ID_TagKb_dict[TE_ID] =

RepCalc_dict[TE_ID].uniq_minus_perTagkb

 TagKb_sum = sum(itervalues(ID_TagKb_dict))

 #print("TagKb_sum " + Read_ID + " " + str(TagKb_sum),file = sys.stderr)

 remainder_fraction = (len(TE_dict) - UnTagged_TEs)/len(TE_dict) #fraction of TEs in

TE_dict that are tagged

 if TagKb_sum > 0: #if some unique elements can be assigned

 for TE_ID, uniq_sum in ID_TagKb_dict.iteritems():

 # adj=locdict[TE_ID][3]

 strand = TE_dict[TE_ID]

 #print(TE_ID + " " + str(uniq_sum),file = sys.stderr)

 read_fraction = (uniq_sum/TagKb_sum) * remainder_fraction #defines

read_fraction by TE_IDs contribution to total uniqperTagKb_sum

 read_sum+=read_fraction

 RepCalc_dict[TE_ID].add_multi(strand,read_fraction)

 #

RepCalc_dict[TE_ID].get_fragment(locdict[TE_ID][1],locdict[TE_ID][2],strand)

 read_subF.append(get_subF(TE_ID))

178

 ### If no unique counts for any element in new dict, read fraction is 1/number of elements

per read

 else:

 for TE_ID, uniq_sum in ID_TagKb_dict.iteritems():

 strand = TE_dict[TE_ID]

 #adj=locdict[TE_ID][3]

 read_fraction = 1/len(TE_dict) #defines read_fraction by TE_IDs

contribution to total uniqperTagKb_sum

 read_sum+=read_fraction

 RepCalc_dict[TE_ID].add_multi(strand,read_fraction)

 #

RepCalc_dict[TE_ID].get_fragment(locdict[TE_ID][1],locdict[TE_ID][2],strand)

 read_subF.append(get_subF(TE_ID))

 unique_subF = set(read_subF) #add 1 read for each uniquely represented subfamily

 if read_sum > 1.01:

 print("read_sum is greater than 1 for " + Read_ID + "\n",file = sys.stderr)

 for subfamily in unique_subF:

 subF_list=split_subF(subfamily)

 for subF in subF_list:

 subF_reads[subF] +=1

def estdict(read_multidict, RepCalc_dict):

 changed_likelihood_sum = 0

 read_no=0

 changed_reads = 0

 for Read_ID,TE_dict in read_multidict.iteritems():

 changed_likelihood = maxfraction(Read_ID,TE_dict,RepCalc_dict)

 changed_likelihood_sum +=changed_likelihood

 read_no +=1

 if changed_likelihood >= 0.1:

 changed_reads +=1

 if read_no > 0:

 avg_changed_likelihood = changed_likelihood_sum/read_no

 else:

 avg_changed_likelihood = 0

 print("Expectation maximization changed the average likelihood by: " +

str(avg_changed_likelihood) + " " + str(datetime.now()) + "\n",file = sys.stderr)

 print("Number of reads with average TE likelihoods changed by at least 0.1: " +

str(changed_reads) + " " + str(datetime.now()) + "\n",file = sys.stderr)

 return avg_changed_likelihood

def maxfraction(Read_ID,TE_dict,RepCalc_dict): #calculate new likelihoods and compare with

previous

 ID_TagKb_dict = {}

 UnTagged_TEs = 0

 read_subF = []

 oldTagKb_sum=0

 newTagKb_sum=0

 changed_likelihood=0

 changed_TEs = 0

 read_sum=0

179

 TEcount=0

 ### Use count from unique count based on strand

 for TE_ID,strand in TE_dict.iteritems():

 if strand == "+":

 ID_TagKb_dict[(TE_ID,strand)] =

(RepCalc_dict[TE_ID].oldmulti_plus_perkb,RepCalc_dict[TE_ID].newmulti_plus_perkb)

 oldTagKb_sum += RepCalc_dict[TE_ID].oldmulti_plus_perkb

 newTagKb_sum += RepCalc_dict[TE_ID].newmulti_plus_perkb

 if RepCalc_dict[TE_ID].newmulti_plus_perkb > 0:

 TEcount+=1

 elif strand == "-":

 ID_TagKb_dict[(TE_ID,strand)] =

(RepCalc_dict[TE_ID].oldmulti_minus_perkb,RepCalc_dict[TE_ID].newmulti_minus_perkb)

 oldTagKb_sum += RepCalc_dict[TE_ID].oldmulti_minus_perkb

 newTagKb_sum += RepCalc_dict[TE_ID].newmulti_minus_perkb

 if RepCalc_dict[TE_ID].newmulti_minus_perkb > 0:

 TEcount+=1

 for TE_ID_tuple, multi_sum_tuple in ID_TagKb_dict.iteritems():

 TE_ID = TE_ID_tuple[0]

 strand = TE_ID_tuple[1]

 old_multi = multi_sum_tuple[0]

 new_multi = multi_sum_tuple[1]

 #defines read_fraction by TE_IDs contribution to total multipekb_sum

 if newTagKb_sum == 0:

 newread_fraction = 1/len(TE_dict)

 else:

 newread_fraction = (new_multi/newTagKb_sum)

 if newread_fraction > 1:

 raise Exception("Fraction is greater than 1:" + TE_ID + " " +

Read_ID + " " + str(TEcount) + " " + str(len(TE_dict)) + " " + str(newread_fraction) + " " +

str(new_multi) + " " + str(newTagKb_sum) + '\n')

 read_sum+=newread_fraction

 RepCalc_dict[TE_ID].add_multimax(strand,newread_fraction)

 if oldTagKb_sum == 0:

 oldread_fraction = 1/len(TE_dict)

 else:

 oldread_fraction = (old_multi/oldTagKb_sum)

 changed_likelihood += abs(newread_fraction-oldread_fraction)

 changed_TEs +=1

 if read_sum > 1.01:

 print("read_sum is greater than 1 for " + Read_ID + "\n",file = sys.stderr)

 print("newTagKb_sum is " + str(newTagKb_sum) + "\n",file = sys.stderr)

 print("oldTagKb_sum is " + str(oldTagKb_sum) + "\n",file = sys.stderr)

 print("read_sum is " + str(read_sum) + "\n",file = sys.stderr)

 if changed_TEs == 0:

 avg_change = 0

 else:

 avg_change = changed_likelihood/changed_TEs

180

 return avg_change

def sort_coord(infile, outfile,chrcol,startcol,debug):

 chrfieldsort = "-k" + str(chrcol) + "," + str(chrcol)

 startfieldsort = "-k" + str(startcol) + "," + str(startcol) + "n"

 sort_command_list = ["sort",chrfieldsort,startfieldsort, infile, ">", outfile]

 sort_command = " ".join(sort_command_list)

 sp.check_call(["/bin/sh", "-c", sort_command])

 if not debug:

 os.unlink(infile)

def sort_counts(tempfile,headerfile,countsfile, field,debug):

 sorted_countsfile = tempfile + ".sorted"

 field_command = str(field) + "," + str(field) + "rn"

 sort_command_list = ["sort","-k",field_command, tempfile, ">", sorted_countsfile]

 sort_command = " ".join(sort_command_list)

 sp.check_call(["/bin/sh", "-c", sort_command])

 catcommand_list = ["cat", headerfile, sorted_countsfile, ">",countsfile] #combines

multi_aligned reads

 catcommand = " ".join(catcommand_list)

 sp.check_call(["/bin/sh","-c",catcommand])

 if not debug:

 os.unlink(sorted_countsfile)

 os.unlink(tempfile)

 os.unlink(headerfile)

def bedgraph(infile,strandedness,outfolder,basename):

 if strandedness==1:

 stranded_yesno= "Stranded"

 plus_bedgraph_unique=outfolder + "/" + basename + "Signal.Unique.str2.out.bg"

 minus_bedgraph_unique = outfolder + "/" + basename + "Signal.Unique.str1.out.bg"

 plus_bedgraph_multi=outfolder + "/" + basename +

"Signal.UniqueMultiple.str2.out.bg"

 minus_bedgraph_multi = outfolder + "/" + basename +

"Signal.UniqueMultiple.str1.out.bg"

 elif strandedness==2:

 stranded_yesno= "Stranded"

 plus_bedgraph_multi=outfolder + "/" + basename +

"Signal.UniqueMultiple.str1.out.bg"

 minus_bedgraph_multi = outfolder + "/" + basename +

"Signal.UniqueMultiple.str2.out.bg"

 plus_bedgraph_unique=outfolder + "/" + basename + "Signal.Unique.str1.out.bg"

 minus_bedgraph_unique = outfolder + "/" + basename + "Signal.Unique.str2.out.bg"

 else:

 stranded_yesno="Unstranded"

 bedgraph_unique = outfolder + "/" + basename + "Signal.Unique.str1.out.bg"

 bedgraph_multi = outfolder + "/" + basename + "Signal.UniqueMultiple.str1.out.bg"

 inputs = ["""--inputBAMfile""", infile]

 outputs = ["""--outWigType""", "bedGraph", """--outWigStrand""", stranded_yesno, """--

outFileNamePrefix""", outfolder + "/" + basename]

 normalization=["""--outWigNorm""", "None"]

181

 STARcommand_list = ["STAR","""--runMode""","inputAlignmentsFromBAM"] + inputs +

outputs + normalization

 STARcommand=" ".join(STARcommand_list)

 sp.check_call(["/bin/sh", "-c", STARcommand])

 if strandedness !=0:

 rename_file(plus_bedgraph_unique,outfolder + "/" + basename +

"_plus_unique.bedgraph")

 rename_file(minus_bedgraph_unique,outfolder + "/" + basename +

"_minus_unique.bedgraph")

 rename_file(plus_bedgraph_multi,outfolder + "/" + basename +

"_plus_multi.bedgraph")

 rename_file(minus_bedgraph_multi,outfolder + "/" + basename +

"_minus_multi.bedgraph")

 else:

 rename_file(bedgraph_unique,outfolder + "/" + basename + "_unique.bedgraph")

 rename_file(bedgraph_multi,outfolder + "/" + basename + "_multi.bedgraph")

def main(**kwargs):

 ######## ARGUMENTS ###########

 #check if already args is provided, i.e. main() is called from the top level script

 args = kwargs.get('args', None)

 if args is None: ## i.e. standalone script called from command line in normal way

 parser = argparse.ArgumentParser(description = """Quantifies RNAseq reads

aligning to TEs. Outputs TE count file and subfamily count file""")

 parser._optionals.title = "Arguments"

 parser.add_argument("-m","--map_folder", help = "Folder location of outputs from

SQuIRE Map (optional, default = 'squire_map')", type = str, metavar =

"<folder>",default="squire_map")

 parser.add_argument("-c","--clean_folder", help = "Folder location of outputs from

SQuIRE Clean (optional, default = 'squire_clean')", type = str, metavar = "<folder>",default =

"squire_clean")

 parser.add_argument("-o","--count_folder", help = "Destination folder for output

files(optional, default = 'squire_count')", type = str, metavar = "<folder>", default="squire_count")

 parser.add_argument("-t","--tempfolder", help = "Folder for tempfiles (optional;

default=count_folder')", type = str, metavar = "<folder>", default=False)

 parser.add_argument("-f","--fetch_folder", help = "Folder location of outputs from

SQuIRE Fetch (optional, default = 'squire_fetch')",type = str, metavar =

"<folder>",default="squire_fetch")

 parser.add_argument("-r","--read_length", help = "Read length (if trim3 selected,

after trimming; required).", type = int, metavar = "<int>", required=True)

 parser.add_argument("-n","--name", help = "Common basename for input files

(required if more than one bam file in map_folder)", type = str, metavar = "<str>",default=False)

 parser.add_argument("-b","--build", help = "UCSC designation for genome build, eg.

'hg38' (required if more than 1 build in clean_folder)", type=str, metavar = "<build>",default=False)

 parser.add_argument("-p","--pthreads", help = "Launch <int> parallel

threads(optional; default='1')", type = int, metavar = "<int>", default=1)

 parser.add_argument("-s","--strandedness", help = " '0' if unstranded eg Standard

Illumina, 1 if first-strand eg Illumina Truseq, dUTP, NSR, NNSR, 2 if second-strand, eg Ligation,

Standard SOLiD (optional,default=0)", type = int, metavar = "<int>", default = 0)

182

 parser.add_argument("-e","--EM", help = "Run estimation-maximization on TE

counts given number of times (optional, specify 0 if no EM desired; default=auto)", type=str, default

= "auto")

 parser.add_argument("-v","--verbosity", help = "Want messages and runtime printed

to stderr (optional; default=False)", action = "store_true", default = False)

 args = parser.parse_args()

########## I/O #########

 ###### ARGUMENTS ######

 map_folder = args.map_folder

 clean_folder = args.clean_folder

 count_folder=args.count_folder

 fetch_folder=args.fetch_folder

 read_length=args.read_length

 tempfolder=args.tempfolder

 basename = args.name

 pthreads=args.pthreads

 strandedness=args.strandedness

 EM=args.EM

 build = args.build

 verbosity=args.verbosity

 ######### START TIMING SCRIPT ############

 if verbosity:

 startTime = datetime.now()

 print("start time is:" + str(startTime) + '\n', file = sys.stderr)# Prints start time

 print(os.path.basename(__file__) + '\n', file = sys.stderr) #prints script name to std err

 print("Script Arguments" + '\n' + "=================", file = sys.stderr)

 args_dict = vars(args)

 for option,arg in args_dict.iteritems():

 print(str(option) + "=" + str(arg), file = sys.stderr) #prints all arguments to std

err

 print("\n", file = sys.stderr)

 debug = False

 ######## FIND INPUTS ############

 outfolder = count_folder

 make_dir(outfolder) #Create outfolder if doesn't exist

 if not os.path.isdir(clean_folder):

 raise Exception(clean_folder + " is not a folder")

 if not os.path.isdir(map_folder):

 raise Exception(map_folder + " is not a folder")

 logfile = find_file(map_folder,".log",basename, 1,False)

 bamfile = find_file(map_folder,".bam",basename,1,True)

 if not bamfile:

 if basename:

 raise Exception("Cannot find bamfile matching " + basename)

 else:

 raise Exception("Cannot find bamfile in map_folder")

 if not basename:

 basename = get_basename(bamfile)

183

 rmsk_bed=find_file(clean_folder,".bed",build,1,True)

 copies = find_file(clean_folder,"_copies.txt",build,1,True)

 if not rmsk_bed:

 if build:

 raise Exception("Cannot find bedfile matching " + build)

 else:

 raise Exception("Cannot find bedfile in clean_folder")

 if not copies:

 if build:

 raise Exception("Cannot find copies.txt file matching " + build)

 else:

 raise Exception("Cannot find copies.txt file in clean_folder")

 if not tempfolder:

 tempfolder = outfolder

 paired_end = is_paired(bamfile,basename,tempfolder,debug)

 if verbosity:

 print("Quantifying Gene expression "+ str(datetime.now()) + "\n",file = sys.stderr)

 gtf = find_file(fetch_folder,"_refGene.gtf",build,1,True)

 outgtf_ref =outfolder + "/" + basename + ".gtf"

 abund_ref =outgtf_ref.replace(".gtf","_abund.txt")

 outgtf_ref_temp = make_tempfile(basename, "outgtf_ref", tempfolder)

 abund_ref_temp = outgtf_ref_temp.replace("outgtf","outabund")

 Stringtie(bamfile,outfolder,basename,strandedness,pthreads,gtf, verbosity,outgtf_ref_temp)

 sort_coord(outgtf_ref_temp,outgtf_ref,1,4,debug)

 sort_coord(abund_ref_temp,abund_ref,3,5,debug)

 gene_dict={}

 filter_abund(abund_ref,gene_dict,False)

 genecounts=outfolder + "/" + basename + "_refGenecounts.txt"

 filter_tx(outgtf_ref, gene_dict,read_length,genecounts)

 #### OPEN OUTPUTS & WRITE HEADER INFORMATION#############

 if verbosity:

 print("Creating temporary files"+ str(datetime.now()) + "\n",file = sys.stderr)

 counts_temp = tempfile.NamedTemporaryFile(delete=False, dir = tempfolder, prefix="count"

+ ".tmp")

 countsfilepath = outfolder + "/" + basename + "_TEcounts.txt"

 counts_file_header = open(countsfilepath +".header",'w')

 counts_file_header.writelines("tx_chr" + "\t" + "tx_start" + "\t" + "tx_stop" + "\t" +

"TE_ID" + "\t" + "fpkm" + "\t" + "tx_strand" + "\t" + "Sample" + "\t" + "alignedsize" + "\t" +

"TE_chr" + "\t" + "TE_start" + "\t" + "TE_stop" + "\t" + "TE_name" + "\t" + "milliDiv" + "\t" +

"TE_strand" + "\t" + "uniq_counts" + "\t" + "tot_counts" + "\t" + "tot_reads" +"\t" + "score" + "\n")

 counts_file_header.close()

#####CREATE TEMPFILES #######

184

 if verbosity:

 print("Creating unique and multiple alignment bedfiles "+ str(datetime.now()) +

"\n",file = sys.stderr)

 if not paired_end:

 single_bam = bamfile

 if verbosity:

 print("Intersecting bam file with TE bedfile "+ str(datetime.now()) +

"\n",file = sys.stderr)

 #intersect bam files with TE bed files

 single_bed_tempfile1 = make_tempfile(basename,"single_bed_1", tempfolder)

 intersect_flank(single_bam, rmsk_bed, single_bed_tempfile1,debug)

 if verbosity:

 print("Combining adjacent TEs with same read alignment "+

str(datetime.now()) + "\n",file = sys.stderr)

 #reduce reads #Find reads aligned to same position but different TE_IDs

(overlapping flanks) and merge

 single_reduced_tempfile1 = make_tempfile(basename,"single_reduced_1",

tempfolder)

 single_reduced_tempfile1_sorted =single_reduced_tempfile1 + "_sorted"

 sort_coord(single_bed_tempfile1,single_reduced_tempfile1_sorted,1,2,debug)

 reduce_reads(single_reduced_tempfile1_sorted, single_reduced_tempfile1,debug)

 if verbosity:

 print("Getting genomic coordinates of read"+ str(datetime.now()) + "\n",file

= sys.stderr)

 #get genomic coordinates and RNA strand for all alignments

 single_coords_tempfile1= make_tempfile(basename,"single_coords_1", tempfolder)

 get_coords(single_reduced_tempfile1,1,strandedness,single_coords_tempfile1,debug)

 # os.unlink(single_bed_tempfile1)

 if verbosity:

 print("Identifying and labeling unique and multi reads"+ str(datetime.now())

+ "\n",file = sys.stderr)

 single_labeled_tempfile1 = make_tempfile(basename,"single_labeled_1",

tempfolder)

 single_labeled_tempfile2 = make_tempfile(basename,"single_labeled_2",

tempfolder)

 label_files(single_coords_tempfile1,single_labeled_tempfile1,"single",debug)

 label_files(single_labeled_tempfile1,single_labeled_tempfile2,"R1",debug)

 #find unique single alignments

 first_tempfile1 = make_tempfile(basename,"first_1", tempfolder)

 unique_tempfile1 = make_tempfile(basename,"unique_1", tempfolder)

 multi_tempfile1 = make_tempfile(basename,"multi_1", tempfolder)

 find_uniq(single_labeled_tempfile2,first_tempfile1,unique_tempfile1,

multi_tempfile1,debug)

185

 #label uniq, multi, or single

 multi_bed = make_tempfile(basename,"multi_bed", tempfolder)

 unique_bed = make_tempfile(basename,"unique_bed", tempfolder)

 label_files(unique_tempfile1, unique_bed, "uniq",debug)

 label_files(multi_tempfile1, multi_bed, "multi",debug)

 aligned_libsize = getlibsize(logfile,

bamfile,multi_bed,unique_bed,paired_end,debug)

 if paired_end:

 #intersect bam files with TE bed files

 if verbosity:

 print("Identifying properly paired reads "+ str(datetime.now()) + "\n",file =

sys.stderr)

 paired_bam = bamfile

 proper_bam = make_tempfile(basename,"proper_bam", tempfolder)

 nonproper_bam = make_tempfile(basename,"nonproper_bam", tempfolder)

 find_properpair(paired_bam, proper_bam,nonproper_bam)

 if verbosity:

 print("Intersecting bam files with TE bedfile "+ str(datetime.now()) +

"\n",file = sys.stderr)

 proper_bed = make_tempfile(basename,"proper_bed", tempfolder)

 nonproper_bed = make_tempfile(basename,"nonproper_bed", tempfolder)

 intersect_flank(proper_bam, rmsk_bed, proper_bed,debug)

 intersect_flank(nonproper_bam, rmsk_bed, nonproper_bed,debug)

 proper_labeled_tempfile = make_tempfile(basename,"proper_labeled", tempfolder)

 nonproper_labeled_tempfile = make_tempfile(basename,"nonproper_labeled",

tempfolder)

 label_files(proper_bed,proper_labeled_tempfile,"proper",debug)

 label_files(nonproper_bed,nonproper_labeled_tempfile,"nonproper",debug)

 proper_nonproper_labeled_tempfile =

make_tempfile(basename,"proper_nonproper_labeled", tempfolder)

 combine_files(proper_labeled_tempfile,nonproper_labeled_tempfile,proper_nonproper_label

ed_tempfile,debug)

 if verbosity:

 print("Splitting into read1 and read 2 "+ str(datetime.now()) + "\n",file =

sys.stderr)

 paired_bed_tempfile1 = make_tempfile(basename,"paired_1.bed",tempfolder)

 paired_bed_tempfile2 = make_tempfile(basename,"paired_2.bed",tempfolder)

 split_paired(proper_nonproper_labeled_tempfile,paired_bed_tempfile1,paired_bed_tempfile2

,debug)

 paired_bed_tempfile1_sorted = paired_bed_tempfile1 + "_sorted"

 paired_bed_tempfile2_sorted = paired_bed_tempfile2 + "_sorted"

186

 if not debug:

 os.unlink(proper_bam)

 os.unlink(nonproper_bam)

 #reduce reads #Find reads aligned to same position but different TE_IDs

(overlapping flanks) and merge

 if verbosity:

 print("Combining adjacent TEs with same read alignment "+

str(datetime.now()) + "\n",file = sys.stderr)

 paired_reduced_tempfile1 = make_tempfile(basename,"paired_reduced_1",

tempfolder)

 paired_reduced_tempfile2 = make_tempfile(basename,"paired_reduced_2",

tempfolder)

 sort_coord(paired_bed_tempfile1,paired_bed_tempfile1_sorted,1,2,debug)

 sort_coord(paired_bed_tempfile2,paired_bed_tempfile2_sorted,1,2,debug)

 reduce_reads(paired_bed_tempfile1_sorted, paired_reduced_tempfile1,debug)

 reduce_reads(paired_bed_tempfile2_sorted, paired_reduced_tempfile2,debug)

 #get genomic coordinates and RNA strand for all alignments

 if verbosity:

 print("Getting genomic coordinates of read"+ str(datetime.now()) + "\n",file

= sys.stderr)

 paired_coords_tempfile1= make_tempfile(basename,"paired_coords_1", tempfolder)

 paired_coords_tempfile2= make_tempfile(basename,"paired_coords_2", tempfolder)

 get_coords(paired_reduced_tempfile1,1,strandedness,paired_coords_tempfile1,debug)

 get_coords(paired_reduced_tempfile2,2,strandedness,paired_coords_tempfile2,debug)

 paired_labeled_tempfile1 = make_tempfile(basename,"paired_labeled_1",

tempfolder)

 paired_labeled_tempfile2 = make_tempfile(basename,"paired_labeled_2",

tempfolder)

 label_files(paired_coords_tempfile1,paired_labeled_tempfile1,"R1",debug)

 label_files(paired_coords_tempfile2,paired_labeled_tempfile2,"R2",debug)

 #remove /1 and /2 from read ID column

 paired_fixed_tempfile1 = make_tempfile(basename,"paired_fixed_1", tempfolder)

 paired_fixed_tempfile2 = make_tempfile(basename,"paired_fixed_2", tempfolder)

 fix_paired(paired_labeled_tempfile1,paired_labeled_tempfile2,

paired_fixed_tempfile1,paired_fixed_tempfile2,debug)

 #find unique single alignments

 if verbosity:

 print("Identifying and labeling unique and multi reads"+ str(datetime.now())

+ "\n",file = sys.stderr)

 first_tempfile1 = make_tempfile(basename,"first_1", tempfolder)

 unique_tempfile1 = make_tempfile(basename,"unique_1", tempfolder)

 multi_tempfile1 = make_tempfile(basename,"multi_1", tempfolder)

187

 first_tempfile2 = make_tempfile(basename,"first_2", tempfolder)

 unique_tempfile2 = make_tempfile(basename,"unique_2", tempfolder)

 multi_tempfile2 = make_tempfile(basename,"multi_2", tempfolder)

 find_uniq(paired_fixed_tempfile1,first_tempfile1,unique_tempfile1,

multi_tempfile1,debug)

 find_uniq(paired_fixed_tempfile2,first_tempfile2, unique_tempfile2,

multi_tempfile2,debug)

 #label uniq, multi, or paired

 unique_tempfile1_labeled = make_tempfile(basename,"unique_labeled_1",

tempfolder)

 multi_tempfile1_labeled = make_tempfile(basename,"multi_labeled_1", tempfolder)

 unique_tempfile2_labeled = make_tempfile(basename,"unique_labeled_2",

tempfolder)

 multi_tempfile2_labeled = make_tempfile(basename,"multi_labeled_2", tempfolder)

 label_files(unique_tempfile1, unique_tempfile1_labeled, "uniq",debug)

 label_files(unique_tempfile2, unique_tempfile2_labeled, "uniq",debug)

 label_files(multi_tempfile1, multi_tempfile1_labeled, "multi",debug)

 label_files(multi_tempfile2, multi_tempfile2_labeled, "multi",debug)

 paired_tempfile1_ulabeled = make_tempfile(basename,"paired_ulabeled_1",

tempfolder)

 paired_tempfile2_ulabeled = make_tempfile(basename,"paired_ulabeled_2",

tempfolder)

 combine_files(unique_tempfile1_labeled,multi_tempfile1_labeled,

paired_tempfile1_ulabeled,debug)

 combine_files(unique_tempfile2_labeled,multi_tempfile2_labeled,

paired_tempfile2_ulabeled,debug)

 #combine pairs

 if verbosity:

 print("Matching paired-end mates and merging coordinates"+

str(datetime.now()) + "\n",file = sys.stderr)

 paired_unmatched1= make_tempfile(basename,"paired_unmatched_1", tempfolder)

 paired_unmatched2 = make_tempfile(basename,"paired_unmatched_2", tempfolder)

 paired_matched_tempfile = make_tempfile(basename,"paired_matched", tempfolder)

 match_reads(paired_tempfile1_ulabeled,paired_tempfile2_ulabeled,strandedness,paired_matc

hed_tempfile,paired_unmatched1, paired_unmatched2,debug) #match pairs between paired files

 #sort matched

 matched_tempfile_sorted = make_tempfile(basename,"paired_matched_sorted",

tempfolder)

 sort_temp(paired_matched_tempfile,4,matched_tempfile_sorted,debug)

 #combine start and stop of paired reads

 matched_bed = make_tempfile(basename,"matched_bed", tempfolder)

188

 merge_coords(matched_tempfile_sorted,matched_bed,debug)

 # os.unlink(matched_tempfile_sorted)

 combined_unmatched = make_tempfile(basename,"combined_unmatched",

tempfolder)

 combine_files(paired_unmatched1, paired_unmatched2,

combined_unmatched,debug)

 #Find single reads that are matched outside of TE but are still proper pair

 if verbosity:

 print("Adding properly paired reads that have mates outside of TE into

matched file"+ str(datetime.now()) + "\n",file = sys.stderr)

 proper_single = make_tempfile(basename,"proper_single",tempfolder)

 combined_unmatched2 = make_tempfile(basename,"combined_unmatched2",

tempfolder)

 find_proper(combined_unmatched,combined_unmatched2,proper_single,debug)

#outputs only nonproper pairs in combined_unmatched2, and single reads that are part of proper pairs

in proper_single

 combined_matched = make_tempfile(basename,"combined_matched", tempfolder)

 combine_files(matched_bed,proper_single,combined_matched,debug)

 # os.unlink(proper_single)

 ###Remove single alignments of reads that have paired matches using other valid

alignments

 if verbosity:

 print("Removing single-end reads that have matching paired-end mates at

other alignment locations"+ str(datetime.now()) + "\n",file = sys.stderr)

 only_unmatched = make_tempfile(basename,"only_unmatched", tempfolder)

 remove_repeat_reads(combined_matched,combined_unmatched2,only_unmatched,debug)

 #combine matched and unmatched alignments

 combined_bed = make_tempfile(basename,"combined_bed", tempfolder)

 combine_files(combined_matched,only_unmatched,combined_bed,debug)

 if verbosity:

 print("Identifying and labeling unique and multi fragments"+

str(datetime.now()) + "\n",file = sys.stderr)

 first_tempfile = make_tempfile(basename,"first", tempfolder)

 paired_uniq_tempfile =

make_tempfile(basename,"paired_uniq_tempfile",tempfolder)

 unique_bed = make_tempfile(basename,"unique_bed", tempfolder)

 multi_bed_pre = make_tempfile(basename,"multi_bed_pre", tempfolder)

 find_uniq(combined_bed,first_tempfile,unique_bed,multi_bed_pre,debug)

 #find unique pairs in multi_bed

 multi_bed = make_tempfile(basename,"multi_bed", tempfolder)

 if verbosity:

189

 print("Identifying multi read pairs with one end unique"+ str(datetime.now())

+ "\n",file = sys.stderr)

 find_paired_uniq(multi_bed_pre,paired_uniq_tempfile,multi_bed,unique_bed,debug)

 aligned_libsize = getlibsize(logfile,

bamfile,multi_bed,unique_bed,paired_end,debug)

 ######## COUNT READ(S) #########################

 read_multidict={} #dictionary to store TE_IDs for each read alignment

 read_locdict = {} #dictionary to store genomic location of each alignment

 if verbosity:

 print("counting unique alignments "+ str(datetime.now()) + "\n",file = sys.stderr)

 unique_bedfile = open(unique_bed,'r')

 avg_fraglength=uniquecount(unique_bedfile,RepCalc_dict,read_locdict)

 if verbosity:

 print("counting multi alignments "+ str(datetime.now()) + "\n",file = sys.stderr)

 multi_bedfile = open(multi_bed, 'r')

 multicount(multi_bedfile,RepCalc_dict,read_multidict,read_locdict)

 unique_bedfile.close()

 multi_bedfile.close()

 if verbosity:

 print("Adding Tag information to aligned TEs "+ str(datetime.now()) + "\n",file =

sys.stderr)

 for TE_ID,RepClass in RepCalc_dict.iteritems():

 RepClass.calcuniqRep()

 if verbosity:

 print("Calculating multialignment assignments "+

str(datetime.now()) + "\n",file = sys.stderr)

 comparedict(read_multidict,RepCalc_dict)

 iteration=0

 if EM == "auto":

 notconverged=True

 prev_read_change=1

 prev_count_change = 0

 max_count_change = 0

 while notconverged:

 iteration +=1

 changed_count = 0

 total_TE =0

 total_TE_0 = 0

 total_TE_1 = 0

 total_TE_10 = 0

190

 avg_changed_count_pct =0

 max_count_change=0

 total_TE_10_1pct =0

 if verbosity:

 print("Running expectation-maximization calculation for

iteration:" + str(iteration) + " " + str(datetime.now()) + "\n",file = sys.stderr)

 for TE_ID,RepClass in RepCalc_dict.iteritems():

 TE_changecount = RepClass.calcmultiRep(iteration)

 max_count_change =

max(TE_changecount,max_count_change)

 changed_count +=TE_changecount

 total_TE +=1

 if TE_changecount > 0:

 total_TE_0 +=1

 if TE_changecount >= 1:

 total_TE_1 += 1

 if TE_changecount >= 1 and RepClass.counts_tot >= 10:

 total_TE_10 += 1

 if TE_changecount >= 1 and RepClass.counts_tot >= 10 and

(TE_changecount/RepClass.counts_tot) > 0.01:

 total_TE_10_1pct += 1

 avg_changed_count_pct = changed_count/total_TE

 if verbosity:

 print("Average change in TE count:" +

str(avg_changed_count_pct) + " " + str(datetime.now()) + "\n",file = sys.stderr)

 print("Max change in TE count:" + str(max_count_change) +

" " + str(datetime.now()) + "\n",file = sys.stderr)

 print("Number changed TE:" + str(total_TE_0) + " " +

str(datetime.now()) + "\n",file = sys.stderr)

 print("Number TEs changed by at least 1 count:" +

str(total_TE_1) + " " + str(datetime.now()) + "\n",file = sys.stderr)

 print("Number TEs changed by at least 1 count with at least

10 counts:" + str(total_TE_10) + " " + str(datetime.now()) + "\n",file = sys.stderr)

 print("Number TEs changed by at least 1 count with at least

10 counts and > 1pct total count:" + str(total_TE_10_1pct) + " " + str(datetime.now()) + "\n",file =

sys.stderr)

 new_read_change = estdict(read_multidict,RepCalc_dict)

 if total_TE_10_1pct == 0 and iteration > 1:

 notconverged = False

 else:

 prev_read_change = new_read_change

 if verbosity:

 print("Finished running expectation-maximization calculation after

iteration:" + str(iteration) + " " + str(datetime.now()) + "\n",file = sys.stderr)

 elif int(EM) > 0:

 notconverged=True

 prev_read_change=1

 prev_count_change = 0

191

 max_count_change = 0

 while iteration < int(EM):

 iteration +=1

 changed_count = 0

 total_TE =0

 total_TE_0 = 0

 total_TE_1 = 0

 total_TE_10 = 0

 avg_changed_count_pct =0

 max_count_change=0

 total_TE_10_1pct =0

 if verbosity:

 print("Running expectation-maximization calculation for iteration:"

+ str(iteration) + " " + str(datetime.now()) + "\n",file = sys.stderr)

 for TE_ID,RepClass in RepCalc_dict.iteritems():

 TE_changecount = RepClass.calcmultiRep(iteration)

 max_count_change = max(TE_changecount,max_count_change)

 changed_count +=TE_changecount

 total_TE +=1

 if TE_changecount > 0:

 total_TE_0 +=1

 if TE_changecount >= 1:

 total_TE_1 += 1

 if TE_changecount >= 1 and RepClass.counts_tot >= 10:

 total_TE_10 += 1

 avg_changed_count_pct = changed_count/total_TE

 if TE_changecount >= 1 and RepClass.counts_tot >= 10 and

(TE_changecount/RepClass.counts_tot) > 0.01:

 total_TE_10_1pct += 1

 if verbosity:

 print("Average change in TE count:" + str(avg_changed_count_pct)

+ " " + str(datetime.now()) + "\n",file = sys.stderr)

 print("Max change in TE count:" + str(max_count_change) + " " +

str(datetime.now()) + "\n",file = sys.stderr)

 print("Number changed TE:" + str(total_TE_0) + " " +

str(datetime.now()) + "\n",file = sys.stderr)

 print("Number TEs changed by at least 1 count:" + str(total_TE_1) +

" " + str(datetime.now()) + "\n",file = sys.stderr)

 print("Number TEs changed by at least 1 count with at least 10

counts:" + str(total_TE_10) + " " + str(datetime.now()) + "\n",file = sys.stderr)

 print("Number TEs changed by at least 1 count with at least 10

counts and > 1pct total count:" + str(total_TE_10_1pct) + " " + str(datetime.now()) + "\n",file =

sys.stderr)

 new_read_change = estdict(read_multidict,RepCalc_dict)

 if verbosity:

 print("Writing counts "+ str(datetime.now()) + "\n",file = sys.stderr)

 read_multidict.clear()

192

 if copies:

 temp_subF = tempfile.NamedTemporaryFile(delete=False, dir = tempfolder,

prefix="count" + ".SFtmp")

 subF_filepath = outfolder + "/" + basename + "_subFcounts.txt"

 subF_file_header = open(subF_filepath + ".header",'w')

subF_file_header.writelines("Sample" + "\t" + "aligned_libsize" + "\t" +

"Subfamily:Family:Class" + "\t" + "copies" + "\t" + "exp_copies" + "\t" + "uniq_counts" + "\t" +

"tot_counts" + "\t" + "avg_conf" + "\t" + "tot_sense" + "\t" + "tot_antisense" + "\n")

 subF_file_header.writelines("Sample" + "\t" + "aligned_libsize" + "\t" +

"Subfamily:Family:Class" + "\t" + "copies" + "\t" + "fpkm" + "\t" + "uniq_counts" + "\t" +

"tot_counts" + "\t" + "tot_reads" + "\t" + "score" + "\n")

 subF_file_header.close()

 subF_dict = {}

 for TE_ID,RepClass in RepCalc_dict.iteritems(): #for each TE_ID

 RepClass.writeRep(aligned_libsize,counts_temp,basename,strandedness,iteration)

 ##########Sort by highest total counts before writing and add to subF dictionary

 if copies:

 subF = get_subF(TE_ID)

 subF_list = split_subF(subF)

 if subF not in subF_dict:

 subF_dict[subF]=subfamily(subF,subF_reads[subF])

 subF_dict[subF].add_TE_count(RepClass,strandedness)

 else:

 subF_dict[subF].add_TE_count(RepClass,strandedness)

 #Close dictionaries from memory

 counts_temp.close()

 sort_counts(counts_temp.name,counts_file_header.name,countsfilepath,5,debug) #sort on 5th

column (fpkm)

 read_locdict.clear()

 RepCalc_dict.clear()

 if copies:

 if verbosity:

 print("Writing subfamily counts "+ str(datetime.now()) + "\n",file =

sys.stderr)

 with open(copies,'r') as copiesfile: #copiesfile is sorted

 copiesfile.readline() #skip header

 for line in copiesfile:

 line = line.rstrip()

 line_tabs = line.split("\t")

 line_subF = line_tabs[0]

 if line_subF in subF_dict:

 subF_dict[line_subF].add_copy_info(line_tabs)

 #### Write lines ###

193

 # temp_subF.writelines(basename + "\t" + str(aligned_libsize) + "\t"

+ line_subF + "\t" + line_copies + "\t" + str(uniq) + "\t" + "{0:.2f}".format(multi) + "\t" +

str(subF_conf) + "\t" + "{0:.2f}".format(sense_reads) + "\t" + "{0:.2f}".format(antisense_reads) +

"\n")

 subF_dict[line_subF].write_subfamily(temp_subF,basename,aligned_libsize,iteration)

 else:

 subF_dict[line_subF]=subfamily(line_subF,0)

 subF_dict[line_subF].add_copy_info(line_tabs)

 subF_dict[line_subF].write_subfamily(temp_subF,basename,aligned_libsize,iteration)

 copiesfile.close()

 temp_subF.close()

 sort_counts(temp_subF.name,subF_file_header.name,subF_filepath,6,debug) #Sort

by 7th field (multi)

 if not debug:

 os.unlink(unique_bed)

 os.unlink(multi_bed)

 ####### STOP TIMING SCRIPT #######################

 if verbosity:

 print("finished writing outputs at "+ str(datetime.now()) + "\n",file = sys.stderr)

 endTime = datetime.now()

 print('end time is: '+ str(endTime) + "\n", file = sys.stderr)

 print('it took: ' + str(endTime-startTime) + "\n", file = sys.stderr)

###################

if __name__ == "__main__":

 main()

194

Appendix F. SQuIRE Call

#!/usr/bin/env python

############MODULES#########################

from __future__ import print_function,division

import sys

import os

import errno

import argparse #module that passes command-line arguments into script

from datetime import datetime

import operator #for doing operations on tuple

from operator import itemgetter

import subprocess as sp

from subprocess import Popen, PIPE,STDOUT

import io

import tempfile

from collections import defaultdict #for dictionary

import glob

import re

from six import itervalues

import call_deseq2

import call_deseq2_prefilter

import shutil

def find_file(folder,pattern,base, wildpos, needed):

 foundfile=False

 if wildpos == 1:

 file_list=glob.glob(folder + "/" + "*" + pattern)

 elif wildpos ==2:

 file_list=glob.glob(folder + "/" + pattern + "*")

 if len(file_list)>1: #if more than one file in folder

 if not base:

 raise Exception("More than 1 " + pattern + " file")

 for i in file_list:

 if base in i:

 foundfile = i

 elif len(file_list) == 0:

 foundfile = False

 else:

 foundfile = file_list[0]

 if not foundfile:

 if needed:

 raise Exception("No " + pattern + " file")

 else:

 foundfile = False

 return foundfile

def make_tempfile(basename, step, outfolder):

195

 tmpfile = tempfile.NamedTemporaryFile(delete=False, dir = outfolder, prefix= basename + "_"

+ step + ".tmp")

 tmpname = tmpfile.name

 tmpfile.close()

 return tmpname

def filter_files(file_in,file_out, string, column):

 command = "'$" + str(column) + "==" + '"' + string + '"'+ "'"

 pastecommandlist = ["awk", "-v", "OFS='\\t'",command,file_in, ">", file_out]

 pastecommand = " ".join(pastecommandlist)

 sp.check_call(["/bin/sh","-c",pastecommand])

def rename_file(oldname,newname):

 shutil.move(oldname, newname)

def make_dir(path):

 try:

 original_umask = os.umask(0)

 os.makedirs(path, 0770)

 except OSError as exception:

 if exception.errno != errno.EEXIST:

 raise

 finally:

 os.umask(original_umask)

def get_basename(filepath):

 filename = os.path.basename(filepath)

 filebase = os.path.splitext(filename)[0]

 return filebase

def get_groupfiles(group,gene_files,subF_files,TE_files,subfamily,count_folder):

 if "*" not in group:

 if "," in group:

 group_list = group.split(",")

 else:

 group_list=[group]

 for sample in group_list:

 if subfamily:

 subF_files.append(find_file(count_folder,"_subFcounts.txt",sample,1,True))

 else:

 TE_files.append(find_file(count_folder,"_TEcounts.txt",sample,1,True))

 gene_files.append(glob.glob(count_folder + "/" + sample + "_refGenecounts.txt")[0])

 elif "*" in group:

 if subfamily:

 subF_files+=(glob.glob(count_folder + "/" + group + "_subFcounts.txt"))

 else:

 TE_files+=(glob.glob(count_folder + "/" + group + "_TEcounts.txt"))

 gene_files+=(glob.glob(count_folder + "/" + group + "_refGenecounts.txt"))

 group_list=[get_basename(gene_file).replace("_refGenecounts","") for gene_file in

(glob.glob(count_folder + "/" + group + "_refGenecounts.txt"))]

 return group_list

196

def create_count_dict(infilepath,count_dict,stringtie_list):

 name=get_basename(infilepath).replace("_refGenecounts","")

 with open(infilepath,'r') as infile:

 header = infile.readline().rstrip()

 for line in infile:

 line = line.rstrip()

 line = line.split("\t")

 chrom = line[0]

 start=line[1]

 stop = line[2]

 gene_ID = line[3]

 fpkm=line[4]

 strand = line[5]

 count = line[6]

 if (gene_ID,strand) in stringtie_list:

 continue

 if (gene_ID,strand) not in count_dict:

 count_dict[(gene_ID,strand)] = {name:count}

 else:

 count_dict[(gene_ID,strand)][name]=count

#subF_file_header.writelines("Sample" + "\t" + "aligned_libsize" + "\t" +

"Subfamily:Family:Class" + "\t" + "copies" + "\t" + "EM_iteration" + "\t" + "uniq_counts" + "\t" +

"tot_counts_preEM" + "\t" + "tot_counts_postEM" + "\t" + "tot_reads" + "\t" + "avg_conf" + "\n")

def create_TE_dict(infilepath,sample_count_dict,threshold):

 conf_dict={}

 count_dict={}

 with open(infilepath,'r') as infile:

 header = infile.readline().rstrip()

 for line in infile:

 line = line.rstrip()

 line = line.split("\t")

 if "milliDiv" in line[12]:

 continue

 TE_ID = line[3]

 strand = line[5]

 milliDiv = int(line[12])

 count = str(int(float(line[15])))

 conf = float(line[17])

 sample = line[6]

 if (TE_ID,strand) not in sample_count_dict:

 sample_count_dict[(TE_ID,strand)] = {sample:count}

 conf_dict[(TE_ID,strand)] = [conf]

 count_dict[(TE_ID,strand)] = [count]

 else:

 sample_count_dict[(TE_ID,strand)][sample]=count

 conf_dict[(TE_ID,strand)].append(conf)

 count_dict[(TE_ID,strand)].append(count)

197

 for TE_tuple,conf_list in conf_dict.iteritems():

 mean_conf=sum(conf_list)/len(conf_list)

 if mean_conf <= threshold:

 sample_count_dict.pop(TE_tuple, None)

 for TE_tuple,TEcount_list in count_dict.iteritems():

 TEcount_list=TEcount_list = [int(i) for i in TEcount_list]

 mean_count=sum(TEcount_list)/len(TEcount_list)

 if mean_count <= 5:

 sample_count_dict.pop(TE_tuple, None)

def create_subfamily_dict(infilepath,count_dict):

 TE_classes=["LTR","LINE","SINE","Retroposon","DNA","RC"]

 with open(infilepath,'r') as infile:

 for line in infile:

 line = line.rstrip()

 line = line.split("\t")

 taxo = line[2]

 count=line[6]

 if any(x in taxo for x in TE_classes):

 if count=="tot_counts":

 continue

 else:

 count = str(int(round(float(line[5]))))

 sample = line[0]

 if taxo not in count_dict:

 count_dict[taxo] = {sample:count}

 else:

 count_dict[taxo][sample]=count

def combinefiles(infile,catfile):

 with open(catfile, 'a') as outFile:

 with open(infile, 'rb') as inFile:

 shutil.copyfileobj(inFile, outFile)

def

create_rscript(count_table,coldata,outfolder,output_format,projectname,verbosity,pthreads,prefilter,c

ondition1,condition2,label_no):

 r_script = make_tempfile(projectname,"R_script",outfolder)

 outfolder=os.path.abspath(outfolder)

 count_table = os.path.abspath(count_table)

 coldata=os.path.abspath(coldata)

 if prefilter:

 call_deseq2_prefilter.write_Rscript(r_script)

 else:

 call_deseq2.write_Rscript(r_script)

 #outfile = open(outfolder + "/" + projectname + "call_results.txt","w")

 if verbosity:

 print("Creating DESeq2 results"+ str(datetime.now()) + "\n",file = sys.stderr)

198

 Rcommandlist = ["Rscript", r_script,

count_table,coldata,outfolder,projectname,pthreads,condition1,condition2,str(label_no)]

 Rcommand = " ".join(Rcommandlist)

 sp.check_call(["/bin/sh","-c",Rcommand])

 # if output_format=="html":

 # render_command="rmarkdown::render('" + r_script + "')"

 # elif output_format == "pdf":

 # render_command="rmarkdown::render('" + r_script + "', 'pdf_document')"

 # Rcommandlist = ["R","-e", render_command]

 # Rcommand = " ".join(Rcommandlist)

 # sp.check_call(["/bin/sh","-c",Rcommand])

 os.unlink(r_script)

def main(**kwargs):

 ######## ARGUMENTS ###########

 #check if already args is provided, i.e. main() is called from the top level script

 args = kwargs.get('args', None)

 if args is None: ## i.e. standalone script called from command line in normal way

 parser = argparse.ArgumentParser(description = """Performs differential expression analysis

on TEs and genes""")

 parser._optionals.title = "Arguments"

 parser.add_argument("-1","--group1", help = "List of basenames for group1 (Treatment)

samples, can also provide string pattern common to all group1 basenames with * ",required = True,

type = str, metavar = "<str1,str2> or <*str*>")

 parser.add_argument("-2","--group2", help = "List of basenames for group2 (Control)

samples, can also provide string pattern common to all group2 basenames with * ",required = True,

type = str, metavar = "<str1,str2> or <*str*>")

 parser.add_argument("-A","--condition1", help = "Name of condition for group1",required =

True, type = str, metavar = "<str>")

 parser.add_argument("-B","--condition2", help = "Name of condition for group2",required =

True, type = str, metavar = "<str>")

 parser.add_argument("-i","--count_folder", help = "Folder location of outputs from SQuIRE

Count (optional, default = 'squire_count')", type = str, metavar = "<folder>",default="squire_count")

 parser.add_argument("-o","--call_folder", help = "Destination folder for output files

(optional; default='squire_call')", type = str, metavar = "<folder>", default="squire_call")

 parser.add_argument("-s","--subfamily", help = "Compare TE counts by subfamily.

Otherwise, compares TEs at locus level (optional; default=False)", action = "store_true", default =

False)

 parser.add_argument("-p","--pthreads", help = "Launch <int> parallel threads(optional;

default='1')", type = int, metavar = "<int>", default=1)

 parser.add_argument("-N","--projectname", help = "Basename for project,

default='SQuIRE'",type = str, metavar = "<str>",default="SQuIRE")

 parser.add_argument("-f","--output_format", help = "Output figures as html or pdf", type =

str, metavar = "<str>",default="html")

 parser.add_argument("-t","--table_only", help = "Output count table only, don't want to

perform differential expression with DESeq2", action = "store_true", default = False)

 #parser.add_argument("-c","--cluster", help = "Want to cluster samples by gene and TE

expression", action = "store_true", default = False)

199

 parser.add_argument("-v","--verbosity", help = "Want messages and runtime printed to

stderr (optional; default=False)", action = "store_true", default = False)

 args,extra_args = parser.parse_known_args()

########## I/O #########

 ###### ARGUMENTS ######

 group1 = args.group1

 group2 = args.group2

 condition1=args.condition1

 condition2 = args.condition2

 count_folder = args.count_folder

 outfolder=args.call_folder

 verbosity=args.verbosity

 projectname = args.projectname

 subfamily=args.subfamily

 output_format = args.output_format

 pthreads= args.pthreads

 table_only=args.table_only

 debug = True

 label_no=20

 threshold=0

 ######### Call TIMING SCRIPT ############

 if verbosity:

 CallTime = datetime.now()

 print("Script start time is:" + str(CallTime) + '\n', file = sys.stderr)# Prints Call time

 print("Script Arguments" + '\n' + "=================", file = sys.stderr)

 args_dict = vars(args)

 for option,arg in args_dict.iteritems():

 print(str(option) + "=" + str(arg), file = sys.stderr) #prints all arguments to std err

 print("\n", file = sys.stderr)

 if os.path.isfile(outfolder):

 raise Exception (outfolder + " exists as a file")

 make_dir(outfolder)

 gene_files = []

 subF_files=[]

 TE_files=[]

 group1_list=get_groupfiles(group1,gene_files,subF_files,TE_files,subfamily,count_folder)

 group2_list=get_groupfiles(group2,gene_files,subF_files,TE_files,subfamily,count_folder)

 count_dict = {}

 gene_list=set()

 TE_dict={}

 subF_combo = outfolder + "/" + projectname + "_subF_combo" + ".txt"

 TE_combo = outfolder + "/" + projectname + "_TE_combo" + ".txt"

 if subfamily:

200

 for subF in subF_files:

 combinefiles(subF,subF_combo)

 create_subfamily_dict(subF_combo,TE_dict)

 else:

 for TE in TE_files:

 combinefiles(TE,TE_combo)

 create_TE_dict(TE_combo,TE_dict,threshold)

 for genefile in gene_files:

 create_count_dict(genefile,count_dict,gene_list)

 coldata=outfolder + "/" + projectname + "_coldata.txt"

 with open(coldata,'w') as datafile:

 datafile.writelines("sample" + "\t" + "condition" + "\n")

 for group1_sample in group1_list:

 datafile.writelines(group1_sample + "\t" + condition1 + "\n")

 for group2_sample in group2_list:

 datafile.writelines(group2_sample + "\t" + condition2 + "\n")

 if subfamily:

 counttable = outfolder + "/" + projectname + "_gene_subF_counttable.txt"

 else:

 counttable = outfolder + "/" + projectname + "_gene_TE_counttable.txt"

 with open(counttable,'w') as DEfile:

 sample_list = group1_list + group2_list

 header_list = ["gene_id"] + sample_list

 header = "\t".join(header_list)

 DEfile.writelines(header + "\n")

 for gene_key,sample_dict in count_dict.iteritems():

 if type(gene_key) is tuple:

 gene=",".join(gene_key)

 else:

 gene=gene_key

 count_list = []

 for sample in sample_list:

 if sample in sample_dict:

 count_list.append(str(sample_dict[sample]))

 else:

 count_list.append("0")

 countline = "\t".join(count_list)

 DEfile.writelines(gene + "\t" + countline + "\n")

 for TE_key,sample_dict in TE_dict.iteritems():

 TE_out=",".join(TE_key)

 count_list = []

 for sample in sample_list:

 if sample in sample_dict:

 count_list.append(str(sample_dict[sample]))

 else:

 count_list.append("0")

 countline = "\t".join(count_list)

 DEfile.writelines(TE_out + "\t" + countline + "\n")

201

 prefilter = True

 if not table_only:

create_rscript(counttable,coldata,outfolder,output_format,projectname,verbosity,str(pthreads),prefilter

,condition1,condition2,label_no)

 ####### STOP TIMING SCRIPT #######################

 if verbosity:

 print("finished writing outputs at "+ str(datetime.now()) + "\n",file = sys.stderr)

 endTime = datetime.now()

 print('end time is: '+ str(endTime) + "\n", file = sys.stderr)

 print('it took: ' + str(endTime-CallTime) + "\n", file = sys.stderr)

###################

if __name__ == "__main__":

 main()

202

Appendix G. SQuIRE Draw

#!/usr/bin/env python

############MODULES#########################

from __future__ import print_function,division

import sys

import os

import errno

import argparse #module that passes command-line arguments into script

from datetime import datetime

import operator #for doing operations on tuple

from operator import itemgetter

import subprocess as sp

from subprocess import Popen, PIPE,STDOUT

import io

import tempfile

#for creating interval from start

from collections import defaultdict #for dictionary

import glob

import re

from six import itervalues

import shutil

def find_file(folder,pattern,base, wildpos):

 foundfile=False

 needed=False

 if wildpos == 1:

 file_list=glob.glob(folder + "/" + "*" + pattern)

 elif wildpos ==2:

 file_list=glob.glob(folder + "/" + pattern + "*")

 if len(file_list)>1: #if more than one file in folder

 if not base:

 raise Exception("More than 1 " + pattern + " file")

 for i in file_list:

 if base in i:

 foundfile = i

 if not foundfile:

 if needed:

 raise Exception("No " + pattern + " file")

 else:

 foundfile = False

 elif len(file_list) == 0:

 foundfile = False

 else:

 foundfile = file_list[0]

 return foundfile

def make_tempfile(basename, step, outfolder):

203

 tmpfile = tempfile.NamedTemporaryFile(delete=False, dir = outfolder, prefix= basename + "_"

+ step + ".tmp")

 tmpname = tmpfile.name

 tmpfile.close()

 return tmpname

def filter_files(file_in,file_out, string, column):

 command = "'$" + str(column) + "==" + '"' + string + '"'+ "'"

 pastecommandlist = ["awk", "-v", "OFS='\\t'",command,file_in, ">", file_out]

 pastecommand = " ".join(pastecommandlist)

 sp.check_call(["/bin/sh","-c",pastecommand])

def rename_file(oldname,newname):

 shutil.move(oldname, newname)

def make_dir(path):

 try:

 original_umask = os.umask(0)

 os.makedirs(path, 0770)

 except OSError as exception:

 if exception.errno != errno.EEXIST:

 raise

 finally:

 os.umask(original_umask)

def get_basename(filepath):

 filename = os.path.basename(filepath)

 filebase = os.path.splitext(filename)[0]

 return filebase

def sort_coord(infile, outfile,chrcol,startcol):

 chrfieldsort = "-k" + str(chrcol) + "," + str(chrcol)

 startfieldsort = "-k" + str(startcol) + "," + str(startcol) + "n"

 sort_command_list = ["sort",chrfieldsort,startfieldsort, infile, ">", outfile]

 sort_command = " ".join(sort_command_list)

 sp.check_call(["/bin/sh", "-c", sort_command])

 os.unlink(infile)

def bedgraph(infile,strandedness,outfolder,basename,normlib,pthreads,bedgraph_list):

 if strandedness==1:

 stranded_yesno= "Stranded"

 plus_bedgraph_unique=outfolder + "/" + basename + "Signal.Unique.str2.out.bg"

 minus_bedgraph_unique = outfolder + "/" + basename + "Signal.Unique.str1.out.bg"

 plus_bedgraph_multi=outfolder + "/" + basename + "Signal.UniqueMultiple.str2.out.bg"

 minus_bedgraph_multi = outfolder + "/" + basename + "Signal.UniqueMultiple.str1.out.bg"

 elif strandedness==2:

 stranded_yesno= "Stranded"

 plus_bedgraph_multi=outfolder + "/" + basename + "Signal.UniqueMultiple.str1.out.bg"

 minus_bedgraph_multi = outfolder + "/" + basename + "Signal.UniqueMultiple.str2.out.bg"

 plus_bedgraph_unique=outfolder + "/" + basename + "Signal.Unique.str1.out.bg"

 minus_bedgraph_unique = outfolder + "/" + basename + "Signal.Unique.str2.out.bg"

204

 else:

 stranded_yesno="Unstranded"

 bedgraph_unique = outfolder + "/" + basename + "Signal.Unique.str1.out.bg"

 bedgraph_multi = outfolder + "/" + basename + "Signal.UniqueMultiple.str1.out.bg"

 inputs = ["""--inputBAMfile""", infile]

 outputs = ["""--outWigType""", "bedGraph", """--outWigStrand""", stranded_yesno, """--

outFileNamePrefix""", outfolder + "/" + basename]

 if not normlib:

 normalization=["""--outWigNorm""", "None"]

 else:

 normalization=["""--outWigNorm""", "RPM"]

 STARcommand_list = ["STAR","""--runMode""","inputAlignmentsFromBAM","""--

runThreadN""",str(pthreads)] + inputs + outputs + normalization

 STARcommand=" ".join(STARcommand_list)

 sp.check_call(["/bin/sh", "-c", STARcommand])

 if strandedness !=0:

 sort_coord(plus_bedgraph_unique,outfolder + "/" + basename +

"_plus_unique.bedgraph",1,2)

 sort_coord(minus_bedgraph_unique,outfolder + "/" + basename +

"_minus_unique.bedgraph",1,2)

 sort_coord(plus_bedgraph_multi,outfolder + "/" + basename + "_plus_multi.bedgraph",1,2)

 sort_coord(minus_bedgraph_multi,outfolder + "/" + basename +

"_minus_multi.bedgraph",1,2)

 bedgraph_list += [outfolder + "/" + basename + "_plus_unique.bedgraph",outfolder + "/" +

basename + "_minus_unique.bedgraph",outfolder + "/" + basename +

"_plus_multi.bedgraph",outfolder + "/" + basename + "_minus_multi.bedgraph"]

 else:

 sort_coord(bedgraph_unique,outfolder + "/" + basename + "_unique.bedgraph",1,2)

 sort_coord(bedgraph_multi,outfolder + "/" + basename + "_multi.bedgraph",1,2)

 bedgraph_list += [outfolder + "/" + basename + "_unique.bedgraph",outfolder + "/" +

basename + "_multi.bedgraph"]

def make_bigwig(chrominfo,bedgraph_list):

 for bedgraph in bedgraph_list:

 outfile=bedgraph + ".bw"

 igvcommand_list = ["bedGraphToBigWig",bedgraph, chrominfo,outfile]

 igvcommand=" ".join(igvcommand_list)

 sp.check_call(["/bin/sh", "-c", igvcommand])

def main(**kwargs):

 ######## ARGUMENTS ###########

 #check if already args is provided, i.e. main() is called from the top level script

 args = kwargs.get('args', None)

 if args is None: ## i.e. standalone script called from command line in normal way

205

 parser = argparse.ArgumentParser(description = """Makes unique and multi bedgraph

files""")

 parser._optionals.title = "Arguments"

 parser.add_argument("-f","--fetch_folder", help = "Folder location of outputs from SQuIRE

Fetch (optional, default = 'squire_fetch'",type = str, metavar = "<folder>",default="squire_fetch")

 parser.add_argument("-m","--map_folder", help = "Folder location of outputs from SQuIRE

Map (optional, default = 'squire_map')", type = str, metavar = "<folder>", default="squire_map")

 parser.add_argument("-o","--draw_folder", help = "Destination folder for output files

(optional; default='squire_draw')", type = str, metavar = "<folder>", default="squire_draw")

 parser.add_argument("-n","--name", help = "Basename for bam file (required if more than

one bam file in map_folder)", type = str, metavar = "<str>",default=False)

 parser.add_argument("-s","--strandedness", help = " '0' if unstranded, 1 if first-strand eg

Illumina Truseq, dUTP, NSR, NNSR, 2 if second-strand, eg Ligation, Standard

(optional,default=1)", type = int, metavar = "<int>", default = False)

 parser.add_argument("-b","--build", help = "UCSC designation for genome build, eg. 'hg38'

(required)", type=str, metavar = "<build>",default=False,required=True)

 parser.add_argument("-l","--normlib", help = "Normalize bedgraphs by library size

(optional; default=False)", action = "store_true", default = False)

 parser.add_argument("-p","--pthreads", help = "Launch <int> parallel threads(optional;

default='1')", type = int, metavar = "<int>", default=1)

 parser.add_argument("-v","--verbosity", help = "Want messages and runtime printed to

stderr (optional; default=False)", action = "store_true", default = False)

 args,extra_args = parser.parse_known_args()

########## I/O #########

 ###### ARGUMENTS ######

 fetch_folder=args.fetch_folder

 map_folder = args.map_folder

 outfolder=args.draw_folder

 basename = args.name

 verbosity=args.verbosity

 build=args.build

 pthreads = args.pthreads

 strandedness=args.strandedness

 normlib=args.normlib

 ######### START TIMING SCRIPT ############

 if verbosity:

 startTime = datetime.now()

 print("start time is:" + str(startTime) + '\n', file = sys.stderr)# Prints start time

 print(os.path.basename(__file__) + '\n', file = sys.stderr) #prints script name to std err

 print("Script Arguments" + '\n' + "=================", file = sys.stderr)

 args_dict = vars(args)

 for option,arg in args_dict.iteritems():

 print(str(option) + "=" + str(arg), file = sys.stderr) #prints all arguments to std err

 print("\n", file = sys.stderr)

 make_dir(outfolder)

 infile = find_file(map_folder,".bam",basename, 1)

 if not basename:

 basename = get_basename(infile)

206

 if verbosity:

 print("Making unique and total bedgraphs "+ str(datetime.now()) + "\n",file = sys.stderr)

 chrominfo = find_file(fetch_folder,"_chromInfo.txt",build,1)

 bedgraph_list=[]

 bedgraph(infile,strandedness,outfolder,basename,normlib,pthreads,bedgraph_list)

 if verbosity:

 print("Making unique and total bigwigs "+ str(datetime.now()) + "\n",file = sys.stderr)

 make_bigwig(chrominfo,bedgraph_list)

 ####### STOP TIMING SCRIPT #######################

 if verbosity:

 print("finished writing outputs at "+ str(datetime.now()) + "\n",file = sys.stderr)

 endTime = datetime.now()

 print('end time is: '+ str(endTime) + "\n", file = sys.stderr)

 print('it took: ' + str(endTime-startTime) + "\n", file = sys.stderr)

###################

if __name__ == "__main__":

 main()

207

Appendix H. SQuIRE Seek

#!/bin/env python

#################### MODULES ###################

from __future__ import print_function,division

import sys

import os

import errno # error code module

import os.path

from datetime import datetime

import argparse #module that passes command-line arguments into script

from pyfaidx import Fasta #Pyfasta module flattens fasta data without spaces or headers so fasta

doesn't need to be read into memory

import glob

import tempfile

import subprocess as sp

import re

from subprocess import Popen, PIPE,STDOUT

def make_dir(path):

 try:

 original_umask = os.umask(0)

 os.makedirs(path, 0770)

 except OSError as exception:

 if exception.errno != errno.EEXIST:

 raise

 finally:

 os.umask(original_umask)

def isempty(filepath):

 if os.path.getsize(filepath) == 0:

 raise Exception(filepath + " is empty")

def basename(filepath):

 filename = os.path.basename(filepath)

 filebase = os.path.splitext(filename)[0]

 return filebase

class bed(object):

 def __init__(self, line):

 self.chromosome = line[0] # chr = first tab/first in list

 self.start = int(line[1])

 self.end = int(line[2])

 self.name=line[3]

 self.score=float(line[4])

 self.strand = line[5]

class gtf(object):

208

 def __init__(self,line):

 self.chromosome = line[0] # chr = first tab/first in list

 self.source = (line[1])

 self.feature = (line[2])

 self.start=int(line[3])

 self.end = int(line[4])

 self.score=float(line[5])

 self.strand = str(line[6])

 self.frame = line[7]

 self.attributes = line[8]

def main(**kwargs):

 ######## ARGUMENTS ###########

 #check if already args is provided, i.e. main() is called from the top level script

 args = kwargs.get('args', None)

 if args is None: ## i.e. standalone script called from command line in normal way

 parser = argparse.ArgumentParser(description = "Retrieves sequences from chromosome

fasta files")

 parser._optionals.title = "Arguments"

 parser.add_argument("-i","--infile", help = """Repeat genomic coordinates, can be TE_ID,

bedfile, or gff (required)""", type=argparse.FileType('r'), metavar = "<file.bed>", required=True)

 parser.add_argument("-o","--outfile", help = """Repeat sequences output file (FASTA), can

use "-" for stdout (required)""", type = argparse.FileType('w'), metavar = "<file.fa>", required=True)

 parser.add_argument("-g","--genome", help = "Genome build's fasta chromosomes - .fa file

or .chromFa folder (required)", type = str, metavar="<file.fa or folder.chromFa>", required=True)

 parser.add_argument("-v","--verbosity", help = "Want messages and runtime printed to

stderr (optional; default=False)", action = "store_true", default = False)

 args,extra_args = parser.parse_known_args()

 ########## PARSE ARGUMENTS #########

 infile = args.infile

 outfile = args.outfile #if outfile not given, give basename of infile to outfile with .seq extension

 genome = args.genome

 verbosity=args.verbosity

 ######### START TIMING SCRIPT ############

 if verbosity:

 startTime = datetime.now()

 print("start time is:" + str(startTime) + '\n', file = sys.stderr)# Prints start time

 print(os.path.basename(__file__) + '\n', file = sys.stderr) #prints script name to std err

 print("Script Arguments" + '\n' + "=================", file = sys.stderr)

 args_dict = vars(args)

 for option,arg in args_dict.iteritems():

 print(str(option) + "=" + str(arg), file = sys.stderr) #prints all arguments to std err

 print("\n", file = sys.stderr)

 ####### CHECK ARGUMENTS AND SET DEFAULTS ###########

209

 ########### REFERENCES #################

 required_columns = 6 ###For checking if infile is BED format

 previous_chromosome=0 #This is needed to avoid reopening chromosome sequence files,

which would make the script run time a lot longer.

 if os.path.isfile(genome): #if genome is file

 chromosome_infile = Fasta(genome)

 ### START FOR LOOP ####

 for line in infile:

 line = line.rstrip() #removes white space at end of line

 if line.startswith("track"):

 continue

 line = line.split("\t") # returns list of items that were separated by tab in original file

 #########CHECK FILE FORMAT ###########

 column_count = len(line)

 if column_count == 1:

 line=line.split("|")

 bedline=bed(line)

 chromosome = bedline.chromosome # chr = first tab/first in list

 repstart = bedline.start

 repstop = bedline.end

 name=bedline.name

 strand = bedline.strand

 score=bedline.score

 header = str(chromosome) + ":" + str(repstart) + "-" + str(repstop) + "/" + str(strand)+ "/"

+ str(name)

 elif column_count > 1:

 if re.match("\d+", line[1]):

 bedline = bed(line)

 chromosome = bedline.chromosome # chr = first tab/first in list

 repstart = bedline.start

 repstop = bedline.end

 name=bedline.name

 strand = bedline.strand

 score=bedline.score

 header = str(chromosome) + ":" + str(repstart) + "-" + str(repstop) + "/" + str(strand)+

"/" + str(name)

 else:

 gtfline = gtf(chromosome)

 chromosome = gtfline.chromosome # chr = first tab/first in list

 repstart = gtf.start

 repstop = gtfline.end

 name=gtfline.feature

 strand = gtfline.strand

 score=bedline.score

210

 header = str(chromosome) + ":" + str(repstart) + "-" + str(repstop) + "/" + str(strand)+

"/" + str(name)

 ######## FETCH SEQUENCES ###############

 if (chromosome != previous_chromosome): #only reopens new chromosome file if a new

chr is reached in coordinates file

 print("Opening " + chromosome + "file" + '\n',file=sys.stderr)

 previous_chromosome = chromosome

 chromstart=0

 if os.path.isdir(genome): #if genome is folder

 chrom_infile = genome + '/' + chromosome + '.fa'

 chromosome_infile = Fasta(chrom_infile)

 plus_strand_sequence = chromosome_infile[chromosome][repstart:repstop]

 if strand == '-':

 desired_sequence = -(plus_strand_sequence) #if negative strand, give reverse complement

in fasta file

 else:

 desired_sequence = plus_strand_sequence

fix_BED.writelines(str(chromosome) + "\t" + str(repstart) + "\t" + str(repstop) + "\t" +

str(TE_ID) + "\t" + str(score) + "\t" + str(strand) + "\t" + str(repstart) + "\t" + str(repstop) + "\t" +

str(RGB) + "\n")

 #FASTA id for each repeat sequence is first 6 columns of the BED file

 outfile.writelines('>' + header + '\n' + str(desired_sequence) + '\n')

 print("Finished writing " + str(outfile) + '\n',file=sys.stderr)

 if verbosity:

 print("Finished writing RepChr FASTA file" + "\n", file = sys.stderr)

 ###### I/O ###############

 infile.close()

 outfile.close()

 ###### STOP TIMING SCRIPT #######################

 if verbosity:

 print("finished writing: " + outfile.name + '\n', file = sys.stderr)

 endTime = datetime.now()

 print('end time is: '+ str(endTime) + '\n', file = sys.stderr)

 print('it took: ' + str(endTime-startTime) + '\n', file = sys.stderr)

###################

if __name__ == "__main__":

 main()

211

7. Bibliography

1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis

of the human genome. Nature. Macmillian Magazines Ltd.; 2001;409:860–921.

2. Kazazian HH. Mobile elements: drivers of genome evolution. Science. American Association for the

Advancement of Science; 2004;303:1626–32.

3. Huang CRL, Burns KH, Boeke JD. Active Transposition in Genomes. Annu Rev Genet. Annual Reviews ;

2012;46:651–75.

4. Burns KH, Boeke JD. Human Transposon Tectonics. Cell. 2012;149:740–52.

5. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system

for eukaryotic transposable elements. Nat Rev Genet. Nature Publishing Group; 2007;8:973–82.

6. Beck CR, Garcia-Perez JL, Badge RM, Moran J V. LINE-1 elements in structural variation and disease.

Annu Rev Genomics Hum Genet. NIH Public Access; 2011;12:187–215.

7. Deininger P. Alu elements: know the SINEs. Genome Biol. BioMed Central; 2011;12:236.

8. Hancks DC, Kazazian HH, Jr. SVA retrotransposons: Evolution and genetic instability. Semin Cancer Biol.

NIH Public Access; 2010;20:234–45.

9. Stewart C, Kural D, Strömberg MP, Walker JA, Konkel MK, Stütz AM, et al. A comprehensive map of

mobile element insertion polymorphisms in humans. Malik HS, editor. PLoS Genet. Public Library of Science;

2011;7:e1002236.

10. Abecasis GR, Auton A, Brooks LD, DePristo M a, Durbin RM, Handsaker RE, et al. An integrated map

of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.

11. Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, et al. The regulated retrotransposon

transcriptome of mammalian cells. Nat Genet. Nature Publishing Group; 2009;41:563–71.

12. Medstrand P, van de Lagemaat LN, Mager DL. Retroelement Distributions in the Human Genome:

Variations Associated With Age and Proximity to Genes. Genome Res. 2002;12:1483–95.

13. Jordan IK, Rogozin IB, Glazko G V, Koonin E V. Origin of a substantial fraction of human regulatory

212

sequences from transposable elements. Trends Genet. 2003;19:68–72.

14. de Souza FSJ, Franchini LF, Rubinstein M. Exaptation of transposable elements into novel cis-regulatory

elements: is the evidence always strong? Mol Biol Evol. 2013;30:1239–51.

15. Xie M, Hong C, Zhang B, Lowdon RF, Xing X, Li D, et al. DNA hypomethylation within specific

transposable element families associates with tissue-specific enhancer landscape. Nat Genet. Nature Publishing

Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2013;45:836–41.

16. Huda A, Tyagi E, Mariño-Ramírez L, Bowen NJ, Jjingo D, Jordan IK. Prediction of transposable element

derived enhancers using chromatin modification profiles. PLoS One. Public Library of Science; 2011;6:e27513.

17. Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet. Nature

Publishing Group; 2008;9:397–405.

18. Chuong EB, Rumi MAK, Soares MJ, Baker JC. Endogenous retroviruses function as species-specific

enhancer elements in the placenta. Nat Genet. NIH Public Access; 2013;45:325–9.

19. Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of

endogenous retroviruses. Science. NIH Public Access; 2016;351:1083–7.

20. Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K, Caliskan M, et al. Transposable elements

are the primary source of novelty in primate gene regulation. Genome Res. Cold Spring Harbor Laboratory Press;

2017;27:1623–33.

21. Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to

benefits. Nat Rev Genet. NIH Public Access; 2017;18:71–86.

22. Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, et al. Species-specific endogenous

retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci U S

A. National Academy of Sciences; 2007;104:18613–8.

23. Gifford WD, Pfaff SL, Macfarlan TS. Transposable elements as genetic regulatory substrates in early

development. Trends Cell Biol. NIH Public Access; 2013;23:218–26.

24. Wang J, Xie G, Singh M, Ghanbarian AT, Raskó T, Szvetnik A, et al. Primate-specific endogenous

retrovirus-driven transcription defines naive-like stem cells. Nature. Nature Publishing Group; 2014;516:405–9.

213

25. Ecco G, Cassano M, Kauzlaric A, Duc J, Coluccio A, Offner S, et al. Transposable Elements and Their

KRAB-ZFP Controllers Regulate Gene Expression in Adult Tissues. Dev Cell. Europe PMC Funders;

2016;36:611–23.

26. Imbeault M, Helleboid P-Y, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene

regulatory networks. Nature. Nature Publishing Group; 2017;543:550–4.

27. Wolf G, Yang P, Füchtbauer AC, Füchtbauer E-M, Silva AM, Park C, et al. The KRAB zinc finger

protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes Dev. Cold Spring

Harbor Laboratory Press; 2015;29:538–54.

28. Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, et al. An evolutionary arms

race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature. Nature Publishing

Group; 2014;516:242–5.

29. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev

Genet. 2007;8:272–85.

30. Belancio VP, Roy-Engel AM, Deininger PL. All y’all need to know ’bout retroelements in cancer. Semin

Cancer Biol. Elsevier Ltd; 2010;20:200–10.

31. Burns KH. Transposable elements in cancer. Nat Rev Cancer. Nature Publishing Group; 2017;17:415–24.

32. Babaian A, Mager DL. Endogenous retroviral promoter exaptation in human cancer. Mob DNA. BioMed

Central; 2016;7:24.

33. Muotri AR, Marchetto MCN, Coufal NG, Oefner R, Yeo G, Nakashima K, et al. L1 retrotransposition in

neurons is modulated by MeCP2. Nature. Nature Publishing Group; 2010;468:443–6.

34. Li W, Jin Y, Prazak L, Hammell M, Dubnau J. Transposable Elements in TDP-43-Mediated

Neurodegenerative Disorders. Iijima KM, editor. PLoS One. Public Library of Science; 2012;7:e44099.

35. Larsen PA, Hunnicutt KE, Larsen RJ, Yoder AD, Saunders AM. Warning SINEs: Alu elements, evolution

of the human brain, and the spectrum of neurological disease. Chromosom Res. Springer Netherlands;

2018;26:93–111.

36. Larsen PA, Lutz MW, Hunnicutt KE, Mihovilovic M, Saunders AM, Yoder AD, et al. The Alu

214

neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial

dysfunction, and manifestation of neurodegenerative disease. Alzheimer’s Dement. Elsevier; 2017;13:828–38.

37. Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. NIH Public Access;

2012;75:26–39.

38. Newkirk SJ, Lee S, Grandi FC, Gaysinskaya V, Rosser JM, Vanden Berg N, et al. Intact piRNA pathway

prevents L1 mobilization in male meiosis. Proc Natl Acad Sci U S A. National Academy of Sciences;

2017;114:E5635–44.

39. Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ. An epigenetic role for

maternally inherited piRNAs in transposon silencing. Science. American Association for the Advancement of

Science; 2008;322:1387–92.

40. Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, et al. A Role for

Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish. Cell. Cell Press;

2007;129:69–82.

41. Malki S, van der Heijden GW, O’Donnell KA, Martin SL, Bortvin A. A Role for Retrotransposon LINE-1

in Fetal Oocyte Attrition in Mice. Dev Cell. 2014;29:521–33.

42. Giordano J, Ge Y, Gelfand Y, Abrusán G, Benson G, Warburton PE. Evolutionary history of mammalian

transposons determined by genome-wide defragmentation. PLoS Comput Biol. Public Library of Science;

2007;3:e137.

43. Criscione SW, Zhang Y, Thompson W, Sedivy JM, Neretti N. Transcriptional landscape of repetitive

elements in normal and cancer human cells. BMC Genomics. 2014;15:583.

44. Jin Y, Tam OH, Paniagua E, Hammell M. TEtranscripts: a package for including transposable elements in

differential expression analysis of RNA-seq datasets. Bioinformatics. 2015;31:3593–9.

45. Lerat E, Fablet M, Modolo L, Lopez-Maestre H, Vieira C. TEtools facilitates big data expression analysis

of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic

Acids Res. Oxford University Press; 2016;45:gkw953.

46. Philippe C, Vargas-Landin DB, Doucet AJ, van Essen D, Vera-Otarola J, Kuciak M, et al. Activation of

215

individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. Elife. eLife Sciences

Publications Limited; 2016;5:e13926.

47. Deininger P, Morales ME, White TB, Baddoo M, Hedges DJ, Servant G, et al. A comprehensive approach

to expression of L1 loci. Nucleic Acids Res. Oxford University Press; 2017;45:e31.

48. Scott EC, Gardner EJ, Masood A, Chuang NT, Vertino PM, Devine SE. A hot L1 retrotransposon evades

somatic repression and initiates human colorectal cancer. Genome Res. Cold Spring Harbor Laboratory Press;

2016;26:745–55.

49. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser

at UCSC. Genome Res. 2002;12:996–1006.

50. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, et al. RefSeq: an update

on mammalian reference sequences. Nucleic Acids Res. 2014;42:D756-63.

51. Smit, AFA, Hubley, R & Green P. RepeatMasker Open-4.0. 2013-2015 [Internet]. [cited 2018 Apr 21].

Available from: http://www.repeatmasker.org

52. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-

seq aligner. Bioinformatics. Oxford University Press; 2013;29:15–21.

53. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved

reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. Nature Publishing Group; 2015;33:290–5.

54. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data

with DESeq2. Genome Biol. BioMed Central; 2014;15:550.

55. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-

throughput genomic analysis with Bioconductor. Nat Methods. Nature Publishing Group, a division of Macmillan

Publishers Limited. All Rights Reserved.; 2015;12:115–21.

56. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics

viewer. Nat Biotechnol. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights

Reserved.; 2011;29:24–6.

57. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation with read

216

mapping uncertainty. Bioinformatics. Oxford University Press; 2010;26:493–500.

58. Saito T, Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When

Evaluating Binary Classifiers on Imbalanced Datasets. Brock G, editor. PLoS One. Public Library of Science;

2015;10:e0118432.

59. Perepelitsa-Belancio V, Deininger P. RNA truncation by premature polyadenylation attenuates human

mobile element activity. Nat Genet. Nature Publishing Group; 2003;35:363–6.

60. Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, van Duijnhoven G, et al. Positional cloning of the

gene for X-linked retinitis pigmentosa 2. Nat Genet. Nature Publishing Group; 1998;19:327–32.

61. Kimberland ML, Divoky V, Prchal J, Schwahn U, Berger W, Kazazian HH. Full-Length Human L1

Insertions Retain the Capacity for High Frequency Retrotransposition in Cultured Cells. Hum Mol Genet. Oxford

University Press; 1999;8:1557–60.

62. Smit AFA, Tóth G, Riggs AD, Jurka J. Ancestral, Mammalian-wide Subfamilies of LINE-1 Repetitive

Sequences. J Mol Biol. Academic Press; 1995;246:401–17.

63. Boissinot S, Chevret P, Furano A V. L1 (LINE-1) Retrotransposon Evolution and Amplification in Recent

Human History. Mol Biol Evol. Oxford University Press; 2000;17:915–28.

64. Lee J, Cordaux R, Han K, Wang J, Hedges DJ, Liang P, et al. Different evolutionary fates of recently

integrated human and chimpanzee LINE-1 retrotransposons. Gene. NIH Public Access; 2007;390:18–27.

65. Upton KR, Gerhardt DJ, Jesuadian JS, Richardson SR, Sánchez-Luque FJ, Bodea GO, et al. Ubiquitous

L1 mosaicism in hippocampal neurons. Cell. Elsevier; 2015;161:228–39.

66. Rodić N, Steranka JP, Makohon-Moore A, Moyer A, Shen P, Sharma R, et al. Retrotransposon insertions

in the clonal evolution of pancreatic ductal adenocarcinoma. Nat Med. NIH Public Access; 2015;21:1060–4.

67. Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, et al. Natural mutagenesis of

human genomes by endogenous retrotransposons. Cell. Elsevier; 2010;141:1253–61.

68. Ewing AD, Kazazian HH, Jr. High-throughput sequencing reveals extensive variation in human-specific

L1 content in individual human genomes. Genome Res. Cold Spring Harbor Laboratory Press; 2010;20:1262–70.

69. Gardner EJ, Lam VK, Harris DN, Chuang NT, Scott EC, Pittard WS, et al. The Mobile Element Locator

217

Tool (MELT): population-scale mobile element discovery and biology. Genome Res. Cold Spring Harbor

Laboratory Press; 2017;27:1916–29.

70. Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ, et al. Landscape of somatic

retrotransposition in human cancers. Science. American Association for the Advancement of Science;

2012;337:967–71.

71. Keane TM, Wong K, Adams DJ. RetroSeq: transposable element discovery from next-generation

sequencing data. Bioinformatics. Oxford University Press; 2013;29:389–90.

72. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of

structural variation in 2,504 human genomes. Nature. Nature Publishing Group; 2015;526:75–81.

73. Ewing AD, Kazazian HH, Jr. Whole-genome resequencing allows detection of many rare LINE-1

insertion alleles in humans. Genome Res. Cold Spring Harbor Laboratory Press; 2011;21:985–90.

74. Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, et al. The evolution of gene

expression levels in mammalian organs. Nature. Nature Publishing Group; 2011;478:343–8.

75. Gnanakkan VP, Jaffe AE, Dai L, Fu J, Wheelan SJ, Levitsky HI, et al. TE-array--a high throughput tool to

study transposon transcription. BMC Genomics. BioMed Central; 2013;14:869.

76. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA

elements in the mouse genome. Nature. 2014;515:355–64.

77. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a

reference genome. BMC Bioinformatics. BioMed Central; 2011;12:323.

78. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, et al. LINE-1 retrotransposition

activity in human genomes. Cell. NIH Public Access; 2010;141:1159–70.

79. Mir AA, Philippe C, Cristofari G. euL1db: the European database of L1HS retrotransposon insertions in

humans. Nucleic Acids Res. Oxford University Press; 2015;43:D43-7.

80. Wang J, Song L, Grover D, Azrak S, Batzer MA, Liang P. dbRIP: A highly integrated database of

retrotransposon insertion polymorphisms in humans. Hum Mutat. 2006;27:323–9.

81. Payer LM, Steranka JP, Yang WR, Kryatova M, Medabalimi S, Ardeljan D, et al. Structural variants

218

caused by Alu insertions are associated with risks for many human diseases. Proc Natl Acad Sci U S A. National

Academy of Sciences; 2017;114:E3984–92.

82. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran J V, et al. Hot L1s account for the

bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A. National Academy of Sciences;

2003;100:5280–5.

83. Tubio JMC, Li Y, Ju YS, Martincorena I, Cooke SL, Tojo M, et al. Mobile DNA in cancer. Extensive

transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science. NIH Public

Access; 2014;345:1251343.

84. Pitkänen E, Cajuso T, Katainen R, Kaasinen E, Välimäki N, Palin K, et al. Frequent L1 retrotranspositions

originating from TTC28 in colorectal cancer. Oncotarget. Impact Journals, LLC; 2014;5:853–9.

85. Kalitsis P, Saffery R. Inherent promoter bidirectionality facilitates maintenance of sequence integrity and

transcription of parasitic DNA in mammalian genomes. BMC Genomics. 2009;10:498.

86. Le TN, Miyazaki Y, Takuno S, Saze H. Epigenetic regulation of intragenic transposable elements impacts

gene transcription in Arabidopsis thaliana. Nucleic Acids Res. 2015;43:3911–21.

87. Stower H. Alternative splicing: Regulating Alu element “exonization”. Nat Rev Genet. Nature Publishing

Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2013;14:152–3.

88. Sorek R, Ast G, Graur D. Alu-containing exons are alternatively spliced. Genome Res. Cold Spring

Harbor Laboratory Press; 2002;12:1060–7.

89. Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the

human transcriptome. PLoS Biol. Public Library of Science; 2004;2:e391.

90. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features.

Bioinformatics. 2010;26:841–2.

91. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. Oxford University Press; 2009;25:2078–9.

92. R Development Core Team R. R: A Language and Environment for Statistical Computing. Team RDC,

editor. R Found. Stat. Comput. R Foundation for Statistical Computing; 2011. p. 409.

219

93. Taylor MS, LaCava J, Mita P, Molloy KR, Huang CRL, Li D, et al. Affinity Proteomics Reveals Human

Host Factors Implicated in Discrete Stages of LINE-1 Retrotransposition. Cell. 2013;155:1034–48.

94. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol. 2009;10:R25.

95. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

96. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, et al. The UCSC Genome

Browser database: 2015 update. Nucleic Acids Res. 2014;43:D670-81.

97. Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G, et al. Transposable elements are

major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. Hoekstra HE,

editor. PLoS Genet. Public Library of Science; 2013;9:e1003470.

98. Huda A, Bowen NJ, Conley AB, Jordan IK. Epigenetic regulation of transposable element derived human

gene promoters. Gene. 2011;475:39–48.

99. van de Lagemaat LN, Landry J-R, Mager DL, Medstrand P. Transposable elements in mammals promote

regulatory variation and diversification of genes with specialized functions. Trends Genet. Elsevier Current

Trends; 2003;19:530–6.

100. Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of

regulatory sequences for host genes. Annu Rev Genet. Annual Reviews; 2012;46:21–42.

101. Sasaki T, Nishihara H, Hirakawa M, Fujimura K, Tanaka M, Kokubo N, et al. Possible involvement of

SINEs in mammalian-specific brain formation. Proc Natl Acad Sci U S A. 2008;105:4220–5.

102. Johnson R, Guigo R. The RIDL hypothesis: transposable elements as functional domains of long

noncoding RNAs. RNA. 2014;20:959–76.

103. Kaer K, Branovets J, Hallikma A, Nigumann P, Speek M. Intronic L1 Retrotransposons and Nested

Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation.

Kanai A, editor. PLoS One. Public Library of Science; 2011;6:e26099.

104. Sorek R. The birth of new exons: mechanisms and evolutionary consequences. RNA. 2007;13:1603–8.

105. Vilborg A, Passarelli MC, Yario TA, Tycowski KT, Steitz JA. Widespread Inducible Transcription

220

Downstream of Human Genes. Mol Cell. 2015;59:449–61.

106. Oricchio E, Sciamanna I, Beraldi R, Tolstonog G V, Schumann GG, Spadafora C. Distinct roles for

LINE-1 and HERV-K retroelements in cell proliferation, differentiation and tumor progression. Oncogene.

2007;26:4226–33.

107. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet.

Nature Publishing Group; 2009;10:691–703.

108. Kapitonov V V, Jurka J. A universal classification of eukaryotic transposable elements implemented in

Repbase. Nat Rev Genet. 2008;9:411–412; author reply 414.

109. Sultan M, Amstislavskiy V, Risch T, Schuette M, Dökel S, Ralser M, et al. Influence of RNA extraction

methods and library selection schemes on RNA-seq data. BMC Genomics. BioMed Central; 2014;15:675.

110. Chen J, Sun M, Kent WJ, Huang X, Xie H, Wang W, et al. Over 20% of human transcripts might form

sense-antisense pairs. Nucleic Acids Res. 2004;32:4812–20.

111. Villegas VE, Zaphiropoulos PG. Neighboring gene regulation by antisense long non-coding RNAs. Int J

Mol Sci. 2015;16:3251–66.

112. Hutchins AP, Pei D. Transposable elements at the center of the crossroads between embryogenesis,

embryonic stem cells, reprogramming, and long non-coding RNAs. Sci Bull. 60:1722–33.

113. Elbarbary RA, Lucas BA, Maquat LE. Retrotransposons as regulators of gene expression. Science (80-).

American Association for the Advancement of Science; 2016;351:aac7247-aac7247.

114. Volders P-J, Helsens K, Wang X, Menten B, Martens L, Gevaert K, et al. LNCipedia: a database for

annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 2013;41:D246-51.

115. Liu C, Bai B, Skogerbø G, Cai L, Deng W, Zhang Y, et al. NONCODE: an integrated knowledge

database of non-coding RNAs. Nucleic Acids Res. 2005;33:D112-5.

116. Erwin JA, Marchetto MC, Gage FH. Mobile DNA elements in the generation of diversity and

complexity in the brain. Nat Rev Neurosci. Nature Publishing Group, a division of Macmillan Publishers Limited.

All Rights Reserved.; 2014;15:497–506.

117. McCall MN, Kent OA, Yu J, Fox-Talbot K, Zaiman AL, Halushka MK. MicroRNA profiling of diverse

221

endothelial cell types. BMC Med Genomics. BioMed Central; 2011;4:78.

118. Xu J-C, Fan J, Wang X, Eacker SM, Kam T-I, Chen L, et al. Cultured networks of excitatory projection

neurons and inhibitory interneurons for studying human cortical neurotoxicity. Sci Transl Med. 2016;8:333ra48.

119. Kriks S, Shim J-W, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from

human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. Nature Publishing Group, a

division of Macmillan Publishers Limited. All Rights Reserved.; 2011;480:547–51.

120. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate : A Practical and Powerful Approach to

Multiple Testing Author (s): Yoav Benjamini and Yosef Hochberg Source : Journal of the Royal Statistical

Society . Series B (Methodological), Vol . 57 , No . 1 Published by : J R Stat Soc Ser B. 1995;57:289–300.

121. Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, et al. DICER1 deficit induces Alu

RNA toxicity in age-related macular degeneration. Nature. 2011;471:325–30.

122. Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced

transposition and deleterious effects on neighboring gene expression. Genome Res. Cold Spring Harbor

Laboratory Press; 2009;19:1419–28.

123. Akers SN, Moysich K, Zhang W, Collamat Lai G, Miller A, Lele S, et al. LINE1 and Alu repetitive

element DNA methylation in tumors and white blood cells from epithelial ovarian cancer patients. Gynecol

Oncol. 2014;132:462–7.

124. Xie M, Hong C, Zhang B, Lowdon RF, Xing X, Li D, et al. DNA hypomethylation within specific

transposable element families associates with tissue-specific enhancer landscape. Nat Genet. Nature Publishing

Group; 2013;45:836–41.

125. Wang C, Zou J, Ma X, Wang E, Peng G. Mechanisms and implications of ADAR-mediated RNA editing

in cancer. Cancer Lett. Elsevier; 2017;411:27–34.

126. Seplyarskiy VB, Soldatov RA, Popadin KY, Antonarakis SE, Bazykin GA, Nikolaev SI. APOBEC-

induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome

Res. Cold Spring Harbor Laboratory Press; 2016;26:174–82.

127. Swahari V, Nakamura A, Deshmukh M. The paradox of dicer in cancer. Mol Cell Oncol. Taylor &

222

Francis; 2016;3:e1155006.

128. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP. Hypomethylation of DNA from benign and

malignant human colon neoplasms. Science. American Association for the Advancement of Science;

1985;228:187–90.

129. Jeong H-H, Yalamanchili HK, Guo C, Shulman JM, Liu Z. An ultra-fast and scalable quantification

pipeline for transposable elements from next generation sequencing data. Biocomput 2018. WORLD

SCIENTIFIC; 2018. p. 168–79.

130. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a Shared Vision

for Cancer Genomic Data. N Engl J Med. Massachusetts Medical Society; 2016;375:1109–12.

131. Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A Novel Approach to High-

Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank. Mary Ann Liebert, Inc. 140

Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA ; 2015;13:311–9.

132. Kitkumthorn N, Mutirangura A. Long interspersed nuclear element-1 hypomethylation in cancer:

biology and clinical applications. Clin Epigenetics. 2011;2:315–30.

133. Suzuki K, Suzuki I, Leodolter A, Alonso S, Horiuchi S, Yamashita K, et al. Global DNA demethylation

in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell. Cell Press; 2006;9:199–

207.

134. RStudio Team. RStudio: Integrated Development for R. Boston, MA: RStudio, Inc.; 2016.

135. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2009.

136. Cerbin S, Jiang N. Duplication of host genes by transposable elements. Curr Opin Genet Dev. Elsevier

Current Trends; 2018;49:63–9.

137. Doucet TT, Kazazian HH, Jr. Long Interspersed Element Sequencing (L1-Seq): A Method to Identify

Somatic LINE-1 Insertions in the Human Genome. Methods Mol Biol. NIH Public Access; 2016;1400:79–93.

138. Lu X, Sachs F, Ramsay L, Jacques P-É, Göke J, Bourque G, et al. The retrovirus HERVH is a long

noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol. Nature Publishing Group,

a division of Macmillan Publishers Limited. All Rights Reserved.; 2014;21:423–5.

223

139. Jursch T, Izsvák Z, Ivics Z. Regulation of DNA transposition by CpG methylation and chromatin

structure in human cells. Mob DNA. 2013;4:15.

224

8. Curriculum Vitae

Born on July 21st, 1986 in Yuanlin, Taiwan

8.1 EDUCATION AND TRAINING

Science and Medicine

 2002-2007 B.S.,B.S., cum laude University of Washington, Seattle, WA

 Majors: Neurobiology and Biochemistry

 Minor: Chemistry

 2009-present MD-PhD program, Johns Hopkins University, Baltimore, MD

Workshops

 2008 Neural-Immune Interactions in Health and Disease, Foundation for Advanced

Education in the Sciences Graduate School, Rockville, MD

 2012 Statistical Analysis for Genomic Data, Cold Spring Harbor Laboratory Courses and

Meetings, Long Island, NY

 2014-2015 Emerging Women’s Leadership Program for Women Faculty, JHUSOM.

8.2 RESEARCH ACTIVITIES

Research Experience

 October 2013 –present: Laboratory Kathleen Burns, MD-PhD. Departments of Pathology

and Oncology, Johns Hopkins School of Medicine, Baltimore, MD

 Aug 2011-October 2013: Laboratories of Hyam Levitsky, MD and Kathleen Burns, MD-

PhD. Departments of Pathology and Oncology, Johns Hopkins School of Medicine,

Baltimore, MD

 June 2010- August 2010: Laboratory of Janice Clements, PhD. Department of Molecular and

Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD

 June 2008-May 2009: Laboratory of Jack Tsao, M.D., D.Phil., Department of Neurology,

Uniformed Services University of the Health Sciences, Bethesda, MD

 May 2007-May 2008: Laboratory of Huaibin Cai, Ph.D., Laboratory of Neurogenetics,

Transgenics Unit, National Institute of Aging, National Institutes of Health, Bethesda, MD

 June 2005-Mar 2007: Laboratory of Thomas J. Montine, M.D., Ph.D.,Department of

Pathology, Neuropathology division, University of Washington, Seattle, WA

 June 2006-Aug 2006: Laboratory of Eugene O. Major, Ph.D, Laboratory of Molecular

Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke,

Bethesda, MD

225

Peer Reviewed Original Science Publications

1. Yang W, Woltjer RL, Sokal I, Pan C, Wang Y, Brodey M, Peskind ER, Leverenz JB,

Zhang J, Perl DP, Galasko DR, Montine TJ. Quantitative proteomics identifies

surfactant-resistant alpha-synuclein in cerebral cortex of Parkinsonism-dementia complex

of Guam but not Alzheimer's disease or progressive supranuclear palsy. Am J Pathol.

2007 Sep; 171(3):993-1002.

2. Lai C, Lin X, Chandran J, Shim H, Yang WJ, Cai H. The G59S mutation in p150(glued)

causes dysfunction of dynactin in mice. J Neurosci. 2007 Dec 19; 27(51):13982-90.

3. Wang L, Xie C, Greggio E, Parisiadou L, Shim H, Sun L, Chandran J, Lin X, Lai C,

Yang W, Moore DJ, Dawson TM, Dawson VL, Chiosis G, Cookson MR, and Cai H

(2008) The Chaperone Activity of Heat Shock Protein 90 is Critical for Maintaining the

Stability of Leucine Rich Repeat Kinase 2. J Neurosci. 2008 Mar 26; 28(13):3384-3391.

4. Cai H, Shim H, Lai C, Xie C, Lin X, Yang WJ and Chandran J ALS2/Alsin Knockout

Mice and Motor Neuron Diseases. Neurodegenerative Diseases 2008;5(6):359-66

5. Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding

J, Chen ZZ, Gallant PE, Tao-Cheng JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H.

Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by

Parkinson's-disease-related mutant alpha-synuclein. Neuron. 2009 Dec 24; 64(6):807-27.

6. Monaco MC, Maric D, Bandeian A, Leibovitch E, Yang W, Major EO. Progenitor-

derived oligodendrocyte culture system from human fetal brain. J Vis Exp. 2012 Dec

20;(70).

7. Pragathi Achanta; Jared Steranka; Zuojian Tang; Nemanja Rodić; Reema Sharma; Wan

Rou Yang; Sisi Ma; Mark Grivainis; Cheng Ran Lisa Huang; Anna M Schneider; Gary L

Gallia; Gregory J Riggins; Alfredo Quinones-Hinojosa; David Fenyö; Jef D Boeke;

Kathleen H Burns. Somatic retrotransposition is infrequent in glioblastomas. Mobile

DNA. 2016. 7:22

8. A map of mobile DNA insertions in the NCI-60 human cancer cell panel. Zampella JG,

Rodić N, Yang WR, Huang CR, Welch J, Gnanakkan VP, Cornish TC, Boeke JD, Burns

KH. Mob DNA. 2016 Oct 31;7:20.

9. Payer LM, Steranka JP, Yang WR, Kryatova M, Medabalimi S, Ardeljan D, Liu C,

Boeke JD, Avramopoulos D, Burns KH. Structural variants caused by Alu insertions are

associated with risks for many human diseases.Proc Natl Acad Sci U S A. 2017 May 2.

pii: 201704117. doi: 10.1073/pnas.1704117114.

10. Yang Wan R., Daniel Ardeljan, Clarissa N. Pacyna, Lindsay M. Payer, Kathleen H.

Burns. SQuIRE Reveals Locus-specific Regulation of Interspersed Repeat Expression.

(in revision, Nucleic Acids Research)

11. Yang Wan R., Min-Sik Kim, Jin-Chong Xu, Manoj Kumar, Paul Schaughency, Daniel

Ardeljan, Jane A. Welch, Lindsay M. Horvath, Srikanth S. Manda, Chunhong Liu, Jef D.

Boeke, Sarah J. Wheelan, Valina L. Dawson, Ted M. Dawson, Marc K. Halushka,

Akhilesh Pandey, Hyam I. Levitsky, Kathleen H. Burns. Landscape of Transposable

Element Expression in Human Cells. (submitted, Nature Genetics)

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
javascript:AL_get(this,%20'jour',%20'Am%20J%20Pathol.');
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
javascript:AL_get(this,%20'jour',%20'J%20Neurosci.');

226

Presentations

 Varying levels of JCV infection during differentiation of primary human progenitor-

derived oligodendrocytes. Poster, National Institutes of Health Summer Research Program;

Bethesda, Maryland; August 6, 2006.

 Characterization of a DCTN1 Conditional Knockout Mouse Model. Poster. National Institutes

of Health Spring Research Festival. Bethesda, MD. May 9, 2008.

 Visual representation of the history of immune privilege. Poster, Medical Student

Research Day; Baltimore, MD, January 5, 2011.

 What Transposable Elements are Differentially Translated in Cancer? Poster, FASEB

SRC Mobile DNA in Mammalian Genomes, June 2013

 “What Transposable Elements are Differentially Translated in Lung Cancer?” Poster,

Society of Immunotherapy Conference, November 2013

 “Cancer Biology and the 'Junk' Genome.” Speaker, Partnering Toward Discovery series,

January 2015.

 “RepTag: Quantifying specific transposable element RNA expression in the genome”.

Poster, FASEB SRC Mobile DNA in Mammalian Genomes, June 2015

 “Landscape of Transposable Element Expression in Human Cells”, Speaker, FASEB SRC

Mobile DNA in Mammalian Genomes June 2017

 “Landscape of TE Expression in Cancer.” Poster, The Mobile Genome: Genetic and

Physiological Impacts of Transposable Elements Conference, October 2017

Inventions, Patents, Copyrights

 2015-2018 Wan Rou Yang SQuIRE: Software for Quantifying Interspersed Repeat

Expression (software)

Extramural Sponsorship (current, pending, previous)

 8/01/16 – 7/30/18 Transposable Elements and Tumor Immunology

JUNO Therapeutics, Inc.

$241,087 (annual DC)

Role: PhD student

Goals of this sponsored research agreement are to catalog transposable elements that are

expressed in cancers and explore their potential as immunotherapeutic targets.

 9/15/13 – 9/15/15 Junk DNA-Encoded Antigens in Ovarian Cancer

OC120390

Department of Defense Congressionally Directed Medical Research Programs (CDMRP)

$300,000 (total DC) and PhD support (Teal Scholar)

Role: PhD student

227

8.3 EDUCATIONAL ACTIVITIES

Educational Publications

 Skarupski KA, Levine RB, Yang WR, González-Fernández M, Bodurtha J, Barone MA,

Fivush B. Leadership Competencies: Do They Differ for Women and Under-Represented

Minority Faculty Members? The Journal of Faculty Development, Volume 31, Number 1, 15

January 2017, pp. 49-56(8)

Editorials

 Bipasha Mukherjee-Clavin, Carolina Montaño, Neil M. Neumann and Wan R. Yang. “U.S.

must restore biomedical research funding”. Op-Ed, Baltimore Sun. Sept 17, 2013.

Presentations

 W.R. Yang, E.R. Shamir, E.B. Heikamp*, B.P. Keenan*, C. Montaño*, B. Mukherjee-

Clavin*, M. Buntin, S.A. Welling, J.D. Siliciano, R.F. Siliciano. Gender Differences in the Career

Outcomes of Johns Hopkins MD-PhD Program Graduates. American Physician Scientists

Association Conference, May 2013.

 Teaching

 2015 Practical Genomics Workshop Teaching Assistant, Johns Hopkins University School

of Medicine, Baltimore, MD

2007-2009 The Princeton Review, MCAT teacher

Mentoring

 2015-2016 Angela Hu, undergraduate, Johns Hopkins University

 2017 -2018 Clarissa N. Pacyna, undergraduate, Johns Hopkins University. Dean’s

Undergraduate Research Award

8.4 ORGANIZATIONAL ACTIVITIES

 2011-2016 Co-chair of Professional Development Committee in the MD-PhD

Student Advisory Board, December

 2011-2016 Co-chair of Association of Women Student MD-PhDs student group

8.5 RECOGNITION

 2002-2007 University of Washington’s Dean’s List

 2003-2004 Alfred and Ruth Goddard Scholarship, for achievement in the biological

sciences

 2005 Phi Beta Kappa member

 2005 Phi Lamda Upsilon member

 2005-2006 Howard Hughes Research Internship Program for undergraduates

 2006 Rex J. and Ruth C. Robinson Scholarship Fund in Chemistry

 2013 APSA Travel Award for Joint ASCI/AAP/APSA Meeting

 2013-2015 Teal Predoctoral Scholar award from the Department of Defense

http://www.physicianscientists.org/
http://www.physicianscientists.org/

