A Minimum Dataset for a Standard Adult Transthoracic Echocardiogram : A Guideline Protocol from the British Society of Echocardiography.

Gill Wharton (Lead Author)¹, Richard Steeds (Chair)², Jane Allen¹, Hollie Phillips³, Richard Jones⁴, Prathap Kanagala⁵, Guy Lloyd⁶, Navroz Masani⁷, Thomas Mathew⁸, David Oxborough⁹, Bushra Rana¹⁰, Julie Sandoval¹¹, Richard Wheeler⁷, Kevin O'Gallagher¹² and Vishal Sharma¹³

¹York Teaching Hospital NHS Foundation Trust, York

²Queen Elizabeth Hospital, University Hospital Birmingham NHS foundation Trust,

Birmingham

³InHealth EchoTech, Hampshire

⁴Portsmouth Hospitals NHS Trust, Portsmouth

⁵Glenfield Hospital, Leicester

⁶Eastbourne District General Hospital, Eastbourne

⁷University Hospital of Wales, Cardiff

⁸Nottingham University Hospital, Nottingham

⁹Research Institute for Sports and Exercise Sciences, Liverpool John Moores University,

Liverpool

¹⁰Cardiology Department, Papworth Hospital, Cambridge

¹¹Cardiac Ultrasound, Leeds Teaching Hospitals NHS Trust, Leeds

¹²King's College Hospital NHS Foundation Trust, London

¹³Royal Liverpool and Broadgreen University Hospitals, Liverpool

Address for Correspondence

Dr Vishal Sharma

Royal Liverpool and Broadgreen University Hospitals

vishal.sharma@rlbuht.nhs.uk

Abstract

There have been significant advances in the field of echocardiography with the

introduction of a number of techniques into standard clinical practice. Consequently a

'standard' echocardiographic examination has evolved to become a more an increasingly

detailed examination. This document produced by the British Society of

Echocardiography (BSE) Education Committee aims to provide a minimum dataset that

should be obtained in a comprehensive standard echocardiogram. In addition the layout

proposes a recommended sequence in which to acquire the images. If abnormal

pathology is detected additional views and measurements should be obtained with

reference to other BSE protocols when appropriate. Adherence to these recommendations

will promote an increased quality of echocardiography and facilitate accurate comparison

of studies performed either by different operators or at different departments.

Key words

Transthoracic echocardiography, 2D echocardiography, Guidelines

Running Head

Minimum dataset for transthoracic echo

Word count

2823

3

Introduction

This document aims to provide a framework for performing an adult transthoracic echocardiogram (TTE) and replaces the previous minimum datasets published. This current document differs from the 2005 data set in outlining the views and measures recommended in a fully comprehensive transthoracic echocardiogram but also recognises that such studies may not be performed in all circumstances. The layout proposes a recommended sequence on how to perform a comprehensive transthoracic echocardiogram..

Minimum Requirements are depicted in bold text and identify the views and measurements that should be performed in all subjects being scanned for the first time *Recommendations* are depicted in italics and together with the minimum requirements form the basis of a comprehensive examination. Wherever possible a comprehensive study comprising all the views and measurements in the document outlined in black italics and bold font text should be performed, provided the views and measurements can be obtained reliably. It is understood that not all the measurements in the minimum requirements dataset will be performed in all follow-up studies. It is also understood that not all measurements in the minimum requirements will be performed in focused or target studies, for example check pericardial effusion.

Both **minimum requirements** and *recommendations* may only be sufficient when the echocardiographic study is entirely normal. If abnormalities are detected, additional views may be required to supplement those outlined in the dataset.

The layout has been altered to provide a visual example of the ideal image that should be acquired in each acoustic window. This is supported by text that follows a standard layout - the acoustic window and transducer position in the first column, followed by the modality to be used, measurements to be made at that location and an explanation if additional information is deemed necessary.

- 1. 1 The intended benefits of this document are to:
- Support cardiologists and echocardiographers to develop local protocols and quality control programs for an adult transthoracic study. These **minimum requirements** and *recommendations* provide a template against which studies in any department should be audited.
- Promote quality by defining a "minimum dataset" of descriptive terms and measurements;
- Promote quality by defining a recommended dataset of descriptive terms and measurements that departments should *work towards* obtaining in all studies;
- Facilitate accurate comparison of serial echocardiograms performed in patients at the same or different sites;
- Facilitate the transition to digital echocardiography acquisition and reporting systems that utilise database (software) architecture.
- 1.2. There is broad agreement regarding the standard views and recordings essential in an echocardiographic examination. There is however no evidence-base and these

recommendations and requirements represent a consensus view on the components of a complete TTE study.

1.3. It is expected that a standard echocardiogram following at least these **minimum** requirements will be performed in all adults when an echocardiogram is requested. This type of study is expected to make up the majority of those performed within any department, whether in the community or in hospital.

It is recognised that focused studies may be appropriate in some circumstances agreed locally. Focused TTE can either mean focusing on major abnormalities predominantly in an urgent clinical situation, eg pericardial effusion, or focusing on a particular aspect of the heart, eg longitudinal monitoring of left ventricular function. The skill level required for such studies is very high and it is expected that the patient will previously have had a full standard TTE before monitoring commences or after an emergency assessment has been completed. Such studies should be clearly identified as focused studies and are not covered by this document.

1.4. When the condition or acoustic windows of the patient prevent the acquisition of one or more components of the minimum dataset, or when measurements result in misleading information (e.g. off-axis measurements) this should be stated.

It is recommended that any study is accompanied by a statement regarding the image quality achieved: good/fair/poor.

1.5 Unless the physical condition of the patient prevents transfer, all transthoracic echocardiograms should be performed in a suitable environment, with optimal facilities to obtain the highest quality ultrasound images, including lighting, space and imaging couches, whilst guaranteeing patient privacy. These facilities demand - except in exceptional circumstances -that echocardiography is delivered in an appropriately equipped department that satisfies the requirements of the BSE Departmental Accreditation process. This ensures optimum conditions for a detailed study, reduces the risk of musculoskeletal disorders for echocardiographers¹ and may reduce the risk of hospital-acquired infection. When portable echocardiography has to be performed at the bedside, the requirements of the minimum dataset must be met.

2. Identifying information

The images acquired should be clearly labeled with patient identifiers, including the following:

- Patient name
- A second unique identifier such as hospital number or date of birth
- Identification of the operator e.g. initials

3. ECG

An ECG should be attached ensuring good tracings to facilitate the acquisition of complete digital loops. Loops should be examined and adjusted accordingly in order to ensure a clear representation of the image acquired

4. Height/Weight/Haemodynamic variables

Qualitative and quantitative evaluation of chamber size and function is a major component of every echocardiographic examination. Chamber dimensions may be influenced by age, gender and body size. Therefore, consideration should be given to the use of referenced ranges indexed to height or body surface area. Additionally, velocities measured using Doppler should take account of pulse rate and blood pressure. No recommendation is made to the routine use of indexed measurements but facilities should be available to sonographers to measure height, weight, pulse rate and blood pressure at the time of an echocardiogram.

5. Duration

The *average time* required for performance and reporting of a fully comprehensive transthoracic echocardiogram following these *recommendations* is considered to be 40-45minutes, although it is understood that some studies may take longer whilst others may take less time. The time taken for a standard TTE should include time to complete a report, and should also take into account the time taken for patient preparation.

6. Report

No standard TTE is complete until a report is released and is made available to the referring individual. The majority of studies performed in a department should be reported immediately on completion and a report available on discharge of a patient from the echocardiography facility.

It is recognised that there are times when a review of images and further consideration is required, for example when the individual performing the scan does not hold Proficiency Accreditation and the scan requires review prior to release, although this should be done as soon as possible.

7. Chaperones

A standard TTE is not considered an intimate examination but performance still requires patient sensitivity. Chaperones should not usually be required for standard TTE but for all TTE studies, patients should be offered a gown.

Echocardiography departments should send out an information leaflet with any appointment. This should include a statement that a relative or friend could accompany the patient to act as a chaperone during the study if preferred. If a friend or relative cannot attend, the leaflet should include an offer to provide a chaperone if requested by the patient. This leaflet should either offer a chaperone by mutual arrangement or, if facilities and personnel allow, a chaperone to be provided on request when the patient arrives.

A notice should be displayed in the Echocardiography department where it can be seen by patients repeating the offer of a chaperone if requested. In practice, it is expected that the majority of patients would not need or have a chaperone

Abbreviations

1. Views:

A2C Apical two chamber A4C Apical four chamber A5C Apical five chamber

A3C Apical long axis or apical three chamber

PLAX Parasternal long axis
PSAX Parasternal short axis

SC Subcostal SSN Suprasternal

2. Modality:

CFM Colour flow Doppler
CW Continuous wave Doppler
PW Pulse wave Doppler
TDI Tissue Doppler imaging

3. Measurement and explanatory text:

Ao Aorta
AV Aortic valve
BSA Body surface area
DT Deceleration time
IVC Inferior vena cava

IVSd Interventricular septal width in diastole

LA Left atrium

LLPV Left lower pulmonary vein LPA Left pulmonary artery LUPV Left upper pulmonary vein

LV Left ventricle

LVIDd/s Left ventricular internal dimension in diastole and systole

LVOT Left ventricular outflow tract

LVPWd Left ventricular posterior wall width in diastole

MAPSE Mitral annular plane systolic excursion

MV Mitral valve PA Pulmonary artery

PAP Pulmonary artery pressure

PHT Pressure half-time

PR Pulmonary regurgitation
PS Pulmonary stenosis
PV Pulmonary valve
RA Right atrium

RLPV Right lower pulmonary vein RUPV Right upper pulmonary vein

RV Right ventricle

RVIDd Right ventricular cavity diameter in diastole

RWMA Regional wall motion abnormality
RVOT Right ventricular outflow tract

RVOTd Right ventricular outflow tract dimension

STJ Sinotubular junction SVol Stroke volume

TAPSE Tricuspid annular plane systolic excursion

TR Tricuspid regurgitation

TV Tricuspid valve V max Maximum velocity

VSD Ventricular Septal Defect VTI Velocity time integral

Minimum Dataset for Transthoracic Echocardiography

View (Modality)	Measurement	Explanatory Note	Image
PLAX (2D)	LVIDd/s, IVSd, LVPWd (either 2D or M mode measurement) LA size (end ventricular systole) (either 2D or M mode measurement)	LV cavity size, wall thickness, radial function LA appearance MV leaflet & annulus appearance & function: - thickness, mobility, calcification, commissural fusion, sub-valve apparatus	Image 1
PLAX (2D)		AV/LVOT appearance & function	Image 2
PLAX (2D)	Proximal RVOTd		Image 3
PLAX (2D)	Sinus of Valsalva (either 2D or M mode measurement, inner edge to inner edge at widest diameter) Annulus, ST junction, proximal ascending aorta (inner edge to inner edge, at widest diameter)	Aortic root – appearance & function	Image 4

View (Modality)	Measurement	Explanatory Note	Image
PLAX (2D)	LVOT for AV area/SVol in mid systole	Approximately same location as the PW sample volume in the A5C view (measured in the LVOT up to 1cm from the annulus)	Image 5
PLAX (2D)	Proximal ascending aorta at widest diameter (inner edge to inner edge)	Tilted superiorly to demonstrate mid ascending aorta	Image 6
PLAX (MM)	Aortic root (end diastole)	Aortic valve at leaflet tips	Image 7
	Maximum LA size (end systole), providing 2D image is on axis		
PLAX (MM)	LVIDd/s, IVSd, LVPWd (either/or 2D measurement)	Left ventricle, just distal to MV leaflet tips	Image 8
PLAX (CFM)		Look for abnormal colour flow	Image 9
(= ====		Adjust Nyquist limit: 50-60 cm/s	
PLAX RV inflow		RV cavity size & function	Image 10
(2D)		RA, IVC, +/- coronary sinus	
		TV – appearance & function	

View (Modality)	Measurement	Explanatory Note	Image
PLAX RV inflow (CFM)		TV inflow, TR	Image 11
PLAX RV inflow (CW)	TR V _{max}	If good alignment with jet	Image 12
PLAX RV outflow (2D)	Distal RVOT	RVOT, PV, main PA, LPA	Image 13
PLAX RV outflow (CFM)		RVOT, PA, PS, PR Optional to PSAX	Image 14
PLAX RV outflow (PW)		Optional to PSAX	
PLAX RV outflow (CW)		Optional to PSAX	
PSAX outflow (2D)	Proximal RVOT diameter	RVOT (function) AV (appearance & function) LA /atrial septum TV (appearance & function)	Image 15
PSAX outflow (2D)	PV annulus, main PA	PV, main PA	Image 16

View (Modality)	Measurement	Explanatory Note	Image
PSAX outflow (2D)		Proximal branch PA's	Image 17
PSAX Outflow (CFM)		Ao/LA Atrial septum IVC TV inflow, TR	Image 18
PSAX Outflow (CFM)		PA, look for abnormal colour flow	Image 19
PSAX Outflow (CFM)		RVOT (PR)	Image 20
PSAX Outflow (PW)	V _{max} , V _{mean} , VTI	RVOT (just proximal to PV)	Image 21
PSAX Outflow (CW)	Vmax, Vmean PHT	PA PR density & contour of signal	Image 22
PSAX Outflow (CW)	PR V _{max} (end diastolic PA pressure)	End diastole	Image 23

View (Modality)	Measurement	Explanatory Note	Image
PSAX outflow (CW)	PR V _{max} (mean diastolic PA pressure	Early diastole	Image 24
PSAX Base (2D)		MV leaflet & annulus: - appearance& function - thickness, mobility, calcification, commissural fusion, sub- valve apparatus	Image 25
PSAX mid (2D)		Sweep beam from base to apex Radial systolic function/regional wall motion abnormalities Integrity of ventricular septum	Image 26
PSAX (CFM)		Sweep beam from base to apex Integrity of ventricular septum	Image 27
PSAX (CFM)		VSD's (congenital/post infarct)	Image 28
A4C (2D)		LV cavity size, wall thickness (Inferoseptum, anterolateral) Longitudinal &radial function: RWMA's (inferoseptal & anterolateral) MV/TV appearance & function	Image 29

View (Modality)	Measurement	Explanatory Note	Image
A4C (2D)	Area/volume (should not be done if images sub optimal)	Atrial septal mobility LV end diastolic area/volume (BSA indexed). Consider 3D volumes, unless images are suboptimal Consider LV opacification contrast if poor image quality	Image 30
A4C (2D)		LV end systolic area/volume (BSA indexed). Consider 3D volumes, unless images are suboptimal Consider LV opacification contrast if poor image quality	Image 31
A4C (2D)	LA volume	LA size (measured at end ventricular systole and BSA indexed)	Image 32
A4C	TAPSE	TV annulus	Image 33
(MM)	MAPSE	MV annulus	
A4C (CFM)		MV inflow, look for abnormal flow	Image 34
A4C (CFM)		RLPV either/or RUPV LUPV, LLPV can also be imaged	Image 35

View (Modality)	Measurement	Explanatory Note	Image
A4C (PW)	E V _{max} , A V _{max}	LV inflow (MV tips)	Image 36
A4C (PW)	Deceleration time		Image 37
A4C (PW)	PV_{S}/PV_{D} PVa a_{dur} - A_{dur}	Right lower pulmonary vein	Image 38
A4C (CW)		MR (shape & density of signal)	Image 39
A4C (TDI)	e' a', s'	Septal &/or lateral LV Lateral RV	Image 40
A5C (2D)		LV cavity size, wall thickness, function LVOT AV appearance & function	Image 41
A5C (CFM)		LVOT, look for abnormal colour flow	Image 42

View (Modality)	Measurement	Explanatory Note	Image
A5C (PW)	V _{max} VTI (stroke volume,	LVOT	Image 43
A5C (CW)	cardiac output)		Image 44
A2C (2D)		LV cavity size, wall thickness: -function (anterior, inferior)	Image 45
A2C (2D)	LV area/volume	LV end diastolic area/volume Consider 3D volumes, unless images are suboptimal Consider LV opacification contrast if poor image quality	Image 46
A2C (2D)		LV end systolic area/volume Consider 3D volumes, unless images are suboptimal Consider LV opacification contrast if poor image quality	Image 47
A2C (2D)	LA area/volume (measure at end ventricular systole) Modified Simpsons or area length method	LA size	Image 48
A2C (CFM)		LV inflow, look for abnormal colour flow	Image 49

View (Modality)	Measurement	Explanatory Note	Image
A2C (PW)	E, A, DT if not reliable from A4C	LV inflow (MV tips)	
A2C (CW)	V _{max} , V _{mean} if not reliable from A4C		
A3C (2D)		LV cavity size, wall thickness: -function(anteroseptal & inferolateral) AV/LVOT appearance & function	Image 50
A3C (CFM)		LVOT, LV inflow, look for abnormal colour flow	Image 51
ALAX (PW)	E, A, DT,VTI if not reliable from A5C	LV inflow (MV tips) LVOT	
A3C (CW)	$V_{max},\ V_{mean}$ $V_{max},\ V_{mean}$	LV inflow LVOT	
Modified A4C (2D)	RVID base (d) Mid RV diameter RV length (base to apex)	RV cavity size & function	Image 52
	RA area	RA size	
Modified A4C (CFM)		TV inflow, TR	Image 53
Modified A4C	$E V_{max}$	RV inflow (TV leaflet tips)	Image 54
(PW)			

View (Modality)	Measurement	Explanatory Note	Image
Modified A4C (CW)	V _{max} (RV systolic pressure, PAP)	TR	Image 55
SC4C (2D)		4 chamber structures, atrial septum	Image 56
SC4C (CFM)		Atrial septum Consider reducing Nyquist limit to detect low velocity flow	Image 57
SCSAX (2D)		IVC, hepatic vein (modified view)	Image 58
SCSAX (MM)	Size & respiratory variation ("sniff")	IVC just proximal to hepatic vein	Image 59
SCSAX (2D)		SAX structures Atrial septum, TV, RVOT, PV, PA's	Image 60
SCSAX (2D)		Abdominal aorta (modified view)	Image 61
SCSAX (PW)		Hepatic veins	Image 62

View (Modality)	Measurement	Explanatory Note	Image
SCSAX (PW)		Abdominal aorta	Image 63
SSN (2D)		Arch	Image 64
SSN (CFM)		Arch, RPA, look for abnormal colour flow	Image 65
SSN (CW)	V _{max}	Descending aorta with imaging probe, if good alignment with jet Descending aorta with non imaging probe, if poor jet alignment with imaging probe	Image 66

Minimum Requirements are depicted in bold text and identify the views and measurements that should be performed in all subjects being scanned for the first time provided that they can be obtained reliably. However wherever possible a comprehensive study should be performed.

Recommendations are depicted in italics and together with the minimum requirements form the basis of a comprehensive examination.

Appendix 1. Minimum Dataset Measurements

1. Views to be obtained:

PLAX parasternal long axis

PLAX tilted RV inflow

PSAX parasternal short axis: base, mid, apex

A4C apical four chamber

Modified A4C for RV

A2C apical two chamber

A5C apical five chamber

SC subcostal

SSN suprasternal

2. Recorded and measured where appropriate:

LVID d/s left ventricular internal dimension in diastole and systole

IVSd interventricular septal width in diastole

LVPWd left ventricular posterior wall width in diastole

LA left atrial dimension in PLAX

Sinus Sinus of valsalva

TR Vmax tricuspid regurgitation maximal velocity

LVEDvol d/s left ventricular end-diastolic and systolic volume (biplane/3D)

LVEF left ventricular ejection fraction

LA volume left atrial volume at end-ventricular systole (area-length/biplane)

TAPSE tricuspid annular plane systolic excursion

Mitral E/A mitral valve maximal velocity early and atrial filling

e' lateral and/or septal early myocardial relaxation velocity

AV Vmax maximal aortic velocity on CW

RV base right ventricular basal dimension in diastole

IVC dimension estimation of RA pressure

References

 ${\bf 1.} \qquad \underline{\text{http://www.hse.gov.uk/healthservices/management-of-musculoskeletal-disorders-insonography-work.pdf}$