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ABBREVIATIONS: 
 
AOP adverse outcome pathway 
APC Antigen Presenting Cell 
BAL bronchoalveolar lavage 
CLP Classified, Labeling and Packaging Regulation 
DC dentritic cell 
DNCB 2,4-dinitrochlorobenzene 
DPRA direct peptide reactivity assay 
EC endothelial cells 
ELoC equivalent level of concern 
GARD Genomic allergen rapid detection 
GHS Globally Harmonized System 
ITC Immunotoxicology Technical Committee 
KC Kupffer cells 
LC Langerhans cells 
LLNA Local Lymph Node Assay 
LMW low molecular weight 
LRI Long Range Research Initiative 
MDI diphenylmethane-4,4'-diisocyanate 
MIE molecular initiating event 
MOA mechanism of action 
OA occupational asthma 
OECD Organisation for Economic Co-operation and Development 
OVA ovalbumin 
JCIA Japanese Chemical Industry Association 
PMN polymorphonucelar leukocytes 
PRR pathogen recognition receptors 
REACH Regulation concerning the Registration, Evaluation, Authorization and Restriction 

of Chemicals 
SAR structure activity relationship 
SVHC substance of very high concern 
TDI toluene diisocyanate 
TMA trimellitic anhydride 
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ABSTRACT 1 

Respiratory tract sensitization can have significant acute and chronic health implications. While induction 2 

of respiratory sensitization is widely recognized for some chemicals, validated standard methods or 3 

frameworks for identifying and characterizing the hazard are not available. A workshop on assessment of 4 

respiratory sensitization was held to discuss the current state of science for identification and 5 

characterization of respiratory sensitizer hazard, identify information facilitating development of validated 6 

standard methods and frameworks, and consider the regulatory and practical risk management needs. 7 

Participants agreed on a predominant Th2 immunological mechanism and several steps in respiratory 8 

sensitization. Some overlapping cellular events in respiratory and skin sensitization are well understood, 9 

but full mechanism(s) remain unavailable. Progress on non-animal approaches to skin sensitization 10 

testing, ranging from in vitro systems, –omics, in silico profiling, and structural profiling were 11 

acknowledged. Addressing both induction and elicitation phases remains challenging. Participants 12 

identified lack of a unifying dose metric as increasing the difficulty of interpreting dosimetry across 13 

exposures. A number of research needs were identified, including an agreed list of respiratory sensitizers 14 

and other asthmagens, distinguishing between adverse effects from immune-mediated versus non-15 

immunological mechanisms. A number of themes emerged from the discussion regarding future testing 16 

strategies, particularly the need for a tiered framework respiratory sensitizer assessment. These 17 

workshop present a basis for moving towards a weight-of-evidence assessment.  18 
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1. INTRODUCTION 19 

Respiratory sensitization is a health hazard that can occur following exposure to chemical or biological 20 

materials. The adverse outcome is an allergic-type response of the airways, mostly asthma or rhinitis. The 21 

disease develops in two phases: the sensitization or induction phase in which the immune system is 22 

primed and the elicitation phase in which the allergic symptoms occur. Respiratory sensitization/allergy is 23 

characterized by a progressive increase in immune system responsiveness, such that sensitized 24 

individuals respond to exposures that elicit no effect in non-sensitized populations. Accurate identification 25 

of respiratory sensitizers is important because the health effects can be severe and long-lasting. At the 26 

same time, incorrect identification of a material as a respiratory sensitizer can result in unnecessarily 27 

stringent restrictions on use. 28 

From a toxicological perspective this human health hazard presents a number of challenges, including the 29 

uncertainty regarding the mechanisms through which sensitization of the respiratory tract to chemicals is 30 

acquired. This has hindered development of methods for the identification and characterization of 31 

chemical respiratory allergens. The Globally Harmonized System (GHS) for hazard classification 32 

considers evidence from human responses, or “appropriate animal models” which are not standardized. 33 

Unlike other hazard endpoints used for classification, there is not an internationally accepted animal test 34 

guideline. Different published protocols exist for assessing respiratory sensitization, but no systematic 35 

undertaking has validated any of the methods for a broad range of materials. Historically, the guinea pig 36 

has been the species of choice for research on respiratory sensitization due to physiological similarities of 37 

respiratory reactions compared to humans. Time and cost considerations, as well as a lack of suitable 38 

immunochemical or molecular probes for mechanistic evaluations, have led many to look for other animal, 39 

and non-animal alternative, test systems. Experimental models using rats and mice have been successful 40 

in inducing chemical respiratory sensitization, but the parameters providing best predictive performance 41 

remain unknown. Current alternatives face challenges in the form of a relatively limited chemical 42 

respiratory sensitizer database and knowledge limitations related to which exposure-response 43 

parameters are the best predictors of respiratory sensitization. The ability to accurately detect potential 44 

respiratory sensitizers is ultimately hindered by the absence of standard, validated and regulatory 45 
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accepted methods to identify potential respiratory sensitizers and distinguish them from irritants and skin 46 

sensitizers for hazard identification. The difficulty in distinction is further compounded by absence of 47 

generally accepted methods to define dose thresholds for irritation, which may make distinguishing 48 

between immune-mediated and non-immunological responses unclear. 49 

The lack of defined approaches for evaluation of respiratory sensitization potential has necessarily 50 

represented a major constraint on effective risk assessment and risk management, and on addressing 51 

satisfactorily the requirements of regulations such as the Regulation concerning the Registration, 52 

Evaluation, Authorization and Restriction of Chemicals (REACH). There is increasing regulatory pressure 53 

to list respiratory sensitizers as substances of very high concern (SVHC) based on an “equivalent level of 54 

concern” as set out in REACH Article 57(f). This approach assumes that in certain cases, the impacts 55 

caused by sensitizers (respiratory or dermal) on the health and quality of life of the affected individual and 56 

the negative impacts on society as a whole are comparable to those elicited by carcinogens, mutagens, 57 

and reproductive toxicants (CMRs). Potential factors for comparison include severity of the effect, delayed 58 

onset and/or irreversibility of effects, potency, mode of action, degree of impairment of life quality or 59 

uncertainty about the dose-response relationship. As there are currently no applicable guidelines or 60 

generally accepted assays that can accurately identify respiratory sensitizers nor distinguish between 61 

respiratory and dermal sensitizers, all materials with sensitizing potential, despite their potency, may be 62 

inaccurately considered for inclusion as SVHC. If an evidence-based, adverse outcome pathway (AOP)-63 

informed approach to assessment is desired there is an increasingly important need, therefore, to seek 64 

integrated approaches to toxicity testing and assessment to bridge this gap.  65 

The Immunotoxicology Technical Committee (ITC) of the International Life Sciences Institute-Health and 66 

Environmental Sciences Institute previously organized two activities centered on the state-of-the-science 67 

of testing methods to identify proteins and chemicals that pose a risk of immune-mediated respiratory 68 

hypersensitivity. An expert roundtable discussion, held in 2003 at the Annual Meeting of the Society of 69 

Toxicology in Salt Lake City, Utah, was followed by a two-day international workshop in June 2004 that 70 

addressed the appropriate methods for identifying and characterizing respiratory hypersensitivity hazards 71 

and risks, and the key gaps and related research needs with respect to respiratory hypersensitivity/allergy 72 
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for proteins, low molecular weight drugs, and chemicals (Holsapple et al., 2006). Key research gaps 73 

identified for chemical-specific respiratory hypersensitivity included (1) understanding structure activity 74 

relationships for chemical allergies, including understanding the mechanism(s) for respiratory 75 

hypersensitivity and identifying distinctive characteristics of the respiratory hypersensitivity allergic 76 

response, and continuing to build databases of sensitization until chemicals can be clearly identified as 77 

respiratory allergens; (2) better understanding of mechanisms for sensitization; and (3) fully characterizing 78 

cytokine profiling as a possible approach for hazard identification.  79 

Given a decade’s passage and expectation of continuous progress of science, in 2014 the ITC organized 80 

a two-day international workshop in Alexandria, Virginia, towards identifying a framework for developing a 81 

standard approach for identifying chemical respiratory sensitizers. (The workshop agenda and materials 82 

can be found here.) The workshop opened with a presentation on the clinical manifestations of respiratory 83 

sensitization. The subsequent series of lectures provided a foundation for the current state-of-the-science 84 

for identification and characterization of respiratory sensitizer hazards, using both conventional and non-85 

conventional approaches, and the regulatory and practical needs regarding risk management, with the 86 

ultimate aim of identifying near-term and long-term information to facilitate development of validated 87 

standard methods and frameworks. The ~75 participants were asked to consider a series of questions  88 

that provided a framework for discussions during the break-out sessions. The lectures and break-out 89 

discussions provided the foundation for this report, and have been summarized in Sections 2 and 3, 90 

respectively.  91 

 92 

2. STATE OF THE SCIENCE 93 

2.1 Clinical Aspects of Chemical Respiratory Allergy and Occupational Asthma  94 

In the context of occupational asthma, chemical sensitizers refer to those chemicals that can cause 95 

asthma through an immunologic or presumed immunologic mechanism (Bernstein et al., 2013). Besides 96 

the potential to cause occupational asthma, some occupational respiratory sensitizers can cause other 97 

respiratory allergic responses such as hypersensitivity pneumonitis, eosinophilic bronchitis, and rhinitis. 98 
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Chemical sensitization can, in rare instances, trigger life-threatening acute conditions such as 99 

anaphylaxis as recently reviewed (Siracusa et al., 2015). The median population attributable risk for 100 

asthma from occupation has been estimated to be approximately 15% (Balmes et al., 2003; Toren and 101 

Blanc, 2009). Work-related asthma includes occupational asthma (usually new-onset asthma), caused by 102 

work, and work-exacerbated asthma, that is asthma caused by other factors but aggravated/exacerbated 103 

by work (Tarlo et al., 2008; Tarlo and Lemiere, 2014), but does not necessarily distinguish between 104 

immune-mediated and non-immunological agents.  The population attributable risk for new-onset asthma 105 

that likely reflects occupational asthma was similarly estimated in one large multicenter study as being 10-106 

25% (Kogevinas et al., 2007). Causes include irritant exposures at work (that are usually accidental) 107 

(Vandenplas et al., 2014b), and specific responses to a workplace sensitizer (an agent causing a specific 108 

immunologic response).  Workplace sensitizers can be further classified as high-molecular weight agents 109 

(usually proteins) and low-molecular weight chemicals.  Specific IgE may not be detected in all 110 

symptomatic patients.  The lack of universally detected specific immunologic markers of response has 111 

made it difficult to determine whether agents such as sprayed cleaning products and air fresheners are 112 

acting as specific chemical sensitizers or as airway irritants in studies that have shown increased asthma 113 

prevalence among exposed workers (Dumas et al., 2012). 114 

There are multiple chemical sensitizers known to cause asthma, both in workers as recently reviewed 115 

(Baur, 2013; Baur and Bakehe, 2013), and (less often) in consumers.  New formulations and new uses of 116 

known agents continue to be reported as well as newly developed agents. The clinical presentation of 117 

occupational asthma can mimic other (non-occupational) asthma, and the diagnosis may not be 118 

suspected unless the physician takes a careful history of the workplace exposures and timing of 119 

symptoms in relation to work. Other diseases can also mimic asthma and therefore objective tests are 120 

important for a correct diagnosis of chemical-induced respiratory sensitization. Algorithms have been 121 

developed for diagnosis, including immunologic tests where feasible, objective tests for asthma, and 122 

objective demonstration of changes in asthma during work periods compared with periods off work (Tarlo 123 

et al., 2008; Tarlo and Lemiere, 2014). The most definitive tests are specific inhalation challenges with the 124 

suspected agent, but these carry a small safety risk to the subject and are not widely available 125 

(Vandenplas et al., 2014a). After diagnosis, workers with occupational asthma are typically removed from 126 
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further exposure to the sensitizing agent, but often will continue to have asthma to some extent. Outcome 127 

of asthma is best with early correct diagnosis and early removal from further exposure (de Groene et al., 128 

2012).  Preventive measures include primary prevention by avoidance of worker-exposure to agents that 129 

are sensitizers, secondary prevention by early detection of sensitized workers and removal from exposure 130 

(by education and medical surveillance), and tertiary prevention by appropriate management of those with 131 

occupational asthma.      132 

2.2 Mechanisms of Respiratory Sensitization and Routes of Exposure 133 

A key hurdle, and arguably the most important hurdle, in developing a clearer view of the critical events 134 

and immunological pathways required for respiratory tract sensitization is the lack of clarity regarding the 135 

role played by IgE antibody. It is legitimate to regard IgE antibody as a potential effector mechanism as it 136 

is well established that these antibodies play a pivotal role in allergic responses to proteins, and in allergic 137 

asthma. However, it has not been possible to show a clear correlation between symptoms of chemical 138 

respiratory allergy and serum IgE antibody in patients with occupational asthma. Nevertheless, even with 139 

the diisocyanates, where the detection of IgE antibody among symptomatic patients has proven 140 

particularly difficult, there are reports of specific IgE antbody being found in some patients(Kimber et al., 141 

1998). 142 

It is this uncertainty about the role of IgE antibody in chemical respiratory allergy specifically, and about 143 

the important pathogenic mechanisms generally, that have made it difficult to reach agreement on 144 

relevant readouts for predictive test methods (Kimber and Dearman, 2002; Kimber et al., 2014). It is 145 

therefore the case that resolution of the role of IgE antibody and/or other immunological mechanisms in 146 

the acquisition of sensitization of the respiratory tract to chemical allergens is a major research objective.  147 

A second important issue is the route or routes of exposure through which sensitization to chemical 148 

respiratory allergens can be acquired. There is growing evidence from experimental animal studies, and 149 

from anecdotal information from humans, that skin exposure can result in sensitization of the respiratory 150 

tract. That is, the development of sensitization following skin exposure to chemical respiratory allergens is 151 

systemic – inducing sensitization of the respiratory tract (Kimber and Dearman, 2002; Kimber et al., 152 
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2014). 153 

2.3 What Differentiates Respiratory from Skin Sensitizers? Implications for Predictive Toxicity 154 

Testing  155 

From a regulatory perspective, it is essential to distinguish respiratory from skin sensitizers. According to 156 

GHS, skin and respiratory sensitizers are classified in two different hazard classes that result in different 157 

adverse outcomes. Skin and respiratory chemical sensitizers are both low-molecular-weight chemicals 158 

that share certain properties needed to provoke an immune response (Kimber and Dearman, 2005). In 159 

order to develop predictive test methods that are able to specifically identify respiratory sensitizers, it is 160 

essential to identify the unique mechanisms involved in respiratory sensitization. Decades of intensive 161 

research have resulted in a good understanding of the key events in induction of sensitization and 162 

elicitation of symptoms for similar to skin (Basketter and Kimber, 2010), culminating in a suggested MOA 163 

pathway Adler et al. (2011) and AOP for skin sensitization induction (OECD, 2012).  164 

Increased airway reactivity, epithelial remodeling and inflammation are adverse physiologic endpoints 165 

associated with repeated exposure to some low molecular weight chemicals that may have the intrinsic 166 

ability to cause respiratory allergy. As with skin sensitization, this adverse effect can result from an 167 

induction of sensitization after exposure to a chemical followed by an elicitation of allergic symptoms upon 168 

further exposure with the sensitizing chemical. The most obvious differences between respiratory and 169 

skin sensitization to chemicals is that in the classical view exposure of the former involves mucosal 170 

surfaces and alveolar macrophages as APCs and triggers (demonstrated or presumed) Th2 cell 171 

responses, while the latter involves skin and is Th1 cell oriented (Roggen, 2014). Furthermore, there is 172 

some evidence suggesting that under certain circumstances chemical respiratory sensitizers prefer lysine 173 

for haptenation, while skin sensitizers favor cysteine (Lalko et al., 2013).  174 

In the dermal Local Lymph Node Assay (LLNA) and respiratory LLNA both respiratory and skin 175 

sensitizers are able to induce lymphocyte proliferation, but go on to induce the development of distinct 176 

effector immune responses. Respiratory sensitizers induce a predominant Th2 response, while skin 177 

sensitizers induced a predominant Th1 response (Arts et al., 2008; De Jong et al., 2009; Dearman et al., 178 
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1995; Vandebriel et al., 2000). Glutaraldehyde, a recognized skin and respiratory sensitizer, was negative 179 

upon inhalation in the respiratory LLNA, but positive after dermal exposure, inducing a Th2-dominant 180 

immune response (van Triel et al., 2011). It was hypothesized that after respiratory exposure 181 

glutaraldehyde reacts with the proteins in the mucus layer and is unable to reach the immune system in a 182 

sufficiently high dose.  This may suggest that there are measurable thresholds of exposure for induction 183 

of the sensitized state.   Glutaraldehyde is a well-known cause of asthma in humans, but the skin might 184 

be an important route of exposure for the induction in environmental or occupational settings. Once 185 

sensitized, lower concentrations are sufficient to elicit an allergic response in the respiratory tract. This 186 

may support the value of preventing both skin and inhalation exposure to respiratory sensitizers.  187 

In elicitation studies in rats responses to trimellitic anhydride (TMA) and oxazolone, model chemicals 188 

inducing respiratory sensitization in rodents, were compared to the skin sensitizer 2,4-189 

dinitrochlorobenzene (DNCB) (Arts et al., 2008; Kuper et al., 2008a; Kuper et al., 2011). Gene expression 190 

profiling of the lungs, paralleled with breathing patterns, lung pathology and serum IgE levels revealed 191 

interesting mechanistic differences between these chemicals. As expected, the respiratory sensitizers 192 

affected breathing patterns and induced lung inflammation and IgE responses in Brown Norway rats. In 193 

contrast, DNCB did not affect breathing patterns or serum IgE, but induced an influx of neutrophils in the 194 

respiratory tract. Gene expression revealed a difference in regulated pathways, showing that TMA 195 

induced the most pronounced regulation of immune-related pathways, followed by oxazolone. DNCB 196 

hardly induced any significant pathway regulation. Remarkably, TMA was the only chemical that affected 197 

gene expression pathways related to airway remodeling. Oxazolone is a well-known human skin 198 

sensitizer, but there are no human reports on respiratory allergy. This could implicate that oxazolone is a 199 

false-positive in the animal model or that there is no or low inhalation exposure in man. Since oxazolone’s 200 

physical state can present as large flakes, the latter explanation is plausible. Interestingly, the gene 201 

expression revealed that oxazolone induced more pronounced Th1 genes than TMA (Kuper et al., 2011).  202 

DNCB is a strong human skin sensitizer that was immunogenic in different short-term respiratory animal 203 

models (Arts et al., 2008; Kuper et al., 2008b). The significance of these findings in terms of adverse 204 

human health effects is unclear. Prolonged and repeated inhalation exposures in Th1-prone Wistar rats 205 
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showed that DNCB was able to prime the immune system, as evidenced by DNCB-specific IgG levels. 206 

Additionally, DNCB provoked allergic inflammation in the upper respiratory tract, but did not affect 207 

functional breathing parameters. Hence, DNCB evoked a different inflammatory response upon inhalation 208 

compared to TMA. Whether or not these effects are indicative for adverse effects in humans is unknown, 209 

but they do demonstrate that DNCB is immunogenic after inhalation exposures as well (van Triel et al., 210 

2010).  211 

TMA, oxazolone, and DNCB demonstrate that respiratory and skin sensitizers are able to provoke 212 

different immune responses in experimental animals. Elicitation models seem especially suitable to 213 

demonstrate distinct immune responses, and toxicogenomics proved to be an important tool to increase 214 

mechanistic understanding of respiratory sensitization. Application of this knowledge for the development 215 

of predictive test methods is yet unclear, since only a few respiratory and skin sensitizers were tested in 216 

these animal studies. To become more confident in the type of read-outs that are indicative for respiratory 217 

sensitizers, a broader range of skin and respiratory sensitizers should be tested. Besides animal models 218 

other information sources, including structure activity relationships (SARs) or in vitro models that are 219 

currently in development should be included in the development of a predictive testing strategy for 220 

respiratory sensitization, a method already demonstrated for skin sensitization. To build such a testing 221 

strategy, it is important to map the mechanistic understanding in an AOP as has been done previously for 222 

skin sensitization (OECD, 2012).   223 

2.4 Conventional and Non-Conventional Approaches to Assess Respiratory Sensitization 224 

2.4.1 Developing in vivo and in vitro models for Re spiratory Sensitization 225 

An overview of two unpublished pilot studies, which were supported by a grant from Japanese Chemical 226 

Industry Association – Long-range Research Initiative (JCIA-LRI), of in vitro and in vivo models for 227 

assessment of respiratory sensitizing potential was presented. The JCIA-LRI supported research will 228 

establish sensitive cell lines with reduced serine protease inhibitor expression in order to assess 229 

chemical-induced hypersensitivity. Basophils and eosinophils secrete abundant serine proteases as well 230 

as chemical mediators and cytokines. Serine protease inhibitors have been reported to suppress both 231 
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serine protease activity and cytokine production in vitro. Both human basophilic cell line KU812-F and 232 

human eosinophilic cell line EoL-1 highly produced IL-6 in response to several sensitizers. Based on the 233 

allergy protective action of some serine protease inhibitors (Smith and Harper, 2006), these cell lines 234 

depleted of any serine protease inhibitor may be ideal candidates for the screening of respiratory 235 

sensitizers. Generation of stable cell lines lacking serine protease inhibitors using the inducible short 236 

hairpin RNA system may be complimentary to the in vivo approach described below.  237 

An in vivo testing method was developed for identifying respiratory sensitizers and determining their 238 

relative sensitizing potency.  Known sensitizers, toluene diisocyanate (TDI) and TMA, were used to 239 

sensitize female BALB/c mice by intratracheal instillation on five days per week for three weeks. Following 240 

subsequent challenge the severity of the lung inflammation increased in dose-related manner for both 241 

OVA, TDI, and TMA, but not DNCB. Histological scores dose response evaluation indicated the relative 242 

sensitizing potency of each of these known sensitizers in the BALB/c model was similar to the sensitizing 243 

potency reported in previous epidemiologic studies. These data suggest that this type of testing method 244 

can predict respiratory sensitization and a chemical’s relative sensitizing potency, and by extension may 245 

provide useful information for the hazard assessment of respiratory sensitizers. Future efforts will expand 246 

the evaluation for more sensitizers in order to demonstrate the reliable efficacy of a testing method. 247 

2.4.2 Mechanistic In Vitro Models for the Assessment of t he Respiratory Sensitization Potential 248 

of Compounds  249 

From the mechanistic point of view, our understanding of the toxicity pathways driving both induction of 250 

chemical respiratory sensitization and elicitation of symptoms is not as well established as for skin 251 

sensitization (Roggen, 2014). In contrast, more is known about the mechanisms underlying protein 252 

sensitization and allergenicity (Wills-Karp et al., 2010). The putative key events in an MOA for respiratory 253 

sensitization likely include: 1) bioavailability, 2) haptenation, 3) inflammation, 4) dendritic cell activation 254 

and maturation, 5) dendritic cell migration, and 6) T-cell proliferation. An overview of novel non-animal 255 

tests to assess the key events above is discussed below and in Table 1. 256 

Bioavailability. For a compound to be able to trigger sensitization, it must be present in a bioavailable 257 
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form to the relevant effector. Thus, a compound must gain access to the viable epidermis, dermis and 258 

vascular network across the bio-barrier (e.g. skin, lung mucosa) (Basketter et al., 2007; Wills-Karp et al., 259 

2010). Several studies correlate pulmonary bioavailability to the lipophilicity, the molecular polar surface 260 

area and hydrogen bond donor counts of a chemical. Studies using peptides suggest that the same 261 

parameters affect the bioavailability of protein allergens (Cooper et al., 2010).  262 

Haptenation. In contrast to protein allergens which are sufficiently large to be identified as “foreign” by 263 

the host innate and adaptive immune systems, low molecular weight chemical sensitizers are generally 264 

believed to react covalently with native host protein(s) to form stable neoantigens. The majority of 265 

sensitizing chemicals are either inherently reactive, electrophilic chemicals that form covalent bonds with 266 

nucleophilic groups on amino acids, or occasionally acquire such reactivity following metabolism. Non-267 

electrophilic mechanisms for protein binding may also occur through disulfide exchange or coordination 268 

bonds (e.g. metals) (Chipinda et al., 2011). Compared with skin sensitizers, low molecular weight 269 

respiratory sensitizers reacted more readily with lysine rather than cysteine moieties of host proteins 270 

(Lalko et al., 2013). Despite the limitation that such methods do not identify the target protein defining the 271 

specificity of the immune response (Aleksic et al., 2007), they may, however, provide a useful piece of 272 

qualitative (and potentially quantitative) information for hazard identification. Future work to critically 273 

evaluate the readiness of haptenation assays may extend their value in hazard identification. 274 

Inflammation. Three potentially useful / in vitro test models were discussed for respiratory sensitization 275 

testing (Roggen, 2013).  These include precision cut human lung slices(Lauenstein et al., 2014); an in 276 

vitro alveolar-capillary barrier based co-culture system comprised of two human cell lines, H441 and ISO-277 

HAS-1 (Hermanns et al., 2010); and an air liquid interface (ALI) organotypic 3D airway epithelial model  278 

employing primary human bronchial epithelial cells (MucilAir™; www.epithelix.com). Although not 279 

validated, each of these model systems have been used to discriminate sensitizers from irritants, as well 280 

as respiratory from skin sensitizers (dos Santos et al., 2009). 281 

Dendritic cell (DC) activation. It is generally accepted that activation of DCs results in mature antigen-282 

presenting cells having an established Th1-, Th2-, Th17-biased phenotype (Tan and O'Neill, 2005). 283 
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Studying the molecular mechanisms behind DC activation and maturation is impeded by the fact that 284 

primary DCs constitute a small and heterogeneous population of cells among many functionally 285 

specialized DC subpopulations. To circumvent this issue, various human myeloid cell lines (e.g. THP-1, 286 

U937, KG-1 and MUTZ-3) were used both for acquiring mechanistic understanding and for development 287 

of predictive tests (Larsson et al., 2006; Roggen, 2013). Functional and transcriptional analysis of various 288 

myeloid cell lines has clearly demonstrated the significance of the MUTZ-3 cell line as a model for 289 

functional studies of inflammatory responses (Larsson et al., 2006; Lundberg et al., 2013). The genomic 290 

allergen rapid detection (GARD) test can generate prediction calls of unknown chemicals as skin 291 

sensitizers, respiratory sensitizers or non-sensitizers, including irritants (Johansson et al., 2011).  In 292 

addition to providing an accurate prediction about the sensitizing potential of a chemical, there is growing 293 

evidence that the GARD test also provides useful information about the sensitizing potency of the 294 

chemical (Albrekt et al., 2014).   295 

The most advanced DC maturation test is the human cell line activation test (h-CLAT). When applied to 296 

hazard identification for skin sensitization the test revealed a good concordance (84%) with the LLNA 297 

data (sensitivity: 88%; specificity: 75%) (Ashikaga et al., 2010). There are indications that the h-CLAT 298 

correlates with the LLNA and may have the potential to provide information about the potency of the test 299 

chemical (Ashikaga et al., 2010). The usefulness of this test for assessing respiratory chemicals was not 300 

established, but given the potential of the dermal LLNA as a screen for respiratory sensitization potential 301 

(i.e., LLNA negatives being unlikely to be respiratory sensitizers), the h-CLAT may provide similar 302 

screening potential in the future. 303 

Dendritic cell migration. In an in vitro full-thickness tissue-engineered skin model containing fully 304 

functional MUTZ-3 derived LCs (MUTZ-LC) (Ouwehand et al., 2008; Ouwehand et al., 2011) can be 305 

utilized to assess the impact of irritants and sensitizers on the migration activity of the fluorescently 306 

labelled MUTZ-LC. While not evaluated using protein allergens, this in vitro DC migration test was found 307 

to correctly identify both respiratory and skin sensitizing chemicals (dos Santos et al., 2009).  308 

Summary of Mechanistic In vitro  Approaches. Novel, but not yet validated, testing methods for 309 
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assessment of pulmonary sensitization have been developed. While these assays are functionally 310 

plausible, their predictive accuracy remains to be evaluated. The potential application areas for the 311 

assays discussed above have been, where possible, integrated into Table 1 below.  312 

2.4.3  Application of ‘Omics’ Technologies to Assess Chemi cal Respiratory Allergy 313 

Current guidance recommends a weight-of-evidence approach based on human and animal data to 314 

identify a potential respiratory sensitizer. The use of ‘omics’ technologies such as transcriptomics and 315 

proteomics can provide an unbiased global assessment of gene-expression and protein network 316 

alterations associated with the development of allergic rhinitis and asthma (Park and Rhim, 2011; Sircar 317 

et al., 2014). These methods have been used to examine (1) the induction of the sensitized state which 318 

includes hapten-protein formation, interaction with epithelial cells impacting dendritic cell activation, Th2-319 

biased maturation, and subsequent lymphoid cell activation, proliferation and differentiation and (2) the 320 

elicitation phase where subsequent inhalation exposure enhances localization and amplification of allergic 321 

responses. This enhanced response can extend into epithelial remodeling with effector/inflammatory cell 322 

influx, mucous cell hyperplasia/metaplasia, development of functional pulmonary responses including 323 

airway hyperreactivity, and reversible airflow obstruction. 324 

Toxicogenomics have been applied to the characterization of the elicitation phase. Kuper et al., (2008a; 325 

2008b) reported on the molecular characterization of the respiratory sensitizer TMA and the skin 326 

sensitizer DNCB in Brown Norway rats. They performed a whole genome analysis and related the results 327 

to physiological and cellular parameters with the aim to improve hazard identification and cross-species 328 

comparisons of respiratory allergens through molecular characterization. The presence or absence of 329 

notable changes in gene expression were consistent with the physiological/cellular responses to TMA and 330 

DNCB. The skin sensitizer DNCB resulted in slight changes in chemokine transcripts but no effects on 331 

lung remodeling. Rats dermally sensitized and exposed by inhalation to TMA showed a number of 332 

changes associated with lung remodeling similar to that observed in early development of asthma in 333 

humans. The authors stated that early lung remodeling genes may be useful in further characterization of 334 

molecules capable of causing allergic asthma. The expression profile was generally consistent with genes 335 
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regulated in mouse models of asthma and those reported in humans with asthma. These data suggest 336 

that changes in gene expression may represent valuable complementary endpoints for the 337 

characterization of potential respiratory allergens in sensitization-challenge models.   338 

Proteomic approaches may be used to enhance the identification of respiratory sensitizers (Haenen et al., 339 

2010; Park and Rhim, 2011). Using an OVA sensitized mice, a repeated aerosol challenge was used to 340 

induce an elicitation response. Sensitized, OVA-challenged mice had a significant increase in pulmonary 341 

eosinophils, and increased airway reactivity to methacholine challenge compared to controls. These 342 

changes included upregulation of structural proteins associated with airway remodeling and mammalian 343 

chitinases (YM1/YM2) that are induced by IL-13 expression (Jeong et al., 2005). One major strength of 344 

proteomics is the ability to evaluate multiple functional tissue compartments in both humans and 345 

experimental animals (sputum, BAL, blood) for translational investigations. Additional studies are needed 346 

to assess the utility to differentiate respiratory and dermal sensitizers and identify markers that may be 347 

used to identify thresholds of sensitization/elicitation or perhaps recovery following removal from 348 

exposure (Louten et al., 2012; O'Neil et al., 2011; Park and Rhim, 2011; Zhang et al., 2009).  349 

Toxicogenomic approaches have also been used to examine the induction phase of sensitization to 350 

identify respiratory sensitizers. Comparison of a panel of dermal sensitizers (DNCB and alpha-351 

hexylcinnamaldehyde), respiratory sensitizers (TMA and ortho-phthalaldehyde) and non-sensitizing 352 

irritants (methyl salicylate and nonanoic acid) identified 4,467 significant gene expression responses, 353 

which were in turn categorized (Adenuga et al., 2012; Boverhof et al., 2009).  Respiratory sensitizer-354 

specific transcripts were identified, including AKR1c18 (aldo-keto reductase; promotes Th2 cell survival; 355 

(Matsuzaki et al., 2005)), Galectin-7 (cell-cell and cell-cell matrix interactions), Mcpt1 and 8 (mast cell 356 

protease 1 and 8) and IL-4 (promotes Th2 bias). These data suggest that gene expression changes 357 

during sensitization may enhance WoE approaches to distinguish sensitizers from irritants and respiratory 358 

sensitizers from dermal sensitizers. There is a need to expand the low molecular weight chemical data set 359 

to confirm and extend these data and to expand analyses to upper/lower airway tissues to explore 360 

mucosal gene expression signatures. 361 
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A WoE approach is currently required to differentiate respiratory from dermal sensitizers. It is essential to 362 

develop and validate robust assay systems to distinguish respiratory sensitizers from both dermal 363 

sensitizers and non-sensitizing irritants. A science-based approach to assess respiratory sensitizer 364 

potency and thresholds of sensitization/elicitation is critical to address possible hazard classification of 365 

respiratory sensitizers, which may be considered as SVHC under the “equivalent level of concern” route 366 

set out in Article 57(f) of REACH.  Data provided using ‘omics’ technologies can help identify key cellular 367 

and molecular events relevant to development of an adverse outcome pathway for respiratory sensitizers.  368 

2.4.4 Grouping, Read-Across, and Mechanistic Chemis try for Respiratory Sensitization 369 

One view on the AOP concept relates a series of key events linking a Molecular Initiating Event (MIE) 370 

between a chemical and a biological system to an adverse effect at the organ level. In turn, organ level 371 

effects may be linked to predictions of biological system or even the population events. The aim of an 372 

AOP is to outline the key processes, some of which can be tested by using either in silico, in chemico or 373 

in vitro methods. The chemistry associated with the MIE can be compiled into ‘in silico profilers’, enabling  374 

chemicals to be grouped into mechanism-based categories, allowing for predictions of toxicity to be made 375 

by using read-across. Such an approach offers an improvement on structural similarity based 376 

approaches, which inherently aim to address the possibility of similar in vivo chemistries, but without the 377 

benefit of applying mechanistic chemistry knowledge to the grouping. This additional mechanistic 378 

knowledge is important as simple structural similarity frequently identifies chemicals that are structurally, 379 

but not mechanistically similar (in terms of their ability to react with proteins). In addition, such profilers 380 

enable chemical inventories to be prioritized for further in vitro and/or in chemico investigations (rather 381 

than testing every chemical in an unstructured manner). 382 

Recent research has led to the development of an in silico profiler for respiratory sensitization (Enoch et 383 

al., 2012). The profiler was developed from a mechanistic chemistry analysis of a data set of 104 reported 384 

in the literature as causing occupational asthma. Initial interest in this area of research stemmed from a 385 

study showing that, for some respiratory sensitizers, the most likely MIE was the formation of a covalent 386 

bond in the lung (Enoch et al., 2009). An outline was developed for how such mechanistic information 387 
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could be used to predict respiratory sensitization by read-across for a second, slightly larger, data set of 388 

chemicals (Enoch et al., 2010). Both studies highlighted the importance of the underlying mechanistic 389 

chemistry as the guiding principle in the process of grouping chemicals, and that there are several key 390 

factors that drive the MIE for respiratory sensitization: chemical reactivity (electrophilicity), the ability to 391 

cross-link proteins due to the presence of multiple reactive sites within a chemical and chemical volatility 392 

(a chemical must be sufficiently volatile to elicit an immune response in the lung following induction which 393 

can occur either in the skin or the lung). This analysis also showed that highly electrophilic chemicals 394 

cause sensitization without the need for protein cross-linking. By the same token, weakly electrophilic 395 

may not cause sensitization.  396 

For some mechanistic chemistries there appears to be a “reactivity threshold” for electrophilicity that in 397 

part governs whether a chemical is likely to be a respiratory sensitizer (Agius et al., 1991). Consider the 398 

two chemicals ethyl cyanoacrylate and methyl tiglate which can both react via Michael addition to form a 399 

covalent bond with a protein (Figure 1). Ethyl cyanoacrylate is a potent respiratory sensitiser, whilst there 400 

have been no reports of methyl tiglate causing respiratory sensitization in humans (Enoch et al., 2012). 401 

This has been rationalized in terms of the differing calculated electrophilicity values of these two 402 

chemicals with ethyl cyanoacrylate being the more electrophilic (1.71 versus 1.24 eV – data taken from 403 

Enoch et al 2010). This mechanistic rationale is a significant improvement on the previous hypothesis that 404 

all chemicals that cause respiratory sensitization must have multiple reactive centers (Agius et al., 1991), 405 

and by the same token may explain how relatively weak electrophiles may cause sensitisation if they are 406 

also capable of protein cross-linking (for example di-carbonyl conatining chemicals acting via a Schiff 407 

base mechanism).).  408 

Figure 1: Michael addition reaction for ethyl cyanoacrylate (R1 = H, R2 = CN, R3 = OEt) and methyl tiglate 409 
(R1 = R2 = Me, R3 = OMe) 410 
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 411 

 412 

The availability of the larger data set of respiratory sensitization data enabled further analysis into the 413 

detailed mechanistic chemistry associated with the MIE for LMW chemicals (Enoch et al., 2012), resulting 414 

in the identification and publication of a set of structural alerts that defined the chemistry associated with 415 

covalent protein binding in the lung. An important aspect is the analysis of the associated metadata for 416 

each structural alert, which documents the reaction mechanism and supporting peer-reviewed literature. 417 

This information is of central importance for profilers, when they are used to group chemicals together in 418 

regulatory toxicology. 419 

This work in developing in silico profilers, and specifically a profiler for respiratory sensitization, offers 420 

tools that can be used as part of a chemical assessment, prioritization, hazard assessment and 421 

hypothesis generation. As outlined, in silico profilers encode the mechanistic information associated with 422 

the MIE for organ toxicity. This information can then be used to group chemicals together, and to make 423 

predictions via read-across, a process that has been supported at the OECD within the development of 424 

the OECD QSAR Toolbox. Chemicals that are not sensitizing in the LLNA are anticipated not to be 425 

respiratory sensitizers, a correlation that is empirically supported (Kimber et al., 2007). Yet this approach, 426 

at worst, is using a different organ (skin versus lung) in a different species (mouse versus human) to 427 

predict a chemical’s ability to sensitize the human lung. Taking a broader view, the application of more-428 

detailed mechanistic chemistry knowledge can facilitate the development of better, more-relevant, non-429 

animal assays and hazard predictions. Chemistry-driven in silico profilers offer one of the key solutions to 430 

the problem of making predictions of organ toxicity. 431 

2.4.5 Dose-Response Models for the OEL-Derivation o f Asthmagenic Chemicals 432 
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The protocols applied to date for the hazard identification of respiratory sensitizers most commonly 433 

employ modelling systems that evaluate the acute etiopathology rather than the chronic allergic airway 434 

inflammation typical of asthma. The complex etiopathology has been modelled in the Brown-Norway rat. 435 

In this model, initial sensitization is achieved by dermal application of a test compound rather than 436 

inhalation. This simplifies the initial induction response, bypassing the inherent tolerogenic response of 437 

the lung towards inhaled allergens.  Once sensitization is established, subsequent inhalation exposure to 438 

the sensitizing antigen serves to localize and amplify the immune response to the lung.   439 

Concentration x time (C x t)-response relationships were evaluated on elicitation-based endpoints by 440 

employing dose-escalation-like protocols (Pauluhn, 2014). Variables affecting the dosimetry of inhaled 441 

irritant and chemically reactive vapors and aerosols (i.e., irritant-related changes in breathing patterns, 442 

scrubbing in the upper airways in rodent models) must be thoughtfully observed, otherwise findings 443 

cannot readily be translated to humans. Comparing dose-escalation protocols, different designs are 444 

suitable for aerosols and reactive vapors. Both concentration and time (C x T) can be used to achieve the 445 

desired pulmonary dose. For aerosols a Cvar x tconst challenge protocol is best suited to quantify the lower 446 

respiratory tract irritant dose (Pauluhn, 2002; Pauluhn and Poole, 2011) (Pauluhn 2004a,b; Pauluhn et al., 447 

2005). A “minimal irritant’ concentration primes the respiratory tract in predisposed, dermally sensitized 448 

rats. For reactive vapors to achieve the desired pulmonary dose, the concentration selected must be high 449 

enough to penetrate into the lung regions while retaining stable breathing patterns. This can best be 450 

accomplished by varying time used for exposure because increasing the concentration will alter breathing 451 

patterns (Cconst x tvar) (Pauluhn, 2014; Pauluhn, 2015). Neutrophilic granulocytes (PMNs) in BAL were 452 

considered as the endpoint of choice to integrate the allergic pulmonary inflammation, supplemented by 453 

physiological measurements characterizing late-phase asthma-like responses and increased nitric oxide 454 

in exhaled breath. The Cconstx tvar regimen yielded the most conclusive dose-response relationship as long 455 

as concentration was high enough to overcome the scrubbing capacity of the upper airways. For the 456 

known human asthmagens TDI or HDI vapor) and diphenylmethane-4,4'-diisocyanate (MDI) (aerosol), the 457 

elicitation threshold-dose was lower than the respective acute irritation threshold dose. Interestingly, a 458 

consistent relationship of the elicitation and irritation-threshold dose seemed to exist (Pauluhn, 2008; 459 

Pauluhn, 2014; Pauluhn, 2015). The respective 8-hour time-adjusted asthma-related human-equivalent 460 
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threshold C x t-product (dose), based on ‘asthmatic’ rats, was estimated to be 3-5 ppb, which is in 461 

remarkable agreement of the current ACGIH TLV® of the examined diisocyanates. 462 

In summary, the findings from the Brown Norway model suggests that chemical-induced respiratory 463 

sensitization is likely to be contingent on two interlinked, sequentially occurring mechanisms: first, dermal 464 

sensitizing encounters high enough to cause systemic sensitization. Second, when followed by recurrent 465 

supra-threshold irritant inhalation exposure(s) high enough to initiate and amplify an allergic airway 466 

inflammation, then a progression into asthma may occur. The Brown Norway model requires an in-depth 467 

knowledge on respiratory tract dosimetry, including the concentration- and/or concentration x time-468 

dependence of respiratory tract irritation and eventually asthma. Animal models suggest occupational 469 

asthma may result from exposures of both the skin and respiratory tract. For instance, to acquire 470 

diisocyanate asthma, skin-sensitization followed by successive alveolar irritant inhalation encounters 471 

seems to be key for the initiation and propagation of this occupational disease (Pauluhn, 2008; Pauluhn, 472 

2014; Pauluhn, 2015). The Brown Norway model can deliver a NOAEL on the elicitation-response and 473 

can be taken to derive a safe OEL to prevent chemical respiratory sensitization (Pauluhn, 2005; Pauluhn, 474 

2008; Pauluhn, 2014; Pauluhn and Mohr, 2005; Pauluhn and Poole, 2011). 475 

2.5 Perspectives and Needs for Identification and Management of Respiratory Sensitizers 476 

2.5.1 Current Practices for Risk Management 477 

The risk of respiratory sensitization from exposure to chemicals is managed as with other risks, by 478 

performing an assessment beginning with a hazard and exposure evaluation. An example is the 479 

diisocyanate industry, where through product stewardship efforts, suppliers visit customer sites where 480 

training is given on safe handling and use as well as addressing specific customer related environmental 481 

health sciences issues detected during inspection (e.g., engineering controls, administrative controls, 482 

work practices).  Exposure monitoring for specific applications may be performed and compared to 483 

occupational exposure limits. Training is as important for management as for the worker since they play 484 

an important role in ensuring the implementation of new procedures/behaviors/technical controls. 485 

Education on hazards and exposure reduction is considered so important that industry groups have 486 
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created free online training programs as well as readily available brochures in Spanish and English. 487 

Risk management practices have improved over time through improved analytical methods utilizing more 488 

efficient collection of vapor & aerosol and the use of more sensitive and specific LCMS for inhalation 489 

exposure assessment.   Newly developed techniques and methods for improving dermal assessments 490 

have increased the understanding of protection degree provided by personal protective equipment. There 491 

has been an increased emphasis on dermal protection since dermal exposure may contribute to risk of 492 

developing respiratory sensitization. There have also been improvements in biomonitoring techniques 493 

where albumin or hemoglobin adducts in blood samples have been shown to be more specific and more 494 

sensitive biomarkers of exposure than diamine hydrolysis products in urine. 495 

Current practices have demonstrated that an effective product stewardship program can reduce risk.  496 

Significant reductions of diisocyanate-related occupational asthma (OA) cases have been observed 497 

globally. Ontario, Canada reported a decrease from 30.5 OA claims/year (1980-1993) to 7.4 claims/year 498 

(1998-2002) (Buyantseva et al., 2011).  Michigan’s Project SENSOR report that the rates of asthma 499 

attributable to diisocyanates have fallen from 22.9 cases/yr (1988-1997) to  4 cases/yr (2009-2010) 500 

(NIOSH, 2014). Many authors relate the reduction to industry recommendation for medical surveillance, 501 

the use of periodic spirometry and examinations targeted to skin and respiratory tract. In addition, using 502 

an accepted paradigm to accurately diagnose respiratory sensitization (occupational asthma) by objective 503 

measures and the use of specific inhalation challenges when necessary to confirm the relationship of 504 

asthma to diisocyanate exposure may have contributed to the lower numbers of new OA cases. 505 

2.5.2 WHO’s Guidance on Assessment for Respiratory Sensitization 506 

The WHO Guidance for Immunotoxicity Risk Assessment for Chemicals (chapter 6) provides a framework 507 

for conducting of risk assessments for both induction and elicitation of skin allergy, respiratory allergy and 508 

oral (systemic) allergy (WHO, 2012). This includes a decision-tree towards developing a WoE based on 509 

the available human, laboratory animal and mechanistic data associated with exposures to a potential 510 

respiratory sensitizer (Figure 3). The case study (#3) of halogenated platinum salts illustrates how a 511 

quantitative risk assessment can be conducted for a chemical respiratory sensitization.  512 
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When a chemical is characterized as a sensitizer based on the WoE, the data can be applied to a dose-513 

response assessment beginning with selecting the most appropriate end-points and developing point of 514 

departures. With regard to halogenated platinum salts, numerous occupational studies report allergic 515 

reactions following exposure (WHO, 2012). Respiratory symptoms include airway constriction and 516 

inflammation, shortness of breath, wheezing, and rhinitis. Several occupational studies show increased 517 

prevalence of workers with respiratory allergy. Merget et al. (2000) provide sufficient exposure data with 518 

evidence of health effects for a quantitative risk assessment with a NOEL for respiratory sensitization (3.4 519 

ng sol Pt/m3), which after adjustment for uncertainty resulted in a reference value of 0.012 ng sol Pt/m3. 520 

A similar process can be used to determine elicitation potency. For halogenated platinum salts, however, 521 

there is insufficient quantitative elicitation information to proceed with a quantitative risk assessment. 522 

Unfortunately, there are few human provocation studies for any potential respiratory sensitizer.  In the 523 

case of platinum there were studies using positive skin prick tests in sensitized workers as an endpoint, 524 

however the range of doses spanned several orders of magnitude. Thus for elicitation only a qualitative 525 

assessment is possible. 526 

Although a reference value for sensitization from halogenated platinum salts was derived, the case-study 527 

also illustrates the several challenges and limitations in the approach. The reference value is applicable to 528 

the workplace exposures. However environmental exposures tend to be from a different form of platinum 529 

(insoluble complexes). Thus, extrapolation from the workplace to environmental exposures is difficult 530 

because of potential differences in chemical form. Overall, the halogenated platinum case study illustrates 531 

that a quantitative risk assessment of sensitization is possible (WHO, 2012). However, for many 532 

chemicals the data base is insufficient to derive a quantitative assessment and a qualitative or descriptive 533 

assessment of sensitization and elicitation is all that is possible. 534 

2.5.3 EU Regulatory Needs – REACH and CLP 535 

In Annexes VII to X of the REACH Regulation there is no standard information requirement concerning 536 

respiratory sensitization, but chemical safety assessment according to Annex I covers sensitization 537 

overall. ECHA Guidance chapter R.7.a Endpoint specific guidance describes how to use human and non-538 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

24 
 

human data in the context of REACH. For sensitizers the chemical safety assessment can be based 539 

either on qualitative approach or quantitative risk characterization. Under substance evaluation “Further 540 

information” can be requested even beyond the information mentioned in Annexes VII to X of REACH, if 541 

there is a concern that a given substance may constitute a risk to human health or the environment, and 542 

further information is needed to clarify the concern. For 13 out of 51 substances to be evaluated in 2014, 543 

the initial concern (or one of) is respiratory sensitization. 544 

The main risk management options for respiratory sensitizers classified based on Classification, Labeling, 545 

and Packaging European Commission Regulation No. 1272/2008 (CLP) under REACH are authorization, 546 

restriction or no action (which does not prevent action under other legislation). The prerequisite for 547 

subjecting a substance to the authorization requirement is its identification as a SVHC. However, 548 

sensitization is not a SVHC criterion itself under REACH Article 57. Therefore, a sensitizing substance 549 

must be identified in accordance with Article 57 (f) as giving rise to an equivalent level of concern to the 550 

carcinogenic, mutagenic or reprotoxic substances. This requires a case-by-case assessment. The 551 

general approach on identification of a sensitizer as having equivalent level of concern under article 57(f) 552 

has been agreed with the EU Member States (ECHA, 2013b). 553 

Under CLP Regulation respiratory sensitizers are considered to be among “substances of the highest 554 

concern”. In the absence of validated animal models or alternative approaches, the evidence that a 555 

substance can lead to specific respiratory sensitization is normally based on human experience, but some 556 

animal data can be used in a WoE approach as explained in the CLP guidance  (ECHA, 2013a). 557 

In the absence of a validated standard method, case-by-case judgment and weight-of-evidence 558 

approaches are necessary for regulatory purposes (hazard information and classification). This is not an 559 

optimal situation for a health effect as important as respiratory sensitization. For both REACH processes 560 

and CLP, there is a need to differentiate between respiratory sensitizers according to their sensitizing 561 

potential and potency and validated methods or approaches would be desirable. In a regulatory 562 

framework, an information request (test data or tiered approaches) would, however, need to be such that 563 

a reasonably definitive answer to the concern is delivered. 564 
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3. RESULTS FROM WORKSHOP BREAKOUT GROUP DISCUSSIONS 565 

3.5 Understanding the Condition 566 

Relevant immunological mechanisms. All breakout groups agreed that Th2 responses predominate in 567 

respiratory sensitization. In one of the groups there were divergent views that Th2 responses may not be 568 

the sole explanation.  The role of IgE is highly likely as well, although IgE is not always detected in 569 

humans with occupational asthma and in animal models. Other mechanisms may be involved in the 570 

elicitation phase of respiratory allergy, i.e., neurogenic inflammatory responses were mentioned (see 571 

below).  572 

There was general agreement on certain essential steps that are required to induce respiratory 573 

sensitization, including chemical hapten-protein binding, induction of danger signals by the epithelium, DC 574 

activation, maturation and migration, T cell activation and clonal expansion towards a Th2 response and 575 

B cell maturation and antibody formation, in some cases IgE. Protein binding was considered to be the 576 

molecular initiating event (MIE), similar to that of skin sensitization. Participants acknowledged that the 577 

theory on hard versus soft acid base for electrophiles may be useful in discriminating respiratory from skin 578 

sensitizers (Enoch et al. 2009, 2010), but that there is a need to define and explore this theory further 579 

(i.e., nucleophile chemistry, nucleophile mechanisms that react with cysteine are related to Th1 580 

response).  581 

There was also agreement that many cellular events involved in respiratory sensitization are relatively 582 

well understood, i.e., DC activation, T and B cell activation. The cellular sources that deliver the danger 583 

signals, however, are not well-defined and different cell types in the airways or skin may be involved in 584 

this. Furthermore, the exact mechanisms of action have not been studied in detail and are thus largely 585 

unknown. Interestingly, there is an overlap in cellular events with skin sensitization for example protein 586 

binding, DC activation, T cell activation. Given that the effector immune response is different, it is 587 

important to identify the ‘master switch’ that determines Th2 skewing which will require understanding the 588 

key signaling and molecular pathways involved in the adverse outcome. Also, it was proposed that 589 

homing of DCs may differentiate between skin and respiratory sensitizers. Despite the general 590 
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understanding of the cellular events involved, additional gaps and research needs were identified 591 

including the role of epigenetics (i.e., DNA methylation, histone modification, microRNA, etc.).  592 

Participants also proposed that information from protein sensitizers could be used for further identification 593 

of key signaling and molecular pathways, but no consensus was reached on this topic. For protein 594 

sensitization much more mechanistic studies have been performed, hence data are available that might 595 

support information on chemicals and improve mechanistic understanding. However, there were concerns 596 

regarding whether the mechanisms and the inflammatory responses are the same for induction and 597 

elicitation. Neurogenic and neuro-immuno mechanisms are involved in the elicitation phase of respiratory 598 

allergy. These mechanisms are involved in bronchoconstriction, for example. The role of these 599 

mechanisms in the induction of allergy is not fully understood. 600 

An updated, contemporary view of skin and lung physiology delineating the key similarities and 601 

differences between organs to benefit understanding of underlying immunological mechanisms was also 602 

suggested. As discussed above, there are clear differences in potential consequence for immune 603 

activation in skin versus lung. In skin the immediate effects may be localized with reduced potential for 604 

systemic impact, whereas inflammation in the lung may have greater systemic impact owing to its role in 605 

gas exchange and the volume of blood flow through the lung. 606 

A unifying dose metric to address induction/respiratory elicitation and/or help threshold 607 

identification. No workgroups identified a potential unifying dose metric for dermal and respiratory 608 

sensitizers. While such a metric could prove useful in study design and interpretation, current knowledge 609 

of the underlying processes resulting in induction and elicitation appear inadequate to arrive at a 610 

consensus, or even minority, view. In the absence of such a metric, the workgroups generally considered 611 

a WoE approach to be the realistic option for threshold identification. Where available, human dose 612 

response data would represent the “gold standard,” as demonstrated with halogenated platinum salts. 613 

Such data is relatively rare, so in practice the information most likely to be applied in dose response 614 

assessment comes from dermal LLNA or inhalation toxicology studies. In case of dermal induction 615 

studies, the dose metric used for skin sensitizers can be used, which is µg/cm2 skin. For the respiratory 616 
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route, the dose metric used both in human as well as in animal studies is ppm. Where testing in animal 617 

models is not permitted (i.e., cosmetics) dose response assessment will likely have to turn to in vitro, in 618 

chemico, and in silico methods (several of which are described above) to estimate dose responses. 619 

3.6 Overview of available models 620 

Strengths, weaknesses, opportunities, and challenges. The need for rapid, inexpensive and validated 621 

in silico and in vitro model systems was identified as a key area where considerable progress has been 622 

made but where significant challenges remain. QSAR models are available for dermal sensitizers but not 623 

respiratory sensitizers. Structural profiling has the potential to provide insight into possible differences in 624 

the initial molecular interactions between low molecular weight chemicals and host proteins. These may 625 

include preferential binding of chemicals to specific amino acid residues based on well characterized 626 

physical properties (acid/base theory, electrophilicity, etc.). These expert systems may eventually be used 627 

to identify and differentiate potential skin and respiratory sensitizers from irritants and toxicants, however, 628 

the predictive power of these in silico models must be validated against known sensitizing chemicals. This 629 

may be difficult in the case of respiratory sensitizers since, compared to skin sensitizers, there are 630 

relatively few known human respiratory sensitizers and these are represented by only a few chemical 631 

classes (e.g., isocyanates, aldehydes, anhydrides and dyes and platinum salts). It is likely that numerous 632 

models will be developed and disseminated.  One potential challenge may come if the availability and use 633 

of new profiling tools proceeds more rapidly than their validation. Confidence in the predictive power of 634 

newly developed tools will only come through repeated confirmatory testing in other in vitro and in vivo 635 

model systems, building a WoE case for the models. For instance, the direct peptide reactivity assay 636 

(DPRA) is a means to assess protein reactivity of electrophilic chemicals. DPRA is an in chemico method 637 

which determines the reactivity of chemicals to peptides containing nucleophilic cysteine and lysine 638 

residues. It has been hypothesized that chemicals that preferentially bind to lysine form molecular 639 

interactions with host proteins that result in the development of a Th2-bias, characteristic of respiratory 640 

sensitizers. This is a testable hypothesis that can may be used to discriminate between skin (cysteine-641 

binding) and respiratory (lysine-binding) sensitizing chemicals. 642 
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Distinguishing events associated to local irritation and systemic sensitization. A number of in vitro 643 

cellular systems were described that help probe specific key events in the development of the sensitized 644 

state.  The KeratinoSens assay can be used to identify skin sensitizers through their ability to activate the 645 

Keap1-Nrf2-antioxidant/electrophile response element (ARE).  Dendritic cells, either freshly isolated or 646 

cell lines, may be used to differentiate chemicals leading to a Th1- or Th2-bias. Organotypic 3D airway 647 

epithelial cell cultures, grown at the air/liquid interface (ALI) may be used to investigate the role of the 648 

epithelium in “reading” the hapten-protein complex and expressing specific signals that may interact with 649 

the innate immune system to influence the maturation and Th1/Th2-bias of mucosal dendritic cells. These 650 

in vitro cellular systems are valuable tools to examine specific cellular responses, but more complex co-651 

culture systems may need to be developed to explore the cell-cell interactions involved in development of 652 

the sensitized state. Precision cut lung slices may provide short term test systems to explore cell-cell 653 

interactions, however they cannot be maintained in culture long, and dosimetry is complicated and limited 654 

by diffusion due to the need to inflate the lung with agar prior to cutting the slices. Organotypic ALI 655 

cultures overcome the dosimetry problem, but do not contain all of the cell-types found in the intact lung.   656 

In vivo model systems have been developed to assess the induction of the sensitized state. The LLNA 657 

measures proliferation in the draining lymph node to identify sensitizing chemicals. It is a widely used and 658 

validated method that can identify sensitizing chemicals, but it cannot distinguish respiratory from skin 659 

sensitizers, and care must be used to differentiate irritant responses from immune-responses. The LLNA 660 

can provide data on potency and when coupled with direct exposure of the respiratory tract and analysis 661 

of the appropriate draining lymph nodes may provide insight into local immune responses in the 662 

upper/lower respiratory tract. The LLNA has been coupled with “omics” endpoints in an attempt to identify 663 

gene expression profiles characteristic of skin and respiratory sensitizers and irritating chemicals. 664 

Progress has been made but a definitive profile that can uniquely identify and differentiate sensitizing 665 

chemicals has not been identified. Part of the problem may be a lack of standardization of the exposure 666 

and sampling protocols between laboratories. Evidence suggests that even the most basic of 667 

experimental variables, such as dose, dose number and timing and sample time, may influence the 668 

results. Cytokine profiling and IgE expression are likewise valuable complementary assays with which to 669 

build a WoE case for respiratory sensitizers on a case by case basis. 670 
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Confounders and strategies to reduce their effect. In silico, in chemico, in vitro and most in vivo model 671 

systems available at this time examine only the induction or sensitization phase. This is important 672 

because of the profound importance of being able to identify which chemicals may be skin or respiratory 673 

sensitizers, differentiate between the two, and assess potency as it impacts thresholds of sensitization. A 674 

clear and definitive identification of a no-effects threshold, perhaps using a combination of in vitro assays 675 

targeted at key events in the AOP, would provide immediate impact on the safe use of chemicals with 676 

sensitizing potential. Some may argue that from a regulatory perspective, due to the wide range of human 677 

sensitivities to chemical exposures, that one must assume that induction of sensitization is a given. The 678 

question then becomes whether a threshold of elicitation can be identified so that a sensitized individual 679 

can be protected from progression of the disease through preventing repeated bouts of secondary 680 

elicitation reactions. Evidence from the widespread use of isocyanates and biocides suggests that these 681 

sensitizing agents may be safely used if the potential for exposure is controlled. At this time, only the 682 

Brown Norway rat model has been demonstrated to be useful to address thresholds of elicitation. This 683 

model is time consuming and expensive, requires expertise in the conduct of inhalation exposures that 684 

may not be available in many laboratories and presents challenges in regional dosimetry related to both 685 

the physical/chemical nature of the test chemical and the anatomy of rats which are obligate nose 686 

breathers. It is, however, justified on a case by case basis in order to derive a safe level of exposure in 687 

occupational settings. 688 

3.7 Identification of research needs  689 

Multiple research needs were identified regarding improving our understanding of chemical respiratory 690 

allergy, including mechanistic and clinical questions. With regard to mechanistic research questions the 691 

areas of interest identified were related to potential differences in tissue level responses (such as 692 

development or evasion of immune tolerance, bioavailability, homing responses) and cell level responses 693 

(mechanistic chemistry, the role of danger signals, and potential for differences in DC activation). The 694 

potential for differential responses between skin and respiratory sensitizers related to immune tolerance 695 

was considered. From a generic immunological perspective the creation of non-self epitopes via protein 696 

adduct formation appears similar for skin and respiratory sensitizers (albeit with different amino acid 697 
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preferences discussed above), yet many of the skin sensitizers are “tolerated” by the respiratory tract. If 698 

some feature of chemical respiratory sensitizers breaks tolerance, that may aid in correct identification of 699 

hazards. Differences in bioavailability, in the context of access to a complete immune system, were 700 

considered as a possibility. Empirical evidence supports differences in cysteine and lysine reactivity, size, 701 

and reactivity may alter the localization of responses to chemical sensitizers, in some cases limiting the 702 

availability of non-self epitopes to the adaptive immune system. It is tempting to speculate that differences 703 

in these parameters for chemical respiratory sensitizers, when integrated into a cumulative activation 704 

signal to the immune system, either generate a qualitatively different signal or exceed some unelucidated 705 

threshold that skin sensitizers do not. Along the lines of bioavailability is the potential for chemical-specific 706 

differences in homing associated with different phenotypes. Put simply, if dermal induction does not result 707 

in responsive immune cells arriving in the lung a reduced likelihood of response might be expected. 708 

At the cellular level a clearer understanding of the mechanistic chemistry, and subsequent biological 709 

responses, underlying sensitization responses was considered desirable. While in silico and in chemico 710 

approaches to assessment have improved, the further extension and refinement of those approaches 711 

could continue to contribute to hazard identification and assessment. Similarly, while several cytokines 712 

have been strongly implicated as key factors in differentiating sensitization responses, a wide range of 713 

“danger signals” for the immune system exist. Which signals contribute or control the resulting cellular 714 

phenotype remains a promising area. One key cell type in guiding immune response is the DC. Whether 715 

skin and respiratory sensitizers result in differential activation or phenotype in DC may provide useful 716 

mechanistic understanding of the subsequent immune response.  717 

Multiple clinical research questions were also identified in the breakout groups. At a basic individual level, 718 

clarity on what fraction of chemical respiratory sensitized individuals also develop positive skin patch 719 

responses could benefit or clarify the diagnostic value of the test. At a higher population level a global 720 

compilation of data on actual human chemical respiratory sensitization cases may be fruitful in 721 

understanding the condition. While multiple national databases exist (Canada, United Kingdom, 722 

Germany, and United States), they operate independently. A powerful illustration of value in unifying 723 

databases can be seen in cancer registries. Regional registries have limited power for use in research, 724 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

31 
 

but national (or international) registries can be more useful (Steliarova-Foucher et al., 2015). Such an 725 

effort naturally comes with challenges including definition or criteria for classifying cases, but may be 726 

worth the additional effort. 727 

The role of IgE in respiratory sensitization remains unresolved. There is a long history of difficulties in 728 

assessing the role of IgE as related to chemical respiratory sensitization (Kimber and Dearman, 2002; 729 

Kimber et al., 2014; Kimber et al., 1998), yet the potential application in hazard identification for humans 730 

remains attractive. Lacking methods to address how (e.g., serum chemical-specific or total IgE by ELISA) 731 

and when to measure (e.g., anytime or only after challenge), and how to apply IgE assessment in 732 

predictive animal models, continues to be a scientific challenge. 733 

A concept shared across breakout groups was the value of a consensus list of respiratory sensitizers. To 734 

that end, developing such a list could begin with agreement on assessment criteria, then build through the 735 

identification and consideration of data compared to the criteria (Selgrade et al., 2012). While there are 736 

widely accepted examples of respiratory sensitizers from which the list could begin (e.g., TDI, MDI, TMA), 737 

a consensus list would ideally not necessarily identify entire classes of chemical. It is unclear how 738 

representative TDI and the like are of all members of their categories (e.g., diisocyanates and acid 739 

anhydrides). As discussed above, chemicals from similar categories or with similar reaction mechanisms 740 

can vary in their electrophilic potential for protein reactivity. In some cases, despite having functional 741 

groups associated with hazard, the inherent reactivity for some chemicals may be too low to induce 742 

sensitization. 743 

Multiple groups also consider skin likely to be relevant to induction. As discussed above, in the light of 744 

potential physiologic consequences from robust immunologic responses in airway versus skin (airway 745 

responses can have a systemic adverse effect owing to impaired gas exchange, whereas skin responses 746 

generally have local adverse effect) it appears all the more plausible that local skin exposure followed by 747 

systemic immune memory could play a contributory, if not major, role in the etiology of chemical 748 

respiratory sensitization. 749 

Among the breakout groups there was divergence regarding whether protection from irritation also 750 
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provides protection from elicitation, and if a single elicitation threshold exists for each chemical. As 751 

summarized above, empirical data derived with TMA support the case that protection from irritation also 752 

covers elicitation, but extending those findings to a broader range of chemicals has yet to happen. 753 

Regarding single elicitation thresholds for each chemical, workgroups were uncertain about whether 754 

current models would be suitable for such efforts. 755 

3.8 Future Strategies for Testing 756 

Concerns, legislation and research needs have precipitated developments such as the MoA concept, the 757 

Tox21 strategy, the concept of Pathways of Toxicity and the AOP framework. The common goal of these 758 

developments is toxicity assessment based upon in-depth understanding of the in vivo physiological and 759 

toxicological processes in humans and on their relation to specific key molecular events or toxicological 760 

endpoints (Ankley et al., 2010; US National Research Council, 2007). This workshop addressed new 761 

technologies and paradigms that are currently transforming these concepts into applicable animal-free 762 

toxicity testing systems by implementation of libraries of generic profiles of genes (genomics), proteins 763 

(proteomics) and metabolites (metabonomics) describing molecular initiators, pathways and key events of 764 

toxicity within tissues, organisms and biological systems (Berg et al., 2011). The key themes for future 765 

testing strategies that emerged from the workshop discussions are described below. 766 

Threshold Assessment. While the expectation of thresholds for both induction and elicitation was 767 

communicated from multiple participants in the workshop, it was also recognized that the methods to 768 

quantify those thresholds are currently limited. The workgroups identified several approaches to 769 

identification of thresholds for elicitation. In assessing potential for elicitation thresholds in animals there is 770 

data to support use of the Brown Norway rat . Beyond animal models, workgroups identified approaches 771 

combining human exposure data with clinical assessment to help delineate thresholds. Examples include 772 

workplace exposure monitoring, post-implementation assessment of engineering controls, and post-773 

exposure evaluations correlated to clinical assessments. 774 

It was generally recognized that identifying a threshold for induction is challenging, and the potential for 775 

thresholds was recognized during the meeting as potentially divergent among groups. The challenge may 776 
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in part be understood in the potential for a reciprocal dose response to chemical sensitizers, wherein low 777 

doses may trigger induction but require high doses for elicitation and high doses triggering induction lead 778 

to reduced doses causing elicitation. Such a relationship creates challenging questions for experimental 779 

assessment of thresholds. One of the justifications for considering respiratory sensitizers as substances 780 

of equivalent concern to carcinogen, mutagens, or reproductive hazards is deriving “a safe concentration 781 

may not be routinely possible and any figure derived would be associated with large uncertainty.” This 782 

stems from difficulties in measuring induction and elicitation thresholds, particularly because the induction 783 

dose may vary depending on the individual. 784 

Role of the LLNA. Multiple workgroups identified the dermal LLNA as a potentially key piece of 785 

information in assessing respiratory sensitization potential. One gap in knowledge identified was that 786 

while the LLNA provides a very solid tool for potency ranking, which appears to translate well between 787 

species, whether the animal model EC3 value is directly, quantitatively translatable to humans is not fully 788 

understood. Several caveats or complications to application of the LLNA were identified: 789 

1. LLNA is capable of identifying proliferation, but simply assessing proliferation may lead to 790 

occasional false positives. 791 

2. Some compounds, particularly corrosive materials, may not be tested in the LLNA. In such a 792 

scenario it may still be possible to conduct an experiment if non-corrosive formulation (i.e., 793 

diluted) test materials can still be used. 794 

3. Due to the Cosmetics Directive the use of the dermal LLNA (i.e. animal testing) is not permitted in 795 

some nations. 796 

Toward a Tiered Framework. The workgroups generally considered a tiered framework for assessment 797 

of respiratory sensitization potential a possibility, particularly for the purpose of screening and 798 

prioritization. Where the data is available, the dermal LLNA and standard inhalation toxicology testing was 799 

considered an appropriate first point in an assessment. If the LLNA indicates the material is not a skin 800 

sensitizer, it was considered unlikely to be a respiratory sensitizer and an assessment could stop there. 801 

By themselves standard inhalation toxicity studies would not typically be expected to provide much 802 
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information regarding sensitization potential; however, they may contribute to a WoE if there is no 803 

pathological findings or if pathologic findings indicate immunologic engagement (e.g., post-nasal 804 

inflammation or lymph node alterations). If the LLNA results indicate sensitizing potential, or there is no 805 

data available, one turns to SAR and in vitro data next. All the existing available data can be used to build 806 

a WoE assessment, which may also assist in the prioritization of any decisions to develop additional 807 

experimental data. 808 

Based on collated feedback from the workgroups, Table 1 was developed to identify potentially useful 809 

information in WoE assessment. Data from the dermal LLNA, if available, could be considered a useful 810 

starting point in an assessment. If results indicate sensitizing potential, or no data is available, assessors 811 

might progress down the table to consider what data is available. Tools for in silico analysis are readily 812 

and freely available (e.g., OECD QSAR Toolbox), so in cases where data is not already available it can 813 

be obtained with relative ease. While the table suggests a progression from in chemico, in vitro, and 814 

finally to in vivo models, the relative contributions are not necessarily rank ordered in Table 1. Consider a 815 

hypothetical example where bioavailability may be low on the basis of in vitro measures, but other tests 816 

suggest effects on DC activation or T cell proliferation. While a simple example, it illustrates why WoE 817 

assessment can be challenging. In some cases deriving in vivo data may not be possible, a challenge 818 

facing the cosmetics industry, and thus would likely need to be built upon in silico, in chemico, and in vitro 819 

data. 820 

Table 1. Summary of Non-conventional methods to ass ess respiratory sensitization 821 

Method(s)/Model(s) Strengths and Weakness Key Reference(s) 
Non-Conventional Methods   
In silico  profiling  
• Mechanistic chemistry evaluation 
• Structure activity relationships1 

+ Rapid 
+ Low-cost 
+ Suitable for diverse range of structures  
+ Suitable for diverse range of chemistries 
- Model dependent on being in domain 
- Need for expert interpretation of borderline 

results 
- Not always empirically confirmed 

(Enoch et al., 2012) 

Direct chemical methods 
• Peptide reactivity 

(DPRA/PPRA/CPRA) 

+ Rapid 
+ Low-cost 
+ Quantitative measure of reactivity 
+ Provides information on amino acid preference 
- Limitations on metabolic functionality in system 

(Aleksic et al., 200; 
Lalko 2013) 
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may lead to false negatives 
- Small database of observed results 

Bioavailability 
• Human cell based assay for 

pulmonary absorption of chemicals 
 

+ Provides indication of chemical access to 
immune system 

- Not an indicator of immune endpoint 

 

Epidermal Inflammation (cytokine 
profile or stress pathway activation) 
• human precision cut lung slice 
• In vitro alveolar-capillary barrier  
• Air liquid interface organotypic 3D 

airways epithelial model 

+ Indicator of danger that may influence immune 
response 

+ May discriminate irritants from sensitizers 
- Metabolic capability may be uncertain 
- Some require high degree of technical 

expertise 

(dos Santos et al., 
2009; Hermanns et 
al., 2010; Roggen, 
2013).  
www.epithelix.com 

DC Activation or Maturation 
• skinGARD 
• respGARD 
• h-CLAT 

+ Direct measure of immune system engagement 
- May overlook compounds requiring metabolism 

(Ashikaga et al., 
2010) 

DC Migration2 

• Langerhans Cell Skin Equivalent 
model 

+ Direct measure of immune system engagement 
+ Reflective of tissue organization that may 

influence response 
- May overlook compounds requiring metabolism 

(dos Santos et al., 
2009; Ouwehand et 
al., 2011) 

Basophil/eosinophil 
• IL-6 responses in myeloid cell 

lines 

+ Indicator of responses that may lead to airway 
reaction 

- May be insensitive to chemical effects early in 
AOP 

- Unclear how many respiratory sensitizers have 
direct activity on mast cells 

 

Genomics 
• Gene expression array analysis 

+ Unbiased, systematic assessment of cellular 
response 

- Requires high degree of technical expertise 
 

(Adenuga et al., 
2012; Boverhof et 
al., 2009; Kuper et 
al., 2008a; Kuper et 
al., 2008b) 

Proteomics 
• 2D electrophoresis and MALDI-

TOF 

+ Unbiased, systematic assessment of cellular 
response 

- Requires high degree of technical expertise 

(Haenen et al., 
2010; Jeong et al., 
2005; Louten et al., 
2012; O'Neil et al., 
2011; Park and 
Rhim, 2011; Zhang 
et al., 2009) 

Conventional Methods   
Dermal LLNA + Strong empirical evidence for absence of false 

negatives 
+ Incorporates entire immune function  
+ Can demonstrate hyperresponsiveness 
- Does not discriminate skin and respiratory 

sensitizers 
- May be confounded by irritants 

 

Cytokine Profiles + Provides useful information to assess Th1/Th2 
skewing 

- May not show hyperresponsive shift 

 

Standard Inhalation Toxicology 
Studies4 

+ Frequently available for inhaled chemicals 
+ Generally rigorous examination of airway 

health 
- Does not evaluate hyperresponsiveness 
- May be difficult to distinguish irritant and 

sensitizer response 
- Exposure paradigm not designed for sensitizer 

assessment 
- Commonly tested strain tend towards Th1 

responses 

 

Subacute repeat exposure with 
challenge 

+ May provide comparative potency 
+ Anchored to observable, adverse responses 
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- Limited empirical data to characterize domain 
- Intratracheal exposure may not model real-

world conditions 
Subchronic repeat exposure-rest 
block with challenge (Brown Norway 
Model) 

+ May provide suitable point of departure for 
deriving reference values (i.e., thresholds, 
NOAELs) 

+ Exposure model reflects periodic nature of real 
world 

+ Design allows for assessing development of 
hyperresponsive phenotype 

- High cost and technical expertise requirements 
- Limited empirical data to characterize domain 

(Pauluhn, 2008; 
Pauluhn, 2014; 
Pauluhn, 2015) 

 822 
One of the key challenges to applying in vitro tests to an assessment is incorporating a systems biology 823 

perspective to the results. Results in DC’s may be confounded if keratinocyte metabolism is a key event 824 

in a chemical’s mode of action. The importance of system-level consideration may be one of the strengths 825 

of the PCLS model. Because it contains multiple cell types in system coherent structure it may be a 826 

particularly rigorous tool for use in an assessment. Workgroups also identified dosimetry as a key 827 

consideration for interpreting results from in vitro models. While the in vitro models may allow for testing 828 

at non-physiologic concentrations, the value of the results may be reduced for developing a solid WoE 829 

assessment. 830 

One of the more promising approaches to WoE assessment for sensitization potential is in Bayesian 831 

approach to the available information. In Bayesian analysis each new piece of information can be used to 832 

refine a prediction. The value of a Bayesian analysis for sensitization has been demonstrated for skin 833 

(Jaworska et al., 2013), which demonstrated a 95% accuracy for hazard classification and 86% accuracy 834 

for potency classification. One of the greatest strengths of Bayesian analysis is that as more data 835 

becomes incorporated overall prediction accuracy may be improved. However, a similar effort for 836 

respiratory sensitizers has not been undertaken to date.  837 

Methodological Considerations. The workgroups noted several methodological characteristics that 838 

warrant consideration when assessing respiratory sensitization potential: 839 

• The maximum tolerated dose for a dermal LLNA may be at the irritation threshold. 840 

• Irritation and induction may be difficult to differentiate using current approaches; applying –omics 841 

technologies may aid the differentiation, but the available datasets are still relatively limited in 842 
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scope. 843 

• Standardizing inhalation induction models may be exceedingly difficult owing to individual 844 

chemical characteristics. Highly reactive chemicals may be scrubbed higher in the airway, 845 

irritating chemicals may change the breathing pattern and thus deposition pattern, and classic 846 

inhalation toxicology challenges related to aerosol versus vapor behaviors will apply. 847 

• For definitive in vivo inhalation studies there are endpoints beyond the typical measures that can 848 

benefit an assessment. In particular bronchoalveolar lavage fluid characterization, exhaled nitric 849 

oxide measurement, enhanced histology (immunohistochemistry), lung function measures (e.g., 850 

methacholine challenge), and even lung weights (wet and dry) were identified as potentially 851 

useful. 852 

Case of the Brown Norway Rat Model. Multiple workgroups considered the Brown Norway rat a 853 

potential model for assessing elicitation. As promising as it appears, its current iteration would make it a 854 

technical challenging model to use, requiring sophisticated inhalation exposure and assessment 855 

technologies conducted over a relatively long study period (66 days). Given the resources necessary to 856 

apply such a model, it is conceivable that the model is better suited to deriving a point of departure for risk 857 

assessment than routine screening for hazard identification. 858 

4. CONCLUSIONS AND FUTURE WORK 859 

While scientific progress has moved forward in the period between the 2004 and 2014 workshops, a 860 

satisfactory answer to the question of how to best assess and characterize chemical respiratory 861 

sensitization remains elusive. Substantial progress has occurred in the development of non-traditional 862 

assessment models (in silico and in vitro), whereas an understanding of some of the more fundamental 863 

pathophysiologic characteristics such as the role of IgE in human chemical sensitization remain largely 864 

where it was a decade ago. The uneven advancement may reflect several challenges, particularly the 865 

high investment cost and complexity of animal models for chemical respiratory sensitization coupled with 866 

the relative rarity (whether real or perceived) of the hazard property. A rational path forward for research 867 

would be studies designed to support or refute key events in an AOP for chemical respiratory 868 
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sensitization (Kimber et al., 2014).  869 

Despite uneven advancement, the near term future for assessment of chemical respiratory sensitizer 870 

potential appears situated to capitalize on multiple lines of evidence to arrive at a conclusion. While not 871 

the simplest method to assess hazards, the WoE approach remains the best available option in the 872 

absence of validated methods for assessment.  873 
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