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Abstract

The mechanical properties of solid-solid contact are important in both engineered

systems and in the explanation of everyday phenomena. However, predicting those

properties from the surface geometry is a challenge for several reasons. The surface of

a solid is typically rough, exhibiting effectively random geometry extending from the

long-wavelength topography down to the atomic-scale structure. The surfaces often

remain separated over most of their area. Even within a single region of contact, the

solids can deform into one of many possible configurations.

In this thesis we use quasi-static molecular dynamics simulation to deter-

mine the mechanical properties of crystalline contacts. We help develop the Green’s

function molecular dynamics method to enable simulations to reach the necessary

wide range of length-scales. We focus on simple interatomic potentials and models to

isolate the underlying mechanical phenomena. We design simulations that test with

atomic-scale resolution the normal contact of rough solids and the quasi-static sliding

of clean crystalline contacts.

We find for rough solids at typical normal loads that the average surface sep-

aration decreases as a logarithm of load. Correspondingly, the mechanical stiffness

associated with the rough surface is proportional to the load. In both the contin-

uum case and the atomistic case, the fraction of the surface in repulsive contact

increases approximately linearly with load. In the atomistic case, the dimensionless

proportionality constant can be increased several times by nanometer-scale features.

Surface steps frequently found on crystalline materials can dramatically increase con-
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ABSTRACT

tact area by increasing the amount of plastic rearrangement and, in turn, decreasing

the average surface stress.

The static friction of a contact between elastic crystals depends sensitively

on contact size, crystal orientation, and the microscopic friction law at the interface.

In non-adhesive commensurate simulations, we show that the friction coefficient de-

creases over several decades as (a2/Rb)−2/3 where a is the contact radius, R is the

sphere radius, and b is the Burgers vector of dislocations that are produced. In-

commensurate contacts, despite exhibiting complex deformations while sliding, show

surprisingly universal characteristics in the large size limit. We discuss the elastic

breakdown of superlubricity by showing the rapid rise in friction from lowering the

material modulus of large incommensurate contacts.

Primary Reader: Professor Mark O. Robbins, Johns Hopkins University

Secondary Reader: Professor Michael L. Falk, Johns Hopkins University
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Chapter 1

Introductory remarks

1.1 Impetus for research on atomic-scale contact mechanics and friction

Nanotechnology aims to provide new capabilities through engineering on sub-micron length-

scales and can lead to the development of microscopic devices with applications ranging

across fields such as medicine and energy. However, one obstacle to designing small machines

is that aspects of continuum solid mechanics theory break down at the atomic scale. That

is a problem, since continuum solid mechanics is the standard tool used to describe how

solids deform. Stress, strain, pressure, and contact area are examples of familiar quantities

defined conveniently within the continuum framework. But at small scales, the discrete

atomic geometry even precludes unique definitions of these quantities. Insight is needed

into how to treat the mechanics of atomic systems.

One part of continuum theory that fails in atomic-scale systems is contact me-

chanics.1 Contact mechanics focuses on the deformations near the region where two solids

meet. It is the conceptual starting point for calculations of friction, adhesion, interfacial

stiffness, electrical contact, and sealing. These interfacial properties, while already impor-

tant in macroscopic systems, become even more dominant in small systems. As the system

size is reduced, surface effects that scale with the area become larger than bulk effects that

scale with the volume. It is also in small systems that continuum approximations for these

properties become especially ineffective.
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CHAPTER 1. INTRODUCTION TO SURFACE MECHANICS OF BARE CRYSTALS

1.2 This thesis

This thesis describes original computational research projects targeting a better under-

standing of microscopic contact and friction. Underlying the work is the recognition that

typical solid surfaces are rough. Surface roughness means that contact only occurs at sepa-

rated regions called asperities. Research questions are divided into questions about a single

asperity and questions about rough (multi-asperity) contacts. Models of single asperities

connect with scanning probe experiments like atomic force microscopy which have provided

much of the experimental insight into atomic scale contact.2 Meanwhile models of full

rough contacts can help explain ubiquitous phenomena in engineered devices or in everyday

experiences.

The rest of this chapter, Ch. 1, describes the context of the research. Ch. 2

provides theoretical background that supports the remaining chapters. Ch. 3 explains the

Green’s function molecular dynamics simulation method, emphasizing our extensions to it.

Ch. 4 describes the contact stiffness of randomly rough continuum surfaces. Ch. 5 reports on

contact between randomly rough atomic surfaces. Ch. 6 and Ch. 7 explain the static friction

of spherical crystalline asperities. Ch. 8 synthesizes the conclusions with implications for

solid friction in general.

1.3 Contact and friction as a classic problem

This work is within the field of tribology, which addresses questions related to the friction

and wear between solids. The history is long, as friction was studied already by da Vinci,

Amontons, and Coulomb.3 Early ideas about simple geometrical origins of friction were

discarded as research revealed the complexity of friction in different systems. Beginning

in the 1960’s, the British government recognized the economic importance of the research

2



CHAPTER 1. INTRODUCTION TO SURFACE MECHANICS OF BARE CRYSTALS

and helped support the emerging science under the name tribology.4 At first, primarily

simple experiments and phenomenological research occurred under the title of tribology. At

present, advances in experimental techniques, theory, and computer modeling are providing

a more fundamental understanding at a time when potential application to new mechanical

systems is growing.

Appreciation of the problem of solid-solid friction comes from recognizing the

multiple length scales that affect friction. Surface roughness on many objects is often ap-

proximately random self-affine fractal over decades of lengths.5,6 There is long-range elastic

coupling between different parts of the system.7,8 Moreover, even atomic-scale structure

affects what elastic deformations may occur (c.f. Refs. 9–12). Chemical bonding and

electronic degrees of freedom at the interface can be important,13 as well as what energy

dissipation can occur within the bulk.14 Friction, an indispensable concept in macroscopic

systems, is a complex emergent phenomenon from smaller-scale processes.

In much of this work we focus on one of the most promising systems of study,

bare crystalline materials. Surfaces are often not bare, and in fact loose particles trapped

between solids, termed “third bodies”, can often be responsible for solid-solid friction.9

However, bare crystalline lattices serve as a fundamental starting place to understand the

interplay of atomic-scale interactions and long-range elastic interactions in contact me-

chanics. The regular ordering of atoms makes the systems more transparent to analysis.

These systems promise some of the clearest insight into ubiquitous mechanisms of fric-

tion. Moreover, bare crystal sliding occurs in situations ranging from fundamental force

microscopy experiments15,16 to metal-on-metal sliding in industrial applications.17 Finally,

precise engineering in future small devices may also attain very low friction coefficients from

“structural-lubricity” of bare crystals.18

A deeper understanding has come hand-in-hand with more powerful computers and

computational techniques. In this work we adapt the method of Green’s function molecular

3



CHAPTER 1. INTRODUCTION TO SURFACE MECHANICS OF BARE CRYSTALS

dynamics (GFMD), initiated for tribology by Müser and Campaña.19 The method allows

large portions of the atomic lattice to be integrated out of an MD simulation, reducing

computation time. The technique, implemented on graphical processing units (GPUs),

makes it possible to simulate the necessary system sizes, effectively consisting of billions of

atoms. We hope that the results presented here will be useful for future research into the

properties of rough contact and the mechanisms of friction.
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Chapter 2

Background: Contact mechanics, friction, and lat-

tice dislocations

This chapter summarizes work useful to the understanding of the following chapters and

may be referred to as needed.

2.1 Continuum pictures of single-asperity sliding

Standard textbooks such as Johnson’s Contact Mechanics (Ref. 20) describe the continuum

picture of the stresses that arise between contacting solids. In this section we briefly mention

a few key results from that reference. Using isotropic linear elasticity, each solid has a

Young’s modulus E, Poisson ratio ν, and stress field σ within its domain. The dot product

of the 3× 3 tensor σ with the surface normal direction is the interfacial traction, τ = σ · n̂,

and the component of τ normal to the interface is the normal pressure, p = τ · n̂.

2.1.1 Hertz - normal pressure and contact radius

Many geometries can be mapped to a sphere contacting a large, flat substrate.20 This is

the case, for example, for two lightly-contacting, curved surfaces forming a smooth asperity.

The pressure under a sphere of radius R at low pressure follows the analytic solution given

by Hertz:20

p(r) =
3Fz
2πa2

√
1− r2/a2 (r ≤ a) (2.1)

a =

(
3FzR

4E ′

)1/3

(2.2)

5



CHAPTER 2. BACKGROUND: MODELS AND PREVIOUS RESULTS

where r is the distance from the center of the contact, a is the contact radius, and Fz is

the normal load. The pressure is zero outside the contact, at r > a. The elastic parameters

of each solid enter only as the contact modulus E′ ≡ ((1− ν21)/E1 + (1− ν22)/E2)
−1 where

subscripts refer to each of the two solids. Since only E′ enters in the equations above, it

is often convenient to simulate with an infinitely-stiff sphere, E2 → ∞. Then the Hertz

pressure produces surface displacements in the contact

uz =
πp0
E ′4a

(2a2 − r2) (r ≤ a) (2.3)

ur = −(1− 2ν1)(1 + ν1)a
2p0

3E1r
(1− (1− r2/a2)3/2) (r ≤ a) (2.4)

which follow the shape of the sphere.

2.1.2 Uniformly displaced circular contact

After applying a normal load to the two solids to produce a contact radius a, consider

applying a lateral load Fx. If the upper solid is very stiff and the surfaces remained pinned

in the contact, the contacting surface of the substrate will be uniformly displaced from its

initial position. An x-traction of the form

τx = q0/
√

1− r2/a2 (2.5)

with magnitude q0 ≡ Fx
2πa2

produces the required surface displacement within the contact

(at r ≤ a):20

ux = π(2− ν)q0a/(4G) (a constant) (2.6)

uy = 0 (2.7)

uz = −(1− 2ν)q0a

2G
(a/r −

√
a2 − r2/r) (2.8)

6



CHAPTER 2. BACKGROUND: MODELS AND PREVIOUS RESULTS

A uniqueness theorem20 guarantees that τx as given above is the unique traction to create

a laterally-displaced contact. Note the singularity in τx at the contact edge, r → a. Near

the edge, the geometry is the same as at a crack tip, and the stress singularity has the same

well-known inverse square-root form.

A related geometry is a circular contact displaced uniformly in the normal direc-

tion. This occurs due to normal loading of a rigid flat punch on a flat elastic solid. The

normal pressure has the same form as above, p = p0/
√

1− r2/a2 where p0 ≡ Fz
2πa2

and there

is the same square-root singularity at the edge. Within the contact (r ≤ a) this produces a

uniform normal displacement uz = π(1− ν2)p0a/E.20

2.1.3 Mindlin model - local friction coefficient

The Cattaneo-Mindlin model21 describes the case where the solids mentioned above can

locally unpin and slip wherever the lateral traction is above a threshold which may be

called τmax. In tribology it is often found9 that the shear strength of the interface can have

a dependence on pressure and may be written τmax ≈ τ0 + αp. Here, τ0 is independent of

pressure, and α is a dimensionless constant. The Mindlin model assumes that the first term

is negligible, so that the traction required to slip follows Amonton’s law: τmax = αp.

Because the Hertzian pressure goes to zero at the edge, the edges in the Mindlin

model can slip easily while the center remains pinned. The radius of the pinned region is

c = a(1− Fx/(αFz))1/3. Outside the pinned region, there is an annulus c < r < a that has

slipped, where the sliding-direction traction remains at τx = αp. Continued incremental

lateral loading causes the pinned region to shrink until the whole surface has slipped. The

maximum traction occurs when steady-state sliding is reached, and everywhere τx = αp.

2.1.4 Savkoor model - pressure-independent friction and fracture

The Savkoor model22 is an example of an alternative to the Mindlin model and connects

to work in Ch. 6 and Ch. 7. The Savkoor model assumes an interfacial shear strength

7



CHAPTER 2. BACKGROUND: MODELS AND PREVIOUS RESULTS

independent of pressure. Again there is a center region that is pinned, and outside of that,

a slipped annulus where the traction remains at τx = τmax but now τmax = τ0 is a material

constant. At the edges of the pinned region, the situation is taken to be the same as at a

crack tip. To unpin more of the contact, lateral loading is increased until a fracture criterion

is met, i.e. that the stress intensity factor exceeds a critical value.22 Increasing the lateral

load makes the crack front propagate, and the annulus region of slip grows inward. The

maximum friction force occurs before the contact is entirely unpinned. Once everything is

unpinned and in steady state sliding, the traction is everywhere τx = τ0.

2.2 Dislocations

Dislocations are topological defects in a crystal lattice discussed in standard texts (c.f.

Refs. 23–25) and they become important in much of the analysis in this thesis. They are

characterized by their Burgers vector, b, and their line direction, ξ̂. Edge dislocations,

where b and ξ̂ are perpendicular, can be considered as the insertion of an additional half-

plane of atoms into the crystal lattice. A screw dislocation is the case when b and ξ̂ are

parallel (or anti-parallel), and for other angles the dislocation is called mixed character.

Dislocations create long-range elastic fields in the solid. At long distances, the

stress and strain decay inversely with the distance from the dislocation line segment,24

∼ 1/r. The singularity at the origin is regularized by non-linearities on the length scale

bcore that characterizes the dislocation core width. The total dislocation energy is then the

elastic plus the core energy.26

Continuum analysis shows that dislocations move in response to the stress field.

The configurational force on an isolated dislocation segment of length ξ in an infinite uniform

crystal lattice is given by the Peach-Koehler law, F = (b · σ)× ξ.23 The dislocation moves

if the component of the stress σ that drives the dislocation in its glide plane exceeds a

threshold called the Peierls stress, τPeierls. The stress σ may be due to other dislocations,
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image forces from free surfaces, or externally applied stress. Not included in the Peach-

Koehler law is that a gradient in corrugation amplitude or elastic modulus also produces a

force on a dislocation. This occurs in simulations in Ch. 7.

Dislocations that naturally form between two slightly dissimilar lattices are called

misfit dislocations.25 For example, consider a large contact between lattices that are iden-

tical and aligned. Atoms of one solid are all in registry with atoms of the opposite solid. If

the lattice constant of one of the solids is slightly increased, the resulting surface mismatch

is accommodated by misfit edge dislocations. If instead one of the solids is slightly rotated,

producing a twist boundary, the mismatch is accommodated by misfit screw dislocations.

Dislocations between mismatched lattices figure prominently in Ch. 6 and it is interest-

ing to consider what is the stress field σ that creates and moves the misfit dislocations.

The stress field required to force two slightly dissimilar lattices to be commensurate would

constitute a large amount of elastic energy. This is the stress field σo in which it is energet-

ically favorable to introduce dislocations. The 1/r stress fields created by the dislocations

reduce the otherwise large stress and lower the system energy. The total stress, σ, that

drives a dislocation is the stress field needed to drive the dislocations out, σo, combined

with the stress from other dislocation segments, image forces from free boundaries, and any

additional applied stress.

2.3 Dislocation mediated sliding mechanism of Hurtado and Kim

Hurtado and Kim revisited single-asperity sliding from a lattice dislocation viewpoint.27,28

They considered commensurate contacts. If lattice dislocations can be accommodated at the

interface, then the rise in stress at the edge discussed in Sec. 2.1 can nucleate a dislocation.

Hurtado and Kim use a nucleation criterion that implies that the traction of the pinned-

surfaces must reach a sufficient value at a distance d∗ (a material parameter) from the edge.

Due to the dominating 1/
√
d∗ singularity,29 this nucleation criterion leads to an average
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traction through the contact at the time of nucleation that decreases with contact radius,

τfric ∼ (a/d∗)−1/2 where τfric ≡ Fx/πa2 . The analysis predicts that τfric would transition

to a constant at both small contact radius27,29 (a < d∗) and very large contact radius28

(when τfric drops to τPeierls). The reason for the saturation at small contact radius is that

no dislocation can fit in the contact; the surfaces are effectively rigid on that length scale

and the full contact slides at the friction stress τfric. The reason for the saturation for

large contact radius is that there will be many dislocations in the contact which, to move,

requires a traction equal to τPeierls to be applied.

2.4 Models of dislocations

2.4.1 Frenkel-Kontorova model

The Frenkel-Kontorova (FK) model is a simple 1D model that exhibits an analog to disloca-

tions in 3D crystals.30 N particles are linked in a line by N linear springs of stiffness k and

equilibrium spacing b′. There are periodic boundary conditions so that the last and first

spring are also connected and initially sit at the equilibrium spacing. A sinusoidal force f is

applied so that at position x the force is f(x) = fmaxsin(2πx/b) where fmax is a constant.

A technical aside is that Nb′/b must be a whole number so that the force field is continuous

across the periodic boundary.

If N is sufficiently large and b and b′ are only slightly different, then kinks form in

the system, analogous to the dislocations in 3D crystals. The characteristic width of a static

kink is given by30 bcore = b
√
kb/(πfmax). Analysis is simpler when bcore � b and the system

reduces to the discrete form of the Sine-Gordon equation.30 Then the atomic displacements

within the kink are (2b/π) tan−1 (exp(−x/bcore)).30 The Peierls force required to move a

kink decreases with bcore as (bcore/b)
2exp(−π2bcore/b). If there are two well-separated kinks

in the chain, the force between them falls exponentially with separation.25

The FK model is also useful for analogies with structural superlubricity. When
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bcore becomes sufficiently large (i.e. fmax becomes sufficiently small), the Aubry transition

occurs and there is perfectly frictionless sliding of the infinite chain.30 That is, the ground

state energy is invariant to mean translations of the particles. Near the transition at the

critical force f cmax the Peierls force scales as a power-law31,32 of (fmax − f cmax). If N is not

infinite or one of the springs is removed to create free ends, no frictionless sliding occurs.30

2.4.2 Peierls model of the dislocation core

The Peierls-Nabarro (PN) model is a foundational model of a dislocation core in a 3D solid

discussed in standard textbooks (c.f. Ref. 23). It is somewhat similar to the FK model of a

kink.25 In the PN model, the particles may be analogous to atoms of a crystalline surface

and the sinusoidal force may be considered to be the corrugation of the opposing crystalline

surface. Then the nearest-neighbor spring interactions between the atoms are replaced

by interactions of 3D linear elasticity. That is, a bond stretched ∆b at x′ corresponds to

a strain ∆b/b which, from linear elasticity in this geometry, produces a stress σxy(x) =

(G/π(1 − ν))(∆b/(x − x′)) at position x. The amplitude of the corrugation is assumed to

be related to the shear modulus by fmax = Gb/(2πh) where h is the vertical separation of

the atomic planes.

The PN model produces predictions that are widely used for qualitative analysis of

dislocations.25 The atomic displacements within the dislocation are b/2−(b/2π)tan−1(x/bcore)

and bcore = h/(2−2ν). The Peierls stress to move the dislocation is (2G/(1−ν))exp(−4πbcore/b).

Unsurprisingly, the force in the PN model between two dislocations separated by a large

distance r0 agrees with the continuum elastic analysis; that is, the force falls as 1/r0.

2.4.3 The Γ-surface (Generalized stacking fault energy)

The dislocation core width and the configuration of atoms within the core are determined

by the atomic interactions. Most materials do not have a sinusoidal force law as used in

the Peierls-Nabarro model, and it is useful to consider what the effective force law is and
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what determines it.

An approximation for the effective force law comes from the Γ-surface or general-

ized stacking fault energy.33 To define the Γ-surface, the perfect crystal lattice is divided

into top and bottom halves by a cutting plane. Both lattice-halves of atomic nuclei are

held rigid. The top half is displaced laterally quasi-statically, while allowing the normal

displacement to relax to match the applied external pressure. The energy (divided by in-

terfacial area) as a function of lateral displacement through the unit cell is the Γ-surface.

The Γ-surface is therefore periodic with the surface unit cell and has minima near any sta-

ble stacking fault configurations. In general the Γ-surface will have dependence on normal

pressure, Γ(x, y, p), and may be Taylor expanded in p.

Using the Γ-surface to determine the force law implies several assumptions. In

some materials bcore is not large compared to the Burgers vector b, so lattice distortions

are not small and may be out-of-plane. But using the Γ-surface implies that at any place

in the dislocation core the atoms approximate the rigid translated lattice configuration.

Moreover, “going up and over atoms” may locally raise the normal pressure, requiring use

of a Γ-surface of a different pressure. If these corrections can be ignored, then the magnitude

of the maximum slope of the Γ-surface along the sliding path can be used as fmax/b
2 in the

Peierls-Nabarro model.

2.5 Commensurability and sliding of flat crystalline surfaces

The commensurability of two crystalline surfaces affects the friction between them during

sliding. Commensurate surfaces are those that systematically share a common periodicity.18

This is illustrated simply with the FK model of two lattices (of lattice constants b and b′)

sliding relative to one another when the spring constant k is infinite. In this case, the FK

chain slides rigidly and, if b′ = b, then the sinusoidal force contributes to all atoms coherently

during sliding. If the ratio b′/b is a rational number, then the sinusoidal force will contribute
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coherently on the length scale of the common period of b and b′. Therefore when b′/b is a

rational number, the system is called commensurate. If however b′/b is irrational, then all

phases of the sinusoidal force will be sampled equally as the system becomes large, and the

force systematically cancels. Such a system is incommensurate.

The same distinction is true for sliding of the 2D interface between 3D crystals.

A contact between two lattices is commensurate if the atoms of one surface all sample

the same forces at the same time during rigid sliding. More generally, if the two surfaces

share a common periodicity in the sliding direction, then periodically-tiled regions of the

surface contribute coherently and the contact is commensurate. In contacts larger than the

common period, the static friction force Fs grows linearly with the contact area Fs ∝ A.

Only if the sampled sliding paths show no systematic periodicities, so that all phases are

sampled uniformly, is the contact incommensurate. Each atom contributes incoherently and

the friction does not rise as quickly with area. The static friction is found to go as Fs ∝ Aγ

where 0 < γ < 1.0 depending on contact shape.16 Simulations in Ch. 6 find that only the

upper bound for static friction decreases with power-law scaling, whereas dramatic drops

at special sizes can show friction coefficients many decades smaller.

2.6 Superlubricity

The term superlubricity was coined by Hirano and Shinjo in 1991.34,35 In that work they

found very low friction in simple computational models of sliding flat, rigid, incommensurate

crystalline latices. They simulated with small systems (L ∼ 100) with periodic boundary

conditions and no free edges. The assumption of rigidity was reduced by allowing the surface

atoms to deform slightly while holding rigid the second layer of atoms below the surface.

As long as the elastic compliance was not too great, no instabilities occurred during sliding.

This indicates that kinetic friction can go to zero as the sliding velocity goes to zero.18 A

related observation is that the ground state showed evidence of being invariant to relative
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translations of the two solids in certain directions or in all directions.34 This is in analogy to

the Aubry transition of the FK model. If the rigidity was reduced even further, frictionless

sliding was lost in all directions.

Superlubricity has been investigated in more detail since then. The term structural

lubricity is used to describe low static friction whereas superlubricity may also refer to

low kinetic friction.18 Studies of the size effects started with a focus on the rigid limit.36

Experiments also showed promising indications that the phenomenon could be realized with

nano- and micro-scale surfaces (c.f. Refs. 12,16,37).

Many complications can arise in real systems that destroy the low friction. Sliding

flakes of graphite can deform out-of-the-plane and pin at their edges .38 Torques will tend

to twist the contact to commensurate configurations .39 Loose contaminant atoms can pin

the surfaces.9 Finally, elastic distortions can allow the surface to lock together. The role of

this mechanism in incommensurate 3D solids is the subject of Ch. 6.

2.7 Surface topography of rough surfaces

Many surfaces are well-described as random and self-affine fractal.40–42 That is, scaling the

geometry in lateral and normal directions by different factors creates a surface with the

same statistical properties as the original surface. One reason that this property of surfaces

is common is that many physical processes like brittle fracture or particle deposition can

naturally produce self-affine scaling.43,44 Self-affine surfaces have a root-mean-square (rms)

change in height dh that scales as a power law of the rms change in lateral position, x0.

That is, dh ∼ (x0)
H . H, called the Hurst exponent, is frequently measured to be between

0.5 and 0.9 for solid surfaces.42 The power spectrum of the height follows a power law

C(q) ≡ 〈|h̃(q)|2〉 ∼ q−2−2H where h̃(q) is the Fourier transform of the height. In real systems

the scaling only holds between two limiting wavenumbers, qmin and qmax. In continuum

simulations, it is common45 to have the spectrum exactly follow that scaling, then go to a
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constant at wavenumbers below qmin and go to zero above qmax. It is also common to have

random phases for each Fourier component drawn from a uniform distribution.

2.8 Rough surface contact mechanics

2.8.1 Independent-asperity theories of continuum elastic rough contact

The Greenwood-Williamson model laid the groundwork for a range of independent asper-

ity models. “Independent” means that the asperities do not interact elastically. In the

Greenwood-Williamson model, each asperity is approximated as Hertzian, and uses the

normal load vs displacement of a spherical contact.6,22 To describe the topography, the

model takes as input a sphere radius R and an initial distribution of asperity heights above

the surface. The model may then be used to predict the contact area, displacement, and

gap between the surfaces as a function of load. Of interest is the relationship between

contact area and load for Gaussian-shaped distributions of height. If the surface h(x) has

rms slope h′rms ≡
√
〈|∇h(x)|2〉, then the approximate relation for contact area at low con-

tact area is shown46 to be AE′ = κFz/h
′
rms with dimensionless proportionality constant

κ =
√

2π ≈ 2.5.

2.8.2 Continuum elastic rough contact including interactions

Simple statements can be made about rough contact that do not assume independent as-

perities, or even bother identifying what the asperities are. In an isotropic, linear elastic,

continuum description we recall that there is a mapping from contact between two rough

elastic solids to a simpler problem: contact between one rough-rigid and one flat-compliant

solid. The mapping may be done if the roughness is small, and the mapping preserves

the gap and the contact modulus. The only salient variables then are the normal load Fz,

contact area A, a modulus like the contact modulus E′, and the geometry of the rough-

ness.7 The quantity Fz/AE
′ is dimensionless and so must depend on the roughness in a

dimensionless way. For a linear treatment of randomly rough surfaces, the simple statistical
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quantity with the allowed properties is the rms slope, h′rms. Random rough surfaces at low

contact area therefore may be expected to follow AE′ = κFz/h
′
rms with some dimensionless

proportionality constant κ. This is found in the Greenwood-Williamson model as well as in

several extensions to it.5,47,48 Note that the strain needed to conform to the rough surface

is approximately equal to the local surface slope, h′rms, so it is natural that the mean normal

pressure Fz/A is proportional to h′rms.

Another useful relation for contact theory is the elastic energy to deform the surface

of a solid. If the elastic surface is deformed an amount u(x), the elastic energy is given

by Uel = EA0
4(1−ν2)

∫
d2qqC(q).45 Here the power spectrum is the Fourier transform of the

height auto-correlation function, C(q) = 1
(2π)2

∫
d2x〈u(x)u(0)〉e−iq·x. More recent theories

of rough contact made progress building on these relations.

2.8.3 Persson’s scaling theory of rough contact

Persson developed a theory that includes elastic interactions approximately.48–50 A brief

account may be given as follows.

At first, only the zero spatial-frequency (the mean height) of the topography is

considered. The distribution of pressure on the surface is a delta function at the mean

pressure. Then, additional low spatial-frequency topography is considered. The surface

spectrum is taken to be zero at wavenumbers above some low value q0. q0 may be called

the magnification, since smaller features are not included. If each component of the spec-

trum has random phase, the height distribution is approximately Gaussian. Being long

wavelength, the surface remains in full contact, and, being linear, the pressure distribution

is also a Gaussian centered at the mean pressure. The spreading of the delta function con-

stitutes the Green’s function solution to a differential equation for how the pressure changes

with increasing magnification, q0. The differential equation is the one-dimensional diffusion

equation where magnification takes the role of time. Then, since negative pressures are not
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allowed in repulsive contact, a boundary condition is applied to the diffusion equation that

the distribution of pressures be zero at the origin, p = 0.

For self-affine surfaces, this method gives area proportional to load with propor-

tionality constant κ =
√

8/π ≈ 1.6. Extensions to the theory approximately account for

adhesion, predict surface separation, and predict the spatial distribution of pressure.
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Chapter 3

Green’s function molecular dynamics

Contact and friction between solids can depend on atomic-scale features, large-scale elastic

deformations, and multi-scale surface topography. This often requires that large systems be

considered, but large systems can be prohibitively time-consuming to simulate directly. This

chapter describes how we met this challenge by further developing the method of Green’s

function molecular dynamics simulation19,51,51 (GFMD). After an introduction, Sec. 3.2

describes GFMD for the case of atomic pair potentials. Sec. 3.3 explains the extension to

many-body potentials. Sec. 3.4 describes procedures to solve for the Green’s function from

the dynamical matrix. Secs. 3.5-3.7 discuss implementation and testing of the method

with emphasis on contact mechanics problems. The last section makes connection with the

Green’s function of continuum elasticity, important for later chapters.

3.1 Introduction

A large number of interfacial problems are challenging to simulate using brute force methods.

The response depends on details of atomic interactions at the interface, and also on long-

range elastic deformations of the bulk. This situation arises in studies of contact and

friction, in scanning probe experiments1,52 or between atomically rough surfaces,42,53 and

in fracture of brittle54 or ductile55 materials. The elastic response of the supporting solid can

also appreciably influence chemi- and physisorption processes at crystal surfaces, including

stress corrosion56 and thin film growth.57

There has been great recent interest in accelerating simulations by treating each

spatial region with the modeling method that most efficiently captures material response.54–56,58–61
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An explicit atomistic treatment is essential at the interface where gradients in stress, strain

and chemical composition may be large. Long-range elastic deformations in the bulk extend

to depths that are comparable to the length scale of variations along the interface L, but

the strains at these depths may be small enough to treat with models that assume slow

variations and/or linear response.

A variety of methods for approximating the response of the substrate have been

proposed and many are reviewed and contrasted in Refs. 58 and 60. Most treat the inter-

face atomistically and transition to a finite element description for the bulk. In general this

introduces ghost forces near the interface or leads to a model with no underlying Hamil-

tonian.58,61 There is an alternative approach that avoids both problems. An atomistic

description is retained throughout the system, but atomic interactions in the substrate are

treated in the harmonic approximation. The linear response of the substrate can then be

efficiently calculated using Green’s function methods.

3.1.1 Previous work

Traditionally, Green’s function techniques have been used to describe the elastic response of

the infinite or semi-infinite bulk to inclusions such as point, line or planar defects by invoking

the Dyson equation.62–65 Recent extensions of this approach have included a full nonlinear

atomistic description of the defect coupled to a harmonic lattice66 that smoothly connected

to a continuum description at large distances.67–69 Green’s function techniques have also

been employed to solve boundary value problems in continuum elasticity.70–72 An atomistic

system can be coupled to a continuum boundary,69,73 but the strain field will only match

exactly for long wavelength deformations. Recently, Campaña and Müser19 showed that a

Green’s function approach can be used for the solution of atomic-scale contact problems. In

their work, the surface Green’s function is evaluated from a fluctuation-dissipation theorem.

Assuming that the underlying potential is harmonic, the mean response is not affected by
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these fluctuations. A similar method was used to find the dynamic Green’s function in

complex geometries by Cai et al.74 Most applications of the Green’s function approach to

contact problems19,53,75–77 have used the analytic solution78 for simple cubic lattices, or the

isotropic continuum Green’s function.42,79 An implementation of the code has been ported

to the widely used molecular dynamics package LAMMPS.51,80,81

There are two difficulties with the Green’s function approach as it has been imple-

mented for contact problems. One is that the formulation does not include all the atomic

forces near the interface between explicit and harmonic regions. The neglected forces vanish

in the special case of nearest-neighbor interactions at zero pressure, which has been consid-

ered in most past work. In other cases, these forces must be included or the coupled system

does not satisfy Newton’s third law. Neglecting them creates problems similar to ghost

forces in other methods58 and creates artificial surface relaxation at the elastic/explicit in-

terface. The second difficulty is that calculating the Green’s function with the fluctuation

dissipation theorem can require significant computation. All L3 atoms in the substrate must

be included and sampling long wavelength modes correctly requires times that are at least

of order L.82 Thus, while the Green’s function only needs to be calculated once, it may

require more computational effort than calculations using it.

3.1.2 Rigorous GFMD

In this chapter we describe an approach that includes all interatomic forces near the inter-

face and allows rapid calculation of the elastic Green’s function for an arbitrary interaction.

Fourier transforming the equations of motion in the plane of the substrate decouples the

equations for each in-plane wavevector ~q.83 The remaining coupling between atomic planes

of the substrate is effectively one-dimensional and can be solved for any crystalline solid

without the need of separate molecular dynamics simulations and fluctuation-dissipation

analysis. Prescriptions for solving the equations using a transfer matrix formulation83,84
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and a renormalization transformation85,86 are described. Full dynamical equations are de-

veloped for a number of crystals and interactions, and then implemented for static problems.

The static Green’s function can be precomputed in a time that is O(L2 lnL) and thus rep-

resents a negligible fraction of the total computation time for contact problems. The only

approximation intrinsic to this construction is linear response sufficiently far below the

surface.

To demonstrate that the resulting approach provides seamless boundary conditions

for interfacial calculations we apply the method to three cases in Sec. 3.7. The first is

relaxation of the spacing between atomic planes near a free surface. Full atomistic results

are reproduced by our method, but previous formulations do not include the forces that

produce surface relaxation.19,51 We next consider Hertzian contact between a rigid sphere

and elastic substrate and show that a few planes of explicit atoms on the Green’s function

layer allow the anharmonic corrections to Hertz theory to be captured. Our last example

is contact of a randomly-rough, stepped surface with a flat substrate. A few planes of

explicit atoms allows both anharmonic effects and subsurface plasticity to be captured up

to relatively high contact areas.

3.2 Elastic surface Green’s functions

We start from the total energy E({~riα}) of the crystal as a function of the positions of

all atoms ~riα. The energy may have arbitrary form and could be replaced by the free

energy to model the response at finite temperature. Atoms are then partitioned into three

types (see Fig. 3.1): Substrate atoms, boundary atoms and explicit atoms. The explicit

atoms may be anything that interacts with the boundary atoms, including a continuation

of the crystal, adsorbed atoms, or atoms from an opposing surface. The goal of the Green’s

function formulation is to absorb the linear response of the substrate atoms into an effective

interaction between boundary atoms. This reduces the total number of degrees of freedom
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Figure 3.1: Side view of a face-centered cubic (fcc) crystal with a (100) surface showing
the layer structure for second-nearest neighbor interactions. The top atoms are treated
explicitly. In this case they represent a continuation of the crystal. The boundary layer
(α = 0) is thick enough to prevent direct interactions between explicit and substrate atoms.
The effect on boundary atoms from the elastic response of substrate atoms is captured
using the Green’s function. The force-constant matrix D has diagonal components U′0 and
U′ within the layers and off-diagonal components V coupling adjacent layers. Layers are
labeled by the index α and unit cells in each layer (square boxes) by the index i. Arrows
show the atoms that produce a force on one atom in the boundary layer. Only the atoms
in the boundary and substrate (solid arrows) contribute to the net elastic force ~fi0. As a
result, there is a net force that would be balanced by the force from explicit atoms (dashed
arrows) if the explicit atoms continued the fcc crystal.

to those of the boundary and explicit atoms.

The width of the boundary region must be greater than the range of interactions

so that there are no direct interactions between explicit and substrate atoms. The boundary

layer is constructed so it satisfies this condition and contains an integer number of primitive

unit cells along its width. The substrate is then divided into layers of the same width, so

that all atoms are accounted for and each layer only interacts with adjacent layers. In the

following, Greek indices α, β, . . . identify layers, with the boundary layer at α = 0 (see

Fig. 3.1). Latin indices i, j, . . . will number unit cells within each of these layers.

The total potential energy is divided into terms that involve interactions between

explicit atoms, Eee, between explicit and boundary atoms, Eeb, and between boundary and
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substrate or boundary atoms, Ebs:

Etot = Eee + Eeb + Ebs . (3.1)

The first two terms are treated exactly, while Ebs is treated in the usual harmonic ap-

proximation.66,87 The energy Ebs is expanded in terms of displacements about a reference

configuration. This is usually the ground state, but could be a crystal under a uniform

strain that most closely approximates the loaded crystal. For example, under high contact

pressures, there will be a mean compressive strain that extends throughout the substrate.

We will denote the set of displacements from equilibrium for the nc atoms in unit

cell i in layer α by the 3nc dimensional vector ~uiα. The harmonic approximation for Ebs

can then be written as:

Ebs = E0 −
∑
iα

~fiα · ~uiα +
1

2

∑
iαjβ

~uiαDiαjβ~ujα +O(u3), (3.2)

where E0 is the energy of the reference state, ~fiα is a 3nc dimensional vector giving the

force on atoms in the iα unit cell, and Diαjβ is the 3nc × 3nc force-constant matrix:

Diαjβ ≡
∂2Ebs

∂~uiα∂~ujβ

∣∣∣∣
~uiα=0,~ujβ=0

. (3.3)

Since we expand about a static solution, the total force

~fiα ≡ −
∂Ebs

∂~uiα

∣∣∣∣
~uiα=0

(3.4)

must vanish for all substrate atoms (α > 0). For boundary atoms, ~fi0 is generally not zero

because it only includes the boundary and substrate interactions. These are indicated by

solid arrows in Fig. 3.1, and the forces coming from explicit atoms are indicated by dashed

arrows. In this figure, the explicit atoms continue the ideal crystal and exert a force that

is equal and opposite ~f expi0 = −~fi0. If the crystal is terminated at the boundary layer, the
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Figure 3.2: Similar to Fig. 3.1, but top view of atoms at top of boundary layer. Periodicity
in this plane is used to decouple the response at different wavevectors in the first Brillouin
zone of the crystal. The solid and dashed lines show the conventional and primitive unit
cells for the surface.

unbalanced forces give rise to the well-known phenomena of surface relaxation.88 Previous

applications of Green’s functions to contact mechanics19 did not include ~fi0. However they

generally focused on nearest-neighbor interactions and crystals at zero pressure. For this

very special case ~fi0 vanishes and there is no surface relaxation. In almost all other cases

the forces must be included.

The dynamical equation for the boundary and substrate atoms can now be written

as:

m
∂2~uiα
∂t2

+
∑
jβ

Diαjβ~ujβ = δ0α(~fi0 + ~f exp
i0 ) (3.5)

where m is a diagonal matrix whose elements equal the mass associated with each degree

of freedom in the unit cell, the forces are only nonzero for the boundary layer, and ~f expi0 is

the force from explicit atoms. Note that even if explicit crystalline atoms are present on

top of the boundary layer, the forces ~fiα and f expiα do not vanish individually and hence we

need to consider both explicitly.

The dynamical equation is simplified by transforming into reciprocal space within

the plane of the layers and remaining in real space in the perpendicular direction. Because

the crystal retains translational symmetry within the plane (Fig. 3.2), the equations for each

two-dimensional wavevector ~q in the first Brillouin zone (BZ) are decoupled. We denote the
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set of two dimensional lattice vectors that connect the unit cells within the boundary layer

by ~Ri0. The unit cells in all other layers are then located at ~Riα = ~Ri0 + α~c where ~c is the

basis vector connecting unit cells in adjacent layers. The Fourier transforms in space and

time are defined as:

~uα(~q, ω) =
∑
j

∞∫
−∞

dt~ujα(t)e−i~q·
~Rj0+iωt, (3.6)

~ujα(t) =

∫
BZ

d2q

ABZ

∞∫
−∞

dω

2π
~uα(~q, ω)ei~q·

~Rj0−iωt, (3.7)

where the sum in the first equation is over all unit cells in the boundary layer. The integral

in the second equation runs over all wavevectors in the two-dimensional first BZ of the

surface and ABZ =
∫
BZ d

2q is the BZ area.

Translational symmetry in the substrate guarantees that Diαjβ only depends on

relative positions Ri0 −Rj0 and β − α. The Fourier transform is:

Dβ−α(~q) =
∑
k

Djαkβe
−i~q·(~Rj0−~Rk0), (3.8)

and must vanish for |β−α| > 1 because interactions do not extend beyond adjacent layers.

The convolution theorem can be used to write the Fourier transform of the dynamical

equation (Eq. (3.5)) as:

∑
β

(
−mω2δαβ + Dαβ(~q)

)
~uβ(~q, ω) = δα0 ~ftot(~q, ω) (3.9)

where ~ftot includes both internal and explicit forces and only acts on the boundary layer.

In the following we assume that the substrate terminates at layer α = N . Within

the substrate, D only depends on β−α and only couples adjacent layers. Let U′(~q) = Dαα(~q)

be the force-constant matrix that couples within each layer and Vα(~q) = Dα(α+1)(~q) the

matrix coupling to the nearest layer beneath. Then V†α(~q) is the matrix coupling to the
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nearest layer above (see Fig. 3.1), where † denotes the Hermitian conjugate. The force-

constant matrix has a tridiagonal form that facilitates solution:

D =



U′0 V 0 · · · 0 0

V† U′ V · · · 0 0

0 V† U′ · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · U′ V

0 0 0 · · · V† U′N


. (3.10)

As discussed below, the diagonal term for the final layer, U′N , depends on the boundary

conditions imposed on the bottom of the substrate. The term U′0 differs from U′ because

the diagonal elements of Diαiα include terms from nearest neighbors in all layers. This can

easily be seen by considering the case of a pair potential coupling two atoms, φ(~ri−~rj). The

second derivative of this part of the total energy will contain terms diagonal in i. Since the

top layer has fewer neighbors included in the harmonic approximation, the diagonal terms

will be reduced. Specific examples are provided in the Appendix of Ref. 51.

The displacements throughout the substrate are linear functions of the forces ap-

plied to the boundary layer:

~uβ(~q, ω) = Gβ0
~ftot(~q, ω) (3.11)

Here the Green’s function G satisfies the equation

∑
β

(
−mω2δα,β + Dαβ(~q)

)
Gβγ(~q, ω) = δαγI (3.12)

where I is a 3nc × 3nc identity matrix.

We only need to calculate G00, since Eeb only involves displacements of the bound-

ary layer. It is convenient to express everything in terms of these displacements, which can
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then be used to calculate the forces from explicit atoms as well as the substrate force.

Defining the surface stiffness matrix Φ = G−100 we have

~ftot(~q, ω) = Φ(~q, ω)~u0(~q, ω). (3.13)

Equation (3.13) resembles Hooke’s law, and the coefficients Φ can be regarded as renor-

malized spring constants that govern the response of the elastic half space.19 Note that

even though the atomistic interaction within the bulk may be short ranged, the real space

coefficients Φ typically couple the surface over all length scales.

3.3 Extension to many-body potentials

Applying the GFMD framework to specific potentials is described next. Many-body poten-

tials require particular attention, and we first take the opportunity to distill the essential

objectives.

Part of the Hamiltonian of the all-atom system is to be approximated, and the

approximated part of the Hamiltonian corresponds to one spatial region of the all-atom

system. We will refer to the approximated region as an atomic substrate. At the boundary

of the substrate, a subset of atoms is chosen as the GF layer that will separate the substrate

from the explicitly-simulated region. The GF layer must be thick enough to prevent direct

interactions between the two domains on either side as clarified next. In the remained of

Sec. 3.3, Latin indices directly number atoms in the system.

3.3.1 GF layer separates the substrate and explicit regions

A sufficiently large region of atoms must be chosen as the GF layer so that substrate

atoms and explicit atoms never interact directly. That is, for a substrate atom i and an

explicit atom k, the derivative of the system energy with respect to the atoms’ positions

(the dynamical matrix Dik) must remain zero. For typical local interactions, each term

of the potential energy depends only on a subset of the atomic positions within a limited
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region that fits in a sphere of finite diameter dc. This diameter is then the maximum range

of interactions. When atoms i and k are separated beyond dc, then the dynamical matrix

Dik is zero. Therefore the GF layer must be thick enough to prevent substrate and explicit

atoms from approaching within this range. Next, we illustrate with both pair-potentials

and many-body potentials.

The interaction range of pair-potentials was described in Sec. 3.2. In that case the

potential energy may be written as

Epair =
∑
j

∑
k=j+1

V (~rj, ~rk) (3.14)

where the sum over j includes all atoms in the system and the sum over k includes all atoms

with index greater than j. For computations of short-range interactions, V (r) typically goes

to zero at separations r = |~rj − ~rk| larger than a cutoff distance, rcut. Thus only pairs in a

sphere of diameter dc = rcut interact.

A many-body example is EAM,89,90 commonly used to model metallic bonding.

In EAM there is an embedded energy term added to a pair potential term.

Etot = Eembedded + Epair (3.15)

The embedded energy term is a many-body term which may be written as

Eembedded =
∑
j

F(ρj), (3.16a)

ρj =
∑
k 6=j

f(rjk) (3.16b)

Heuristically, the embedded energy of an atom j depends on the effective “electron density,”

ρj , at that location contributed by other atoms. The effective “electron cloud” function f(r)

typically drops to zero at a cutoff distance rfcut. That means that the energy term F(ρj),

centered at atom j, can depend on atomic positions of atoms up to rfcut away in any direction.
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The interaction range is the diameter of the corresponding sphere dc = 2rfcut. This can be

seen explicitly by calculating the force on an atom i from Eembedded,

~Fi = −~∇iEembedded = −F ′(ρi)
∑
k 6=i

f ′(rik)r̂ik −
∑
j 6=i

F ′(ρj)f ′(rij)r̂ij (3.17)

We see that if atoms within a distance rfcut are called neighbors, then the force on a particle

i depends on the density at its neighbor, ρj , which in turn depends on the positions of atom

j’s neighbors. Most neighbors of atom j are not neighbors of atom i, but they nonetheless

affect ρj and therefore also the force on atom i. The dynamical matrix Dik (the second

derivative of the energy) is zero for atoms i and k separated beyond the interaction range

dc = 2rfcut. This is the thickness shown in the schematic in Fig. 3.3.

3.3.2 Partitioning the Hamiltonian

We separate the Hamiltonian Etot into the part to be approximated, Ebs, and the part to

be treated exactly, EMD:

Etot = Ebs + EMD . (3.18)

Here EMD (respectively, Ebs) must include all terms of the energy that involve positions

of explicit-region atoms (substrate-region atoms) and no terms involving substrate-region

atoms (explicit-region atoms). Any terms involving only GF-layer-atom positions may be

assigned to either EMD or Ebs. To match the discussion near Eqn. 3.1, we may choose Ebs

to be all those terms with no dependence on explicit-atom positions.

We illustrate with the example of EAM (Eqn. 3.15). It is useful when describing

EAM to distinguish between top and bottom regions of the GF layer. Only those embedded-

energy terms centered on the top-region atoms depend on explicit-region atom positions,

and the rest of the GF layer may be called the bottom-region. We make use of e, t, b, and

s as shorthand for explicit, top, bottom, and substrate as shown in Fig. 3.3. The terms
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Figure 3.3: The GF layer separates the substrate (s) atoms from the explicit (e) atoms. e
atoms are those that retain exact interactions while interactions between s atoms follow a
harmonic approximation. s atoms are separated from e atoms by a distance of at least the
interaction range, dc, in the reference configuration. Equivalently, the GF layer must be
thick enough so that the derivative of the system energy about the reference configuration
with respect to e atom positions is independent of s atom positions. This sets the thickness,
d, of the GF layer of atoms. The terms of the energy that are approximated are all those
that are independent of explicit atom positions. The case of EAM is illustrated, where
grey circles indicate the explicit effective electron density extending a distance rfcut. The

interaction range between atoms is dc = 2rfcut which sets a minimum required thickness of
the GF layer. Since dc does not reach 5 atomic planes, d must be at least 4 atomic planes,
as shown. For EAM, energy terms centered on the top (t) portion of the GF layer have
dependence on explicit atom positions, whereas energy terms centered on the bottom (b)
portion do not. In general, atoms throughout the GF layer experience forces due to both
Eharmonic and EMD. Since the MD software calculates the electron density from e, t, and
b atoms, the MD software has the correct electron density at e and t atoms only, as shown.
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assigned to the approximated part of the Hamiltonian are

Ebs =

Ntbs∑
j=1

Ntbs∑
k=j+1

V (|~rj − ~rk|) +

Nbs∑
j=1

Fj (3.19)

In Eqn. 3.19, the sums in the first term include atoms in the t, b, and s regions, of which

there are Ntbs. The sum for the embedded energy term occurs only over the Nbs atoms in the

bottom and substrate region, which are those terms that are independent of explicit-region

atom positions.

3.3.3 Linearized dynamics

With the GF layer and Ebs thus defined, Eqns. 3.2-3.13, are unchanged for many-body

potentials. We nevertheless repeat a few essential points to make explicit some subtleties

for many-body potentials.

The GFMD method makes a harmonic approximation for Ebs. Given a refer-

ence configuration for GF-layer and substrate atoms
{
~r 0
i

}
, the displacement of an atom

i is defined as ~ui = ~ri − ~r 0
i . Taylor expanding Ebs to second order about the reference

configuration gives for small displacements,

Ebs ≈ Eharmonic ≡ E0 +
N∑
i=1

∂Ebs
∂~ui︸ ︷︷ ︸
−~fi

·~ui +
1

2

N∑
i=1

N∑
j=1

~uTi ·
∂2Ebs
∂~ui∂~uj︸ ︷︷ ︸
Dij

·~uj (3.20)

Note that the sums occur over all Ntbs particles that affect the to-be-approximated energy

Ebs. The reference configuration does not need to include e atoms, since Ebs is independent

of those positions.

As pointed out before, the system retains a Hamiltonian, H = Eharmonic + EMD,

thereby avoiding ghost forces. Defining ~fi and Dij as indicated, the equations of motion for
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an atom i are

mi~̈ui − ~fi +
∑
j

Dij~uj = − ∂

∂~ui
EMD ≡ ~fMD

i . (3.21)

where the right hand side of the equation is the force from the explicit atoms and is only

nonzero for atoms in the GF layer. Eq. 3.21 represents a large system of coupled, linear

equations for atoms in the substrate and GF layer which are to be solved for the displace-

ments of GF layer atoms.

As indicated in Sec. 3.2, if the surface Green’s function solution can be found,

then integrating against the applied forces ~fMD
i immediately produces the corresponding

displacements ~ui of the GF layer atoms. For crystalline systems, the integration is a con-

volution which can be accomplished quickly as a multiplication in Fourier space. Efficient

methods of determining the Green’s function of crystalline systems from the stiffness ma-

trices will be described in Sec. 3.4.

We lastly point out that more stiffness matrices are required for many-body poten-

tials than for pair-potentials. Notationally, Dij is called Vij when atom j is one layer below

i, or Uij when i and j are in the same layer. Recall that, for efficient calculation of the GF,

each substrate layer is thick enough so that (in the reference configuration) interactions do

not occur with atoms beyond the nearest layer. But when referring to specific lattices, it

can be useful to sub-divide the GF layer into thinner layers, called sub-layers. Then we can

refer to the stiffness D of interactions 0, 1, or 2 sub-layers apart as Ũ , Ṽ , or W̃ .

For pair-potentials, the value of Dij is determined usually just by the relative

positions of atoms i and j, so many stiffness matrices are the same. For many-body po-

tentials, the stiffness Dij can change with distance to the free surface, since Ebs usually

contains fewer terms for atoms closer to the surface, as illustrated in Fig. 3.4. D connecting

two atoms in the uppermost sub-layer can be denoted Ũ0, where the subscript denotes the

sublayer of the atom closest to the surface. If instead the two atoms are in the second
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Figure 3.4: The interaction range dc is usually long for many-body potentials, and so
the stiffness matrix between many pairs of atoms is needed. Also, the stiffness matrix
is associated only with the approximated part of the energy, and so the stiffness matrix
contains fewer terms for top atoms in the GF layer whose many-body terms are not included
in Ebs. Fig 3.4 shows the same example system as Fig. 3.3. Unlike in the pair-potential
case, the stiffness W̃0 are W̃ are different. This is because terms that depend on GF-layer
atoms are also associated with explicit atoms which are missing from Ebs.

uppermost sub-layer, then Ũ1 is used. If atoms i and j are in the first and second sublayer

respectively, the notation is Ṽ0. For the EAM example shown in Fig. 3.3 and 3.4, there is

a single-atom thickness for each sub-layer and rfcut is between a second and third sub-layer

of atoms, requiring fifteen stiffness matrices.

3.4 Finding the Green’s function from the dynamical matrix

One can evaluate the Green’s function using a transfer matrix formulation. This approach

has been previously applied to the analysis of the electronic83 and phononic84 structure of

surfaces, and more generally to the statistical mechanics of systems with only short ranged

interactions, like the Ising model.91–93 Our derivation is most similar in form to that of

Velasco and Ynduráin.84 Unlike the force-constant matrix, the Green’s function is not
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sparse. We denote the individual elements by

G =



G00 G01 G02 · · · G0N

G10 G11 G12 · · · G1N

G20 G21 G22 · · · G2N

...
...

...
. . .

...

GN0 GN1 GN2 · · · GNN


, (3.22)

where we will drop the explicit reference to ~q and ω below.

From Eq. (3.12) we obtain generally (N + 1)2 equations for our finite system with

N + 1 layers. We only pick the N + 1 equations involving the surface layer. These are

U0G00 + VG10 = I (3.23)

V†G00 + UG10 + VG20 = 0

V†G10 + UG20 + VG30 = 0

...

V†Gn−1,0 + UGn,0 + VGn+1,0 = 0 (3.24)

...

V†GN−1,0 + UNGN,0 = 0 (3.25)

where U = U′ −mω2. It is also straightforward to include wavevector dependent damping

by adding a term of the form iωΓ(~q) in addition to the mass term.

Given the structure of these equations it is useful to define the transfer matrix Tn

as

Gn+1,0 = TnGn,0. (3.26)
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The surface Green’s function G00 and stiffness Φ are then obtained from Eq. (3.23) as

Φ = G−100 = U0 + VT0. (3.27)

Combining Eqs. (3.24), (3.25) and (3.26) yields

VTnTn−1 + UTn−1 + V† = 0 (3.28)

and

UNTN−1 + V† = 0. (3.29)

For physically relevant solutions the displacements produced by static surface

forces (i.e. at ω = 0) must decrease or remain constant with increasing depth. This

implies that the eigenvalues of Tn have magnitude between 0 and 1. If the eigenvalues are

less than one, the deformation decays exponentially with distance from the surface and the

result is insensitive to the depth of the system. The analytic solution to the continuum

Green’s function for a semi-infinite plane20 gives an exponential decay with length of order

1/|~q| and we find that the lattice Green’s function is consistent with this scaling for small

|~q|dnn where dnn is the nearest neighbor spacing. As a result, the surface stiffness matrix is

sensitive to boundary conditions for small wavevectors: |~q| ∼ 1/Ndnn.

One interesting case is that of free boundary conditions. In this case, one allowed

solution is uniform translation of the entire system, i.e. T = I for ~q = 0. Translational

invariance requires that no force is produced by a uniform translation of the crystal and this

imposes an acoustic sum rule on the components of D.66,87 It is straightforward to show

that Eq. (3.28) is consistent with this sum rule for Tn = I. The surface stiffness matrix

for uniform translation of all atoms vanishes for this case because from Eq. (3.27) we get

Φ(Γ) = U0(Γ) + V(Γ) which is precisely the acoustic sum rule at the surface.

To maintain a finite stiffness, one normally considers systems with a rigid boundary
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condition applied at the bottom of the substrate. This corresponds to UN = U. In essence,

this equality implies that there is a contribution from neighbors below layer N but that

their displacement is set to zero. The acoustic sum rule is violated because these neighbors

impose a frame of reference. For the rigid boundary condition we expect a constant, uniform

force will produce a constant uniform strain. Then T0 ≈ I(1−1/N) and the surface stiffness

Φ(Γ) is finite, but goes to zero as 1/N with increasing system depth N .

The fact that the termination at layer N is important for small ~q means that we

can not in general assume that Tn is independent of n. We solve the equations using a

continued fraction approach based on the relation

VTn−1 = −V(U + VTn)−1V†. (3.30)

The continued fraction has the form:

Φ = U0 −V
1

U−V
1

U−V
1

U−V
1

U− . . .
V†

V†

V†

V† (3.31)

For large q the bottom boundary is unimportant and the continued fraction converges

after a few iterations. For small q, the continued fraction is terminated after N terms using

Eq. (3.29). In the examples below we focus on static solutions ω = 0. For dynamic solutions

a small imaginary part is added to the frequency to obtain the retarded Green’s function.94

The above method of finding Φ takes time of order N for small q. Since the Green’s

function can be precomputed, this does not represent a significant computational barrier.

However there is an alternative approach based on decimation that is only of order logN .

Related approaches have been used for real-space renormalization calculations of electronic
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structure.85,86

Equations (3.23) to (3.25) only couple nearest neighbor elements of G. The equa-

tions for odd n can be used to express G2n+1,0 in terms of G2n+2,0 and G2n,0. Substituting

the result into the equations for even n, one obtains equations of the same form as Eqs. (3.23)

to (3.25), but with renormalized U(2) and V(2):

U
(2)
0 G00 + V(2)G20 = I (3.32)

(V(2))†G2n−2,0 + U(2)G2n,0 + V(2)G2n+2,0 = 0 (3.33)

(V(2))†GN−2,0 + U
(2)
N GN,0 = 0. (3.34)

The procedure can then be repeated with the renormalized equations. The general recursion

expressions for the renormalized matrices at iteration m are:

U(m+1) = U(m) − (V†U−1V)(m) − (VU−1V†)(m) (3.35)

V(m+1) = −(VU−1V)(m) (3.36)

U
(m+1)
0 = U

(m)
0 − (VU−1V†)(m) (3.37)

U
(m+1)
N = U

(m)
N − (V†U−1V)(m) . (3.38)

The greatest efficiency is achieved when N = 2M . The equations are then iterated

M times to produce two linear equations containing only G00 and GN0:

U
(M)
0 G00 + V(M)GN0 = I (3.39)

(V(M))†G00 + U
(M)
N GN0 = 0. (3.40)

This yields

Φ = U
(M)
0 −V(M)(U

(M)
N )−1(V(M))† (3.41)

For large wavevectors, the renormalized V(m) goes rapidly to zero as m increases and U
(m)
0
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goes to a constant.85 The surface stiffness matrix Φ is equal to the renormalized U
(m)
0 .

We numerically checked that transfer matrix and renormalization group calculations give

identical results.

3.5 Natural implementation in MD

The GFMD method calculates the forces based on the Hamiltonian

EMD({~r}) + Eharmonic({~r}). (3.42)

The energy and forces associated with EMD are calculated by the MD software, while the

energy and forces of Eharmonic are calculated by the GF software. The natural way to

implement the scheme is described next.

Rather than load the entire atomic geometry into the MD software, only atoms

of the explicit region and GF layer are loaded. The idea is that the MD software performs

mostly its normal operation on this smaller system, and the GF software is responsible for

adding forces on the GF layer to reach the full Hamiltonian. The substrate atoms need not

be followed in the software at all because their effect is captured by the Green’s function.

The following will describe the details of this division of the software operation for the

example of the EAM potential.

GF-layer atoms are subject to forces from both parts of the Hamiltonian, EMD

and Eharmonic. For the EAM potential, the force on an atom i is

~Fi = −~∇i(EMD + Eharmonic)

= −~∇i

∑
j∈e

∑
k=j+1

V (~rj, ~rk)− ~∇i

∑
j∈e,t

F(ρj)︸ ︷︷ ︸
MD software

+ ~fi −
∑
j∈s,b,t

Dij · ~uj︸ ︷︷ ︸
GF software

(3.43)

It is the responsibility of the MD software to calculate the terms associated with EMD, as

normal. The restriction on the pair potential sum (j ∈ e) means that only pair-interactions
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involving an explicit atom are included. The embedded energy term (the sum of F(ρj) with

the restriction j ∈ e, t) requires the system’s “electron density” ρ at e and t atoms only.

This is available to the MD software because e, t, and b atoms are loaded in the MD software

as shown in Fig. 3.3. However, the MD software would normally include all loaded atoms,

including b atoms, in the embedded energy sum. So the MD software must be modified

to exclude the many-body terms centered on b atoms from the embedded energy sum. In

summary, the MD software produces the forces due to EMD.

The GF software calculates the third and fourth terms of Eqn. 3.43, associated

with Eharmonic. Again, the restrictions on the sum come from the fact that Eharmonic is an

expansion in all atomic displacements of Ebs =
∑

i∈s,bF(ρj). This term is the force on atom

i given displacements of atoms indexed with j. It is calculated immediately from Eq. 3.13.

3.6 Stringent testing method

Conceptually, each GFMD simulation refers to an underlying full-MD system. A stringent

test of the code involves comparing a simulated GFMD system with its full-MD counter-

part. This confirms that no terms were neglected in the derivation and that the code was

implemented correctly.

We use both GFMD and all-atom MD to simulate a crystal. An example system

used for testing is shown in Fig. 3.5. We choose M atoms of the crystal which are in the GF

layer in the GFMD system. These are called probe atoms. We prescribe displacements to

each probe atom, in different directions and of different magnitudes, and the 3M -element

displacement vector is called ~u. Then we minimize the system energy while holding the

probe atoms fixed. The system relaxes so that there is zero force on all but the fixed atoms.

The 3M -element force vector may be called ~f , and the total system energy is E.

If |~u| is very small, the system response is linear. That is, expansion Eqn. 3.20

is a good approximation, since probe atom displacements are small and other atom dis-
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placements are linear in the probe atom displacements. We then vary the magnitude of the

vector ~u to ensure that the two systems show the same linear response.

The GFMD system energy Eharmonic + EMD should match the all-atom energy

Etot to harmonic order in the applied atomic displacements (Eqn. 3.20). The upper plots

of Fig. 3.6 show that, as expected, the error in the energy falls as |~u|3. The bottom plots of

Fig. 3.6 show that the error in the forces is correspondingly quadratic in the displacements.

All data shows a linear error of below 10−7, corresponding approximately to floating point

rounding.

Note the sensitivity of the test: even a 0.01% error in the value of Dij calculated

in Eq. 3.21 would add a linear term with magnitude 10−4 to the force error. Also, as

discussed in Sec. 3.1.1 and Sec. 3.7, surface relaxation causes atomic positions to deviate

from the uniform lattice in the uppermost crystal layers. Plots like Fig. 3.6 easily detect

small nonlinearities due to surface relaxation forces, and for these tests of the code, the

GF layer is chosen to be a few layers below the surface of the crystal (as in Fig. 3.3 and

Fig. 3.5). This way all GF atoms initially sit at their reference configuration.

Automated testing using different system sizes and interaction types can be used

to confirm correct implementation of the code. The runtimes for all-atom and GFMD

calculations are compared in Fig. 3.7. As expected, the CPU time per time step scales

as L3 for all-atom and only as L2lnL for GFMD. We commonly use cubic systems with

L = 1000, where the CPU time is reduced by a factor of 100 for each time step.

3.7 Application to static contact mechanics

To show that the Green’s function method provides seamless boundary conditions we present

results for three cases. The first is surface relaxation at a flat crystal/vacuum interface,

where the unbalanced forces ~fi0 are important. The second is Hertzian contact of a rigid

sphere and a flat elastic substrate. In the final example the sphere is replaced by a randomly
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Figure 3.5: An fcc crystal of 13-unit-cell thickness is simulated using both all-atom MD
and GFMD. The free surface is (001). The bottom plane of atoms is held fixed in the large
EAM system, and this affects the response of the elastic GF layer in the GFMD system.
There are periodic boundary conditions in the plane of the surface and interactions are an
EAM potential for Au.95 In the case shown, the GFMD system includes two atomic planes
near the surface and an adsorbed atom that are simulated explicitly. To test the code, we
prescribe a displacement to arbitrary atoms in both simulations, as indicated by arrows.
The same stresses, represented by color, are reproduced by the much smaller GFMD system
in much less time.
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Figure 3.7: Computation time for MD and GFMD scales approximately as L3 and L2 lnL
respectively. The acceleration is approximately 100-fold for L = 1000. Note that this
figure shows wall time per MD time step. The number of time steps required to converge is
usually much higher for the MD system because there are more degrees of freedom. In the
GFMD system, those degrees of freedom of the substrate are slaved to be at a zero-force
configuration, and need not even be calculated.
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rough surface, which enhances plastic deformation in the crystal.

Results for different crystals and interactions are presented. The simplest is the

(100) surface of a face-centered cubic (fcc) crystal with nearest-neighbor harmonic interac-

tions with spring constant k. This system is called nn-fcc below.

The second system, called 2n-fcc, is also the (100) fcc surface but with second-

nearest neighbor interactions. Particles interact with a Lennard-Jones potential

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(3.44)

for r < r1 = 1.35σ. The potential and force are then smoothly brought to zero at r2 = 1.8σ

using a third-order spline.97 The value of r2 is chosen so that the potential extends only to

second-nearest neighbors in the zero pressure ground state of the fcc structure.

The third case, called sc, is the (100) surface of a simple cubic solid with the same

spring constant k between first and second neighbors. This solid has also been used by

Campaña and Müser in their work on the contact of rough surfaces.19,75–77 We checked

that the transfer matrix and renormalization formulations give surface stiffness matrix co-

efficients that are identical to the analytic result of Saito78 for the sc system.

As a first example, we consider surface relaxation at a flat crystal/vacuum inter-

face. Terminating the crystal generally leads to nonzero internal forces on atoms that lie

on the ideal lattice sites. These are described by ~fi0 in the Green’s function method. One

consequence is that the spacing between atomic planes deviates from the bulk value and

varies as a function of the depth below the interface. For a flat surface, the forces are the

same on all unit cells so we only need to consider the ~q = 0 contribution.

Figure 3.8 shows the deviation from the bulk spacing between atomic planes as a

function of depth for the 2n-fcc system. Results for 0, 2, 4 and 8 atomic planes of explicit

atoms on top of the boundary layer are all equivalent. (Note that there are 2 atomic planes

per boundary and substrate layer.) This confirms that the Green’s function provides a

44



CHAPTER 3. GREEN’S FUNCTION SIMULATIONS

Figure 3.8: Fractional change in spacing of atomic planes d from bulk value d0 as a function
of depth below a free (100) surface of an fcc crystal. Results from the Green’s function with
0, 2, 4, and 8 atomic planes (0, 1, 2 and 4 unit cells) are equivalent. The surface layer is
0 and the separation is plotted at the midpoint between layers. Open symbols show the
spacing within the explicit crystal and between explicit and substrate layers. Full symbols
denote spacing within the substrate.

seamless boundary condition for the explicit region. Note that in some systems surface

relaxation leads to a different periodicity of the surface and bulk layers. To capture this

relaxation, one must include layers of explicit atoms above the Green’s function boundary

layer.

The previous Green’s function implementation of Campañá et al.19 did not include

~fi0 and thus did not capture surface relaxation. We found that excluding ~fi0 had several

effects. One was that it led to nonuniform spacing between atomic planes of explicit atoms

placed on top of the boundary layer. This variation is effectively a form of surface relaxation

due to an effective discontinuity in the forces between surfaces. It also represents a violation

of Newton’s third law because boundary atoms feel a force from explicit atoms, but the

counterforce is missing. When the explicit atoms were from an opposing surface, we found

that the change in spacing of atomic planes led to changes in the force on the second layer
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that could be important for adhesive contact.

Our second example is Hertzian contact20 of a rigid spherical indenter with radius

R and an elastic substrate with contact modulus E∗. (Note that E∗ is called E′ elsewhere

in the thesis.) Continuum theory20,98 predicts contact occurs in a circle of contact radius

a. Both a and the peak pressure p0 in the center of the contact rise as the cube root of the

normal load N :

a

R
=
π

2

p0
E∗

=

(
3N

4E∗R2

)1/3

(3.45)

These analytic predictions are compared to different atomistic models in Fig. 3.9.

All atomistic models have substrates with a square array of 256 × 256 surface

atoms and a depth of 256 atomic planes. Different numbers of atomic planes are treated

explicitly and the number of atomic planes in the boundary and substrate layers depends

on the interaction range. Here and in all following simulations we move the indenter and

then relax the positions of the substrate atoms assuming a rigid boundary at the bottom

of the substrate. The sphere is featureless and interacts with an atom at position ~ri via the

potential Vrigid(~ri) = V (|~ri − ~r0| −R) where ~r0 is the center of the sphere and R its radius.

The potential V is the Lennard-Jones potential of Eq. (3.44), but cutoff at its minimum

and with ε increased by a factor of 100 to approximate a hard-sphere interaction.

The contact modulus E∗ is analytically known for the isotropic continuum case,

where E∗ = 2µ(1 + ν)/(1 − ν2), µ is the shear modulus and ν Poisson’s number (see the

Appendix of Ref. 51). In the results below ν = 0. The 2n-sc substrate is isotropic with

E∗ = 8
3k/Aa where Aa is the surface area occupied by a single atom. The nn-fcc and 2n-fcc

cases are anisotropic, and in this case the contact modulus generally depends on orientation

and indenter geometry.99,100 There is no simple analytic relation and we will use Hertz

theory to fit effective values of E∗.

Fig. 3.9(a) shows the variation of p0 with load for all atomistic systems. We first
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Figure 3.9: Contact of a rigid spherical indenter with radius R = 100σ on an elastic
substrate. Shown is (a) the peak pressure p0 and (b) contact radius a as a function of load
N normalized by the elastic contact modulus E∗. We compare calculations for (100) surfaces
of the fcc lattice with nearest neighbor (nn) and second-nearest neighbor (2n) interactions
to calculations of a simple cubic (100) surface and continuum calculations. The effective
size of the substrate is a cubic block with 256 atoms in each lateral direction and periodicity
parallel to the surface. The values for the effective contact modulus E∗ for the anisotropic
nn-fcc and 2n-fcc cases are fit to the peak pressure shown in panel (a).
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discuss results where the entire substrate is treated with the Green’s function method so

that the elastic response is linear. Data for each system were divided by the value of E∗

that optimizes the fit to the solid line showing the prediction of continuum theory. For the

cases where E∗ is known, the fit value is within about 2% of the analytical expression. Some

deviation is expected from the discrete geometry and finite-compliance interface potential.

For the continuum Green’s function the fit yields E∗ = 2.02µ compared to the analytic

E∗ = 2µ. For the 2n-sc solid we obtain E∗ = 2.73k/Aa as compared to the analytic

E∗ ≈ 2.67k/Aa. For the nn-fcc and 2n-fcc substrate, the fits give E∗ = 1.4k/Aa and

E∗ = 70.4ε/σ3, respectively. While we have no prediction to compare to, these numbers

are of the order of the relevant elastic moduli.

Fig. 3.9(b) compares the load-radius relationship for different models to continuum

theory using the value of E∗ obtained from fitting p0 above. Contact was defined by a

repulsive interaction between atoms and indenter. The contact radius was then obtained

by equating πa2 to the number of contacting atoms times the surface area per atom. While

a/R rises with the slope predicted by continuum theory, there is an offset corresponding

to an increase in contact area. An even larger offset is observed in previous simulations

of atomic scale contact.1,11,101,102 The deviations are minimized in our work by using a

featureless indenter and making the interaction closer to a hard wall repulsion by increasing

ε by two orders of magnitude. The same limit was achieved in Ref. 102 by increasing the

density of atoms on the indenter.

The peak strain at the interface is of order a/R and one may expect nonlinear

behavior at the largest values of ∼ 10% in Fig. 3.9. The Green’s function approach allows

this to be studied while only treating a small number of explicit atoms. Fig. 3.9 shows

that including 16 layers of explicit atoms does not change the contact area on the scale of

the figure, but does increase the peak pressure. The full pressure distribution for different

numbers of atomic planes at several loads is shown in Fig. 3.10 for R = 100σ and R =
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1000σ. In all cases, the pure Green’s function results follow the analytic solution for elastic

substrates (solid line). When explicit atomic planes are included, there are deviations from

Hertz theory. The pressure needed to deform the central regions is higher for the explicit

solution because Lennard-Jones bonds become stiffer as they are compressed. As expected

from Hertz theory, the deviations increase with a/R which sets the peak strain. Increasing

R from 100a to 1000a reduces the deviations at a fixed value of a. Deviations are very small

for a/R less than 2%, which is consistent with direct evaluations of anharmonic effects.

Note that the number of layers needed to capture nonlinear effects grows with a/R.

A single pair of layers has little effect, while 8 layers is sufficient for a/R up to about 0.09

(Fig. 3.10(a)). All atom simulations are consistent with the 16 layer results for a/R = 0.12

and one may expect plastic deformation at larger a/R for most materials. In the Hertz

solution, strains decay over scales of order a and the peak shear strain is at a depth of

about a/3.20 Including explicit layers to greater depths should allow the system to capture

nucleation of defects and other nonlinear effects.

The next test considers the case of contact with a rigid, randomly rough surface,

which has been extensively investigated using similar techniques.19,42,53,75–77 Many ex-

perimental surfaces are found to have roughness on all scales that can be described as a

self-affine fractal. The root-mean squared (rms) change in height dh over a lateral distance

` scales as dh ∝ `H where H is called the Hurst or roughness exponent. We generate a

self-affine surface with H = 0.8 on a 1024 × 1024 grid using Voss’ random midpoint al-

gorithm.103 This surface is Fourier filtered to remove roughness on all wavelengths below

16 grid spacings. We then use bicubic splines to interpolate the discrete positions to a

continuous surface with height h(x, y). The final surface has a root mean square slope of

h′0 =
√
|∇h|2 = 0.09.

The rough surface is pushed against a 2n-fcc solid with 256 × 256 surface atoms

and different numbers of explicit layers. Atoms at position ~r = (x, y, z) interact with the
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(a)

(b)

/
/

Figure 3.10: Pressure as a function of distance from the tip center along a row of atoms in
the (110) direction for rigid spherical indenters with radius (a) R = 100σ or (b) R = 1000σ
on an elastic substrate.
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surface via the potential Vrigid(x, y, z) = V (z−h(x, y)), where V (z) has the same functional

form as the interaction used for the rigid sphere but only depends on the height difference.

The area of contact A is determined by multiplying the area per atom by the number of

atoms in the top layer of the crystal that feel a repulsion from the rough surface.

Previous numerical and analytic work has found a linear relationship between load

and contact area of the form

N

h′0E
∗A0

=
1

κ

A

A0

(3.46)

with κ ≈ 2.7,77,104 Fig. 3.11 compares this prediction (solid line) to results for 2n-fcc

surfaces with different numbers of layers of explicit atoms. At small loads, results for all

numbers of explicit atoms lie close to the solid line. The purely elastic calculation where the

entire elastic solid is described by the Green’s function follows the solid line all the way to

10% contact area. When two explicit layers are included, the area rises less rapidly as the

load increases. This reflects anharmonicity in the explicit layers, where the Lennard-Jones

potential stiffens as bond lengths shrink under the applied pressure. Note that results with

4 and 8 explicit layers are nearly indistinguishable, implying that anharmonicity is largely

confined to the outer layers. A small number of explicit layers is sufficient in this case

because the effective radius a of local contacting regions for this rough surface is only of

order 4σ. This allows the Green’s function method to reproduce the full nonlinear response

of the atomistic system at a small fraction of the computational cost.

The rough surface just considered is artificial because it has no atomic structure.

As a final example we consider a rough rigid surface made of discrete atoms on a crys-

talline lattice. The layered structure leads to steps or terraces that focus stress and lead to

dislocation nucleation.

The stepped surface is created from an fcc crystal with a (100) surface and the

same lattice spacing as the substrate. A smooth randomly rough surface with rms slope
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Figure 3.11: Contact of a rigid rough surface on a crystalline fcc (100) surface. The
periodicity of the rough surface is 256 nearest neighbor distances d0 in both directions with
a nominal surface area of A0 = 256d0 × 256d0. The solid interacts via a pair potential that
extends to second neighbors as described in the text. Shown are the load N normalized by
the root mean square slope h′0 =

√
|∇h|2 of the rough surface and the contact modulus E∗

as a function of area. The effective size of the substrate is a cubic block with 256 atoms in
each lateral direction. We compare the results of a simulation with only a harmonic half
space, a system with two explicit atomic planes that interact via the pair potential on top of
the half space, and a system with eight additional layers. The anharmonicity of the explicit
interatomic interactions leads to a stiffening and a slightly smaller contact area at larger
loads. The solid line has slope 1/κ = 1/2.
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h′0 = 0.03 and H = 0.5 was created using the procedure described above. Then all atoms of

the lattice with heights below the surface were removed. The elastic substrate is like the nn-

fcc case described above. However, since ideal springs would not allow plasticity, neighbors

interact with a Lennard-Jones potential that is splined to zero force between 1.2σ and 1.25σ.

All systems had 256×256 surface atoms and 256 atomic planes. Two atomic planes make up

a unit cell and the spacing of atomic planes d0 is the nearest neighbor spacing dnn divided

by
√

2. To identify plastic deformation, we detect atoms whose environment deviates from

the crystal using common neighbor analysis (CNA).105,106

Figure 3.12(a) plots the depth of the deepest plastic atom Dpl normalized by

the spacing of atomic planes d0. Fully atomistic calculations of the entire volume are

used as a benchmark. They are compared to calculations where the top 16 atomic planes

(8 substrate layers) are treated explicitly and the remaining atoms are replaced by the

Green’s function. Note that the Green’s function and all atom calculations give nearly

identical results until plasticity reaches the depth of the boundary layer. Dislocations can

not propagate into the boundary layer, but their motion is not affected by the boundary

layer when there are a couple of explicit layers separating them. Arrest of dislocations at

the boundary is unavoidable in most continuum/atomistic coupling schemes,107 with the

notable exception of the coupled atomistic and discrete dislocation method.108 Projections

showing the geometry of the dislocations generated in the full and 16 layer calculations are

compared in Fig. 3.12(b). The structure is fully captured for the load corresponding to

point ”1” in Fig. 3.12(b). At point ”2”, the deepest plastic atom has nearly reached the

boundary layer. The largest dislocation loop is slightly suppressed in the 16 layer system,

but the remaining dislocations are not affected. At point ”3”, the dislocations have clearly

penetrated past the boundary layer and this can not be captured by the Green’s function.

Note that this load is comparable to the highest load in Fig. 3.11 and the contact area is

close to 16%. We have found that global measures, such as plots of contact area vs. load

53



CHAPTER 3. GREEN’S FUNCTION SIMULATIONS

are much less sensitive to the number of explicit layers than the dislocation depth.

3.8 Simulations using GF of continuum elasticity

This section connects the GFMD simulation method with the solution of partial differential

equations of continuum elasticity. This provides a reference for later chapters.

Many physical systems are described by linear differential equations where an

inhomogeneous term represents an external influence on the system. Consider the linear

partial differential equation for isotropic continuum elasticity

(λ+ µ)∇(∇ · u) + µ∇2u = −f (3.47)

This is the Navier equation for solids where u is the displacement field, λ and µ are Lamé

constants, and f is the applied force density per volume. (C.f. Ref. 26 for background on

continuum elasticity.) The problem of interest is to find u in the domain D given boundary

conditions that constrain the solution at the boundaries ∂D.

It is common in mathematics to solve this problem with the aide of the Green’s

function solution. For an introduction to continuum Green’s functions, see for example

Ref. 109. The Green’s function G is the solution to Eq. 3.47 that satisfies the boundary

conditions when the inhomogeneous term is replaced by a Dirac delta function. That is,

(λ+ µ)∇(∇ ·G) + µ∇2G = −δ(x) (3.48)

which is written compactly by using the identity matrix multiplied by the delta function,

δ(x) = 11δ(x). If the Green’s function is known or can be calculated, then the solution u for

general inhomogeneous term f can be found immediately by integrating over the domain.

u =

∫
D

G(x,x′) · f(x′)dx′ (3.49)

This provides a straight-forward procedure to solve Eq. 3.47, which must be done many
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Figure 3.12: (a) Load dependence of the depth Dpl of the deepest plastically deformed atom
divided by the layer spacing d0 as determined from a common neighbor analysis (CNA).
The Green’s function results with 16 atomic planes of explicit atoms follow the all atom
calculation until plasticity reaches the Green’s function layer. (b) Snapshots showing the
projections of the atoms that have displaced plastically as determined from a CNA. The
CNA shows dislocation loops are emitted from the surface. Snapshots shown by 1, 2 and 3
correspond to the loads marked 1, 2 and 3 in panel (a) and are recorded at 8, 15, and 16%
contact area, respectively. Dislocations in the full atomistic and reduced system behave
identically until the deepest dislocation loop hits the elastic boundary where it cannot
propagate.
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times in a simulation in which the forcing varies.

If the boundary conditions are at infinity, then the system is translationally in-

variant. G depends only on the difference between the locations, G(x,x′) = G(x−x′) and

Eq. 3.49 is a convolution. Owing to the convolution theorem, the convolution becomes a

simple multiplication in Fourier space. The primary cost is performing the Fourier trans-

forms. In a simulation in which the fields are discretized, the convolution may leverage

the efficiency of the fast Fourier transform (FFT), and the displacement field is therefore

calculated in time O(n lnn) where n is the number of elements in the discretized field.

3.8.1 Contact mechanics and surface GF

Of special interest in contact mechanics is the static surface displacement of a 3D elastic

half-space under an indenter.20 To connect this situation with Eq. 3.47, we choose axes

r → (x, y, z) and the domain D to coincide with the half-space z ≤ 0 with a boundary ∂D

at the initial surface position z = 0. In a typical contact mechanics problem, boundary

conditions specify that the traction τ (x, y) at the surface is non-zero only at points (x, y)

within contacting regions. The interesting part in contact mechanics is that the effective

forcing is therefore usually not known a priori, as it depends on the displacement field itself

and where contact occurs. This often means solving the equation numerically with many

iterations of the traction, which can be done with the aide of the surface GF.

The surface GF is the surface displacement u(x, y, 0) from a point loading at the

origin on the surface, τ (x, y) = 11δ(x)δ(y). When the boundary conditions specify zero

displacement far from the contact, the solution is given by Boussinesq and Cerruti,20

Gs(x, y)→ 1

4πµ


b
r

+ 2νx2

r3
2νxy
r3

(2ν−1)x
r2

2νxy
r3

b
r

+ 2νy2

r3
(2ν−1)y

r2

(1−2ν)x
r2

(1−2ν)y
r2

b
r

 (3.50)
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where r =
√
x2 + y2, b = (λ+2G)/(λ+G) = 2(1−ν) and ν is the Poisson ratio. The forcing

comes only from the surface z = 0, and the convolution to obtain the surface displacement

need only occur over x and y.

u(x, y) =

∫
Gs(x− x′, y − y′) · τ (x′, y′)dx′dy′ (3.51)

Again, for discretized problems, the fast Fourier transform can be used and the surface

displacement is calculated in time O(nb lnnb) where nb is the number of elements in the

discretized field at the surface, z = 0. If L is the characteristic system width, then the

number of elements is nb ∼ L2. This represents a dramatic reduction in computation time

compared to a method that explicitly calculates all bulk displacements, the number of which

scale as L3.

3.8.2 Discretizing Boussinesq-Cerruti in Fourier space

The convolution in Eq. 3.51 occurs as a multiplication in Fourier space. The 2D horizontal

Fourier transform of a function f(x, z) can be defined as

f̃(q, z) =

∞∫
−∞

f(x, z)exp[−iq · x]dx (3.52)

with q → (qx, qy) and x→ (x, y). Transforming Eq. 3.51 gives the displacements in Fourier

space as

u(q) = G̃s(q)τ (q). (3.53)

It is natural to consider the analytic form of G̃s(q). This is derived in Ref. 70 as

G̃s(qx, qy)→
1

2µq3


2q2 − 2q2xν −2qxqyν iqxq(1− 2ν)

−2qxqyν 2q2 − 2q2yν iqyq(1− 2ν)

−iqxq(1− 2ν) −iqyq(1− 2ν) q2(2− 2ν)

 (3.54)
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in the (x, y, z) basis. Here q =
√
q2x + q2y .

Note that the GF has a singularity at q = 0 (the Γ point). This is the infinite

compliance of a semi-infinite half space; a finite average pressure on an infinitely deep,

infinitely wide, linear elastic substrate produces infinite displacement. In reality, the stiffness

would not be zero but a small finite value set by the depth of the sample. There are several

ways to deal with zero stiffness at q = 0, but the mean motion of the surface is often not of

interest. A simple solution is to set the stiffness at q = 0 to one half the value at q = 2π/L.

It is useful to note the formal scaling of the Green’s function. From Eq. 3.50,

Gs ∼ 1/r and from Eq. 3.54, G̃s ∼ 1/q. The inverse surface Green’s function Φ̃ = (G̃s)
−1

satisfies τ (q) = Φ̃(q) · u(q). Therefore, Φ̃(q) ∼ q and Φ(r) ∼ −r−3.

3.8.3 Discretizing Boussinesq-Cerruti in real space

A simulation that uses the Green’s function of Eq. 3.54 produces slight artificial flattening

at the edges of the simulation box. This is because the Fourier transform implies that the

fields—including the forcing— are periodic with period of the system size. To avoid effects

from the periodic images of the forcing, contact must only occur in a region much smaller

than the system size, typically only in a square of side L/5.

An alternative approach to avoid periodic image effects (taken from Ref. 110) is

to directly use the original analytic real-space GF of Boussinesq and Cerruti, Eq. 3.50. The

analytic ∼ 1/r solution is sampled on a grid of size L×L centered at the origin to produce

a discrete field. This can then be used as the real-space convolution kernel of Eq. 3.51.

There is an issue in that there is infinite displacement at the origin r = 0 in

Eq. 3.50 which is due to the fact that force is applied to a single point. The infinity

becomes regularized if the force is distributed across a small, finite area. Li and Berger and

Li and Pohrt (Ref. 111 and Ref. 112) provide the analytic solution of displacement from

a square patch of traction; the solution becomes the Boussinesq-Cerruti solution when the
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square size goes to zero but remains finite otherwise. We choose the size of the square

traction patch to be the grid cell size. By sampling the Li-Berger solution, we have the

exact analytic displacement at points on an L× L grid centered on an applied pressure at

the origin. This is used as the GF in Ch. 6 and Ch. 7.1

Note that the L × L-square grid captures the displacement up to distances L/2

away from the applied pressure in both +x and −x directions. The response is not captured

up to distances L away. If contacting objects on the surface are separated by more than

L/2 in x or y, they do not have the correct interaction. We therefore ensure that all contact

occurs only in a square region of side L/2, so that all forces and displacements follow the

intended Li-Berger solution. As described in Ref. 110, this method entirely excludes the

effects of periodic image forces, but requires sacrificing three quarters of the simulated

surface area.

3.9 Conclusions

An approach for coupling an explicit atomistic region to a substrate described with a Green’s

function was developed and tested. The entire system is described by a single Hamiltonian

and the only approximation is to neglect anharmonic terms in the substrate. Many other

atomistic/coupling schemes introduce ghost forces or can not be described by a single Hamil-

tonian.58,61 Previous applications of the Green’s function approach have also neglected some

forces near the elastic/explicit boundary leading to violations of Newton’s third law and

ghost forces when interactions extend beyond nearest layers. Our work also demonstrates

the extension of the GF method to many-body interactions, creating the opportunity to

accelerate a wider range of simulations.

Efficient methods for calculating the Green’s function given the interatomic po-

tential were described. Fourier transforming in the plane of the substrate reduces the prob-

1The discrete Fourier transform of the Li-Berger solution is then used as G̃ in Eq. 3.53.
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lem to a one-dimensional coupling between layers for each in-plane wavevector ~q. These

equations can be solved using a transfer matrix approach83,84 or a renormalization group

method85,86 with computational effort that scales as 1/|~q| or − ln |~q|, respectively. This is

order L2 faster than a previous fluctuation-dissipation formulation for obtaining the Green’s

function.19 We have considered only static applications, but present equations for the full

dynamic problem with arbitrary masses and damping.

Three tests of the method were discussed. The first is surface relaxation, which

reflects the loss of neighbors at a free surface. The Green’s function approach accurately

reproduced explicit atomistic simulations. The previous Green’s function implementation

was only accurate for nearest neighbor interactions at zero pressure where relaxation van-

ishes. The second test was Hertzian contact by a rigid sphere. With no explicit atoms, the

elastic Green’s function reproduced the analytic response for an elastic continuum. Adding

only 8 to 16 atomic planes of explicit atoms allowed anharmonic corrections to Hertz theory

to be captured with a relatively modest increase in computer time. The final example was

contact with a randomly rough surface with atomic steps that nucleated subsurface disloca-

tions. The Green’s function method captured the full response including contact area and

dislocation distribution until the dislocations came very close to the elastic layer.

There are several ways in which the current approach can be extended. Periodic

changes in elemental composition of the crystal as encountered in nanolaminates can be

included straightforwardly by allowing the force-constant matrix to vary spatially. Another

extension is to evaluate both the full force and the harmonic approximation for atoms at

the elastic/explicit interface. The deviation can be used to estimate errors and determine

whether to terminate the calculation or add additional layers of explicit atoms. This ad-

dition could be done adaptively on the fly. A third is to include finite temperature. The

static elastic response can still be described by a Green’s function that must be modified if

the temperature is high enough to produce anharmonic effects. The success of recent ex-
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tensions of the quasicontinuum method113,114 suggests that the most important changes in

the Green’s function can be captured by using the thermally expanded lattice to determine

the force-constant matrix.
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Chapter 4

Stiffness of contacts between rough surfaces

The presence of roughness on a wide range of length scales has profound effects on contact

and friction between experimental surfaces. Under a broad range of conditions,6,7, 41,77,115,116

the area of intimate contact between rough surfaces Ac is orders of magnitude smaller than

the apparent surface area A0. As discussed below, this provides the most common explana-

tion for Amontons’ laws that friction is proportional to load and independent of A0. Because

Ac is small, the interfacial region is very compliant. In applications from jet engine mounts

to microelectromechanical systems, the interfacial compliance can significantly reduce the

stiffness of joints formed by pressing two components together.115,117

In this chapter, we examine the effect of surface roughness on the normal and

transverse stiffness of contacts between elastic solids using molecular dynamics (MD) and

continuum calculations. The results provide a numerical test of recent continuum the-

ories118,119 and their applicability to real solids. The contact area and normal stiffness

approach continuum predictions rapidly as system size increases. Continuum theory also

captures the internal deformations in the solid under lateral forces, but the total transverse

stiffness may be greatly reduced by atomic-scale displacements between contacting atoms

on the opposing surfaces. This makes transverse stiffness a sensitive probe of the forces

underlying friction and may help to explain unexpectedly small experimental values.120

The topography of many surfaces can be described as a self-affine fractal.5,6 Over

a wide range of lengths, the root mean squared (rms) change in height dh over a lateral

distance ` scales as a power law: dh ∼ `H , where the roughness or Hurst exponent H is

typically between 0.5 and 0.9. Greenwood and Williamson (GW) considered the peaks of
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rough landscapes as independent asperities and found that Ac rose linearly with normal load

FN for non-adhesive surfaces.6 This explains Amontons’s laws if there is a constant shear

stress at the interface. A linear scaling of area with load is also obtained from Persson’s

scaling theory, which includes elastic coupling between contacts approximately.121,122

Dimensional analysis implies that the linear relation between load and area must

have the form

AcE
′ = κFN/

√
〈|∇h|2〉. (4.1)

where a modulus like the contact modulus E′ is the only dimensional quantity characterizing

the elastic response, and the rms slope the only dimensionless quantity characterizing the

roughness. Numerical solutions of the continuum equations7,77 show that κ is near 2.

Results for different H and Poisson ratio ν lie between the analytic predictions of GW,

√
2π ∼ 2.5, and Persson,

√
8/π ∼ 1.6. One advantage of Persson’s model is that, as

in numerical results, Ac/FN is constant over a much larger range of loads than GW.46

Another is that it captures119 the power law scaling of correlations in contact and stress

that was found in numerical studies.50,76

The normal stiffness is related to the change in average surface separation u with

load. Experiments123,124 and calculations116,118,125 show an exponential rise in load with

decreasing u, FN = cA0E
′ exp[−u/γhrms], where hrms is the rms variation in surface height

and γ a constant of order 1. Differentiating leads to an expression for the normal interfacial

stiffness:

kIN = −dFN/du = FN/γhrms. (4.2)

For self-affine surfaces, this interfacial stiffness decreases as h−1rms ∼ L−H with increasing

system size L. Our simulations test this scaling and show that γ is nearly constant. They

also examine the connection between this normal stiffness and the transverse stiffness kIT

at forces lower than the static friction.21
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4.1 Computational model

We consider non-adhesive contact of a rigid rough solid and a flat elastic substrate. This

can be mapped to contact of two rough, elastic solids in continuum theories.6,121 The

mapping is only approximate for atomic systems,1,126 but reduces the parameter space.

Since thermal fluctuations are usually ignored in continuum theory, we consider the zero

temperature limit.

In our MD simulations, substrate atoms separated by r interact with a Lennard-

Jones (LJ) potential: ULJ = 4ε[(σ/r)12 − (σ/r)6], where ε and σ are the bonding energy

and diameter. To speed calculations, the potential and force are interpolated smoothly to

zero at rc = 1.8σ and energy minimization is used to find stable states.127 Single-asperity

simulations1 yield an effective contact modulus E′ = 64ε/σ3. The substrate is face-centered-

cubic and forms a cube of edge L with a (100) top surface. Periodic boundary conditions

are applied in the plane of the top surface and bottom is held fixed. Continuum calculations

used the same substrate dimensions but obtained the displacements using a Green’s function

(GF) for an isotropic, continuous medium with Poisson ratio ν = 0 or 0.35.

The rigid surface contained atoms on a square or triangular grid. The nearest-

neighbor spacing d′ was chosen to prevent commensurate locking with the substrate.10,128

The interaction between substrate and rigid atoms is a LJ potential with length σ′ truncated

at the energy minimum, 21/6σ′. This produces the purely repulsive interactions assumed in

Persson’s theory. Rigid atoms are displaced vertically to coincide with a self-affine fractal

surface of the desired H. Surfaces with roughness on wavelengths from lmin = 5.9σ to

lmax = L were generated as in Ref. 50. The rms slope
√
|〈∇h|2〉 = 0.1 for the results

shown. Consistent results were obtained for slopes from 0.05 to 0.15. Slopes of 0.2 or

greater led to plastic deformation in MD simulations. Large slopes also led to plasticity in

previous continuum calculations.116
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4.2 Results

In all cases studied, Ac rises linearly with FN . Moreover, the value of κ approaches previous

continuum results as system size increases.7,77 The stress and contact correlation functions

from the MD calculations also show the same power law scaling with wave vector found in

continuum calculations and Persson’s theory.76,119

Figure 4.1 shows the variation of FN with interfacial separation u for several L and

H = 0.5 and 0.8. In all cases, FN rises exponentially over a range of loads that corresponds

to fractional contact areas between 1 and 10%. Statistics are too poor at lower areas and

nonlinear corrections to Eq. 4.1 are seen at larger areas.7 The linear fits to all results have

the same slope, corresponding to γ = 0.48, and best fit values for all H and L studied

differ by less than 10% from this value. GF results were at the higher end of this range and

showed no change as ν increased from 0 to 0.35. Earlier continuum calculations,116 elastic

atomic calculations125 and experiments124 were consistent with γ ≈ 0.4. This represents a

compelling success of Persson’s approach, and raises the question of whether γ may have a

unique value in the thermodynamic, isotropic limit.

The normal stiffness from Eq. 4.2 includes a component from the increase in

contact area with load as well as the change in force at fixed area. There is also an atomic-

scale compliance kIa associated with changes in the separation between contacting atoms on

opposing surfaces that is generally neglected in continuum theory. To isolate the stiffness

associated with deformation within the substrate at fixed contact area kIs, we applied

constraints directly to the substrate atoms that contacted at a given load. The normal

and lateral stiffness were then obtained from the linear change in force produced by small,

uniform normal or transverse displacements of these contacting atoms. The contribution

from the bulk response was subtracted so that the stiffness reflects the change in surface

separation u or transverse surface translation, uT . This approach is straightforward to
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Figure 4.1: Logarithm of load as a function of (u0− u)/hrms, and linear fits corresponding
to γ = 0.48. The separation at first contact, u0, is shifted slightly to prevent overlap.
Atomistic results are for H = 0.5 with L = 378.4σ (circles), 189.2σ (squares), and 94.6σ
(triangles) and for H = 0.8 with L = 189.2σ (crosses) and 94.6σ (pluses). Filled triangles
are for a GFMD simulation with L = 128d and ν = 0.

implement in experiments and was found to be consistent with direct averaging of atomic

separations.

Figure 4.2(a) shows the scaled normal interfacial stiffness kIsN hrms/A0E
′ as a func-

tion of the dimensionless load FN/A0E
′ used to identify the contacting atoms that are

displaced. Once again, results for all systems show the same behavior, and the stiffness

rises linearly with load as predicted by Eq. 4.2. The points lie slightly above the dashed

line corresponding to γ = 0.48 due to small deviations from the analytic form of Eq. 4.2.

One might expect kIsN to be substantially less than the total stiffness because it does not

include the stiffness from increases in contact area. However, the two stiffnesses are nearly

the same because newly contacting regions carry the smallest forces.
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(a)

(b)

Figure 4.2: The scaled (a) normal stiffness and (b) transverse stiffness as a function of
FN/A0E

′. Results are for H = 0.5 (open symbols) and H = 0.8 (filled symbols) with
L = 189.2σ (circles), L = 94.6σ (squares) or L = 47.3σ (triangles). Dashed lines have slope
1/γ with γ = 0.48.

The incremental response of an ideal elastic solid does not depend on any preex-

isting deformation. This implies that we should obtain the same stiffness by displacing the

same set of atoms on the initial undeformed surface. Direct evaluation of the stiffness in

this way gave slightly lower values than Fig. 4.2, with the difference increasing from the

numerical uncertainty to about 15% with increasing FN . This provides an estimate of the

contribution that anharmonic effects may make to the stiffness of real materials at the rms

slope used here.

The above results imply that the stiffness of elastic solids at fixed contact area is

uniquely determined by the distribution of contacting points and not the surface roughness
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or load distribution. This conclusion may seem at odds with Eq. 4.2, since the contact

area has no independent connection to load or surface roughness. The resolution is that

variations in load and roughness cancel. If the response is linear, one can scale hrms and

FN by the same factor and the contact area will be unchanged. Indeed one can combine

Eqs. 4.1 and 4.2 to eliminate FN :

k∗N ≡
kIN
A0E ′

hrms√
〈|∇h|2〉

=
1

κγ

Ac
A0

. (4.3)

For a self-affine surface, the ratio hrms/
√
|∇h|2 ∝ (lmax/lmin)H lmin depends only on the

small and large scale cutoffs in roughness.

Figure 4.3(a) shows the scaled stiffness k∗N vs area. The results were obtained

by displacing atoms from their positions on the initial flat surface to eliminate anharmonic

effects. Results for all systems collapse onto a common straight line, providing clear evidence

for the direct connection between stiffness and contacting area. The slope is near unity as

expected from the separate values of κ and γ.

All of our atomic simulations show kIsT /k
Is
N ≥ 1. This is surprising given that

Mindlin21 and recent work53 predict kIT /k
I
N = 2(1 − ν)/(2 − ν) ≤ 1. However, this work

assumed isotropic elasticity and the predicted ratio of unity is consistent with our GF

results for an isotropic solid with ν = 0. One measure of the anisotropy of the LJ crystal

is that the ratio c44/E
′ ≈ 0.57, while it is (1 − ν)/2 ≤ 1/2 for an isotropic solid. The

higher shear modulus is consistent with a higher transverse stiffness than expected. In

general, the total elastic energy stored in the interface is Σq
~f( ~−q)

←→
G (~q)~f(~q)/2 where G

is the Green’s function matrix relating displacements to forces f .19 The stiffness ratio

can be obtained by averaging the diagonal components of qG(~q) corresponding to normal

and transverse displacements over q̂ and assuming the same power spectrum describes the

respective forces. This ratio agrees with Mindlin’s result for isotropic systems, and captures
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changes with crystal anisotropy.

As noted above, kIsN and kIsT reflect the stiffness associated with deformation inside

the substrate at constant Ac, and there are additional interfacial stiffnesses kIaN and kIaT

associated with the relative motion of atoms on opposing surfaces. The substrate and

atomic compliances add in series, so the total interfacial stiffness kItJ = [1/kIsJ + kIaJ ]−1 for

J = N or T . As in previous studies of single-asperity contacts,1,10,128 we find atomic-scale

deformations have almost no effect on the total normal stiffness of multiasperity contacts,

but qualitatively change the transverse stiffness.

The value of kIaN is large because the repulsive forces on all contact atoms add

coherently to prevent interpenetration. One can estimate kIaN ∼ AcE′/σ, assuming that the

interfacial atoms act like a piece of the substrate with area Ac and height equal to the lattice

spacing ∼ σ. This is larger than kIsN by a factor of order hrms/σ
√
〈|∇h|2〉 � 1, explaining

why the total normal stiffness (Fig. 4.1) is consistent with the stiffness from compression

of the elastic substrate alone (Fig. 4.2).

In contrast, the contributions to transverse stiffness from different atoms rarely add

coherently. There is a direct analogy to friction forces in single-asperity contacts,1,10,128

where the resistance to lateral sliding rises sublinearly with the area unless the surfaces

share a common periodicity. In Fig. 4.3(b) the total transverse interfacial stiffness is 2

orders of magnitude lower than kIsT . Results for different H are nearly the same, but the

stiffness changes significantly with the lattice spacing d′ and surface structure (square vs

triangular). The transverse stiffness is also affected by lmin, L, and the interfacial potential.

Our kIaT results for a wide range of parameters fall into two categories. The stiffness

adds coherently in special cases, such as for commensurate surfaces with the same lattice

structure. As for the normal stiffness, the contribution from kIaT is proportional to Ac and

becomes irrelevant as system size L increases. For the more usual case where the different

periodicity of the surfaces prevents coherent locking, kIaT grows sublinearly with Ac and
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dominates the total stiffness at large L and Ac. Data for the cases in Fig. 4.3(b) satisfy

kIaT = cA
1/2
c E′, where E′ is included to make c dimensionless and there are statistical

fluctuations about the fit as new asperities contact. The value of c was independent of L

and H, but larger for the square lattice than the triangular lattice. The substrate stiffness

kIsT ∝ LHAc [Eq. 4.3] grows more rapidly with L and Ac and thus becomes irrelevant in

large systems.

Two aspects of the above results should be noted. The first is that the scaling

kIaT ∝ A
1/2
c is consistent with our observation that different connected patches contact at

random lateral registries because they could not displace laterally to optimize their position.

Scaling theories predict that substrate stiffness prevents relative lateral displacements for L

less than a correlation length that is estimated to be comparable to the size of macroscopic

samples.129 The second point is that the same arguments predict that the friction force

scales as A
1/2
c and this is not usually found in experiments. This suggests that another

mechanism, such as debris or plasticity, may be important to both interfacial stiffness and

friction in experimental samples. Further studies of interfacial stiffness may thus provide

valuable information about friction mechanisms as well as explain the low ratio of transverse

to normal stiffness frequently observed in friction.120

4.3 Conclusion

In conclusion, atomic scale simulations were used to study contact between surfaces with

roughness on a wide range of scales. The results for area and normal stiffness are consistent

with Persson’s continuum theory down to relatively small scales, even though the solid is

not continuous or perfectly elastic. The area and internal stiffnesses of systems with a range

of H, L and ν show the linear scaling predicted in Eqs. 4.1 - 4.3 with nearly constant values

of κ and γ. The internal stiffnesses were shown to depend only on the geometry of the

contacting region. Atomic-scale displacements between contacting atoms have little effect
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on the normal stiffness, but can change the lateral stiffness by orders of magnitude. This

sensitivity makes transverse stiffness a promising probe of the atomic-scale interactions that

underlie friction.
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Figure 4.3: The scaled (a) normal stiffness and (b) transverse stiffness as a function
of Ac/A0. Results are for H = 0.5 (open symbols) and H = 0.8 (filled symbols) with
L = 189.2σ (circles), L = 94.6σ (squares) or L = 47.3σ (triangles). Pluses show GFMD
results for ν = 0. Total transverse stiffness kItT , multiplied by 20 to make it visible, is shown
for L = 189.2σ and rigid surfaces with a square lattice, d′ = 0.37σ, and H = 0.5 (cross) or
H = 0.8 (hexagons), or a triangular lattice with d′ = 21/6σ and H = 0.8 (*). Dashed lines
have slope 0.87.
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Normal contact of rough crystalline solids

Microscopic roughness on solid surfaces determines a wide variety of technologically impor-

tant properties of contacting objects. The fact that contact area is only a small fraction

of surface area in a broad range of conditions is a key insight into correct explanations of

friction, electrical contact, thermal contact, leaking of seals, and interface stiffness. These

surface properties can be especially important in micro- and nano-scale devices, where,

at the same time, precise engineering may enable the surface geometry to be controlled.

Correspondingly, there has been sustained interest in quantitative predictions about the

statistical properties of rough contact.

Most previous work assumes that each contacting object consists of a continuum

elastic material with a surface that is sharply-defined and smooth on the smallest length

scales. Theoretical modeling, notably by Persson,48,49 has made great progress in developing

predictions for the amount of contact area, stiffness, and pressure distribution in rough

contacts. Systematic numerical studies with isotropic linear elasticity support the central

results, showing deviations almost always less than 50% from predictions.45

One troubling aspect of continuum predictions is that the root-mean-squared (rms)

slope sets the contact area, and the dominant contribution to the measured rms slope of

rough surfaces usually comes from the smallest resolved scale. Of course, solids are not

continua but are composed of discrete atoms. If one resolves surface topography all the

way to atomic length scales, definitions of the rms slope become ambiguous. Our lack of

understanding of how these continuum parameters map onto a real-world solid hinders the

application of continuum theories.
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In this work we use molecular dynamics simulations (MD) to directly simulate

normal contact between rough solids on the atomic scale. MD provides a natural framework

to consider atomic-scale features that continuum treatments typically neglect. The atomic

steps found at the surface of crystalline solids are a striking example known to present

problems for continuum treatments.1,126 The MD simulations can also test the common

assumptions of using linear elasticity and low-friction, hard-wall interactions across the

interface.

Previous indications about the validity of large-scale continuum results for atomic

solids are mentioned in work by Almqvuist et. al.130 though atomic solids were not the

main focus. Large simulations conducted in two dimensions found that stepped surfaces

caused significant deviations from continuum expectations.126

In this work, we conduct large three-dimensional investigations of atomic rough

contact which are now possible thanks in part to fast, rigorous methods such as the Green’s

function molecular dynamics (GFMD) method.19,51 We study bent, elastic solids with

quasi-hard-wall interactions to mimic the continuum description. We then include more

realistic atomic-scale features at the interface, such as atomic-scale compliance at the in-

terface or atomic surface steps. Finally, to probe effects beyond linear elastic response, a

lattice of Lennard-Jones (LJ) atoms is used as the substrate.

We find that many of the large-scale properties can be explained with continuum

theory, while there are large deviations at small scales. We suggest definitions of the sur-

face slope and contact area of these atomic systems and we find that the expected linear

relationship between normal load and contact area holds. The contact area is modified only

up to 50% from the continuum case for elastic substrates. Atomic surface steps rearrange

the surface pressure up to length scales associated with the step spacing, which may be

considerably larger than the atomic length scale. In addition, edges produce regions of very

high pressure.
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When the substrate is composed of LJ atoms, we choose surface roughness pa-

rameters to produce elastic or slightly elasto-plastic behavior. Even the lowest-roughness

surfaces produce plasticity, but the contact properties remain nearly the same as the purely

elastic case. More plasticity occurs under higher-roughness surfaces, especially at step

edges, and the contact area can be increased several times above the result for elastic sur-

faces. Stepped surfaces are more effective at creating plasticity than bent surfaces and

correspondingly they obtain larger contact area at the same load despite having the same

continuum-level roughness description. This constitutes an example of atomic-scale features

controlling the macroscopic properties of normal contact.

5.1 Continuum description

Many rough surfaces are approximately described as statistically self-affine fractal over a

large range of length scales.40,131 That is, the average change in surface height dh scales as

a power law of lateral distance, dh = 〈|h(x + dx) − h(x)|〉 ∝ dxH , where H is called the

Hurst exponent,103 and x and dx are two-dimensional vectors in the plane of the surface. H

is found to have values between 0.5 and 0.8 for many measured surfaces.132 The self-affine

scaling holds over a range of length scales Lmax > dx > Lmin, where Lmax cannot be larger

than the system size and Lmin cannot be smaller than the scale of atoms that form the

surface.

Many models of rough contact (c.f. Ref. 48 for a partial review) predict an ap-

proximately linear increase in contact area A with load F up to moderate fractional contact

area. While some of the models are quite sophisticated, the relationship between contact

area and load might be guessed from dimensional analysis. A dimensionless quantity may

be constructed by dividing F/A by a modulus like the contact modulus E′ (as in Hertzian

contact, Eqn. 2.2). If the surface geometry introduces no additional length scales, then the

ratio may only be equal to a dimensionless constant whose value may depend on the surface
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geometry. For a statistically random surface, assuming linear elastic response, a natural

dimensionless quantity to characterize the roughness is the rms slope h′rms ≡
√
〈|∇h|2〉.

Here, 〈...〉 refers to averaging over the surface. Dimensional analysis therefore suggests that

at low contact area,

AE ′ = κF/h′rms (5.1)

which is supported by the findings of analytic models7,48 and numerical work.7 Numerical

work has found κ to have values in the range of 1.5− 3.0 at these contact areas for different

roughness parameters.7,45

The fact that area is proportional to load implies that the mean contact pressure,

〈p〉 ≡ F/A, is independent of load. Not only the mean pressure, but the full distribution

of pressures on the surface, P (p), is of considerable importance in tribology. For example,

regions of high pressure may produce plastic yielding (c.f. Sec. 5.3.2) or can be the dominant

regions contributing to friction (c.f. Ch. 6). The continuum theory of Persson leads to a

distribution function P (p/〈p〉) whose form is independent of load and that goes to zero at

both low and high pressures.133

Also of technological interest is the mechanical stiffness of the rough contact. The

small contact area leads to a low interfacial stiffness which can often be lower than the bulk

stiffness and therefore dominate the response. Ch. 4 discussed that in linear systems, the

normal stiffness is the derivative of normal load with respect to the mean surface separation

u, i.e. kIN = −dF/du. Continuum work42,116,118 (see Fig. 4.2) shows that normal stiffness

increases linearly with load,

kIN = F/γhrms (5.2)

where F is the load and hrms is the rms surface height. Integrating this relation, one finds
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that the load falls exponentially with surface separation

F = cA0E
′exp[−u/γhrms] (5.3)

where A0 is the apparent area and γ is a dimensionless constant found to have value of

about 0.5.

Continuum contact theories typically implicitly assume that surfaces are mathe-

matically smooth below length scale Lmin. It is not clear how to apply continuum theory

when Lmin is on the scale of atoms or when there are other features below the scale of Lmin

such as atomic steps. In fact, inserting sharp atomic steps in a linear elastic description

produces infinite stress at the step edges, as described in Ch. 2. The theories also assume

that there is no friction in the contact during loading, but in real systems, atomic geometry

can cause the surfaces to pin together and produce high friction. Other typical assump-

tions include small root-mean-squared (rms) surface slope, linear elastic response, hard-wall

repulsion, and continuously-varying stress fields.

5.2 Simulation methods

We use molecular dynamics simulations81 (MD) to simulate rough contact between atomic

solids. In most cases we consider a rigid rough upper solid and a compliant flat substrate.

Choosing to work in this limit reduces the parameter space for this study, and this limit

can be mapped to the general case of two rough elastic solids in the small-rms-slope, linear-

elastic case. Cases that include roughness on the substrate are described at the end of the

chapter and follow the same trends.

Each solid consists of a face-centered cubic (fcc) atomic lattice of nearest-neighbor

spacing a0. The lattices are both oriented with the (001) surface in the contact (x−y) plane.

The lattices are also both rotated 45 degrees about the z-axis so that the [110] direction

is along the x-axis and surface atoms form a square x-y grid. Since the rough upper solid
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is rigid, only the surface atoms of the upper solid need to be included in the simulation.

The surface roughness on the solids is generated using the Voss midpoint displacement

algorithm.40 This algorithm produces a random surface h(x) with self-affine scaling between

the system size, L, and the grid size, a0. We then impose the small-wavelength cutoff to

the scaling by removing the Fourier components of the surface that are above a specified

wavenumber, 2π/Lmin.

This rough surface h(x) is then used as a template to create roughness on an

atomic crystal by one of two methods. The first method (Fig. 5.1(a)) consists in vertically

displacing atoms on the rigid surface to follow h(x), producing an atomic surface that

resembles a bent lattice. The bent surface is close to the surface assumed in continuum

theory, but artificial. In the second method (Fig. 5.1(b)) all atoms in the rigid crystal

remain on lattice sites. Any atoms below the surface h(x) are removed, leaving behind

atomic steps of height a0/
√

2 on the surface of the block.

The substrate surface has dimensions L× L = 1024a0 × 1024a0. Separate studies

with L = 2048a0 gave equivalent results. Lateral boundary conditions are periodic to avoid

edge effects. To capture the stress field that extends far from the surface into the bulk, the

substrate has a depth of 970 atomic planes (485 fcc cells). The bottom atomic plane is held

rigid.

We consider two substrate materials, referred to as fcc LJ and fcc elastic, that have

different interatomic interactions. For fcc LJ, atoms within the substrate lattice interact

with a standard 6-12 Lennard-Jones (LJ) pair potential, V (r, ε, σ) = 4ε((σ/r)12 − (σ/r)6),

with energy and length scales ε and σ. To speed calculations, the pair potential is taken to

be zero at distances greater than r = 1.25σ. This is done smoothly in a standard way81 – by

interpolating the force using a spline between its value and slope at r = 1.2σ to zero force and

zero slope at r = 1.25σ. The top 16 atomic planes are simulated explicitly in MD, whereas

the deeper parts of the lattice are replaced with their linear response using the Green’s
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Figure 5.1: A slice through a small region of simulated 3D rough contact is shown for
two geometries at the same normal load. Atoms are circles and the normal pressure at the
atomic scale is shown by shading by a distance proportional to the atomic force. The upper
solid is held rigid (red) and the substrate (blue) is fcc elastic and initially flat. In (a) the
bent upper atomic lattice closely approximates the continuum picture with the height of
atoms equal to the continuum h(x). The shading shows that the pressure is distributed very
differently than in (b) where removing atoms below h(x) produces atomic surface steps. In
(b), step edges produce sharp fluctuations of the pressure. Since the simulation is 3D, the
pressure has fluctuations perpendicular to the cross section plane as well. The apparent
violation of Newton’s third law in (b) at positions from 72 to 82 σ is due to a step edge
of the upper solid that is not visible, because it is clipped out by the cross-section viewing
plane. The atoms directly above (shown) feel no force, since the substrate atoms are pushed
down by atoms that are outside the viewing slice. These sharp fluctuations are an atomistic
effect that leads to increased plastic rearrangement, as discussed in Sec. 5.3.2.
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function approach. The simulation thus retains atomic fidelity in high strain regions near

the surface while reducing the computational load in regions far from the surface. Notably,

the explicit MD layers near the surface allow the nucleation of dislocations to relieve stress

(Fig. 3.12). Simulations with 8 atomic planes gave nearly identical results for surfaces with

h′rms < 0.4. The fcc elastic case is simply obtained by removing all explicit MD layers. The

response of the substrate is then a harmonic approximation to the LJ interactions. The

material has the same stiffness as fcc LJ but is completely elastic with no anharmonic or

plastic response.

We also consider two wall interactions. In the baseline case, called LJ repulsive,

atoms of opposing solids interact with the standard LJ potential that is cut at the minimum,

rcut = 21/6σ, producing a purely repulsive interaction. This wall potential can lead to strong

friction between the surfaces. The reason is illustrated using the iso-potential surface of a

line of atoms along the surface in Fig. 5.2. An atom sliding past the surface can become

pinned in the sharp indentations between atoms, referred to as the atomic corrugation. To

further connect with continuum calculations that assume hard-wall repulsion and no friction,

a stiffer and less corrugated potential can be used. For this the LJ radius is expanded by

2σ and the range of interactions is halved using the potential V (r − 2σ, ε, σ/2) cut at the

minimum, rcut = (2+2−5/6)σ. This interaction is four times as stiff and importantly creates

less friction between the surfaces because there is less atomic corrugation (Fig. 5.2). For

shorthand, we will refer to this as the quasi-hard-wall potential. The simulation properties

that are to be contrasted are summarized in Table 5.1.

Quasi-static loading is applied by lowering the rigid upper surface by small incre-

ments and minimizing the system energy with each increment. The load and the contact

area increase with successive displacement steps, and the upper solid is allowed to translate

in the lateral directions to maintain zero net force.

An effective contact modulus, E′ ≈ 68ε/σ3, of the substrate lattice is found using a
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Figure 5.2: Potential iso-surface (V = 0+) of a bent chain of atoms using two wall potentials
(LJ repulsive and quasi-hard-wall) to illustrate atomic corrugation. Although the chain is
smoothly bent, an atom sliding along the surface experiences structure associated with the
large slopes of the isosurface for the LJ repulsive case.42

“Baseline” “Altered”

Atomic surface character Bent Stepped

Material fcc LJ fcc elastic

Interfacial atomic interaction LJ repulsive Quasi-hard-wall

Table 5.1: Summary of the investigated material properties. The previous chapter (Ch. 4)
focused on simulations with the properties labeled “baseline.” In this chapter, each of the
three material properties are altered to investigate the effects of the atomic features on
the contact properties. All combinations of baseline and altered properties are considered.
Additionally, the baseline continuum topography has the following properties: H = 0.5,
h′rms = 0.15, Lmin = 6σ, Lmax = 1024σ.

large spherical indenter and by comparing the pressure with the Hertz solution as reported

previously.42 The LJ lattice has yield stress σy = 1.64ε/σ3 along the (111) slip plane in

the [010] direction. The rms slope of the template h′rms is varied from 0.07 to 0.40 which

represents the range between purely elastic contact and fully plastic contact in previous

studies.116

5.3 Results

A bent geometry and a stepped geometry are contrasted in Fig. 5.1. The two surfaces were

created using the same continuum template and have the same large-scale shape. They

are also at the same normal load. Shading shows that the pressure is distributed very

differently. The presence of atomic steps redistributes the pressure on the surface, concen-
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trating pressure at the step edges. Statistical distribution functions allow more quantitative

assessment of the contact properties.

5.3.1 Gap function and mean surface separation

The gap function provides insight into definitions of contact area and mean surface sep-

aration. It is defined as the distribution P of normal interfacial separations u, P (u) =

〈δ(u(x) − u)〉 where u(x) is the vertical separation at location x along the surface. A

corresponding function for discrete systems can be defined as follows. A surface atom i of

the upper solid has position (xi, yi, zi) and the vertical distance to the nearest atom of the

substrate is ui. Then the fraction of the N surface atoms having a nearest substrate atom

within a range du centered on u is P (u)du = 1/N
∑N

i=1 Θ(−|ui−u|+du/2), where Θ(x) = 1

if x > 0 and Θ(x) = 0 otherwise. We also repeat the analysis using the true (3D) separation

ut rather than vertical separation u. The distribution P (ut) can be more relevant since, for

example, pair potential forces depend on the 3D separation. (The distinction between the

two distributions is a minor point since the two versions are nearly the same for low-slope

surfaces and u > 1.5a0.)

Fig. 5.3 shows P (ut) for stepped and bent surfaces with different repulsive inter-

actions at applied normal pressure F/L2E′ = 0.0059. The distribution at large u is nearly

the same for bent and stepped surfaces and for different repulsive interactions. The total

fraction of substrate surface atoms near contact can be determined from the cumulative dis-

tribution function of separation, C(ut). We see that the majority of the surface is at large

separations, with more than 90% beyond the interaction range. The data also show that a

lateral shift between different surfaces to reach the same C is at most a few percent of the

lattice spacing. For the cases shown, the substrate material is fcc elastic but changing to fcc

LJ produced almost no effect for all cases within the range considered (0.07 < h′rms < 0.40).

In Fig. 5.4 the view of the gap function is expanded to show the strong peak near
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Figure 5.3: The gap function P (ut) and cumulative distribution function of separation
C(ut) are plotted for stepped surfaces and bent surfaces at matched applied normal load
F/L2E′ = 0.0059. Atomic scale changes do not affect the gap function at separations greater
than a fraction of a lattice constant. The substrate material is fcc elastic. The visible small-
scale oscillations in P (ut) at large ut for stepped surfaces are due to the discrete heights of
the surface steps. The continuum template surface had h′rms = 0.15, Lmin = 12σ, H = 0.5,
L = 1024σ. The peaks at small gap are examined in Fig. 5.4.

the onset of repulsion that represents the change induced by contact and which grows with

increasing load. There are small-scale differences between surfaces. For all surfaces the peak

is centered slightly below the onset of repulsive forces at rcut. The hard wall assumption of

continuum theory would lead to a δ-function at rcut. Here, the finite rate at which repulsion

rises leads to a spread of values below rcut. The peak for quasi-hard-wall interactions is

roughly twice as sharp because the characteristic length of the wall interaction is σ/2 instead

of σ (Sec. 5.2). Note that changing from the bent to the stepped surfaces has little effect

on P (ut) at these separations. We will see in the next section that these changes at small

separation lead to significant changes in pressure and contact area.

One common definition of contact is that a contacting atom experiences a repulsive

force from the opposing surface. With this definition, the fractional contact area is then

simply C(rcut). There is some ambiguity with this definition, since the force is vanishingly

small near rcut, and in real systems it may not be possible to sharply know rcut. But

83



CHAPTER 5. NORMAL ROUGH CRYSTALLINE CONTACT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

PD
F 

  P
(u

t )

0.0

0.1

0.2

0.3

C
D

F 
  C

(u
t )

                 ut - rcut   (σ)

(a)

(b)

LJ-repulsive

Quasi-hard-wall

Stepped
Bent

Stepped
Bent

Figure 5.4: Expanded view of the plots in Fig. 5.3 at small separations. (a) Cumulative
distribution function of separation C(ut) and (b) gap function P (ut). Changes in atomic
geometry and atomic interaction produce only small changes in the gap function, almost
all near ut = rcut. The area within r < rcut is 8.0% and 8.4% for the stepped and bent
cases. Changing from a LJ-repulsive wall interaction to quasi-hard-wall decreases the area
to 6.4% and 7.2% respectively.
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Fig. 5.4 shows that there is a distinct peak in P (ut) at contact and that the amount of

fractional contact area is insensitive to whether the full repulsive region is included or just

the peak of P (ut). This is discussed further in Sec. 5.3.4. In the following sections we

use C(rcut) as a definition of fractional contact area which captures trends common to all

definitions considered, as described in Sec. 5.3.4. The contact area (C(rcut)) varies between

6-9% contact area for the cases shown and will be discussed in more detail in the section

on contact area, Sec. 5.3.2.

The changes in mean gap with load give the contribution of the interface to the

normal compliance (Ch. 4). The mean gap is defined by ū ≡
∫∞
0 duuP (u). Given the lack of

sensitivity of P (u) in Fig. 5.3 to the parameters in Table 5.1, we expect the normal interfacial

stiffness also to be insensitive. Fig. 5.5 shows the variation of the mean separation with

load for different atomic systems. Over 8 orders of magnitude in force, the mean separation

is the same for all cases to within a fraction (∼ 10%) of the rms height hrms. Moreover, the

small shift is nearly constant so it has little effect on the derivative which gives the stiffness.

At very small loads there is only a single contact. At larger loads there is a statistical

distribution of contacts from the rough surface, and the mean separation follows Eqn. 5.3.

All cases investigated follow the slope of the line corresponding to γ = 0.45, which is the

result found earlier for bent elastic systems in Ch. 4.42

5.3.2 Measures of area and plasticity

Continuum simulations predict proportionality between load and area for both elastic and

elastoplastic contact.116 Fig. 5.6(a) shows that this holds in atomic systems as well, for

bent and stepped surfaces with elastic or LJ interactions. All four cases have the same

continuum template. The area-vs-load data are similar for all four cases, with the stepped

geometry on an fcc LJ solid producing the most contact area at a given load.

The stepped geometry on an fcc LJ solid is also the case that produces the most
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Figure 5.5: Shown is the load dependence of the surface separation. Surfaces are elastic
bent (black diamonds), elastic stepped (blue crosses), LJ bent (green asterix), and LJ
stepped (yellow diamonds). The surfaces were formed from a continuum template with
h′rms = 0.3 and Lmin = 6σ.

plasticity, as seen in Fig. 5.6(b). The plotted measure of plasticity is the number of changes

to the list of neighboring atoms. Here we define neighboring atoms to be those within 1.25σ

of one another. Relatively large deformations that are associated with plasticity, like the

movement of a partial dislocation in the fcc lattice, cause atoms to leave the 1.25σ-shell

of some atoms and enter the shell of others. This appears as insertions and deletions with

respect to the original neighbor list. We found that the changes to the neighbor list agree

well with a common neighbor analysis (CNA) of which subsurface atoms have left a locally

fcc structure.80 The number of changes to the neighbor list is larger than the number of

atoms that participate – a subsurface atom in the fcc structure has 12 neighbors for example.

This plasticity analysis based on the neighbor list has an advantage over CNA in that it

allows identification of plastically-deformed atoms at the surface as well as atoms that have

been displaced a complete lattice constant in the bulk. Fig. 5.6 shows that the bent surface

also produces plastic rearrangements, even though no significant effect is observed on the
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Figure 5.6: Shown is the load dependence of (a) the fraction of surface atoms in contact
and (b) the measure of the plasticity based on changes to the list of neighboring atoms.
Surfaces are elastic bent (black diamonds), elastic stepped (blue crosses), LJ bent (green
asterix), and LJ stepped (yellow diamonds). The surfaces were formed from a continuum
template with h′rms = 0.3 and Lmin = 6σ.
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Figure 5.7: The spatial distribution of normal pressure in an L/2 × L/2 region of a
rough contact at F/A0E

′ ≈ 4.7 · 10−3. The normal force on atoms on the flat substrate is
indicated by color. Atomic steps alter the pressure on small scales, producing an imprint
of some of the plateaus and step edges in the pressure field. Plasticity occurs in the lower
images, where there are LJ interactions in the substrate. The locations are marked in black
where a subsurface atom left an fcc environment as determined by CNA. Note the increased
plasticity near step edges in the lower right. The continuum template had h′rms = 0.15,
Lmin = 6σ, H = 0.5, L = 1024a0.
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contact area. Bent surfaces with slope h′rms = 0.15 similarly showed the onset of plasticity

at F/A0E
′ ≈ 0.001. This is in line with the idea that even fairly flat surfaces at low

loads inevitably produce plasticity. However, Fig. 5.6(a) (and later sections of this chapter)

indicate that the many contact properties are unchanged from the purely elastic case.

Many of the plastically-deformed atoms contributing to the data in Fig. 5.6(b) are

below the surface, as discussed in connection with Fig. 3.12. Another view is provided in

Fig. 5.7. Shown are the same four cases as in Fig. 5.6(a) (bent and stepped, fcc elastic and

fcc LJ). Step edges concentrate the stress because sharp features produce stress singularities

in a linear elastic treatment. We see that the atoms at the base of a step are shadowed

from contact. The four cases are at the same load. Inspection reveals that plastic yielding

increases the contact area as the highest pressures regions give way and allow the surfaces

to better conform. The locations of plasticity are plotted in black; these are primarily

fcc {111} partial dislocation loops that nucleate from the surface where step edges have

contacted.

While steps and plasticity change the distribution of pressure on small scales, the

large wavelength structure is the same for all systems studied. To quantify this we show

the Fourier spectrum of the normal pressure as a function of wavevector in Fig. 5.8. The

dashed line shows the continuum prediction76 that the Fourier amplitude p̃(q) scales as

q(−1−H)/2 or the Fourier transform of the stress auto-correlation function C(q) scales as

q−1−H . Atomic systems, whether bent or stepped, follow the continuum prediction for

the spatial correlations at length scales above approximately Lmin. The cross-correlation

between bent and stepped pressure fields reveals that the large-wavelength components of

the pressure field are nearly identical. However, at length scales between approximately

Lmin and a0, the pressure is redistributed.
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Figure 5.8: The amplitude of the Fourier transform of surface pressure, p̃(q), produced by a
bent surface (labeled with blue squares) and by the corresponding stepped surface (red tri-
angles). The spectrum of surface pressure is defined as p̃(q) = 〈|p̃2D(q)|〉 where the Fourier
transform of the pressure is p̃2D(q) = 1/L2

∫
dx p(x) exp(−iq ·x). Here 〈. . . 〉 indicates av-

eraging over all wavevectors q that have magnitude q and | . . . | indicates the magnitude. The
two spectra p̃(q) have been normalized by contact modulus E′, then multiplied by 1000 to lie
on the same axes as the cross-correlation, ρ (solid black). The cross correlation (or squared
normalized cross correlation) is defined as ρ(q) ≡ |〈p∗1(q)p2(q)〉|2/(〈p̃∗1(q)p̃1(q)〉〈p̃∗2(q)p̃2(q)〉)
where p̃1(q) and p̃2(q) denote the pressure for stepped and bent surface respectively and
∗ denotes complex conjugate. At low q, the pressure of the stepped and the bent surface
have nearly identical spectra. Not only the amplitude, but the phases of the Fourier spectra
are matched, as indicated by the normalized cross-correlation being near unity. The auto-
correlation function, C(q), follows the scaling C(q) = |p̃∗(q)p̃(q)| ∼ q−H−1 found in Ref. 76
for continuum surfaces (dashed black line). At large q the pressure fields differ for bent and
stepped surfaces. The magnitude of the stepped-surface pressure is slightly increased at
high q relative to the pressure of the bent surface. The distribution of the high-q pressure is
entirely uncorrelated for bent and stepped, as evidenced by the cross-correlation dropping
more than two orders of magnitude. This shows that the small scales of the surface pressure
get redistributed by the stepped geometry. Shown is a case with elastic substrate, H=0.5,
Lmin = 5.9σ, 1024a0 × 1024a, h′rms = 0.3.
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5.3.3 Local pressure probability distributions

Sec. 5.3.2 showed that the spatial distribution of pressure at long wavelengths follows con-

tinuum predictions, but that it is different at small scales. The distribution of local pressure

values is plotted in Fig. 5.9. Pressure is computed here as z-force on elastic substrate atoms

divided by a20. Using the rigid block atoms produces similar results. Dividing by the mean

pressure in the contact, 〈p〉, allows results for different normal loads to be compared. With

this normalization all pressure distributions are found to be insensitive to load within the

range investigated, between 2%-20% fractional contact area. The unnormalized distribution

of pressure P (p) can be recovered using 〈p〉 = F/A = κ−1E′h′rms and the values of κ in

Fig. 5.13.

The theory of Persson predicts a universal form7,48 for P (p/〈p〉) at low loads where

contact area is proportional to load. The proportionality appears to hold for all surfaces

investigated here and Fig. 5.9(a) shows data at typical loads within this regime. Results for

the hard-wall elastic case with large Lmin are closest to Persson’s prediction of a Gaussian

distribution at large p/〈p〉. The other results for elastic surfaces are quite similar to each

other and appear closer to the exponential distribution found in continuum simulations of

elastic contact.7,77 Note that the stepped surfaces are closest to the exponential form while

bent surface results decay slightly more rapidly in the tail of the distribution. The longer

tail for stepped elastic surfaces may reflect the pressure concentration near step edges.

For all cases, introducing plasticity causes a reduction in the tail of the distribu-

tion at high pressures. It is natural that high local pressures are likely to initiate plastic

deformation and reduce the local pressure. Similar changes in P (p/〈p〉) were seen in contin-

uum simulations of plastic contact.116 The mean pressure 〈p〉 increases with rms slope and

this leads to more plastic deformation and a greater suppression of the tail at large p/〈p〉.

Stepped surfaces also lead to higher local pressures and a greater suppression of the high
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Figure 5.9: The probability distribution of normal pressure is plotted. Pressure has been
normalized by the mean pressure in the contact, 〈p〉 = F/A. Data in solid black in the top
left are from an elastic, bent, quasi-hard-wall system that is the closest of these cases to a
continuum description. Other curves represent characteristic variations of the parameters of
Table 1. The universal distribution7 from Persson theory41,48,134 is shown as a thin dashed
line. A grey diagonal guide line follows P (p/〈p〉) = exp(−p/〈p〉). For elastic substrates (top
row), the pressure is fairly well-described with a single exponential form over a large range.
For LJ substrates (bottom row), the deviations at high pressures are related to anharmonic
interactions and plasticity.
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pressure tail. More pressure probability distributions for systems with plasticity are given

in the appendix of this chapter.

5.3.4 Definitions of rms slope

A main result of this chapter is that the continuum treatment describes many qualitative

aspects of contact of atomic systems, especially at large scales. Even at small scales, trends

in the atomic simulation continue to follow the continuum-level trends but with different

prefactors. It is therefore useful to connect with the continuum descriptions by mapping to

continuum quantities (such as h′rms) from the atomic systems.

For the bent fcc 100 surface, it is natural to define rms slope from a square grid

of heights.

h′rms ≡
√
〈|∇h|2〉 →

√√√√ 1

Nsites

∑
i,j

(hi+1,j − hi,j)2
dx2

+
(hi,j+1 − hi,j)2

dx2
. (5.4)

Here hij is the height of the grid site indexed i, j and the grid is aligned along the [100] and

[010] directions. This matches the continuum definition for continuous surfaces in the limit

of smooth height and small dx. The value of h′rms for the bent surface matches the value

for the original continuum template.

For the stepped surface of the ideal fcc 100 lattice, the distance between neighbor-

ing sites on the square grid is set to dx = a0/
√

2, since successive (001) atomic planes of the

fcc crystal are offset laterally in the [100] direction by that amount. The height hi,j is taken

to be the height of the highest atom at that site unless all four neighboring atoms in the

atomic plane above are present, in which case the lowest of those four neighbor heights is

used. For the stepped surfaces, this definition nicely results in a surface hij of flat terraces

and steps (as shown in the inset of Fig. 5.11).

Recall that the surface property κ is the prefactor in the proportionality between

load and contact area for a given surface. From its definition in Eq. 5.1, it may be calculated
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Figure 5.10: Values of κ for the indicated surfaces using Eq. 5.4 to calculate h′rms. All
systems are elastic. Symbols indicate different definitions of contact area as defined in the
text: crosses and diamonds correspond to the number of atoms that experience a repulsive
force on the substrate or rigid surface respectively; triangles and squares correspond to the
exposed projected area analysis for substrate and rigid surfaces respectively.

from the simulations as κ ≡ AE′h′rms/F . Fig. 5.10 shows that if Eq. 5.4 is used to define

h′rms, κ depends sensitively on the presence of steps and on the roughness of stepped surfaces.

This is in contrast to continuum studies of a variety of bent surfaces based on real rough

surface topographies and randomly-generated rough surfaces (c.f. Refs. 7, 45, 77) where κ

always remained between 1.5 and 3.0. Recall that Fig. 5.6(b) also showed that the ratio

of area to load changed less than 50% for atomic systems when the same surface was used

to generate bent or stepped surfaces. As we now show, much of the deviation shown in

Fig. 5.10 comes from the fact that Eq. 5.4 gives dramatically higher slopes for stepped than

for bent surfaces.

Fig. 5.11 compares values of h′rms from Eq. 5.4 for bent and stepped surfaces

obtained from the same h(x). For all cases the value for the bent surface is close to 2/3

times the square of the slope for the stepped surface. Since the slopes are less than 1.0,

h′rms is much larger for stepped surfaces. This scaling can be explained by rewriting the
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Figure 5.11: The rms slope of bent surfaces (h
′(bent)
rms ) is plotted against the rms slope squared

of their corresponding stepped surfaces (h
′(stepped)
rms ). The discrete definition of rms slope is

given by Eq. 5.4. Data points are several random realizations of system size L = 512σ with

Lmax = L. The data show that h
′(stepped)
rms can be considerably larger than h

′(bent)
rms . The

figure also implies that, given only a stepped surface, the rms slope of the corresponding
bent surface may be approximately determined. Symbols indicate different values of Lmin;
small values of Lmin that approach the atomic length, σ, produce larger deviation from the
line with slope 2/3.
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sum in Eq. 5.4 as a sum over edges between sites of the square grid that are associated with

each term. Squaring both sides of Eq. 5.4 and writing the sum as a sum over all grid edges

(instead of grid sites), we have

(h′rms)
2 → 1

Nedges

∑
i

(
∆i
z

dx

)2

(5.5)

where ∆i
z is the change in height of the grid edge indexed i. Consider the case of small

slope that applies for our results. For the bent surface, the edge slope ∆z/dx takes on real

values near h′rms of the cutting surface. For the stepped surface, the edge slope is almost

always 0, except occasionally when it is (a0/
√

2)/dx. Since the surfaces follow the same

initial h(x), the sums of ∆z over long distances are always within a0/
√

2, but the sum of

the squares of ∆z will be quite different.

For the stepped surface the nonzero contributions are from edges where h(x)

crosses a lattice plane. If the surface height were doubled, the number of crossings would

double and Eq. 5.5 would also double. For the bent surface Eq. 5.5 quadruples because all

values of ∆z/dx double. Therefore (h
′(stepped)
rms )2 ∝ (h

′(bent)
rms ) where Fig. 5.11 gives the pro-

portionality constant as 2/3. The different scaling means that h′rms of the stepped surface

can be dramatically large compared to h′rms of the corresponding bent surface. As a result,

the value of κ for stepped elastic surfaces is not a constant near 2.0 even though the contact

area to load ratio is similar to the bent case.1

Since bent and stepped surfaces produce similar area, one way to treat stepped

surfaces is to always use the rms slope of the bent surface in Eq. 5.1, even for stepped

1The statements about the scaling of h′rms for bent v.s. stepped surfaces hold when the surface h(x) is
sufficiently large, randomly-rough, with Lmin a few times larger than the atomic spacing, and a slope mostly
smaller than the single-step slope, 1.0. Note that if the surface were very rough, h(x) could cross multiple
atomic planes within lateral distance dx. For the stepped surface, the edges would have slope magnitude
of 3.0, 5.0, or more. In the limit that the quantized height is small compared to the changes of h(x) over
distance dx, the results converge to the continuum, bent surface result. In that case doubling the surface
height doubles the slopes and hrms ∼ h′rms.

96



CHAPTER 5. NORMAL ROUGH CRYSTALLINE CONTACT

Figure 5.12: The rms slope of the bent surface (h
′(bent)
rms ) is plotted against the mean

ratio of step height to terrace width, 〈h/w〉, for the same dataset as in Fig. 5.11. 〈h/w〉
is a characteristic slope of the stepped surface. The step height is always the same in
these simulations, h = a0/

√
2. The value of 〈h/w〉 may be determined from an image

showing surface steps and flat terraces, since w is simply the distance between steps along

an arbitrary direction. The figure implies that the value of h
′(bent)
rms , which is useful in

determining contact area as discussed in the text, may be approximately determined from
the value of 〈h/w〉. Symbols indicate rms height, hrms, which should be greater than 1.0
for these relations to hold.
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surfaces. Explicitly,

κ ≡ AE ′h
′(bent)
rms /F (5.6)

where h
′(bent)
rms is the same as the rms slope of the continuum template surface. The template

surface is used in the calculation of κ everywhere in the chapter except for Fig. 5.10.

Fig. 5.11 provides one way to estimate h
′(bent)
rms from the stepped surface: h

′(bent)
rms ≈

2/3(h
′(stepped)
rms )2. However h′rms of the stepped surface is inconvenient to measure in exper-

imental systems since it requires atomic resolution. An alternative is to identify the mean

slope between steps by measuring the plateau width, w, and step height, h. This gives the

slope h/w of an envelope surface that would enclose the surface step. By averaging over the

surface to calculate the quantity 〈h/w〉, one approximates the slope of the original template

surface, h
′(bent)
rms . Fig. 5.12 plots 〈h/w〉 of each stepped surface against the rms slope of the

template h
′(bent)
rms . In the simulation w is measured by drawing a line in an arbitrary direction

(since the roughness is isotropic) and recording the lateral distance w between each surface

step encountered. This is another way to estimate h
′(bent)
rms from the stepped surface for use

in Eq. 5.6.

5.3.5 Definitions of contact area

We consider several definitions of contact area (indicated by symbol type in Fig. 5.13)

to quantify the possible variations. The contact area definition discussed in section 5.3.2

is simply the number of atoms that experience a repulsive force times the lattice nearest

neighbor distance squared, a20. When the two solids differ in modulus or roughness, the

estimate for contact area depends on which solid is considered. A peak on the rigid surface

has positive curvature and a shorter length than the substrate that it contacts. For randomly

rough solids, the rougher and more rigid solid has more positive curvature in contacting

regions and therefore less contact area by these measures. This accounts for the small

(< 20%) increase in the contact area of the substrate atoms (diamonds) when compared to
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Figure 5.13: Atomic geometry leads to variability in κ, the dimensionless ratio of effective
contact area and load. Different symbols correspond to different definitions of contact area
which show a common trend. Triangles and squares correspond to the exposed projected
area analysis for substrate and rigid surfaces respectively. Crosses and diamonds correspond
to the number of atoms that experience a repulsive force on the substrate or rigid surface
respectively. For stepped surfaces κ is defined here with h′bentrms (which is approximately
〈h/w〉 as discussed in the text). Sub figures show results for (a) bent elastic (b) stepped
elastic (c) bent Lennard-Jones (d) stepped Lennard-Jones. Data are ordered by κ, averaged
over all four contact area definitions. Lmin is in units of σ.
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the rigid surface atoms (triangles) for the elastic surfaces (Fig. 5.13(a) and (b)).

The repulsive-force definition may be considered a special case of a separation-

based definition of contact that uses C(rcut) as discussed in Sec. 5.3.1. In general, contacting

area in electrical contact, thermal contact, leakage of seals, and other applications would not

necessarily align with the definition of onset of repulsive force. We therefore also consider

the sensitivity to the separation cut off that defines contact. Fig. 5.3(b) and (c) showed

that the sensitivity to the definition-of-contact range is low (e.g. C(rcut) ≈ C(rcut + 0.1σ)).

Moreover, the average gap between surfaces increases with L because the rms surface height

rises. This means that P (u) just outside of contact (i.e. at u = rcut + σ) is lower in larger

systems and C(u) is even less sensitive to the definition of contact range. This provides

evidence that separation-based definitions of contact area may be nearly uniquely defined

in the thermodynamic limit.

A different measure of contact area is motivated by the idea that not all surface

atoms contribute to the surface area equally. This occurs for example in the case of stepped

surfaces or highly-plastically-deformed surfaces. Fig. 5.14 illustrates this in a simulation

where both the upper and lower solid are stepped. Note that the atoms of the step edge

partially eclipse the atoms of the next atomic plane in the lattice, so that they are not as

exposed to the other solid. To account for this, we consider weighting each contacted atom

by its projected area exposed to contact. If a test atom at (x, y) is translated in z towards

the opposing surface, it will first contact an atom i if (x, y) is within atom i’s exposed

projected area. The exposed projected area (EPA) can be calculated during a simulation

by creating a high-resolution ray-traced image of the surface, with atomic spheres of radii

rcut and colored if the atom carries a load. The fraction of colored pixels is the fractional

contact area in the EPA definition. This definition ensures that the maximum contact area

is L2 even in highly plastically deformed systems, which is assumed in some continuum

theories.
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Figure 5.14: Small regions of contact between two surfaces, each with roughness parameters
h′rms = 0.15, Lmin = 6σ, H = 0.5. (a) Atoms within a cross section plane of thickness a0/2.
A small arrow indicates an atom that is exposed, and may be considered a surface atom,
but is partially eclipsed by the layer above. Especially high stresses deformed the lattices
near step edges. (b) Image illustrating the EPA definition of fractional contact. The elastic
substrate atoms are drawn as spheres with diameters of the interaction range, rcut = 21/6σ.
They are colored according to normal pressure, and the EPA fractional contact area is the
fraction of colored pixels. Thus the EPA can never exceed the nominal contact area of the
plane, A0.
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5.3.6 κ of atomic systems

Fig. 5.13 shows values of κ for atomic solids using Eq. 5.6, and comparing four definitions

of contact area (indicated by symbol type). For elastic solids (Fig. 5.13(a) and (b)), κ is

approximately constant despite large changes in the roughness parameters. κ for elastic

solids remains within a range of approximately 1.5− 3.0. This is in contrast to the findings

of a previous, two-dimensional study126 that focused on higher slopes and found κ to have

values of at least of order 10 for bent and stepped atomic surfaces. We do note a systematic

increase in κ as Lmin extends down to the atomic size and the greatest deviations from

continuum theory are expected.

Fig. 5.13(c) and (d) show cases where plastic deformations occur. κ is only outside

the range of elastic values for bent surfaces with Lmin = 2σ and stepped surfaces with

Lmin = 2σ or Lmin = 6σ and h′rms > 0.3. While sufficiently smooth surfaces have κ similar

to the elastic case, rougher surfaces produce more contact area. This is because surfaces with

higher h′rms have higher mean pressure according to Eq. 5.1, which causes additional plastic

deformation and increases κ. Continuum modeling of elasto-plastic contact116 indicates

that increases in κ of order 2.0 are expected from surfaces of h′rms ≈ 0.2 in this LJ system

(σy/E
′ ≈ 0.02). This is in line with the results of Fig. 5.13(c). However, the modeling in

this chapter also indicates that small Lmin is more effective at nucleating plasticity than

larger Lmin, so that the largest κ in Fig. 5.13(c) does not occur in the surface with the

largest h′rms. In Fig. 5.13(d) we observe that steps always increase plasticity and contact

area in the LJ system above that seen for the corresponding bent surfaces. This reflects the

effectiveness of the sharp changes in surface pressure under steps at nucleating plasticity.

To show the generality of the simulations we have also included results for systems with

roughness on both surfaces in Fig. 5.13(d). These have the same reported roughness on

both surfaces, and the rms slope of the two is summed in quadrature in the calculation of
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κ. The results are consistent with those where just a single surface is rough.

Fig. 5.13 also shows that for all cases the contacted EPA (squares and crosses)

tracks the number of atoms that experience a repulsive force (diamonds and triangles). For

elastic surfaces, the most significant deviations between the two definitions arise for stepped

surfaces, since atoms at step edges are often contacted and receive large weighting in the

EPA definition. The deviations become especially pronounced when rcut is large (the quasi-

hard-wall case), since the weighting of edge atoms increases with the interaction range.

Since the EPA definition mostly follows the more standard definition based on repulsive

force, while having useful properties mentioned in Sec. 5.3.5, it may be a useful definition

of contact area in future studies.

5.4 Conclusion

A variety of questions arise regarding the practical application of continuum rough contact

theory to atomic systems, and the simulations of this chapter provide some clarification.

In general, applying continuum theory requires finding the appropriate mappings between

the atomistic description and the continuum theory and also finding when those mappings

break down. One specific example is the question about how to associate atomic quantities

with contact area and surface slope. For the former, this chapter showed that effective

definitions of contact and contact area could be identified in the atomic systems considered

here. For the latter, the surface slope h′rms had a natural definition for bent surfaces, but for

stepped surfaces it was shown that the slope 〈h/w〉 should be used instead of the local slopes

h′rms, since 〈h/w〉 approximates the slope of the bent surface while the sharp steps make

h′rms anomalously large. Fig. 5.13 showed that using this mapping, the continuum elastic

prediction of κ ≈ 2 held when the roughness was not too great but began to breakdown for

very rough surfaces that deform plastically.

As another example of practical application, consider the question of whether

103



CHAPTER 5. NORMAL ROUGH CRYSTALLINE CONTACT

optical microscopy provides sufficient information to determine contact properties between

two randomly rough surfaces. Optical microscopy does not resolve atomic scales, but does

capture larger-scale topography. For all simulations in this chapter, Eq. 5.2 holds with

γ ≈ 0.5 so that predicting the normal contact stiffness requires knowing hrms only. The value

of hrms is dominated by the large-scale topography135 for any Hurst exponent 0 < H < 1

indicating that a low-resolution topography can be sufficient to determine normal contact

stiffness.

On the other hand, optical microscopy would often be insufficient to determine the

true intimate contact area. That is because, as this chapter finds, contact area of atomistic

elastic contact follows Eq. 5.6 with an approximately constant κ – even when roughness

extends down to atomic scales, Lmin = 6σ. Thus contact area is approximately inversely

proportional to the value of the bent surface slope h′rms. The value of h′rms is dominated by

the smallest-scale roughness135 for a bent surface of any Hurst exponent 0 < H < 1. Any

unresolved roughness would therefore reduce the contact area below that predicted from a

low resolution image.

Atomically-stepped surfaces contribute to the roughness in a different way than

does the smoothly-varying template surface h(x). This is seen by the fact that κ varied

significantly for elastic contacts when the microscopic rms slope of stepped surfaces was

used in the calculation of κ. This is in contrast with the result for bent atomic surfaces as

well as previous work on continuum surfaces7,41,45 and indicates that the power spectrum

of the surface did not alone determine contact area for stepped surfaces. We found that

the effect of steps could be approximately accounted for in Eq. 5.1 by replacing the true

microscopic surface slope with the slope averaged over a plateau h/w, and that 〈h/w〉 had

approximately the same value as the rms slope of the bent surface h′rms. This may serve as

a useful example when predicting contact area of micro-structured surfaces or other surfaces

with important phase correlations in the roughness.
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This chapter also showed that atomic steps have significant consequences for the

surface forces in elastic contact, redistributing the surface pressure spatially. Typical

surfaces produce somewhat exponential-shaped probability distributions of pressure, and

atomic steps produced small changes to the high-pressure tail. The changes due to steps

can be important to electrical, tribological, and chemical surface properties. An example is

the increased plasticity observed for stepped surfaces compared to bent surfaces for fcc LJ

lattices. Atomic steps redistribute surface pressure at small scales, leading to peak pressures

at step edges which are adjacent to regions of low pressure. This redistribution of pressure

increases plastic yielding of the crystal and increases contact area. A bent surface, with

the same continuum template but lacking the steps, was seen to produce only 50% of the

contact area. These show examples in which elastic continuum predictions should not be

directly applied to atomic-scale systems without knowledge of the atomic scale geometrical

features.

5.5 Ch 5. Appendix: Pressure distributions of cases of Fig. 5.12

In many figures in the chapter we showed only a small subset of the simulations. As men-

tioned in the text, we tested other combinations of surface roughness parameters to ensure

robustness of the conclusions. The values of κ for some of those surfaces are given in

Fig. 5.13. In this appendix we also provide the results for the probability distribution of

surface pressure for those cases. A wide variety of modifications are represented in Fig. 5.15,

showing the robust general pressure distribution shape, while still showing potentially sig-

nificant deviations.

We also note a few observations about the shape of the pressure distribution chang-

ing in response to the surface geometry. In Sec. 5.3.3, the bottom right of Fig. 5.9 suggests

that increasing either Lmin or h′rms causes a change in the simple exponential shape stepped

fcc-LJ surfaces. This may be due to leaving a regime of essentially elastic contact and pro-
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ducing a regime with additional plasticity. This is explored in more detail in Fig. 5.16.

Distributions with a longer tail are plotted above and distributions with a shorter tail are

plotted below. Nearly all simulations are shown to follow one of two shapes. Fig 5.16(a)

follows the often-seen exponential shape from elastic contact. These are the lower h′rms and

lower Lmin cases that exhibit less pressure concentration on the step edges. Fig 5.16(b)

may constitute an elasto-plastic regime of stepped surfaces, due to increased pressure con-

centrations from step edges. In contrast, no clear change in the distribution shape was seen

for bent surfaces for the roughness parameters simulated.
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Figure 5.16: Stepped surfaces can be grouped according to the shape of the pressure
distribution P (p/〈p〉), possibly providing an indication about whether the contact properties
are elastic or elasto-plastic. Simulations with large h′rms or Lmin show a peak near the
mean pressure p = 〈p〉 and a shorter tail. Simulations with little plastic deformation have a
pressure distribution with a longer exponential tail. The case marked with symbol “*” has
H = 0.8 rather than H = 0.5 and the case marked with symbol “†” has L = Lmax = 2048a0
rather than 1024a0. The data also show that the results are unchanged by allowing the
rough solid to deform, while the flat solid is held rigid.
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Chapter 6

Elasticity limits structural superlubricity in large

contacts

Friction is omnipresent but large gaps remain in our understanding of its atomic origins

and our ability to control it to reduce energy loss or improve braking. One fascinating

phenomenon observed at nanometer scales is structural lubricity, a state of ultra-low friction

that results from the systematic cancellation of forces across an interface between solids that

have no common periodicity.34,136,137 Experiments have observed this cancellation between

identical crystalline surfaces that are rotated to become incommensurate,12,37,136 different

crystalline surfaces16,138 and between amorphous and crystalline surfaces.16 Superlubricity

has been suggested to underlie the mechanism of solid lubrication by plates of graphite and

MoS2,
137,139 and to have the potential to lower friction in a range of applications.

Theoretical treatments of superlubricity have usually considered the limit of rigid

solids illustrated in Fig. 6.1(a,c). If surfaces share no common period, then atoms sample all

relative positions with equal probability in the thermodynamic limit. The resulting energy

is translationally invariant and there is no friction. For finite systems the cancellation is

incomplete. The frictional stress (force per unit area) scales as a power of the contact radius

a for incommensurate and amorphous surfaces, approaching zero as a increases.10,16,140

The elastic compliance of the surfaces has the potential to dramatically alter su-

perlubricity because atoms move to preferentially sample low energy configurations (Fig.

6.1(b,d)). If elasticity leads to multiple metastable states, there can be finite friction.30,141,142

The one-dimensional case corresponds to the well-studied Frenkel-Kontorova chain model.30
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The infinite chain shows a non-analytic transition from zero to finite friction with increas-

ing compliance, but finite chains have friction associated with dislocations (solitons) at

chain ends.30 Several groups have investigated the two dimensional case of a compliant

monolayer on a rigid substrate,143–146 but there have been comparatively few studies of

crystalline frictional contacts where compliant three-dimensional objects interact at a two

dimensional interface. It has been suggested that dislocations at the interface could lead

to friction,147,148 but Müser found that incommensurate interfaces became unstable to in-

terdiffusion before the friction force become finite.149 Friction due to internal elasticity at

incommensurate interfaces has only been observed for a very compliant system with just a

few contacting atoms that could lock in multiple metastable states.150

In this chapter we study the scaling of friction with compliance and contact size for

circular contacts between incommensurate or commensurate crystals. An efficient Green’s

function method allows us to vary the radius a from less than a nanometer to a fraction of

a micrometer. The studies show that there is a transition as a exceeds the core width bcore

of interfacial dislocations. For a < bcore the frictional stress τfric is consistent with previous

results for rigid surfaces, dropping to zero with increasing a for incommensurate surfaces

and remaining constant for commensurate surfaces. For a > bcore compliance leads to new

behavior. At intermediate a/bcore, τfric is controlled by dislocation nucleation near the

edge of the contact where there is diverging stress in continuum theory.27 At large a/bcore,

τfric is seen to saturate at a finite value that is related to the Peierls stress for dislocation

motion. Just as for finite Frenkel-Kontorova chains, there is never true superlubricity with

zero friction in finite contacts. However the Peierls stress drops exponentially to zero as

bcore increases and the friction in large contacts may be extremely small.
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Figure 6.1: (a,b) Grey scale plot of traction in the sliding direction and (c,d) enlarged
view of atomic positions (blue) and energy minima of the substrate potential (grey) for
incommensurate crystals with θ = 0.03radians, λ ∼ 33d and a = 62d. In (a,c) the substrate
is effectively rigid, G/τmax = 256, and all atoms advance together. The traction forces
alternate in sign and sum to nearly zero. In (b,d) the substrate is compliant, G/τmax = 1,
and sliding occurs through the motion of dislocations between regions that have locked in
registry. Movies are included in supplemental materials as Fig6.1a.avi and Fig6.1b.avi.
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6.1 Computational model

We consider the simplified geometry of a circular disk interacting with a semi-infinite elastic

substrate. This mimics the islands studied by Dietzel et al16 or contact between a sphere

and flat substrate. Separate simulations for the latter geometry exhibit the same behavior

reported below. The disk is rigid and the substrate has shear modulus G and Poisson ratio

ν. This case can be mapped to contact of two compliant objects in continuum theory.20

Atoms on both surfaces form a square lattice with nearest-neighbor spacing d, cor-

responding to (001) surfaces of fcc crystals. The nearest-neighbor direction of the substrate

is rotated by an angle θ relative to that of the disk. At θ = 0 the system is commensurate

with all atoms in phase. Rotating the system out of alignment by an angle θ creates an

incommensurate contact that is like a twist grain boundary (Fig. 6.1). Similar results were

obtained with surfaces made incommensurate by changing the lattice constant.

The interaction of the substrate surface atoms with the rigid disk is represented

by a simple sinusoidal force in the x − y plane of the substrate like that used for the

Frenkel-Kontorova chain and two dimensional Peierls-Nabarro model:29,30

f(x, y) = τmaxd
2(sin(2πx/d)x̂+ sin(2πy/d)ŷ) (6.1)

for r < a, where τmax represents the maximum local frictional stress or traction. The

competition between bulk deformation and interfacial slip can be characterized by a core

width bcore ≡ dG/τmax. For all cases studied bcore equaled the distance from the center of

an interfacial edge dislocation to the line where the stress drops to τmax/2.

The displacement of substrate atoms is calculated with a Green’s function tech-

nique that describes the linear response of a semi-infinite substrate.19,51,110 The results

presented below are for the commonly studied case of an isotropic substrate with ν = 0.5,

but other interactions gave equivalent results.151 The substrate is displaced quasi-statically
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and the energy minimized after each step using LAMMPS.81 The static friction is deter-

mined from the maximum force between the surfaces during sliding. Normalizing by contact

area gives the macroscopic frictional stress, τfric. Results are shown for sliding at θ/2 to

the x axis, but other sliding directions give similar scaling.

6.2 Results

Figure 1 contrasts the behavior of rigid and compliant substrates for an incommensurate

case of θ = 0.03. For the stiff case, substrate atoms remain on an ideal rotated square

lattice and atoms are equally likely to be above or between atoms of the disk. The force

resisting sliding oscillates as the registry changes with a characteristic period λ ∼ d/θ at

small angles. The cancellation in forces for a > λ leads to structural superlubricity.34,136,137

For rigid incommensurate lattices with circular contact area, the static friction

stress has an upper bound that decreases as a power of a, τfric ∼ τmax(a/d)−3/2 at large

a.10,16,140 Figure 6.2(a) shows the static friction stress of a contact with θ = 25o. When

the shear modulus G is large, the friction follows the predicted rigid scaling shown by the

dashed line. Elasticity is unimportant since bcore = dG/τmax is much greater than a. Note

that there are special radii where the cancellation of forces is nearly exact and the friction

is anomalously small compared to the power law fit. To minimize fluctuations, these special

radii are not included in Fig. 6.2(b). As an aside, it is worth providing a reminder that

the friction force is smallest in small contacts since the friction stress falls more slowly than

a−2.

For the compliant case shown in Fig. 6.1(b,d), mis-registry becomes localized

into dislocation cores. Between dislocations the surfaces lock together to effectively resist

sliding. As has been observed in the simpler case of 1D systems30 and suggested for 2D

systems,147,148 sliding occurs through dislocation motion along the interface rather than

rigid translation of the entire surface. Contact produces an initial network of misfit dis-
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locations. In the case shown, there were three horizontal dislocations separated by λ at

locations where the force changes sign in the rigid case. Sliding produces a nonuniform

stress distribution with singularities near the edge of the contact20 as discussed below. This

causes the dislocations to curve as they move and nucleates new dislocations at the contact

edge. Fig. 6.1(b) shows a snapshot from steady state sliding. As sliding continues, the

dislocations move inwards towards the central ellipse and annihilate while new dislocations

nucleate at the edge. The number of dislocations at the peak force corresponding to static

friction, increases with a/bcore.

Figure 6.2(a) reveals how compliance affects the static friction. As G and bcore

decrease, the friction deviates from the rigid scaling at smaller and smaller a. At large a

the shear stress approaches a constant limiting value that decreases as bcore increases. It

therefore becomes more difficult to reach saturation at large bcore and at sufficiently large

bcore the stress continues with the rigid scaling for the accessible simulation sizes. Similar

behavior is observed for all rotation angles that produce an incommensurate interface.

The importance of bcore is illustrated by the rescaled data for θ = 3.4o in Fig.

6.2(b). The radius is normalized by bcore and the friction by the rigid prediction for a = bcore.

For a < bcore the stress exhibits the power law scaling predicted for rigid surfaces. For

a > bcore, dislocations enter the contact and the interface deforms to lock into local registry.

The friction is above the rigid prediction, dropping more slowly and then saturating at large

a/bcore. Given our limited simulation size it is difficult to reach the asymptotic limit for

bcore > 5d, but the arguments below suggest that the saturating value drops exponentially

with increasing bcore.

Previous work on interfacial dislocations in circular contacts between 3D solids27–29

has focused on the commensurate case, θ = 0. Results for this special case are shown in Fig.

6.2(c). Because all atoms are in phase in the rigid limit, the shear stress is independent of a.

As a becomes larger than bcore, the friction drops below the rigid limit. The initial decrease
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scales as a−1/2. As shown in a one-dimensional model by Hurtado and Kim,27 this can

be understood from the fact that continuum theory predicts that a uniform displacement

in the contact a produces a singular shear stress at the edge of the contact. The stress

within bcore of the edge scales as (a/bcore)
1/2 times the stress in the center. When this edge

stress reaches τmax, a dislocation can nucleate at the circumference and propagate across

the interface, allowing the whole contact to advance by d. Gao has observed this regime29 in

two dimensional simulations up to a/bcore ∼ 50 and Fig. 6.2(c) extends the scaling regime

by more than an order of magnitude.

At very large a/bcore, many dislocations are stable in the contact. In this limit one

expects28 that the shear stress approaches the Peierls stress for dislocation motion τPeierls.

Our simulations access this regime for the first time, showing a clear saturation at a force

that decreases with increasing bcore.

The results shown in Fig. 6.2 suggest that for both commensurate and incommen-

surate systems the shear stress in large contacts approaches the Peierls stress for dislocation

motion. As shown in Fig. 6.1, dislocations make a loop and thus change from edge character

at the front and back, to screw dislocations at the sides. We performed a set of simulations

with periodic boundary conditions to determine τPeierls. The same compliant substrate was

used but the rigid periodic potential was stretched or skewed to impose a single dislocation

per unit cell at the desired orientation. The stress on the top surface was then increased to

determine the Peierls stress at which the dislocation moved. As predicted from continuum

theory,24,25 τPeierls/τmax ∝ exp(−bcore/d) = exp(−G/τmax). The solid line in Fig. 6.3

shows a fit to data for an edge dislocation perpendicular to the sliding direction. Stresses

for other orientations were both larger and smaller, but also show exponential scaling at

large core widths.

Also shown in Fig. 6.3 are the saturation friction stresses for a wide range of θ

and bcore. A striking conclusion is that similar physics determines the saturating stress in
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Figure 6.3: Plateau stress for a/bcore →∞ at the indicated rotation angles (symbols) and
the Peierls stress for edge dislocations in a periodic system (solid line). There are significant
errorbars at large bcore where it is difficult to reach full saturation. The top of each errorbar
represents an upper bound corresponding to τfric at the largest a studied (512 to 1024d).
The bottom was estimated by linearly extrapolating the tail of log-log plots like Fig. 6.2 to
ten times the largest a studied.
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both commensurate and incommensurate contacts. In the limit of small θ or small bcore

commensurate and incommensurate surfaces have similar shear stresses that scale with the

Peierls stress for a single edge dislocation. At larger θ and bcore, τfric is depressed and

results for each θ seem to decay with a more rapid exponential. In this limit the spacing

between intrinsic dislocations λ = d/θ is smaller than bcore. Interactions between nearby

dislocations are known to reduce the effective Peierls stress. Independent simulations of

periodic systems with twist grain boundaries showed similar stresses as the large-size-limit

stresses in Fig. 6.3. These simulations used special angles where the surfaces retain the

same lattice constant. The results are very similar to those in Fig. 6.3, except at nearly

commensurate cases such as tan θ = 3/4.

Given the strong dependence of Peierls stress on bcore it is interesting to consider

typical values for real materials. For contact between two identical solids, Eq. 6.1 should

give a simple model for interactions between lattice planes in the bulk as well as at the

interface. In this case, G/τmax ∼ 2πh/d where h is the spacing between lattice planes.

Our geometry is consistent with the (001) surface of an fcc crystal and thus G/τmax ∼ 4.4.

Experimental studies of the friction force on islands may be able to reach scales where

saturation to the Peierls stress can be observed.16 The core width would be smaller and the

Peierls stress much larger if the interaction between solids was stronger than the internal

interactions. As noted by Müser,149 such interfaces are likely to be metastable against

alloying. However he found no mixing on simulation time scales for systems that would

correspond to bcore ∼ d where our calculated Peierls stress is large.

The directional covalent bonding in silicon and diamond can lead to large yield

stresses and small dislocation core widths bcore ∼ d.152,153 As expected from Fig. 6.3,

unpassivated incommensurate surfaces of these materials spontaneously deform to form an

interface with a yield stress that is comparable to the bulk. Passivating the dangling covalent

bonds at the surface with hydrogen reduces τmax to ∼ 10MPa, which is characteristic of
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van der Waals interactions.154 The resulting bcore ∼ 10µm and the corresponding Peierls

stress would be below the limit of detection in practical experiments. Of course it is difficult

to make crystalline surfaces of diamond and silicon that are atomically flat on this scale.

For multiasperity rough contacts or disordered surfaces there can be a new mechanism of

elastic pinning beyond an elastic correlation length determined by the competition between

elasticity and the strength of disorder.155–158 One source of disorder is the variation in

phase and magnitude of friction forces from individual asperities like those considered here.

Large atomically flat surfaces are readily obtained for layer materials like MoS2

and graphite. In these highly anisotropic materials, the width of interfacial dislocations

is determined by the competition between stiff covalent bonds within layers and the weak

van der Waals interactions between layers.159 The value of bcore/d will be so large that the

Peierls stress is negligible and this must contribute to the success of these materials as solid

lubricants.

6.3 Conclusions

The results presented above provide new insight into the competition between geometry,

elasticity and interfacial shear stress in determining the friction of two dimensional contacts

between three dimensional solids. For small contact radii we find the friction scales according

to previously derived rules for rigid solids. For commensurate surfaces there is a constant

frictional stress, while τfric decreases as a power of radius for incommensurate surfaces.

Elasticity becomes important only when the radius exceeds the width of edge

dislocation cores, bcore = dG/τmax. For commensurate surfaces, nucleation at the circular

contact boundary leads to a universal decrease in stress as τfric ∼ (a/bcore)
−1/2. The friction

stress then saturates at the Peierls stress for dislocation loops to move across the interface.

We see that the stress also saturates at large a/bcore for incommensurate cases. Moreover,

the Peierls stress is nearly the same for commensurate and incommensurate systems at
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small bcore and λ. In all cases the saturation stress drops rapidly with G/τmax. Thus there

is no true zero friction state in finite contacts but the friction stress may be extremely small

in large stiff systems.
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Chapter 7

Static friction of a repulsive commensurate spheri-

cal asperity

The sliding of a sphere on a flat surface is a fundamental model in tribology. It arises for

example when modeling an atomic force microscope (AFM) tip, a surface force apparatus

(SFA) experiment, or a single asperity in a rough contact. Textbook analyses based on

continuum mechanics typically consider a local friction law that is either proportional to

normal pressure or independent of it.20,22,115 In the first case, associated with non-adhesive

contacts, the continuum analysis shows that the static friction of the asperity is simply

proportional to normal load. In the second case, associated with adhesive contacts, the

static friction is simply proportional to area.

It was therefore notable when Hurtado and Kim27,28 predicted instead that the

friction should depend non-trivially on the size of the contact in the case of commensurate

crystalline contact. This was discussed in Ch. 6, where we simulated the problem using an

atomic-scale lateral-force model. That model reproduced the scaling predictions of Hurtado

and Kim when the model was in the commensurate configuration.

In this chapter, we address the problem with direct molecular dynamics simulation

(MD) and use non-adhesive Lennard-Jones surfaces. This model produces size-dependent

friction that is quite different from the model of Hurtado and Kim.27,28

This chapter shows that for non-adhesive commensurate contacts, the quantity

αa2/Rb determines the asperity static friction, where R is the sphere radius, b is the Burgers

vector of dislocations at the interface, and α is the microscopic static friction coefficient.9,115
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We find that, in small contacts (αa2/Rb . 1), the surfaces are effectively rigid and the

asperity friction coefficient µ equals the microscopic value, µ = α. If the contact radius

is increased, the friction coefficient falls as a power law, µ ∼ α(a2/bR)−2/3. In very large

spherical contacts the friction coefficient rises again as the pressure increases.

We investigate the origins of this new behavior by returning to the lateral force

model of Ch. 6. In Ch. 6 the model used a stress to slip τmax that was a material constant.

We refer to this as an adhesive-friction law. In the present chapter, we set the stress to

slip to be proportional to the Hertz pressure, τmax = αp. This is the microscopic version of

Amonton’s law, commonly found to hold in non-adhesive contacts.9,115

In the last part of the chapter, to study the role of dislocations in a simpler setting,

we return to the model of constant stress to slip, τmax = τ0. As discussed in Ch. 6, this

model follows the essential scaling predictions of Hurtado and Kim. We show that this is a

noteworthy success of their simple theoretical model, since the simulations in this chapter

reveal the breakdown of assumptions of radial symmetry and a single Peierls stress.

7.1 Simulation methods

7.1.1 LJ-MD model

Our explicit simulations consider quasi-static sliding of a rigid spherical tip over a flat semi-

infinite elastic substrate Fig. 7.1(a). Holding the spherical tip rigid reduces the number of

parameters in this study, and this geometry can be mapped to the sliding of two elastic,

curved surfaces in continuum theory.20 We consider only a/R < 0.1 since the peak strain

is a/R in continuum theory and we limit this study to elastic deformations in the bulk.

The atoms of the crystalline tip form a square grid of spacing b in the x-y plane,

displaced in the z direction to the spherical surface. The tip thus resembles a bent (001)

surface of an fcc crystal. The substrate surface is commensurate with the same lattice

parameters. Interactions across the crystalline interface use the Lennard-Jones (LJ) pair
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Figure 7.1: We consider an idealized geometry of a sliding asperity with non-adhesive
interactions. (a) In the continuum picture the surface is smooth below a specified length
scale. (b) MD simulations of a solid include atomic geometry. A bent, commensurate
crystalline lattice most closely mimics the continuum picture. In the image, much of the
rigid sphere has been cut away to show the atoms that experience a repulsive force (in
darker color). (c) In the lateral force model, forces are applied directly to the substrate.

potential VLJ = 4ε((σ/r)12 − (σ/r)6) between atoms separated by r. Non-adhesive interac-

tions are created by truncating the potential at its minimum, rcut = 21/6σ, as in previous

chapters. We refer to this as the LJ-MD model. A schematic of the LJ-MD sphere is shown

in Fig. 7.1(b).

The substrate is simulated using the GF of an isotropic solid with shear modulus G

(Sec. 3.8.3). Green’s functions of crystalline lattices give similar results, while this GF allows

direct comparison with previous work27,29 (including Ch. 6) and allows us to concentrate

on the general effects of the atomic geometry at the interface. A Poisson ratio of ν = 0.5
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decouples displacements in different directions under the sphere20 and allows the substrate

to remain essentially commensurate with the sphere during normal loading. Quasi-static

sliding occurs by iteratively displacing the rigid sphere in the x-direction by steps of distance

0.01σ at a fixed load and minimizing the energy after each step.

The repulsive LJ wall interaction between these commensurate surfaces produces

a local interaction that follows Amontons’ law that friction force is proportional to normal

force.141 The microscopic static friction coefficient, α, for this wall interaction is essentially

given by the largest surface slope along the sliding path, which is shown as a black line in

Fig. 7.2. This means that the lateral stress τ in the LJ-MD model reaches a maximum τmax

which is proportional to the normal pressure p, τmax = αp. Since the normal pressure p

approximately follows the Hertzian prediction for the pressure under a sphere (Sec. 2.1.1),

τmax varies across the contact, going to zero at the contact edge, r → a.

We will see that dislocations form at the interface. As noted in the previous

chapter, the characteristic width of the dislocation core is

bcore ≡ bG/τmax (7.1)

and this scale plays an important role in this chapter as well. Note that the variation of

τmax throughout the contact means that bcore →∞ at the edge of the contact. bcore has a

minimum size at the center, bcore = b
(r=0)
core = bG/αp0, where p0 is the pressure in the center

of the contact. The ratio of the contact radius to this central core width determines the

sliding regime. Using the Hertzian relation we find

a/b(r=0)
core = cαa2/(bR) (7.2)

where c = 4/(π(1− ν)).
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Figure 7.2: The sliding path for non-adhesive, commensurate LJ surfaces. Since the
surfaces are commensurate, the surface plotted here is simply the equilibrium height above
the substrate of a test atom at a position x-y subject to a z-force of 1ε/σ. The substrate
is held rigid and units of the axes are (σ). The sliding path for commensurate surfaces
is generally through the minima, shown in black, and the maximum slope of the sliding
path is α ≈ 1/

√
2. As an aside, this plot also shows the shape of the Γ-surface at normal

pressure 1ε/(b2σ). The Γ-surface (discussed in Ch. 2) gives the energy as a function of
rigid translation of one surface over the other at a given external pressure. Its slope is
the lateral force. The shape of the surface is due to changes in interfacial energy and
also due to atoms of one surface rising up and over the atoms of the other subject to the
applied normal pressure. For the stiff LJ interaction, there is comparatively small variation
in the interfacial energy at different x-y positions on this surface, and the Γ-surface is
approximately the relative height of the surfaces times the normal pressure.
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7.1.2 Lateral force model

We also consider another model where the LJ-MD sphere is replaced by a lateral force field

applied directly to the substrate surface atoms (Fig. 7.1(c)). The lateral forces represent the

interaction with the atomic sphere. We use a simple sinusoidal force like that used for the

Frenkel-Kontorova chain and for the two-dimensional Peierls-Nabarro model.29,30 The force

applied to an atom at position (x, y) is f(x, y) = fmax(r)(sin(2πx/b)x̂+sin(2πy/b)ŷ). Here,

the function fmax(r) is the envelope of the corrugation which is zero outside the contact,

at r > a (where r =
√
x2 + y2). Quasi-static sliding is simulated by iteratively translating

the force field 0.01σ in the +x-direction and minimizing the energy. That is, after sliding

a distance d the force applied to an atom at (x, y) is f(x− d, y). We refer to this model as

the lateral force model.

The difference from the model of Ch. 6 is that we consider an envelope function,

fmax(r), that mimics the local forces in the LJ-MD model. As in many commensurate

non-adhesive models141 the tangential force required for sliding obeys Amontons’ law at

the microscopic level. The ratio of tangential to normal stress is a constant microscopic

friction coefficient α. We therefore set fmax equal to α times the normal force distribution

predicted for Hertz contact (Sec. 2.1.1). Multiplying the pressure by the area per atom b2

we have fmax(r) = f0
√

(1− (r/a)2, where f0 = αp0b
2 = αE∗b2(2/π)(a/R) and E∗ is the

contact modulus, defined as E∗ ≡ 2G/(1− ν).

Note that the forces and motion remain in the x-y-plane in the lateral force model.

According to continuum theory (e.g. Mindlin20) the only effect of the 3D shape of the

sphere is to determine the distribution of normal pressure on the surface which sets the

local stress to slide, τmax. We later confirm that the lateral force model realizes the same

slip mechanisms as the LJ-MD model. Thus the small changes in slope and 3D separations

between atoms in the LJ-MD model are not important to the friction. Another difference
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is that the lateral force model corrugation is sinusoidal while the LJ-MD model corrugation

is not. We later show that the two datasets collapse when each is characterized by its

maximum stress to slide, τmax.

In the final part of this chapter we choose instead an envelope fmax(r) = τ0b
2,

i.e. a uniform constant. This allows us to repeat the commensurate result of Ch. 6 and

emphasize its differences from the present chapter. Then we analyze the dislocation motion

in this simpler case (with uniform fmax).

7.2 Results

We observe three slip mechanisms that set the static friction. Qualitatively, the three

mechanisms are the same as those reported in Ch. 6 (and Ref. 27). However, in the non-

adhesive model the onset of each regime and the friction of each regime are different than

in the adhesive-friction model.

We briefly describe each regime, then analyze each regime in its own section. In

Regime I, characteristic of small contacts, there is no appreciable elastic deformation on the

length scale of the contact during sliding. The substrate surface hops coherently over the

opposing surface, as illustrated in Fig. 7.3(a). In larger contacts, elastic deformation occurs

and slip is mediated by the nucleation of a lattice dislocation that rapidly moves across the

interface. This is Regime II and is illustrated in Fig. 7.3(b). In Regime III, the contact is

large enough that many dislocations are arrested at the interface. The static friction is set

by the condition for dislocations to depin and move along the interface (Fig. 7.3(c)).

For a given set of parameters we define the coefficient of static friction µ as the ratio

of the maximum lateral force to the load. Fig. 7.4 presents results for different sphere radii

R and for both the LJ-MD model (black symbols) and lateral force model (colored symbols).

Results for all systems collapse when plotted against a/b
(r=0)
core = cαa2/bR (Eq. 7.2). The

three friction regimes are indicated by labels at the top of the figure. Note that since µ
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Figure 7.3: Schematic of rigid slip (Regime I), slip by dislocation nucleation (Regime II),
and slip by dislocation unpinning (Regime III). In all cases, the top snapshot shows the
configuration at maximum friction. Some atoms are labeled with darker colors to show
relative motion. In (a), the rigid asperity slides over the substrate and any lateral displace-
ments in the substrate are too small to alter the registry of atoms on opposing surfaces. In
(b), the surfaces are initially pinned, but a small displacement nucleates dislocations at the
edge of the contact. Edge dislocations are indicated schematically, and they glide through
the contact and self-annihilate, resulting in slip of a Burgers vector. In (c), in very large
contacts, dislocations become arrested in the contact and further sliding of the asperity is
required for them to self-annihilate.
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Figure 7.4: Friction coefficient for non-adhesive surfaces plotted against contact radius over
central dislocation width (Eq. 7.2). Results are shown for the LJ-MD model (black symbols)
and lateral-force model (colored symbols) with different elastic moduli corresponding to the

values of b
(r=0)
core /b in the legend. The three regimes of different sliding mechanism are

indicated at the top of the figure. Dashed lines show the constant friction coefficient in
Regime I, the power law decrease in µ in Regime II, and the rise in µ in Regime III.

varies with a and a depends on the normal load, the coefficient of friction will only be

independent of load for systems in Regime I. The following sections analyze each of the

three regimes in turn.

7.2.1 Regime I

In Regime I, atoms in the commensurate contact are not distorted significantly during sliding

so that all contribute coherently. In particular, this happens in contacts that are small

compared to the dislocation core width. From the Peierls-Nabarro model of dislocations,23
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the dislocation core width bcore is the shortest length over which the interfacial corrugation

strains the solids to create mis-registry of approximately the Burgers vector b. A contact of

radius a < bcore therefore does not get distorted a distance b over its length. If a� bcore the

two contacting surfaces are effectively rigid on the length scale of the contact. In this case,

the atoms are not distorted during sliding so that all contribute forces perfectly coherently

as they slide through the corrugation of the opposing surface.

In the lateral force model, to overcome the barrier to slide, the stress in the com-

mensurate contact everywhere reaches the local maximum, τmax = αp(r), at the same time.

Averaging across the contact gives the static friction stress τfric = 〈τmax(r)〉 = 2/3 αp0.

The static friction coefficient µ = τfric/〈p〉 = α. In the 3D LJ-MD model, the normal

pressure distribution can deviate from the ideal Hertz distribution during sliding, but all

atoms still contribute coherently with a stress proportional to the local pressure. Since the

sum of local pressures is always equal to the total normal force, the friction coefficient is

the same. As shown in Fig. 7.4, µ is independent of contact size in Regime I.

Having only one degree of freedom sliding in an external corrugation, the contact

in Regime I is a realization of the single-particle Prandtl-Tomlinson (PT) model.29,142 The

PT model is a model of friction that is like the Frenkel-Kontorova chain (Ch. 2), but

simpler, since there is only one atom in the sinusoidal potential. In the PT model, this

atom is pulled by a spring of stiffness k attached to an external drive. The dimensionless

PT constant λ characterizes the ratio of interfacial stiffness to elastic stiffness. It is defined

as λ ≡ 2πFmax/(bk) where Fmax is the max interfacial force and b is the period of the

corrugation. With quasi-static translation of the drive, the atom position varies continuously

if λ ≤ 1 or with stick-slip motion otherwise.142 We now show that if the only compliance

contributing to k is that of the contacting solids, λ is always less than 1 in Regime I sliding.

In Regime I, the surfaces are effectively rigid within the contact, and the stiffness

of the substrate is k = 8Ga/(2− ν). The PT constant is λ = π(2− ν) τmax b/(4Ga) where
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the average τmax is τmax = 2τ
(r=0)
max /3. Since the length scale b

(r=0)
core ≡ bG/τ

(r=0)
max , λ can

be written in terms of a/b
(r=0)
core : λ = (2/3)(a/b

(r=0)
core )(1/4)π(2 − ν)b2/a2. The Tomlinson

stick-slip instability occurs only when λ > 1 (which is (a/b
(r=0)
core ) & a2/b2). However, as

we will see in Regime II, a dislocation slip instability occurs already when a/b
(r=0)
core & 1

and gives a friction dependent on contact radius. The Tomlinson stick-slip instability is

therefore superseded by the dislocation instability as long as the contact radius is larger

than about 1 atomic diameter, a > b. We see therefore that the stick-slip regime of the

single-particle Tomlinson model does not describe the motion of commensurate contact

between large crystals. Any observed stick slip between commensurate crystals is a result

of either additional compliance elsewhere in the system (i.e. an AFM tip geometry or

cantilever) or is due to different parts of the surface slipping at different times, not as a

single degree of freedom. The latter situation occurs in contacts in Regime II.

7.2.2 Regime II

If the contact radius a is increased to be sufficiently larger than b
(r=0)
core , sliding occurs in

Regime II. In Regime II the advancing rigid solid drags the commensurate contacting sur-

face of the elastic substrate along to distances greater than atomic distances. One may

approximate that the contact all advances together so that the elastic substrate is rigidly

displaced up to the static friction. This is the geometry of a displaced contact and the

linear elastic analysis is well-known (c.f. Sec. 2.1.2 or Ref. 20): the stress field is the lowest

at the center and has a δ−1/2 stress singularity at the contact edge, where δ ≡ a− r. This

is the same singularity as in the linear elastic analysis of a crack tip, since the geometry is

the same near the contact edge. Atomic discreteness cuts off the singularity of the linear

elastic analysis.

As an aside, the elastic substrate is not perfectly rigidly displaced, since atomic

compliance with respect to the upper solid allows the substrate surface to deform slightly on
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the length scale of the (sinusoidal or LJ) corrugation potential well. Indeed if the substrate

displacement were perfectly rigid, all atoms would sample the corrugation of the opposing

wall in phase, resulting in spatially-uniform stress across the interface. But the atomic-scale

displacements from the atomic compliance are small compared to the total displacements

and do not change the stress field significantly from that of a uniformly-displaced contact.

An exception is near the contact edge, where the atoms experience the anharmonicity of the

corrugation when the stresses become comparable to τmax. This same situation arises in the

well-known treatment of a crack tip that uses linear elastic analysis and a stress intensity

factor.26

Fig. 7.5 shows snapshots of the stress within contacts in Regime II. Subfigure

(a) shows the LJ-MD model and subfigure (b) shows the lateral force model. The stress

builds strongly near the contact edge. A lattice dislocation is nucleated when the stress has

built sufficiently (shown just before this point in red symbols in Fig. 7.5). The nucleated

dislocation immediately glides through the contact and self-annihilates at the center, causing

the full contact to slip one Burgers vector, and lowering the stress. The maximum force to

slide is therefore due to the need to nucleate a dislocation at the edge of the commensurately-

pinned contact.

We also comment on the predicted radial-symmetry of the stress field. A uniformly-

displaced circular contact in isotropic linear elasticity has radially-symmetric stress.20,27

This radial symmetry is reproduced in the atomic simulations to within a single atom

diameter at small displacements (but not exactly due to the discretization of the GF).

Increasing the displacement builds the stress near the edge and the anharmonicity of the

corrugation potential becomes important. The non-linearity destroys radial symmetry near

the contact edge, and a dislocation is nucleated first as screw dislocations from the ±y

directions (as opposed to as edge dislocations from the ±x directions or from all direction

simultaneously). This is because the screw-character has a smaller physical core size than
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Figure 7.5: The stress σxz ≡ τ at the surface is plotted along a slice near the edge of a
contact in Regime II. The LJ-MD model (a) and the lateral force model (b) are shown.
Also shown is the normal pressure σzz ≡ p in (a) and the applied τmax in (b). Sliding a
small distance produces a peak in shear stress near the edge and lower stress at the center
(black symbols). The stress builds to its maximum just before a dislocation is nucleated
(red symbols). An infinitesimal sliding distance further, the dislocation fully nucleates and
glides through the contact to the center of the contact, r = 0. The result is that the stress
has dropped (green, in (b) only).

edge dislocations (discussed later in Fig. 7.8) and its lower energy is known to commonly

cause screw dislocations to nucleate more easily than edge. Its effect on the shape of arrested

dislocations in the contact is discussed in connection to Sec. 7.2.5.

The static friction is set by the force needed to nucleate the dislocation. Rice and

Thompson160 provide the standard analysis of this situation based on the unstable stacking

fault energy of the crystal. The nucleation criterion of Rice and Thompson160 implies that

τ reaches τmax a distance bcore from the free surface and contact edge, and this is used in

Hurtado and Kim’s analysis of the sliding contact.27,29 In our case, at the edge b
(r→a)
core →∞

because normal pressure vanishes. The nucleation condition must be generalized to include

this variation. Since bcore(r) gives the scale for variations in displacement at each r, it is

natural to assume that the nucleation criterion should be applied at a distance bcore from

the edge. We define a radius r∗ = a − b(r=r
∗)

core and expect nucleation when the stress at r∗
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exceeds the local maximum stress, τmax(r):

τ(r∗) = τmax(r
∗) (7.3)

Far enough from Regime I, r∗ is sufficiently close to the edge so that the δ−1/2 singularity

dominates and

τ(r∗) ∼ Fx
πa2

(b(r=r
∗)

core /a)−1/2 (7.4)

where Fx is the total lateral force. Meanwhile the Hertzian form of the pressure looks like

a square root near the edge, and τmax is proportional to pressure:

τmax(r
∗) ∼ Fz

πa2
(b(r=r

∗)
core /a)1/2 (7.5)

Fig. 7.5(b) shows τmax and τ just before a dislocation is nucleated, showing the square-root

and inverse-square-root scaling.

To complete the derivation, Eqs. 7.5 and 7.4 are substituted into Eq. 7.3 to solve

for the ratio Fx/Fz required to nucleate a dislocation. To put into terms of b
(r=0)
core instead

of b
(r=r∗)
core , we first rewrite Eq. 7.4 more explicitly as

τmax(r
∗) ≈ τmax(0) · (2b(r=r∗)core /a)1/2 (7.6)

then substitute in the definition (Eq. 7.1) of b
(r=r∗)
core = bG/τmax(r∗) and rearrange to produce

(τmax(r
∗))3/2 ≈ τmax(0) · (2bG/a)1/2 (7.7)

Then b
(r=r∗)
core ∼ (b

(r=0)
core )2/3 or more precisely,

b(r=r
∗)

core ≈ a1/3(b(r=0)
core )2/3/2. (7.8)

Substitution of Eq. 7.8 into Eqs. 7.5 and 7.4 and then into Eq. 7.3 shows that the asperity
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x-force required to nucleate a dislocation is given by

µ = Fx/Fz ∼ α(b(r=0)
core /a)2/3. (7.9)

Regime II in Fig. 7.4 shows a friction coefficient that falls with this power law.

The nucleated dislocation has Burgers vector b = bx̂. According to the Peach-

Koehler law, the dislocation is driven in the glide plane by the shear stress at the interface,

τ . τ is approximately radially-isotropic and drives the dislocation to the center where

it self-annihilates. We point out that the radial gradient in τmax provides an outward

configurational force on the dislocation, since the core energy is lower near the edge where

τmax is lower. In Regime II, the net driving force on the dislocation overcomes the Peierls

stress. Once nucleated from all directions at the edge of the contact, the dislocation glides

to the center where it self annihilates, and the contact has slipped forward one Burgers

vector.

7.2.3 Regime III

In Regime III, a dislocation is nucleated at the contact edge while the stress at the center of

the contact remains low. The dislocation glides part way through the contact. The stress is

insufficient to drive the dislocation against the Peierls stress and the dislocation is arrested

in the contact before annihilating. Additional lateral displacement raises the stress and

depins the dislocation. The stress can also nucleate new dislocations and cause them to pile

up. In Regime III, the static friction is ultimately associated with a Peierls stress to move

the many arrested dislocations.

The classic Peierls-Nabarro model shows that the Peierls stress of a dislocation

falls exponentially with core width, τPeierls/τmax ∼ exp(−bcore/d).25 Accordingly, τPeierls

is largest at small bcore. Under a given size sphere R, increasing contact radius a implies

increasing the pressure, which decreases the core width. Correspondingly, the Peierls stress
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rises under a given size sphere in Regime III. This is an important difference from the

adhesive friction model.

We are unable to reach far into Regime III with the LJ-MD model due to com-

putational limitations. The reason is that the minimum dislocation core width is some-

what large and so the contact size would need to be increased above what the simulations

reached. In particular, the nominal dislocation core width in the LJ-MD model is given

by b
(r=0)
core = bG/αp0 = (b/α)(R/a)(G/E∗)(π/2) (using the Hertz pressure p0). From the

geometry of the LJ potential, α ≈ 1/
√

2. To avoid complications from large surface slopes,

a/R < 0.1, and therefore the b
(r=0)
core & 5. The Peierls stress is correspondingly low and

dislocations are only arrested in very large contacts. On the other hand, the lateral force

model can reach larger a/b
(r=0)
core by decreasing b

(r=0)
core without complications of 3D distortions

from small a/R. The lateral force model therefore extends the data further into Regime

III. These data points are included as colored symbols in Fig. 7.4.

The dislocation motion that underlies the friction of Regime III will be discussed

in more detail in Sec. 7.2.5 after contrasting the above results (non-adhesive friction) with

the adhesive-friction model.

7.2.4 Comparison with adhesive friction model

The adhesive friction model was introduced in Ch. 6. That model was the same as the

lateral force model discussed in this chapter, except τmax was a material constant and

uniform throughout the contact. Ch. 6 used the adhesive model to show that atomic

simulations of commensurate contact produce the predicted dislocation slip mechanism.

Fig. 7.6 shows the scaling of friction with contact size, which matched the predictions of

Hurtado and Kim.27,28 The friction was strikingly different from the non-adhesive model,

shown in Fig. 7.4.

Both models show the same three underlying slip mechanisms and produce three
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Figure 7.6: The friction force per unit area, τfric, is plotted for the τ0-model. Data follows
the scaling prediction τfric = (a/bcore)

−1/2 (dashed line) in Regime II and tends toward a
constant in Regimes I and III.

regimes of friction. However, even the axes of Fig. 7.4 and Fig. 7.4 are different. In Regime

I, atoms overcome their potential barriers coherently. But for the adhesive friction model,

the dimensionless Tomlinson constant is λ = (a/bcore)1/4π(2 − ν)b2/a2. Then contacts in

Regime I exhibit a friction stress (friction force per area) that is independent of contact

radius (rather than a constant friction coefficient which is a friction force per normal load).

Notably, since τmax is constant throughout the contact of the adhesive model, so is

bcore. This means that in Regime II the dislocation nucleation criterion (Eq. 7.3) is simpler,

since b
(r=r∗)
core = bcore. From the δ−1/2 form, the nucleation occurs when the friction force per

area is τfric ∝ τ0(a/bcore)−1/2.

Regime III is when the contact is sufficiently large so the stress at the center is low

and dislocations become arrested by the Peierls stress. The static friction is therefore set

by the stress required to unpin the dislocations. The next section analyzes the dislocation

motion in more detail with implications for both adhesive and non-adhesive models.
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7.2.5 Additional analysis of dislocation motion in Regime III

In Regime III of both the adhesive (and non-adhesive) lateral force model, many dislocation

loops are arrested in the contact. (See Fig. 7.7(d).) The loops are subject to dislocation

interactions via the stress field and a Peierls stresses which varies with dislocation character.

The configuration may be complex since there is a lack of radial symmetry. Fig. 7.7 shows

a few typical configurations. We see initial nucleation in the ±y-direction edges as screw

dislocations. This is consistent with the fact that screw dislocations have the tightest

core size. By the time the dislocation nucleates at the leading and trailing edge as edge

dislocations, the screw dislocation has glided towards the center, and the dislocation loop

is elongated in the x-direction. Also, the higher energy of edge dislocations means that the

dislocation loop tends to minimize that character, helping to preserve the elongation in the

x-direction. In very large contacts with small bcore, dislocation kinks (in-plane jogs) also

form as some segments of the dislocation are arrested while other segments glide within the

plane.

To determine the Peierls stress of a dislocation (Fig. 7.8(a) and (b)), independent

simulations are conducted. An edge, screw, or mixed-character dislocation is created in a

large system. The dislocation is created by applying a slightly stretched or skewed sinusoidal

potential to the Green’s function substrate layer. The Green’s function of Sec. 3.8.2 is used.

To be consistent with the periodic boundary conditions, the distortion corresponds to an

integer number of atoms. An isolated dislocation forms where the potential is maximally

out of phase. Applying external stress (sliding the corrugation) causes the dislocation to

glide. The highest stress is recorded as the Peierls stress.

Fig. 7.9 shows the stress environment at each dislocation throughout a large con-

tact. The dislocations have edge character in the shown slice. Interestingly, the stress at

all dislocations is lower than the edge Peierls stress for the core width, as indicated by
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Figure 7.7: Images of dislocation nucleating where the color shows force per atom, where
the color bar units are normalized by fmax. Radial symmetry is lost already as the first
dislocation nucleates: the small core width of screw dislocations leads to nucleation before
edge dislocations. (a) (b) and (c) show a contact between Regime II and Regime III (pa-
rameters a = 126b, bcore = 2b) so that the dislocation moves slowly though the contact. (d)
shows a case with higher Peierls stress with a = 126b, bcore = 1b, so the contact is essentially
in Regime III. In that case there are two fully-formed dislocation loops and a third loop
still forming. The examples are from the adhesive model (with constant τmax = τ0).
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Figure 7.8: The Peierls stress for edge and screw and mixed character dislocations (a) as
a function of core width and (b) as a function of character.

the horizontal bar in Fig. 7.9. One reason is that the curved dislocation samples Peierls

stresses from all angles from edge to screw. Another reason is because the Peierls stress pro-

vides an upper bound for the stress state near the arrested dislocation. The stress around

the dislocation cannot be greater than τPeierls, because then the dislocation would still be

moving. At first, it seems that the stress cannot be less than τPeierls either, because the

dislocation would not have been able to reach its current location. But the stress itself

changes as neighboring dislocations glide. The Peierls stress saturation in large contacts is

therefore not the same as the Peierls stress of say an edge dislocation, but depends on the

configuration and dynamics of the dislocations. The dislocation dynamics can be expected

to depend sensitively on the specifics of the crystalline material.

7.3 Conclusions

Elasticity lowers friction in commensurate contacts by allowing different parts to slip at

different times. These motions are coherent on a length scale bcore. The boundary between
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a slipped and a non-slipped region takes the form of a lattice dislocation at the interface.

The local friction law (adhesive vs. non-adhesive friction) sets the emergent asperity-level

friction, as encoded in Fig. 7.6 and Fig. 7.4. Fig. 7.4 points out a new power law in

size-scaling that occurs when the interface has a pressure-dependent τmax characteristic

of non-adhesive contacts. These also represent the first simulations in the Peierls-stress

dominated regime for large crystalline contacts. Even with a circular model geometry,

considerable complexity emerges due to the large number of degrees of freedom associated

with the dislocations. Nonetheless, a near uniform stress is measured through the contact.

The possibility remains open that plastic deformations outside of the contact plane,

may sometimes supersede the interfacial instability discussed here. This could depend on

the loading configuration and the relative strength of interactions across the interface and

in the bulk.

The tribology-inspired description of τ0-vs-αp can be further generalized with the

pressure dependence of the Γ-surface (or generalized stacking fault energy) studied in the

context of materials science dislocations. Corrugation near the contact edge may scale with a

square-root of the distance to the edge (due to the Hertz pressure as seen here for repulsive

LJ interactions) or with a different form due to different atomic interactions. Moreover

the corrugation may switch phase or have non-monotonic increase in amplitude near the

nucleating edge. The work here emphasizes the sensitivity of the dislocation nucleation

criterion to these atomic features as well as to the stresses from the large scale geometry.
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Conclusions

This thesis draws from elasticity, statistical physics, and lattice dislocation theory to address

questions about the mechanics of contacting solids. The mechanics were often determined by

an interaction of large and small scale geometry, so that neither could be neglected from con-

sideration. This made Green’s function molecular dynamics, described in Ch. 3, a natural

tool to simulate these systems. Several important limitations of previous Green’s function

formulations were overcome to increase the range of problems that can be addressed. First

the approach for pair interactions was corrected.161 Next the effect of periodic boundary

conditions was eliminated so that single-asperity contacts could be studied. Finally, the

approach was extended to many-body potentials such as EAM and Stillinger-Weber. This

opens the door to a wide variety of material-specific problems in the future.

Ch. 4 initiated the investigation into the contact properties of rough solids, testing

predictions from continuum theory with numerical simulations. Simulations of atomic solids

with bent surfaces followed the predicted linear relationship between contact area and load.

We also verified the predicted exponential increase in load with decreasing separation. As a

result, the derivative of normal load with separation, or normal contact stiffness, was pro-

portional to load. The normal contact stiffness was shown to depend only on the geometry

of the current contacting regions and is insensitive to atomic structure. In sharp contrast,

the stiffness resisting lateral motion depends sensitively on atomic-scale interactions and

can be orders of magnitude lower than normal stiffness.

Ch. 5 revisited the contact mechanics of solids with additional realistic atomic

features. The distribution of contact pressure and contact area can depend on small-scale
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features like atomic surface steps, compliant atomic interactions at the interface, and the

yield stress of the material. In rough elastic contacts the pressure probability distribution

shows an exponential-like tail indicating that very small regions of the contact carry pres-

sure far above the mean contact pressure. For materials that can yield, pressures that are

large compared to the yield stress can produce plasticity. Since some regions of the surface

carry pressure far above the mean, even surfaces with moderately low surface slope produce

atomic-scale plasticity, and one might naively conclude that analysis of purely elastic con-

tacts is irrelevant in most practical situations. However, since high pressure is only exerted

in a very small fraction of the contact, we found that contact area is the same for purely-

elastic and for finite-yield-stress materials, as long as the roughness is sufficiently low, as

shown in Fig. 5.13. That figure shows that “sufficiently low” is determined by a combination

of roughness amplitude and geometry (h′rms, Lmin, and surface steps). Rougher surfaces

can increase the contact area several-fold. Several variations of the definition of contact area

all followed similar trends, supporting the physical relevance of the term “contact area.”

Atomic features do not significantly change the normal contact stiffness across the whole

range of parameters investigated, but they do rearrange the spatial distribution of contact

pressure at scales of the crystalline steps.

Ch. 6 considered the static friction of a crystalline asperity and its dependence on

contact radius. Previous work had suggested that friction stress (force per contact area) goes

to zero as the contact radius between incommensurate crystals goes to infinity. When and

in what way elastic effects become important for friction were not understood. This work

varies contact size, lattice mismatch, and material modulus to reveal the friction produced

between sliding crystals. When the contact radius is below a material length-scale related

to the core size of dislocations, elasticity plays no role and the friction of incommensurate

contacts follows the experimentally observed phenomenon of rigid structural superlubricity.

At larger contact radius, dislocations can form in the contact. Dislocation motion sets a
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lower bound on the minimum friction stress that can be achieved by increasing contact

radius. In contrast to some predictions,148,162 the explicit simulations in this thesis show

that the saturation friction is independent of mismatch at small mismatch. In this case

the saturation value is similar to the limiting stress of commensurate surfaces. The precise

value of the friction saturation comes about from the interactions of many dislocations with

varying character (edge, screw and mixed) pinning and unpinning at different times in a

complicated motion. We find that the shear stress to slide in the model is near the Peierls

stress of edge dislocations. At larger mismatch, the surfaces nowhere relax into regions

of the lowest-surface-energy alignment, but in all cases the limiting shear stress measured

falls rapidly with the nominal dislocation core size. Thus between stiff materials the elastic

contribution to the friction can be exceedingly small.

Ch. 7 continues investigating the static friction of a crystalline asperity, focusing on

the commensurate case. The size-dependence of static friction is found to depend on whether

there are adhesive or non-adhesive interactions. In the first case, when local frictional

stresses are independent of pressure, characteristic of adhesive contacts, the asperity static

friction stress is independent of contact radius for small contact radius. When the contact

radius exceeds the scale of dislocation cores, the asperity friction stress falls as a power law

of radius, with exponent −1/2, down to a limiting value related to dislocation motion. In

the second case, when local frictional stresses are proportional to pressure, characteristic of

non-adhesive contacts, it is the friction coefficient that is independent of contact radius in

small contacts. When the contact radius exceeds a value related to the asperity curvature,

the friction coefficient again falls as a power law of radius, but with exponent −4/3. At

very large contact radius, the friction coefficient of the asperity actually rises with contact

radius. These behaviors are explained by analyzing the nucleation and Peierls stress of the

dislocations that mediate slip. The condition for dislocation nucleation is especially sensitive

to the properties near the edge of the contact, where the adhesive and non-adhesive cases
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are very different. The friction of very large contacts emerges as a complex interplay of

dislocation dynamics, dependent on many material-specific properties.

The contacts considered here are primarily between clean crystalline surfaces. This

may be realized in carefully-controlled, engineered systems or in systems that effectively

self-clean. The latter may be more common17,37,137,163 than one might first expect. Clean

crystalline contacts also provide a starting point for an understanding of the deformation

mechanisms. Future directions for this work could investigate how quickly new effects are

introduced by disorder. Additional disorder from the crystalline system could be adsorbed

monolayers that often underlie friction,9 crystalline defects like grain boundaries,24 or ther-

mal fluctuations.

In general, the number of degrees of freedom N is tremendously large in most

tribological systems of interest, and the 3N -dimensional phase space is too vast to explore

even short distances in all directions. It is clearly necessary to identify the important coarse-

grained structure, deformation mechanisms, and statistics to gain understanding. The

statistical quantities and meso-scale deformations described in this thesis may be useful

to those trying to gain insight into the properties of solid-solid contacts, especially the

properties of rough contact and the mechanisms of friction.
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