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Abstract 
 
The Dynamin superfamily is a class of large GTPases that perform essential membrane 

remodeling events via self-assembly stimulated GTP hydrolysis in a manner that is not well 

understood.  Malfunction in these enzymes is the basis of a number of diseases.  Dynamin 

superfamily enzymes hydrolyze GTP via a G domain, self-assemble via a stalk domain, and may 

couple assembly and hydrolysis via a “bundle signaling element” domain.  An additional 

“variable domain” (VD) is present in many superfamily members and may enable specific 

targeting to sites of action, but the nature of VD function is unclear in most dynamins.  While 

VDs are not conserved in amino acid sequence, they may have similarities in function, namely 

allosteric regulation and membrane interaction.  We identify two modes of membrane 

interaction in the dynamin superfamily: (1) tethering to the membrane via a transmembrane 

helix or a lipophilic anchor and (2) untethered, reversible interaction with membranes 

(amphitropism).  We propose a subclassification of the dynamin superfamily into these two 

categories.  We employ the mitochondrial dynamin, Drp1 as a model of the amphitropic 

dynamins because of its relative simplicity and relevance to human health.  Specifically, we seek 

to identify the role of the Drp1 VD, or B domain, anticipating that it will also inform 

understanding of VDs in other amphitropic dynamins.  We find that removal of the B domain 

from Drp1 results in enhanced assembly and GTP hydrolysis, suggesting that the B domain has 

an auto-inhibitory role.  We find that the B domain is intrinsically disordered (ID) and 

surprisingly, undergoes phase separation or coacervation under conditions that induce other 

IDPs to fold.  Finally, we show that the B domain binds lipid membranes with a preference for 

cardiolipin, and that this interaction is enhanced under conditions that favor the coacervated 

state.  Based on these findings we suggest the possibility that the B domain acts as an entropic 

bristle in order to inhibit Drp1 assembly, and that this auto-inhibition is relieved upon 
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interaction of the B domain with a lipid membrane, perhaps involving the process of 

coacervation.  We suspect that this model may also be applicable to other amphitropic 

dynamins. 
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Chapter 1  

Introduction: Lipid membrane remodeling, the dynamin superfamily, Drp1 
and mitochondrial fission 
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Lipid membrane remodeling 
 

A lipid membrane (i.e. the plasma membrane) forms the boundary that defines the basic 

unit of life, the cell.  In eukaryotes, lipid membranes not only separate a cell from its 

surroundings, but also enclose subcellular spaces in the form of organelles.  The nucleus, the 

endoplasmic reticulum (ER), the Golgi, mitochondria and peroxisomes are all delineated by lipid 

membranes.  Eukaryotic intracellular and plasma membranes are dynamic structures that 

continually undergo remodeling events that are critical to cellular function1–3.  A common 

vehicle by which lipids and proteins are transported throughout the cell, e.g., from the ER to the 

Golgi and from the Golgi to a variety of final destinations, involves the budding and detachment 

(scission) of a lipid vesicle from one membrane, and the eventual fusion of the vesicle with 

another membrane4.  Signaling molecules, nutrients, plasma membrane proteins and other 

cargo from the extracellular environment are internalized through invagination and vesiculation 

of the plasma membrane2.  Conversely, cytoplasmic cargo, encapsulated in lipid vesicles, is 

exported as the vesicles fuse with the plasma membrane and release their contents externally5.  

Mitochondria multiply through growth and division6 and also divide to facilitate being 

transported throughout the cell7 or to enable selective degradation through mitophagy8.  

Mitochondria fuse to form networks9.  Peroxisomes bud from the ER and also divide and fuse 

during the course of their function of metabolizing fatty acids and other biomolecules10–12.  Each 

of these membrane remodeling events requires protein machinery13–15, which we refer to here 

collectively as membrane-remodeling enzymes.    

The dynamin superfamily 
 

While there are many types of membrane remodeling enzymes, this dissertation will 

focus on a protein in the dynamin superfamily.  Dynamins are a functionally diverse group of 
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multi-domain GTPases involved in wide variety of membrane remodeling events throughout the 

cell.  Phylogenetically, the dynamin superfamily divides into several clades (Figure 1.1).  These 

clades have traditionally been grouped into three major subfamilies based on their cellular 

function and similarity in sequence and/or structure to the prototypical classical dynamins 

(dynamin-1, -2 and -3): (1) the classical dynamins (2) the dynamin-related proteins and (3) the 

guanylate binding proteins (GBPs) and atlastins16.  We use the traditional subgrouping here for 

the sake of convenience, but note that it is somewhat equivocal for reasons described below.  

Classical dynamins are generally responsible for mediating vesicle scission in the endocytic and 

secretory pathways16.  The prototypical superfamily members, dynamin-1 and dynamin-2, 

catalyze the scission of endocytic vesicles during clathrin-mediated endocytosis17,18.  Dynamin-2 

has also been implicated in mediating vesicle transport from the late endosome to the Golgi19.  

Yeast do not have a classical dynamin, and this role is instead fulfilled by Vps120, which is more 

similar to the dynamin-related protein subfamily than the classical dynamins.  Vps1 is also 

involved in Golgi-to-vacuole transport and peroxisome fission21–23.  The dynamin-related protein 

subfamily includes several clades of proteins that are primarily involved in mediating fission and 

fusion of mitochondria and peroxisomes, including dynamin-related proteins proper (Drps), 

OPA1 and mitofusins.  Drp1 catalyzes mitochondrial and peroxisomal fission7,24–26, while OPA1 

and the mitofusins mediate the fusion of the inner and outer mitochondrial membranes, 

respectively.  In addition to these proteins that act on the mitochondria, the interferon-induced 

Mx proteins are also grouped with the dynamin-related protein subfamily, due to their similarity 

in sequence and structure to the classical dynamins27.  Functionally, however, the MxA proteins 

are an exception in this subfamily as they are involved in viral resistance rather than organellar 

remodeling27,28.  They do exhibit membrane remodeling ability29, but the role of membrane 

remodeling in viral resistance is unclear.  The third subfamily of dynamin proteins is comprised 



4 
 

of the guanylate binding proteins (GBPs) and the atlastin GTPases.  Guanylate-binding proteins 

(GBPs) have a similar function as Mx proteins in that they are involved in pathogen resistance30, 

but unlike the Mx proteins they are a more distant relative to the classical dynamins.  Atlastin 

GTPases, on the other hand, have a function more similar to the mitofusins, as they mediate  

 

 
 
Figure 1.1  Phylogenetic tree of the dynamin superfamily with selections from fungi to humans.  The 
tree suggests a close relationship between classical dynamins (Dyn), dynamin-related proteins (Drp) 
and myxovirus resistance (Mx) proteins.  The phylogenetic tree was produced from sequences 
aligned by MUSCLE using the PhyML (maximum likelihood) algorithm as implemented in SeaView.  
The figure was generated using the FigTree software package.  Scale bar denotes average number of 
substitutions per site.  Abbreviations: Ce = Caenorhabditis elegans; Dm = Drosophila melanogaster; 
Dr = Danio rerio; Hs = Homo sapiens; Sc = Saccharomyces cerevisiae 
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homotypic fusion of the ER and of the Golgi31,32.  Our phylogenetic analysis suggests that 

mitofusins are as distantly related to classical dynamins as the GBPs and atlastins, and perhaps 

belong in their own subfamily rather than in the dynamin-related protein subfamily. 

Pathology related to the dynamin superfamily 
 

Given the importance of membrane remodeling to a multitude of cellular functions, 

perhaps it is not surprising that defects in dynamin proteins have dire consequences for human 

health.  In fact, mutations in every dynamin superfamily member have been linked to severe 

phenotypes and pathologies in humans (Table 1.1).  Mutations in the three classical dynamins – 

dynamin-1, dynamin-2 and dynamin-3 – have been linked to severe neurological diseases, 

including centronuclear myopathy33–36; Charcot-Marie-Tooth disease, a sensory and motor 

neuropathy37,38; Alzheimer disease39; and proteinuric kidney disease40.  Dynamin-related 

proteins are also implicated in severe human pathologies.  For example, increased susceptibility 

to viral pathogens is linked to malfunction of MxA41.  Mutations in the mitofusins, Mfn1 and 

Mfn2, cause Charcot-Marie-Tooth disease42,43, likely due to altered mitochondrial trafficking in 

the axons of neurons44–46.  Mutations in OPA1, the dynamin-related protein responsible for 

fusion of the inner mitochondrial membrane, cause dominant optic atrophy, which results in a 

progressive loss of the nerve cells that line the retina47–49.  Optic atrophy has also been linked to 

defects in Drp150,51.  Defects in Drp1 has also been implicated in neonatal lethality50,51, 

cardiomyopathy52, embryonic lethality53,54, Parkinson’s disease55,56, among others.  Human 

disease has also been reported for protein in the third sub-family of dynamins, the atlastins and 

guanylate binding proteins.  Spastic paraplegia is caused by malfunction of Atlastin-132, 

presumably due to the disruption of ER fusion57.  Finally, mutations in GBP proteins, similar to 

MxA, have been linked to increased susceptibility to pathogens58.  A summary of these and 
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other pathogenic phenotypes associated with defects in dynamin superfamily proteins is 

provided in Table 1.1.  

 

 

Domain architecture in the dynamin superfamily 
 

Members of the dynamin superfamily are (1) multi-domain GTPases that (2) utilize 

assembly-dependent GTP hydrolysis to (3) remodel cellular membranes16,59.  Dynamin 

superfamily members share a specific domain architecture that includes, at a minimum, a G 

domain that binds GTP with low affinity and hydrolyzes it to GDP and a coiled-coil Stalk domain 

which is responsible for self-assembly (Figure 1.2).  Upon enzyme assembly, GTP hydrolysis has 

Table 1.1 

 

Protein Intracellular targets Function Related pathology 

Dynamin(1-3) plasma membrane scission of endocytic bud necks Centronuclear Myopathy (CNM) 

 
endosomes 

  

 
Golgi 

  Vps1 (yeast) plasma membrane scission of endocytic bud necks endocytic defects 

 
endosomes vesicle scission and transport accumulation of protein in Golgi 

 
Golgi 

  MxA cytoplasm antiviral no inactivating mutations reported 

 
smooth ER 

 
virus susceptibility in knock-out mice 

Drp1 mitochondrial outer  mitochondrial fission abnormal brain development 

 
membrane 

 
optic atrophy 

   
neonatal lethality 

Mfn(1-2) mitochondrial outer  mitochondrial fusion Charcot-Marie-Tooth disease (CMT) 

 
membrane 

 
(sensory and motor neuron  

   
degeneration) 

OPA1 mitochondrial inner mitochondrial fusion autosomal dominant optic atrophy 

 
membrane 

 
degeneration of retinal ganglion cells  

   
and optic nerve; loss of visual acuity 

GBP(1-7) cytoplasm antipathogenic  no inactivating mutations reported 

 
Golgi (Listeria, Mycobacteria) 

 Atlastin-1 ER fusion of ER tubules hereditary spastic paraplegia  

   
(shortened axons in corticospinal  

   
motor neurons) 
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been shown to be enhanced in several dynamin superfamily members48,51,60, and this 

phenomenon is best characterized in the classical dynamins, where the assembly-dependent 

increase in GTP hydrolysis can be up to 100-fold61–63.  Many superfamily members also have a 

three-helix bundle known as the bundle signaling element (BSE), which may be involved in 

allosteric coordination of assembly and hydrolysis63,64.  Additional domains vary between family 

members and may impart specificity.  For example, classical dynamins have a Pleckstrin 

homology (PH) domain that binds phosphoinositides and a proline-rich (PR) domain that 

interacts with SH3 binding partners.  In place of the PH domain in classical dynamins, Drp1 has a 

domain of unknown structure and function called the B domain.  In Mx proteins this region is a 

loop known as L4.  OPA1 and mitofusins have a transmembrane helix or helices, respectively, 

that anchor them to their target membranes, and OPA1 also has a mitochondrial targeting 

sequence at its N terminus.   

 

 
Figure 1.2  Comparison of domain architecture in the dynamin superfamily.  All superfamily 
members possess a G domain and a stalk domain.  Most superfamily members also possess a BSE. 
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Membrane interaction in the dynamin superfamily 
 

As membrane-remodeling enzymes, all dynamin superfamily members interact with 

membranes in some capacity, typically at the end of the stalk, opposite the GTPase domain.  

Two modes of membrane interaction are apparent in the dynamin superfamily: (1) tethering to 

the membrane via a transmembrane (TM) helix (OPA1)65,66 or helices (mitofusins and 

Atlastins)32,67,68 or a covalently-attached lipophilic anchor (GBPs)69, and (2) untethered reversible 

interaction with membranes (classical dynamins, Vps1, Drps and Mx proteins).  Soluble proteins 

that interact reversibly with lipid membranes can be described as amphitropic, a term coined by 

Paul Burn to reflect the dual preference of these proteins for aqueous and lipid environments70.  

Based on the mode of membrane interaction, we propose a subclassification of the dynamin 

superfamily into two categories: (1) tethered dynamins and (2) untethered amphitropic 

dynamins (Figure 1.3).  Interestingly, OPA1 could potentially be classified in both categories, as it 

has a proteolytic cleavage site in the tether that anchors it to the membrane, and both the 

tethered and untethered forms have been shown to be essential65,66,71.  Furthermore, the 

untethered form of OPA1 reversibly binds anionic lipid membranes48 presumably through the 

variable domain at the end of the stalk59.  For the purposes of this dissertation we will focus on 

untethered amphitropic dynamins, and specifically the mitochondrial fission dynamin Drp1 

because of its importance in human health and its known structural detail. 

Drp1 and mitochondrial fission 
 

Drp1 is the primary mechanoenzyme responsible for mitochondrial fission.  Drp1 is 

recruited from the cytosol, where it exists primarily in dimeric/tetrameric form, to foci on the 

mitochondria, where it assembles further into rings or spirals that putatively extend around the 

circumference of the organelle26,72.  The number of rings necessary for membrane scission is 
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unknown.  Hydrolysis of GTP is thought induce powerstroke-like conformational rearrangements 

in the Drp1 oligomers that ultimately result in membrane scission73–78.  Structurally, Drp1 is 

composed of the G domain and stalk that are common to the dynamin superfamily, as well as 

the BSE that is common to the other amphitropic dynamins (classical dynamins and Mx proteins) 

 
Figure 1.3  Comparison of structure and orientation at the membrane in the dynamin superfamily.  
There appears to be a pattern of membrane interaction at the end of the stalk opposite the G 
domain.  OPA1 can be cleaved from its tether and may also interact with membranes in the same 
orientation as the other superfamily members.  The structural features of the Vps1 and Drp1 
variable domains are unknown, as indicated by the “?” symbols. 
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(Figure 1.4).  Mx proteins and Drp1 lack the PH and PR domains that are found in classical 

dynamins.  In the place of the PH domain, MxA has a loop known as L4, whereas Drp1 has a 

unique domain of unknown function called the B domain. 

 

Assembly of Drp1 and the other amphitropic dynamins occurs through the stalk domain 

via three conserved interfaces (Figure 1.5A)41,75,79.  Dimerization occurs through a central region 

of the stalk known as interface 2, with dimerized stalks forming an “X” shape.  Higher-order 

oligomerization (filament extension) occurs through interactions at both ends of the stalks as 

dimers align side-by-side in a formation that resembles an accordion gate (“…XXXXXX…”).  The 

interface near the G domain end of the stalk occurs near neighboring BSEs (interface 1), and the 

3rd interface results from interactions near the tip of the stalk that is opposite the G domain 

(interface 3).  In Drp1, a fourth interface is present in the crystal unit and is formed by a dimer of 

dimers, with the interface residing at the central crossing point of stalk dimers, on the opposite 

side as interface 2 (Figure 1.5B).   This suggests the possibility of a four-stalk-thick filament75, 

rather than the two-stalk-thick filament found in both dynamin and MxA79–81, and is consistent  

 
Figure 1.4  High resolution crystal structure of Drp1 (constitutive dimer).  The B domain was 
removed to facilitate crystallization.  PDB code 4BEJ  
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with a cryo-EM study of the yeast Drp1 homolog, Dnm1, that identified a four-stalk-thick 

filament forming a “two-start” helical assembly of Dnm1 on lipid membrane tubules76.  The two-

start helical filaments of Drp1 and the single-start helical filaments both appear to form contacts 

between helical rungs through dimerization of G domains, consistent with G domain 

dimerization observed in the crystal structure of a G domain/BSE construct of dynamin63.  A 

 
 
Figure 1.5  Assembly of Drp1 stalk domains.  Filament formation occurs through three conserved 
interfaces (A).  In Drp1, assembly on lipid membranes is thought to occur via a “double start” helix 
consisting of pairs of filaments interacting through a 4

th
 interface (B).  Wedge arrows indicate 

direction of filament extension.  Adapted from Frohlich et al.
75
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model has been proposed in which a power stroke alters the angle between the G domain and 

the BSE, resulting in a cinching of helical rungs73. 

Potential allostery in Drp1 and the dynamin superfamily 
 

Allostery may have an important role in Drp1 function and in the function of dynamin 

superfamily members in general.  Allostery is energetic coupling between two distinct sites of a 

protein82, such that an energetic perturbation (e.g. ligand binding) at one site results in a change 

in structure, binding or activity (e.g. catalysis) at the second site83–85.  Historically, models of 

allostery were constructed to explain cooperative ligand binding in oligomeric proteins, and 

“distinct sites” referred to the structurally identical but physically separate active sites of a 

homo-oligomer, such as hemoglobin86,87.  However, allostery within a monomer or a protomer is 

also possible88, e.g., when a small molecule binds to a monomeric protein at a site distinct from 

the active site, resulting in either inhibition or enhancement of ligand binding (or catalysis) at 

the active site.  As in this example, allostery is often used to describe the binding of small 

molecules.  However, binding of proteins, lipids or other biological macromolecules by the 

protein of interest are equally relevant and the same principles of allostery apply82. 

The distinction between allostery involving cooperative binding in structurally identical 

but distinct sites in a homo-oligomer, and allostery within a monomer or protomer is important 

because the former does not appear to occur in Drp1, while the latter appears to be likely.  For 

example, if Drp1 exhibited cooperative oligomerization, we would expect that Drp1 assembly 

would proceed such that an initial binding or nucleation event would be less favorable than the 

binding of subsequent protomers, or in other words, assembly would become increasingly 

favorable as oligomerization proceeded.  In reality, it appears more likely that Drp1 assembles 

through an isodesmic mechanism, i.e. the association constant of all assembly events is the 
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same (C. M. Manlandro, unpublished results).  As a second example, if Drp1 exhibited 

cooperativity between GTP binding sites in the G domains of an oligomer, we would expect that 

one G domain in the oligomer would bind GTP more readily once a neighboring G domain in the 

oligomer had bound GTP.  This also does not appear to be true for Drp1 (C. M. Manlandro, 

unpublished results).  Thus, allostery in Drp1, if it occurs, likely occurs within a protomer, with 

the “distinct sites” residing in different domains of that protomer. 

Like classical dynamins, Drp1 exhibits enhanced GTP hydrolysis under assembly-

promoting conditions, and reduced activity when assembly is disrupted by stalk domain 

mutations or solvent conditions89.  Furthermore, an isolated dynamin-1 G domain construct 

dimerizes but does not exhibit concentration-dependent GTP hydrolysis.  Given that assembly 

occurs primarily through the stalk domain, and hydrolysis occurs in the G domain, coupled 

hydrolysis and assembly is consistent with a role for allostery in dynamin and Drp1 function.  

Allostery is also implied by mutagenesis studies in classical dynamins90 where reduced GTP 

hydrolysis was measured in dynamin variants with single-point mutations in the stalk 

domain33,62, BSE64, or the PH domain34.  One study proposed that classical dynamins exhibit V-

type allostery77, but deliberate studies of allostery have not generally been pursued with 

members of the dynamin superfamily.  In Drp1, further allosteric regulation may occur through 

the B domain, just as the PH domain may provide a source of allosteric regulation in classical 

dynamins.  Potential allosteric regulation of Drp1 by the B domain was evident at the cellular 

level as reported by Strack and Cribbs, who observed differences in mitochondrial morphology 

in cells transfected with various Drp1 ∆B constructs91.  All of the constructs reported co-

immunoprecipitated with wild-type Drp1, suggesting that they were properly folded and were 

capable of at least dimerization with wild-type enzyme.  Depending on how much of the B 

domain was removed in these Drp1 constructs, and also the nature of the linker that the B 
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domain was replaced with, mitochondria exhibited morphologies consistent with either excess 

or disrupted fission. 

Unanswered questions 
 

Many questions remain unanswered regarding Drp1, some of which also apply to the 

dynamin superfamily in general.  How do assembly and membrane interaction stimulate 

hydrolysis?  How is hydrolysis coupled to membrane remodeling?  Is Drp1 truly a 

mechanoenzyme that exerts force in order to execute scission of a membrane, or does it carry 

out membrane scission through some other means?  How is Drp1 function regulated?  Finally, 

what is the role of the B domain in Drp1 function?  Does it have an allosteric role?  Does it bind 

lipid membranes?  What role do post-translational modifications and alternative splicing (in the 

B domain) play in enzyme function?   

In this dissertation we focus specifically on the role of the B domain in Drp1 function.  In 

chapter 2 we present enzymatic evidence for allosteric regulation of Drp1 assembly and GTP 

hydrolysis by the B domain, and find that the B domain is intrinsically disordered and exhibits 

the unexpected property of coacervation under conditions that typically cause intrinsically 

disordered proteins to fold.  In chapter 3 we provide evidence that the B domain binds lipid 

membranes with a preference for the mitochondrial lipid cardiolipin and suggest a relationship 

between coacervation and membrane interaction.  In chapter 4 we present preliminary data 

examining whether alternative splicing and phosphorylation tune B domain structure and 

function.  Finally, in chapter 5 we conclude with a discussion on the role of intrinsic disorder and 

amphitropism in Drp1 and more broadly in the dynamin superfamily.  
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INTRODUCTION 
 

Dynamin-related protein 1 (Drp1) is a member of the Dynamin superfamily responsible 

for the remodeling of mitochondrial membranes, a process that is important for the 

maintenance of mitochondrial homeostasis1,2 including the regulation of mitophagy3 and 

apoptosis4,5.  Drp1 is thought to execute mitochondrial fission through extensive self-assembly 

into massive spiral-like structures around the circumference of a mitochondrion, accompanied 

by the conversion of energy from GTP hydrolysis into mechanical constriction (force), ultimately 

resulting in scission of mitochondria6.   

In addition to the canonical GTPase (G), stalk and bundle signaling element (BSE) 

domains found in other dynamin superfamily members, Drp1 has a domain known as the B 

domain, whose function is poorly understood.  Interestingly, the B domain contains several 

experimentally-confirmed sites of post-translational modification, including two 

phosphorylation sites7–11 and eight SUMOylation sites12,13.  Alternative splicing of the Drp1 gene 

gives rise to at least eight known isoforms14, five of which are the result of truncations of the B 

domain alone15.   The Drp1 isoforms appear to be differentially expressed in human 

tissues14,16,17.  These traits suggest that the B domain is a region of great importance for the 

regulation of Drp1 function.   

It was recently shown by Strack and Cribbs that various Drp1∆B constructs expressed in 

HeLa cells resulted in either punctuate or elongated mitochondria compared to wild-type, 

indicative of either excess or disrupted mitochondrial fission, respectively18.  The phenotypes 

varied depending on how much of the B domain sequence was removed and the length and 

properties of the linker used to replace the removed segment.  These findings suggest that the B 

domain could be involved in both positive and negative regulation of Drp1 activity.   
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It has been theoretically demonstrated using a statistical thermodynamic model (the 

ensemble allosteric model or EAM) that positive and negative allostery can occur through the 

same domain, particularly for proteins with at least three allosterically coupled domains19.  

Furthermore, this model suggests that regions of intrinsic disorder may be uniquely poised to 

execute an allosteric response19,20.  Central to the EAM and its experimental validation is the 

difference in energy between relaxed and tensed states, or in other words the stability, of each 

domain.  The stability of alternatively spliced intrinsically disordered domains in the 

glucocorticoid receptor (GR) transcription factor have been shown correlate with GR activity 

(gene expression) using an experimental approach21.  The dual effects of tamoxifen on the 

estrogen receptor in different tissues is a potential example of a single ligand acting as both an 

agonist and antagonist through the same protein domain, but this has not been experimentally 

verified19.   

We suspect that the B domain of Drp1 may be involved in the allosteric regulation of 

Drp1 and here test if the B domain is important for GTP hydrolysis and assembly of Drp1 by 

measuring these properties in a Drp1∆B construct.  We then attempt to measure the 

thermodynamic properties of the B domain in isolation in order to evaluate its potential for 

thermodynamic coupling.  We find that the B domain is intrinsically disordered, and to our 

surprise, we discover that the B domain undergoes phase separation (coacervation) under 

conditions that typically induce intrinsically disordered proteins to fold.  These findings are 

consistent with the notion that intrinsically disordered regions may be uniquely poised for 

allosteric regulation of enzymes, and also identify a novel property of the B domain, 

encouraging further exploration of the relationship between intrinsic disorder and coacervation 

in other systems.  
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MATERIALS AND METHODS 
 

Drp1 and Drp1∆B cloning - Drp1 isoform 1 (Genbank accession number AB006965) was 

PCR amplified with Pfu Turbo DNA polymerase (Stratagene, La Jolla, CA) as an NdeI/XhoI 

fragment, with a Tobacco Etch Virus (TEV) protease site (ENLYFQS) preceeding the XhoI 

restriction site.  The resulting DNA fragment was then ligated into the bacterial expression 

vector pET29b (EMD Millipore, Billerica, MA), which contains a C-terminal hexa-histadine (His6) 

tag.  To clone a Drp1∆B-His6 fusion protein, the gene sequence corresponding to residues 1-525 

of Drp1 isoform 1 was fused to the gene sequence corresponding to residues 637-736 of Drp1 

isoform 1 with a “GGGSGGG” linker.  The Drp1∆B-His6 fusion protein was created by PCR 

amplifying two fragments.  The first fragment contained an NdeI restriction site, the Drp1 

GTPase domain (residues 1-525), and the “GGGSGGG” linker.  The second fragment contained 

the same linker, residues 637-736 of the GED domain, a TEV cleavage site (ENLYFQS) and an XhoI 

restriction site.  100 ng of each fragment were mixed together to form the template of a third 

PCR reaction, which was amplified with the forward primer of reaction 1 and the reverse primer 

of reaction 2.  The resulting 1100 bp PCR product was gel extracted, digested with NdeI/XhoI 

and ligated into pet29b. 

Drp1 and Drp1∆B expression and purification - pET29b-Drp1-His6 or pET29b-Drp1∆B-

His6 were transformed into Escherichia coli BL21 (DE3).  Cells were grown at 37°C in Super Broth 

(SB) with kanamycin (30 μg/ml) to an A600 of ~1.5 with shaking at 250 rpm, the temperature was 

lowered to 14°C and after 30 minutes, protein expression was induced with 0.5 mM isopropyl 1-

thio-β-D-galactopyranoside for 12-16 hours.  Cells were harvested by centrifugation using a 

Sorvall JLA-8.1000 rotor at 5,000 rpm for 10 minutes at 4°C and were resuspended in column 

buffer A (50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH 7.4, 400 mM 

NaCl, 5 mM MgCl2, 40 mM imidazole) containing protease inhibitors (Complete, EDTA-free 
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Protease Inhibitor Mixture, Roche Applied Science, Indianapolis, IN).  Cells were lysed by four 

passes through a French press (Thermo Scientific, Pittsburgh, PA), DNAse was added to a final 

concentration of 1 μg/ml and lysates were clarified by centrifugation using a Sorvall SS34 rotor 

at 15,000 rpm for 30 minutes at 4°C.  His6-tagged fusion proteins were isolated from the 

resulting supernatant by affinity chromatography using Ni2+ Sepharose High Performance beads 

(GE Healthcare, Pittsburgh, PA).  Bound fusion proteins were washed with 200-300 mL of 

column Buffer A, 100 mL of column buffer B (50 mM HEPES, pH 7.4, 400 mM NaCl, 5 mM MgCl2, 

40 mM imidazole, 1 mM ATP, 10 mM KCl), 200 mL of column buffer C (50 mM HEPES, pH 7.4, 80 

mM imidazole, 400 mM NaCl, 0.5% (w/v) 3-[(3-cholamicopropyl)dimethylammonio]-1-

propanesulfonate (CHAPS)), and 100 mL of column buffer A.  Bound fusion proteins were then 

eluted with column buffer D (50 mM HEPES, pH 7.4, 800 mM NaCl, 5 mM MgCl2, 500 mM 

imidazole).  Fractions containing His6-tagged fusion proteins were pooled and dialyzed overnight 

at 4°C into buffer containing 50 mM HEPES, pH 7.4, 5 mM MgCl2, 1 M NaCl with Spectra/Por 

Biotech Cellulose Ester dialysis membrane with a 100,000 molecular weight cut-off (Spectrum 

Laboratories, Rancho Dominguez, CA).  Proteins were concentrated by centrifugation in Vivaspin 

20 ultrafiltration devices with a 100,000 molecular weight cut-off (GE Healthcare).  Protein 

concentrations were quantified by UV spectroscopy with an extinction coefficient of 36380 M-1 

cm-1 (Drp1) or 30870 M-1 cm-1 (Drp1∆B) after incubation for 3 hours in 6M guanidium 

hydrochloride at 65C.  Purified protein was stored at 4°C until use and was used with 72 hours 

of cell lysis. 

B domain cloning, expression and purification - A B domain construct representing 

amino acids 501 – 637 of human Drp1 isoform 1 was PCR amplified from a full-length Drp1 

template as an Nde1/Xho1 fragment with a Tobacco Etch Virus (TEV) protease site (ENLYFQS) 

preceding the XhoI restriction site, and subcloned into the pET29b expression vector (EMD 
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Biosciences) including a C-terminal 6xHis tag.  All constructs were verified by DNA sequencing 

(GENEWIZ, South Plainfield, NJ).  Plasmids were transformed into chemically competent 

Escherichia coli Rosetta cells (Novagen) and grown at 37°C in Super Broth with kanamycin 

(30mg/mL) and chloramphenicol (34mg/mL) to A600 of 1.0.  Protein expression was induced by 

addition of 0.5 mM isopropyl 1-thio-b-dgalactopyranoside (IPTG) at 18°C and harvested by 

centrifugation 15–18 h after induction.  The resulting cell pellets were resuspended in Ni column 

buffer (25 mM Tris HCl, 50 mM NaCl, 30 mM imidazole pH 7.4) containing protease inhibitors 

(Roche Applied Science).  Cells were lysed with 4 passes through an Emulsiflex C3 (Avestin), 

DNase was added to 1 mg/mL and lysates were clarified by centrifugation using a Sorvall SS34 

rotor at 15,000 rpm for 30 minutes at 4°C.  Protein was isolated from the resulting supernatant 

by affinity chromatography using Ni-Sepharose 6 Fast Flow beads (GE Healthcare), and eluted 

with a 100 mL linear gradient of column buffer with 500 mM imidazole.  Fractions containing 

His-tagged proteins were pooled, TEV protease was added at 1/100 molar ratio, and the solution 

was dialyzed against SP column buffer (50 mM KPhos, 50 mM KCl, 1 mM DTT, pH 7.4) using 

Spectra/Por Biotech Cellulose Ester dialysis membrane with a 12 – 14 kDa molecular weight cut-

off (Spectrum Laboratories, Rancho Dominguez, CA) at 4°C for 24 hours or until the protease 

reaction reached completion, as determined by SDS-PAGE.  B domain was separated from TEV 

protease and further purified on a HiTrap SP XL column (GE Healthcare).  Flow-through fractions 

containing B domain were pooled and concentrated to ~ 1 mM by centrifugation in Amicon 

Ultra-15 ultrafiltration devices with a 10 kDa molecular weight cut-off (EMD Millipore, Billerica, 

MA).   Sample purity was checked by coomassie-stained SDS-PAGE and was typically greater 

than 95%.  Protein concentrations were determined by UV spectroscopy using an extinction 

coefficient of 6990 mol−1 cm−1.  Concentrated protein stocks were divided into 50 μL aliquots, 

flash frozen in liquid nitrogen, lyophilized and stored under dry conditions at -20°C until use.  
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Immediately prior to use, lyophilized stocks were reconstituted using 50 μL of deionized water, 

and protein concentration was re-measured.   

Sedimentation assay - A sedimentation assay to quantitatively measure Drp1 and 

Drp1∆B self-assembly into oligomeric structures was adapted from a previously established 

protocol for human dynamin-122,23.  Briefly, Drp1-His6 or Drp1∆B-His6 in 50 mM HEPES, pH 7.4, 

1M NaCl, 5 mM MgCl2 was diluted at the indicated protein concentration into various buffer 

conditions on ice.  The sedimentation assays were incubated at 37°C for 30 minutes.  

Supernatant and pellet fractions were obtained after centrifugation at 50,000xg for 30 minutes 

at 4°C in a TLA-45 rotor (Beckman Instruments, Brea, CA).  After centrifugation, the pellet was 

resuspended in an equal volume of buffer.  Drp1-His6 or Drp1∆B-His6 in each fraction was 

resolved by SDS-PAGE and immunoblotted as described above.  Protein quantification was 

performed using ImageJ software to calculate intensities of Drp1 in supernatant and pellet 

fractions relative to an input fraction. 

Coupled GTP hydrolysis assay - A continuous GTPase assay was used whereby the rate 

of GTP hydrolysis was determined through coupling to a GTP regeneration system, as previously 

described24.  GTPase activity was assayed in 200 μL of GTPase reaction buffer (25 mM HEPES, pH 

7.0, 7.5 mM KCl, 5 mM MgCl2, 1 mM phosphoenolpyruvate, 20 units/mL pyruvate kinase/lactate 

dehydrogenase, 600 μM NADH), of which 150 μL was placed into the wells of a 96-well plate.  

Depletion of NADH over time was measured for 40 minutes at 25°C using a FlexStation 3 Multi-

Detection Reader with Integrated Fluid Transfer (Molecular Devices, Sunnyvale, CA).  GTPase 

assays were started by the addition of the indicated concentration of GTP.  For determination of 

salt dependence, the final NaCl concentration was varied between 50 mM and 1M, as indicated. 
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Size Exclusion Chromatography (SEC) - B domain hydrodynamic properties were 

approximated by SEC using a HiLoad 16/60 Superdex 75 prep grade (S-75) column (GE 

Healthcare) in 20 mM Tris, 50 mM NaCl, 1 mM DTT, pH 7.4. 

Sedimentation velocity AUC - Sedimentation velocity experiments were carried out in a 

Beckman XL-A analytical ultracentrifuge, using two-sector cells and an An60Ti rotor.  

Experiments were carried out at a speed of 50,000 rpm and 22°C.  Sedimentation profiles were 

detected using absorbance optics operated in continuous mode.  The sedimentation coefficient, 

apparent diffusion coefficient and MW were determined by fitting data to the Lamm equation 

using the DCDT+ software by John Philo25,26. 

NMR - NMR experiments were performed at 18.8 T on a Varian Inova 800 spectrometer 

outfitted with a TXI coldprobe.  Two-dimensional 1H–15N heteronuclear single quantum 

correlation (HSQC) experiments were collected at pH 7.4 using WATERGATE for solvent 

suppression.  Uniformly 15N-labeled B domain samples were prepared by dialysis into 20 mM 

Tris-HCl pH 7.4.  with 100 mM NaCl, 10 mM EDTA, 1 mM DTT and 10% D2O.  The protein 

concentration was 300 μM.  HSQC spectra were collected at 4 scans per increment, 1280 (t2) x 

256 (t1) complex points with acquisition times of 64 ms (1H) and 71 ms (15N).  Carrier frequencies 

were centered on the chemical shift of water in 1H and in the center of the amide region at 

117.5 ppm in 15N.  NMR data were processed using NMRPipe27 and analyzed with NMRView28. 

Preparation of TMAO buffers - Trimethylamine N-oxide dihydrate (98% pure; Sigma-

Aldrich) was dissolved in 100 mM Tris, 200 mM NaCl, 50 mM arginine buffer to make 0, 0.8, 1.6, 

2.4, 3.2, 4.0 and 4.8 M TMAO buffers.  The pH was adjusted to 7.4 for each buffer separately.  

Impurities in the TMAO were removed by incubating each buffer solution with activated carbon 

(12–20 mesh; Sigma-Aldrich) for at least 4 hours while protected from light.  The buffer was 

then filtered (0.22 μm filter; Millipore), aliquoted, flash frozen in liquid nitrogen and stored at -
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80 °C until further use.  At the time of sample preparation, TMAO buffers with similar 

concentrations were mixed in the appropriate ratios to obtain the target TMAO concentrations 

used in the fluorescence measurements.  This minimized pH changes that could occur from 

mixing two TMAO buffers with a large concentration difference.  Final TMAO concentrations 

were determined by refractive index and a standard curve, after the manner of Bolen29. 

Circular dichroism - Far UV circular dichroism spectra for the Drp1 isoform 1 B domain 

were recorded with an Aviv Model 215 CD spectrometer (Aviv Biomedical, Lakewood, NJ) from 

260 nm to 195 nm with a bandwidth of 1.0 nm and scan step of 1 nm in a 0.1 cm quartz cuvette 

at 22°C.  All spectra were recorded in CD buffer (10 mM sodium phosphate, 200 mM sodium 

fluoride, 1 mM TCEP, pH 7.4) and corrected for the contribution of buffer.  Each spectrum 

shown is an average of three spectra.  Data for which the HT voltage rose above 500 V were 

discarded.  Molar ellipticity ([θ], deg cm2/dmol) was calculated using the equation       

                   , where                       .  CD spectra were 

deconvoluted using CONTIN-LL in the CDPro software package30,31. 

Steady-state tryptophan fluorescence - Steady-state fluorescence emission spectra of 

the B domain were measured using an Aviv ATF-105 fluorometer (Aviv Biomedical, Lakewood, 

NJ) in TMAO buffers of varying concentrations.  Fresh dithiothreitol (DTT) was added to a final 

concentration of 15 mM to a 15x protein stock solution, to be diluted to 1mM DTT upon sample 

preparation.  Protein samples (ranging from 2 μM to 40 μM) were prepared in a final volume of 

150 μL by combining 10 μL of 15x protein stock with 140 μL of TMAO buffer of the appropriate 

concentration.  Samples were allowed to equilibrate in a “submicro” fluorometer cell at 22 °C 

(Santa Cells) for 5 min to allow for temperature stabilization and protein conformation 

equilibrium to be reached.  Emission spectra were then recorded with excitation at 295 nm (5 

nm slit width).  All spectra were corrected for the contribution of buffer.  Fluorescence emission 
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intensities at 338 nm (5 nm slit width) were recorded as a function of TMAO concentration.  The 

resulting sigmoid curve was fit to a two-state cooperative folding transition using nonlinear 

least-squares analysis to determine the stability (∆G) and m-value32,33.  In order to maximize the 

amount of spectral information used for analysis, we calculated the center of spectral mass     

from fluorescence spectra using equation 2.1: 

        
      

   
                                                                               

where   is the wavelength in nm,     is the fluorescence emitted at wavelength   , and the 

summation is carried out from            to           .  The variable    denotes the 

wavenumber, defined as    
 

 
    , and has been used historically because it is directly 

proportional to energy.  It has been shown that the center of spectral mass does not scale 

proportionally with fraction folded34, but this can be corrected for when determining 

thermodynamic values from these data35.  

Light scattering - Right-angle light scattering near 350 nm was measured using an Aviv 

ATF-105 fluorometer (Aviv Biomedical, Lakewood, NJ) immediately following each fluorescence 

measurement.  Excitation and emission wavelengths were set to 345 and 355 respectively, with 

both slit widths at 5 nm.  Excitation and emission wavelengths had to be offset in this manner in 

order to keep the signal in a measurable range without altering the PMT settings used for 

fluorescence measurements.  Additionally, samples were retained after fluorescence 

measurements and their absorbance spectra were measured with a Nanodrop 2000c UV/visible 

spectrophotometer (Thermo Scientific) in a quartz cuvette with a 1 cm pathlength.  The 

absorbance at 350 nm was used as an indicator of scattered light since the B domain does not 

absorb light at this wavelength under native conditions.  The two methods were found to give 
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comparable results.  Light scattering data were fit to a two-state model after the same manner 

as outlined above for fluorescence data.  

Electron microscopy - Samples were prepared for EM using samples retained from 

fluorescence measurements, or with fresh samples prepared in the same manner.  5 μL of 

protein sample was applied to freshly-ionized carbon-coated copper mesh grids (Electron 

Microscopy Science).  After 15 minutes, the grids were rinsed quickly with four washes of 

deionized water, then floated face-down on a drop of 2% uranyl acetate solution for one minute 

before being air-dried.  Images were taken on a FEI Tecnai 12 TWIN equipped with 16 bit 2K x 2K 

FEI Eagle bottom mount camera and SIS Megaview III wide-angle camera (Olympus). 

RESULTS 
 
Removal of the B domain stimulates GTP hydrolysis and assembly of Drp1 

The fragmented mitochondria observed by Strack and Cribbs18 in HeLa cells transfected 

with Drp1 lacking the B domain could have resulted from an increase in Drp1-mediated fission, 

or an inhibition of mitochondrial fusion activity.  Conversely, the elongated mitochondria could 

be due to an inability of Drp1 to correctly assemble on mitochondria, or due to hydrolytically-

deficient Drp1.  To address how the B domain impacts the assembly and hydrolytic capabilities 

of Drp1, we expressed and isolated a construct lacking the B domain (Drp1ΔB) (Figure 2.1A) and 

compared its assembly and GTP hydrolysis activity to wild-type enzyme. 

Since almost all of the Strack and Cribbs Drp1ΔB variants appeared to form either 

punctate or filamentous aggregates by in vivo fluorescence microscopy, we suspected that our 

Drp1ΔB construct would also exhibit enhanced assembly or aggregation.  We performed a 

sedimentation assay as a function of salt concentration in order to compare the assembly 

properties of Drp1ΔB with wild-type Drp1 (Figure 2.1B).  Quantification of the fraction of protein 
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pelleted indicated that 94% Drp1ΔB pelleted at the lowest salt concentration (150 mM NaCl), 

while only 51% of wild-type Drp1 pelleted under the same conditions (Figure 2.1C).  At the 

highest salt concentration, the amount of Drp1ΔB in the pellet was still more than 70%, while 

pelleting of wild-type Drp1 was reduced to less than 20%.  These results suggest that Drp1ΔB is 

more highly assembled than wild-type, and the Drp1ΔB assembled form may be slightly more 

resistant to disassembly by salt than wild-type.  Thus, the B domain appears to have an auto-

inhibitory effect on Drp1 assembly.     

 GTP hydrolysis is enhanced by assembly in all dynamin superfamily members, including 

Drp136,37.  Therefore, we might expect hyper-assembly to result in enhanced GTP hydrolysis.  

However, unregulated, chaotic assembly could potentially interfere with efficient GTP 

hydrolysis.  To determine if the observed hyper-assembly of Drp1ΔB results in enhanced or 

depressed GTP hydrolysis, we measured GTP hydrolysis as a function of salt concentration for 

wild-type Drp1 and Drp1ΔB.  The amount of GTP hydrolyzed per minute by Drp1ΔB was two-fold 

greater at the lowest salt concentration tested (100 mM NaCl), and was more than 20-fold 

greater at the highest salt concentration (Figure 2.1D).  To facilitate easier comparison of the 

degree of salt sensitivity, we normalized the amount of GTP hydrolyzed per minute at each salt 

concentration against the amount of GTP hydrolyzed per minute at the lowest salt 

concentration.  Observed this way, the difference in salt sensitivity between wild-type Drp1 and 

Drp1ΔB is more readily apparent, with the assembly-dependent GTP hydrolysis of wild-type 

Drp1 dropping dramatically with increasing salt concentration (95% decrease), while the 

assembly-dependent GTP hydrolysis of Drp1ΔB decreases much more modestly with increasing 

salt concentration (40% decrease)(Figure 2.1E).   These results confirm that hyper-assembly of 

Drp1ΔB does indeed result in enhanced GTP hydrolysis.   

 While the salt-dependence of Drp1 GTP hydrolysis is consistent with the notion that salt 
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Figure 2.1  Assembly and GTP hydrolysis and of Drp1∆B. (A) Constructs used in this study.  The B 
domain is replaced by a seven amino acid flexible linker “GGGSGGG” in the Drp1∆B construct. (B) 
Sedimentation of wild-type Drp1 and Drp1∆B was performed at 100k x g for 30 minutes in NaCl 
concentrations ranging from 150 mM to 1000 mM. The supernatant (S) and pellet (P) were run on a 
gel for quantification by densitometry. (C) Quantification of fraction of wild-type Drp1 (light gray) or 
Drp1∆B (dark gray) pelleted in (B). (D) GTP hydrolysis of 5 μM protein was measured using a coupled 
assay as a function of NaCl concentration for wild-type Drp1 (circles) and Drp1∆B (triangles).  (E) The 
amount of GTP hydrolyzed per minute at each salt concentration  was normalized against the 
amount of GTP hydrolyzed per minute at 100 mM NaCl in order to compare the salt sensitivity of 
GTP hydrolysis in wild-type Drp1 (circles) and Drp1∆B (triangles). (F)  Specific activity (SA) of wild-
type Drp1 (circles) and Drp1∆B (triangles) measured as a function of protein concentration at a fixed 
salt concentration (500mM NaCl). 
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disrupts assembly and disrupted assembly reduces GTP hydrolysis, a decrease in GTP hydrolysis 

as a function of increasing salt concentration could also be explained by reduced GTP substrate 

binding.  We sought further confirmation that the observed trends in GTP hydrolysis activity 

were due to assembly and not altered GTP binding.  To this end, we measured GTP hydrolysis at 

a fixed salt concentration (500 mM NaCl) as a function of protein concentration (Figure 2.1F).  

The specific activity (SA, μmol GTP hydrolyzed/min/μmol protein) of wild-type Drp1 increased 

with increasing protein concentration, consistent with assembly-dependent enzymatic activity.  

The specific activity of Drp1ΔB similarly increased with increasing protein concentration, but 

with higher activity compared to wild-type at all protein concentrations above 1 μM.  This 

supports that GTP hydrolysis is assembly-dependent in Drp1 and Drp1ΔB, and that Drp1ΔB 

hyper-assembles.  In summary, these results are consistent with the hypothesis that the B 

domain influences GTP hydrolysis in Drp1 by influencing assembly. 

 

Disorder predictions of the B domain are inconclusive 

This enzymological data suggest that the B domain may play an inhibitory role in the 

wild-type enzyme. However, some of the cell biological data suggest that the opposite may also 

be the case18.  The EAM predicts that positive and negative allostery can occur through a single 

domain that is allosterically coupled to at least two other domains, and that intrinsic disorder 

may play an important role allostery.  To assess whether the B domain is intrinsically disordered, 

possibly enabling both a positive and a negative allosteric regulation of Drp1, we evaluated the 

amino acid sequence of the B domain by several metrics.  The output of intrinsic disorder 

prediction algorithms suggests that the B domain is likely to be intrinsically disordered (Figure 

2.2A).  However, another widely used metric for the prediction of disorder is mean net charge vs 

mean hydrophobicity38–41.  Interestingly, the B domain falls on the natively folded side of the 
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empirical division between natively folded and intrinsically disordered proteins, in disagreement 

with the other predictions (Figure 2.2B).  Although The B domain has many ionizable residues, 

the relative abundance of basic and acidic residues is nearly equivalent (19 and 17 respectively), 

and assuming unshifted pKa values for all ionizable residues, the resulting net charge per 

residue is modest (~.022).  Furthermore, the B domain appears to be slightly more hydrophobic 

on average than the “typical” IDP, perhaps due to the elevated frequency of alanine residues in 

its sequence (Figure 2.2C).  In fact, the alanine frequency in the B domain is even elevated 

compared to a selection of natively folded globular proteins (Figure 2.2D).  Thus, sequence-

based cues for intrinsic disorder in the B domain are somewhat ambiguous.  

 

 
Figure 2.2  B domain sequence analysis. (A) PrDOS

79
 disorder probability prediction for Drp1. The 

PrDOS prediction method creates a position-specific scoring matrix (PSSM) based on a multiple 
sequence alignment with the target protein. The PSSM is then is then analyzed using a support 
vector machine algorithm trained on disordered regions (missing residues) in a non-redundant set 
of proteins in the Protein Data Bank.  The PSSM is also analyzed based on homologous proteins for 
which structural information is available. The final prediction is a combination of the two analyses. 
(B) Net charge vs. hydrophobicity plot for full-length Drp1 (Drp1 FL) and the individual Drp1 
domains. Note that all domains, including the B domain, fall on the natively folded side of the 
empirical division between natively folded and intrinsically disordered proteins (dark gray line). (C-
D) Amino acid composition profiles

80
 of the B domain vs. the DisProt database (C), or a selection of 

globular proteins from the PDB (D).  **significance level α = .05, *significance level α = .051 
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The B domain does not independently adopt a globular fold 

To determine if the B domain is natively folded, we expressed and purified a B domain 

construct composed of residues 501-637 of Drp1 isoform 1 for further analysis.  The protein was 

well-expressed into the soluble fraction of E. coli and was obtained in reasonable yields (~15 mg 

homogeneous protein/L rich media).  In order to identify the boundaries of the B domain, we 

performed a multiple sequence alignment with classical dynamins and dynamin-related proteins 

and identified where sequence conservation was interrupted.  We also analyzed the Drp1 

sequence using the JPRED structure prediction algorithm to identify where the regular 

secondary structure of the stalk domain was predicted to be interrupted.  This prediction was 

consistent with the multiple sequence alignment.   Finally, we constructed a homology model 

using Swiss-Model, with the dynamin-1 crystal structure as a template and again identified 

where the helical stalk domain was interrupted.  A high-resolution crystal structure for Drp1 

(with the B domain removed) has since been solved.  The termination of helices in the stalk 

domain at either terminus of the B domain observed in the crystal structure agrees with our 

multiple sequence alignment, JPRED structure prediction and homology model (data not 

shown). 

When analyzed by size exclusion chromatography (SEC), the B domain eluted much 

earlier than would be expected for a globular protein of its molecular weight (Figure 2.3A).  

Using a standard curve composed of the S75 elution volumes of eight globular proteins of 

known molecular weight, we calculated an expected elution volume of 89 mL for a globular 

monomer with a molecular weight equivalent to that of our B domain construct (15.4 kDa).  The 

observed elution volume for the B domain was 69 mL, which based on the standard curve 

equates to a molecular weight that is about 3.5 times larger than that expected for a globular 

monomer.  This suggests that the B domain may elute as a globular oligomer (trimer or 
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tetramer), a result that was previously reported by Zhang et al. for a B domain construct42.  

However, SEC is a better measurement of hydrodynamic dimensions than molecular weight43,44.  

Therefore, the lower elution volume observed for the B domain could also indicate that it is a 

monomeric extended chain with a large hydrodynamic radius.   

Sedimentation velocity of the B domain (Figure 2.3B) revealed that the B domain is 

indeed monomeric, with a sedimentation coefficient of 1.069 S20,w and an estimated molecular 

weight of 13,970 Da (vs. 15,363 Da calculated from sequence), thus eliminating the possibility of 

oligomerization.  The maximum sedimentation coefficient Smax, calculated after the manner of 

Erickson44, represents the sedimentation coefficient of the smallest non-hydrated smooth 

sphere that could contain the mass of a given protein.  For our B domain construct, Smax = 2.231.  

By taking the ratio of Smax and the measured S20,w, we obtained a semi-quantitative estimate of 

protein shape.  By this measure, globular proteins typically have a ratio near 1.2 or 1.3, 

moderately elongated proteins have a ratio around 1.5 to 1.9, and highly elongated proteins 

have a ratio around 2.0 to 3.044.  The Smax/S20,w ratio for the B domain was 2.09, indicating that it 

likely populates moderate to highly elongated conformations.   

Comparison of the measured B domain hydrodynamic dimensions to those published 

for other globular, premolten globule (PMG), random coil and denatured proteins39 indicated 

that the hydrodynamic dimensions of the B domain lie between those of a natively unfolded 

PMG and a natively unfolded random coil (Figure 2.3C).  However, we could not exclude that 

some portion of the B domain adopts regular secondary structure. 

To evaluate this possibility, the secondary structure of the B domain was evaluated by 

circular dichroism (CD) (Figure 2.3D).  The CD spectrum of the B domain showed a minimum 

near 200 nm, indicative of a random coil conformation.  No minima were apparent at 208 nm or 

222 nm, eliminating the possibility of a large helical content for this sequence.  Deconvolution of  
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Figure 2.3  Structural properties of the isolated B domain. (A) The B domain eluted from an S75 SEC 
column at about 69 mL (open black circle), much earlier than the expected 89 mL elution volume for 
a globular protein of equivalent molecular weight (open gray circle) based on globular protein 
standards (filled gray circles). (B) Fit of sedimentation velocity data of the B domain to the Lamm 
equation using DCDT+ indicates that the B domain is monomeric, with a sedimentation coefficient 
of 1.069 S20,w. Further analysis of this data suggests that the B domain adopts elongated 
conformations (see text). (C) The Stokes radius (Rs) of the B domain (filled black circle) lies between 
that of a  



41 
 

 

the CD spectrum using CONTIN-LL in the CDPro software package30,31 suggests that the construct 

is just over 60% random coil, with the remainder being mostly beta turn and beta strand, and a 

small amount of alpha helix (Table 2.1).  A small amount of helicity was expected based on the 

prediction of a slight helical propensity in the N terminal region of the B domain, as predicted by 

the secondary structure predictors PSIPRED, JPred and PredictProtein (data not shown).  A 

comparison of the mean residue ellipticities at 200 and 222 nm to other proteins after the 

method of Uversky45 is again consistent with the B domain adopting a PMG-like conformation 

(Figure 2.3E).  

Given that the CD spectrum might be consistent with a significant fraction of beta 

structure, we collected site-specific information using NMR spectroscopy.  We uniformly labeled 

the B domain with 15N and collected a 1H-15N HSQC spectrum that primarily correlates amide 

protons to their attached amide nitrogens (Figure 2.3F).  Beta structure would be expected to 

result in excellent chemical shift dispersion from the unique chemical environment experienced 

by backbone amides.  However, the HSQC spectrum of the B domain showed poor chemical shift 

dispersion in both dimensions, indicating that the backbone amides experience a similar 

chemical environment, consistent with an intrinsically disordered conformation.  Together, 

these data show that the B domain adopts an intrinsically disordered conformation in solution. 

Many known IDPs undergo specific changes in secondary structure upon heating, as 

indicated by a positive shift in the CD spectrum around 200 nm and a negative shift in the 

spectrum near 222 nm46–48.  We observed such a shift for the B domain (Figure 2.4A, 2.4B), 

although the magnitude was slightly less pronounced compared to that reported for other IDPs.  

(Figure 2.3, continued) natively unfolded pre-molten globule (PMG) and a natively unfolded coil, 
according to standard curves published by Uversky (Uversky 2002).  (D) Circular dichroism spectrum 
of the B domain is consistent with intrinsic disorder, with a characteristic minimum near 200 nm. (E) 
The B domain mean residual ellipticities at 200 and 222 nm are similar to PMG-like standards 
published by Uversky (Uversky 2002). (F) The 

1
H-

15
N HSQC spectrum of the B domain shows poor 

dispersion in both dimensions, consistent with intrinsic disorder. 
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Furthermore, we discovered that at 10 μM protein, the spectral change as a function of 

temperature was more pronounced at 200 nm than at 222 nm (Figure 2.4C), whereas at a higher 

protein concentration (108 μM), the negative shift in the spectrum near 222 nm as a function of  

temperature was more pronounced than the change at 200 nm (Figure 2.4D).  These findings 

suggest that the spectral changes at 200 and 222 nm as a function of temperature are 

dependent upon protein concentration, an observation that has not been reported previously 

(to our knowledge) for other IDPs.  These data are consistent with the B domain being 

intrinsically disordered, but also suggest that the B domain may possess unique characteristics 

not typically observed in other IDPs, namely a concentration-dependent structural behavior.  

 

The B domain exhibits peculiar behavior in the protecting osmolyte TMAO 

Determination of B domain stability is central to evaluating its potential for allosteric 

function in terms of the EAM.   Since the B domain is intrinsically disordered, we must first 

 
Figure 2.4  Temperature and concentration dependence of the B domain. (A) The endpoints of a CD 
thermal scan of 10 μM B domain, from 20°C (solid line) to 80°C (dotted line) . (B) The endpoints of 
a CD thermal scan of 108 μM B domain, from 20°C (solid line) to 80°C (dotted line). (C) Molar 
ellipticity at 200 nm for the CD thermal scan, indicates that 10 μM B domain undergoes greater 
changes in the spectrum at this wavelength than does 108 μM B domain. (D) Molar ellipticity at 
222 nm for the CD thermal scan, indicates that 108 μM B domain undergoes greater changes in the 
spectrum at this wavelength than does 10 μM B domain. 
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determine if the B domain adopts a folded conformation.  If it does, we must then determine 

the stability of that conformation.  The protecting osmolyte trimethylamine-N-oxide (TMAO) has 

been used to induce folding of intrinsically disordered proteins and measure the free energy of 

folding for these proteins 49–52.  TMAO is a naturally occurring osmolyte that has been shown to 

favor native-like folded states of proteins by elevating the free energy of the unfolded state49.  

To determine the effect of TMAO on the B domain, we followed the B domain steady-state 

tryptophan fluorescence as a function of TMAO.  A preliminary measurement of B domain 

tryptophan fluorescence intensity over time indicated that the tryptophan fluorescence signal 

reached a maximum quickly (< 30 seconds) and then very gradually decreased by a insignificant 

amount over the duration of the time-course measurement (30 minutes), consistent with the 

effect of photobleaching (data not shown).  All subsequent fluorescence measurements were 

made following a two minute incubation period to ensure that equilibrium was attained.  As a 

function of increasing TMAO concentration, the      of the tryptophan intensity showed a 

significant blue shift of ~12 nm, a strong indicator of tryptophan burial (Figure 2.5A, filled 

circles).  The tryptophan intensity measured at a single wavelength (338 nm) as a function of 

TMAO concentration showed a cooperative transition consistent with folding (Figure 2.5A, open 

circles).  These data are well fit by a two-state model (Figure 2.5A, solid line), giving an m-value 

of 2.9 ± 0.2 kcal/mol M, consistent with other IDPs of similar size21,53–55.  However, the 

concentration midpoint (Cm) of the transition (2.8 ± 0.1 M) and the apparent free energy of 

folding (8.2 ± 0.5 kcal/mol) indicate that, if the observed change in fluorescence was indeed due 

to folding alone, the folded conformation of the B domain is highly destabilized under native 

conditions.  As a control, we measured the fluorescence of free tryptophan in TMAO and 

observed no significant blue-shift of the      , but rather a slight red-shift of about 4 nm at 

TMAO concentrations above 3 M, verifying that the blue-shift observed in the B domain was not 



44 
 

attributable to a change in solvent polarity (Figure 2.5B, filled squares).  Furthermore, there was 

no sigmoidal transition observed in the free tryptophan fluorescence intensity measured at 338 

nm (Figure 2.5B, open squares). 

Two-state behavior can be assessed by measuring the reversibility of a process56.  In this 

case this was achieved by reverse titration, i.e., starting with a 15x concentrated protein stock in 

a concentrated TMAO buffer that was then diluted into buffers of lower TMAO concentrations.  

The resulting fluorescence intensity and      curves (Figure 2.5C, open and filled diamonds, 

respectively) indicate that the process is indeed reversible.  However, they show hysteresis with 

respect to the forward titration (Figure 2.5D).  The stock solution of concentrated protein in 

concentrated TMAO that was used in these experiments was noticeably turbid, but the turbidity 

vanished upon 15x dilution to the final protein concentration.  To verify that the observed 

reduction in fluorescence intensity was not due to precipitation of protein aggregates, we 

measured the protein concentration by UV spectroscopy following 15x dilution from native 

buffer and from concentrated TMAO buffer.  In both cases, all protein was recovered (Figure 

2.5E), verifying that the previously observed change in fluorescence was due to reversal of 

tryptophan burial, and not to loss of protein.  Hysteresis is clearly evident in a comparison of 

normalized fluorescence data from the forward and reverse TMAO titrations (Figure 2.6A).  The 

presence of hysteresis suggests that the observed process is not two-state, and a kinetic 

component in the process is implied56.  Furthermore, this indicates that the parameters 

obtained from the fit to a two-state model do not accurately represent the energetics of the 

process.  For the purpose of comparing processes on the basis of “fraction completed,” we have 

normalized the TMAO-induced process to a two-state fit.  However, since the measurements 

were taken at pseudo-equilibrium, we forgo using these fits to determine thermodynamic 

parameters of the process, as this would give incorrect and misleading values.  Without a direct 
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measure of the stability of the B domain, we were unable to evaluate the capacity of the B 

domain for allosteric regulation in terms of the EAM.  However, we continued to investigate 

further as we suspected the hysteresis and the reversible turbidity observed at higher protein 

concentrations in the presence of TMAO could be indicative of a self-assembly capability that 

has not been previously appreciated in the B domain.  

 

 
Figure 2.5  Steady-state tryptophan fluorescence of the B domain in the protecting osmolyte TMAO. 
(A) Forward titration (direction indicated by arrow) in TMAO resulted in a 12 nm blue-shift of the 
λmax (filled diamonds), and a transition in the fluorescence intensity at 338 nm (open circles) that is 
well-fit by a two-state model (solid line). (B) Free tryptophan exhibits a slight red-shift of the λmax in 
TMAO (filled squares) and does not undergo a two-state increase in fluorescence intensity at 338 
nm (open squares). (C) Reverse titration (direction indicated by arrow) in TMAO, like the forward 
titration, resulted in a 12 nm blue-shift of the λmax (filled diamonds), and a transition in the 
fluorescence intensity at 338 nm (open circles) that is well-fit by a two-state model (solid line). 
However, the concentration midpoint (Cm) of the transition was shifted to a lower concentration of 
TMAO (D). (E) UV/Vis absorbance measurements following 15x dilution from native buffer and from 
concentrated TMAO buffer (corresponding to forward and reverse titration, respectively) indicates 
that all protein is recovered, regardless of titration direction.   



46 
 

 

As a verification of assembly or aggregation, we observed static right-angle light 

scattering (RALS) in the same samples used for fluorescence measurements.  As a control, we 

also measured RALS as a function of TMAO for Lysozyme, which is similar to the B domain in 

amino acid sequence length and molecular weight, but is a natively folded protein.  Lysozyme 

showed no sign of aggregation (as measured by light scattering) even at high concentrations of 

TMAO (Figure 2.6B).  The B domain, on the other hand, showed significant light scattering across 

the same range of TMAO concentrations that the fluorescence transition was observed (Figure 

2.6B).  This contrast with lysozyme suggests that the assembly/aggregation behavior observed in 

the B domain may be an inherent property of the B domain, possibly attributable to its 

intrinsically disordered properties.  Interestingly, the normalized light scattering data we  

 

 
Figure 2.6  Comparison of forward and reverse titrations in TMAO by fluorescence and light 
scattering (LS).  (A) The reverse titration (open diamonds) exhibits hysteresis with respect to the 
forward titration (open circles). (B) TMAO titration of the B domain followed by light scattering 
gives a two-state transition similar to that observed by fluorescence, with similar hysteresis 
between forward (filled circles) and reverse (filled diamonds) titrations.  Lysozyme, used here as a 
negative control, does not scatter light in TMAO (gray squares). (C) The light scattering data (filled 
shapes) aligns with the fluorescence data (open shapes) for both the forward (circles) and reverse 
(diamonds) titrations. 
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measured are essentially superimposable on the fluorescence data in both the forward and 

reverse titrations (Figure 2.6C), suggesting that these observables (fluorescence and light 

scattering) are reporting on the same process, or if not a single process, then two processes 

occurring concomitantly. 

To further confirm the presence of self-assembly, we repeated the fluorescence 

experiments in TMAO at several protein concentrations.  We found that the midpoint of the 

transition decreased by 0.6 M, from a Cm of 2.8 M at 2 μM protein concentration to a Cm of 2.2 

M at 40 μM protein concentration (Figure 2.7A).  RALS of the same samples showed the same 

shifts in Cm, and the normalized RALS curves were again superimposable on the normalized 

fluorescence curves (Figure 2.7B).  A monomeric folding reaction would not be dependent on 

protein concentration, thus the observed dependence of the Cm on protein concentration 

indicates that the process involves self-assembly.  In the absence of TMAO, tryptophan burial, as  

 

 
Figure 2.7  Concentration dependence of the B domain in TMAO. (A) TMAO titrations carried out 
with 2 μM (circles),10 μM (squares) and 40 μM (triangles), followed by fluorescence, show a 
concentration dependence. (B) The same samples followed by light scattering (LS) (filled shapes) 
show the same concentration dependence, and align with the fluorescence data (open shapes).  (C) 
The λmax does not change with B domain concentration in the absence of TMAO. 
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measured by      , did not show concentration dependence for this range of protein 

concentrations (Figure 2.7C), indicating that TMAO is required to induce self-assembly at these 

protein concentrations. 

Given the superimposability of the RALS and fluorescence curves, we questioned to 

what extent the B domain was folding, if at all, since the change in fluorescence could also be 

explained by burial of the tryptophan in an assembly interface without significant autonomous 

folding of monomers.  Alternatively, the tryptophan may become buried within an 

independently folded (or partially folded) conformation that subsequently assembles or 

aggregates.  To determine if the putative folding and assembly/aggregation could be separated, 

we tested various solution conditions to see if light scattering could be reduced or eliminated 

without completely preventing tryptophan burial (as indicated by a shift in     ).  We tested 

three strategies that we anticipated would reduce protein aggregation compared to the original 

buffer condition: (1) maximization of protein net charge (and therefore electrostatic repulsion 

between proteins) by titrating the buffer pH to points further above or below the isoelectric 

point of the B domain (calculated to be 7.85), (2) stabilization of monomers through preferential 

shielding of hydrophobic regions by glycerol57, and (3) disruption of protein-protein interactions 

by influencing both hydrophobic and electrostatic interactions through the addition of arginine 

hydrochloride58,59.  For each buffer condition, we measured the tryptophan fluorescence 

spectrum and light scattering of the B domain in the absence and presence of 4 M TMAO and 

plotted the change in light scattering (   ) vs the change in      (     ).  All data points were 

normalized to the     and       of the original buffer condition.   

All of the conditions tested reduced the light scattering compared to the original buffer 

condition (Figure 2.8A).  The pH 8.5 condition and the 40% glycerol condition exhibited reduced 

light scattering by 29% and 43% respectively, without significantly altering tryptophan burial, i.e. 
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they exhibited nearly the same blue shift of the      .  The pH 6.5 condition and the 1 M 

arginine hydrochloride conditions reduced scattering even further, by 74% and 96% 

respectively, but did so at the expense of tryptophan burial.  A linear relationship between     

and       was apparent upon comparison of the conditions tested.  A linear fit of these data 

points gave a slope of 1.08 and an intercept of 0.34.  The slope near unity is consistent with the 

superimposability of the fluorescence and light scattering curves observed previously (see Figure 

2.6B), but also raises the concern that the shift in      could be an artifact induced by light 

scattering.  However, we still observed the strong blue-shift of the      when polarizers were 

crossed to eliminate scattered light (Figure 2.8B), confirming that the observed change in 

tryptophan fluorescence was not due to a light scattering artifact.  The non-zero intercept (0.34) 

of the    /      linear fit in Figure 2.8A may suggest that some fraction (perhaps one third) of 

the total blue-shift observed in the original condition is due to tryptophan burial in the absence 

of significant assembly or aggregation, i.e. within a monomeric fold or low-order oligomeric 

collapsed state.  We attempted to determine the oligomeric state of the B domain in TMAO with  

 

 
Figure 2.8  Relationship between tryptophan burial and self-assembly. (A) Extent of tryptophan burial 
(as measured by ∆λmax

 
= |λmax, 4 M TMAO - λmax, 0 M TMAO|), and extent of self-assembly (as measured by 

∆light scattering = |light scattering4 M TMAO - light scattering, 0 M TMAO|) were measured under different 
solvent conditions intended to reduce self-assembly without reducing putative folding induced by 
TMAO.  The ∆λmax and ∆light scattering data were normalized to the ∆λmax and ∆light scattering data 
under the original solvent conditions (pH 7.4, 50 mM Arg HCl, no glycerol, with and without 4 M 
TMAO). There appears to be a linear relationship between tryptophan burial and self-assembly, with 
a slope near 1 and an intercept of 0.34. (B) The ∆λmax was measured with and without crossed 
polarizers and resulted in the same value, indicating that the ∆λmax was not attributable to scattered 
light. 
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1 M arginine hydrochloride by sedimentation velocity, but the experiment was unsuccessful 

because the protein assembled and began to scatter light a few hours into the experiment (data 

not shown).  This indicates that arginine does not permanently prevent protein-protein 

interaction; rather it slows the kinetics of assembly/aggregation. 

 

The TMAO-induced changes include an increase in beta strands and beta turns 

We explored the secondary structural characteristics of the TMAO-induced form of the 

B domain by circular dichroism.  A plot of the change in ellipticity at 222 nm at three TMAO 

concentrations aligned with the transition observed by fluorescence (Figure 2.9A), indicating 

that the tryptophan burial is accompanied by change in secondary structure.  The change in the 

B domain CD spectrum in increasing concentrations of TMAO appeared quite dramatic, resulting 

in a minimum at 230 nm (Figure 2.9B).  However, deconvolution of the spectra using CONTIN-LL 

from the CDPro analysis software estimated modest changes in structure, with the most notable 

change being a 10 point increase in beta-strand and a nearly 7 point decrease in helicity (Table 

2.1).  It should be noted that we were only able to deconvolute a small portion of the spectra in 

samples that contained TMAO because the intrinsic optical properties of TMAO buffers 

interfered with collection of data below 210 nm.  A CONTIN-LL fit of this small range of 

wavelengths will be less accurate than one performed on a larger portion of the spectrum. 

To alleviate the problem of optical interference by TMAO, and also to determine 

whether the B domain would exhibit similar behavior in the presence of other cosolvents, we 

repeated fluorescence, RALS and CD measurements of the B domain in the kosmotropic salt, 

ammonium sulfate.  The B domain exhibited similar two-state-like behavior as measured by 

fluorescence and light scattering (Figure 2.10A), although the midpoint of the light scattering 

curve was slightly shifted toward higher ammonium sulfate concentration compared to the  
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fluorescence curve.  This may reflect a slight kinetic lag between folding and 

assembly/aggregation of the B domain in ammonium sulfate.  The mean residual ellipticity at 

200 nm in increasing concentrations of ammonium sulfate overlays with the fluorescence curve 

(Figure 2.10B), indicating that these observables are reporting on the same process or 

concomitant processes.  The full CD spectra in ammonium sulfate follow a similar trend as in 

TMAO, with a minimum appearing near 230 nm, but we were also able to observe a maximum 

around 200 nm since the absence of optical interference in ammonium sulfate buffers allowed 

us to make measurements at much lower wavelengths (Figure 2.10C).  The CONTIN-LL fit 

estimated a 16 point increase in beta-strand and a 5 point decrease in helicity, and also a 4 point 

increase in beta-turn not previously estimated from the TMAO fit (Table 2.2). 

Table 2.1 

 
CONTIN-LL fit structural composition 

[TMAO] (M)  Helix   Strand Turn Unrd RMSD 

0 8.4 18.5 12.5 60.6 0.037 

3.1 1.7 28.6 11.6 58.1 0.031 

Δ -6.7 10.1 -0.9 -2.5 
  

 

 
Figure 2.9  Change in B domain secondary structure in TMAO. (A) B domain molar ellipticity at 222 
nm measured at 5μM protein concentration (filled diamonds) falls between the fluorescence 
intensity transitions measured previously (see Figure 2.7) at protein concentrations of 2 μM (open 
circles) and 10 μM (open squares). (B) CD spectra of the B domain in increasing concentrations of 
TMAO.  
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The B domain also exhibited a response similar to what was observed in TMAO and 

ammonium sulfate in another protecting osmolyte, sarcosine.  As a function of increasing 

sarcosine concentration, we observed an apparent two-state-like change in mean residual 

ellipticity that was superimposable on the normalized fluorescence curve (data not shown).  

Table 2.2 

 
CONTIN-LL fit structural composition 

[(NH4)2SO4] (M)  Helix   Strand Turn Unrd RMSD 

0 8.4 18.5 12.5 60.6 0.037 

3 3.3 34.6 16.3 45.8 0.073 

Δ -5.1 16.1 3.8 -14.8 
  

 
Figure 2.10  Steady-state tryptophan fluorescence, light scattering and circular dichroism of the B 
domain in the kosmotropic salt, ammonium sulfate. (A) The B domain exhibits a two-state transition 
by fluorescence (open circles) and light scattering (LS) (filled circles), similar to what was observed in 
TMAO, except that the light-scattering is slightly shifted to higher ammonium sulfate 
concentrations. (B) Molar ellipticity of the B domain at 200 nm (filled diamonds) aligns with the 
transition observed by fluorescence (open circles).  Both measurements were made at 2 μM protein 
concentration. (C) CD spectra of the B domain in increasing concentrations of ammonium sulfate 
((NH4)2SO4). 
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Taken together, these data suggest that the observed folding and self-assembly behavior is 

intrinsic to the B domain and is independent of kosmotropic cosolvent.  As the solvent quality 

decreases (due to increasing kosmotropic cosolvent), the B domain undergoes changes in 

secondary structure with concomitant assembly/aggregation. 

 

The B domain coacervates in the presence of TMAO 

Because the observed assembly or aggregation phenomenon exhibited the unique 

properties of being reversible and deceptively similar to two-state, we suspected it may 

represent ordered assembly rather than amorphous non-native aggregation.  In order to 

distinguish between amorphous aggregation and ordered assembly, we used transmission 

electron microscopy (TEM) to observe the B domain in the presence of TMAO.  The same 

samples used for fluorescence and RALS measurements were applied to grids and imaged by 

TEM (Figure 2.11).  The TMAO-induced state was neither an amorphous aggregate nor fibril-like 

ordered assembly.  Rather, we consistently observed darkly stained spherical assemblies, 100-

200 nm in diameter, with negatively stained globular textures within, a morphology that we 

never observed in the TMAO-only or protein-only controls.  We observed these assemblies in 

samples that were prepared minutes to hours before being applied to the grid, and the 

assemblies appeared to be increasingly abundant in samples that were incubated in TMAO for 

longer periods (many hours to days).  We suspect that these assemblies represent a coacervate, 

i.e. a phase separation resulting in a protein-rich phase (the coacervate) and a protein-poor 

phase (the bulk or equilibrium solution).  The spherical droplet morphology is distinct from 

amorphous aggregation and is similar in appearance to the liquid-liquid phase separation 

observed in other coacervating systems such as tropoelastin60.   
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DISCUSSION 
 

Here we have shown that removal of the B domain results in hyper-assembly and 

elevated GTP hydrolysis, suggesting an auto-inhibitory or allosteric role for the B domain.  

Furthermore, we have shown that the B domain does not adopt a folded conformation in 

isolation, exhibits concentration-dependent structural changes in response to elevated 

temperature, and undergoes conformational change and self-assembly in the presence of 

protecting osmolyte or kosmotropic cosolvent.  We suspect that the self-assembled form is a 

coacervate. 

The B domain may influence GTP hydrolysis in the G domain indirectly by regulating 

assembly in the stalk domain.  Nearly all of the fission-deficient constructs examined by Strack 

and Cribbs18 exhibited some form of aggregation.  In their cell-based assay, GTP hydrolysis of 

Drp1 was not measurable, thus the enzymatic activity of the variants was unknown.  Our 

Drp1ΔB variant exhibited hyper-assembly, probably similar in nature to the aggregates observed 

by Strack and Cribbs.  We showed that hyper-assembly in our Drp1ΔB variant was accompanied 

 
Figure 2.11  TEM images of B domain in TMAO. (A) 2 μM B domain in 3 M TMAO was applied to a 
carbon-coated copper grid and stained with 2% uranyl acetate. (B) An independently prepared 
sample under the same conditions as (A). The darkly-stained spherical coacervates are roughly 50 – 
150 nm in diameter and appear to be formed by the coalescence of smaller globules (negatively-
stained texture within the larger spheres). Scale bar is 200 nm in both images.    
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by elevated GTP hydrolysis compared to wild-type Drp1.  We suspect that fission-deficient 

variants of Strack and Cribbs may also have had elevated enzymatic activity, But were prevented 

from productively associating with the mitochondrial membrane by aberrant assembly, so the 

GTP hydrolysis was futile and did not result in mitochondrial fission.  Given that assembly-

stimulated GTP hydrolysis is a hallmark of dynamin superfamily members, and that GTP-

hydrolysis is attenuated by point mutations in the stalk domain that inhibit assembly, we 

suspect that the B domain may influence GTP hydrolysis in the G domain indirectly by regulating 

assembly in the stalk domain. 

The influence of the B domain on the stalk domain may be through an allosteric 

mechanism wherein the energetics of the B domain are coupled to the stability of the stalk 

domain.  We favored this hypothesis upon finding that the B domain is intrinsically disordered, 

in light of the ensemble allosteric model (EAM) which suggests that intrinsically disordered 

domains are uniquely poised for allosteric regulation of enzymes20.  However, since the B 

domain self-assembled under conditions that typically induce IDPs to fold, we were unable to 

cleanly identify an equilibrium folded state of the B domain and therefore could not evaluate 

the capacity of the B domain for allosteric regulation in terms of the EAM.  This hypothesis 

remains valid, and the observed B domain self-assembly may play a role in allosteric regulation. 

Alternatively, the B domain may exert its effects on stalk domain assembly more 

directly, e.g., through physical occlusion of assembly interfaces in the stalk domain.  The 

pleckstrin homology (PH) domain of dynamin has been proposed to interact directly with the 

dynamin stalk domain, based on contacts identified in the crystal structure61.  Given the overall 

similarity between Drp1 and dynamin, and the similar location and size of B and PH domains, it 

may be that the B domain likewise forms contacts with the stalk domain in Drp1, preventing its 

assembly. 
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Regardless of the mechanism of auto-inhibition by the B domain, coacervation may 

play a role.  In terms of allostery, the energy of coacervation could be coupled to stalk domain 

stability.  In terms of physical occlusion, homotypic B domain interactions (coacervation) could 

compete with heterotypic B domain-stalk interactions, thereby relieving occlusion of stalk 

domain assembly interfaces.  In both cases, relief of auto-inhibition must be triggered at the 

appropriate time so that Drp1 assembly occurs productively at the mitochondrial membrane 

surface. 

Charge neutralization and the ability to form multivalent interactions are essential 

components of the mechanism of coacervation62–68.  The B domain is well equipped to 

simultaneously undergo charge neutralization and form multiple contacts through homotypic 

interactions.  The multiple positive and negative charges in the B domain polypeptide chain offer 

many opportunities for multivalent interactions through ion pairing, and when ion pairs form, 

the participating charges are neutralized.  Since the B domain has only a few more positive than 

negative charges, it is capable of neutralizing nearly all of its charges through homotypic 

interactions.  It has been shown for other coacervating proteins that a combination of “stiff” and 

“flexible” residues prevent chain collapse and maximize conformational dynamics, thereby 

favoring “fuzzy” intermolecular interactions over intramolecular interactions69.  A combination 

of “stiff” and “flexible” residues are relatively abundant in the B domain in the form of proline 

and serine respectively.  Finally, the few excess positive charges in the B domain may facilitate 

interactions with negatively charged lipid headgroups, resulting in complete charge 

neutralization at the membrane surface.    

TMAO has been used to drive coacervation of other proteins that are known to 

naturally coacervate.  Here we have used TMAO to elevate the energy of the unfolded state in 

an attempt to drive the B domain into a natural folded conformation.  It is not clear if the 
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resulting coacervation represents a natural state of the protein.  TMAO has been used to drive 

coacervation of other proteins that are known to naturally coacervate, such as tropoelastin70 

and nucleoporins71.  Additionally, many IDPs have been shown to adopt monomeric folded 

states in TMAO21,49,51,52,72–74.  In these examples, whether the final state is coacervation or folded 

monomer, TMAO does not appear to force proteins into non-native states.  This is in contrast to 

other cosolvents such as trifluoroethanol (TFE), which most certainly does induce non-native 

protein conformations.   Unlike TFE, TMAO does not preferentially or directly interact with the 

polypeptide backbone or sidechains, and thus does not lower the energy of a particular 

conformation 75–77.  Rather, it appears to destabilize unfolded conformations by altering the 

solvation of the protein backbone49,78, allowing the protein to move into a lower energy state 

that is already part of its energy landscape.  However, while several lines of evidence suggest 

TMAO favors natural or native-like states, it remains to be determined if TMAO can induce 

unnatural coacervation in some types of intrinsically disordered proteins.  Future work will seek 

to verify whether coacervation is a natural state of the B domain and how coacervation might 

contribute to membrane remodeling and allosteric regulation in the context of Drp1 and more 

broadly in amphitropic proteins at large.  
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Chapter 3  

The Drp1 B domain binds lipid membranes with specificity for cardiolipin 
and a membrane-binding-competent state is favored by TMAO 
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INTRODUCTION 
 

Dynamin superfamily members demonstrate the ability to remodel membranes in vitro, 

in the absence of protein cofactors.  Lipid membrane interaction resulting in membrane 

tubulation has been directly demonstrated in several members of dynamin superfamily, 

including classical dynamins1,2, Mx proteins3,4, Vps15, OPA16, the yeast homolog of Drp1, Dnm17,8 

and Drp19. 

Structurally, dynamin superfamily members are characterized by a coiled coil stalk that 

connects a G domain at one end of the stalk to a variable domain or motif located at the other 

end of the stalk.  In dynamin, this variable region is a PH domain.  Cryo EM of dynamin 

assembled on lipid tubules has revealed that the PH domains are located at the membrane 

surface and the G domains are oriented away from the surface10.  Furthermore, the dynamin PH 

domain has been shown to specifically bind phosphoinositides11, thus membrane interaction in 

classical dynamin is attributed to the PH domain.   

Based on the similar domain organization across the dynamin superfamily, the variable 

domains of other dynamin superfamily members may also be involved in membrane binding.  

Indeed, the orientation of yeast Dnm1 on lipid tubules observed by cryo EM is similar to the 

orientation observed for dynamin8.  Interestingly, the density of the Dnm1 B domain could not 

be resolved in the cryo EM reconstruction, consistent with a dynamic, intrinsically disordered 

interaction with the membrane surface.  Even Mx proteins, which have a shorter (40-residue) 

loop at the end of the stalk domain, have been shown to bind lipids through this loop12.  Thus, in 

the dynamin superfamily, there appears to be a common theme of membrane interaction 

occurring through the variable region at the tip of the stalk domain opposite the G domain, 

despite low sequence similarity in this region.  Given the structural location of the Drp1 B 
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domain and the fact that Drp1 tubulates lipid membranes independent of cofactors9, we suspect 

that the Drp1 B domain is responsible for binding lipid membranes.   

Full-length Drp1 has been shown to bind membranes containing phosphatidylserine13 

and also cardiolipin14.  In the case of phosphatidylserine binding, the interaction was not traced 

to a specific Drp1 domain.  In the case of cardiolipin, the interaction was thought to occur 

through the G domain, as a point mutation in this domain diminished the interaction without 

hindering GTPase activity.  Lipid membrane binding by an isolated B domain has not been 

reported.   

We previously demonstrated that the B domain is intrinsically disordered and 

coacervates in the presence of the protecting osmolyte trimethylamine-N-oxide (TMAO).  This 

capacity for coacervation may represent an important part of B domain function in vivo.  A 

potential role for B domain coacervation may be to facilitate membrane interaction and 

controlled membrane-remodeling events.  TMAO has been shown to favor native-like 

conformations in destabilized proteins, and thus we hypothesize that, in the case of the B 

domain, TMAO may favor a membrane-binding-competent state.   

Here we use an isolated B domain construct from human Drp1 to test if the B domain 

has an intrinsic membrane binding ability.  We show that the B domain is able to bind lipids 

autonomously and does so with specificity for cardiolipin.  CD spectra show that cardiolipin 

binding by the B domain is accompanied by a slight change in secondary structure.  We measure 

lipid binding in the presence of TMAO to determine if the binding competent state is the same 

as the TMAO-favored state.  We find that a sub-critical amount of TMAO enhances B domain 

lipid binding without loss of specificity, suggesting that the TMAO-induced state is competent 

for membrane binding.  
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MATERIALS AND METHODS 
 

Vesicle preparation - All synthetic lipids were obtained from Avanti Polar Lipids 

(Alabaster, AL).  Lipids were measured from chloroform stocks using Hamilton syringes, mixed in 

the intended ratios, and dried in a thin film under a nitrogen stream.  Excess chloroform was 

removed from dried films by lyophilization for at least 2 hours.  The dried lipids were then 

resuspended in the appropriate amount of deionized water to make a 13.1 mM solution of 

lipids.  Lipid solutions were subjected to 11 freeze-thaw cycles in a dry ice/ethanol bath and a 

37°C water bath.  Freeze-thawed solutions were extruded at least 31 times through a 100 nm 

nucleopore track etch membrane (Whatman), using an Avanti syringe extruder apparatus 

(Avanti Polar Lipids). Vesicle size, homogeneity and reproducibility were verified using dynamic 

light scattering and electron microscopy.  All lipids had dioleoyl (DO) acyl chains with the 

exception of cardiolipin, which had tetraoleoyl (TO) acyl chains.  Vesicles used for sedimentation 

included 0.25% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B 

sulfonyl) (Rh-DOPE) for easy visualization of lipid pellets. 

Vesicle sedimentation - Vesicle sedimentation assays were performed with 5 μM 

protein and 2.5 mM lipid in a 100 μL volume of 50 mM Tris, 25 mM MES and 25 mM acetate, pH 

7.4.  Reactions were mixed by pipette and incubated  for 30 minutes at 25°C, and then subjected 

to centrifugation for 3 hours at 55k rpm (rcf 186k x g) in a Beckmann Optima MAX 

ultracentrifuge equipped with a TLA-55 rotor (Beckman Coulter, Brea, CA).  Immediately 

following centrifugation, the top 80 μL was removed by pipette and diluted into 4x SDS loading 

buffer (“supernatant”); the remaining 20 μL, which contained a mixture of soluble protein and 

trace lipids, was removed and discarded.  The lipid pellet was resuspended in 100 μL of buffer, 

and diluted into 4x SDS loading buffer (“pellet”).  Each supernatant and pellet was analyzed by 

SDS-PAGE and stained with coomassie G-250 Blue Silver stain overnight and destained in several 



69 
 

changes of water until background was negligible.  Gels were scanned on a Canoscan flatbed 

scanner (Canon USA), band volume was calculated using Image Quant TL (Amersham).  The 

fraction of protein partitioned (  ) was calculated using equation 3.1: 

   
       

                    
                                                                                

 where         and              are the band volumes of the pellet and supernatant 

respectively.  Fraction partitioned was measured for the B domain as a function of LUV 

composition (increasing fraction of acidic lipid in a DOPC background) and at a fixed LUV 

composition as a function of total lipid concentration.   

Calculation of partition coefficients and free energy of partitioning - The lipid partition 

coefficient   
15 was calculated using equation 3.2 from partitioning data measured as a function 

of LUV composition (increasing fraction of acidic lipid in a DOPC background): 

   

              
   

       
   

                                                                                

The concentration of protein partitioned,                            , and the concentration 

of free protein,                                 .      is the accessible acidic lipid 

concentration, taken to be half of the total acidic lipid concentration to account for the 

inaccessible lipids on the inner leaflet of the lipid bilayer.  The concentration of water,     was 

considered to be 55.3 M. 

Using the partition coefficients obtained from equations 3.2, a free energy of lipid 

partitioning was obtained from equation 3.4: 
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  is the gas constant in kcal/mol T, and   is temperature in Kelvin.  Since only half of the total 

acidic lipid concentration was used for calculations of    (described above), a correction factor 

of -0.41 kcal/mol was added to the calculated     as suggested in by White et al.15 

Circular dichroism - CD spectra were measured in a 0.1 cm quartz cuvette on a Jasco J-

710 spectropolarimeter (Easton, MD) from 260 nm to 190 nm with a bandwidth of 1.0 nm, a 

scan step of 0.2 nm, and a scan rate of 50 nm/min.  All spectra represent the average of 6 scans.  

All spectra were recorded in CD buffer (10 mM potassium phosphate, 100 mM potassium 

fluoride, 1 mM TCEP, pH 7.4) and corrected for the contribution of buffer.  Data for which the 

HT voltage rose above 550 V were discarded. 

RESULTS 
 
B domain binds acidic lipid vesicles with a specificity for cardiolipin 

To determine if the B domain has intrinsic membrane-binding ability, we measured 

protein-lipid membrane binding as a function of lipid composition using a sedimentation assay.  

As a positive control, we first measured the pH-dependent binding of the cytoplasmic domain of 

the mitochondrial fission protein Fis1 (Figure 3.1A).  We found little evidence of binding to lipid 

vesicles at pH 7 regardless of lipid composition.  By contrast, at pH 5, Fis1 bound only to lipid 

vesicles that contain the acidic phospholipid DOPG.  These data are consistent with our earlier 

reports that demonstrated that Fis1 undergoes a dramatic membrane-induced conformational 

change upon binding, resulting in reversible membrane clustering16.  As a negative control, we 

tested bovine serum albumin for its ability to bind lipid vesicles.  Regardless of pH or lipid 

composition, BSA did not bind appreciably (Figure 3.1B). 

We next tested the ability of the B domain to bind lipid vesicles at pH 7.  Similar to Fis1, 

we found little evidence of the B domain binding to neutral 100% DOPC vesicles.  By contrast,    
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when we increased the acidic phospholipid content by adding DOPG, we observed increased 

binding of the B domain (Figure 3.2A).  This binding was not specific to DOPG because we also 

observed binding in experiments with the acidic phospholipid DOPS (Figure 3.2B).  However, we 

noticed a slight difference between the B domain’s affinity for DOPG and DOPS even at identical 

concentrations of acidic phospholipid.  These data suggest that B domain-lipid membrane 

binding is not solely the result of a non-specific electrostatic effect and may rise from a specific 

interaction between the phospholipid and the B domain.  Given that in vivo Drp1 does not 

localize to the plasma membrane, which is rich in PS, but rather to the mitochondrial 

membrane, which contains the unique acidic lipid cardiolipin, we reasoned that membrane  

 
Figure 3.1  Sedimentation assay controls.  Fis1 (A) and BSA (B) were sedimented with LUVs of the 
compositions specified at pH 7 or pH 5.  As expected, Fis1 partitioned only with acidic lipid LUVs and 
at pH 5, and BSA did not partition under any conditions. 
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Figure 3.2  Partitioning of the B domain onto LUVs of various acidic lipid types and compositions.  
The fraction of B domain that partitioned with LUVs of each acidic lipid type and composition was 
determined by sedimentation (n = 2) and equation 3.1 as outlined in Methods.  The acidic lipid 
types used were PG (A, squares), PS (B, triangles) and CL (C, circles).  In all cases vesicle 
compositions were binary with PC.  For (C), the PG and PS curves were reproduced in gray for 
comparison.  Partition coefficients were calculated using equation 3.2 and plotted in (D) with the 
same symbols as A-C.  The line is to guide the eye. 
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binding of the B domain may be enhanced in the presence of LUVs containing cardiolipin.  

Indeed we found enhanced binding in experiments with this mitochondria-specific acidic lipid 

(Figure 3.2C). 

In order to quantify the strength of interaction between the B domain and lipid 

membranes of various compositions, we calculated a mole fraction partition coefficient (  ) 

after the manner of White et al.15.  As the fraction of DOPS was increased, the    remained 

relatively unchanged, with             at 25% DOPS and             at 100% DOPS.  

As the fraction of DOPG was increased, the    increased only slightly, from             at 

25% DOPG to             at 100% DOPG.  By contrast, as the fraction of cardiolipin was 

increased, the    increased significantly, from             at 25% cardiolipin to        

     at 100% cardiolipin (Figure 3.2D).  This suggests that the B domain is significantly more 

sensitive to the concentration of cardiolipin in the membrane than the other acidic lipids, 

further confirming the specificity of the B domain for cardiolipin. 

 

Only cardiolipin induces structural rearrangement in the B domain 

To determine if lipid interaction is accompanied by structural change in the B domain, 

we measured the circular dichroism (CD) of B domain samples in the presence of LUVs 

composed of 100% DOPC, or 25% DOPC and 75% acidic lipid.  As expected, 100% DOPC LUVs did 

not induce any changes in secondary structure in the B domain (Figure 3.3A).  Interestingly, LUVs 

containing the acidic lipids DOPG and DOPS likewise had no appreciable effect on B domain 

secondary structure (Figs 3.3B and 3.3C, respectively).  Cardiolipin LUVs, by contrast, resulted in 

a modest but clearly discernible change in the CD spectra near 200 nm (Figure 3.3D), suggesting 

that a change in secondary structure occurs upon interaction with cardiolipin-containing 

membranes.  This result is consistent with the previously observed preference for cardiolipin  
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Figure 3.3  B domain secondary structure in the presence of LUVs.  The CD spectrum of the B domain 
does not change in the presence of 100% DOPC LUVs (A, dashed line), 75% DOPG LUVs (B, dashed 
line), or 75% DOPS LUVs (C, dashed line), compared to its spectrum in the absence of LUVs (solid 
gray line, A-D).  The B domain exhibits a change in secondary structure in the presence of 75% TOCL 
LUVs, as indicated by the change in molar ellipticity near 200 nm (D).  See Table 3.1 for 
deconvolution data. 
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binding.  Deconvolution of the CD spectra revealed that B domain interaction with lipid 

membranes containing cardiolipin results primarily in an increase in beta strand secondary 

structure (Table 3.1).  This is similar to what was observed when the B domain was in the 

presence of TMAO (see chapter 2), suggesting that the secondary structure induced in the B 

domain by TMAO and by cardiolipin may be similar.    

 

B domain lipid membrane binding is enhanced in the presence of TMAO 

Many intrinsically disordered proteins are known to adopt a folded structure upon 

binding.  Protecting osmolytes such as trimethylamine-N-oxide (TMAO) have been shown to 

favor native-like folded states of intrinsically disordered proteins (IDPs) and the mutationally-

denatured variants of natively folded proteins.  Previous experiments demonstrated that the B 

domain undergoes a two-state-like transition in TMAO, with a transition midpoint around 2.8 M.  

We suspect that if the TMAO-induced state is competent for membrane binding, then 

membrane binding will be enhanced in the presence of TMAO.  Furthermore, if the TMAO-

induced state is competent for membrane binding, we need only lower the energy barrier to the 

membrane-binding-competent state slightly with a sub-critical concentration of TMAO in order 

to enhance binding.  To test this idea, we measured B domain lipid membrane partitioning in the 

presence of 1.8 M TMAO, which is still on the unfolded baseline of the B domain TMAO titration.  

If our reasoning is correct, we should expect to see enhanced lipid membrane binding with the 

Table 3.1 

 
CONTIN-LL fit structural composition 

LUVs  Helix   Strand Turn Unrd RMSD 

100% PC 6.5 15.4 9.4 68.6 0.054 

75% CL 7.9 20.3 11.9 60 0.063 

Δ 1.4 4.9 2.5 -8.6 
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specificity for cardiolipin intact.  If TMAO favors a state other than a membrane-binding-

competent state, then we should expect to see little to no enhancement, if not a decrease in 

binding, and possibly loss of the specificity for cardiolipin. 

The presence of 1.8 M TMAO had no effect on the interaction of the B domain with 

100% DOPC vesicles, nor did it result in increased sedimentation of B domain in the absence of 

vesicles, verifying that the presence of TMAO at this concentration does not cause sedimentable 

protein aggregation or non-specific interactions with neutral lipids.  For vesicle compositions 

containing either DOPG or DOPS however, TMAO enhanced binding to a similar level as that 

observed for CL LUVs in the absence of TMAO (Figs 3.4A and 3.4B, respectively).  The specificity 

for PG over PS that was observed in the absence of TMAO is preserved in the presence of 

TMAO, although slightly less pronounced.  Cardiolipin specificity remains strongly intact in the 

presence of TMAO, with the partitioning of the B domain into CL LUVs dramatically enhanced in 

the presence of TMAO (Figure 3.4C).  The fraction of B domain that partitioned onto 25% 

cardiolipin vesicles increased from 0.2 in the absence of TMAO, to 0.8 in the presence of 1.8 M 

TMAO.  Accordingly, the partition coefficient at 25% cardiolipin increased from             

in the absence of TMAO to             in the presence of 1.8 M TMAO.  Using the linear 

extrapolation method, we determined a rough estimate of the free energy of membrane 

partitioning,              kcal/mol (Figure 3.4D).  This represents the average extrapolated 

value of all the acidic lipid compositions and the corresponding standard deviation.  We 

emphasize that this is a rough estimate, since each extrapolation was based on few data points 

and the linear transition regions of the partitioning curves were not well-defined.  We conclude 

that the enhanced lipid binding and intact specificity for cardiolipin in the presence of TMAO 

verifies that a membrane-binding-competent state is inducible by TMAO.  This suggests that the 

coacervated state of the B domain may be competent for membrane binding. 
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Figure 3.4  Partitioning of the B domain in the presence of 1.8 M TMAO.  B domain partitioning with 
PG (A, squares), PS (B, triangles) and CL (C, circles) was determined as in Figure 3.2, but in the 
presence of TMAO (open shapes and dashed lines).  Partitioning data in the absence of TMAO is 
reproduced here for comparison (solid shapes and lines).  For (C), the PG and PS curves were 
reproduced in gray for comparison.  Free energies of partitioning were calculated using equation 3.3 
(D) and plotted with the same symbols as A-C.  The linear extrapolation method was used to 
estimate ∆GP in the absence of acidic lipid (see text). 
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DISCUSSION 
 

Here we have presented data in support of the hypothesis that the Drp1 B domain has 

an intrinsic ability to bind lipid membranes.  Our data show that the Drp1 B domain binds lipid 

membranes with specificity for cardiolipin, and that this interaction is accompanied by a modest 

change in secondary structure.  Furthermore, we discovered that a membrane-binding-

competent state is favored by TMAO, consistent with our hypothesis that the coacervated form 

of the B domain may facilitate membrane interaction.  It is tempting to speculate that the 

presence of a cardiolipin-containing membrane may facilitate coacervation, but our data do not 

directly address this. 

The B domain shows a sharp sensitivity to CL concentration, and solution conditions in 

vivo could shift the response to lower, biologically accessible CL concentrations.  The 

membrane partitioning curve of the B domain as a function of %CL showed a sharp increase 

between 25% and 50% CL.  This was in sharp contrast to the gradual increase in partitioning 

observed for both PG and PS membrane compositions.  While the B domain has a clear 

specificity for CL over the other acidic lipid types, 25% to 50% CL is significantly higher than the 

%CL observed in mitochondrial membranes isolated from biological sources, which is on the 

order of 4-10% CL17,18.  However, cardiolipin-enriched lipid rafts at Drp1 binding sites on 

mitochondria have been proposed14,19,20, and the cardiolipin concentration in the outer 

mitochondrial membrane at contact sites between inner and outer mitochondrial membranes 

has been measured to be about 20-25%21.  Thus, CL is probably not homogeneously distributed 

throughout the membrane, and local areas of high CL content appear to be likely.  As we 

observed by the addition of TMAO in the partitioning measurements, solution conditions can 

shift the sensitive transition region of B domain membrane partitioning to lower concentrations 

of CL.  In the presence of TMAO, the transition region was shifted to compositions below 25% 
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CL.  Solution conditions or other factors in vivo may have a similar effect, bringing the CL 

sensitivity of the B domain into the relevant range of 4-25% CL.     

The change in B domain secondary structure upon partitioning with CL membranes 

was modest and may represent a change in compactness or the formation of a “fuzzy” 

complex.  Subtle changes in compactness, e.g. from a pre-molten globule state to a molten 

globule state, upon membrane interaction appear to be common in proteins that reversibly bind 

membranes22.  Dynamic or “fuzzy” interactions have also been demonstrated in IDPs that do not 

undergo concomitant folding to a well-defined state upon binding23–25.  The change in B domain 

secondary structure in the presence of CL LUVs was similar to the change in B domain secondary 

structure observed in the presence of TMAO (Chapter 2) in that the largest change in estimated 

secondary structure was an increase in beta sheet content.  The overall change in the B domain 

spectra in the presence of CL LUVs appeared less dramatic than that observed in 3.1 M TMAO 

(see Figure 2.9A), though it appeared quite similar to the spectra observed in 1.5 M ammonium 

sulfate (see Figure 2.10C).  Regardless, the enhanced CL binding and retention of CL specificity in 

the presence of TMAO suggests that the membrane-binding state and the TMAO-induced state 

are closely related.  Coacervation in three dimensions (i.e. in the absence of a CL membrane) 

may be slightly different than coacervation restricted to two dimensions (i.e. on a CL 

membrane), and this may explain the slight differences in CD spectra.  

Coacervation on membranes has been reported in other systems.  A recent report 

discovered a previously unknown family of intrinsically disordered proteins in the fungus 

Neurospora crassa that aggregate on membranes to facilitate membrane wound healing26.  

Proteins from this family, known as septal pore-associated (SPA) proteins, were found to form 

both punctuate and ring-shaped aggregates at N. crassa septal pores in vivo, and formed 

coacervates and gels when purified.  The membrane-water interface offers a unique 
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environment that seems to favor protein aggregation27, and protein aggregation at membrane 

surfaces may be an important, though underappreciated aspect of membrane remodeling28.  It 

has been independently demonstrated, both by theory29 and experiment30, that protein 

aggregation on the membrane surface can induce membrane curvature, and that protein 

insertion into the membrane is unnecessary for curvature induction.  Thus, coacervation and 

peripheral “fuzzy” interactions with the membrane may be a viable means of membrane 

remodeling by the B domain, and perhaps by many more membrane-remodeling proteins than 

are currently appreciated.   
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Chapter 4  

The effects of alternative splicing and post-translational modification on 
structure, folding and lipid binding of the B domain 
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INTRODUCTION 
 

Alternative splicing and post-translational modification (PTM) are common in 

intrinsically disordered (ID) proteins and domains1–5.  Because ID proteins and domains are often 

involved in signaling via interactions with multiple binding partners, alternative splicing in ID 

proteins and domains has been proposed to be a means of rewiring signaling networks6,7.  PTMs 

may be a means of altering homotypic and heterotypic interactions of ID proteins and domains 

by altering properties of charge, hydrophobicity, or sterics8.    

Drp1 has an alternatively spliced region in the B domain that gives rise to five isoforms 

that vary only in the length of the B domain9,10, and these isoforms appear to be differentially 

expressed in human tissues10,11.  This may suggest that Drp1 activity can be modulated through 

the B domain to meet the differing needs of these tissue types, but this remains to be 

demonstrated.  Little is known about how enzymatic properties vary from isoform to isoform, 

although it has been shown that some isoforms differ in their interaction with microtubules 

when phosphorylated10.   

The B domain contains several sites of PTM, including eight confirmed SUMOylation 

sites12 and two confirmed phosphorylation sites, S616 and S63713.  These phosphorylation sites 

have been shown to be involved in translocation of Drp1 to mitochondria from the cytosol14,15 

and may also play a role in coordinating mitochondrial fission with the cell cycle16 and apoptotic 

signaling17.  Dynamic cycling of Drp1 on and off the mitochondria may be directed by 

phosphorylation and dephosphorylation events18.  

These studies indicate that alternative splicing and phosphorylation have important 

effects on Drp1 activity.  However, the mechanisms by which these modifications achieve their 

effects are unclear.  We hypothesize that alternative splicing and/or phosphorylation may 

modulate the B domain conformational ensemble, thermodynamic properties and/or 
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interactions with potential binding partners (i.e. lipid membranes) in order to achieve their 

effects.  

Here we monitor three properties of B domain isoforms to determine if these properties 

are affected by alternative splicing and phosphorylation: (1) secondary structure, monitored by 

CD, (2) folding/coacervation in TMAO, monitored by fluorescence and light-scattering, and (3) 

lipid binding, monitored by sedimentation assay.  We compare wild-type Drp1 B domain 

(isoform 1) with isoform 3, and also with phosphomimetics S637D and S616D using these 

techniques.   

MATERIALS AND METHODS 
 

B domain cloning, expression and purification - The same primers used for the cloning 

of B domain isoform 1 as described in chapter 2 were used to clone the B domain from a full-

length Drp1 isoform 3 construct.  The S637D and S616D mutations were introduced into the B 

domain isoform 1 background using the Quikchange method (Agilent Stratagene).  All constructs 

were verified by DNA sequencing (Retrogen, San Diego, CA).  Otherwise, protein expression and 

purification was carried out as described in chapter 2. 

Vesicle preparation and vesicle sedimentation assay - Vesicle preparation and 

sedimentation were performed as described in chapter 3. 

Calculation of partition coefficients and free energy of partitioning - Protein/vesicle 

sedimentation data measured at a fixed LUV composition as a function of total lipid 

concentration were fit to equation 4.1 by nonlinear least-squares analysis to obtain an 

additional measure of the partition coefficient   
19:  
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The fraction of protein partitioned,   , was determined as described in chapter 3.      is the 

accessible acidic lipid concentration, taken to be half of the total acidic lipid concentration to 

account for the inaccessible lipids on the inner leaflet of the lipid bilayer.  The concentration of 

water,     was considered to be 55.3 M. 

Using the partition coefficients obtained from equations 4.1, a free energy of lipid 

partitioning was obtained from equation 4.2: 

                                                                                            

  is the gas constant in kcal/mol T, and   is temperature in Kelvin.  Since only half of the total 

acidic lipid concentration was used for calculations of    (described above), a correction factor 

of -0.41 kcal/mol was added to the calculated     as suggested by White et al.19 

The lipid partition coefficient    was calculated at each lipid concentration using 

equation 4.3 from partitioning data measured as a function of lipid concentration19: 

   

              
   

       
   

                                                                                

The concentration of protein partitioned,                            , and the concentration 

of free protein,                                 .      and     are the same as defined in 

equation 4.1. 

Circular Dichroism - CD measurements were performed as described in chapter 3. 

RESULTS 
 
The B domain isoforms 1 and 3 vary in structural characteristics, but phosphorylation does not 

have an obvious structural effect 

We selected isoforms 1 and 3 (hereafter referred to as B1 and B3) for comparison 

because they represent the longest (137 amino acids) and the shortest (100 amino acids) 
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isoforms, respectively.  Since the m-value of folding or unfolding in osmolyte is strongly 

dependent on backbone volume and therefore polypeptide chain length20–22, we expected 

isoforms 1 and 3 to be the most different of all possible pairs of isoforms, at least in folding-

related properties.  Secondary structure propensity and lipid-binding affinity cannot be reliably 

predicted a priori, so these were not used as selection criteria in choosing isoforms to compare.   

We evaluated secondary structure content of B3 by circular dichroism (CD) and 

compared it to the CD spectrum of B1 (Figure 4.1A).  Surprisingly, we observed a minimum near  

  

204 and a significant shoulder at 222 nm in the B3 CD spectrum, indicative of elevated helical 

content.  For a helical comparison, we artificially induced helicity in B1 by the addition of 20% 

trifluoroethanol (TFE).  Compared to the artificially induced helical B1 spectrum, the minimum in 

the B3 spectrum is slightly shifted toward lower wavelengths perhaps due to residual intrinsic 

 
Figure 4.1  CD spectra of B3 and B1 phosphomimetics. (A) The minima at 204 nm and the enhanced 
shoulder near 222 nm in the spectrum of B3 indicates increased helicity compared to that of B1, but 
not as much helicity as B1 in 20% TFE. (B) The change in secondary structure due to the 
phosphomimetic mutations S637D and S616D appears to be minimal (see Table 4.1).  
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disorder.  Indeed, the CONTIN-LL fit of the CD data estimates a helical content of 16% and 

unstructured content of 52% for B3, compared to a helical content of 24% and unstructured 

content of 42% for B1 in 20% TFE (Table 4.1).  These spectra suggest that alternative splicing 

influences B domain structure.    

Since phosphorylation at positions S616 and S637 in the B domain of Drp1 result in 

differences in translocation to mitochondria in vivo14,15, we suspected that this could be a result 

of changes in structure in the B domain.  To determine if phosphorylation influences secondary 

structure in the B domain, we evaluated the secondary structure content of the B1 

phosphomimetics S616D and S637D (Figure 4.1B).  The CD spectra of both phosphomimetics 

were similar to B1, but differed slightly in the magnitude of the minimum at 200 nm, with the 

minimum for S616D being slightly more pronounced, and the minimum for S637D being slightly 

less pronounced than that of B1.  Secondary structure estimates based on CONTIN-LL fits of 

these spectra suggest minimal differences in secondary structure between B1 and the 

phosphomimetics (Table 4.1).  Assuming that the phosphomimetic mutations accurately mimic 

phosphorylated protein, we conclude that phosphorylation in the B domain does not 

significantly influence B domain structure. 

 

Table 4.1 

 
CONTIN-LL fit structural composition 

Construct  Helix   Strand Turn Unrd RMSD 

B1 8.4 18.5 12.5 60.6 0.037 

B1 + 20% TFE 23.9 16.2 18 41.8 0.038 

B3 16 18.3 13.9 51.7 0.067 

B1 S637D 7.2 18.4 12 62.3 0.053 

B1 S616D 6.7 16.4 10.2 66.7 0.046 
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The B domains isoforms 1 and 3 and the phosphomimetic S637D show modest variation in 

folding/coacervation behavior 

Given the difference in secondary structure between B1 and B3, we suspected that B3 

might respond differently to the protecting osmolyte TMAO.  The folding/coacervation 

experiments previously performed on B1 (see chapter 2) were repeated with B3, wherein steady 

state tryptophan fluorescence and static right-angle light-scattering were observed as a function 

of increasing TMAO concentration.  Comparison of the normalized center a spectral mass for B1 

and B3 indicates that B3 is only slightly less destabilized compared to B1, with a concentration 

midpoint (Cm) of 2.7 ± 0.2 M for B3 and 2.8 ± 0.1 M for B1 (Figure 4.2A).  We measured light-  

 

 
Figure 4.2  Steady-state tryptophan fluorescence and light scattering (LS) of B3 and B1 S637D as a 
function of TMAO. (A) B3 (open black triangles) undergoes a two-state transition as measured by 
fluorescence in TMAO.  The transition closely resembles that of B1 (open gray circles) but the Cm at 
2.7 ± 0.2 M for B3 is slightly shifted from that of B1 at 2.8 ± 0.1 M. (B) B1 S637D (open black 
triangles) also undergoes a two-state transition as measured by fluorescence in TMAO.  Again, the 
transition closely resembles that of B1 (open gray circles) except that the Cm at 2.9 ± 0.2 M for B1 
S637D is slightly shifted from that of B1 at 2.8 ± 0.1 M.  (C) The same B3 samples as (A) followed by 
light scattering (filled triangles) show the same concentration dependence, and align with the B3 
fluorescence data (open triangles). (D) The same B1 S637D samples as (B) followed by light 
scattering (filled squares) show the same concentration dependence, and align with the B1 S637D 
fluorescence data (open squares). 
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scattering as a function of TMAO in the same samples used for fluorescence to determine if B3 

also exhibited assembly or phase-separation, as we observed for B1.  The light-scattering of B3 

in TMAO closely mimicked the fluorescence signal for B3 (Figure 4.2B), similar to what was 

observed previously for B1.  These data suggest that B3 undergoes a process similar to that 

observed for B1, namely combined folding and phase separation. 

We suspected that S637D would also behave similar to B1, given its similarity to B1 in 

secondary structure content.  The steady-state fluorescence of S637D in TMAO was similar to 

that of B1, but surprisingly the phosphomimetic was slightly destabilized compared to B1, with 

the Cm for S637D at 2.9 ± 0.2 M compared to 2.8 ± 0.1 M for B1 (Figure 4.2C).  As observed for 

B1 and B3, the light-scattering of S637D closely followed the fluorescence signal (Figure 4.2D).  

Thus, the S637D phosphomimetic appears to undergo a similar folding/phase separation 

behavior in TMAO as observed for B1.  

Together these data suggest that the folding/phase separation behavior observed for 

the B domain in TMAO is an intrinsic property of the domain that is not strongly influenced by 

alternative splicing or phosphorylation.  

 

The B domain isoforms 1 and 3 do not vary in lipid binding 

To determine if alternative splicing in the B domain influences its affinity or specificity 

for lipids, we measured partitioning of B3 onto LUVs composed of binary compositions of 

dioleoylphosphatidylcholine (DOPC or PC) and one of three acidic lipids, 

dioleoylphosphatidylglycerol (DOPG or PG), dioleoylphosphatidylserine (DOPS or PS) or 

tetraoleoylcardiolipin (TOCL or CL), and compared it to the partitioning of B1 (see chapter 3).  As 

observed for B1, B3 exhibited a hierarchy of affinities for the acidic lipids, with partitioning 

occurring most readily onto CL LUVs and least readily onto PS LUVs, with partitioning onto PG 
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LUVs lying in between (Figure 4.3A).  Comparison of the B3 partitioning data for each acidic lipid 

type with that of B1 shows that the partitioning of B1 and B3 is very similar in all cases (Figures 

4.3 B-D).   

 

 
Figure 4.3 Partitioning of B3 onto LUVs of various acidic lipid types and compositions.  The fraction 
of B3 that partitioned with LUVs of each acidic lipid type and composition was determined by 
sedimentation as described in Chapter 3. The acidic lipid types used were PG (squares), PS 
(triangles) and CL (circles).  In all cases vesicle compositions were binary with PC. (A) B3 exhibited a 
clear specificity for CL LUVs over PG and PS LUVs.  (B-D) Partitioning of B1 (gray) and B3 (black) is 
similar for each of the acidic lipid types: PG (B), PS (C), and CL (D).    
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In order to obtain a more accurate measure of the partition coefficient, we measured 

partitioning of B1 or B3 as a function of lipid:protein ratio with LUVs of a fixed composition (75% 

CL, 25% PC) (Figures 4.4A and 4.4B, respectively).  The partitioning data were fit to equation 4.1 

(see methods) as described by White19.  The B1 and B3 partitioning curves were nearly identical, 

with the fits giving a    of                      and                    , respectively.  

From these partition coefficients we calculated free energies of partitioning (   ) of        

      kcal/mol and           kcal/mol, respectively, using equation 4.2.   

 

By also calculating    at each lipid concentration using equation 4.3, and plotting this as 

a function of proteins bound per lipid, we can determine whether the lipid interaction is the 

result of simple partitioning (resulting in a flat line), cooperative partitioning (   increases with 

proteins bound per lipid), or anti-cooperative partitioning (the    drops at high ratios of protein 

 
Figure 4.4  Lipid membrane partitioning of B1 and B3 as a function of total CL concentration.  LUV 
composition was fixed at 75% CL, 25% PC. (A-B) The fraction of B1 partitioned (A, circles) or B3 
partitioned (B, triangles) as a function of total CL concentration was fit to equation 4.1 (solid and 
dotted line for B1 and B3, respectively) to determine the partition coefficient (  ) and the free 
energy of partitioning (   ) (see text). (C-D) A partition coefficient was calculated at each lipid 

concentration using equation 4.3, and plotted as a function of proteins bound per lipid for B1 (C) 
and B3 (D).  The unchanging partition coefficient over a wide range of lipid concentrations indicates 
simple partitioning, rather than cooperative or anti-cooperative partitioning. 
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bound per lipid)19.  Our data show that the    remains relatively unchanged over the wide range 

lipid concentrations tested, suggesting that both B1 and B3 interact with CL LUVs through simple 

partitioning (Figures 4.4C and 4.4D, respectively).  Lipid binding data were not collected for B 

domain phosphomimetics. 

We previously showed that B1 undergoes a modest change in secondary structure upon 

binding CL LUVs, and that this change was primary an increase in beta structure, as estimated by 

CONTIN-LL deconvolution of the CD spectrum.  Since B3 is more helical and less unstructured 

than B1, we were interested to see if CL LUVs would induce an increase in beta structure, 

perhaps at the expense of helicity.  We measured the CD spectrum of B3 in the presence of 75% 

CL LUVs to determine if lipid binding results in a change in secondary structure in this isoform.  

In the presence of CL LUVs, the B3 CD spectrum showed, to our surprise, an enhanced shoulder 

at 222 nm and a shift of the minimum from 204 (in the absence of LUVs) toward longer 

wavelengths, indicative of increased helicity (Figure 4.5A).  Light scattering from the LUVs 

prevented measurement of the spectrum to wavelengths below 205 nm, so a precise minimum 

could not be determined.  The CONTIN-LL fit of the data suggests that some of the strand and 

unstructured content is replaced by helix and turn in the presence of CL LUVs, with the decrease 

in strand and unstructured content by about 5 points and 2 points, respectively, and the 

increase in helix and turn at about 6 points and 1 point, respectively (Table 4.2).  The CD 

spectrum of B3 in the presence of LUVs closely resembles that of B1 in 20% TFE, but deviates at 

shorter wavelengths (Figure 4.5B). 
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Table 4.2 

B3 CONTIN-LL fit structural composition 

LUVs  Helix   Strand Turn Unrd RMSD 

none 16 18.3 13.9 51.7 0.067 

75% CL 22.4 13.2 14.9 49.6 0.071 

Δ 6.4 -5.1 1 -2.1 
  

DISCUSSION 
 

Here we have attempted to determine whether alternative splicing and/or 

phosphorylation result in altered structural and thermodynamic properties in the B domain and 

 
Figure 4.5  CD spectrum of B3 in the presence of 75% CL LUVs. (A)  The CD spectrum of B3 in the 
presence of 75% CL LUVs (black dotted line) has a stronger shoulder near 222 nm and potentially a 
minimum that is shifted to higher wavelengths compared to B3 in the absence of LUVs (black 
dashed line).  The spectrum is significantly different than that of B1 (gray solid line) and B1 in the 
presence of 75% CL LUVs (gray dotted line). (B) The CD spectrum of B3 in the presence of 75% CL 
LUVs (black dotted line) has a similar shoulder near 222 nm as B1 in 20% TFE (gray long-dashed 
line), but appears to deviate at shorter wavelengths.    
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thereby modulate B domain function.  We found that although isoforms 1 and 3 have significant 

differences in secondary structure content, they vary only slightly in folding/coacervation, and 

they bind lipids with similar affinity and specificity.  The phosphomimetics S637D and S616D 

were similar in structure to the unmodified B domain, suggesting that phosphorylation alone is 

not sufficient to induce significant structural changes.  S637D showed only slight destabilization 

in its folding/phase separation energy compared to isoform 1.  

These results suggest that the regions responsible for the folding/coacervation and lipid 

binding properties of the B domain are not located in the alternatively spliced region, and 

therefore are not modulated by alternative splicing.  One interpretation of these findings is that 

the folding/coacervation and lipid binding properties may be intrinsic to all isoforms.  However, 

we note that B1 and B3 are identical in net charge (+2) and fraction of charged residues (FCR) 

(0.270) (at neutral pH and assuming no shifted pKas of ionizable residues).  It has shown that 

FCR and charge distribution within an amino acid sequence are important determinants of IDP 

behavior, including radius of gyration (or ensemble dimensions), and phase separation23,24.  

Based on these metrics, perhaps it should be expected that isoforms 1 and 3 have similarities in 

folding/coacervation and lipid binding properties.  Other isoforms differ in FCR, with B5 having 

the lowest (0.252) and B2 having the highest (0.288).  Future studies will explore whether these 

differences are large enough to modulate function. 

Despite their similarity in folding/coacervation and lipid binding properties, we observed 

that isoforms 1 and 3 differ in secondary structure content, suggesting that the alternatively 

spliced region has some structural influence.  A recent study showed that Drp1 isoforms varied 

in their ability to co-localize with microtubules, and this interaction is thought to be mediated by 

the B domain10.  It may be that the differences in secondary structure reported here have a role 

in the Drp1-microtubule interaction.  The same study also showed that the Drp1-microtubule 
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interaction was influenced by B domain phosphorylation. Thus, a combination of alternative 

splicing and phosphorylation appears to be important, and while phosphorylation does not 

appear to influence secondary structure in our B1 construct, it may have a different effect on 

other isoforms.  Future work will explore this possibility. 

Drp1 is involved in variety of pathways and processes, from “housekeeping” 

mitochondrial fission for the maintenance of mitochondrial homeostasis, to mitochondrial 

fission relating to apoptosis25,26, and from peroxisomal fission27 to bundling of microtubules10.  It 

is therefore challenging to determine which of its roles is influenced by a particular change such 

as alternative splicing or post-translational modification.  The possibility that different isoforms 

respond differently to a given post translational modification further complicates the picture, 

but opens a wide variety of possibilities for precise modulation of function in many different 

roles.  A careful and methodical testing of the many possible combinations of alternative splicing 

and post-translational modification will be required to fully understand how Drp1 function is 

modulated.   
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Chapter 5  

Conclusion: Intrinsic disorder, amphitropism and coacervation in the 
dynamin superfamily 
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In this dissertation we have examined the properties and function of the B domain in 

the mitochondrial fission mechanoenzyme Drp1.  Specifically, we have provided evidence for an 

auto-inhibitory role of the B domain by showing that removal of the B domain from Drp1 

resulted in enhanced assembly and GTP hydrolysis.  We have demonstrated that the B domain is 

intrinsically disordered (ID) and undergoes phase separation or coacervation under conditions 

that induce other ID proteins to fold.  We have discovered that the B domain binds lipid 

membranes with a preference for cardiolipin, and that this interaction is enhanced under 

conditions that favor the coacervated state. 

Despite recent advances in understanding the structure and function of the stalk, BSE 

and G domains of Drp11,2, the structural and functional details of the B domain have largely 

remained a mystery.  Recently, Strack and Cribbs proposed that the B domain may have an auto-

inhibitory role in Drp1 function, based on experiments which showed that removal of the B 

domain resulted in punctuate mitochondria, indicative of increased mitochondrial fission3.  

However, the effect of the B domain on Drp1 GTP hydrolysis has not been measured directly, 

nor has the effect of the B domain on Drp1 assembly been measured quantitatively, so it has 

remained unclear if the B domain has a direct influence on Drp1 enzymatic activity.  We have 

presented here the first measurements of these properties.  Our results indicate that the B 

domain does indeed influence Drp1 GTPase activity as well as assembly, and that the GTPase 

activity in a Drp1 ΔB construct correlates with the extent of Drp1 ΔB assembly as modulated by 

salt concentration.  Given that GTPase activity is known to be coupled to assembly in Drp12, this 

suggests that the B domain likely influences Drp1 GTP hydrolysis by directly modulating Drp1 

assembly. 

This dissertation presents the first direct experimental measures of B domain structural 

properties, and identifies an important difference between Drp1 and classical dynamins.  The 
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variable domain in classical dynamins is a pleckstrin homology (PH) domain and has been 

studied in structural detail4–7.  Given the overall similarities in sequence and function between 

classical dynamins and Drp1, one might reasonably suspect that the B domain could be a PH 

domain.  Several factors make it difficult to predict from sequence whether the B domain might 

adopt a PH fold.  First, PH domains are known to be conserved in structure but not sequence, 

with the exception of a single moderately conserved tryptophan8,9.  Thus, the lack of sequence 

identity between the Drp1 B domain and the dynamin-1 PH domain does not exclude the 

possibility that the B domain could be a PH domain.  Interestingly, the Drp1 B domain is similar 

in length to the dynamin-1 PH domain and possesses a single tryptophan in the appropriate 

location.  Second, despite having a stable fold composed of both beta strands and an alpha 

helix, the dynamin-1 PH domain is nearly 60% solvent-exposed coil and turn.  As a result, 

sequence-based intrinsic disorder prediction for the dynamin-1 PH domain accurately, but 

potentially misleadingly, gives a predicted probability of intrinsic disorder that is slightly above 

the threshold value of 0.5.  If the B domain is a PH domain with a ratio of regular secondary 

structure and exposed loops similar to the dynamin-1 PH domain, intrinsic disorder prediction 

for the B domain could also be misleading.  Finally, the Drp1 B domain has a similar mean net 

charge and mean hydrophobicity as the dynamin-1 PH domain, suggesting that the Drp1 B 

domain and the dynamin-1 PH domain have similarities in amino acid composition.  In this 

dissertation, we have provided several lines of experimental evidence that eliminate the 

possibility that the B domain adopts a PH-like fold.  Rather, the data suggest that the B domain 

is intrinsically disordered, and likely does not adopt significant secondary structure, even upon 

association with a binding partner.    

The B domain of Dnm1, the yeast homolog of Drp1, was proposed by Mears et al. to be 

intrinsically disordered based on their observation that cryo-EM models of assembled Dnm1 
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lacked density at the expected location of the B domain10.  However, the potential role of 

intrinsic disorder in Dnm1 or Drp1 function has not been previously speculated or explored.  We 

unexpectedly found that the flavor of intrinsic disorder found in the B domain appears to lend 

itself to liquid-liquid phase separation, i.e. coacervation.  We suspect that the ability to 

coacervate may be an important property of the B domain, and propose a model that suggests a 

role for both intrinsic disorder and coacervation in Drp1 function (see below). 

The mode of membrane contact in Drp1 has been a topic of debate in the mitochondrial 

fission field.  A prominent model suggests that Drp1-membrane contact is mediated only by 

adaptor proteins that are anchored to the membrane by a transmembrane helix3.  While 

adapter proteins undoubtedly play an essential role in recruiting Drp1 to appropriate sites of 

scission, this model fails to account for the observation that Drp1 capably tubulates lipid 

membranes in vitro, in the absence of any other protein partners11.  Thus, the force exerted by 

Drp1 that results in membrane remodeling is apparently applied through direct contact between 

Drp1 and the membrane.  The region of Drp1 that is responsible for membrane contact has not 

been definitively identified.  Interestingly, Montessuit et al. identified a point mutation in the G 

domain of Drp1 which diminished cardiolipin binding, suggesting the G domain may interact 

with membranes12.  Alternatively, Mears et al. have suggested that the B domain is a likely 

candidate for membrane contact, based on the proposed orientation of yeast Dnm1 and human 

dynamin-1 assembled on membrane tubules in cryo-EM models10.  In this dissertation we have 

demonstrated that the B domain possesses intrinsic lipid membrane binding ability, and has a 

preference for cardiolipin, a lipid that is unique to the mitochondrial membranes which Drp1 

remodels.  These data are consistent with the B domain being a site of contact between Drp1 

and the mitochondrial membrane.   
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Finally, the structural consequences of alternative spicing and phosphorylation in the B 

domain have not been previously explored.  Our preliminary results suggest that alternative 

splicing influences B domain secondary structure, while phosphorylation does not.  Interestingly, 

alternative splicing does not appear to significantly impact coacervation or lipid membrane 

binding, suggesting that alternative splicing likely modulates some other property of the B 

domain, such as the availability of SUMOylation sites13, or interaction with other binding 

partners (e.g. microtubules14).  This remains an exciting area of future exploration.  

To reconcile the findings presented in this dissertation, we propose a model (Figure 5.1) 

in which the random, thermally-driven motions of the intrinsically disordered B domain occlude 

the stalk domain assembly interfaces and thereby inhibit high-order assembly of Drp1 in  

 

 
Figure 5.1  A model for the role of the B domain in Drp1 function. Thermally-driven motions of the 
intrinsically disordered B domain (gray lines) occlude the stalk domain assembly interfaces and 
thereby inhibit high-order assembly of Drp1 in the cell cytosol (upper panel). Upon recruitment of 
Drp1 to the mitochondrial membrane, the affinity of the B domain for cardiolipin favors B domain 
conformations which maximize interaction with the membrane (orange lines), essentially 
sequestering the B domain away from the stalk interfaces, and allowing higher-order assembly to 
proceed (lower panel). In this way, high-order assembly can proceed unhindered only at the 
mitochondrial membrane, and unproductive high-order assembly in the cytosol is prevented. 
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the cell cytosol.  Upon recruitment of Drp1 to the mitochondrial membrane, the affinity of the B 

domain for cardiolipin favors B domain conformations which maximize interaction with the 

membrane (albeit a dynamic or “fuzzy” interaction), essentially sequestering the B domain away 

from the stalk interfaces, and allowing higher-order assembly to proceed.  Furthermore, a high 

local Drp1 concentration resulting from the restriction of Drp1 to two dimensions at the 

membrane surface, and the confinement of the B domain to a relatively small volume between 

the stalk domains and the membrane surface will favor homotypic B domain interactions (i.e., 

the coacervated state), further freeing the stalk domain assembly interfaces from occlusion by 

the B domain.  In this way, high-order assembly can proceed unhindered only at the 

mitochondrial membrane, and unproductive high-order assembly in the cytosol is prevented.  

This model is consistent with the present data and unifies the findings that (1) removal of the B 

domain results in enhanced assembly and GTP hydrolysis, (2) the B domain is intrinsically 

disordered, (3) the B domain coacervates, and (4) the B domain has an intrinsic membrane-

binding ability that may be related to the coacervated state. 

This model draws on the concept of the entropic bristle domain (EBD) proposed by Jan 

Hoh15 and later revisited by Santner, et al.16  According to the theory of Hoh and the 

experimental validation of Santner et al., an EBD is an intrinsically disordered region that 

improves the solubility of another other protein domain to which it is attached by providing a 

large hydrophilic surface area, and prevents aggregation or hyper-assembly of the other protein 

domain by excluding potential binding partners through its thermally-driven random motions.  

Not only does the B domain possess the necessary physical traits of an EBD, i.e. it is a relatively 

long, hydrophilic and intrinsically disordered sequence, but also its location at the tip of the stalk 

domain places it in an optimal position to block Drp1 assembly (which occurs primarily through 

the stalk domain) through random thermal motions. 
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Our model suggests the following testable predictions: (1) Drp1 isoforms may vary in 

their equilibrium oligomerization state and basal GTP hydrolysis rate in the absence of a lipid 

membrane.  Because alternative splicing in the B domain alters the length and secondary 

structural properties of the B domain, the conformational ensemble of some B domain isoforms 

may be more effective than others at occluding assembly interfaces in the stalk, resulting in 

different propensities for oligomerization.  Since assembly and GTP hydrolysis are coupled in 

Drp1, differences in oligomerization state should also be measurable as a difference in basal GTP 

hydrolysis.  (2) Mutations in the B domain that alter flexibility, net charge, and distribution of 

ionizable residues will alter Drp1 activity.  Flexibility, net charge, and distribution of ionizable 

residues are key determinants of intrinsic disorder and coacervation17–25, which are the basis of 

auto-inhibition and membrane interaction in our model.  Therefore, modulation of these 

properties in the B domain will influence Drp1 assembly, basal Drp1 GTP hydrolysis, membrane 

association, and membrane-stimulated GTP hydrolysis.  (3) Cardiolipin-containing membranes 

will stimulate GTP hydrolysis in Drp1 more effectively than other acidic lipids.  Cardiolipin will be 

more effective at sequestering the B domain away from stalk domain interfaces and thus will be 

more effective at allowing assembly at the membrane.  This will be manifested in the degree of 

membrane stimulated GTP hydrolysis.  (4) Highly concentrated assembly-deficient Drp1 variants 

may still associate via coacervation of the B domains, whereas assembly-deficient Drp1 ΔB 

variants will neither assemble nor coacervate under identical conditions.  Future work will test 

each of these predictions.    

This model of auto-inhibition of Drp1 assembly by the B domain may also apply to other 

dynamin superfamily members.  If this is true, we might expect to see intrinsic disorder as a 

common feature at the tip of the stalk domains of various dynamin superfamily members.  

Indeed, we performed an intrinsic disorder prediction analysis of the dynamin superfamily and 
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found that nearly all of the dynamin superfamily members contain at least one extended region 

(> 25 residues) of intrinsic disorder, and interestingly, the ID region in all of the amphitropic 

dynamins is located at the tip of the stalk domain, in the location corresponding to the B domain 

in Drp1 (Figure 5.2).  In the tethered dynamins, the ID regions do not appear to be located in 

regions that would facilitate occlusion of the stalk domain assembly interfaces, and thus our 

model probably does not apply in these proteins.  Among the amphitropic dynamins, dynamin-1 

appears to be slightly unique in that the ID regions attach the tip of the stalk to an 

independently folded PH domain.  In this case, our model may still apply, but may be more 

accurately described as an entropic “ball-and-chain[s]” mechanism, where the PH domain is the 

“ball” and the flanking flexible linkers are the “chains”.  In fact, electron density for the PH 

domain was found in multiple locations in the dynamin crystal structure, including locations 

near the assembly region of the stalk domain1,26.  This is consistent with the idea that the PH 

domain, with its flanking flexible linkers, may sweep out a large area around the stalk in order to 

prevent assembly.   MxA and Vps1 both have a disordered loop for a variable domain at the tip 

of the stalk domain, similar to the B domain of Drp1, but of differing lengths (The ID regions of 

MxA, Vps1 and Drp1 are roughly 40, 95 and 135 residues in length, respectively).  Thus our 

model may be equally as relevant to these proteins as it is to Drp1. 

Based on this analysis, our model appears to apply specifically to the amphitropic 

dynamins, which include dynamin-1, MxA, Vps1 and Drp1 (Figure 5.3).  We suspect, therefore, 

that the variable domains (VDs) of these proteins may also have a role in reversible membrane 

interaction.  Specifically, we propose that interaction of the VD with the membrane may be a 

mechanism by which auto-inhibition of stalk assembly is relieved, by restricting the VD to 

conformations that are in contact with the membrane and therefore are not occluding the stalk 

domain assembly interfaces.  This provides a means of preventing unproductive assembly in the 
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cytosol by only favoring it at the membrane surface.  Given that the interaction of the B domain 

with lipid membranes was enhanced under conditions that favor a coacervated state, 

 

 
Figure 5.2  Prediction of intrinsic disorder in the dynamin superfamily.  Amino acid sequences of the 
dynamin superfamily were analyzed using PrDOS

41
. A continuous segment of sequence with a 

disorder probability > 0.5 is considered to be a probable region of intrinsic disorder.  Amphitropic 
dynamins are in the left column, tethered dynamins are in the right column.  The approximate 
location of domains is indicated for the amphitropic dynamins below the left column of predictions.  
Predicted intrinsically disordered regions appear to coincide with the variable domains of these 
proteins.  Dyn1 = dynamin-1.   
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coacervation may have a role in membrane interaction and therefore the relief of stalk assembly 

auto-inhibition.  It is unknown if the VDs of MxA and Vps1 also exhibit a propensity for 

coacervation, but this is an intriguing possibility.     

 

Biologically, coacervation has long been appreciated as an important step in the 

formation of elastomeric materials27, from ligaments and arterial walls28,29, to spider silks30 and 

the underwater adhesives of caddisfly larvae and mollusks31,32.  Typically, these coacervates are 

exported from the cell where they coalesce further to form the final macroscopic tissue or 

substance29.  Fewer instances are known of coacervation as a process that remains intracellular 

and microscopic, although several examples have emerged in recent years33–36.  One of the 

functions of phase separation of this type appears to be spatial organization within the cell37.  

For example, ribonucleoprotein (RNP) granules are liquid droplets rich in protein and RNA and 

 
Figure 5.3  A model for the role of the variable domain (VD) in the amphitropic dynamins.  The 
variable domains (orange lines) are depicted as intrinsically disordered regions that may prevent 
aggregation or hyper-assembly of the stalk domain via thermally-driven random motions (gray 
lines). Interaction of the VD with the membrane may be a mechanism by which auto-inhibition of 
stalk assembly is relieved, by restricting the VD to conformations which are in contact with the 
membrane and therefore are not occluding the assembly interfaces of the stalk domain.  The 
proteins are shown as monomers for clarity, but in actuality are likely constitutive dimers.  
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represent a liquid-liquid phase separation that may be used as a means of subcellular 

compartmentalization38–40.  Another example is found within the nuclear pore complex34, where 

nucleoporin proteins form gels – an extensively networked liquid-liquid phase separation.  A 

final example of intracellular coacervation is found in fungi, where the SPA proteins of Woronin 

bodies coacervate and line interseptal pores, facilitating resealing of damaged lipid 

membranes35.  The membrane-remodeling function of the amphitropic dynamins may find 

parallels in the role of coacervation in protecting and sealing membranes found in SPA proteins.   
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