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Abstract 

Coding transformations in ventral visual cortex convert image information into knowledge about 

object structure and identity. Neurons in area V4, an intermediate ventral pathway stage in the 

macaque brain, are known to represent 2D contour, binocular disparity, and 3D orientation. In the 

experiments outlined in this thesis, I address fundamental questions about the relationship 

between 2D image signals and solid shape perception in the ventral visual stream.  

 

In chapter 1, I demonstrate that a substantial fraction of V4 neurons are more responsive to solid 

3D than to planar 2D shape. I constructed simple solid shape forms around medial axis skeletons 

having randomized connectivity, orientation, curvature, and surface structure, and I leveraged 

realistic shading cues to render them as solid objects. Using micro-electrode recording in awake, 

fixating monkeys, I analyzed the tuning of V4 neurons to these solid shapes and their planar 

silhouettes and found that most V4 neurons (~ 70%) prefer solid shape fragments. I then 

parameterized stimulus shapes in terms of local geometric measures of contours, surfaces, and 

medial axes, producing a point cloud description of each stimulus in a multi-dimensional 

geometric space. Analysis of this space suggests that solid shape models more generally account 

for V4 responses, while slices through these models might explain responses to planar shapes. 

 

In chapter 2, I describe two-photon imaging experiments in V4 in anesthetized animals using 

OGB to measure neuronal responses. Again, a substantial fraction of neurons responded more 

strongly to solid shapes than to their planar silhouettes. I observed strong local clustering of solid-

/planar-preferring neurons in separate cortical patches, and neighboring patches were most 

responsive to congruent solid and planar shapes. This suggests that derivation of solid shape from 

image information is a constraint on micro-organization in area V4. 
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Previous studies using gratings, complex planar shapes, and naturalistic images fail to address 

whether shape processing is inherently 3D, or whether planar and solid shape are processed in 

parallel. By rigorously studying V4 with solid shape stimuli, we can postulate general principles 

of coding transformations in the ventral visual pathway. 
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1 Introduction 

We live in a world replete with objects with which we interact fluidly and adeptly. Within a 

fraction of a second of looking at a completely novel object, we can immediately make accurate 

inferences about its shape, texture, weight, stability, etc. – in essence, its identity. We seem to be 

able to visually perceive a wooden block – simple, inanimate, and static – just as quickly and 

effortlessly as a human body – complex, articulate, and dynamic. Underlying this ability is one of 

the most computationally intricate processes our brains are tasked to perform, and the set of 

cortical areas that accomplish this task is called the ventral visual pathway.  

 

1.1 Cortical coding transformation hierarchy 

The ultimate goal of the ventral visual 

pathway is to represent the visual 

world in a way that can be easily 

decoded by other areas. To that end, 

the ventral visual pathway converts 

dense, variable, and pixelated input 

from the eyes into object identity by 

applying a set of coding 

transformations to the input. These 

transformations result in a 

representation of the visual world that 

is robust to changes in viewing conditions and compacted for storage in (and retrieval from) 

memory. This compact, and explicit representation of the visual world aids the evaluation of 

object value and action-associations by frontal cortex areas like pre-frontal cortex (vlPFC), 

orbitofrontal cortex (OFC) etc. Retinal input is relayed to area primary visual cortex (V1) by the 

 

 

Figure 1.1: Hierarchy of areas in the ventral visual 
pathway. 

Ventral visual pathway areas defined by retinotopy and 
functional properties. Areas in prefrontal cortex are 
marked as targets of area TE and are not a part of the 
visual hierarchy, per se. 
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lateral geniculate nucleus (LGN), where this process begins. V1 extracts information like the 

orientation, spatial frequency, disparity, color and direction, of small, local regions in the visual 

field (see figure 1.2 for a schematic of ventral visual pathway representations starting with V1). 

In intermediate visual areas V2 through V4, this information is sequentially transformed to 

represent larger and more complex object features like sharp or smooth curvature, relative 

disparity, complex textures etc. Similarly, the multiple stages of inferotemporal cortex (IT) 

represent object information in the form of complex combinations of relatively simpler features. 

These transformations, from V1 to IT, serve to make the visual representation more explicit, i.e. 

easier to read out by downstream areas, and more compact, i.e. any information can  

 

Figure 1.2: RF sizes, response latencies, and emergent tuning properties of ventral visual pathway 
areas. 
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be read out by monitoring a few neurons. (See (Felleman and Van Essen, 1991) and (Kravitz et 

al., 2013) for a review of the areas in the ventral visual pathway.) The neural algorithms 

implementing these transformations can be studied with neurophysiological techniques, like 

electrophysiology or optical/two-photon imaging, in monkeys. Monkeys have high visual acuity 

and capacity for visual shape recognition, with a ventral visual pathway that is remarkably 

analogous to that of humans. 

 

The intermediate areas of the ventral pathway are a particularly interesting component of this 

pathway, because they implement some of the key transformations from the relatively simple 

features represented in their input areas into the abstract and complex representations found in the 

highest pathway stages. The understanding of these intermediate transformations is vital for 

creating models of object vision, machine vision applications, and visual prosthetics. This thesis 

focuses on the representation of 3D solid shape information in area V4. The following section 

outlines recent advances in describing the neural algorithms underlying primate object vision, 

with special emphasis on object shape coding in area V4. Other aspects of object identity, like 

material, texture, color, stability, animacy, etc., while extremely important and interesting, are 

either believed to be coded in higher visual areas or are beyond the scope of this thesis. 

 

1.2 Organization of primate object vision 

1.2.1 Shape representation in early object vision 

Representation of the visual world starts off pixelated and dense in the primate retina. Retinal 

ganglion cells (RGCs) respond to light/dark (and/or chromatic) contrast in a small part of the 

visual field called the receptive field (RF). This representation is not unlike a digital photograph, 

where each pixel corresponds to the response of an RGC. Input from both eyes reaches both 
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halves of the LGN but remains segregated. Here, for the purposes of this thesis, relatively minor 

transformations occur, and the information is effectively relayed to primary visual cortex (V1). 

 

V1 extracts edge and orientation information from the visual scene. Neurons in V1 have small 

receptive fields at the fovea, on the order of 0.5° of visual angle, and can be approximated as 

spatio-temporal spectral filters tuned to orientation, spatial frequency, spatial phase, temporal 

frequency, contrast, color, disparity, and direction (De Valois et al., 1982; Goris et al., 2015; 

Hubel and Wiesel, 1962; Levitt and Lund, 1997; Movshon et al., 1978; Schiller et al., 1976; 

Skottun et al., 1991). This encoding is likely achieved by integrating inputs from neighboring 

LGN neurons all tuned for similar visual properties (Paik and Ringach, 2011). Contour edge 

detection is a major first step in compacting visual representation and aids image segmentation. 

 

V2, a major target of neural projections from V1, represents combinations of simple features, like 

sharp and broad angles and curvatures (Hegdé and Van Essen, 2000, 2004, 2003) and illusory 

contours (von der Heydt et al., 1984). V2 neurons have larger receptive fields (RFs) and are 

therefore amenable to the encoding of changes in contour orientation. Additionally, owing to 

larger RFs and targeted feedback from downstream areas, V2 neurons are modulated by whether 

the contour in the RF is perceived to be a part of the foreground object or the background (Zhou 

et al., 2000). This is called encoding border ownership and is the basis of image segmentation by 

figure-ground discrimination and tuning for object-relative position in later areas. V2 neurons 

also encode the depth (absolute disparity) of a stereoscopic edge (von der Heydt et al., 2000) and 

the depth of edges relative to other edges (relative disparity) (Cumming and Parker, 1999) 

possibly by integrating across binocular disparity-tuned neurons in V1. Relative disparity coding 

of edges in V2 probably leads to the computation of the relative disparity of shapes in later areas 

of the ventral visual pathway (see figure 1.3). 
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1.2.2 Shape representation in V4 

Area V4 is a mid-tier object processing region that is known to represent complex object shape 

properties. Neurons in V4 integrate inputs from early visual areas V1 and V2, have considerably 

larger RFs (Gattass et al., 1988), and exhibit tuning to a diverse set of object properties like 

surface texture, object form (orientation and curvature), relative disparity and depth, and color. A 

brief review of the literature is presented below. 

 

Areal extent and retinotopy: Area V4 was originally distinguished from neighboring areas V1 

and MT on the basis of its connections with V2 (Zeki, 1971) and on the basis of its functional 

selectivity for color (Zeki, 1973). Subsequently, anatomical tracing studies revealed strong 

connections between V1 and central V4 (Nakamura et al., 1993; Yukie and Iwai, 1985) and 

between V4 and TEO/TE (Desimone et al., 1980; Distler et al., 1993; Weller and Kaas, 1985). 

Further, V4 was found to have upper and lower field representations with identical functional 

properties using single electrode physiology (Gattass et al., 1988) and, recently, using retinotopic 

mapping using fMRI (Sereno et al., 1995) (see section 1.4.3 for more details on functional maps 

in V4.) 

 

Form processing: Micro-electrode recording studies in V4 have found selectivity for oriented 

gratings (Desimone and Schein, 1987), contour curvature (Carlson et al., 2011; Gallant et al., 

1993, 1996; Kobatake and Tanaka, 1994; Pasupathy and Connor, 1999, 2001), and surface texture 

(Arcizet et al., 2008; Hanazawa and Komatsu, 2001; Okazawa et al., 2015, 2017), suggesting that 

V4 plays a central role in the coding of object shape. Furthermore, V4 was demonstrated to be 

central to the conversion of a retinotopic coding scheme to an object-centered coding scheme 

(Pasupathy and Connor, 2001). As an example, V4 neurons respond consistently to curved 

gratings at many locations within their receptive fields (Gallant et al., 1996), while being 

sensitive to the relative position between a curved contour fragment and the rest of the object 
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(Pasupathy and Connor, 2001). In fact, this tuning for relative position remains intact in later 

areas (Brincat and Connor, 2004), suggesting that it is a fundamental transformation of visual 

representation. Recent reports have also attempted to distinguish between contour curvature 

defined by luminance, color, and textural contrast and have posited the theory that V4 neurons 

multiplex tuning for form, color and texture, perhaps reconciling earlier conflicting reports of 

color and form tuning and strengthening V4’s functional role in processing object shape (Arcizet 

et al., 2008; Bushnell et al., 2011; Kim et al., 2019; Kosai et al., 2014; Okazawa et al., 2015; 

Oleskiw et al., 2018). 

 

Disparity and depth processing: Binocular disparity is caused by the differences between the 

images formed on the two retinae and is the most sensitive cue for depth perception in primates 

(see figure 1.3A). At first, computation of disparity was thought to be the specialty of the dorsal 

visual pathway (Goodale and Milner, 1992; Livingstone and Hubel, 1988), but studies in V2, V4, 

and IT cortex have revealed that the ventral visual pathway plays a critical role in depth and 

disparity coding (von der Heydt et al., 2000; Hinkle and Connor, 2001; Janssen et al., 2000). The 

computation of the depth of an object relative to the viewer (absolute disparity) starts in early 

visual cortex but is enhanced in V4 (Hinkle and Connor, 2001; Watanabe et al., 2002). 

Additionally, using disparity cues, V4 neurons have been shown to have tuning for 3D oriented 

bars (Hinkle and Connor, 2005) (figure 1.3C), tilted and slanted planes, and curved planes (Hegdé 

and Van Essen, 2005; Tanabe et al., 2005).  

 

While the conversion from absolute disparity (depth of object from viewer) to relative disparity 

(distance between objects in depth) starts in V2 (Cumming and Parker, 1999), a proportionally 

larger number of V4 cells show relative disparity tuning (Umeda et al., 2007), and micro-

stimulation of V4 biases fine judgements of relative disparity (Shiozaki et al., 2012). Similar to 

conversion from retinotopic position to object-centered position, this transformation between 
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absolute to relative disparity serves to compact the diffuse representation of object features and 

makes them available for efficient read-out. Tuning for relative disparity enables fine judgements 

in shape disparity and serves 3D object representation (Shiozaki et al., 2012) (see figure 1.3D).  

This is distinct from tuning for coarse relative disparity found in the dorsal visual pathway 

(DeAngelis and Uka, 2003; Neri et al., 2004), which is important for visually-guided movements 

like reaching and grasping (Blohm et al., 2009). 

 

  

 

 

Figure 1.3: Absolute and 
relative disparity and 
their contribution to 
depth and solid form 
processing. 

(A) The depth of a point 
in front of the fixation 
plane causes a disparity 
in the retinal images. 
This is called the 
absolute disparity of the 
point. (B) The difference 
between the absolute 
disparity of two points is 
called the relative 
disparity between the 
points. (C) The 
respective relative 
disparities of points 
along a line oriented in 
three dimensions can be 
used to calculate the 3D 
orientation of the line. 
(D) The differences in 
relative disparities of the 
visible points on the 
surface of a solid shape 
in 3D space can be used 
to calculate the solid 
shape of the object. 
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1.3 Solid shape vision 

The world observed to be ‘replete with objects’ in the first sentence of this introduction happens 

to be a 3D world with 3D objects. The solid shapes of these objects are informative about their 

physical affordances, surface smoothness, underlying material, and associated features like 

temperature, weight, balance, elasticity, etc. To interact with and make inferences based on these 

object properties, the solid shape of the object is extracted from the retinal image by 

transformations in the ventral visual pathway. Yet, most of the literature cited above has studied 

object vision in intermediate ventral visual stream with planar stimuli like sinusoidal gratings, 

filled or outline contour shapes, or angled bars and planes. This is consistent with the notion that 

the processing of solid shape from shading, motion, disparity, or texture either occurs in the 

dorsal visual stream (Tsutsui et al., 2005) or beyond V4, in IT cortex (see Orban, 2011 (Orban, 

2011) for a review that dismisses V4 outright as a potential site for such transformations). 

Nevertheless, it is likely that the visual areas in both processing pathways interact directly or via 

parietal areas to achieve robust object vision (Janssen et al., 2018). The following paragraphs first 

offer a brief summary of the cues available to extract solid shape, before reviewing physiological 

investigations of solid shape representations in the ventral visual pathway starting at the level of 

V4. 

 

1.3.1 Solid shape from various cues 

Shading and specularity are the most prevalent cues for solid shape in the visual world. Humans 

robustly recognize solid shapes from these monocular cues (Todd and Mingolla, 1983). 

Mathematically, determining shape from shading is known to be a problem with no unique 

solution. Natural image statistics can be utilized to narrow the space of solutions to a reasonable 

number (Barron and Malik, 2012) and addition of supplementary 3D cues (like disparity or 

motion) improves solid shape perception (Lee and Saunders, 2011; Norman et al., 2004). 
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Inferring solid shape from shading and specularity requires computation of the first (orientation) 

and second (curvature) derivative of surface contrast, respectively (Fleming et al., 2004). In fact, 

surface curvature-based representations of shape shading and contrast could be the mechanism 

underlying perceptual constancy of solid shapes (Todd, 2004). 

  

Binocular disparity defined shape, also called stereopsis or cyclopean perception, requires 

knowledge of both the absolute (zeroth order) and relative (first order) disparity of the shape, as 

well as fine judgements of depth differences. Interestingly, much like how computation of shape 

from shading requires first- and second-order derivatives of contrast, calculating shape from 

disparity requires the computation of the second-order derivative of disparity, also called 

 

Figure 1.4: Shading and stereoscopic cues for solid shape perception. 

(A) Matte (top row) and polished (middle row) versions of a solid shape presented in different lighting 
conditions (from left to right the light position changes in a circular path from the left to front to right). 
2D planar silhouettes of the same shape are shown in decreasing luminance contrast (bottom row). (B) 
Stereoscopic images for a solid shape for diverging and converging fusion. A diagram of the perceived 
shape is shown on the right. 
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disparity curvature (Rogers and Cagenello, 1989). This is the key difference between depth 

perception and the perception of a solid shape from disparity – depth perception requires 

knowledge of the absolute disparity, whereas solid shape perception requires the processing of 

smooth changes in disparity (Kimmel, 2002). 

 

Motion may also serve as a potent cue for solid shape inference. This is often demonstrated using 

so called random dot kinematograms (RDKs). In these stimuli, small dots are randomly 

positioned on a screen, and some of them are moved in a coherent manner about a shared axis. 

This results in the perception of a single (solid) cloud of dots rotating around the axis, instead of 

independently moving dots (Bradley et al., 1998; Siegel and Andersen, 1988). RDKs can be used 

to create vivid solid shape percepts and have been used to study shape-from-motion in humans 

(Kourtzi and Kanwisher, 2001; Murray et al., 2003; Treue et al., 1991) and monkeys (Buracˇas 

and Albright, 1996; Raiguel et al., 1995). Incidentally, the area in which motion signals for shape 

processing are integrated remains unknown, but both motion processing areas like MT/MST (in 

monkeys) and object processing areas like lateral occipital cortex (in humans) have been 

considered candidates in these studies. 

 

1.3.2 Solid shape in V4 

Given the representation of relative disparity, 3D orientation, contour curvature, and surface 

texture in V4, and the prerequisites of solid shape inference from various cues, V4 appears to be 

ideally situated for solid shape representation. This claim has some supportive evidence. Bilateral 

lesions in V4 caused monkeys to lose the ability to discriminate images of solid, shaded objects 

(Merigan and Pham, 1998). In human psychophysical experiments employing parallel visual 

search of solid/flat targets among flat/solid distractors, solid shapes pop out rapidly (< 80ms) 

(Enns and Rensink, 1990). This pop out perceptual effect is thought to be related to the 

computation of solid shape and reflectance in early visual cortex (Sun and Perona, 1996). Further, 
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V4 neurons are selective for convex or concave deformations of a 3D plane rendered in 

stereogram form (Hegdé and Van Essen, 2005). When spheres with concave and convex 

undulations (“potatoes”) rendered with shading cues were used, V4 neurons weakly, if at all, 

selected for the solid shape version over the planar silhouette (Arcizet et al., 2009), but the 

population of V4 neurons was overall significantly selective for the solid shape. Researchers have 

interpreted these somewhat conflicting results to mean that V4 is a critical stage in solid shape 

processing but doesn’t explicitly represent solid shape.  

 

An alternative possibility is that V4 does indeed explicitly represent solid shapes, but that 

previous investigations were not able sample a large enough shape space to identify solid shape 

processing. While the space of planar contour curvature can be exhaustively mapped by 

parametrically changing the contour curvature and orientation (Carlson et al., 2011; Pasupathy 

and Connor, 2001), this is not the case for solid shapes, which require many more parameters to 

be described completely. This dimensionality explosion makes it virtually impossible to 

parametrically search for tuning peaks for solid shapes. For this reason, the studies mentioned 

above only sampled parametric sub-spaces, selected by making a priori assumptions about the 

tuning space. However, the limited complexity used in these studies possibly prevented a true 

assessment of solid shape coding in V4. To truly measure preference for solid shape geometry, a 

search algorithm must be employed which systematically and adaptively samples the relevant 

space. This would result in a set of stimuli that elicit diverse responses from each neuron and can 

effectively constrain models of solid shape tuning. Additionally, it is imperative to validate solid 

shape preference and tuning against a large set of controls. Shaded shapes with and without 

specularity should be tested to check for first and second order shading preference. Multiple 

contrasts should be tested to rule out luminance tuning effects. Shapes must be rendered with 

monocular cues other than lighting, like texture, material, and optical properties. Solid and planar 

stereogram shapes must be tested at multiple absolute disparities to delineate disparity tuning and 
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shape tuning. Such a large battery of tests requires an effective and efficient experimental 

paradigm with affordances for long or short shape mapping experiments and prerequisite and 

post-hoc tests. Section 1.5 expands on the importance of studying solid shape coding in V4 and 

introduces the methods employed in this thesis. 

 

1.3.3 Solid shape processing beyond V4 

Higher-order ventral visual pathway areas in the inferotemporal cortex (specifically, TE) have 

been heavily credited for processing solid object shape. Indeed, the first results of solid shape 

processing in visual cortex were obtained in TE (Hung et al., 2012; Janssen et al., 1999, 2000; 

Vaziri et al., 2014; Yamane et al., 2008). TE has been shown to represent all surface orientations 

in the hemispherical domain nearest to the viewer, i.e. the orientations that have normal 

components in the direction of the viewer and therefore visible to the viewer (Yamane et al., 

2008). TE neurons are also tuned to the surface curvatures of dimples, creases, bumps etc. of 

convex object shapes (Janssen et al., 2000, 2001; Yamane et al., 2008). Further, TE neurons were 

found to simultaneously represent the medial axis components of object shapes and the surface 

around the medial axis of the object (Hung et al., 2012). This representation was consistent across 

changes in lighting conditions, stereoscopic depth, large ranges of fronto-planar and out-of-plane 

3D rotation, object scale, and across shading and stereoscopic cues. In addition to shape 

fragments, TE and TEO neurons are also known to represent the relative positions of specific 

shape fragments (Brincat and Connor, 2004; Hung et al., 2012). For instance, a TE neuron could 

be modeled as representing a linear combination of convexities and concavities at various 

locations on the surface of the shape. Such an explicit representation of solid objects operates in 

the 3D space of physical structures and structural relationships and not in retinotopic coordinates. 

On even larger scales, geometric features belong not to solid shapes but to visual scenes like 

large, smooth gradations in the ground plane, tilts and angles of walls, and crevasses and hills. 
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Indeed, TE neurons have been found to represent such complex scene features (Vaziri et al., 

2014).  

 

1.4 Micro-organization of visual areas 

The study of the micro-organization of visual cortical areas is inexorably linked to the 

understanding of coding transformations. Often, cortical maps of stimulus characteristics have 

been found for the tuning dimensions that are emergent in an area, and those considered central to 

processing in that area (see examples below). Knowing the cortical map of a region can thus 

provide crucial insights into its critical dimensions. Why and how the layout of stimulus 

characteristics aids coding transformations within the area, or in areas up and down the visual 

processing hierarchy, and what, ultimately, is the need for a cortical map at all, are questions of 

critical importance. The following sections attempt to briefly outline known cortical maps, the 

current understanding and utility of cortical maps, and why it is vital to investigate the mapping 

of solid shape characteristics in visual cortex. 

 

A vast majority of studies of functional organization have targeted V1. As a result, most theories 

of micro-organization are based on cortical maps in V1, thalamo-cortical inputs to V1, intra-

columnar connections, and feedforward connections to higher visual areas. To better appreciate 

models of micro-organization and theories of cortical clustering, a small survey of cortical maps 

in V1 follows in the first section. The next section evaluates the utility of cortical maps. The final 

section lists the known functional maps in higher visual areas and posits a map for solid shape 

preference and solid shape fragments. 
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1.4.1 Functional organization and maps in primary visual cortex 

Due to the stereotypic and orderly axonal projections from LGN to V1, a retinotopic map is 

produced (Connolly and Van Essen, 1984; Tootell et al., 1982; Udin and Fawcett, 1988; Van 

Essen and Maunsell, 1980) which has most recently been visualized in fMRI scanners (Lafer-

Sousa and Conway, 2013; Sereno et al., 1995). The representations of the visual vertical and 

horizontal meridian have served as boundaries between visual areas for decades (Engel et al., 

1997). Retinotopy can be thought of as the biological epiphenomenon of organized retinal and 

LGN projections.  

 

The more striking observation, first made in somatosensory cortex by Mountcastle, is that the 

functional properties of neurons are organized in cortical columns “intermingled in a mosaic-like 

fashion” (Mountcastle, 1957). Mountcastle observed that the tuning functions of vertically 

aligned neurons in cat somatosensory cortex remained largely similar. Since known as “columnar 

organization”, it was demonstrated by Hubel and Wiesel to hold true in cat primary visual cortex 

for the representation of orientation and ocular dominance (OD) (Hubel and Wiesel, 1962). If an 

electrode is inserted horizontally instead of vertically, peaks of orientation tuning functions 

transition smoothly between orientations. This organization represents a “functional cortical map” 

i.e. a map of neural tuning properties across the cortex parallel to the pial surface. Columnar 

organization and cortical maps together describe the 3D layout of neurons in cortex. It is worth 

noting that while the terms are often used interchangeably, neither form of organization is 

actually necessary for the other to exist. The next few paragraphs list the known functional maps 

in V1 and, where relevant, their mutual alignment relative to the map of orientation preference. 

 

After injecting radioactive tritiated hydrogen into one eye, Hubel and Wiesel observed a map of 

OD in cat V1, arranged as interdigitated stripes of left- and right-eye selective regions. In 

additional experiments using microelectrode recordings in monkey V1, they also showed that 
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orientation preference remains constant as the electrode is advanced perpendicular to cortex, and 

changes systematically as the electrode is advanced tangential to the surface of cortex (Hubel and 

Wiesel, 1968; LeVay et al., 1975). More recently, optical imaging of intrinsic signals (difference 

between the reflectance between oxygenated and deoxygenated blood) and of signals from 

voltage-sensitive dyes has been used to visualize 2D orientation pinwheel maps and recapitulate 

OD stripes (Blasdel and Salama, 1986; Grinvald et al., 1986; Ts’o et al., 1990). Further, these and 

other experiments have demonstrated the orthogonal relationship between orientation and ocular 

dominance maps (Bartfeld and Grinvald, 1992; Crair et al., 1997) in which boundaries between 

iso-orientation columns tend to intersect ocular dominance boundaries at 90°. Other low-level 

stimulus parameters like color (Landisman and Ts’o, 2002; Ts’o and Gilbert, 1988), spatial 

frequency (Issa et al., 2000), and spatial phase (Aronov et al., 2003) have also been mapped with 

optical imaging and microelectrode recording techniques. Maps of second-order stimulus features 

like disparity (Kara and Boyd, 2009) and direction (Shmuel and Grinvald, 1996; Weliky et al., 

1996) have been observed in cats and ferrets but not monkeys.  

 

Cortical maps of stimulus properties like orientation and ocular dominance should not be studied 

only in isolation – their mutual relationships produce key insights into cortical computations 

(Kremkow et al., 2016; Sirovich and Uglesich, 2004). Recently, maps of spatial frequency (SF) 

have been discovered to be orthogonal to orientation maps with two-photon calcium imaging 

(Nauhaus et al., 2012). While SF was known to be organized in a columnar fashion and this 

organization was observed to be patchy (Born and Tootell, 1991; Issa et al., 2000; Silverman et 

al., 1989; Tootell et al., 1988), single cell resolution was required to investigate the efficient joint 

representation of these parameters. An example of non-orthogonal organization was revealed 

when researchers mapped orientation, OD, and SF together and found that boundaries of iso-

orientation domains intersect both OD and SF domains at 90°, and therefore the SF and OD 

domains run parallel to each other (Nauhaus et al., 2016); monocular zones are centered on low 
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SF peaks and binocular zones at high SF peaks. Importantly, it was additionally observed that the 

receptive field positions of neurons in V1 regions as large as 200μm x 200μm had negligible 

scatter, which places strong constraints on how tightly different features maps have to be aligned 

with respect to each other and the retinotopic map to achieve complete coverage of all stimulus 

features at every location in visual space. Most recently, the joint representation of orientation 

and color in V1 has been investigated (Garg et al., 2019). Contrary to earlier studies proposing a 

strict segregation of orientation and color processing (Livingstone and Hubel, 1988), this most 

recent study observed a spectrum of processing of both features, with some neurons encoding 

either feature independently, and other neurons processing them simultaneously. The joint 

organization of orientation and color showed some alignment to the cytoarchitecture of V1, which 

is also thought to be linked to other maps like SF. Thus, while it remains to be studied, it seems 

likely that V1 contains an overarching orderly architecture for all encoded features.  

 

Figure 1.5: Functional maps in V1 and pooling hypotheses. 

LGN: Inputs from left and right eyes are segregated. Neurons have either on- or off-center RFs. Slight 
distortion or bias in the alignment of on- and off-center neurons creates a dipole to form in the input 
layers of V1. 
V1 layer 4: The moiré pattern formed by offset on- and off-center inputs seeds the orientation tuning 
map in V1. Also, a segregated targeting of contra- and ipsilateral eye inputs causes ocular dominance 
bands. 
V1 layer 2/3: Pooling layer 4 inputs causes the formation of binocular zones between monocular zones.  
Other maps: It is conceivable that maps for disparity, color, direction, spatial frequency, spatial phase 
etc. are formed because of similar pooling mechanisms but more experiments are required to 
corroborate this hypothesis. 
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1.4.2 The utility of cortical maps and their mutual alignment 

Researchers have put forth many hypotheses as to why cortical maps in V1 are laid out in a 

stereotypic fashion (Horton and Adams, 2005; Nauhaus and Nielsen, 2014; Van Hooser, 2007) 

but the fundamental reason behind the existence of maps is not obvious. Gray squirrels, for 

example, lack systematic orientation maps in primary visual cortex and yet possess neurons that 

are just as effectively tuned to orientation as those in primate V1 (Van Hooser et al., 2005). So, 

why should cortical maps exist at all? The following hypotheses attempt to address this 

conundrum. At least in primates, maps may allow fast, local computations of visual features that 

can serve to conserve energy. Additionally, an orderly organization of tuning properties across 

neighboring neurons would allow pooling mechanisms that operate indiscriminately on all 

neurons within a local region to extract meaningful new tuning. The same pooling mechanism 

applied to randomly organized neurons would suffer from conflicting responses of the 

participating neurons. More generally, addressing neurons with related tuning properties can be 

achieved using a simple spatial mechanism for orderly feature maps, but requires very specific 

rules for random tuning organization (Nauhaus and Nielsen, 2014).  

 

Striking evidence for the formation of V1 orientation-tuned columns (not the orientation map) 

indeed hints at a the role of spatial pooling mechanisms in the emergence of new tuning 

properties (Jin et al., 2011). Researchers recorded single LGN neurons and then identified the V1 

column that those neurons projected to. This revealed that the receptive fields of on- and off-

center thalamic inputs to layer 4 of a single V1 column overlap. Crucially, while little structure 

was apparent in the converging on- and off-center inputs when considered individually, a simple 

spatial pooling algorithm resulted in an input population receptive field with an orientation that 

closely resembled that of the V1 column (as depicted in the magnified inset in figure 1.5B). A 

similar pooling concept has been applied to feedforward connections from V1 to V4. By simply 
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pooling a sample of inputs from a circular region of V1 researchers could model the receptive 

field size and shape of V4 neurons without need for any extraneous magnification factor (Motter, 

2009).  

 

There is also strong interest in how the overall layout of the orientation tuning map could emerge 

based on the spatial structure of the retinal input in V1. One mechanistic theory behind the 

emergence of orientation maps is based on the observation that retinal ganglion cell (RGC) 

mosaics have a stereotypical relative alignment (Paik and Ringach, 2011). Because of this 

alignment, neighboring on- and off-center RGC create ‘dipoles’ with orientations that vary in a 

systematic spatial pattern, which, in turn, can be related to the layout of orientation maps in V1 

(see top row in figure 1.5). Given a stereotypic arrangement of RGCs, this model predicts the 

formation of a hexagonal pattern of iso-domain orientation columns on the cortical surface, which 

is indeed observed in cat, ferret, monkey, and tree shrew V1. Similar pooling principles could 

potentially be applied to create models of OD, SF, and disparity maps, and these models could 

also be extrapolated to explain the emergence of solid shape processing, for instance, in higher 

visual areas. 

 

As mentioned above, the mutual arrangement of functional maps on the cortical surface is 

surprisingly stereotypic. As elaborated in the next paragraph, the leading and best corroborated 

theory of why functional maps are co-organized in such a tightly stereotypic fashion is based on 

‘dimensionality reduction’ of the neural response space to uniformly cover stimulus space 

(Durbin and Mitchison, 1990). Briefly, two points in stimulus parameter space should ideally be 

placed close-by on the cortical sheet and therefore use minimal wiring. Another way to approach 

this problem is in terms of the ‘travelling salesman problem’ where an algorithm tries to minimize 

the path of a salesman (traversal on the cortical sheet) as he travels between cities (stimulus 

parameters). The latter approach amounts to reducing the dimensionality of response space and 
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mapping it to stimulus space (Durbin and Mitchison, 1990; Goodhill and Sejnowski, 1997). 

Before elaborating further, this theory works under the following assumptions: (a) all visual areas 

have a single, continuous retinotopic map on which smooth, periodic maps of stimulus 

characteristics are overlaid, (b) these maps are often structurally related, (c) all reasonable 

permutations of stimulus parameters should be represented, and (d) most cortical operations are 

performed locally amongst neurons with similar tuning characteristics. 

 

Following from (d) above, the critical optimization would be to minimize wiring/axonal length 

between like neurons, which restricts neurons with similar tuning characteristics to be closer 

together. In effect, the solution to the wiring minimization problem is to place neurons with 

similar tuning next to each other (Koulakov and Chklovskii, 2001). This solution works if the 

dimensionality of stimulus space matches the dimensionality of the map. Since the cortical 

surface is 2-dimensional and the stimulus parameter space is often larger than 2-dimensional 

(orientation, SF, phase, color, disparity, etc.), a simple wiring minimization algorithm will not be 

able to model cortical maps. Alternatively, if the dimensionality of neural responses is reduced to 

two dimensions and mapped onto stimulus space, effectively reversing how the wiring problem is 

solved, all tuning dimensions can be mapped onto the 2D cortical sheet (Durbin and Mitchison, 

1990). This dimensionality reduction and mapping procedure has been shown to produce 

orientation and OD maps that resemble observed maps in V1. In fact, this study also revealed that 

such a model has many potential smooth mappings, which include the solutions with minimum 

wiring. In addition to orientation pinwheels, the model captures ‘orientation fractures’ – regions 

of discontinuities in the orientation map (Blasdel and Salama, 1986). One interesting prediction 

of this model was that, because retinotopy was treated similarly to orientation (both free 

parameters in the model), the receptive field location will change smoothly and rapidly along the 

orientation fractures and slowly everywhere else. The large fractures have been demonstrated in 

physiological studies in cat (Das and Gilbert, 1997) and the tight relative alignment of RFs within 
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orientation domains have been shown in recent studies of functional retinotopy using 

electrophysiology (Jin et al., 2011), optical imaging (Blasdel and Campbell, 2001) and two-

photon imaging (Nauhaus et al., 2016). 

 

Lastly, Swindale and colleagues have proposed a quantitative measure of the uniformity of 

stimulus parameter coverage (Swindale et al., 2000). Using this metric, they demonstrated that if 

the mutual configuration of the functional maps is perturbed during calculations, the ability of 

cortex to cover all permutations of stimulus parameters reduces. Thus, they concluded that, at 

least in the cat, the functional maps are mutually structured in a very precise way in order to 

improve stimulus coverage. If there are many more stimulus parameters mapped in a single area, 

coverage would naturally reduce, but efficient tiling of stimulus space might be a way to achieve 

adequate coverage.  

 

1.4.3 Functional maps in higher ventral stream areas 

The theories listed above largely centered on explaining cortical maps and columnar organization 

in V1. While the literature on cortical maps in higher visual areas is sparse and more 

controversial, the next few paragraphs briefly survey the known maps and, where possible, 

hypothesize how they might form based on pooling mechanisms described above. The 

fundamental hurdle in discovering maps in higher visual areas is that the critical coding 

dimensions in these areas are largely unknown. As discussed in the previous section, V2 and V4 

neurons exhibit complex responses to color, disparity, orientation, etc. Also, the further 

downstream an area, the larger the dimensionality of coding transformations, and less clear how 

hypotheses of cortical maps should be constrained. Researchers therefore form hypotheses based 

on anatomical connectivity patterns between areas and the complexity of responses of single 

neurons to stimuli.  
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In V2, the known maps are often aligned with regions revealed by staining for cytochrome 

oxidase, a mitochondrial enzyme which is a marker of enhanced cortical activity (but see 

(Takahata, 2016)). This staining reveals ‘blobs’ in V1 and thin, thick, and pale ‘stripes’ in V2 

(Livingstone and Hubel, 1984; Tootell et al., 1983). Physiological studies in these anatomically 

defined regions found unoriented, color-selective, monocular cells in V1 blobs and V2 thin 

stripes, and oriented, disparity-selective cells in V1 interblobs and V2 thick stripes. In V2, optical 

imaging and targeted microelectrode recordings have uncovered cortical functional maps aligned 

to thin CO stripes for color/hue (Lim et al., 2009; Shipp and Zeki, 2002; Ts’o et al., 2001; Xiao et 

al., 2003) and maps aligned to thick CO stripes for orientation (Malach et al., 1994; Ts’o et al., 

2001), horizontal disparity (Chen et al., 2008), motion-defined orientation (Chen et al., 2016) and 

motion direction (Lu et al., 2010).  

 

In V4, CO does not stain regions of high or low cortical activation. However, retrograde tracers, 

when injected into V4, labeled neurons from thin but not thick stripes in V2 and, when injected in 

posterior inferotemporal cortex (PIT or TEO), labeled patches of neurons in V4 (Nakamura et al., 

1993). Also, whereas central V4 receives direct projections from V1 and is connected to 

inferotemporal cortex (Shipp and Zeki, 1995; Zeki, 1969), peripheral V4 is connected more 

definitively to parietal cortex areas like LIP and MST (Baizer et al., 1991). Tacitly, these 

connectivity patterns suggest differences in the functional properties of neurons in different parts 

of V4, and possibly the functional organization. Most studies therefore target foveal and 

parafoveal V4 to find representations pertaining to object processing.  

 

Optical imaging-targeted electrophysiology experiments in central V4 found “modules” for form 

processing in which neurons were tuned for the same orientation (Ghose and Ts’o, 1997). There 

were also larger modules that contained neurons suppressed by large stimuli, which, in turn, 

contained orientation domains. Similar experiments with colored gratings revealed organization 
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for color, brightness, and contour orientation (Kotake et al., 2009; Tanigawa et al., 2010). These 

results show a remarkable juxtaposition between domains of color selectivity and orientation 

preference. 

 

This color-form segregated model is also corroborated by fMRI experiments that divide V4 into 

highly color-selective, unoriented regions (“globs”) arranged chromatopically with orientation 

selective domains juxtaposed alongside them (Conway and Tsao, 2006; Conway et al., 2007). 

The strictly segregated processing of color and orientation is a radical model of coding 

transformations in V4, given the mixed selectivity of similar domains in V2 and optical imaging 

experiments outlined above. To what extent these regions correspond to complex shape properties 

is yet unknown. Nevertheless, these studies contribute evidence to support patchy organization of 

shape features in V4. 

 

1.5 Studying solid shape representation in V4 

Fundamentally, the visual information in the physical world and our perception of it is not 

divided into texture, disparity, color, motion, etc. It is divided into objects with three-dimensional 

form with which we learn to interact. The evidence for solid shape processing in V4 has been 

scant and controversial (Orban, 2011; Orban et al., 2006). Still, theories of the origin of solid 

shape representation in TE strongly implicate V4 as a potential candidate. This is further 

supported by the observation that the planar orientations and curvatures represented in V4 reflect 

the derivatives of 3D surface contrast in real world objects and scenes. Therefore, an investigation 

of whether or not V4 computes properties of solid shape fragments and in turn supports 

representation of higher-level geometries in later ventral visual pathway areas would be central to 

the understanding of object perception and recognition. The results in this thesis directly address 

these open problems. 
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In experiments described in chapter 2, an adaptive shape morphing algorithm was used to sample 

responses to solid shape in V4 and compare them against corresponding planar shapes and other 

controls. This method efficiently sampled a potentially infinite stimulus space by evolutionarily 

morphing solid shape stimuli based on neural responses. Later, response-weighted averaged 

matrices were used to precisely describe the tuning peak for shape fragments in three-dimensional 

space. These data suggest that solid shape fragments are the elementary building blocks of object 

vision, not spatial frequency patterns or other image properties. 

 

While there have been efforts to find cortical maps for two-dimensional contours (Ghose and 

Ts’o, 1997), and disparity-defined edges (Fang et al., 2018), and color/hue (Kotake et al., 2009; 

Li et al., 2014), two major hurdles in the path of the discovery of an organizational motif in V4 

are the development of fast, high resolution imaging techniques, and computational techniques to 

effectively sample the space of solid shape stimuli. Advancements in two-photon calcium 

imaging have made the technology ubiquitous in visual system research, but imaging in higher-

order areas in monkeys poses a unique set of technical challenges – imaging for long periods of 

time without compromising image quality and sensor expression and, in the case of anesthetized 

experiments, adjusting the depth of anesthesia precisely to prevent the dampening of visual 

response to complex stimuli. More importantly, finding tuning for solid and flat shape features 

requires an ability to probe the infinite space of possible solid and flat shapes effectively. These 

experiments have to be performed under strict hypotheses about coding transformations; they 

provide a framework without which it would be extremely challenging to interpret neural 

responses and cortical maps. 

 

In experiments described in chapter 3, a parameterized solid shape test was devised for two-

photon imaging experiments to study the micro-organization in V4. This approach was chosen 
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over an adaptive algorithm (as in chapter 2) to optimize imaging time and maximize explanatory 

power across imaging regions. These data revealed that V4 neurons are clustered based on their 

preference for solid versus flat shape fragments. This points again to solid shape being the 

elementary coding motif in V4 as opposed to image-level properties.  
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2 Solid shape representation in V4 

This chapter contains a subset of the results currently submitted as a journal manuscript. If 

accepted, it will appear as “Srinath, Emonds, Wang, Nielsen, Connor. (2019). Volumes, not 

patterns, are the basic elements of object vision”. 

 

2.1 Introduction 

Information about the solid geometry of objects is lost in two-dimensional retinal images and 

must be recovered across multiple processing stages in the ventral visual stream (Van Essen et al., 

1992). The hierarchy of coding transformations implemented in the ventral visual stream helps us 

make inferences about object identity and form and facilitates discrimination of and interaction 

with visual objects. Models of object processing in early and mid-level cortical stages have 

focused on transformations in the 2D domain. For instance, neurons in a mid-level processing 

stage, area V4, have been shown to encode image properties, including contour orientation and 

curvature, spatial frequency, and texture. Representation of these features supports the hypothesis 

that ventral visual stream areas successively compute various image transformations to 

reconstruct object boundaries, surface textural patterns, and relationship to other objects. The 

results described in this chapter contrast this theory by outlining evidence that shows that neurons 

in V4 explicitly encode solid shape geometry rather than planar silhouettes and texture patterns. 

Additionally, this representation was found to be consistent across cues for 3D reality like 

shading, specularity, binocular disparity, reflectivity, and refractivity. This encoding is, therefore, 

highly abstracted from the encoding of planar images, underlies the physical structure of solid 

shapes, and is not describable in terms of image transformations. These results argue that, even in 

the earliest stages of the ventral visual pathway, coding transformations are optimized for the 

extraction of 3D geometric reality rather than the computation of image features. 
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2.1.1 Experimental approaches to studying shape coding 

Most of the investigations of coding transformations in the ventral visual pathway can be 

classified based on stimulus set type and explanation type. Broadly, studies utilize reductive, 

exhaustive, parameter-agnostic, or response-adaptive stimulus sets. Also, based on the 

experiment, models of V4 responses could contain units that are constrained to be tuned to a set 

of manually specified parameters. These categories are a result of technical constraints and 

differing philosophies of the utility and purpose of coding transformations. 

 

Studies utilizing a reductive stimulus approach start with a large stimulus set – a set of complex 

shape outlines, for instance – and based on the neural responses, attempt to iteratively mask the 

irrelevant portions of the stimulus and discover the simplest feature that drives the neuron. This 

approach assumes that the ventral visual pathway is a series of feature detectors, where each 

neuron is tasked with detecting a single feature in the stimulus. Accordingly, this technique was 

first used to identify that the ventral visual pathway contains neurons with preferences for 

complex shape features (Kobatake and Tanaka, 1994). More recently, a modified version of this 

approach was used by Jim DiCarlo and colleagues (Bashivan et al., 2019) where responses to a 

large set of natural images was used to generate a simple texture using a deep neural network 

model of V4 which produced a higher firing rate than any of the tested images. Tacitly, this 

approach produces a qualitative description of neural responses, biased by the chosen stimulus set 

and the feature reduction procedure. 

 

The second category of experiments assumes the coding domain of the area in question – 

orientation and spatial frequency for V1, curvature for V4, faces for face patches, etc. – and 

exhaustively samples the relevant stimulus space. Unlike the previous approach, which produces 

the estimate of a ‘critical feature’, these experiments produce a quantitative estimate of the neural 

tuning manifold. In V4, this approach has been successful by assuming encoding of spatial 
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derivative-based features (Gallant et al., 1996), curvature-based features (Pasupathy and Connor, 

1999, 2001; Yau et al., 2013), 3D orientation (Hinkle and Connor, 2001, 2002), color (Zeki, 

1983), etc. In order to be tractable, these experiments either assume a simple coding domain or 

very coarsely sample a complex domain, ignoring factorization of multiple parameters. 

Additionally, a neuron that seems to be tuned to the variance in a certain stimulus parameter 

could actually be tuned to a correlated parameter not being varied in the experiment. In areas 

where researchers had a well-constrained hypothesis of the coding domain, this approach has 

been very successful in finding the critical features and tuning. Although some models with 

unconstrained parameters have effectively fit neural responses from these experiments (Cadieu et 

al., 2007; Popovkina et al., 2019), they are more amenable to models which contain units that are 

tuned to the dimensions which were systematically varied during the experiment. 

 

The third category of experiments uses parameter-agnostic stimulus sets – either natural images 

or random pixel patterns. These stimuli are unconstrained by geometric parameters and often 

have the advantage of being more similar to natural visual experience. This approach is generally 

paired with a complex model with a large set of parameters, which is used to fit responses to 

these natural images. Examples of this include deep network models with millions of free 

parameters and unconstrained units (Yamins et al., 2014) or HMAX with hundreds of free 

parameters and tuning constrained units (Riesenhuber and Poggio, 1999). Gallant and colleagues 

pioneered this technique and others have used it recently to predict V4 neural responses 

successfully (Abbasi-Asl et al., 2018; Cadieu et al., 2007; David et al., 2006; Pospisil et al., 2018; 

Yamins et al., 2014). While these results are impressive, because the deep network models don’t 

contain units that are constrained to be tuned to a set of specified stimulus dimensions, it is 

generally very challenging for these studies to infer neural tuning, and, therefore, they fail to offer 

satisfactory coding hypotheses. 
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The response-adaptive stimulus set approach was pioneered by Connor and colleagues to study 

solid shape coding in anterior IT cortex (Yamane et al., 2008) and later to study the sparse coding 

of curvature in V4 (Carlson et al., 2011) and other aspects of shape tuning in the ventral visual 

pathway (Hung et al., 2012; Vaziri et al., 2014). This approach uses a stimulus generation 

algorithm that evolves stimuli based on the neural response as the experiment is being conducted. 

As a result of this effective sampling, using this approach can hugely increase the parameter 

space, while still retaining the ability to explain neural tuning in terms of geometrical parameters 

with tuning models. The critical drawback of this technique is that the stimulus generation and 

morphing algorithms make assumptions about the coding domain much like the parametric 

sampling technique, but because of the efficient sampling, the sampled space can be huge, even 

covering domains that are suspected to be coded in downstream areas. Also, because this 

technique employs searching for the tuning function, it is prone to find local minima in the search 

space and be affected by the initial conditions. Therefore, multiple independent searches must be 

performed to validate the tuning functions and, even when the search space is narrowing, the 

space must continuously be randomly sampled to provide novel starting conditions. 

 

2.2 Results 

2.2.1 2D and 3D shape information in area V4 

Electrophysiological recordings were performed with single electrodes in V4 neurons in two 

rhesus macaque monkeys. During each recording session, the electrode was lowered into dorsal 

V4, and a single neuron was isolated. The receptive field location and size and the neuron’s color 

preference were determined by drifting 2D filled contour shapes under the experimenter’s 

control. The adaptive algorithm began with a set of 80 randomly constructed solid shapes. The 

random shape generation algorithm used here was adapted from (Hung et al., 2012), simplified 

for V4 response properties (see methods section 2.2.4 for details). These stimuli were randomly 
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divided into two lineages for later comparison and cross-validation. Each stimulus was presented 

for 750ms with a 250ms inter-stimulus interval. The response of the neuron to each stimulus was 

calculated as the spike rate during the stimulus presentation period. “Gen 1” in figure 2.1A 

depicts the first generation of stimuli of an example experiment arranged in decreasing order of 

neural response. The intensity of the red border around each object indicates the response of the 

neuron to that object.  

 

Each subsequent generation (Gen 2-7) was created by partially morphing ancestor stimuli 

selected from previously run generations. The neural response to stimuli served as a fitness metric 

for the selection of ancestors. Stimuli were sampled from low, medium, and high response ranges 

to evolve diverse stimulus trees, each of which contain stimuli that elicit a wide range of 

responses. The probability of a stimulus producing descendants was proportional to its neural 

response.  

 

In addition to morphed descendants, five high response ancestors were also selected from each 

lineage to be rendered in two solid and two planar conditions – solid matte- and polished-surface 

stimuli and planar high- and low-contrast stimuli. Planar stimuli were silhouettes of the ancestor 

shape and thus corresponded to the self-occlusion boundary of a naturalistic solid object instead 

of a randomly generated planar object. This gave us the ability to directly compare the responses 

between solid shapes their planar silhouettes, and also investigate neural tuning. This was done in 

parallel to the adaptive algorithm to continuously provide evidence for solid shape preference, 

instead of after the experiment as a post-hoc test. In figure 2.1, “Gen 2” exemplifies a full 

generation with twenty morphs (figure 2.1B) and twenty ‘preference-testing’ tetrads (figure 

2.1C). “Gen 3-7” depict top morphed and tetrad responses (figure 2.1D). In this case, the 

responses to solid shapes were consistently higher than those to planar shapes.  

 



 

 30 

To quantify this preference, an index for solid shape preference (SP) defined as: 

𝑆𝑃 =
𝑅&'()*– 𝑅,(-.-/

𝑚𝑎𝑥3𝑅&'()*, 𝑅,(-.-/5
 

where Rsolid is the average response to matte- or polished-surface solid shapes, whichever is 

higher, and Rplanar is the average response to low- or high-contrast planar shapes, whichever is 

higher. This score varies from -1 (purely planar-preferring neuron) to 0 (no preference) to 1 

(purely solid-preferring neuron). For this neuron, SP = 0.54. 
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Figure 2.1: Adaptive solid shape sampling experiment. 

Responses of a single V4 neuron to solid shape stimuli indicated by the color intensity (see scale bar, 
top right) of the image border for shapes evolving in two independent lineages (left and right columns). 
(A) Initial generation of 40 random stimuli per lineage sorted in descending order of trial-averaged 
responses. (B) Second generation of 16 partially morphed stimuli, selected probabilistically from 
generation 1, and 4 novel random shape stimuli. (C) 5 top response stimuli from the previous 
generation rendered as matte and specular solid shapes and high and low contrast planar (silhouette) 
shapes presented as tetrads. (D) Top adaptive algorithm stimuli and tetrads for generations 3-7. (E) 
Top 40 and bottom 20 stimuli across all generations depicting convergence across lineages and dense 
sampling of stimulus space in the high response range. 
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2.2.2 Parameterizing shape space and visualizing shape tuning 

It is visually apparent that similar solid shape properties re-occur across the top stimuli in both 

lineages (figure 2.1E “top” responses). In this example, solid shapes that contained a straight 

shaft angled at 45° towards the lower left of the object elicited the highest responses. These shafts 

typically terminated in a bulbous end. To quantify and visualize neural tuning for these geometric  

properties, each shape must be parameterized in terms of the geometry of its parts. Then, based 

on the response of the neuron to each shape, shape parts can be weighted, and the space can be 

visualized.  

 

 

 

 

Figure 2.2: Metric shape 
analysis. 

(A) Solid shape examples 
(top) and their respective 
shape parameterizations 
(bottom). Red axis 
indicates the medial axis of 
the shape, green circles 
indicate the width of each 
limb at critical locations 
along the limb, and blue 
lines indicate the tangents 
of the limbs at the same 
critical locations. (B) 
Various geometric 
parameters used to 
characterize the shapes. 
Shafts, junctions, and 
terminations are treated 
independently and 
therefore have independent 
RWA matrices. Position is 
3-dimensional vector and 
orientation is a 3D unit 
vector, both represented in 
spherical coordinates. 
Planar rotation is a 
circular variable. 
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To this end, each object was divided into three shape fragment types – terminations, shafts, and 

junctions (figure 2.2). The contribution of these shape fragments to solid shape tuning was 

analyzed individually. Each of these parts was parameterized with dimensions for object-relative 

position, orientation or direction, length, radius, curvature of medial axis shafts, and their 

surrounding surfaces. In addition, junctions were parameterized by their subtense angle, the 

direction of the angle bisector, and the planar rotation about the angle bisector. Therefore, each 

shape was defined as a collection of points in three distinct geometric subspaces viz. shafts, 

junctions, and terminations. These points were then convolved with a Gaussian function weighted 

by the response of the stimulus (figure 2.3A). The response-weighted surface for each stimulus 

 

Figure 2.3: Response-weighted averaging (RWA) analysis. 

(A) A stimulus with two terminations will have two ‘points of interest’ in the 6-D termination RWA 
matrix. Two gaussians are summed into an empty matrix and multiplied by the neural response to that 
stimulus. The value in each bin is dependent upon the Euclidean distance (in 6-D) between the bin 
center and the ‘point of interest’. (B) Each stimulus contributes one 6-D matrix which are all summed 
to produce the RWA matrix. This matrix is divided element-by-element by an unscaled matrix (not 
normalized by the neural response) to control for sampling biases (not shown in the schematic). 
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was summed and normalized by an unweighted version of the same matrix to correct for uneven 

sampling due to correlations in solid shape statistics (figure 2.3B). The resultant matrix was the 

response-weighted average (RWA) matrix. These calculations were performed separately for  

each independent lineage and then, to remove spurious peaks, multiplied to obtain the final RWA.  

Because the lineage RWAs were multiplied and not summed, a poor prediction would be an 

indication of either poor parameterization or lack of lineage convergence. To ensure that this 

multiplication still retained the ability to explain the neural tuning, the neural responses for the  

full set of stimuli (both lineages) were predicted using the final RWA.  

 

The final RWA for the neuron in figure 2.1 is visualized in figure 2.4 as slices through the peak 

of the RWA, parallel to one or two geometric dimensions. This visualization clearly shows tuning 

to termination and shaft dimensions. As described above, the positional tuning for terminations 

and shafts was centered towards the bottom left of the object. Tuning for the direction of the 

termination and the orientation of the shaft coincides along the left-down axis. Shafts, unlike 

terminations, don’t have an inherent direction and are depicted in a hemispherical space facing 

the viewer. Tuning for a large termination radius indicated a preference for bulbous terminations, 

whereas tuning for shaft radius was broad with a tendency towards slimmer shafts. This analysis 

adequately captures the variance in neuronal responses with respect to geometric shape 

dimensions. 
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Figure 2.4: RWA matrix for an example neuron. 

(A) Metric shape parameterization of top stimuli from both lineages (B-D) Slices of the lineage-product 
RWA through the neural tuning peak parallel to 1 (line plots) or 2 (icosahedrons) dimensions 
indicating tuning for bulbous terminations at the bottom-left of the shape in the bottom-left direction. 
(E-G) Same as (B-D) for 3D oriented shafts showing tuning for straight shafts situated to the left-back-
bottom of the center-of-mass of the shape oriented along the bottom-left (or top-right) axis. 

 

More examples of solid shape tuning are presented in figure 2.5. Panels A, C, and E show tetrads 

of stimuli tested in the four preference-testing conditions and panels B, D, and F show the 

corresponding RWA visualizations and predictions. The first example neuron (figure 2.5A) 

responded to straight shafts tilted toward the upper right. This exemplifies the strict tuning for 3D 

properties of the solid shape, because even though the cell is tuned for a limb which lies in the 

fronto-parallel plane, the response is considerably higher for the solid versions of the stimuli 

(SP=0.624). The second example neuron (figure 2.5C) responded to curved shafts with a vertical 

orientation. This tuning to curved shafts could be parallel to tuning for orientation and curvature 

of contour fragments observed in earlier studies in the lab (Pasupathy and Connor, 2001). The 

third example neuron (figure 2.5E) responded to medial axis junctions positioned near the bottom 

right and opening toward the left. This neuron exemplifies tuning for junctions, a coding motif 

ubiquitous in the neural population. This, too, is reminiscent of earlier studies, particularly 

regarding the biased representation of sharp convex and concave curvatures in V4 (Carlson et al., 

2011).  
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Figure 2.5: Examples of solid shape-preferring cells with tuning for solid shape fragments. 

(A-F) Top tetrads for example V4 neurons depicting tuning for straight oriented shafts (A), curved shafts 
(C), and junctions (E). Slices through the tuning peak indicated with icosahedral and line plots. Prediction 
of neural responses based on lineage-product RWA in bottom right. 

 

These examples are representative of tuning for terminations, straight/curved shafts, and junctions 

found in V4. Moreover, like these examples, the distribution of SP was significantly shifted away 

from 0 (p = 0.0005; t-test) with approximately two-thirds of the neural population (94/143 cells) 

preferred solid shapes and had an SP > 0 (figure 2.6A). Approximately 22% of the neurons 

(32/143 cells) had an SP > 0.33, which corresponds to the average solid shape response being at 

least 1.5 times greater than the planar response. A fraction of neurons responded more strongly to 

planar shapes (examples shown in figure 2.10 at the end of the results section), but, qualitatively, 

they tended to be neurons that were tuned to darker contrasts and/or very small stimuli. Figure 

2.6B shows the distribution of predictions of neural responses with the RWA matrices; high 
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prediction accuracies indicate good convergence across lineages and effective parameterization of 

shape space. Across the three categories, prediction accuracies had a median greater than 0.65 

and were significantly shifted from 0 (p < 10-106). Prediction accuracies tended to be greater for 

shaft RWAs versus termination and junction RWAs (figure 2.6C-E) (p < 0.005; Kolmogorov-

Smirnov test). 

 

 

Figure 2.6: Population analysis of SP and RWA. 

(A) Cumulative distribution of solid shape preference index for neurons with two or more generations. 
(B) RWA prediction for shaft, junction, and termination RWA matrices for all neurons with three or 
more generations. (C) Comparisons of prediction accuracies of shaft, junction, and termination RWAs. 
See supp. fig. 2 for examples of 2D selective cells. 

 
 
2.2.3 Robust representation across 3D cues 

On some experimental sessions, after the adaptive algorithm produced converging evidence of 

neural tuning from the two independent lineages, several post-hoc tests were performed. These 

tests served to ensure that the observed solid shape selectivity was not explained by changes in (a) 

contrast gradient across the object surface, (b) surface textural cues or other image cues, or (c) 

interaction between the self-occlusion boundary and surface contrast. These tests were run on 

four or more stimuli from each lineage, sampled from the low, medium, and high response 

ranges. This was done to ensure that the relative responses to solid shapes are preserved across 

varying cues. 
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Contrast post-hoc test 

The contrasts of the solid and planar shapes were systematically varied as depicted in figure 2.7A. 

The responses to a high response shape are shown for four neurons. While the neurons are 

maximally responsive for a certain range of contrast, the difference between solid and planar 

shape responses remains high throughout the range. The SP was calculated for the stimuli tested 

in the contrast test and was compared with the SP from the adaptive algorithm run prior. It was 

found to be consistent across 15 tested cells (figure 2.7B) (r-squared = 0.27, p = 0.045 vs constant 

model). Because the solid shape stimuli in this test lacked specular highlights, three neurons that 

preferred specular shapes to shaded shapes were excluded from this analysis. 

 

 

Figure 2.7: Contrast post-hoc test. 

(A) Solid matte stimuli in increasing order of brightness and planar stimuli with increasing contrast. 
Responses are indicated with red image borders (see scale bars for individual neurons). (B) 
Comparison of solid shape preference index calculated with shapes from the adaptive shape experiment 
and from the contrast post-hoc test. Polygon markers correspond to neurons in (A). 

 

Naturalistic images post-hoc test 

To test if the tuning for solid shape was maintained if the shading and specularity cues were 

replaced with other cues, the selected post-hoc objects were rendered with the ray tracing 

software Blender, with reflective or refractive optical properties. These objects, when placed in a 

naturalistic environment, reflected or refracted the features on the floor and/or walls to produce a 

striking percept of solid shape structure. Importantly, the images produced by this method were 
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entirely different from the shading-based stimuli on a pixel-by-pixel basis, similar only in their 

inferred shape structure. Figure 2.8A shows responses of seven neurons to example top and 

bottom stimuli rendered in naturalistic conditions. Here, “top” and “bottom” do not refer to the 

highest and lowest responses in this test, but to example high and low response stimuli selected 

from the adaptive algorithm. Not only were the neural responses found to be consistent across 

rendering conditions, the disparity between top and bottom stimulus responses was consistent 

between this test and the adaptive algorithm (figure 2.8B). The difference between the top and 

bottom responses was significantly greater than 0 (p = 0.011; t-test). 

 

 

 

  

 

Figure 2.8: Naturalistic images post-hoc test. 

(A) High and low response stimuli (top and bottom) from the adaptive algorithm rendered in naturalistic 
conditions also have high and low responses. (see 2.2.11 at the end of the chapter for the full set of 
stimulus conditions.) (B) Neural responses to naturalistic shape stimuli as a proportion of their 
responses in the adaptive algorithm. 
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Stereogram post-hoc 

As a final test for solid shape preference, the solid and planar shapes were rendered using random 

dot stereograms (RDSs). RDS stimuli lack any image-level or monocular cues and rely purely on 

the binocular disparity between dots projected to either eye to create a percept of depth and solid 

shape. Both solid and planar stereograms were tested at 3-5 depths behind, at, and in front of the 

fixation plane. A field of background dots was placed behind the farthest depth to provide depth 

context and remove the ability to perceive the shape silhouette. Figure 2.9 shows responses of 

four example neurons to solid and planar stereograms at three depths. The neural responses are 

consistently higher for the solid stereogram at the far and fixation-plane depths. The SP, now 

calculated for the stimuli in this test alone, shows a similar distribution of solid shape preference 

as the distribution obtained from the adaptive algorithm (compare figure 2.9B with 2.6A). This 

distribution is significantly shifted from 0 (p = 0.0098; t-test). This test definitively demonstrates 

that V4 solid shape selectivity cannot be explained by image-level features like contrast gradients, 

pixel-by-pixel correlations, 2D contour curvature, etc. 

 

  

 

Figure 2.9: Stereogram post-hoc test. 

(A) Neural responses to solid and planar stereograms of high response shapes for four neurons 
presented at three depths relative to the fixation plane. Background dots are presented at a constant 
depth behind all shapes. (see figure 2.12 at the end of the chapter for example stereograms). (B) 
Cumulative distribution of solid shape preference scores calculated only using the stereogram post-hoc 
test. 
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2.3 Discussion 

The results from this chapter address fundamental questions about the transformation from 2D 

image signals to solid shape perception. Previously, intermediate transformations in object vision 

have been studied with planar image features, such as contour fragments and Gabor patches. In 

the experiments described in this chapter, microelectrode recordings in awake, fixating macaque 

monkeys were used to study the responses of neurons in area V4 to complex solid shapes, and to 

compare them to responses evoked by the shapes’ planar counterparts. Random solid shapes were 

created by constructing a medial axial structure out of limbs with randomized connectivity, 

orientations and curvature, each wrapped with a tubular surface of a random radius profile. 

Neurons in V4 were reliably tuned for the orientation and curvature of solid shape fragments and 

object-relative position. Crucially, these tuning properties were consistent across 3D cues like 

shading, disparity, reflectivity, and refraction. Images rendered with these cues cohere only in 

their implicit mapping to solid shape and invariant responses to such stimuli can only be 

explained by an underlying representation for 3D geometry. Response-weighted averaged (RWA) 

matrices with dimensions for 3D geometric fragments like the width and curvature of shafts and 

junctions, predicted the neural responses with high accuracy. Current models of object vision rely 

on image transformations for information about object identity. These results now introduce the 

extraction of solid shape geometry by early primate vision as an alternate path to object 

recognition. 

 

2.3.1 Solid shape coding unifies contour and spectral coding hypotheses 

Previous studies concentrated on coding for planar image fragments and spectral properties in V4 

neurons. More than three decades ago, V4 was found to be critical for form vision (Desimone and 

Schein, 1987) in addition to its already established contribution to color vision (Zeki, 1983, 

1973). Building on these observations, (Kobatake and Tanaka, 1994) studied V4 by sampling a 
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large stimulus set of objects, faces, bars, gratings, colored contours etc. to show that V4 neurons 

preferred stimuli with intermediate complexity compared to those preferred by V2 or TE neurons. 

Similar results were obtained by (Gallant et al., 1993, 1996), who used a parameterized stimulus 

set of Cartesian, hyperbolic, and polar grating patterns to probe V4 neurons. By demonstrating 

tuning to hyperbolic and polar gratings in a significant fraction of V4 neurons, this study provided 

clear evidence for tuning for a more complex property than observed in earlier visual areas. 

Further refinement of the understanding of V4 tuning functions came from a later set of studies 

that parametrically changed, among other things, the orientation and curvature of shape contour 

fragments, as well as their object-relative position (Pasupathy and Connor, 1999, 2001). V4 

neurons were found to be tuned to all of these features, which explained and extended the 

findings of the previous studies. Similarly, V4 responses were also found to be tuned to the 

orientation of disparity-defined edges (Hegdé and Van Essen, 2005; Shiozaki et al., 2012; Umeda 

et al., 2007) and 3D orientations (Hinkle and Connor, 2002). Generally, the observed V4 response 

properties are assumed to arise by calculating a weighted sum of inputs from orientation- and 

disparity-tuned neurons in V1. In summary, these studies have led to the overarching hypothesis 

that V4 neurons are tuned to a part of an object (Connor et al., 2007). 

 

An alternate theory of V4 function posits that its neurons are not feature detectors or tuned for 

object parts, but instead are spatiotemporal filters which calculate a spectral transform on the 

input image (David et al., 2006; Touryan and Mazer, 2015). Under this theory, all neurons from 

V1 to V4 (and perhaps even beyond) essentially calculate the same transformations on their input. 

The sequential increase in complexity of the representation is then simply a reflection of these 

repeated calculations. Indeed, researchers have attempted to model neural tuning to shape 

properties in V4 with spectral receptive fields, but these studies have been only partially 

successful (Oleskiw et al., 2014). However, the same mechanistic theory has inspired deep 
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convolutional network architectures for object recognition, which are currently the most 

successful attempts at computer vision.  

 

The results in this chapter provide a possible route for reconciling these two competing 

hypotheses. First, the solid shape tuning reported in this chapter is directly related to the tuning 

for planar orientation and curvature observed before. The RWA analysis shows that neurons have 

tuning peaks in a space defined by, among other things, the orientation and curvature of curved 

shafts. This tuning was also found to be sensitive to the object-relative position of the shape 

feature, again recapitulating earlier results. Second, tuning for 3D orientations and disparity-

defined edges is also observed in the results in this chapter. The results from the stereogram post-

hoc show that the neurons are tuned to solid shape-in-depth rendered with disparity cues alone. 

Also, the preponderance of tuning for shafts oriented in 3D parallels the tuning for 3D 

orientations found previously in V4. Therefore, the results in this chapter reproduce previous 

findings of planar contour and disparity tuning in V4 and offer a unifying theory of neural tuning 

based on solid shape representations. 

 

At the same time, these results are also compatible with the spectral filter theory of V4, in which 

neural tuning is explained by responses to spatial frequency patterns. Spatial frequency patterns 

create a perceptual blur effect reminiscent of solid shape shading. Tuning for spatial frequency 

patterns in V4 could therefore possibly be explained by tuning for solid shape fragments and their 

underlying lighting patterns. Indeed, the joint coding of contour and blur has been studied 

recently in V4 (Oleskiw et al., 2018). While a systematic, comparative study of the lighting and 

blur patterns on solid shapes that create various spatial frequencies would be a vital confirmation, 

solid shape representation in V4 is the first evidence-backed theory of V4 tuning that attempts to 

bridge the gap between the competing hypotheses of contour-based and spatial-frequency-based 

models of V4. 
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2.3.2 The need for and utility of solid shape processing in V4 

The prevailing dogma of solid shape representation, as discussed in chapter 1, is that all coding 

transformations before TE are in the image plane. This includes the assumption that V4 neurons 

represent planar contour or spatial frequency features of a given image, a representation that is 

later integrated to give rise to solid shape signals in TE. The results in this chapter challenge this 

dogma by showing explicit solid shape representation as early as V4. These results fundamentally 

alter current theories of coding transformations in V4, and by extension, the ventral visual 

pathway.  

 

Information about solid shapes is critical to object perception and making this information 

explicit for downstream areas that guide movements, assign value, and make decisions based on 

object geometry is critical for efficient transfer and decoding. Furthermore, coding for 3D reality 

is more intuitive and explicit than image transformations, is more robust to changes in viewing 

conditions and occlusion than planar image transformations and covers a considerably larger 

representational space.  

 

This information was thought to be extracted in the later ventral stream areas like TEO and TE. 

The result that solid shape information is made explicit as early as V4 fundamentally challenges 

that theory. TEO and TE are major targets of projections from V4. Neurons in TEO begin to 

represent combinations of shape parts to complex configurations to form a cohesive object 

representation (Brincat and Connor, 2004). Neurons in TE encodes complex solid shapes as 

combinations of medial axial components and surface fragments (Hung et al., 2012). The origin 

of these complex properties was previously unclear but the results from the current study would 

suggest that TEO neurons non-linearly combine surface fragments encoded by single neurons in 

V4. Indeed, the results described in this chapter could be construed as the source of the solid 

medial axis and surface shape signals that would be non-linearly combined to form the known TE 
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representation for solid shapes. Feedforward projections from V4 also terminate in ventral 

posterior parietal regions, and regions in the intraparietal sulcus like LIP, VIP, and CIP.  The 

latter regions are known to be involved with saccadic eye movements, visually guided reaching, 

and perception of depth from stereopsis. The presence of solid shape responses in V4 implies that 

visually guided behavior must be influenced by these early solid shape signals. 

 

The consistency of solid shape responses across multiple 3D cues as early as V4 challenges 

previously held notions of invariant coding. This consistency is certainly beyond what is possible 

with image transformations alone and raises interesting questions about the origin of these 

responses and the inputs on which these transformations occur. Do these responses originate 

earlier than V4 in texture responses in V1 and V2? Or are orientation-, disparity-, and texture-

tuned inputs integrated by V4 neurons to give rise to these invariances? Or are these responses a 

reflection of recurrent connections within V4 or feedback connections from IT cortex? Future 

investigations into these questions will provide key insights into ventral visual pathway 

transformations. 

 

In conclusion, the results in this chapter demonstrate that solid shape is encoded as early as V4 in 

the ventral visual pathway. They also resolve conflicting hypotheses of disparate tuning 

properties in V4 neurons by introducing a superset of higher-dimensional coding transformations 

based on solid geometry. These results fundamentally challenge the current view of coding 

transformations in the ventral visual pathway (see general discussion in chapter 4 for more 

details). 
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2.4 Methods 

2.4.1 Experimental Model and Subject Details 

Two adult male rhesus macaques (Macaca mulatta) weighing 8.0 and 11.0 kg were used for the 

awake, fixating, electrophysiology experiments. They were singly housed during training and 

experiments. All procedures were approved by the Johns Hopkins Animal Care and Use 

Committee and conformed to US National Institutes of Health and US Department of Agriculture 

guidelines. 

 

2.4.2 Method Details 

Behavioral task 

Both monkeys were head-restrained and trained to maintain fixation within a 0.5deg window 

(radius) surrounding a 0.25deg square sprite (fixation spot) displayed on a monitor 60cm away 

for juice reward. Eye positions for both eyes were monitored with a dual-camera, infra-red eye 

tracker (ISCAN, Inc, Woburn, MA). In trials requiring stereoscopic fusion, separate images were 

shown in left and right eyes via cold mirrors. In trials not requiring stereoscopic fusion, the same 

images were shown. Stereo fusion was monitored with a random-dot stereogram search task. 

 

Neural recording 

The electrical activity of 169 (114 and 55 respectively from the two monkeys) well-isolated 

neurons was recorded using epoxy-coated tungsten electrodes (FHC Microsystems), processed 

with TDT RX5 Amplifier (TDT, Inc, Alachua, FL). Single electrodes were lowered through a 

metal guide tube into dorsal V4, targeted with a custom-built electrode drive. Area V4 was 

identified on the basis of structural MRI, the sequence of sulci as the electrode was lowered, and 

the visual response characteristics of the neurons. The neurons receptive field properties (size, 
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position, and color preference) were mapped using 2D sprites (bars and random planar shapes) 

under experimenter control. 

 

Visual stimulus construction and morphing 

Solid stimuli were constructed using a procedure similar to Hung et al (Hung et al., 2012) (see 

figure 2.2). Briefly, stimuli were generated by connecting 2-4 medial axial components. The 

skeletal structure – limb configuration, limb lengths, curvatures, and widths were randomly 

generated. The width profile of each limb was generated using a quadratic function fit to the 

randomly generated width at the mid-point and the two ends. Limb junctions were smoothed 

using a gaussian kernel on the 3D position and normal for every face. During the experiment, the 

stimuli were morphed by adding, deleting, or replacing limbs, or changing the length, orientation, 

curvature, or width of the limbs. Additionally, the position, size, and 3D orientation of the object 

were also changed probabilistically. Planar shapes were generated by turning off shading/lighting 

in OpenGL. 

 

Adaptive stimulus algorithm 

Each neuron was studied using two independent lineages of evolving solid shapes (see figure 

2.1). The first generation consisted of 40 randomly generated solid stimuli (matte or shiny 

shading) in each lineage. Each subsequent generation was divided into two parts - shape 

evolution and solid shape preference testing. For shape evolution, 16 stimuli were randomly 

selected for morphing from the previous generation - 6 from the stimuli from the top 10% 

response range, 4 from the next 20%, 3 from the next 20%, 2 from the next 20%, and 1 from the 

bottom 10%. An additional 4 randomly generated stimuli were added to the pool. For solid/planar 

preference testing, the top 5 stimuli from the previous generation were rendered in solid matte, 

solid shiny, planar high contrast, and planar low contrast versions. The contrasts of the planar 

stimuli were chosen to be the average contrast across solid matte and shiny shapes. This 
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algorithm allowed us to not only to test each neuron’s solid shape tuning based on its responses to 

the stimuli, but also simultaneously test its solid shape preference. Neurons were tested with 80-

440 randomly generated and morphed stimuli. For the 143 neurons studied with two or more 

generations of the adaptive algorithm (102 of 114 and 41 of 55 neurons from the two monkeys 

respectively), the solid preference score was calculated as: 

𝑆𝑃 =
𝑅&'()*– 𝑅,(-.-/

𝑚𝑎𝑥3𝑅&'()*, 𝑅,(-.-/5
 

where 𝑅&'()* is the average neural response across matte or polished solid stimuli, whichever is 

higher, and 𝑅,(-.-/ is the average neural response across high or low contrast planar stimuli, 

whichever is higher. This score varies between -1 (prefers only planar stimuli) to 0 (no 

preference) to +1 (prefers only solid stimuli). 

 

Post-hoc stimulus selection and construction 

After the evolutionary testing procedure, 4-8 stimuli were sampled from the high (top 20%), 

medium, and low (bottom 20%) response ranges to be tested with the following post-hoc tests 

(see figure 2.7 to 2.9). 

 

Contrast: Each stimulus was rendered as a planar shape with 5 levels of increasing contrast (0.2, 

0.4, 0.6, 0.8, 1 on a background of 0.3 gray) or a solid matte shape with 5 levels of increasing 

surface brightness (figure 2.7). 

 

Naturalistic stimuli: Each selected stimulus was rendered with a smooth, purely reflective or 

purely refractive (index 2.0) shader in Blender. It was then placed in a closed (surrounded by 

walls and a floor) or in an open (field of grass or textured ground) environment. The textures 

were selected from online texture libraries. (figure 2.8) 

 



 

 49 

Stereogram: The visible parts of each solid (or planar) shape were selected to generate a solid (or 

planar) stereogram by randomly placing dots at the appropriate depth. This shape was then 

translated in depth relative to the fixation spot. A set of random background dots were placed 

behind the shape (at the farthest depth). 3-5 relative disparities were tested for each neuron. 

(figure 2.9) 

 

2.4.3 Response-weighted Averaging Analysis 

The RWA analysis was performed independently on each lineage on neurons studied with more 

than 80 solid stimuli (more than three generations) per lineage. 

 

For metric shape analysis, each shape was divided into its constituent limbs and each limb was 

described in terms of the geometry of its terminal end and its shaft (figure 2.2). Additionally, the 

junctions between pairs of limbs were also independently parameterized. These geometric 

constructs were parameterized using their position relative to the center of the shape, their 

orientation in 3D space, and their lengths, curvatures, and radii. 

 

Based on these parameterizations, RWA matrices were constructed – one each for shafts, 

terminations, and junctions – such that each element of these matrices is a bin that represents a 

specific part of any shape (figure 2.3). The dimensions of each of these matrices are the 

geometrical parameters (figure 2.3) used to describe the shape fragment. For example, the 

termination matrix has four dimensions – 3D angular position (80 bins on a icosahedral surface), 

3D radial position (5 bins), 3D direction (80 bins on a icosahedral surface), and radius (5 bins). 

To populate these matrices, for each shape, several response-weighted gaussians (centered at the 

bins occupied by every shape fragment in a solid shape) were iteratively summed into the 

matrices (figure 2.4). After repeating this for every shape, each matrix was normalized with a 

non-response-weighted matrix. Finally, the RWA matrices obtained from each independent 
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lineage were multiplied bin-by-bin to produce an accurate representation of neural tuning. These 

lineage-product RWA matrices were used in all further analyses and visualizations. 

 

Each RWA matrix was used to predict responses to the full set of solid shape stimuli presented 

during the experiment. Because the responses of most cells were well predicted by all three RWA 

matrices (figure 2.6), a linear combination of these predictions was fit to obtain the final 

prediction of neural responses.  
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3 Micro-organization of solid shape representation 

3.1 Introduction 

The horizontal organization of specific tuning dimensions on the cortical sheet is considered to be 

an important indication of the representational space in an area (Kaas, 1997) (also see section 

1.4.2). Given that most computations are performed locally, the functional organization of an area 

can shed light on how the coding transformations in it might be implemented. The layout of 

tuning dimensions likely underlies the reduction of dimensionality of representational space onto 

the cortical surface by optimizing axonal wiring length (Allman and Kaas, 1974; Cherniak, 1994; 

Chklovskii and Koulakov, 2000). While the utility of cortical organization is a matter of debate 

(Horton and Adams, 2005; Nauhaus and Nielsen, 2014), its study nonetheless can inform models 

of inter-areal addressability, recurrent computations, and temporal dynamics of neural responses. 

Cortical organization can be understood on many spatial scales: fMRI has been used to reveal 

clustering of semantic concepts (Huth et al., 2016), face patches (Tsao et al., 2003, 2006), color 

modules (Conway et al., 2007), task-related activity (Glasser et al., 2016) etc., optical imaging 

has been used to reveal orientation and ocular dominance columns in V1 (Blasdel and Salama, 

1986; Bonhoeffer and Grinvald, 1991), and two-photon imaging has been used to reveal the 

mutual organization of orientation with spatial frequency, hue, and ocular dominance on a 

cellular level in V1 (Garg et al., 2019; Nauhaus et al., 2012). Although clustering of tuning 

dimensions may be visible on larger spatial scales, making precise predictions of coding 

transformations requires an understanding of micro-organization, or neuron-level organization of 

an area. At larger spatial scales, cortical organization probably reflects average activations of 

large cortical ensembles, which can mask possible discrepancies and distortions that contribute to 

the richness of local coding transformations. Also, only high-resolution imaging techniques, like 

two-photon imaging, can definitely establish a lack of organization. The constraints on the micro-

organization of higher-level visual areas, like V4, are largely unknown, and hypotheses of how 
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tuning dimensions emerge in these areas are yet to be scrutinized. Given the results from the 

previous chapter, knowing such constraints would empower theories of how solid shape 

representation emerges in V4. This chapter investigates the relative locations of solid or planar 

shape-preferring neurons and their respective tuning for solid/planar shape fragments. As with the 

findings in the previous chapter, a substantial fraction of neurons responded selectively to solid 

shapes versus planar shapes. Additionally, strong local clustering of solid shape preference in 

separable cortical patches was found and, importantly, these patches of solid/planar shape 

selectivity had tuning for congruent shape features. This organization of solid shape selectivity is 

the first demonstration of the functional micro-organization in V4 and facilitates hypotheses 

about the visual representational space in mid-level ventral visual areas. 

 

3.2 Results 

3.2.1 Neural responses to solid shapes with two-photon imaging 

The calcium indicator Oregon Green BAPTA (OGB) dye was bulk-loaded into small durotomies 

in area V4 in three anesthetized macaque monkeys to investigate the organization of solid shape 

tuning. The injected region was imaged with a two-photon microscope about an hour after the 

injection. Imaging regions were about 500μm x 500μm in size, at depths from the cortical surface 

ranging from 100μm to 220μm. These depths correspond to upper and middle layer 2/3 of cortex. 

Neurons were differentiated from glial cells on the basis of selective uptake of sulforhodamine 

101 (SR101) in glia, which was visible in the red channel (figure 3.1).  

 

Each experiment started with mapping the aggregate receptive field (RF) of the imaging region 

by flashing planar shapes containing a range of curvatures on parts of the screen. These 2D 

stimuli were designed to have sharp and smooth convexities and concavities at various positions 

relative to the object center and were effective in eliciting responses for RF mapping (figure 3.2).  
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Mapping stimuli varied in size and rotation at each position on the screen (figure 3.2A) and were 

arranged in horizontal and vertical arrays to efficiently sample the visual field (figure 3.2B). The 

position that elicited the maximum activation across the imaging region was selected to be the 

aggregate RF for the region. In some cases, the RF was further refined by confining the mapping  

 experiment to a smaller area centered at the previously estimated RF. 

 
  
 
  

 

Figure 3.1: Example two-photon imaging region 1. 

An approximately 300μm x 300μm region loaded with OGB+SR101 imaged with a two-photon 
microscope. Inset depicts a zoomed in version of the indicated sub-region. Neurons (green blobs) and 
glia (yellow blobs) are differentiated based on selective SR101 uptake by glia cells. Radial and surface 
blood vessels help identify and manually recalibrate the microscope position in case there is 
considerable drift during the experiment. 
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Imaging time per region was limited in two-photon experiments because of photobleaching and 

image degradation due to tissue growth. An adaptive sampling experiment (as described in 

chapter 2) was therefore not feasible. Instead, two types of conventional shape mapping 

experiments were devised with sets of simple solid and planar stimuli, chosen to span the surface 

curvature and 3D orientation space (figures 3.3 and 3.4). The first set consisted of C- and L-

shaped stimuli, each sized to fit the estimated RF. For this set, each stimulus was flashed at the 

position of the RF for 1-2s, with an inter-stimulus interval of 2-4s (figure 3.3). The second set 

consisted of large (full-field), tubular, L-shaped stimuli. More precisely, each stimulus consisted 

of repetitions of the same L-shaped stimulus, positioned so that between them they formed a 

pattern that covered the entire screen width. Stimuli were drifted for two full cycles of the pattern 

 

 

Figure 3.2: Receptive field mapping during two-photon imaging. 

(A) A schematic of a single trial in the receptive field mapping experiment. 2D heart-shaped stimuli are 
displayed in a horizontal or vertical array at varying sizes and orientations. Each array is flashed for 
250ms, and each location is sampled with four sizes and four rotations of the stimuli in a single trial. 
The neural responses are averaged for every trial and across repetitions for a given array. (B) The 
locations of horizontal and vertical arrays. (C) The intersection of the horizontal and vertical array 
locations that elicit the highest responses is taken to be the aggregate receptive field of the imaging 
region. 
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(figure 3.4). As with the previous set, these shapes effectively spanned the relevant surface 

curvature and 3D orientation space. However, in contrast to the first stimulus set this second set  

 offers the advantage of being independent of the RF location measurement. To further achieve 

this goal, stimuli were displaced in small steps in the direction orthogonal to the drifting direction 

across trials. Stimulus position ranged from one edge of the screen to the other to ensure that each 

shape fragment was drifted within the RF of every neuron (figure 3.4B). The results from both 

sets of experiments were qualitatively similar and therefore grouped for the rest of the analyses. 
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Figure 3.3: Trial structure and stimulus set 1 used in two-photon imaging experiments. 

(A) A schematic of a single trial in the solid shape mapping experiment with stimulus set 1. A single 
stimulus from a coarsely sampled set of stimuli from (B) is presented within the estimated aggregate RF. 
(B) L- and C-shaped solid and planar stimuli rotated in 45° steps. Some planar counterparts are 
identical and are therefore presented multiple times during the experiment. 



 

 57 

 

 
 

 

Figure 3.4: Trial structure and stimulus set 2 used in two-photon imaging experiments. 

(A) A schematic of a single trial in the solid shape mapping experiment with stimulus set 2. A series of 
oriented bent tubular shapes was drifted for two cycles on the screen. The displacement orthogonal to 
the drift direction is randomly chosen on any given trial out of 11 position spanning the entire screen. 
(B) Four example trials showing a subset of displacements sampled for a single stimulus in this 
experiment. (C) Four example trials showing a subset of solid and flat shape conditions and different 
drift directions. (D) The full set of stimuli sampled at 45° intervals of in-plane and out-of-plane 
rotations. 
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After each experiment, the images obtained were corrected for motion artifacts in the horizontal 

plane (see methods section 3.4.2), and a binary mask was manually applied to define the set of 

pixels belonging to a neuron. Glia were removed from further analyses at this point. The 

fluorescence time-course (ΔF/F) of each neuron for each stimulus trial was calculated as 67
78
=

7(:)< 78
78

 where t=0 represents the stimulus onset, F(t) is the pixel-averaged fluorescence response, 

and Fo is the pixel-averaged fluorescence averaged across the baseline period 1200-200ms 

immediately before stimulus onset. Examples of the fluorescence time-courses are depicted in 

figure 3.5. The fluorescence sharply rises between approximately 50-150ms after stimulus onset 

and decays slowly to baseline levels by approximately 800ms after stimulus offset. Therefore, the 

stimulus response for each neuron is calculated as the average ΔF/F between 200ms after 

stimulus onset and 800ms after stimulus offset. In this case, only neurons that passed a 2D 

Kolmogorov-Smirnov test (Justel et al., 1997) between the top- and bottom- stimulus were 

analyzed (details in the methods section 3.4). 
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3.2.2 Organization of solid shape preference 

For the example imaging region depicted in figure 3.5, the time courses suggested that at least a 

subset of neurons have a strong preference for solid shapes versus the corresponding planar 

shapes. This was quantified for all neurons in the imaging region using the same formula for solid 

preference (SP) as the one used in the previous chapter.  

𝑆𝑃 =
𝑅&'()*– 𝑅,(-.-/

𝑚𝑎𝑥3𝑅&'()*, 𝑅,(-.-/5
 

where 𝑅&'()* is the average neural response across solid stimuli and 𝑅,(-.-/ is the average neural 

response across planar stimuli. This score varies between -1 (prefers only planar stimuli) to 0 (no 

preference) to +1 (prefers only solid stimuli).  

 

Figure 3.5: Fluorescence time course for solid and planar shape-preferring neurons. 

(A) Peri-stimulus time-courses for three planar stimulus preferring neurons. Horizontal bars signify the 
stimulus presentation duration (2s) of the stimulus indicated by the icon above it. Polygon icons indicate 
the location of the neuron in the imaging region in (B). Solid lines are the trial-averaged time-course and 
translucent fill indicates the SEM. (B) Average green-channel image for the same region as in figure 3.1. 
Polygon icons indicate the neurons in (A) and (C). Scale bar is shown on the bottom left. (C) Same as (A) 
for solid shape-preferring neurons. 
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This analysis revealed two insights. First, it demonstrated that the distribution of SP values for 

this region showed a significant bias towards positive SP values (figure 3.6B) (t-test; p < 10-6). 

Second and more importantly, the map of SP values across the imaging region (determined by 

color coding each neuron with its SP score) revealed a strong clustering of solid shape-preferring 

neurons towards the right of the region (perhaps extending further to the right) and another region 

in the bottom-left (perhaps extending further to the left) and a cluster of planar shape-preferring 

neurons in the middle of the region (figure 3.6A). 

 

Figure 3.6: An example functional map of solid shape preference in V4. 

(A) SP index overlaid on the anatomical average image (same as figure 3.1, 3.3).  Only neurons that pass 
the significance test (see methods) are filled in. Color bar for SP index in the top right. (B) Distribution 
of SP values from the region in (A). 
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Further, figure 3.6A suggested that the preference for solid versus planar shapes changes rapidly 

(rather than gradually) between the different clusters. To quantify the rate of SP change across 

cluster boundaries, the boundaries between adjacent clusters was marked with a novel spatial 

clustering technique. In addition to labeling the cell soma, OGB also labels the interstitial space 

between cells (neuropil). Furthermore, the neuropil generally appears to be tuned to similar 

stimulus properties as the embedded neurons (see Figure 3.7 for an example), albeit with a much 

weaker signal strength. Because the neuropil signal is spatially continuous throughout the 

imaging region, it can more easily be used to generate a continuous map for the imaging region, 

rather than the punctate signal generated by cell somas depicted in figure 3.6. To generate the 

 

Figure 3.7: Spatial clustering analysis based on pixel-SP functional map. 

(A) Map of SP values for each pixel for the imaging region in figure 3.1. (B) The same map smoothed 
with a Gaussian kernel with broad width. (C) Contour map (green dashed lines) of the smoothed map in 
(B). Dots indicate neuron locations. Cyan and orange contours are the contours selected as cluster 
boundaries. (D) Selected contour boundaries and neuron locations overlaid on smoothed pixel-map 
from (B). 
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neuropil map, a peri-stimulus time-course was extracted for each pixel (instead of every neuron). 

Based on these responses, an SP value was assigned to each pixel creating a continuous map of 

SP (figure 3.7A). This map was then smoothed and normalized (figure 3.7B). This smooth map 

produced iso-preference contours that were considered as candidates for clusters (figure 3.7C). 

These cluster contour candidates were then short-listed based on criteria defined in the methods 

section 3.4.3. Briefly, contours that contained fewer than four neurons and those that were smaller 

than 10% of the size of the imaging region or were too complex (based on the ratio of the contour  

 area and the area of its convex hull) were rejected. Of the remaining contours, the largest and  

most homogeneous contours were selected based on their area and the kurtosis of the distribution 

of SP values of the neurons contained in the contour. The final set of cluster contours were 

smoothed using a spline smoothing function. The cluster contours for the example  

region from figure 3.6 are shown in figure 3.8A.  

 

 

Figure 3.8: Spatial clustering and transition of SP along cluster boundaries. 

(A) Imaging region (figure 3.1) overlaid with SP map of neurons (figure 3.6) and selected cluster 
contours (figure 3.7). Locus of adjacent cluster contours is used as a proxy for the cluster boundary 
(white) for transition analysis. (B) Transition of SP orthogonal to the cluster boundary (white curve in 
(A)).  Neuron SP values (blue dots) are plotted against the shortest distance from the cluster boundary. 
Sigmoid function fit to the points is plotted in red. 
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To ascertain how SP values transition across the boundary between the clusters, a contour that 

was located in the middle of the two clusters was drawn by calculating the mid-point of the 

nearest pairs of points along the two cluster contours. This boundary demarcated the boundary 

between clusters (white line in figure 3.8A). A signed perpendicular distance between every 

neuron within the region and the cluster boundary was then calculated, and the SP was plotted 

against this distance (figure 3.8B). For the example region, a sigmoidal function fit to the data 

shows transitions with a steep slope, so that the SP changed from values ~ 0 to values near ~ 0.6 

over approximately 44μm. To summarize, for the example imaging region, there exist two 

clusters that are have neurons with similar SP values, and those values tend to transition sharply 

across the clusters. 

 
 A total of five V4 regions were 

imaged across three monkeys. 

The cumulative distribution of SP 

values across all imaging regions 

is shown in figure 3.9A, along 

with the cumulative distribution  

 from the electrophysiology 

experiments from chapter 2 for 

comparison (figure 3.9B from 

figure 2.6A). The pooled 

distribution for the two-photon data was significantly greater than 0 (p < 10-80; t-test) and had a 

median of 0.37 and mean of 0.33. 465/570 neurons (81.6%) had an SP>0, i.e. a greater response 

to solid shapes on average than planar shapes, and 193/570 neurons (34%) had an SP>0.5, i.e. a 

greater than double the response to solid shapes on average compared to the planar shapes. As a 

comparison, about 66% of neurons had an SP>0 in the electrophysiology experiment (figure 

 

Figure 3.9: Cumulative distribution of SP in two-photon imaging 
experiments. 

(A) Cumulative distribution of SP values across five V4 imaging 
regions from three monkeys. (B) Cumulative distribution of SP 
from electrophysiology experiments for reference (from figure 
2.6A). 
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3.9B). The two distributions were significantly different (p < 10-14; Kolmogorov-Smirnov test). A 

trivial explanation of this difference is that it is a reflection of the varying distributions of SP 

values across imaging regions. Because two-photon imaging samples only layer 2/3 neurons and 

the laminar specificity of neurons is indeterminate in single-electrode recordings, it is also 

possible that the enhanced solid shape preference reflects varying selectivity across cortical 

laminae.  

 

The SP maps for the other four imaging regions (regions 2-5) are shown in figure 3.9C-F. The 

cluster contours and the boundaries are overlaid on the SP maps and plots of SP transitions across 

the cluster boundaries are shown on the right. These data confirm the observations made for the 

example imaging region: imaging regions consistently show a clear patchy micro-organization of 

solid shape preference. Imaging regions were randomly chosen across V4, and therefore reveal 

random subsets of the V4 micro-organization. In addition, imaging regions were relatively small 

– these data suggest, roughly on the same scale as the solid shape and planar shape clusters. It is 

therefore not surprising that across all samples, some imaging regions have multiple clusters and 

clear transitions between them, while other regions are mostly dominated by a single cluster. 

While this does not impact the conclusion that SP values are clustered in V4, the relative position 

of solid and planar clusters in an imaging region does limit the analysis of the rate of SP change 

across cluster boundaries. In addition, the shadows cast by surface blood vessels occlude parts of 

some of the imaging regions (see figure 3.10C, for example), further limiting the ability to 

quantify SP changes. Given these circumstances, it is challenging to make a definitive case for 

either sharp or smooth transitions of SP values across cluster boundaries, and more imaging 

regions that contain large clusters with clear boundaries are required. 
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Figure 3.10: Spatial 
clustering of SP for four 
more imaging regions. 

(A) Anatomical image of 
an imaging region 
overlaid with the SP 
map of the region. The 
solid shape-preferring 
cluster (orange 
contour), planar shape-
preferring cluster (cyan 
contour), and the cluster 
boundary (white 
contour) are also 
overlaid. The transition 
of SP values as a 
function of the shortest 
distance to the cluster 
boundary is plotted on 
the right of the image. A 
sigmoid function (red 
curve) is fit to the SP 
values. (B-D) Same as 
(A) for three more 
imaging regions. (in (B) 
a sum-of-sigmoids is fit 
to the SP vs distance 
data because there were 
two planar-preferring 
clusters flanking a solid-
preferring cluster.) 
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3.2.3 Comparisons of shape preferences within and across clusters 

The pixel map-based spatial clustering analysis described above was based solely on the SP of the 

pixels and the distribution of SP of the neurons inside the cluster. Since SP is based on averages 

across solid and planar shape stimuli, the clustering was agnostic to the shape-specific response 

patterns of neurons in the region to the stimulus set. Therefore, the correlations of shape response 

patterns across neurons within and across clusters can be analyzed to assess the degree to which 

neurons within and across clusters share shape preferences.  

 

First, the response of the neurons within each cluster was averaged across all neurons for each 

stimulus yielding an average cluster response vector (see schematic in figure 3.10A and appendix 

figure 6.5A). This served as a proxy for the response of the cluster. Then the response pattern of 

each neuron within either cluster was correlated with the averaged response of the solid and 

planar cluster. The cumulative distributions of these correlations are plotted in figure 3.10 for 

every imaging region (top row of each set in figure 3.10). In every case, the response correlation 

of neurons from the solid-preferring cluster with the averaged solid cluster response was 

considerably higher than the correlation of the same neuronal responses with the planar cluster 

response (top-left of each set). In fact, this result was the same across all clusters, regardless of 

solid shape preference (p < 0.001 in all cases; Kolmogorov-Smirnov test). In other words, 

neurons within any cluster were highly correlated with the average response of the cluster they 

belong to, but not to the average cluster response of the adjacent cluster. This implies that neurons 

within each cluster do not just share their preference for solid or planar shapes, but additionally 

share shape preferences. When correlations were calculated for each pair of neurons within each 

cluster (not the cluster average) the results were similar (appendix figure 6.4).  
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Figure 3.11: Correlational analyses for all five imaging regions. 

(A) A schematic depicting the two clusters of neurons preferring solid and planar shapes. The grid 
depicts a matrix of responses to solid and planar stimuli (rows) for each neuron (columns) in the two 
clusters. Roman numerals divide the matrix into four quadrants. Correlational analyses in (B-F) are 
performed on either the full matrix or a subset of quadrants of this matrix. Also see appendix figure 6.5 
for additional schematics. (B) For an example imaging region, three types of correlations are plotted 
in the three rows. Left column (orange and grey curves) represents correlations of cluster average 
responses with neurons in the solid shape-preferring cluster. Right column (cyan and gray curves) 
represents correlations of cluster average responses with neurons in the planar shape-preferring 
cluster. Correlations of neurons with averaged cluster responses across all stimuli (top row; figure 
6.5A), only solid shape stimuli (middle row; figure 6.5B), and matched solid-planar shape stimuli 
(bottom row; figure 6.5C) are arranged below the functional map. (C-F) Same as (B) for four more 
regions. (... continued on the next page) 
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Figure 3.11 (… continued from previous page): Correlational analyses for all five imaging regions. 
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Next, correlations of only solid shape responses were calculated with the averaged solid shape 

responses of each cluster, independent of the solid/planar preference of the cluster (middle row of 

each set in figure 3.10 and schematic in figure 6.5B). This was done to check whether neurons in 

adjacent solid- and planar-preferring clusters responded similarly to solid shapes. The correlation 

distributions showed smaller differences indicating that both clusters in every region largely 

responded in a similar pattern to solid shape stimuli. This difference is especially pronounced in 

region B where the neurons were largely anti-correlated in the previous test indicating mutually 

exclusive response patterns but, in this test, became indistinguishable from each other. 

 

Because every solid shape tested had a planar shape counterpart in the stimulus set, a final test 

was performed to check whether solid and planar shape-preferring clusters responded similarly to 

the solid and planar versions of the same shape (bottom row of each set in figure 3.10 and 

schematic in figure 6.5C). In this case, a high correlation with the averaged response of the 

adjacent cluster would mean that the solid shape responses of the solid shape-preferring cluster 

follow the same pattern as the planar shape responses of the planar shape-preferring cluster. This 

test yielded mixed results. In all cases except region B, the planar shape tuning of the planar 

cluster was different from the solid shape tuning of the solid cluster. As with the SP transitions 

across boundaries, conclusions from these analyses are limited by the available imaging regions 

and more data are needed to determine whether there is indeed no correlation between the shape 

preferences in neighboring clusters, or whether there is a systematic organization of shape 

preferences in V4 that would be visible at larger scales and/or with more imaging regions. These 

and other hypotheses are further discussed in section 3.3 and 4.3. In summary, these correlational 

analyses reveal that neurons within spatially defined clusters have strikingly similar response 

properties to shapes, in addition to their overall shared preference for solid or planar shapes. 
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3.3 Discussion 

This chapter described the results of two-photon calcium imaging experiments that were designed 

to probe the micro-architecture of solid shape tuning in V4. Unlike the previous chapter, 

parametrically defined sets of solid shape stimuli and their planar counterparts were used to 

access the solid shape preferences of single neurons. The distribution of SP values across five 

imaging regions recapitulated the distribution of SP values obtained in the previous chapter. 

Neurons in any given imaging region were found to be organized in clusters of high SP and low 

SP and these clusters were found to be juxtaposed. In addition, the shape preferences of neurons 

within each cluster were found to be highly correlated. These results are the first demonstration of 

an orderly micro-organization of stimulus properties in V4. This discovery further reinforces the 

results from the previous chapter that V4 neurons are tuned for solid shape fragments; the 

observation that neurons are not only tuned to solid shape fragments, but that solid shape 

preference is mapped in V4, is strong evidence for the hypothesis that solid shape is a critical 

feature in V4. This micro-organization has implications for coding transformations within V4, 

raises questions about the mechanisms by which such a mapping might be achieved, and sheds 

light on how downstream areas might be tuned for solid shape. These, and other implications, are 

discussed below. 

 

In the imaging regions illustrated in this chapter, the overall size of the clusters in V4 is roughly 

130-180μm in diameter. This estimate comes from the clusters in the regions in figure 3.8 and 

figure 3.10B where a central solid (or planar) cluster is flanked by two planar (or solid) clusters. 

This estimate is preliminary because at the spatial resolution at which neurons were clearly 

visible and yielded high signal to noise ratios, imaging region were sized such that they typically 

contained only one or parts of two clusters. Nevertheless, the fact that juxtaposed clusters were 

observed in most regions is evidence for the hypothesis that the clusters are typically at most the 
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size of the imaging region, if not smaller. Further experiments at larger spatial scales are required 

for a better estimate. 

 

While preliminary, these data suggest that solid shape preference sharply changes across cluster 

boundaries. This would be consistent with an organization that consists of segregated modules for 

solid and planar shape-selective neurons. This conclusion currently is based on the sharp 

transitions in three out of five imaging regions and should be validated with more imaging 

samples and/or imaging larger regions that are more likely to contain several cluster boundaries. 

 

Furthermore, the solid shape preferences of neurons within each cluster were tightly correlated, at 

least for the limited stimulus set used here. Based on the precise tuning curve measurements 

obtained in chapter 2, the responses of neurons observed for the simpler stimulus set can be 

explained by tuning for 3D object-centered position, curvature, tubular width, junction angle, etc. 

Therefore, the result that solid shape preferences are clustered in V4, raises the interesting 

hypothesis that the underlying tuning functions are also clustered. To test for shape tuning of 

single neurons and the mapping of shape tuning in V4, correlational analyses are not sufficient, 

and a larger stimulus set would be required. This larger set may take the form of an adaptive 

shape morphing algorithm, like the one used in the previous chapter. Instead of sampling the 

tuning manifold of a single neuron, this algorithm would need to optimize for the mean 

population responses, differences of responses of clusters of neurons, and/or the response density 

of the population. In addition, the larger amount of sampling required for these experiments 

would only be possible in a different preparation that allows longer optical access to each 

imaging region, such as chronic two-photon imaging. 

 

In discussing the correlation of shape preferences between neurons in a cluster, it should be noted 

that the manual identification of cell bodies in each imaging region opens the possibility of 
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contamination of neural signals by signals originating in the neuropil. Since the neuropil signal 

appears to share tuning properties with the neurons that are embedded within it, this 

contamination has the potential to artificially increase correlations between neurons. However, 

the observation of sharp transitions in SP across cluster boundaries argues against strong neuropil 

contamination. In addition, previous analyses of the relationship between neural responses and 

the neuropil around them has been quantified before (Nauhaus et al., 2012), and could be 

analyzed here as well. In addition, existing algorithms for removing neuropil contamination could 

be applied to further reduce spurious correlations. 

 

3.3.1 Relationship to known maps in V4 

Cortical maps in V4 have previously been studied using optical imaging techniques paired with 

electrophysiological recordings. These studies demonstrated maps of color/hue (Tanigawa et al., 

2010), orientation (Ghose and Ts’o, 1997), and disparity-defined edges (Fang et al., 2018). All 

maps typically revealed patchy organization of the stimulus properties and haphazard mutual 

organization among the maps. Given the results of this chapter, the mutual organization of solid 

shape preference and other known cortical maps in V4 would be the next frontier of 

investigations. The previous maps of orientation, color, and disparity were obtained with low 

resolution techniques. It will be interesting to redraw these maps with single cell resolution and 

investigate the joint tuning in single neurons and clusters for solid shape preference and other 

stimulus properties. 

 

In this study, only the map of solid shape preference was obtained. In order to align this map with 

those for orientation, color, and disparity, further experiments would be required which either 

factorize the relevant solid shapes with these properties to produce solid shape stimuli that vary in 

color, depth, etc. or acquire the maps of solid shape preference and other properties in separate 

experiments. 
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The results in this chapter address the cortical map in layer 2/3 only. Due to the density of tissue 

staining and the opacity of the brain, two-photon imaging cannot reach deeper cortical layers and 

therefore cannot make inferences about columnar organization. Electrophysiological studies that 

evaluated the change in neural tuning to color perpendicular to the cortical surface reported a 

vague columnar organization in V4 (Kotake et al., 2009). Testing whether a columnar 

organization of solid shape tuning exists in addition to the observed horizontal organization will 

be an exciting prospect for future experiments using either laminar probes or three-photon 

imaging. This would also allow a quantification of how the neural tuning to solid shape fragments 

evolves between layers. 

 

3.3.2 Implications for V4 inputs and outputs  

As mentioned in the introduction, a slight rotational difference in the mosaics for on- and off-

RGC may be sufficient to cause a bias in LGN inputs to V1 that in turn seeds the map of 

orientation tuning. By applying the idea of using spatial pooling of inputs to explain feature maps 

in an area, the solid shape map found here in V4 may be used to inform circuit models of the 

ventral stream. So far, models of the pathway have had to rely on explaining how combinations of 

tuning properties in one area could lead to the tuning properties in the next area. Adding the 

spatial layout of feature maps in an area (or in the case of V1 and V4, the feature maps in the 

input and output area) imposes important additional constraints on these models. These spatial 

constraints will generate more specific circuit models, that can make testable predictions e.g. 

about the spatial footprint of V1 projections to V4. Similarly, does the existence of a solid shape 

map in V4 have implications for coding transformations in downstream areas? If indeed a map of 

solid shape tuning exists, pooling from adjacent clusters of solid shape preference in V4 would be 

an easy mechanism to create neural tuning to complex combinations of solid shapes as is 

observed in IT cortex (Brincat and Connor, 2004; Hung et al., 2012; Yamane et al., 2008). 



 

 74 

 

In conclusion, the micro-organization of solid shape in V4 raises many questions about the 

implementation of coding algorithms in the ventral visual stream. In light of the results in this 

chapter, the local and global circuits that process the visual world reinterpret the incoming signals 

into 3D reality in the early stages using mechanisms yet to be discovered (see general discussion 

in chapter 4 for more details). 

 

3.4 Methods 

3.4.1 Experimental Model and Subject Details 

Three juvenile male rhesus macaques (Macaca mulatta) aging between 15-21 months and 

weighing between 3.0 and 4.0 kg were used for anesthetized two-photon imaging experiments. 

They were singly housed before the experiments and were not involved in any prior procedures. 

All procedures were approved by the Johns Hopkins Animal Care and Use Committee and 

conformed to US National Institutes of Health and US Department of Agriculture guidelines. 

 

3.4.2 Method Details 

Animal Preparation and Surgery 

The monkey was anesthetized with ketamine (10mg/kg IM) and pre-treated with atropine 

(0.04mg/kg, IM) to stabilize heart rate. A tracheostomy was performed and an endotracheal tube 

was inserted to deliver oxygen and isofluorane anesthesia, starting at 3% and lowered to ~0.5% 

during imaging experiments. An intravenous line was inserted for delivering IV drugs and a 

Lactated Ringers Solution (LRS) containing 5% dextrose. The animal was placed in a sterotaxic 

apparatus and the head was initially secured using ear bars, eye bars, and a palate bar. Later, a 

titanium head post was implanted using cranial screws and dental cement to secure the head to the 

stereotaxic apparatus for the rest of the experiment. At this point, the ear bars and eye bar were 
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removed. The metal head post and the palate bar setup were most efficient in controlling 

breathing related artifacts during imaging experiments. Cranial metal screws were implanted over 

the frontal lobe to record the EEG. Throughout the experiment, anesthesia was maintained with 

sufentanil citrate (4-20μg/mg/h, IV), supplemented with low levels of isofluorane. The animal 

was paralyzed with pancuronium bromide (0.15mg/kg/hr, IV) and artificially ventilated with a 

small animal respirator (Ugo Basile). Dexamethasone (0.1mg/kg, IM) and cefazolin (25mg/kg, 

IV) were administered to prevent infections and swelling. EEG, EKG, SpO2, EtCO2, respiration 

and heart rate, and body temperature were monitored continuously to maintain the appropriate 

depth of anesthesia and monitor animal health throughout the experiment.  

 

The skull over dorsal V4 was thinned to reduce the distance between the imaging objective and 

the cortical surface. After estimating the location of the lunate sulcus and the superior temporal 

sulcus based on stereotaxic markers, a disc-shaped metallic well was cemented over V4 and parts 

of V1.  Subsequently, diagnostic craniotomies were performed to locate the two sulci and confirm 

the location of V4. Small craniotomies and durotomies (~9 sq. mm.) were then made to expose 

V4. The cortical surface was visualized with epifluorescence imaging. A dye solution of 2mM 

Oregon Green BAPTA 2-AM, 10% DMSO, 2% pluronic, and 25% sulforhodamine 101 

(ThermoFisher Scientific) in ACSF was loaded into a glass pipette, with was lowered into cortex 

at an ~ 45° angle using a micro-manipulator (Sutter Instruments) under microscopic guidance. 

Several injections of the dye solution were made into a single durotomy using a Picospritzer 

pressure injection system (Parker Hannifin). After a ~1hr waiting period, the craniotomy was 

covered with 1.5% Type III Agarose (Millipore Sigma) and a glass coverslip (Warner 

Instruments) was inserted under the craniotomy to reduce vertical motion artifacts due to 

breathing. Horizontal motion artifacts were removed post-hoc. Most imaging data was collected 

at cortical depths of ~100-200μm. After the imaging experiment ceased to yield results due to 

photobleaching of the cortical region or if the dye loading failed to produce sufficient well-
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labeled neurons, a new craniotomy was performed, and the dye loading was repeated in the new 

location. Each hemisphere typically yielded 4-6 craniotomies after which the imaging well was 

re-located to the other hemisphere. 

 

Before the imaging experiment, both eyes were covered with contact lenses to protect them from 

drying. Refraction of the eyes was determined for the stimulus display at 60cm from the eyes 

based on electrophysiological recording of a patch of V1 cortex. In this experiment, neural 

responses to oriented gratings at several spatial frequencies were recorded with ophthalmic lenses 

of different strengths placed in front of each eye. Lenses which optimized responses to the highest 

spatial frequency gratings were then chosen for each eye. 

 

Two-photon microscope 

Two-photon microscopy was performed using a Neurolabware microscope coupled to a 

Chameleon 2 Coherent Ti-Sa laser. A 16X water-immersion objective (Nikon; 0.8 NA lens and 

3mm working distance) was mounted on a movable stage with one rotational and three 

translational degrees of freedom for easy placement perpendicular to the imaging region. Imaging 

was performed at 920 nm and the emission was collected at 15.5Hz using green and red photo-

multiplier tubes.  

 

Visual Stimulus Generation 

Unlike the single-electrode physiology experiment described in chapter 1, the two-photon 

imaging experiment was time-limited to a few hours per imaging region and, therefore, not 

amenable to precise mapping of solid shape tuning of each neuron in the imaging region. A 

constrained set of solid and planar shape stimuli constructed was used to map the relevant solid 

shape properties, as illustrated in figure 3.3 and 3.4. All stimuli were generated with OpenGL 

rendering of solid shapes with a single light source placed above the virtual camera. The 3D 
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model for the solid shape stimuli was generated using a precise mathematical shape generation 

algorithm with an ability to change 3D medial axial and surface properties during the experiment. 

Flat, planar stimuli were generated by disabling OpenGL lighting. 

 

Visual Stimulus Presentation 

Stimuli were presented using the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; 

Pelli, 1997) extension for MATLAB (Mathworks Inc.). The toolbox was also used to synchronize 

visual stimulus presentation with two-photon image acquisition. The stimuli were presented on a 

120Hz 24” LCD display (Viewsonic) gamma-corrected using a Photo Research 

spectroradiometer. A set of receptive field (RF) localizing stimuli (gratings, bars, 2D sprites) 

were presented and the average receptive field of neurons in the imaging region was determined 

using pixel-based online analysis (figure 3.2). The stimulus display was roughly centered on the 

RF location. 

 

In one animal, visual stimulus set 1 (C-shaped and L-shaped, see figure 3.3) was flashed within 

the RF. In the other two animals, visual stimulus set 2 (long, bent tubes, see figure 3.4) was 

drifted across the full field of view. Stimuli in set 2 were drifted across the screen at a uniformly 

sampled set of directions such that every pixel encounters precisely 2 cycles of the visual 

stimulus. Additionally, the stimulus was displaced in a direction orthogonal to the direction of 

drift in 11 increments such that each fragment of the solid/planar shape was drifted across the RF 

of each neuron.  

 

For both stimulus sets, a smaller set of coarsely sampled stimuli were chosen for initial 

experiments in each imaging region. For every experiment, the relevant stimulus set was 

randomly shuffled, and each stimulus was presented for 1-2s followed by a blank gray screen for 

1-3s (see time courses in figure 3.5). Five blank trials (gray screen) were also randomly presented 
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during the experiment. The long stimulus and inter-stimulus durations was matched to the slow 

time course of OGB responses and acquisition rate. Each stimulus was repeated 5-10 times.  

 

Image pre-processing and segmentation 

An anatomical reference image was created for each imaging region by averaging uniformly 

sampled frames across the experiment duration. For longer experiments, several reference images 

were created. For in-plane movement correction, each frame was correlated with the reference 

image and a horizontal and vertical shift was found. These shifts were applied to the frame to 

yield a stable recording. This correction was applied to each frame before further analyses. A 

binary cell segmentation mask was created for the imaging region by manually encircling cells in 

the reference image. Glia cells were accounted for by selective labeling with SR101. Thus, cells 

present in both red (575-650nm emission filter) and green (510-560nm emission filter) channels 

were rejected. The response of each neuron in each frame was computed by the dot product of the 

movement-corrected frame with the neuron’s binary mask.  Each imaging region yielded ~25-200 

neurons. 

 

The stimulus onset and offset times were tracked in reference to two-photon scanning. Since the 

laser scanning started from the top left of the frame and proceeded across the image row-by-row, 

neurons were scanned in a sequence from top to bottom. The onset of the stimulus could occur 

when the laser is in the middle of scanning a frame. Therefore, it is not sufficient to synchronize 

the frame number with the stimulus onset. Each neuron’s response time-course was therefore 

corrected based on its location in the image and the exact onset of the stimulus, i.e. if the stimulus 

appears in the middle of the scanning of a frame, that frame was only used as the response of 

neurons that were scanned after stimulus onset. The fluorescence time-course (𝛥𝐹.(𝑡)) of each 

neuron for each stimulus trial was calculated as: 
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𝛥FB(t) =
𝑓.(𝑡) − 𝐹'.

𝐹FB
 

where 𝑡 = 0 represents the stimulus onset, 𝑓.(𝑡) is the measured fluorescence response of the nth 

neuron, and 𝐹'. is the average response of the neuron in the baseline period (𝑡	 >

	−1200𝑚𝑠	𝑎𝑛𝑑	𝑡	 < 	−100𝑚𝑠). The stimulus response of each neuron was calculated as the 

average 𝛥𝐹.(𝑡)	𝑓𝑜𝑟	𝑡 > 100𝑚𝑠	𝑎𝑛𝑑	𝑡 < 𝑡'RR 	+ 	600𝑚𝑠 (where 𝑡'RR is the time of stimulus 

offset). 

 

3.4.3 Quantification and Statistical Analysis 

For imaging regions with stimulus set 1, only cells that passed a t-test (p < 0.05) between the best 

and worst stimulus condition were included in further analyses. Because this statistic was only 

used for rejecting neurons that were unresponsive to any stimuli in this set and no additional per-

neuron or population analyses were performed based on this rejection, this statistic was deemed 

appropriate. For imaging regions with stimulus set 2, since each stimulus drifted across the screen 

in each trial (time) and was displaced in the orthogonal direction across trials (space), this created 

a 2D matrix of responses (similar to the event map studied extensively in the somatosensory 

cortex). To effectively capture the significance of neural response across time and spatial shifts, a 

two-sample, two-dimensional Kolmogorov-Smirnov test (Justel et al., 1997) was calculated 

across time and stimulus displacement between the best and worst stimulus condition. Only cells 

that passed the 2D KS-test (p < 0.05) were included in further analyses. 

 

Solid Shape Preference Index Map 

As with the analysis in the previous chapter, the solid preference index for each neuron in an 

imaging region was calculated as: 
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𝑆𝑃 =
𝑅&'()*– 𝑅,(-.-/

𝑚𝑎𝑥3𝑅&'()*, 𝑅,(-.-/5
 

 

where 𝑅&'()* is the average neural response across all solid stimuli and 𝑅,(-.-/ is the average 

neural response across all planar stimuli. This score varies between -1 (prefers only planar 

stimuli) to 0 (no preference) to +1 (prefers only solid stimuli). 

 

Spatial Clustering Analysis 

To group neurons in an imaging region into meaningful spatial clusters, a pixel map of SP was 

created (see figure 3.5) i.e. each pixel was assigned a SP score using the same formula as above. 

The map was then smoothed with a broad 2D Gaussian kernel using the in-build MATLAB 

function imgaussfilt with a standard deviation of 20, normalized, and a contour map was 

generated. The 2D contours from this contour map provided cluster candidates. All contours went 

through a 3-stage selection/rejection criterion. Stage 1: Contours that contained fewer than four 

neurons or were smaller than 10% of the size of the imaging region in area, or were too complex 

(ratio of the area of the contour to the area of the convex hull of the contour was less than 0.95) 

were rejected first. Stage 2: For remaining contours that contained the same neurons, the most 

complex contours were rejected. Stage 3: For the remaining contours, concentric contours were 

identified and the largest contour with the least SP kurtosis (fourth moment of the distribution of 

SP of neurons within a contour) was chosen. This ensured a homogeneous distribution of SP 

values within the selected clusters. In some cases, after the contours were selected, an additional 

contour simplification step was done where the contour was replaced with its convex hull. This 

was not done when the simplified clusters intersected each other. 

 

Boundary Transition Analysis 
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The boundary between adjacent clusters was defined as the set of points that are equidistant from 

the two cluster contours. To calculate this, the pair of closest points on the adjacent cluster 

contours was identified and the mid-point of their connecting line segment was calculated. Both 

contours were then traversed in both directions and mid-points were calculated for all closest 

point pairs. Finally, the cluster boundary was defined as the smooth b-spline curve created with 

these mid-points as control points. 
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4 Discussion 

The results in this thesis address fundamental questions about coding transformations in the 

ventral stream by focusing on processing of solid shape information in intermediate area V4. In 

chapter 2, a large fraction of V4 neurons recorded extracellularly was found to respond 

preferentially for solid shapes versus planar shapes. Response-weighted averaged (RWA) 

matrices suggest that these neurons have tuning peaks with dimensions for 3D orientation, 

curvature, radius of tubular structures, junctions between two solid limbs, 3D object-relative 

position. The responses to solid shapes were consistent across lighting cues like shading and 

specularity, and optical cues like reflectivity and refraction. Also, neurons retained their 

preference for solid shapes when rendered as random dot stereograms (RDS) without any 

monocular contrast or texture cues. In chapter 3, the distribution of solid shape selectivity was 

recapitulated in two-photon calcium imaging experiments. In addition, neurons were clustered 

according to their preference for solid or planar shapes, with sharp boundaries between the 

clusters. Finally, within each cluster, the shape preferences of neurons were highly correlated.  

The major contribution of this thesis is the discovery of solid shape representation at an early 

visual processing stage that was thought to only process image information. These results 

necessitate a rethinking of the hierarchy of coding transformations along the ventral visual 

pathway. This finding may also provide a potential resolution to a longstanding argument about 

coding of contour, spatial frequency, texture, and disparity information in V4. These previous 

results, when viewed from the perspective of solid shape coding, resolve into cues that are 

informative about the solid shape of an object. Indeed, the results in this thesis argue that the 

ventral visual pathway transforms the input image into an intermediate (or latent) code which is 

decipherable in terms of explicit solid shape representation to efficiently extract the identity of the 

object in the image. In the following section, the concept of latent representations is analyzed in 

view of the current results and deep network models of object vision. 
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4.1 Image ⇒ Solid Shape ⇒ Identity 

The identity of an object is not limited to a set of category labels. The words ‘a pen precariously 

placed at the edge of a table’ conjure up a mental picture that is not fully describable by the very 

sentence that conjured it. ‘Pen’ and ‘table’ and maybe even ‘precarious’ may be gleaned by a 

computer using a photograph of the scene, but inferences about the scene that the brain produces 

– how one would shake the table to make the pen fall, how one would catch the pen as it is falling 

and whether or not one would be able to get there before it hits the ground – would require 

millions of training images and trials for a computer to generate. The shapes of the objects in the 

scene are a fundamental aspect of the way these inferences are made with visual information.  

 

Inherent in an object’s visual shape are properties like balance, animacy, weight, affordance, and 

capacity. The representation of these properties requires a detailed representation of object shape. 

A novel object with a handle informs us how the object is potentially lifted with no instruction. If 

the same object is asymmetrically shaped, we can guess that it will be unevenly weighted. Shapes 

are central to visually guided interactions with objects in the world. 

 

4.1.1 Deep network models of object vision 

It is a matter of debate as to how these inferences are performed in the brain. The current best 

class of mechanistic models of object vision – deep learning models – are trained on classification 

of objects into categories given an image (Cadena et al., 2017; Cadieu et al., 2014; Cichy et al., 

2016; Khaligh-Razavi and Kriegeskorte, 2014; Schrimpf et al., 2018). These models stack 

convolutional and normalization layers to achieve human-level performance at classification (see 

figure 4.1). They assume that hidden transformations convert 2D information directly into object 

identity (He et al., 2016; Huang et al., 2017; Krizhevsky et al., 2012; Simonyan and Zisserman, 
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2014).  Importantly, it is believed that the inner representations (or latent space in figure 4.1) of 

the deep network are not describable as the representation of meaningful parts of the image or the 

object within the image i.e. there are no reasonable geometric parameters that can be used to 

model the responses of single units within these inner representations. Similarly, in the ventral 

visual pathway, many studies have considered the description of the critical features in 

intermediate visual cortex to be a futile endeavor (Abbasi-Asl et al., 2018; Bashivan et al., 2019). 

These studies instead suggest that the trajectory of representations between early visual cortex 

(V1) and late visual cortex (IT) is indescribable, except in a strictly mathematical sense as a set of 

complex image transformations.  The results presented in this thesis take an opposing view, in 

that they attempt to describe that intermediate representational space in the brain. The findings  

demonstrate that V4 produces explicit signals for the solid shape geometry regardless of the 3D 

cue.  

 

 

Figure 4.1: Neural networks and latent spaces. 

Deep convolutional networks (DCN) are neural networks that perform 2D convolutions on the input 
image with learned kernels to sequentially transform the image into a latent space to aid clustering and 
classification of the image. In the black box, the architecture of a popular DCN called AlexNet is shown. 
The convolutional layers of this network been successful as models of neurons in the ventral visual 
stream. 
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The result that the 3D reality of an object is extracted before its identity has many implications. 

Firstly, shape representation is a more stable code than retinotopic representation because it is 

robust to small changes in viewing conditions. In other words, if, via coding transformations in 

the early- and mid-level areas, object shape is explicitly identified first, the extraction of object 

identity in later stages will potentially be less vulnerable to changes in viewing conditions, global 

shifts in illumination, occlusion, etc. The space of planar images is highly degenerate, in the sense 

that the same 2D silhouette could be produced by many solid shapes. A more abstracted 

representation for solid shape fragments would produce a sparser and more explicit 

representation, which would aid in transfer and decoding. Furthermore, because edge information 

is preserved in V4 in neurons that prefer planar shapes over solid shapes, this may serve to 

robustly represent information about texture and other planar information like text on solid shapes 

(Ratan Murty and Arun, 2017). Indeed, the result that solid and planar shape preferring neurons 

are clustered next to each other, perhaps forming two channels of processing, may contribute to 

the joint robustness of solid shape discrimination and edge and texture discrimination in primates. 

The lack of similar processing channels, in turn leading to a lack of robustness against changes in 

viewing conditions, may be the reason for the susceptibility of computer vision algorithms to 

attacks that are imperceptible to humans and other primates. 

 

AlexNet (Krizhevsky et al., 2012) is a popular deep convolutional network (DCN) that has been 

successful in modelling neural responses in V4 and IT using natural and synthetic images (see 

figure 4.1). When trained on neural data, a similar deep network model produced units that 

behaved quantitatively like V4 units (Cadieu et al., 2014; Yamins et al., 2014). These units have 

since been used to generate testable hypotheses about V4 neural responses by creating synthetic 

stimuli that drive the neural population in predicted directions (Bashivan et al., 2019). In 
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experiments not described in this thesis, AlexNet was used as a comparison against the results 

obtained in V4. The activations of individual unique kernels within AlexNet were correlated with 

V4 neuron response to the same images that were used to access solid shape tuning in the 

electrophysiology experiment. This analysis showed that single convolutional kernels in AlexNet 

responded very similarly to single neurons in V4. An adaptive sampling algorithm, similar to the 

one run for V4 neurons in the electrophysiology experiment, was also run on the model units, and 

yielded similar results. This comparison demonstrates that the brain and AlexNet both choose a 

very similar trajectory of coding transformations, through a latent space describable in terms of 

solid shape representations of 3D reality, to infer object identity from an image. This surprising 

convergence lays the groundwork for future comparisons of V4 representations with deep 

network representations. 

 

4.2 Future directions 

4.2.1 Population coding and dynamics of solid shape representation 

This thesis described a novel representational space in V4 on the basis of the tuning properties of 

individual neurons. It also addressed some aspects of the local micro-architecture of V4 neurons. 

But how responses to contour or surface elements are integrated by local circuits remains 

unknown. Theories about integration extrapolate from psychophysical experiments and Gestalt 

principles (Koffka, 2013; Wertheimer, 1938) to suggest population coding theories based on 

natural shape statistics (Roelfsema, 2006; Roelfsema and de Lange, 2016). Briefly, during 

development and perceptual learning, neural networks learn co-occurrence statistics in natural 

images and therefore form a rapid and robust mechanism to integrate these elements (Geisler et 

al., 2001). This is called base grouping. As a consequence, an auxiliary mechanism is required 

that allows for the integration of statistically uncommon elements (Jolicoeur et al., 1986; 

Roelfsema and Houtkamp, 2011). This is called incremental grouping and is more flexible but 
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slower than base grouping. These perceptual mechanisms have been extended for solid shape 

geometries by (Dorai and Jain, 1997; Nelson and Selinger, 1998; Selinger and Nelson, 1999) by 

suggesting that the grouping of solid shape objects requires a hierarchy of transformations for 

solid shape reasoning and manipulation, reminiscent of the levels of coding transformations along 

the ventral visual pathway.  

 

It is conceivable that the neural correlates of the perceptual phenomena described above would be 

visible in the population code of ventral visual stream areas. In other words, neurons that encode 

shape properties that co-occur more often may be strongly interconnected to amplify their mutual 

responses to make the visual percept more robust. Because of its position in the ventral visual 

pathway, receptive filed sizes, and tuning properties, V4 is the ideal candidate for studying these 

mechanisms. Using the orientation and curvature tuning and responses of single neurons in V4, 

researchers were able to re-construct the entire presented stimulus (Pasupathy and Connor, 2002). 

This study not only showed that contour orientation and curvature are encoded in V4 neurons, but 

also that the entire shape can be decoded from V4 population activity. Therefore, it is reasonable 

to assume that contour integration could occur in V4. Furthermore, V4 response dynamics hint at 

a non-linear summation of multi-element responses in the late response period which could be the 

signature of base grouping (Yau et al., 2013). The population coding and multi-element responses 

have not been investigated in terms of V4’s solid shape representation. These results have 

provided critical insight into the visual representation characteristics at an intermediate visual 

processing stage, but how V4 local circuits integrate this information remains an open question. 

Also, the population coding and multi-element response dynamics of V4 neurons have not yet 

been studied in the context of solid shape responses but may underlie similar integration 

mechanisms as for planar contours. Testing these theories would require simultaneous 

measurements from multiple neurons to compare the response dynamics of neurons that have 

similar and dissimilar tuning preferences. This may be possible with fast-scanning two-photon 
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imaging of a large region of V4 such that many distinct types of tuning properties can be 

compared, and/or with multi-channel silicon probes with hundreds of recording contacts.  

 

4.2.2 Local and global circuits for solid shape processing 

Orientation tuning is one of the critical features in V1. The leading hypothesis for the formation 

of orientation-tuned cells in V1 is that on- and off-center thalamic inputs to a single cortical 

column in V1 are aligned in such a way that the population receptive field of the input resembles 

the orientation tuning of the column. Evidence for this hypothesis comes from paired recording of 

neurons in LGN and V1 in cat (Ferster et al., 1996; Reid and Alonso, 1995), ferret (Chapman et 

al., 1991), and monkey (Jin et al., 2011). While areas beyond V1 also contain orientation tuned 

cells, all evidence points to orientation tuning being an emergent property in V1. Perhaps as a 

signature of this, V1 contains strikingly orderly orientation maps. 

 

Chapter 2 describes solid shape tuning in single neurons in V4 and chapter 3 describes the 

organization of solid shape preference in V4. Particularly the observation of orderly maps for 

solid shape preference in V4 suggests that the theories developed for input integration in V1 

might be extendable to explain V4 processing.  Just as pooling LGN inputs produces orientation 

columns in V1, selectivity for contour combinations may be produced by pooling inputs from 

orientation-tuned columns in V1. Furthermore, simultaneously pooling inputs from disparity-

tuned neurons in V2 and/or orientation-tuned binocular neurons in V1 could induce tuning for 

solid shape-in-depth and 3D orientation. Solid shape responses in V4 are consistent across other 

3D cues like reflection and refraction, in addition to shading and disparity. What additional 

stimulus properties represented in early areas contribute to this are yet unknown. It is possible 

that the representation of reflective/refractive solid shapes underlies neurons tuned for surface 

textures which have long been known to be represented in V1 and V2 (Knierim and van Essen, 

1992; Ziemba et al., 2016) and pooling across texture-tuned neurons and 3D orientation- tuned 
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neurons could give rise to the observed cue invariance. Together, these pooling mechanisms 

could possibly produce representation for solid shape tuning robust to changes in 3D cues in V4. 

Evidence from paired recordings from V1 and V4 reveal that simple pooling mechanisms can 

explain the size and location of receptive fields of V4 neurons based on the V1 inputs it receives 

(Motter, 2009).  

 

An alternate hypothesis is that solid shape tuning is not emergent in V4 but is instead inherited 

from inputs from V1 and V2. This claim is easily tested by running similar battery of experiments 

as described in chapter 2 except for neurons in V1 and V2. However, extending the finding that 

V1 feature maps exist for tuning properties that emerge in V1, the observation that solid shape 

preference forms a map in the output layer 2/3 of V4 strongly suggests that solid shape tuning is 

computed in V4. 

 

In the same vein, another open question is that of columnar organization. The 

electrophysiological recordings in chapter 2 were not targeted to particular cortical layers. The 

two-photon imaging regions in chapter 3 were restricted to layer 2/3. Therefore, it remains to be 

tested how solid shape preference and tuning evolves across V4 layers, and whether a columnar 

organization exists. Experiments that studied the dynamics of shape processing in V4 revealed 

that tuning for curvature components does not appear immediately, but rather evolves from 

simpler elements gradually over ~ 50ms after stimulus onset (Yau et al., 2013). This temporal 

evolution may be a signature of laminar processing where the early response represents the linear 

summation of the feedforward inputs which are processed along a column to gradually give rise 

to a non-linear response (Brincat and Connor, 2006; Chance et al., 1999; Yau et al., 2013). 

Further analysis of the dynamics of solid shape tuning is required to reveal the laminar 

computations that give rise to the observed solid shape tuning. Future experiments using silicon 
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multi-site probes inserted perpendicular to the pial surface or 3-photon imaging would be able to 

access the evolution of solid shape responses along a cortical column.  

 

 

Alternatively, the observed linear/non-linear dynamics may be a signature of recurrent 

computations across cortical columns. The leading hypothesis for robust object identification in 

difficult viewing conditions, like occlusion, is that the neurons that code for the visible and 

discernable parts of the object are recurrently connected with the invisible parts of the object 

(Kosai et al., 2014; Roelfsema, 2006). In that case, the solid shape response dynamics could be 

modeled as an evolving non-linear summation of solid and planar inter-columnar recurrent inputs. 

If further research reveals that shape tuning is mapped in V4 along with solid shape preference, 

and planar and solid shape preferring regions for similar shape fragments are juxtaposed in 

cortex, then it is conceivable that evolving response dynamics are a reflection of recurrent 

computations that serve to support the robustness of the solid shape representation.   

 

These theories also relate back to potential surface integration mechanisms discussed in the 

previous section. It is possible that the micro-organization of solid shape tuning across V4 is on 

the basis of co-occurrence statistics of surface fragments in natural environments. If future 

experiments do indeed find that to be the case, then that would be critical evidence in favor of (a) 

natural shape statistics providing strict constraints for cortical organization, (b) recurrent 

computations amplifying the robustness of solid shape responses by integrating across neurons 

with tuning for related shapes, (c) cortical organization being responsible for the slow integration 

of statistically irregular object parts, and related hypotheses.  

 

To test these hypotheses, a region of V4 large enough to contain multiple solid shape preference 

zones would need to be imaged with an objective with a large field-of-view and fast scanning. 
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Experiments that pioneered these technological advancements were able image a 3D volume of 

cortex up to 5mm wide and 1mm deep with single neuron precision in mice (Ji et al., 2016; 

Sofroniew et al., 2016; Stirman et al., 2016). These techniques could prove to be central to 

resolving the critical question of how solid shape preference and tuning are mutually organized in 

V4. 

 

It is known that a major recipient of feedforward projections from V4 neurons is IT cortex, 

specifically PIT/TEO (Desimone et al., 1980; Distler et al., 1993; Nakamura et al., 1993; Weller 

and Kaas, 1985). IT neurons represent solid shape in the form of compositions of medial axial 

and surface components (Hung et al., 2012; Yamane et al., 2008). While the origin of these solid 

shape signals was heavily speculated to be V4, the issue was never tested, primarily because V4 

had only been studied with planar stimuli. The results in this thesis resolve this long-standing gap 

by proposing that solid shape signals are incipient in V4 and, therefore, must contribute to the 

observed object representations in IT cortex.  

 

4.3 Conclusion 

The results presented in this thesis provide striking evidence for early visual representation of 

solid shape fragments in area V4 along the ventral visual pathway, an area previously thought to 

calculate planar image transformations. This representation was found to be explicit for fragments 

definable by metric shape analyses and consistent to changes in viewing conditions and different 

3D cues like shading, specularity, reflectivity, refraction, and disparity. These results challenge 

current notions of input-output transformations in V4, raise interesting questions about the origins 

of these signals, and have implications for computational models of object vision, including deep 

network models. Two-photon imaging revealed clustering of solid and planar shape information 

in V4 within which neural responses were highly correlated. This clustering is the first 
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demonstration of neuron-resolution microarchitecture in intermediate ventral visual pathway and 

implies that solid shape information and planar information are perhaps processed in parallel 

streams in V4. The high response correlations within clusters suggest that shape tuning 

information may also be clustered in V4. This microarchitecture may inform hypotheses of how 

solid tuning emerges in V4 and the circuit mechanisms responsible for consistent, stable, explicit 

representation of solid object shape.  
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5 Appendix 1: Solid shape parameterization 

The ability to describe a complex solid shape in terms of its smooth surface and its underlying 

structural components is an important component to the study of solid shape processing in 

primate vision. Just as the orientation of a curve at any point is the curve’s first spatial derivative, 

and the curvature of the curve is its second spatial derivative, the surface orientation and 

curvature are first and second spatial derivatives of a surface at any point. Assuming that the 

surface of the object is continuous and smooth (a fair assumption given the geometry of natural 

object surfaces), it can be described with four parameters – principal curvatures and the 

orientation of the principal curvatures. 

 

Another vital solid shape characteristic is its skeleton or medial axis – the elongated straight or 

curved underlying structure that typically tethers object parts to the rest of the object. The medial 

axis of a 2D shape is the set of points inside the shape each of which is closest to at least two 

points on the shape. This definition can be extended to solid shapes to describe the topological 

skeleton of the object. The medial axis, along with the sequence of radii along the medial axis, 

form the medial axis transform and completely describe a solid shape. This low-dimensional 

complete description is attractive for studying shape representation of natural shapes. Further, 

objects with discernible medial axes are abundant in natural scenes. Often these structures are a 

result of artifactual design (for example, tabletop and table legs) and biological growth processes 

(for example, mammal limbs and torso). Generation of solid shapes by growing branches from 

skeletal points creates potentially animate geometries used to study artificial and natural vision 

(Blum, 1973; Marr and Nishihara, 1978; Nevatia and Binford, 1977). Importantly, such 

geometries enable the study of parts-based object coding hypotheses as proposed by David Marr; 

psychophysical and computational experiments (Feldman and Singh, 2006; Kimia, 2003) have 

shown that medial axial objects have stable hierarchical representations (August et al., 1999).  
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Such objects are efficiently described in terms of the position, orientation, and curvature of their 

medial axis components. These parameters, along with knowledge of the structural connectivity 

of the various limbs, can produce a hugely diminished set of parameters compared to surface 

parameterizations. 

 

Figure 5.1: Parameterization of surface fragments and medial axial components 

(A) Examples of uniformly sampled surface fragments from low to high maximum and minimum 
curvatures for a single surface normal direction (upwards). Purple line indicates the direction of the 
surface normal “out” of the surface. Cyan and yellow lines indicate the orientation of the principal 
curvatures. (B) Top and front views of an example stimulus used in experiments in chapter 2. The red 
line represents the medial axes of the shape and orange circles represent the change in radius profiles 
along the medial axis. 
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6 Appendix 2: Supplementary Figures 

6.1 Supplementary figures for chapter 2 

 

 

 

Figure 6.1: Examples of 
neurons highly selective for 
planar silhouette stimuli. 

Solid shape preference score 
is mentioned on the right of 
each example. 
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Figure 6.2: Example of a full set of stimuli in the naturalistic images post-hoc. 

Full set of 40 stimuli and responses for a single V4 neuron. Responses are indicated by the image 
border. Eight stimuli were sampled from the high, medium, and low response ranges from the adaptive 
shape sampling experiment. They were rendered with two optical properties - perfect reflective 
(chrome-like) (left 4 columns), and perfect refractive (glass-like) (right 4 columns). They were each 
placed in 4 environments - closed (between 2 textured walls and a textured floor to maximize 
reflections/refractions), open (grassy-textured field), open (barren-textured field), and grey 
background. In the gray background conditions, a diffuse emissive surface was placed under the 
object to make the object more visible. 
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Figure 6.3: Example stereograms used in the stereogram post-hoc test. 

Solid shape and flat shape random dot stereograms for the example objects in figure 2.9. For 
crossed fusion, use right two images. For uncrossed fusion, use left two images. 
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6.2 Supplementary figures for chapter 3 

 

Figure 6.4: Pairwise correlation distributions for neurons within clusters. 

Panels (B-F) correspond to imaging regions in panels (B-F) in figure 3.11. Each cumulative 
distribution of correlation values represents all pairwise correlations of neurons within a solid 
shape-preferring cluster (orange curves) and neurons within a planar shape-preferring cluster 
(cyan lines). 
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Figure 6.5: Schematics explaining the three types of correlational analysis in section 3.2.3. 

Each panel depicts a matrix of stimulus responses divided into four quadrants (roman numerals) (A) 
Each neuron's response is correlated with the average response of all neurons in the solid shape-
preferring cluster and the planar shape-preferring cluster across all stimuli. (B) Same as (A) except only 
responses from solid shape stimuli are considered. (C) The average response of the solid shape 
preferring cluster is calculated using only responses to solid shape stimuli, and of the planar shape 
preferring cluster using only responses from planar shape stimuli. Responses of neurons in the solid 
cluster only to solid shapes are correlated with the cluster averages, and responses of those in the 
planar cluster only to planar shapes are correlated with the cluster averages. 
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