1	Changes in BNP and cardiac troponin I after high-
2	intensity interval and endurance exercise in heart failure
3	patients and healthy controls
4	
5	NATHALIE M.M. BENDA MD MSC ¹
6	THUS M.H. EUSVOGELS PHD ^{1,4}
7	ARIE P.J. VAN DIJK MD PHD ²
8	MARIA T.E. HOPMAN MD PHD ¹
9	DICK H.J. THIJSSEN PHD ^{1,3}
10	
11	Departments of ¹ Physiology and ² Cardiology Radboud university medical center, Radboud
12	Institute for Health Sciences, Nijmegen, the Netherlands
13	³ Research Institute for Sport and Exercise Sciences, Liverpool John Moores University,
14	Liverpool, United Kingdom
15	⁴ Division of Cardiology, Hartford Hospital, Hartford, CT, USA
16	
17	Short title: Exercise-induced biomarker release in HF patients
18	WORD COUNT: 716
19	FIGURES: 1
20	TABLES: 1
21	
22	Author for correspondence: Dr. Dick HJ Thijssen, Department of Physiology, Radboud
23	university medical center, Radboud Institute for Health Sciences, Philips van Leydenlaan 15,

	Benda et al.	Exercise-induced biomarker release in HF patients
24	6525 EX,	Nijmegen, the Netherlands. Email: dick.thijssen@radboudumc.nl, Tel:
25		+31243614222
26		
27	D.H.J.T. was su	pported by the Netherlands Heart Foundation [E Dekker-stipend, 2009T064]
28	and T.M.H.B	E. was supported by the Netherlands Organisation for Scientific Research
29		[Rubicon Grant 825.12.016].

30 To the Editor:

31 Exercise training represents a cornerstone of contemporary cardiac rehabilitation. Recently, high-32 intensity interval training (HIT) has been popularized for heart failure (HF) patients (1) and may serve 33 as a superior mode of exercise compared to traditional endurance exercise training. However, there is 34 controversy regarding the safety (2) and the direct effects of HIT on the heart. Previous studies have demonstrated that an acute bout of exercise leads to an increase in cardiac troponin (cTn), a biomarker 35 36 for cardiac injury, and B-type natriuretic peptide (BNP), a marker for cardiomyocyte stress (3,4). 37 Exercise-induced elevation in these biomarkers is related to exercise intensity and duration (4,5), and 38 may occur to a larger extend in patients with cardiovascular risk factors (6). To date, no previous 39 study: 1. compared changes in cTn and BNP between endurance exercise and HIT, and 2. explored 40 differences in exercise-induced changes in cTn and BNP between HF patients and controls.

41

42 We included 13 pharmacologically and clinically stable HF patients NYHA-class I-III (67±7 yrs; 43 male: female 12:1) with impaired left ventricular ejection fraction $(35\pm8\%)$ and 14 healthy controls 44 (60±6 yrs; male:female 11:3, Table 1). The study procedures conformed to the Declaration of Helsinki 45 and were approved by the local ethics committee. All subjects provided written informed consent. A maximal incremental cycling test was performed on a cycle ergometer (Lode Excalibur 46 47 v1.52/Ergoline, Ergoselect 200k) to determine peak oxygen uptake (VO_{2peak}). As expected, we found 48 that VO_{2peak} was markedly lower in HF patients than in healthy controls (18.7±4.3 versus 37.2±10.8 49 mLO₂/kg/min, P<0.001). On visit 2 and 3, subjects performed an isocaloric endurance exercise bout (30-minutes at 65%VO_{2peak}) and HIT (10*1-minute at 90%VO_{2peak}, alternated by 2.5-minutes at 50 40% VO_{2peak}) in randomized order. Both exercise bouts included comparable warm-up (10-minutes at 51 52 40% VO_{2peak}) and cool-down (5-minutes at 30% VO_{2peak}). Exercise intensity was verified using a heart 53 rate monitor (Polar Electro Oy, RS800, Kempele, Finland). To assess cTnI- and BNP-levels, venous blood samples were obtained at baseline (BASE), post-exercise (POST) and 2-hours post-exercise 54 55 (2H-POST), and analyzed using high-sensitive cTnI-assays (ADVIA Centaur, Siemens, detection limit: 6 ng/L, upper reference limit: 40 ng/L) and BNP-assays (ADVIA Centaur, Siemens, detection 56 57 limit: 2 pg/mL, upper reference limit: 100 pg/mL). Changes in cTnI- and BNP-levels after exercise

58 (Δ cTnI, Δ BNP) were analyzed using 3-way Linear Mixed Model analysis, including 'time' (Δ BASE-59 POST, Δ BASE-2H-POST), 'group' (HF, controls), and 'exercise-mode' (HIT, endurance). cTnI data 60 of the HIT session of one HF patient were classified as statistical outliers (value>2*SD) and hence 61 excluded from analysis.

62

We found that baseline cTnI- and BNP-levels were higher in HF patients compared to controls (cTnI: 39±133 *versus* 4±10 ng/L, BNP: 80±86 *versus* 8±7 pg/mL, both P<0.001), a characteristic observation when examining HF patients and their healthy peers. Interestingly, exercise-induced Δ cTnI was comparable between both exercise bouts, but also did not differ between groups (Figure 1A). Exerciseinduced Δ BNP was significantly larger in HF patients compared to controls. Nonetheless, we found no differences in Δ BNP-levels between both exercise-modes (Figure 1B).

69

70 This pilot work indicates that exercise-induced changes in cTnI and BNP were similar between 71 endurance exercise (performed according to current cardiac rehabilitation guidelines (7)) and a single 72 bout of HIT. Although a higher exercise-intensity is associated with a larger cTn-release (4,5), HIT did 73 not induce a larger release in cTnI compared to endurance exercise. We speculate that, despite being 74 performed at high-intensity, the short duration of high-intensity bouts prevents excessive cardiac load 75 (8) and, therefore, does not induce significant biomarker release. Although our observations do not 76 provide information on safety, our data demonstrates that HIT does not cause larger release of 77 biomarkers related to cardiac injury compared to endurance exercise.

78

Previous work suggested that cardiovascular risk and/or disease is associated with a larger cTnIrelease after exercise (6). In contrast, we found similar changes in cTnI in both groups, whilst HF patients show larger BNP increases than controls. Since BNP is related to cardiomyocyte stress, this finding suggests a higher cardiac load during exercise in HF patients compared to controls. Future studies with hemodynamic monitoring are recommended to confirm these observations. Combined, these data suggest that, despite larger myocardial stress in HF patients, endurance exercise nor HIT lead to excessive release of cardiac biomarkers indicative of acute cardiac damage.

86		
87	The a	withors of this manuscript have certified that they comply with the Principles of Ethical
88	Publis	hing in the International Journal of Cardiology (9).
89		
90		
91	Refer	ences
92	1.	Ismail H, McFarlane JR, Nojoumian AH, Dieberg G, Smart NA. Clinical outcomes and
93		cardiovascular responses to different exercise training intensities in patients with heart failure:
94		a systematic review and meta-analysis. JACC Heart failure 2013;1:514-22.
95	2.	Keteyian SJ. Swing and a miss or inside-the-park home run: which fate awaits high-intensity
96		exercise training? Circulation 2012;126:1431-3.
97	3.	Shave R, Baggish A, George K et al. Exercise-induced cardiac troponin elevation: evidence,
98		mechanisms, and implications. Journal of the American College of Cardiology 2010;56:169-
99		76.
100	4.	Serrano-Ostariz E, Terreros-Blanco JL, Legaz-Arrese A et al. The impact of exercise duration
101		and intensity on the release of cardiac biomarkers. Scandinavian journal of medicine &
102		science in sports 2011;21:244-9.
103	5.	Eijsvogels TM, Hoogerwerf MD, Oudegeest-Sander MH, Hopman MT, Thijssen DH. The
104		impact of exercise intensity on cardiac troponin I release. International journal of cardiology
105		2014;171:e3-4.
106	6.	Eijsvogels T, George K, Shave R et al. Effect of prolonged walking on cardiac troponin levels.
107		The American journal of cardiology 2010;105:267-72.
108	7.	Piepoli MF, Corra U, Benzer W et al. Secondary prevention through cardiac rehabilitation:
109		from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section
110		of the European Association of Cardiovascular Prevention and Rehabilitation. European
111		journal of cardiovascular prevention and rehabilitation : official journal of the European
112		Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac
113		Rehabilitation and Exercise Physiology 2010;17:1-17.

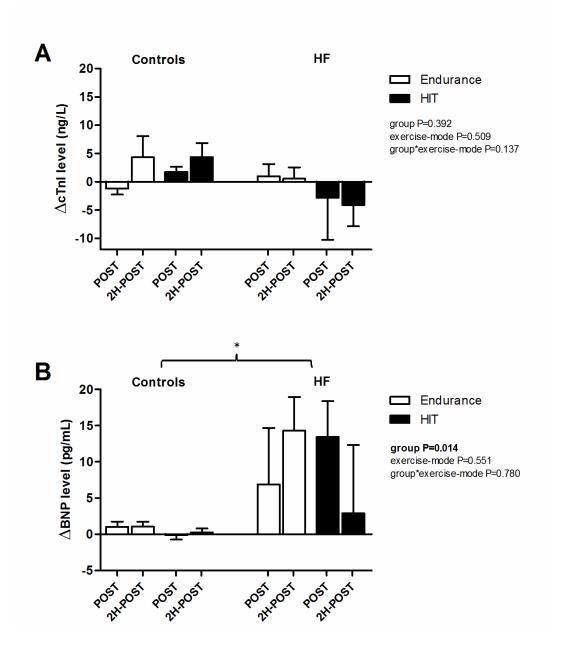
114	8.	Meyer K, Samek L, Schwaibold M et al. Physical responses to different modes of interval
115		exercise in patients with chronic heart failureapplication to exercise training. European heart
116		journal 1996;17:1040-7.

- 9. Shewan LG, Coats AJ. Adherence to ethical standards in publishing scientific articles: a
 statement from the International Journal of Cardiology. International journal of cardiology
 2012;161:124-5.
- 120
- 121
- 122

123 **Table 1.** Baseline characteristics of HF patients and healthy controls.

Benda et al.

Parameter	Heart failure	Controls	P-value
Age (yrs)	67±7	60±6	0.014
Sex (male:female)	12:1	11:3	0.315
BMI (kg/m ²)	28.5±6.5	24.7±4.6	0.088
LVEF	35±8	N.A.	N.A.
Etiology (ischemic:non-ischemic)	7:6	N.A.	N.A.
NYHA class (I:II:III)	1:10:2	N.A.	N.A.
Systolic blood pressure (mmHg)	130±17	130±14	0.988
Diastolic blood pressure (mmHg)	79±9	85±10	0.168
Resting heart rate (/min)	59±8	60±10	0.792
Peak heart rate (/min)	129±16	165±17	< 0.00
Peak oxygen uptake (mlO ₂ /kg/min)	18.7±4.3	37.2±10.8	< 0.00
cTnI level (ng/L) ¹	39±133	4±10	< 0.00
BNP level (pg/mL) ¹	80±86	8±7	< 0.00


Data is presented as mean ± SD. P-value refers to an unpaired Student's *t*-test for continuous
 variables and the Chi-Square test for sex. ¹P-value refers to a Mann-Whitney U test. BMI;
 body mass index. LVEF; left ventricular ejection fraction. N.A.; not available. cTnI; cardiac
 troponin I. BNP; brain natriuretic peptide.

128

129 **Figure 1**

- 130 Changes in cTnI (A) and BNP levels (B) immediately after (POST) and two hours after (2H-POST)
- 131 exercise compared to baseline. HIT; high-intensity interval training. Error bars represent SE. *group-
- 132 effect P<0.05.
- 133
- 134

135 **Figure 1**

136