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Abstract

Protein�protein interactions underlie countless biological functions, the nature of

which is determined by the structure of the protein complex. Computational model-

ing is an important resource for evaluating protein complexes, with tools like Roset-

taDock o�ering structural insights in a high-throughput and cost-e�cient manner.

Antibodies provide an interesting test case for computational protein-protein docking

protocols; they are a highly homologous class of protein that naturally bind an enor-

mous range of antigenic proteins. In this dissertation, I describe new computational

methods I developed to model both antibodies and protein-protein complexes, as well

as evaluations I made of their performance.

I begin with my additions to the RosettaAntibody protocol, which were moti-

vated by community-wide shortcomings in antibody homology modeling revealed by

the Second Antibody Modeling Assessment (AMA-II). I �rst built the Light�Heavy

Orientational Coordinates (LHOC) framework to unambiguously describe the poorly

de�ned antibody VL�VH orientation; I then developed the multiple-template graft-

ing protocol, which leverages the LHOC framework to correctly model the VL�VH
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orientation in a majority of antibody targets, tripling the accuracy of the previous

RosettaAntibody version.

Seeing the guidance the AMA-II provided toward improving RosettaAntibody, I

participated in several rounds of the Critical Assessment of PRediction of Interactions

(CAPRI) to better understand the extant de�ciencies of the RosettaDock protocol.

CAPRI revealed a number of weaknesses in the protocol, including an inability to

fully sample anisotropic proteins. I corrected this shortcoming in my novel Ellipsoidal

Dock method, with which I correctly modeled two challenging CAPRI targets. More

broadly, all protein-protein docking methods fared poorly on CAPRI targets with

binding-induced conformational changes and/or large surface areas to search.

Addressing these di�cult docking problems requires signi�cantly more extensive

conformational sampling protocols. So that such protocols remain computationally

feasible, I developed Motif Dock Score (MDS) to rapidly evaluate the expanded pools

of candidate structures. With no additional runtime, MDS provides three times the

near-native enrichment and nine times the near-native discrimination as the low-

resolution RosettaDock mode it replaces.

In summary, I built computational tools that improve the �delity of antibody

homology modeling and broaden the scope of protein-protein docking. Additionally,

my contributions to the RosettaDock protocol set the stage for the next-generation

of computational docking protocols.
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Chapter 1

Introduction

Proteins are an incredibly important class of molecules, integral to nearly every

biological function. Their ubiquity and utility are results of their extreme diver-

sity, itself a result of the combinatorial polymeric nature of proteins. Fundamentally,

a protein is a linear chain of amino acid residues, the overwhelming majority be-

longing to a set of twenty "canonical" L-amino acids, linked together by peptide

bonds; this sequence of amino acids de�nes the primary structure of the protein. Lo-

cal hydrogen-bonding and other non-covalent interactions between the "backbone"

atoms of the amino acids (NH-CαH-CO) contort the protein into consistent, repeat-

ing structural motifs, the most common two being α-helices and β-sheets; these local

motifs de�ne the secondary structure of the protein. The protein is further folded

into a more condensed three-dimensional structure, mediated largely by non-covalent

interactions between the variant "side chain" atoms of the amino acids, as well as
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by the entropic gains by packing the hydrophobic regions of the protein away from

the aqueous solvent; these higher-order topologies de�ne the tertiary structure of the

protein. The three levels of protein structure, taken together, form a highly complex

three-dimensional conformation. A protein's structure determines the interactions it

can and will make; it also de�nes the nature of those interactions, including their

geometry, strength, and persistence. It is these structure-based interactions that de-

termine every protein function. As such, methods that can predict protein structure

or protein interactions are critically important to understanding biological processes.

A number of experimental methods exist for protein structure determination, in-

cluding x-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and

cryo-electron microscopy. While experimental methods can produce accurate protein

structures, they also require sizable pure samples of the protein of interest, utilize

expensive instruments and reagents, need to be reoptimized for each protein target,

and have a high potential for failure. Computational modeling protocols provide

an alternative to experimental methods in the determination of protein structures.

Though computational methods have their own limitations, particularly in the accu-

racy of their structural models, they are often faster, cheaper, and more general than

experimental methods.
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1.1 Rosetta

Rosetta is a leading computational tool for protein structure prediction and de-

sign.12,16,24,28,40,63 It contains hundreds of protocols, but most follow the same guiding

principles. Rosetta is fundamentally based on a two-stage algorithm: a Monte Carlo

plus minimization (MCM) conformational and/or sequence search to generate can-

didate structures, followed by energy evaluation with a multi-term score function to

discriminate the most stable candidate structures.5,50

The MCM search proceeds as a trajectory of consecutive perturbations of the

system degrees of freedom (translation, rotation, amino acid mutation, etc.), known

as "moves." The energy of the conformation is minimized over the system degrees

of freedom, and the pre-move conformation is compared to that of the post-move

conformation. If the move lowers the energy, the move is accepted, and the trajec-

tory proceeds. If the move increases the energy, the Metropolis criterion is applied

as follows: The energy gap between the two conformations, ∆E, is converted to a

Boltzmann probability by the equation P = exp(−∆E/kT ), where k is the Boltz-

mann constant and T is the simulated temperature of the system. The probability is

compared to a random number between 0 and 1, with the move being accepted if the

probability exceeds the random number, and rejected otherwise, reverting the state

to the pre-move conformation. This criterion has the e�ect of accepting a large frac-

tion of moves which increase the conformational energy only slightly, and accepting

a small fraction of moves which increase the conformational energy greatly, allowing
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the MCM search to climb out of deeper local minima in the energy landscape and

more thoroughly sample the conformational space.

The Rosetta energy function consists of several score terms, broadly divided into

two types: physics-based energies and statistical potentials.5 The physics-based ener-

gies derive their contributions to the score from approximations of physical laws; these

include a Lennard-Jones Van der Waals energy, a Lazaridus-Karplus implicit solvation

energy,48 and a Coulombic electrostatic potential with a distance-dependent dielectric

constant. The statistical potentials are instead derived from feature distributions in

known crystal structures, with the energy contributions optimized for recapitulation

of these feature distributions. The Rosetta energy function contains statistical po-

tential terms that capture features like hydrogen bonding, backbone and side chain

torsional angles, and disul�de bonds. The score terms are combined using empiri-

cally derived weight sets to give a single score for each candidate structure evaluated.

Lower Rosetta scores correspond to lower free energies, and thus, the lowest-scoring

candidate structure corresponds to the most stable (and likely the native) conforma-

tion.

1.1.1 RosettaDock

The RosettaDock algorithm is one of the most fundamental protocols in the

Rosetta suite, used for the prediction of protein complexes.33 It consists of three

phases: initial placement, low-resolution search, and high-resolution re�nement. In
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the initial placement phase, the two docking partners are placed randomly in a puta-

tive conformation. In the low-resolution search, the protein side chains are modeled

with a ball-and-stick "centroid" representation, and the complex is sampled using

moderately aggressive rigid-body moves. In the high-resolution phase, the protein

side chains are fully represented, and the best candidate structures generated by the

low-resolution phase are re�ned using small rigid-body moves, and repacking of the

protein side chains. RosettaDock also contains alternate modes to capture more de-

grees of freedom, including EnsembleDock,21 which simulates the conformer selection

model of complex formation, and SnugDock,71 which simulates the induced-�t model.

1.1.2 Challenges in Protein�Protein Docking

The basic protein�protein docking case, in which two known rigid protein partners

bind at an interface with high shape complementarity, is a tractable problem that

many computational protocols can solve. When complications are added to this base

case, however, the docking problem quickly becomes di�cult.53 Protein �exibility is a

particularly di�cult complication, with motions as small as 1-2 Å RMSD or as simple

as a single loop remodeling confounding most docking protocols.47,53,80 The inability

for docking protocols to e�ectively handle di�erent conformations during docking also

increases the di�culty when the docking partners are not structurally characterized

or homologous to known protein structures.51 Another common complication arises

when the binding site cannot be identi�ed by bioinformatics or characterization data,
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requiring the use of a global docking search. Though some methods, particularly those

that are fast-Fourier-transform-based (FFT-based),26,65 can discriminate binding sites

with high shape complementarity in a global search, all methods perform poorly when

the shape complementarity is low, such as in many antibody�antigen complexes, or

when a compounding factor is added, such as protein �exibility. Global docking

also becomes more di�cult as the protein partners grow larger due to the increased

conformational space that needs to be sampling.

1.2 Antibodies

Antibodies are a biologically important subclass of proteins that play a key role

in the immune system of higher animals. Antibodies possess hypervariable antigen-

binding sites that allow them to bind with high speci�city to nearly any foreign

"antigenic" protein, peptide, or small molecule, as well as signaling domains that

allow the antibody�antigen complex to be sequestered and destroyed, neutralizing

the antigenic molecule. The hypervariability of antibodies arises via a few methods.

First, the three genes that comprise the antigen-binding site exist in multiple variants

in the genome; through several recombination events, collectively known as V(D)J

recombination, random variants of each of these genes are spliced together, allowing

for approximately 106 antigen-binding sites through gene combinatorics alone.4 The

actual diversity created by splicing is a few orders of magnitude larger due to vari-
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able splicing at the junctional sites, causing the deletion of an imprecise number of

nucleotides from the VDJ genes and potentially changing the reading frame of the

D gene.4 These germline antibodies grow even more diverse during the maturation

phase, where error-prone polymerases target regions of the antigen-binding site, caus-

ing hypermutation of key binding residues during expansion of antibody-producing

cells.4 In total, the diversity of antibodies is extraordinarily large, estimated at ap-

proximately 1011 structures in a typical human, although the theoretical diversity

drastically exceeds even this �gure.4

Antibodies have highly homologous structures; an example is shown in Figure

1.1. In nature, they consist of two identical heavy chains, usually made up of four

immunoglobulin domains, and two identical light chains, made up of two immunoglob-

ulin domains, linked together with disul�de bonds in a "Y" shape. The largest struc-

tural variations occur in the two variable (FV) regions, which are located at the end

of the arms of the Y. The FV consists of a heavy chain variable domain (VH) and a

light chain variable domain (VL), each with a well-conserved immunoglobulin beta-

sandwich topology, or framework. The FV also contains the antigen-binding site,

comprised primarily of six loops, three on the VH and three on the VL, known as

complementarity-determining regions (CDRs). Five of these loops (H1, H2, L1, L2,

and L3) consistently form a small set of canonical structures strongly determined by

their sequence, while the sixth (H3) has a highly variable structure. The H3 loop

includes the entire VDJ junction region, and it is also the region most susceptible to
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Figure 1.1: Structure of an IgG antibody. Complete structure (top left) is comprised
of two heavy chains (red & pink) and two light chains (blue & cyan). The antigen-
binding sites are located on the two FV regions, boxed in black and shown in detail
in the bottom right. The FV is comprised of the VH (blue) and VL (yellow) domains.
The antigen-contacting residues largely reside in the six CDR loops: L1, L2, & L3 on
the VL (cyan), and the H1 & H2 (orange) and the hypervariable H3 (red) on the VH.
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somatic hypermutation, making it by far the most diverse antibody region in both

sequence and length, and thus also in structure.

1.2.1 RosettaAntibody

RosettaAntibody was developed in 200972 to apply Rosetta principles to the pre-

diction of antibody structure. RosettaAntibody uses a template-based homology

modeling protocol followed by targeted structural re�nement of di�cult-to-predict

regions of the antibody. Sequences for nine structural regions of the FV (six CDRs,

two domain frameworks, full FV region) are queried against an antibody structural

database, and the best matches are selected. The CDR templates are pasted onto

the appropriate domain frameworks, and the resultant domain homology models are

aligned to the full FV template to provide a crude grafted model. The H3 is then

completely remodeled, the light and heavy domains are redocked, and the CDR con-

formations are minimized in the context of the Rosetta score function. Thousands

of candidate structures are stochastically generated, and the model with the lowest

energy is selected.

1.2.2 Challenges in Antibody Homology Modeling

Because antibodies are highly homologous, it is easier to blindly model a generic

antibody than it is to model a generic protein; however, there are some speci�c
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challenges that arise from the extreme sequence diversity of the antibody's antigen-

binding site. In particular, modeling the CDR-H3 is incredibly di�cult.86 The H3

adopts no canonical conformations, has no conserved sequence, and ranges in length

from 3 residues39 to 61 residues.83 The most e�ective H3 prediction techniques are

based on complete remodeling of the H3 loop, but these are heavily limited by loop

length becoming ine�ective when the H3 is longer than about 14 residues.86 Since

the H3 is situated at the interface between the VL and VH domains, it is also di�cult

to predict the docked orientation of these two domains.6 The other CDRs are easier

to predict, but these too can confound antibody-modeling protocols if they adopt a

conformation not found in existing structural databases. These databases are almost

exclusively comprised of human and murine antibodies, so antibodies derived from

other species are more likely to have a rare non-H3 CDR conformation.88 All of these

di�cult-to-predict regions occur at the antibody paratope, and errors in antibody

homology modeling degrade the model of the antigen-binding site, making it more

di�cult to predict antibody-antigen complexes when an antibody homology model is

required.

1.3 Goals and Outline of Thesis

In the remainder of this thesis, I describe the e�orts I undertook and the progress

I made toward improving the �eld of computational protein modeling, speci�cally to-
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ward the goals of higher-�delity antibody modeling and more general protein�protein

docking. In particular, I describe new computational tools I built to address some of

the limitations noted above.

In Chapter 2 (previously published56), I describe my work on enhancements to the

RosettaAntibody protocol. Motivated by community-wide failures in the prediction

of antibody VL�VH orientation, I created the LHOC framework to unambiguously

de�ne the VL�VH orientation, and I built the multiple-template protocol to improve

RosettaAntibody's ability to predict these orientations. Combined, these two en-

hancements dramatically improve RosettaAntibody's VL�VH orientation prediction

�delity, also surpassing a competing protocol, ABangle.37

In Chapter 3 (previously published55), I detail my e�orts predicting protein�

protein complexes in the CAPRI competition rounds 28-35. The challenges proved

successful my novel anisotropic docking method, Ellipsoidal Dock. I also highlight

the weaknesses in the �eld of protein�protein docking I uncovered during the CAPRI

rounds, notably in the prediction of large and �exible complexes.

In Chapter 4, I describe my development of the Motif Dock Score (MDS) proto-

col. The failures in CAPRI made apparent the need for enhanced docking sampling

methods, which themselves require a fast, accurate low-resolution sampling method

to become feasible on current hardware. I show that MDS satis�es this niche, pro-

viding most of thel accuracy of the Rosetta full-atom score function with only the

overhead of one lookup per residue pair.
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In Chapter 5, I summarize my contributions to the �eld of computational structure

prediction, and I note the near-term future improvements that my work enables. I

also take stock of some of the remaining challenges in protein structure prediction.
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Chapter 2

Improved Prediction of Antibody

VL�VH Orientation

This is a pre-copyedited, author-produced version of an article accepted for publication in Protein Engineering
Design & Selection following peer review. The version of record <Marze NA, Lyskov S, & Gray JJ, "Improved
prediction of antibody VL�VH orientation," Protein Eng. Des. Sel. 29(10), 409-418.> is available online at:
https://academic.oup.com/peds/article-lookup/doi/10.1093/protein/gzw013

2.1 Overview

Antibodies are important immune molecules with high commercial value and ther-

apeutic interest because of their ability to bind diverse antigens. Computational pre-

diction of antibody structure can quickly reveal valuable information about the nature

of these antigen-binding interactions, but only if the models are of su�cient quality.

To achieve high model quality during complementarity-determining region (CDR)
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structural prediction, one must account for the VL�VH orientation. I developed a

novel four-metric VL�VH orientation coordinate frame. Additionally, I extended the

CDR grafting protocol in RosettaAntibody with a new method that diversi�es VL�

VH orientation by using ten VL�VH orientation templates rather than a single one.

I tested the multiple-template grafting protocol on two datasets of known antibody

crystal structures. During the template-grafting phase, the new protocol improved

the fraction of accurate VL�VH orientation predictions from only 26% (12/46) to

72% (33/46) of targets. After the full RosettaAntibody protocol, including CDR

H3 remodeling and VL�VH re-orientation, the new protocol produced more candi-

date structures with accurate VL�VH orientation than the standard protocol in 43/46

targets (93%). The improved ability to predict VL�VH orientation will bolster predic-

tions of other parts of the paratope, including the conformation of CDR H3, a grand

challenge of antibody homology modeling.

2.2 Introduction

Antibodies are important immune molecules with high commercial value and ther-

apeutic interest because of their ability to bind diverse antigens, from small molecules

and short peptides to full-length proteins. Antibodies' binding diversity is a function

of their hypervariable FV domains, each consisting of two immunoglobulin domains:

VL and VH. The antigen-binding site (paratope) is located at six loops near the
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VL�VH interface, known as complementarity-determining regions, or CDRs.

Many structural studies of the FV have focused on the conformation of the CDRs,

particularly CDR H3.3,61,83,85,91 Since the CDRs are attached to the framework of

the VL and VH domains, any change in the relative orientation of the VL and VH

domains will propagate to change the CDRs' relative orientation, and therefore, the

shape of the paratope. Failing to account for the VL�VH orientation during CDR or

paratope structure prediction dramatically hinders the quality of the output models,

and recent evaluation found the VL�VH orientation to be a limiting factor in antibody

structure prediction.88

Abhinandan and Martin1 were the �rst to codify a metric for measuring the VL�

VH orientation. They de�ned the packing angle as a torsional angle between the

primary axes of the VL and VH domains. Among the ∼500 FV crystal structures

they examined, packing angle di�ered by as much as 30°. Chailyan et al.19 de�ned

VL�VH orientation di�erently, via clustering. The resulting description was limited

in scope: only two distinct orientational clusters and a distinct singleton were found;

however, a number of key residues were found to correlate with the orientational

clusters, indicating that VL�VH orientation may be predictable from sequence.

The Second Antibody Modeling Assessment (AMA-II) measured the ability of

several computational antibody structural prediction methods to capture native VL�

VH orientation in a blind prediction challenge. Two metrics were used to evaluate

the antibody orientations generated in AMA-II: (1) an analogue to RMSDvariable as
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described by Sela-Culang et al.,68 and (2) the tilt angle as described in Almagro et al.6

While these measures encode more orientational information than the Abhinandan�

Martin packing angle, both are pairwise di�erence metrics rather than absolute ones.

A geometrically complete, absolute measure of VL�VH orientation, ABangle, was

published by Dunbar et al.37 ABangle is composed of one torsional angle, four plane

angles, and one distance, representing the six degrees of freedom of the two-body

VL�VH complex. The ABangle measure was applied in a study to predict VL�VH

orientation. In tests on the AMA-II antibody set, the authors predicted ABangle

metrics corresponding to an average RMSD of misorientation of 0.50 Å, performing

better than the average competitor (0.63 Å), beating the average in 9 of 11 targets.17

RosettaAntibody is an application for blind prediction of antibody structure.72,88

RosettaAntibody operates in two phases: (1) template selection and grafting, wherein

known antibody structure fragments are combined to create a coarse-grained model,

and (2) structure re�nement, which uses Monte Carlo perturbations with minimiza-

tion to remodel the CDR H3 loop, re�ne all CDR loops, and redock the VL and VH

domains.

Until recently, RosettaAntibody's e�cacy in predicting native VL�VH orienta-

tions had only been investigated implicitly by measuring RMSD values across all FV

residues. During the Second Antibody Modeling Assessment (AMA-II), RosettaAnti-

body's orientation predictions were evaluated explicitly, comparing the packing angles

of the Rosetta models to those of their corresponding crystal structures.88 RosettaAn-
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tibody compared favorably in most respects to the competing protocols, producing

two sub-Ångstrom H3 models and achieving the best H3 model in four targets. How-

ever, VL�VH orientation was a weakness, as RosettaAntibody created a structure

with sub-Ångstrom cross-domain RMSD for only 5 of 11 targets. VL�VH orientation

prediction for targets with uncommon packing angles was particularly poor: all three

targets with a packing angle more than one standard deviation removed from the

database average were predicted incorrectly.

In this paper, I developed a novel four-metric VL�VH orientation coordinate frame,

which I called Light�Heavy Orientational Coordinates (LHOC). Additionally, I ex-

tended the RosettaAntibody protocol with a new method to diversify VL�VH orien-

tations by grafting multiple templates. I tested the new RosettaAntibody protocol

on two datasets of known antibody crystal structures: a 46-member high-resolution

antibody set, and the 11-member AMA-II dataset. I compared the performance of

the new RosettaAntibody against the previous version, as well as against the ABangle

method for predicting VL�VH orientation.
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2.3 Materials and Methods

2.3.1 Orientational Coordinates Framework Calcu-

lation

The four coordinates used to describe VL�VH orientation (α, δID, θL, and θH) are

de�ned from a common framework of four non-atomic points at the VL�VH interface

(Figure 2.1). Point 2 is located at the center of a conserved pair of beta-strands in

the VL framework; it is de�ned as the centroid of the Cα coordinates of residues L35-

L38 and L85-L88 using Chothia numbering.3 Point 3 is the VH counterpart to point

2, de�ned as the centroid of the Cα coordinates of residues H36-H39 and H89-H92,

Chothia numbering. Point 1 is located nearer the CDRs than point 2, along the �rst

principal component line of the coordinate set used to calculate point 2. Point 4 is

the VH counterpart to point 1.

All coordinates were calculated with a Rosetta implementation of the above frame-

work. α is de�ned in the same manner as Abhinandan and Martin;1 speci�cally, it

is de�ned as the dihedral angle between points 1, 2, 3, and 4. δID is de�ned as the

distance between points 2 and 3. θL is de�ned as the plane angle between points 1,

2, and 3. θH is de�ned as the plane angle between points 2, 3, and 4.
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2.3.2 Orientational Coordinate Distance Measurement

Orientational Coordinate Distance (OCD) is calculated as:

OCD =
∑

i={α,δID,θL,θH}

(xi,A − xi,B
σi,DB

)2
where xi, A and xi, B represent the value of LHOC metric i of structure A and

structure B, respectively, and σi,DB represents the standard deviation of the Gaussian

distribution best �t to the database distribution of LHOC metric i. The four values

for i are α, δID, θL, and θH. OCD is dimensionless.

2.3.3 RosettaAntibody Command Lines

The new MT protocol, part of the Rosetta software package, is available free of

charge for academic and non-pro�t use at www.rosettacommons.org. The code used

to generate data in this paper is available starting from release revision 57, deposited

May 21, 2015. The MT protocol is currently available on the ROSIE public web

server (rosie.graylab.jhu.edu52).

To create the grafted structures, the following command line was used. The

homolog_exclusion argument should be 99 when performing blind predictions, and

80 when evaluating algorithm performance on a known set.

antibody.py --both-chains <FASTA file> --relax
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--homolog_exclusion=<99||80>

--multi-template-grafting --number-of-templates 10

--light_heavy-multi-graft

--filter-by-orientational-distance=1

--orientational-distance-cutoff 0.5

To create the candidate structures, the following command line was used for each

grafted structure. abH3.flags is a text �le containing the set of option �ags for

a standard RosettaAntibody run. The cter_constraint �le is a two-line text �le

containing two atomic constraints; it is generated automatically by the previous com-

mand line. The grafted structure is one of 10 models generated by the previous

command line. The -nstruct argument should be 1000 for the �rst grafted struc-

ture, and 200 for the other nine models.

antibody_H3.linuxgccrelease @abH3.flags

-s <grafted structure, 1 of 10> -nstruct <200||1000>

-constraints:cst_file <cter_constraint file>

2.3.4 Preparation of Antibody Database Set

The RosettaAntibody database consists of 1,040 antibody FV crystal structures

culled from the Protein Data Bank using the methods described by Sivasubramanian

et al.72 One outlier antibody (1MCO) has an interdomain distance of 19.6Å, far-
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ther removed from the second-largest interdomain distance than the second-largest is

from the smallest. This antibody is highly irregular, with the FAb�FC hinge region

deleted,35 explaining the unnaturally-large interdomain distance; this antibody was

consequently removed from analyses of the RosettaAntibody database.

2.3.5 Preparation of Antibody Benchmark Sets

A high-resolution antibody set was compiled from the PyIgClassify database.2 A

series of restrictions was placed on the structures: a maximum resolution of 2.5 Å, a

maximum R value of 0.2, a maximum B-factor of 80.0 Å2 for each atom in the struc-

ture, an asymmetric unit containing only one copy of the FV, a CDR H3 loop length

between 9 and 20 residues, a human or mouse species tag, and no non-canonical or

modi�ed amino acid residues. Additionally, the set was �ltered to remove antibod-

ies with identical sequences in any of the heavy-chain CDR loops. Of the resultant

49 structures, three (1X9Q, 2W60, 3IFL) were eliminated because of challenges pre-

sented in sequence misalignment or numbering (e.g., 1X9Q is missing highly conserved

heavy-chain residues C92 and W103).

The Second Antibody Modeling Assessment (AMA-II) antibody set consists of

the 11 antibodies described in Almagro et al.6
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2.4 Results

2.4.1 A New VL�VH Coordinate Frame

To describe the geometry of antibody VL�VH orientation, I developed a new coor-

dinate frame (Figure 2.1) as an extension of the packing angle described by Abhinan-

dan and Martin.1 Three vectors compose the Abhinandan�Martin framework: two

primary axis vectors, one each drawn through VL and VH, and a third vector link-

ing the axis vectors tail-to-tail across the VL�VH interface. The Abhinandan�Martin

packing angle (α) is de�ned as the apparent angle between the VL and VH vectors

as seen when looking down the connecting line from VH to VL (Figure 2.1.B). The

packing angle metric captures the set of VL�VH relative positions in which the VL and

VH domains twist past each other, broadening or contracting the paratope. Figure

2.2 shows, however, that antibodies with identical α will not necessarily superimpose,

and in practice, they often do not. This structural ambiguity is an inherent limita-

tion of the α metric. Therefore, I sought a more complete description of the VL�VH

orientation.

To capture more of the VL�VH orientation degrees of freedom, I repurposed the

Abhinandan�Martin packing angle vector framework to de�ne the other metrics: an

interdomain distance (δID) and two plane angles, L-opening angle (θL) and H-opening

angle (θH). δID as the length of the linking vector (Figure 2.1.C). θL and θH are

de�ned as the plane angle between the linking vector and the VL and VH vectors,
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Figure 2.1: Orientational Coordinate (LHOC) de�nition. (A) FV structure showing
light chain (cyan), heavy chain (pink), and the key beta strands for de�ning the
LHOC framework (Chothia numbering: L35-L38 and L85-L88 in blue and H36-H39
and H89-H92 in red, see 2.3 for details). The inset shows the placement of the four
points which form the basis of the LHOC framework. (B) Packing angle, α, is the
dihedral angle between points 1, 2, 3, and 4. (C) Interdomain distance, δID, is the
distance between points 2 and 3. (D) L-opening angle, θL, is the plane angle between
points 1, 2, and 3. (E) H-opening angle, θH, is the plane angle between points 2, 3,
and 4.
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Figure 2.2: Two RosettaAntibody FV models of AMA-II target 5 (PDB ID 4M6M)
with equivalent values of packing angle. Structures have light chains (black) superim-
posed. Heavy chains are shown in red and blue. CDR residues (Chothia de�nition)
are omitted for clarity.
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respectively (Figure 2.1.D and 2.1.E). Together, I refer to the four coordinates (α,

δID, θL, and θH) as the Light�Heavy Orientational Coordinates (LHOC).

For LHOC to be a non-redundant coordinate frame and more descriptive than the

Abhinandan�Martin packing angle, each coordinate must capture some component of

VL�VH orientational diversity that is su�ciently independent from the components

captured by other coordinates. To evaluate the e�ectiveness of the LHOC coordinate

frame, I calculated the LHOC metrics for each antibody in a curated set of 1,040

antibody FV crystal structures, representing a high- and medium-resolution (≤ 3.5

Å) subset of all antibodies in the Protein Data Bank.

Figure 2.3 shows distributions for each of the four LHOC metrics across all an-

tibodies in the database. All three angle distributions are approximately Gaussian.

Consistent with the prior use of packing angle to solely de�ne VL�VH orientation,1,6

the α distribution is the largest component of diversity in VL�VH orientation, with

a range of nearly 35° (mean (µ) = -52.3°, standard deviation (σ) = 3.9°, minimum

= -70.9°, maximum = -36.7°). The two LHOC plane angle distributions each show

a range approximately half as large as the α distribution. The θL distribution has

a range of about 15° (µ = 97.2°, σ = 1.9°, min = 89.3°, max = 104.4°), while the

θH distribution has a range of about 20° (µ = 99.4°, σ = 2.6°, min = 87.9°, max =

108.1°). The δID distribution is also approximately Gaussian, but with a long right

tail. While the bulk of the distribution, 1,030 of 1,040 structures, lies between 13.5

Å and 15.5 Å, nine of the ten remaining structures have a δID between 15.5 Å and
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Figure 2.3: Histograms of each of the four LHOC metrics across the 1,040 structures
in the Rosetta antibody database. Histogram bin widths are 1° for packing angle, α,
(A), 0.1Å for interdomain distance, δID, (B), and 0.5° for plane angles, θL and θH, (C
and D). Kernel density estimates of each distribution are shown as curves over the
histograms.
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16.5 Å.

To test the independence of the four LHOC metrics, I plotted all pairwise dis-

tributions of metrics for the database antibodies, shown in Figure 2.4. Five of the

Figure 2.4: Pairwise distributions of each pair of LHOC metrics across the 1,040
structures in the Rosetta antibody database. A best-�t line (red) is drawn through
each pairwise distribution, with its corresponding r2 value labeled.

six pairs of metrics show no correlation (r2 ≤ 0.01), with approximately 2D-Gaussian

distributions. The remaining pair, θH and δID, show a small degree of correlation

(r2 = 0.16); antibodies with larger-than-average δID tend to also have larger-than-

average θH. Such a correlation could arise because the hinge of the θH de�nition

di�ers from the physical hinge about which the VL�VH orientation actually varies

between antibodies. If the physical hinge were upstream of the θH hinge, a naturally

"open" antibody would have both a larger θH and a larger δID. In this case, one
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would also expect the antibody to also have a larger θL, as it is e�ectively a mirror

image of θH; however, there is no correlation seen between δID and θL, suggesting that

the mathematical and physical hinges are in a similar place. This implies that the

correlation between θH and δID is not due to misplacement of the LHOC framework,

nor a redundant selection of coordinates to include in LHOC.

The four-coordinate nature of the LHOC framework allows it to describe more

facets of VL�VH orientation than α alone, but it requires a combination metric to

simplify the di�erence to one dimension. Therefore, I de�ned the Orientational Co-

ordinate Distance (OCD) by summing the squared z�score deviations in each of the

four LHOC base metrics (See Methods for details). Figure 2.5.A shows that a pair of

antibodies with an OCD of 1.0 or less superimpose closely, and Figure 2.5.B shows

that a pair of antibodies with an OCD of 2.0 or greater are clearly distinct.

Because changes in the di�erent LHOC metrics exert di�erent lever-arm e�ects

on the antibody domains, and because the contributions to OCD can be dominated

by a large variation in one or two LHOC metrics, two antibody pairs with the same

OCD will not necessarily have the same RMSD between them. For example, two

antibodies with a 3.0 OCD due only to a di�erence in packing angle will have a

much larger RMSD than two antibodies with a 3.0 OCD due only to a di�erence in

interdomain distance. Nonetheless, OCD and RMSD are loosely correlated: as shown

in Figure 2.6, two structures with a high OCD tend to have a high RMSD as well.

An OCD of 2.0 is roughly equivalent to an RMSD of 1 Å, although most 2.0 OCD
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Figure 2.5: Comparison of �ve RosettaAntibody FV models (blues) with 1.0 OCD
(A) and 2.0 OCD (B) to a reference antibody FV structure (red). Structures have
light chains (black) superimposed. CDR residues (Chothia de�nition) are omitted for
clarity.
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Figure 2.6: Correlation of OCD and RMSD in 40,000 candidate structures from
rigid-body VL�VH docking of a 1DLF homology model. To linearize the correlation,
the square root of OCD is plotted against RMSD. The di�erent colors represent
the scale of perturbations in the docking simulations (blue > green > red > black,
corresponding to size of rotations and translations). Zero-intercept lines highlight the
center and the bounds of the correlation, and their slopes are noted. Horizontal lines
corresponding to OCD values of 1.0 and 2.0 are also shown. The data are plotted
over the RMSD ranges 0 Å-50 Å (left) and 0 Å-2 Å (right).
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structure pairs will have a larger RMSD due to intradomain variations.

2.4.2 VL�VH Orientation Prediction in Rosetta

With the OCD metric, I next sought to test the e�cacy of RosettaAntibody at

predicting correct VL�VH orientations. A preliminary examination of the RosettaAn-

tibody candidate structures for one of the AMA-II targets with an incorrect VL�VH

orientation prediction revealed that a wide range of VL�VH orientations were sam-

pled by docking moves during the structure re�nement phase � so wide, in fact, that

nearly the entire database distribution is spanned in all coordinates. However, the

lowest-scoring candidate structures, and thus, the ones selected as �nal models, had

orientations quite similar to the starting point of the re�nement trajectories, i.e.,

the grafted structure. To examine how the starting point biases the output orienta-

tions, I launched re�nement trajectories from grafted structures with alternate VL�VH

orientations. Figure 2.7 shows the orientation distributions of candidate structures

generated by these runs. In each trajectory, there is a visible well in which low-scoring

candidate structures tend to have orientations matching their individual grafted struc-

tures rather than converging to the native orientation. These data suggest that the

re�nement phase of RosettaAntibody has an e�ective limit on how far it can alter

the VL�VH orientation. While more orientationally-distant structures can be sam-

pled, these structures do not resemble natural antibodies, as evidenced by their high

scores. This behavior is bene�cial when the grafted structure has a native VL�VH
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Figure 2.7: H-opening angle, θH, distributions among candidate structures gener-
ated by RosettaAntibody from three di�erent starting grafted structures with dif-
ferent VL�VH orientations. (B) Plots of θH vs. score, showing scoring funnels for
each of the three runs in a di�erent color, with the grafted structure θH marked by
a matching-color triangle below the xâ��axis. (B) Histograms and kernel density
estimates for each of the three runs in a di�erent color, with the θH of each grafted
starting structure marked as in (A).
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orientation, but in the general case, it indicates an inadequate search.

To attempt to produce low-scoring candidate structures near the native VL�VH

orientation, I created a new RosettaAntibody grafting protocol that runs several tra-

jectories rather than a single trajectory. A �owchart description of the protocol,

called multiple-template grafting (MT), is shown in Figure 2.8 in the context of the

Figure 2.8: Flow chart for the RosettaAntibody protocol. The grafting phase is
shown in blue and pink, above the solid gray line, while the re�nement phase is
shown in green and gold, below the solid gray line. Steps from the standard single-
template grafting (ST) protocol are colored in blue and green. New steps added to
create the multiple-template grafting (MT) protocol are colored in pink and gold and
enclosed in the dashed gray box; the blue/green ST steps are also part of the MT
protocol.

previous RosettaAntibody protocol, henceforth described as single-template graft-
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ing (ST). Instead of creating only a single grafted structure during the �rst phase

of RosettaAntibody, MT creates ten grafted structures from the ten best-matching

(by BLAST alignment) VL�VH orientation templates. Additionally, to diversify the

grafted structures, I enforce a minimum OCD cuto� value of 0.5 between all orien-

tation template pairs, rejecting candidate templates with a lower OCD to any of the

ten and replacing them with the next-best BLAST match. The number ten and the

0.5 OCD cuto� were selected to capture a near-native VL�VH orientation in all tar-

gets in my calibration set, the 11 AMA-II antibodies, while minimizing the number

of redundant templates. Each grafted structure is re�ned in multiple independent

RosettaAntibody re�nement runs to create a pool of candidate structures: 1000 from

the shared ST/MT grafted structure, and 200 each from the remaining nine MT

grafted structures.

To evaluate the sampling e�cacy of multiple-template grafting, I compared the

performance of ST and MT RosettaAntibody on a benchmark set of 46 high-resolution,

manually-curated antibody crystal structures from the Protein Data Bank (PDB).11

Figure 2.9 shows the pairwise comparisons of OCD values between the ST and MT

predictions for all targets. In the grafting phase of RosettaAntibody, the ST VL�VH

orientation prediction was within 2.0 OCD of the native in only 26% (12/46) of tar-

gets. The MT predictions nearly tripled this, with the best match among the MT

predictions within 2.0 OCD of native in 72% (33/46) of targets. Additionally, of

the remaining 13 targets, 10 showed an improved OCD to native in their best MT
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Figure 2.9: Comparison of VL�VH orientation prediction performance between MT
RosettaAntibody and ST RosettaAntibody after the grafting stage for the 46 members
of the benchmark set. The OCD between the native structure and the ST post-
grafting stage structure is plotted against the lowest OCD between the native and any
of the ten MT post-grafting stage structures. Targets where the best MT structure
is the same as the ST structure appear on the x = y line, also plotted. Targets where
the best MT structure has a closer OCD to native than the ST structure are above
the x = y line. MT success cases (OCD ≤ 2.0) are found to the left of the vertical
OCD = 2.0 line, while MT failures (OCD > 2.0) are found to the right. Likewise,
ST success cases are found below the horizontal OCD = 2.0 line, while failures are
found above. The green points indicate the 21 targets that improved from a failure
case to a success case when using the MT protocol, while blue points indicate the 12
targets that remained successes, and the red points indicate 10 of the 13 targets that
remained failures (the other 3 have OCD values exceeding the bounds of the plot).
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prediction versus the ST prediction.

After the RosettaAntibody re�nement phase, including H3 remodeling and VL�

VH re-orientation, the MT protocol produced more candidate structures within 2.0

OCD of native than the ST protocol in 43 of 46 targets (93%) (Figure 2.10.A). The

Figure 2.10: Performance of the full ST, MT, bMT, and rMT RosettaAntibody pro-
tocols on the 46 benchmark antibodies, showing the number of candidate structures
with an OCD value below 2.0 (A, C, E) or below 1.0 (B, D, F) for the ST protocol
vs. the MT (A and B), the bMT (C and D), and the rMT (E and F) protocols. The
ST, the bMT, and the rMT protocols each include 1000 candidate structures total,
while the MT protocol includes 2800 candidate structures.

remaining three targets all had poorly-predicted repertoires of grafted structures,

in which none of the ten MT predictions (including the ST prediction) were closer

than 15.0 OCD to native (Table 2.1). While the MT protocol generated more cases
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under 2.0 OCD, it also required more total candidate structures for each target,

2,800 vs. 1,000, at the proportional cost of computing time (∼1440 CPU-hrs for

the full MT protocol). To evaluate the candidate-structure-equivalent performance

of the ST and MT protocols, I compared only the 1,000 lowest-scoring MT candidate

structures against the 1,000 ST candidate structures; this is henceforth described

as the biased MT (bMT) protocol. Additionally, to more fairly evaluate the time-

equivalent performance of the ST and MT protocols, I also pared the output from the

MT protocol to 1,000 randomly selected candidate structures per target, maintaining

as best as possible the 5:1 ratio of input structures; this is henceforth described as

the reduced MT (rMT) protocol.
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The bMT protocol produced more sub-2.0 OCD candidate structures for 22 tar-

gets, with 20 targets generating fewer sub-2.0 OCD candidate structures than the ST

protocol due to dilution e�ects (Figure 2.10.C). Likewise, the rMT protocol produced

more sub-2.0 OCD candidate structures for 20 targets, and fewer sub-2.0 OCD can-

didate structures for 22 targets (Figure 2.10.E). The remaining four targets had no

sub-2.0 OCD candidate structures created by either the ST, bMT, or rMT protocol

(Table 2.1). When counting only sub-1.0 OCD structures, those with essentially iden-

tical VL�VH orientations to the native antibody, the rMT protocol fared better, with

25 targets improving on the ST counts, and only 16 worsening from dilution (Figure

2.10.F). The bMT protocol showed little improvement, bettering the ST counts in 21

targets, falling short of the ST counts in 18 targets, and matching the ST counts in

the remaining 3 targets (Figure 2.10.D). Nearly all of the targets with fewer low OCD

candidate structures in the rMT and bMT protocols still had at least 100 sub-2.0

OCD and 10 sub-1.0 OCD candidate structures, however, indicating that the dilution

e�ects are largely benign.

I compared the grafting phase of RosettaAntibody, both the old ST protocol and

the new MT protocol, against the recently published VL�VH orientation predictor,

ABangle.17 The coordinate-by-coordinate ABangle prediction results for the AMA-

II antibody set are published, allowing for a direct comparison of the two methods.

Four of the ABangle coordinates, HL, dc, LC1, and HC1, are directly analogous to

α, δID, θL, and θH, respectively. All are calculated using a similar reference frame
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centered on the same FV residues, and the corresponding coordinate pairs populate

native distributions of similar size and shape, albeit at di�erent absolute values. By

virtue of the similarity of these four ABangle coordinates to the four LHOC metrics,

an OCD value can be calculated using the published model-to-native deviations in

the four ABangle coordinates corresponding to LHOC.

Of the 11 AMA-II antibody targets, ABangle achieved a sub-2.0 OCD prediction

for �ve. The original RosettaAntbody protocol (ST) performed similarly, shown in

Figure 2.11.A, predicting a sub-2.0 OCD structure for four of the 11 targets, and

predicting a structure with an OCD better than ABangle for �ve of the 11 targets.

Interestingly, ABangle and ST RosettaAntibody have almost no overlap in their cor-

rect predictions, with only one target achieving a sub-2.0 OCD prediction from both

methods. When the template with the best OCD of the ten models from the MT

grafting prediction was used, however, RosettaAntibody substantially outperformed

ABangle, as seen in Figure 2.11.B. RosettaAntibody predicted ten of 11 targets within

2.0 OCD of native, including six targets for which ABangle had made an incorrect

prediction. The OCD values for each of the AMA-II antibody targets predicted

by RosettaAntibody ST, RosettaAntibody MT (best prediction only), and ABangle,

both as reported by Bujotzek et al.17 and as predicted by the ABangle server, are

shown in Table 2.2. Counts of strong successes (OCD ≤ 1.0), total successes (OCD

≤ 2.0), and failures (OCD > 2.0) are included for each protocol.
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Figure 2.11: Results of ST (A) and MT (B) RosettaAntibody after the grafting stage
for the 11 members of the AMA-II set compared to the predictions of ABangle.17 In
(B), only the template with the lowest OCD is plotted; the other nine MT templates
are omitted. Points above the line indicate targets in which the RosettaAntibody
models are more accurate than the ABangle models, and vice versa.
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Table 2.2: Performance of ST and MT RosettaAntibody and ABangle in capturing
VL�VH orientation for the 11 members of the AMA-II antibody set. Both the ABangle
results reported by Bujotzek et al.17 and results from the ABangle server are shown.
† Best OCD of 10 MT grafted structures.

Target ST MT† ABangle
(paper)

ABangle
(server)

1 2.60 1.54 0.38 1.05
2 3.47 1.51 2.61 5.74
3 7.48 0.97 2.60 1.44
4 3.04 0.30 1.07 2.59
5 1.27 1.27 8.15 6.16
6 2.60 2.60 1.53 3.71
7 3.43 1.48 4.96 4.36
8 0.64 0.19 3.36 0.01
9 0.68 0.15 1.41 1.34
10 2.04 0.50 0.78 15.11
11 0.66 0.66 4.36 5.40

Strong successes
(≤ 1 OCD)

3/11
(27%)

6/11
(55%)

2/11
(18%)

1/11
(9%)

Successes
(≤ 2 OCD)

4/11
(36%)

10/11
(91%)

5/11
(45%)

4/11
(36%)

Failures
(> 2 OCD)

7/11
(64%)

1/11
(9%)

6/11
(55%)

7/11
(64%)

2.5 Discussion

Predicting VL�VH orientation in antibodies is not trivial, though it has been

treated as such until recently, with no one quantifying it, let alone explicitly predict-

ing it, until 2010.1 The sequence signal determining VL�VH orientation is less strong,

or at least less well-understood, than the conserved sequences of non-H3 CDR loops.

Prediction is made more di�cult by the wide-ranging yet �ne-grained variation of

VL�VH orientation: the VL and VH domains do not fall neatly into discrete canonical
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conformations, and the qualities of a successful prediction are less clear than those of

a CDR loop. Quantifying the orientation unambiguously is thus an important step to-

ward "setting the goalposts" by de�ning the success case: where a predicted structure

and a native structure have matching orientation de�nitions. The new framework,

LHOC, with just a four-dimensional complexity, creates a functionally unambiguous

orientation de�nition, where two structures with similar LHOC metrics will always

superimpose within the tolerance of their intra-domain structural di�erences.

The addition of multiple-template grafting into RosettaAntibody advances VL�VH

prediction. While the quick rMT protocol only makes slight gains on the ST proto-

col, sacri�cing accuracy for speed, the full-length MT protocol makes nearly universal

gains on the former standard, sampling orientationally-accurate candidate structures

in 93% of the targets in my benchmark set. By including additional candidate VL�VH

donor orientation models, MT RosettaAntibody also doubles the number of correctly

predicted targets within the AMA-II benchmark set relative to the ABangle predic-

tion method. Though ABangle's single prediction is more accurate, on average, than

the ST prediction, the ten predictions from MT RosettaAntibody cover a larger con-

formational space, producing higher �delity predictions overall. MT RosettaAntibody

is not necessarily limited to using only RosettaAntibody predictions, however; it is

easily extensible. Outside predictions, such as ABangle's, could replace one of the

ten templates or be added as an eleventh, which would likely improve the predictive

power further. A limitation of the new MT RosettaAntibody approach is that it
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requires signi�cantly more computation time: more than 1000 CPU hours are needed

per prediction.

The VL�VH orientation is only one part of the paratope orientation, but it is

closely coupled to the other parts. Improving the ability to predict VL�VH orientation

will improve the ability to predict the conformation of CDR H3, a grand challenge

of antibody homology modeling. A correct VL�VH orientation places the H3 stem

residues in the correct location, and it de�nes the available space through which

the H3 loop can fold between the L and H chains. Conversely, better H3 prediction

methods should also bene�t orientation predictions by limiting the VL�VH geometries

that can closely pack with the CDR H3. Ultimately, in antibody modeling, the whole

is more than the sum of the parts.
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Chapter 3

Modeling Oblong Proteins and

Water-Mediated Interfaces with

RosettaDock in CAPRI Rounds

28�35

Adapted from Marze NA†, Jeliazkov JR†, Roy Burman SS, Boyken SE, DiMaio F, & Gray JJ, "Modeling oblong
proteins and water-mediated interfaces with RosettaDock in CAPRI rounds 28�35," Proteins 85(3), 479-486.
Copyright 2016 Wiley Periodicals, Inc. Reproduced with permission. †Equal-contribution authors

3.1 Overview

The 28th�35th rounds of the Critical Assessment of PRotein Interactions (CAPRI)

served as a practical benchmark for my RosettaDock protein�protein docking proto-
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cols, highlighting strengths and weaknesses of the approach. I achieved acceptable or

better quality models in three out of 11 targets. For the two α-repeat protein�green

�uorescent protein (αrep�GFP) complexes, I used a novel ellipsoidal partial-global

docking method (Ellipsoidal Dock) to generate models with 2.2 Å/1.5 Å interface

RMSD, capturing 49%/42% of the native contacts, for the 7-/5-repeat αrep com-

plexes. For the DNase�immunity protein complex, I used a new predictor of hydrogen-

bonding networks, HBNet with Bridging Waters, to place individual water models at

the complex interface; models were generated with 1.8 Å interface RMSD and 12%

native water contacts recovered. The targets for which RosettaDock failed to create

an acceptable model were typically di�cult in general, as six had no acceptable mod-

els submitted by any CAPRI predictor. The UCH-L5�RPN13 and UCH-L5�INO80G

de-ubiquitinating enzyme�inhibitor complexes comprised inhibitors undergoing sig-

ni�cant structural changes upon binding, with the partners being highly interwoven

in the docked complexes. My failure to predict the nucleosome-enzyme complex in

Target 95 was largely due to tight constraints I placed on my model based on sparse

biochemical data suggesting two speci�c cross-interface interactions, preventing the

correct structure from being sampled. While RosettaDock's three successes show that

it is a state-of-the-art docking method, the di�culties with highly �exible and multi-

domain complexes highlight the need for better �exible docking and domain-assembly

methods.
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3.2 Introduction

Proteins play important roles in cellular structure, metabolic activity, biochemical

signaling, and multitudes of other biological functions. A protein's function is deter-

mined by its three-dimensional structure, particularly how this structure interacts

with other proteins or other biological molecules to form complexes. Consequently,

if the structure of protein complexes can be predicted, the nature of their function

can likewise be elucidated. Though experimental methods exist to determine protein

structure (X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy

among others), these are costly, time consuming, and low-throughput. Computa-

tional structure prediction is an alternative that can quickly and cheaply generate a

structural model of a protein complex.

The Critical Assessment of PRotein Interactions (CAPRI) is a long-running community-

wide project that evaluates the performance of state-of-the-art computational protein�

protein docking methods.76 A set of experimentally determined protein complex

structures are withheld before publication, and protein docking groups are invited

to submit their computational predictions of these structures. These predictions are

assessed for accuracy by comparison with the experimentally determined structures.

Thus, CAPRI serves as an important benchmark to evaluate the state of the �eld of

computational protein docking, and to reveal remaining challenges. The Gray Lab

group has participated in CAPRI since its inception to evaluate the development

of the RosettaDock docking method.33 RosettaDock is, at its core, a Monte-Carlo
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based rigid-backbone docking method with side chain optimization. RosettaDock is

extensible, and several ancillary protocols have proven e�ective in previous CAPRI

rounds;70 the conformer-selection protocol EnsembleDock21 and the �exible-loop in-

duced �t protocol SnugDock71 are among the most broadly useful.

The prior set of CAPRI rounds (20�27) highlighted the need for docking tools that

could do more than assemble unmodi�ed globular proteins, namely model non-neutral

pH, carbohydrates, and water-mediated interfaces.40 This trend was continued by

CAPRI rounds 28�35, with targets including a DNA/protein nucleosome, protein�

peptide complexes, and more water-mediated interfaces. I did not attempt the peptide

complexes, knowing that the Rosetta approaches would be predicted by the Furman

team, who developed the Rosetta-based FlexPepDock. For the protein complexes, my

team developed two new protocols to account for the eccentricities of certain targets

in these rounds: (1) Ellipsoidal Dock, to account for oblong proteins such as those

in Targets 96/97, and (2) HBNet with Bridging Waters, to predict hydrogen-bonding

networks at water-mediated interfaces such as those in Targets 104/105.

CAPRI rounds 28�35 also continued to produce challenging globular-protein dock-

ing targets. Some of their challenges have already been well documented: proteins

that exhibit large conformational changes on binding,13,47 partners that must be ho-

mology modeled before docking,51 and global docking targets lacking a homology

complex or speci�c biochemical information about the binding site.60 Two other

challenges were more clearly de�ned by these CAPRI rounds: proteins that become
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signi�cantly entwined during docking (Targets 98�101), and partners requiring multi-

domain assembly before docking (Targets 102/107). The clari�cation of remaining

docking challenges aids the future development of RosettaDock, and the success of

new methods such as Ellipsoidal Dock and HBNet provides a blueprint for future

enhancements to the core protocol.

3.3 Methods and Results

We submitted predictions for 12 targets (13 if Target 107, the re-run of Target 102

is counted separately) across the seven standard CAPRI rounds from 28�35. (The

hybrid CASP/CAPRI round 30 is not covered by the scope of this paper [see Lensink

et al.51]; I did not submit predictions for any peptide docking targets, as my collab-

orators in the Furman lab are more adept at the peptide-speci�c Rosetta methods

that I would have used.54) I generated two medium- and one acceptable-quality pre-

dictions (Table 3.1). Additionally, I achieved one fair-quality water prediction among

the two targets that required explicit water predictions. I present my successes �rst,

along with descriptions of the corresponding novel methods used in these predictions.

I follow with the targets in which my predictions failed, accompanied by descriptions

of the targets' di�culties, and lessons learned in ex post facto analysis.
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3.3.1 Successes

3.3.1.1 Targets 96/97: αrep�GFP

In Targets 96 and 97, I was challenged to dock GFP to one of two α-repeat (αrep)

proteins. The GFP sequence had ∼5 point mutations relative to GFP of PDB ID

1JBZ;36 I used RosettaDesign46,50 to make the appropriate point mutations on the

crystal structure. The αrep proteins were highly homologous to the 6-repeat protein of

3LTJ,75 but with one more (Target 96) and one fewer (Target 97) repeat subunit. To

generate the αrep homology models, I spliced in/out a single non-terminal repeat from

3LTJ while maintaining the topological curvature of the template. I then optimized

the αrep models, and to account for my uncertainty in the αrep structure I created

30-member docking ensembles using the Rosetta Relax15,58 protocol. Though no

homologous complex was available in the PDB, the concave face of the αrep protein

and the GFP β-barrel exhibited high shape complementarity; as such, I posited that

the GFP must dock within the αrep concave face.

The geometric symmetry of GFP's β-barrel necessitated the use of global dock-

ing to properly place it in the αrep concave face. A new randomization method,

Ellipsoidal Dock (Figure 3.1), was used for the global docking of GFP. The standard

Rosetta global docking randomizes the Euler angles of the protein partners, implicitly

treating them as spheres. When a partner is oblong, like GFP, such randomization

ine�ciently samples polar regions of ellipsoidal proteins and creates poor contacts in
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Figure 3.1: Global randomization in (A) standard Rosetta and (B) Ellipsoidal Dock.
The standard global randomization pulls the docking partners apart, randomizes the
Euler angles of the implicit sphere circumscribing one protein partner, and pulls the
partners back into contact. Ellipsoidal Dock calculates the normal vectors from the
surface of one partner at the starting point of contact, as well as at a random point on
the surface, and superimposes the two normal vectors. The distributions of 200 oblong
candidate complexes as generated using standard randomization (C) and Ellipsoidal
Dock (D) are shown. The red spheres represent the center of mass of the antibody in
each candidate complex.
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the putative docked complexes (Figure 3.1.A/3.1.C). Ellipsoidal Dock corrects these

issues by randomly selecting a point on the ellipsoidal surface approximation of the

protein, and aligning the normal vector at this point to the normal vector from the

other partner's interface (Figure 3.1.B/3.1.D). The principle of aligning normal vec-

tors to preserve shape complementarity is similar to that used in ICM-DISCO global

docking;30,31 however, while ICM-DISCO is built for enumerative searches and uses a

polyhedral surface approximation with one normal vector per face, Ellipsoidal Dock

uses a smooth surface with a continuous distribution of normal vectors, appropriate

for Rosetta's stochastic Monte Carlo sampling methods.

The Ellipsoidal Dock protein surface approximation uses the standard equation

for an ellipsoid:

x2

a2
+
y2

b2
+
z2

c2
= 1

where the centroid of the protein's Cα atoms de�nes the origin, and the 1st, 2nd,

and 3rd principal components of the Cα atom set de�ne the z, x, and y directions,

respectively. The parameters c, a, and b are taken as twice the square root of the

eigenvalue corresponding with the 1st, 2nd, and 3rd principal component eigenvectors,

respectively. The surface area of an ellipsoid does not have a closed-form solution, so

approximations are made to sample it evenly. I sample the z-coordinate �rst from a

beta distribution with parameters α = 1.5 and β = 1.5, scaling the distribution over

the z-length of the ellipsoid. I also sample the x-coordinate from a beta distribution,
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but with parameters between 0.5 (used when α' = β') and 1.0 (used when α' �

β'). Finally, I select the y-coordinate as either the positive or negative y-coordinate

corresponding with the chosen x- and z-coordinates.

In addition to using Ellipsoidal Dock to fully sample the GFP orientation, I

also used (1) a larger-than-standard initial translational/rotational perturbation (8 Å

translational parameter vs. 3 Å standard) to broaden the search scope along the αrep

crevice and (2) Rosetta EnsembleDock to sample di�erent αrep conformers from my

docking ensemble. I generated 20,000 candidate structures (decoys) for each target.

Among my 10 submitted models for each target, I achieved one medium-quality

structure for Target 96 and two acceptable-quality structures for Target 97. My

highest-quality structure for Target 96 (Figure 3.2.A) had a root-mean-squared dis-

placement of interface atoms (Irmsd) of 1.577 Å and 0.420 fraction of native contacts

(fnat), both the second-best among all submissions. This structure was my highest-

ranked model. My highest-quality structure for Target 97 (Figure 3.2.B) had an Irmsd

of 2.251 Å and 0.256 fnat.

3.3.1.2 Targets 104/105: DNase�Immunity protein

Targets 104 and 105 presented a dual challenge: �rst, to predict the complex struc-

ture of a DNase (PyoAP41 or PyoS2) with its cognate immunity protein (ImAP41

or ImS2), then to predict the mediating waters and side chains at the protein inter-

face. While the DNase proteins had crystal structures available in the PDB, I had
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Figure 3.2: (A & B) My best-quality models for Targets 96 & 97 (red), superimposed
with their complex crystal structures (blue). (A) shows my medium-quality model
for Target 96; (B) shows the better of my two acceptable-quality models for Target
97. (C) My best medium-quality model for Target 105, superimposed with the crystal
structure. My model is colored in red/purple shades, while the crystal structure is
colored in blue shades. (D) Two of the three binding modes used in my docking
simulations for Target 95. The mode implicated by Bentley et al.10 is shown in
orange, while my �rst novel mode is shown in magenta. The six residues implicated
as DNA-binding are colored in dark blue; in all my modes, these residues contact
DNA directly. (E) The native binding mode for Target 95, shown in green. The
six residues implicated in DNA-binding are again colored in dark blue; none of these
residues contact DNA directly, instead making salt bridges with positively charged
residue, colored in red. (F) The bound UCH-L5�RPN13 complex (grey and pink),
with the unbound RPN13 superimposed on top (blue). Upon binding, the RPN13
helical bundle hinges open to accommodate the UCH-L5 C-terminal helix.
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to generate generated homology models for ImAP41 and ImS2. The available ho-

mologous structure was colicin Im2 (chain A in PDB ID 3U4389), a previous CAPRI

target (T47) with 50% identity to ImAP41 and 59% identity to ImS2. The starting

complexes were then generated by aligning the homology models (ImAP41 or ImS2)

and structures (PyoAP41 or PyoS2) to their homolog's position in PDB 3U43. For

T104, I then used structural ensembles of PyoAP41 to account for a �exible loop at

the interface and ran an local EnsembleDock to optimize the complex (50,000 de-

coys). For T105, I ran a local RosettaDock to optimize the complex (20,000 decoys).

I used a new method for interface water predictions: HBNet with Bridging Waters

(HBNetBW).

We expanded HBNet, a method for designing hydrogen bond networks,14 to in-

clude a statistical potential to capture water molecules that form bridging hydrogen

bonds between side chains. The two-term potential utilizes the distance between the

two protein atoms that hydrogen bond to the water molecule (acceptor or donor po-

lar hydrogen) and the dihedral angle between those two atoms and their base atoms

(e.g. the base atom for a carbonyl oxygen acceptor would be the carbon it is double

bonded to, and the base atom of the polar hydrogen would the heavy-atom donor

that it is covalently bonded to). I calibrated the potential using interface waters from

the Top 8000 dataset23 and bicubic spline interpolation; the two-dimensional function

that de�nes the bridging water score is:
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score(a1, a2, a3, a4) = f
(
distance(a2, a3), dihedral(a1, a2, a3, a4)

)
where a2 and a3 are the protein atoms hydrogen bonded to the bridging water,

a1 is the base atom of a2, and a4 is the base atom of a3. To identify water positions

during HBNet search, if two rotamers have a bridging water score below a speci�ed

threshold, they are connected as part of a potential hydrogen bond network and an

explicit water molecule is placed at ideal geometry relative to the hydrogen-bonding

atoms. I ran HBNetBW on each docked backbone, sampling rotamers of the interface

residues to identify the most satis�ed networks. There is a substantial energetic

penalty associated with burying polar atoms that do not participate in hydrogen

bonds (either to solvent or other protein atoms); thus, I hypothesized that using this

criterion would be advantageous for discriminating between docked complexes.

For Target 104, all of my models were incorrect. An ex post facto analysis revealed

that my homology model had the correct complex orientation, and that my docking

simulation moved the complex away from that conformation. For Target 105, all four

of my submitted models were of medium quality, the best having an Irmsd of 1.757 Å

and an 0.481 fnat. Similar to Target 104, however, the unre�ned homology model had

a more native-like orientation than my docked model. One of my models from Target

105 had a fair-quality water prediction (Figure 3.2.C), with a waters-only fnat of 0.118,

indicating that HBNet can be useful even without a perfectly-aligned interface.

After the CAPRI blind challenge, I ran HBNetBW on the revealed crystal struc-
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tures for Targets 104 and 105 and the closest homology model to each. I removed

water molecules from the structures. I then relaxed (cycles of minimization and side

chain repacking) the structures using Rosetta. Next, I ran HBNetBW using identi-

cal parameters to those during analysis of submitted docked complexes. In regions

of the interface where the backbone was close to that of the crystal structure, the

native side chain hydrogen bond networks were largely recapitulated, and a couple of

the bridging water molecules were placed in agreement with interface waters in the

crystal structure; for example, running HBNetBW on the T105 homology model gen-

erated a network with a bridging water molecule between Tyr640, Tyr55, and His34

that is in very close agreement to the experimental crystal structure. However, many

false-positive networks and water placements were also generated � multiple networks

are identi�ed for each �xed-backbone decoy, making it challenging to choose which

networks and water placements to keep and which to discard. Ranking networks

according to satisfaction and connectivity led to success in designed protein-only net-

works;14 however, as used here, these metrics are only as reliable as the bridging water

identi�cation and placement, and my results suggest that there is signi�cant room

for improvement to both.
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3.3.2 Failures

3.3.2.1 Target 95: nucleosome�Bmi1/Ring1b�UbcH5c

The challenge in Target 95 was to dock the ubiquitinating enzyme complex Bm1/Ring1b�

UbcH5c to a nucleosome. The unbound forms of both partners were available, in

3RPG10 and 3LZ078 for the enzyme complex and the nucleosome, respectively. The

scientists who solved the unbound enzyme crystal structure (3RPG) hypothesized a

binding mode for the complex of interest predicated on two structural constraints:

(1) a 2 Å distance constraint between the ubiquitin donor residue (UbcH5c, Cys85)

and the ubquitin acceptor residue(s) (nucleosome H2A, Lys119(/Lys118)), and (2)

an ambiguous interaction constraint between four enzyme complex residues (Bmi1,

Lys62/Lys64, Ring1b, Arg97/Arg98, all implicated through mutagenesis experiments

as DNA-binding) and the nucleosome DNA.10 I used this binding mode as one start-

ing structure for a local RosettaDock simulation (10,000 decoys). I also identi�ed two

other binding modes meeting the Bradley constraints (Figure 3.2.D) and launched

local RosettaDock simulations from each of these starting structures (10,000 decoys

each). Constraint (1) was enforced with a �at harmonic score function penalty dur-

ing all docking runs, albeit at a looser minimum penalized distance of 15 Å while

constraint (2) was used as a post-�lter to remove any structures without at least one

key residue contacting the nucleosome DNA.

All of my submitted models were incorrect (closest Irmsd: 11.4 Å). Examination
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of the complex crystal structure (4R8P) showed that constraint (2) was not preserved.

While the constraint assumed that the patch of four positively charged amino acids

would contact the DNA directly, they in fact make salt bridges with the protein core

of the nucleosome (Figure 3.2.E). As a result, my post-�lter constraint prevented me

from �nding the correct binding mode.

3.3.2.2 Targets 98�101: UCH-L5(±Ub)�[RPN13 or INO80G]

Targets 98�101 provided a combinatorial docking challenge which asked me to dock

deubiquitinating enzyme UCH-L5, with or without its conjugate ubiquitin (Ub), to ei-

ther of two inhibitors, RPN13 or INO80G. Unbound structures of UCH-L5, RPN13,

and Ub were available (3IHR, 2KQZ, and 1UBQ, respectively). I homology mod-

eled INO80G by threading from PDB structure 2KQZ, loop-building, and re�ning in

Rosetta. Additionally, I built a homology UCH-L5�Ub complex by aligning the two

proteins to PDB structure 4IG7. Using the FloppyTail protocol41 I modeled the tails

of RPN13, which are unresolved in 2KQZ, and the homologous regions of INO80G.

I found no biochemical data or homology complexes that clearly identi�ed a binding

site, necessitating a global docking search. Due to the uncertainty in the monomer

structures, I ran EnsembleDock with 30-member ensembles (generated by relaxing

my top homology models). 20,000 decoys were generated for each target.

These targets were quite di�cult: across all four targets, no CAPRI group sub-

mitted a model of acceptable-quality or better. Comparison of the complex binding
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mode to the unbound structures revealed that RPN13 undergoes a signi�cant con-

formational shift upon binding, in which a helical bundle hinges open to bind around

a helical element from UCH-L5, which itself undergoes a substantial kinking upon

binding (Figure 3.2.F). Though INO80G has no unbound structure to compare with

its bound forms, the inhibitor is similarly entwined with the UCH-L5 helix. This

binding mode is doubly di�cult to predict. Firstly, predicting conformational change

upon binding has been observed to be di�cult in previous CAPRI challenges, partic-

ularly when the change is so large. Secondly, the degree of structural entwinement

between the two partners requires a hybrid folding/docking algorithm to predict cor-

rectly: the bound forms of RPN13 and INO80G would have high energies in solution

due to their open hydrophobic pocket, and even if these forms could be predicted,

due to the high degree of entwinement they would be almost impossible to dock by

rigid-body methods.

3.3.2.3 Target 102 (107): HxuA�Hemopexin

Target 102 challenged me to assemble and dock the multi-domain protein HxuA

to the heme storage protein hemopexin. The challenge was repeated in Target 107

with the unbound structure of HxuA provided. The unbound structure of hemopexin

was suggested in both challenges as PDB ID 1QHU.9 In my attempt to assemble

HxuA, I used the Robetta server to predict the individual domains, then I used Clus-

Pro25,26,42,43 to dock the domains together one-by-one, with Rosetta CCD18,81 used
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to close the linking regions. Robetta predicted four domains, with domain 1 matching

PDB ID (4I848), domain 4 being a similar β-solenoid shape, and domains 2 and 3

being small helical and sheet linking domains, respectively. The unbound structure

of HxuA provided in Target 107 revealed a few key errors in my assembled structure:

(1) domain 2, predicted by Robetta as helical, is entirely a beta-sheet, (2) HxuA

is not made up of distinct domains, but rather is a single extended β-solenoid, and

(3) I mistakenly inserted domain 4 at the N-terminus, e�ectively inverting the entire

domain. No binding site was identi�ed through either homology or biochemical data,

so I ran a Rosetta global dock, using Ellipsoidal Dock to account for the elongated

HxuA β-solenoid. I produced 10,000 decoys for both Target 102 and Target 107.

In both targets, all of my submitted models were incorrect. The failures in Target

102 can largely be attributed to my incorrect model of HxuA. The failures in Target

107 are less easily attributed. A component of the failure is likely the size of the

complex. HxuA is 884 residues; to fully sample the protein with a Rosetta global

dock, I would generally produce between 100,000 and 1,000,000 decoys; however, the

time constraints of the CAPRI competition limited me to 10,000 decoys. Perhaps

more critically, though, the binding conformation is mediated by a 23-residue loop

on HxuA that undergoes signi�cant remodeling during binding, inserting into the

heme-binding site of hemopexin. As my simulation did not account for any backbone

�exibility, this loop was completely unavailable to the binding site in hemopexin.
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3.3.2.4 Target 103: UBE2Z�FAT10

Target 103 presented the challenge of predicting the complex of UBE2Z, a ubiquitin-

conjugating (E2) enzyme, and FAT10, a diubiquitin analogue. I used Modeller84 to

generate homology models for UBE2Z and FAT10 (from PDB structures 3CEG69

and 4KSL,66 respectively) for use in my docking ensembles. I ran a 50,000 decoy,

high-perturbation local EnsembleDock from a putative binding conformation based

on homology to other E2 ubiquitinating enzymes. During docking, I imposed a 16 Å

distance constraint between the C-terminal residue of FAT10 and Cys-160 on UBE2Z,

with the latter posited as the FAT10 carrier site. I achieved no models of acceptable

or better quality, either in the evaluation of the full complex, or in the separate eval-

uations of the binding sites of either the C-terminal or N-terminal FAT10 domains.

3.3.2.5 Target 59: Rps28b�Edc3

In Target 59, I was challenged to dock ribosomal protein Rps28b to mRNA de-

capping enzyme Edc3. 20-member unbound NMR ensembles were provided for each

partner: 1NE390 for Rps28b, and 4A5332 for Edc3. I ran 10,000 local EnsembleDock

decoys from each of six putative binding sites manually identi�ed by examining the

solvent-accessible faces of Rps28b in the context of the ribosome and Edc3 in the

context of homologous hexamers. I achieved no acceptable or better structures in

my ten predicted structures, but I did achieve one acceptable structure in my 100

uploaded structures.
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3.4 Discussion

My group's CAPRI performance reveals strengths and limitations in my docking

abilities. I achieved a successful prediction in 3 of 12 targets. Compared to the

community as a whole, however, my performance is not atypical, as six targets did not

elicit a single successful prediction from any team. I did not participate in the peptide

docking targets, but my collaborators in the Furman lab did.54 When the results of my

submissions (3*/2**) are adjoined with those from the Furman lab (3*/3**/1***) on

di�erent targets, Rosetta docking approaches (6*/4**/1***) had acceptable or better

predictions in six targets and medium or better predictions in four targets, which

would position the combined ranking somewhere in the top ten of all predictors.53

Other CAPRI predictors included Rosetta re�nement in their approaches (Baker,

Bradley, Guerois, etc.). In fact, Guerois, who incorporated Rosetta-based re�nement

as the �nal re�nement and discrimination stage in their pipeline, predicted 9/18

targets correctly. Furthermore, for targets with at least one correct prediction, the

Rosetta-based approaches yielded models closest to native. Thus, Rosetta remains

a state-of-the-art computational tool that can successfully predict a diverse set of

protein complexes.

The new Rosetta methods I tested during these CAPRI rounds worked especially

well, leading to all three of my group's success cases. Ellipsoidal Dock's ability to

appropriately adapt my search to the oblong shape of GFP led to my successes in

predicting Targets 96 and 97, which were both di�cult targets for the community.
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My group was the top predictor group for Target 96, and in the top-�ve for Target

97. HBNetBW, even its early stage of development, was able to achieve a fair-

quality interface water prediction for Target 105 despite errors in the docked partners.

However, like in previous CAPRI experiments, all of my successes were small protein

complexes with little �exibility upon binding and with clues about the native binding

sites, either by homology complex or obvious shape complementarity.

These CAPRI rounds reveal the shortcomings of my docking methods and the

remaining challenges for the docking community as a whole. Large and multi-domain

targets remain quite challenging, even when they are otherwise tractable docking

challenges. Target 95, a 1639 residue complex that is nearly rigid upon binding and

has an abundance of biochemical data restraining the complex, was only successfully

predicted by three predictor groups, with only one medium-quality model between

them. Target 102, a 1,098 residue complex that also exhibits a full loop remodeling

at the active site upon binding, did not elicit a single acceptable-quality or better

model from any predictor, even when the full unbound structure of the larger partner

was provided. To allow prediction of large complexes, future global docking methods

must be able to sample the resultant large conformational space more e�ciently.

The latter large target is also indicative of the other key remaining challenge,

large conformational changes during binding, which will often confound all existing

docking methods. Targets 98-101 are all small complexes in which the structure of

the binding residues of the larger partner are predictable by homology. Not one tar-
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get, even T98 where unbound structures of both partners were provided, had a single

correct model predicted. While this di�culty can be attributed to the conformational

changes upon binding, it can also be attributed to the severe entwinement of the two

partners in the bound state. This entwinement requires a more sophisticated set of

docking methods where �exibility and docking orientation are sampled concurrently,

as opposed to existing methods such as Rosetta's EnsembleDock, which largely sep-

arates the sampling of the �exibility and the docked conformation. The revelation

of these CAPRI rounds that there are two distinct challenges in �exible docking will

provide insight into future development of �exible docking methods.
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Chapter 4

Motif Dock Score (MDS): A fast,

accurate coarse-grained score

function for �exible-backbone docking

4.1 Overview

Binding-induced conformational changes in protein complexes have confounded

protein�protein docking algorithms by greatly increasing the degrees of freedom of

the system. To properly sample the large conformational space in �exible docking

protocols, a fast, accurate evaluation method is needed. I built Motif Dock Score

(MDS) to address this need. MDS maps full-atom residue-pair energies, generated

with the Rosetta REF15 score function, to a backbone-geometry-indexed hash ta-
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ble, allowing the RosettaDock protocol to score models using only a single lookup

per residue pair. I optimized MDS for the enrichment of near-native models dur-

ing a docking search, and I benchmarked its performance on a nine-target set of

complexes. Without requiring additional computational time, MDS shows a ninefold

improvement in near-native discrimination over centroid score (N5 = 3.6 vs. N5 =

0.4) and a threefold improvement in near-native enrichment (N100 = 5.9 vs. N100

= 2.0), ultimately showing a successful near-native enrichment in seven of the nine

benchmark targets. MDS's performance compares favorably to other leading docking

methods, particularly in regards to the prediction of di�cult and �exible targets.

Given its strong performance, MDS will be a critical component of next-generation

protein�protein docking protocols.

4.2 Introduction

Conformational changes in proteins induced by binding have confounded protein�

protein docking algorithms by greatly increasing the degrees of freedom to be sampled.

While rotamer libraries have alleviated the sampling challenges for side-chains,45 back-

bone �exibility remains a principal challenge in docking. Previous studies have found

limited success by varying the backbone along a restricted set of coordinates57,59,79

or interface residues67,82 or by docking a small number of backbone conformations of

the two partners.21
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RosettaDock has historically been among the top-performing methods for com-

putational protein�protein docking.22,27,34,40,70 The last major version, RosettaDock

3.2, achieved a successful docking prediction on a majority of rigid body targets (58%)

in the Docking Benchmark 3.0 set.20 On the more �exible targets, however, Roset-

taDock (like other methods) performed poorly, only achieving a successful docking

prediction on 29% of the medium-di�culty targets and 14% of the di�cult targets.

RosettaDock's performance in CAPRI rounds since the last major version release

mimicked the benchmark performance. On two rigid body targets, RosettaDock

outperformed nearly all other docking methods, but on targets with signi�cant con-

formational change upon binding, RosettaDock failed to produce any correct docked

conformations.55 The recent CAPRI rounds proved protein �exibility to still be a

community-wide docking weakness, with several such targets eliciting no successful

predictions from any method.53

Flexible-backbone docking, as well as the other key remaining protein�protein

docking challenges, global docking and docking of large multi-domain complexes, de-

mands more algorithmic complexity to explore a larger conformational search space

than rigid-body docking of small complexes.47 These sampling approaches are more

computationally intensive, and they must be balanced with scoring methods that

are more e�cient to prevent massive increases in computational resource utilization.

RosettaDock's current low-resolution scoring method, centroid score, is fast to calcu-

late; however, it does not correctly identify native docked conformations,92 ultimately
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making it an ine�cient score function. Thus, a new score function that is both fast

and accurate is needed.

One promising score function, the residue-pair transform (RPX) score, was re-

cently developed and used to design hydrophobic symmetric protein interfaces.29 RPX

score evaluates and mutates residue pairs using only the 6D transformation needed

to superimpose the residues' N�Cα�C backbones onto each other. In a single lookup,

RPX score queries this transformation against a pretabulated database of aliphatic

amino acid pairs and their corresponding geometries and full-atom Rosetta scores.

The pair score and sequence of the best amino acid pair from the database are then

assigned to the queried residue pair.

In the project described in this chapter, I used the RPX framework to build a new

low-resolution protein interface score function, Motif Dock Score (MDS). I optimized

MDS in the context of the RosettaDock protocol, selecting for enrichment of near-

native decoys. I then examined the performance of MDS, both singly and in concert

with enhanced sampling method Adaptive EnsembleDock, on a benchmark set of nine

targets randomly selected from Docking Benchmark 5.0.
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4.3 Methods

4.3.1 PDB Curation

I culled the PDB for all crystal structures containing two or more interacting

protein chains and a resolution of 3.0 Å or better. I also removed any structures

present in the DockingBenchmark 5.0 to be used as a test set. In the remaining set,

PDB structures with more than two chains in their asymmetric unit were further

divided such that one structure represented every pair of interacting protein chains

in their asymmetric unit. The PDB structures were then stripped of all HETATM

lines and non-canonical amino acids. My curated set contains 154,955 protein�protein

complex structures from 103,017 PDB entries.

4.3.2 Motif Querying

Each structure in the protein interface set was loaded into Rosetta and scored

with a full-atom score function; the resultant energies were decomposed onto the set

of interacting residue pairs. The system was queried for cross-chain pairs of residues

within 10 Å of each other with a pair score below a constant energy cuto� (typically

0 kcal/mol; i.e. residue pairs that are net-attractive). For each residue pair in the

�ltered residue set, I calculated the six-dimensional transform needed to superimpose

one amino acid backbone onto the other (three-dimensional Cartesian translation
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and three-dimensional Euler Angle rotation). Each pair score was stored with its

corresponding 6D-transform as a one-line motif.

4.3.3 Score Grid Generation

A score grid is initialized with a translational and rotational grid size. One by one,

motifs are analyzed. The motif 6D-transform is binned, and the corresponding bin in

the score grid is queried. If the bin is empty, the motif score is saved as the bin score.

If the bin is populated, either an aggregation or minimization method can be used to

calculate the new bin score. The aggregation method is calculated by converting the

motif score to a pseudo-count weighted by its favorability, then summing the count

with the current bin score. The minimization method simply calculates the lower of

the old bin score and the motif score, and saves it as the new bin score. If smoothing

is being used, the neighboring bins are also queried, with the favorability of the score

determining the radius within which the bin scores are updated. Once all motifs have

been analyzed, the populated bins are assigned a hash value and, to minimize its

memory footprint, only the hashed bins are stored.29

4.3.4 Motif Dock Score

Motif Dock Score uses the same algorithmic framework as RosettaDock, de-

scribed in Gray et al.,33 with modernizations described in Chaudhury and Gray,21
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Chaudhury et al.,20 and Marze et al.55 The standard low-resolution score function

(interchain_cen) is replaced with a motif-based score function, called motif_dock_score.

The score function consists of a new scoring term, motif_dock, and a clash penalty

(interchain_vdw). The motif_dock term is a residue pair energy that acts only on

cross-chain residue pairs within 10 Å of each other. The residue pairs are scored by

calculating their 6D-transform, converting this to the hash value of the corresponding

6D bin, querying the hash table, and reporting the bin score. If the bin is empty (i.e.

there are no matches for the hash), the pair score will either be zero if no penalty is

used, or 0.5 kcal/mol, if a penalty is used.

4.3.5 Benchmark Set Generation

I built two benchmark sets using subsets of the Docking Benchmark 5.0 set.80 The

�rst, a set of eleven targets for rescoring, was randomly selected from the rigid-body

subset of Docking Benchmark 5.0 to provide ample near-bound structures to optimize

motif scoring's near-native discrimination ability. To generate the rescoring sets for

each target, I ran the standard RosettaDock protocol20 on the unbound complex

structures, including translation and rotation perturbations (mean = 3 Å translation,

8° rotation) to the ligand (the smaller protein partner) to disrupt existing interfaces.

The second set, a small representative docking benchmark, was generated by selecting

four rigid-body targets (1EFN, 1GLA, 2A1A, 2FJU), three medium-di�culty targets

(1LFD, 2CFH, 3AAA), and two di�cult targets of di�erent categories (2OT3, 3F1P)
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from the Docking Benchmark 5.0.

4.3.6 Generation of Backbone Ensembles

To generate diversity in backbone conformations for the Adaptive EnsembleDock

runs, I used three conformer generation methods: perturbation of the backbones

along the normal modes by 1 Å,7 re�nement using the Relax protocol in Rosetta,74

and backbone �exing using the Rosetta Backrub protocol.73 Each was shown to

generate di�erent modes of backbone motions, overlapping by 30-50% with the actual

directions of motion between the unbound and bound states.47 Since the normal mode

analysis generated the largest deviations, I used 40 normal mode conformers, 30 Relax

conformers and 30 Backrub conformers to generate the ensemble of 100 conformers.

4.3.7 Benchmark Evaluation Metrics

I evaluated the results of the docking benchmark runs using three bootstrapped

metrics: N5, as described by Chaudhury et al.,20 and N100 and N1000, described

analagously to N5 as the counts of near-native decoys among the lowest-scoring 100

and 1000 candidate structures, respectively. As in Chaudhury et al.,20 a decoy must

have an interface RMSD ≤ 4.0 Å, and a run is categorized as "successful" when N5

≥ 3. I use more lenient success criteria for my N100 and N1000 metrics (N100 ≥ 30,

N1000 ≥ 150), as these are metrics of near-native enrichment rather than near-native
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discrimination. Furthermore, I also evaluate the N5, N100, and N1000 metrics after

only the low-resolution phase of docking as measures of the near-native enrichment

and discrimination of the low-resolution docking protocol alone. Here, I use a more

lenient measure of near-native candidate structures, 6.0 Å centroid RMSD, to account

for the limitations in measuring RMSD in the centroid phase (incompletely resolved

side chains, lever-arm e�ects away from the interface, etc.). As in Chaudhury et al.,20

the metrics are bootstrapped using 1000 resamples of the docking decoy sets.

4.4 Results

My goal was to create a fast, accurate score function for low-resolution protein�

protein docking, so ultimately, I wanted to examine the docking performance of my

Motif Dock Score protocol. Since, however, I developed MDS on top of the RPX

framework, which was built for interface design, I �rst needed to optimize the score

function for protein�protein docking.

4.4.1 Optimization of Motif Dock Score

MDS depends on a discrete space tabulation of all-atom energies; therefore, there

are three scoring grid structural factors that might a�ect the performance of MDS: bin

size, smoothing factor, and population method. For my �rst round of optimization, I

examined these factors. I identi�ed Intuitively, bin size has the most direct e�ect on
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scoring; a larger bin is more likely to properly identify a low-energy interaction but

it is also more likely to assign this low-energy interaction incorrectly to a geometri-

cally dissimilar residue pair; conversely, a smaller bin, due to its highly constrained

geometry and the limitations of the motif database, is less likely to assign a low score

to an interacting residue pair. I therefore chose �ve bin sizes to examine, each with

a �xed width for the three translation bins and a �xed angle for the three rotation

bins. The largest bin has an 8 Å width parameter and a 36° angle parameter, while

the smallest bin has an 0.5 Å width parameter and a 12° angle parameter.

The smoothing factor's e�ect on scoring is more indirect. While a large smoothing

factor will populate more bins with interaction energies than a small smoothing factor,

the actual conformational space populated also depends on the bin size. I chose three

smoothing factors to examine: 0.3, 1.0 (the RPX score default), and 3.0.

There are two simple methods to populate the score bins. The �rst, minimiza-

tion, stores only the best-scoring interaction in each bin as the bin score. The second,

aggregation, increments a pseudo-count to the bin score for each low-scoring inter-

action in the bin, weighted by the score of the interaction. The e�ects on scoring

are not obvious, as the former rewards very strong interactions, even if they are only

observed once in the PDB, while the latter rewards moderately strong interactions

that are seen frequently in the PDB.

From my culled PDB set, I attempted to build experimental scoring grids using all

permutations of three factor sets, for a total of 30 scoring grids. Four of these grids,
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all using the 0.5 Å/12° bin size, could not be built because the �ne grid size required

over 40 GB of memory to hold the scoring grid in memory during its population,

exceeding my hardware limit. With each of the remaining 26 scoring grids, I rescored

a docking decoy set to evaluate grid performance. Two of the 26 score grids did not

complete the rescoring trials, and are omitted from my analysis.

In the benchmark, smoothing factor had little to no e�ect on decoy enrichment.

Figure 4.1.A shows the nearly identical enrichments of near-native decoys observed

in the top 10% of scores for three score grid trials using the maximization popula-

tion method and only di�ering in smoothing factor. When aggregation is used, the

e�ect of the smoothing factor becomes slightly more erratic, sometimes improving

on the enrichment shown by the equivalent minimization grid, sometimes worsening

the enrichment, and sometimes showing no di�erence; the magnitude of this e�ect

is marginal, however (see Figure 4.1.B). This volatility is at least partially due to

a quirk of the aggregation method which populates some commonly observed bins

with exceptionally low scores (at least an order of magnitude larger than a typical

low-scoring bin). As shown in Figure 4.2, these bins act as quanta, separating the

decoys into distinct tiers based on the number of interactions in these low-scoring

bins. Such strati�cation is not desirable, as a single interaction in a false binding site

could overwhelm all of the contributions from interactions in the proper binding site.

In contrast to the other two factors, bin size had a larger e�ect on performance,

as shown in Figure 4.3. Both the largest and smallest bins performed poorly. The
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Figure 4.1: Near-native enrichment for one representative MDS score table formula-
tion for (A) each of the three smoothing factors, and for (B) each of the two population
methods. Each formulation trial is represented by a boxplot showing the enrichment
of CAPRI-rating acceptable models53 within the lowest-scoring 1,000 models out of a
set of 10,000 (top 10%) for each of 11 protein�protein complexes. (A) All trials shown
have a bin size of 2 Å/22.5° and use the maximization population method. All three
smoothing factors produce nearly identical near-native enrichments. (B) Both trials
have a bin size of 2 Å/22.5° and a smoothing factor of 1.0. The aggregation method
(green �ll) has erratic, but ultimately minor results on near-native enrichment.
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Figure 4.2: Motif Dock Score (MDS) vs. RMSD to native for all models, as scored
by a score table trial with bin size = 0.5Å/12°, smoothing factor = 0.3, and popula-
tion by aggregation. Strati�cation of scores caused by a low number of contributing
pair interactions is evident in upper left and lower left, with many models scoring
identically. Large scoring gaps, caused by a single very favorable pair interaction, are
highlighted in red.
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Figure 4.3: Near-native enrichment for one representative MDS score table formu-
lation for each of the �ve examined bin sizes. Each formulation trial is represented
by a boxplot showing the enrichment of CAPRI-rating acceptable models within the
lowest-scoring 1,000 models out of a set of 10,000 (top 10%) for each of 11 protein�
protein complexes. All trials shown have a smoothing factor of 1.0 and populate bins
by maximization. The enrichment performance for RosettaDock's original centroid
scoring method (Cen) and the full-atom scoring method (FA) are shown in gray for
comparison. The intermediate bin sizes show the best near-native enrichment.
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largest bin size likely convolutes too many distinct geometries into a single bin, giving

it the inability to discriminate near-native decoys from non-native decoys. Similar

shortcomings plague the centroid score, which represents the protein side chain with

only a single pseudo-atom, and which performs almost identically to the largest bin

size. Conversely, I found the smallest bin sizes create a grid that is too sparsely

populated to score most pair interactions; decoys scored by the smallest bin size

typically have fewer than 20 non-zero pairwise interactions. Though the highest

average performance was seen in the second-largest bin size (4 Å/30°), the middle bin

size (2 Å/22.5°) has an only slightly lower average, but a much higher lower quartile,

with a pro�le closely matching the full-atom performance. Thus, I selected the 2

Å/22.5° bin size, 1.0 smoothing factor, and minimization population method as the

optimal set of factors.

For my second round of optimization, I examined the underlying score function

used to generate the residue pair motifs. Initially, I built motif tables from my PDB

set using four score functions: talaris2014, the former Rosetta standard,62 and three

iterations of the current Rosetta standard, beta_july15,64 REF15 (formerly known

as beta_nov15),5 and beta_nov16.64 I also examined the score cuto� for storing a

motif; with the talaris2014 score function, I tested the standard cuto�, 0 REU, as

well as cuto�s of 1 REU and 2 REU to include more residue pair motifs in the motif

table. From these motif tables, I built score grids using the optimal factors from

the previous optimization trials. I then rescored my docking decoy set with these
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six score grids and compared the decoy enrichments to those of the optimal trial in

the previous set. The previous set of score grids were built from a single motif set

generated using the RPX minimal form of the Rosetta score function29 that included

only Van der Waals interactions, an implicit solvation potential, and a side chain

hydrogen bonding potential.

All of the complete Rosetta score functions signi�cantly underperformed the mini-

mal Rosetta score function (results for talaris2014 shown in Figure 4.4). The largest

di�erence between the minimal score function and the talaris2014 and beta score

functions is the lack of single-body energy terms. These terms describe things like

the likelihood of seeing certain rotamers, how well the residue �ts in Ramachandran

space, and corrections for zeroing the energy needed to swap amino acids in a protein

sequence. I suspected that these energy terms were describing contributions that were

largely redundant within the given residue-residue transform geometry, but that were

nevertheless overwhelming the e�ects of pairwise interactions that created favorable

motifs in the minimal score function implementation. To overcome these e�ects, I

built motif tables from the same four new score functions with all single-body terms

removed. I also attempted to build motif tables with higher storage cuto�s (3 REU

and 6 REU) to capture a larger fraction of the relevant interactions, but the proto-

col quickly ran into the memory ceiling as the number of motifs per PDB structure

approached the order of 103, and these trials had to be aborted.

The motif sets including only two-body terms were much more successful in dis-
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Figure 4.4: Near-native enrichment for three di�erent talaris2014-based motif-
generating score functions. Each formulation trial is represented by a boxplot showing
the enrichment of CAPRI-rating acceptable models within the lowest-scoring 1,000
models out of a set of 10,000 (10%) for each of 11 protein�protein complexes. All trials
use the optimized score table structural formulation (bin size = 2Å/22.5°, smoothing
factor = 1.0, population method = maximization). The score functions are examined
in their complete state, both with a standard motif-storage cuto� (pink �ll) and a
more inclusive motif-storage cuto� (blue �ll), as well as absent single-body score terms
(orange �ll). The enrichment performance for the centroid scoring method (Cen), the
best trial from the �rst round of optimization, using the default minimal score function
(1st opt), and the full-atom scoring method (FA) are shown in gray for comparison.
The complete score function underperforms the minimal score function, with the
enrichment improving slightly when more motifs are included. When only two-body
terms are included, the talaris2014 score function outperforms the minimal score
function.
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criminating near-native decoys, as shown in the comparison of all talaris2014 trials

in Figure 4.4. Among the four score functions without single-body terms, The REF15

score function, which I chose as the optimum for motif generation, had the highest

average decoy enrichment of all score grids tested. These results are shown in Figure

4.5. The REF15 is also the most recent stable, released version of the beta score

function.5

To incorporate Motif Dock Score into the RosettaDock protocol, few modi�cations

were needed. RosettaDock's existing low-resolution phase, centroid mode, represents

the protein with a full-atom backbone and a single pseudo-atom in place of the side

chain. Since MDS only requires backbone atomic coordinates and side-chain identity

to calculate the transform needed to identify the proper scoring bin, the centroid

representation was su�cient for calculating MDS. I had previously created the Rosetta

scoring term motif_dock, so I only needed to wrap the motif_dock score term into a

single-term score function that could be called during low-resolution docking instead

of the existing centroid scoring function.

During error testing, a shortcoming of my MDS single-term score function became

evident. Because only low-scoring pair motifs are stored in the scoring grid, the single-

term MDS has no knowledge of high-energy pair interactions. This absence of penalty

is not important when the interaction is mildly poor. For example, if a charged residue

is placed in a hydrophobic pocket, it would likely have a MDS of zero, as opposed

to a full-atom score of a few positive REU; however, the energy di�erence between
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Figure 4.5: Near-native enrichment for four di�erent motif-generating score func-
tions. Each formulation trial is represented by a boxplot showing the enrichment of
CAPRI-rating acceptable models within the lowest-scoring 1000 models out of a set
of 10,000 (10%) for each of 11 protein�protein complexes. All trials use the optimized
score table structural formulation (bin size = 2Å/22.5°, smoothing factor = 1.0, pop-
ulation method = maximization). Four score functions are examined: talaris2014
(orange), beta_july15 (blue), REF15 (yellow), and beta_nov16 (green). The score
functions are examined absent their single-body score terms. The enrichment perfor-
mance for the centroid scoring method (Cen), the best trial from the �rst round of
optimization, using the default minimal score function (1st opt), and the full-atom
scoring method (FA) are shown in gray for comparison. The talaris2014, REF15,
and beta_nov16 score functions all outperform the minimal score function, with the
latter two slightly outperforming even the full-atom score function in regards to near-
native enrichment.
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such a conformation and a more favorable conformation, such as exposing the charged

residue to solvent, is still the same order of magnitude it would be during full-atom

scoring. The absence of penalty becomes severely detrimental in the case of very poor

conformations, such as when two residues have a substantial steric clash. In such a

case, the full-atom score would give an energy penalty of hundreds or thousands of

REU, while the single-term MDS gives no penalty. This leads to the docking behavior

seen in Figure 4.6, where some trajectories will bring the docking partners closer and

Figure 4.6: (A) Motif Dock Score (MDS) vs. RMSD-to-native for models generated
by MDS protocol. Lower-scoring models are more distant from native structure,
contrary to the optimal behavior. (B) Structure of a low-scoring model (red/blue)
compared to the native complex (gray/blue). Absent any penalty for overlapping
residues, the docking trajectory embeds the red partner inside the blue partner to
maximize residue�residue contacts.

closer together to the point of embedding one in the other. These conformations score

much better than realistic conformations, since placing a residue in the middle of its
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docking partner gives it more opportunities to �nd a residue partner in a favorable

scoring bin without accounting for the massive penalty from all the overlapping atoms.

To compensate for the lack of a clash penalty, I tried two approaches. In the

�rst, I simply added the centroid clash score (interchain_vdw) as an extra term

in the MDS score function. In the second, I added a penalty (0.5 REU) for any

observed motif whose geometric bin is unpopulated in the score grid. Both were

successful in preventing the docking partners from embedding in each other. Testing

both methods, as well as a hybrid method, on a small benchmark set revealed that

the centroid clash score alone provides the best near-native decoy enrichment (Table

4.1).

Table 4.1: Enrichment performance (N100) of MDS protocol on nine targets after
addition of centroid clash score, zero-count penalty, and both. N100 averages and
number of N100 successes are also shown for each score addition.

Number of models within 6 Å
Centroid
Clash
Score

MDS
Penalty Hybrid

1EFN 43 29 25
1GLA 5 2 0
1LFD 95 96 97
2A1A 58 19 12
2CFH 98 98 96
2FJU 55 2 0
2OT3 0 0 0
3AAA 2 0 0
3F1P 41 28 27
Average 44 28 27
Successes 6 2 2
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4.4.2 Benchmarking Motif Dock Score's Performance

To evaluate the docking accuracy of MDS, I compared its performance against a

baseline method, the current centroid low-resolution docking mode, on a nine-target

representative benchmark set. I also evaluated the performance of MDS in concert

with Adaptive EnsembleDock, a more-e�cient conformational sampling method that

produces larger conformer ensembles for each of the docking partners than the stan-

dard ensemble generation method. Previously, EnsembleDock was able to sample 10

backbones per partner at a computational cost of 1-2 minutes per model. Adaptive

EnsembleDock provides a signi�cant speed-up, allowing me to sample 100 backbone

conformations per partner in similar time. As a second control, I also evaluated the

performance of Adaptive EnsembleDock alone. For each of the four conditions, I ran

a full local EnsembleDock, generating 10,000 decoys per target. The docking runs

are evaluated for near-native discrimination by the N5 metric, and for near-native

enrichment by the N100 and N1000 metrics, both after the low-resolution phase and

after the full protocol (see Section 4.3.7 for details). These metrics are detailed for

all docking runs in Table 4.2.

Table 4.2: Bootstrapped N5, N100, and N1000 metrics for four docking protocols:
(1) Centroid protocol, (2) Adaptive EnsembleDock protocol, (3) MDS Protocol, and
(4) Hybrid MDS/Adaptive EnsembleDock protocol. N5/N100/N1000 metrics are cal-
culated for both the low-resolution and high-resolution phases of the protocols. Aver-
age metrics across nine benchmark targets are recorded in table, as are the summed
probabilities of success.

Low-Res High-Res
N5 N100 N1000 N5 N100 N1000

Average Centroid 0.3 21 220 2.3 44 305
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Table 4.2 . . . continued
Low-Res High-Res

N5 N100 N1000 N5 N100 N1000
Adaptive EnsembleDock 0.3 14 155 2.0 41 300

MDS 2.1 45 349 2.1 41 334
MDS/AED 2.2 42 339 2.3 46 334

Expected Centroid 0.4 2.0 4.0 3.9 5.0 5.0
Successes Adaptive EnsembleDock 0.4 2.0 3.0 3.7 4.6 5.0
(Out of 9) MDS 3.6 5.9 6.0 3.7 5.3 6.9

MDS/AED 3.8 5.5 6.0 4.3 5.2 7.0

An example of a successful docking simulation, the MDS run for target 1LFD,

is shown in comparison to an unsuccessful docking simulation, the centroid run for

target 1LFD, in Figure 4.7. All candidate structures generated by the low-resolution

Figure 4.7: Low-resolution score vs. RMSD to native for target 1LFD. (A) 10,000
models generated by MDS protocol. MDS generates a large number of near-native
candidate structures, and discriminates them from incorrect models. All metrics
indicate success: N5 = 5, N100 = 95, N1000 = 750. (B) 10,000 models generated
by centroid protocol. Centroid score does not generate many near-native candidate
structures, and it cannot distinguish them from incorrect models. All metrics indicate
failure: N5= 0, N100 = 0, N1000 = 23.
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phase of docking are plotted, comparing their low-resolution score to their RMSD

values. In the MDS run (Figure 4.7.A), a clear "funnel" can be seen in the plot, with

the lowest-scoring models being near-native. This plot corresponds to the metrics N5

= 5, N100 = 95, and N1000 = 750, all strong successes. This behavior is optimal

in a blind docking prediction, where only the score is available for discrimination

of candidate structures. Conversely, in the centroid run (Figure 4.7.B), no funnel

is observed; the lowest-scoring models are nearly all incorrect, and few near-native

models are sampled at all. This plot corresponds to the metrics of N5 = 0, N100 =

0, and N1000 = 23, all failures.

The behavior seen in Figure 4.7 is repeated throughout the benchmark, with

the largest performance gains observed in the low-resolution metrics when MDS is

added to the baseline protocol. The expected number of N5 successes increases from

0.4 to 3.6 (out of 9), showing a ninefold improvement in near-native discrimination.

Perhaps more notably, though, the expected number of N100 successes rises from

2.0 to 5.9 (out of 9), and the MDS N1000 metric shows nearly 7 successes (out of

9), missing only 2OT3 and 3AAA. 2OT3 is a di�cult target whose internal motions

upon binding prevent MDS from sampling decoys closer than 6 Å RMSD, however

a low-scoring structural cluster appears around 8 Å that contains several models

(∼20) that maintain 10% of the native contacts, the threshold for an acceptable

model in the CAPRI experiments.53 3AAA is a medium-di�culty target for which

near-native decoys are present in the top 1000 (and the top 100), but not at a high
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enough enrichment to count as a success. These results suggest that MDS can be a

useful docking �lter, with both its top 10% and top 1% of decoys showing successful

enrichment of near-native decoys in a majority of targets.

Conversely, Adaptive EnsembleDock shows no broad improvements over the base-

line RosettaDock, with the two protocols exhibiting similar N5, N100, and N1000

metrics. Likewise, the combined MDS/Adaptive EnsembleDock protocol performs

similarly to the MDS protocol alone. Anecdotally, however, there are indications that

Adaptive EnsembleDock is occasionally sampling near-native conformations more ef-

fectively, most visibly in the high-resolution N5 metric for target 3F1P, a di�cult

target. In the MDS protocol, the high-resolution N5 has an average value of 0.6,

with a 0.0 probability of success; when Adaptive Ensemble Dock is added to make

the hybrid protocol, the N5 value jumps to 3.1, corresponding to an 0.7 probability

of success. Plots of the 3F1P results of the two protocols (Figure 4.8) reveal that the

hybrid method has a score funnel centered at approximately 3.5 Å RMSD, just below

the N5 cuto�, as opposed to the MDS score funnel centered at approximately 5.0 Å

RMSD, just above the N5 cuto�.

Plots of all target results from all four protocols, divided by target di�culty, can

be found in Figures 4.9 (rigid-body), 4.10 (medium), and 4.11 (di�cult).

Because future docking protocols will require a low-resolution phase that is both

discriminating and fast, I also evaluated the computational overhead for all four

protocol conditions. The baseline protocol, MDS protocol, and hybrid protocol all
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Figure 4.8: Interface Score vs. Interface RMSD to native for target 3F1P. (A)
10,000 models generated by MDS protocol. N5 = 0.6 (failure). (B) 10,000 models
generated by hybrid MDS/Adaptive EnsembleDock protocol. N5 = 3.1 (marginal
success). The low-scoring region of interest is highlighted, showing the marginally
better discrimination by the hybrid protocol.
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Figure 4.9: Score vs. RMSD for 10,000 models for each of four rigid-body (easy)
benchmark targets. Results are shown for (1) Centroid protocol, (2) Adaptive En-
semble Dock protocol, (3) MDS Protocol, and (4) Hybrid MDS/Adaptive Ensemble
Dock protocol.
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Figure 4.10: Score vs. RMSD for 10,000 models for each of three medium benchmark
targets. Results are shown for (1) Centroid protocol, (2) Adaptive Ensemble Dock
protocol, (3) MDS Protocol, and (4) Hybrid MDS/Adaptive Ensemble Dock protocol.
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Figure 4.11: Score vs. RMSD for 10,000 models for both di�cult benchmark targets.
Results are shown for (1) Centroid protocol, (2) Adaptive Ensemble Dock protocol,
(3) MDS Protocol, and (4) Hybrid MDS/Adaptive Ensemble Dock protocol.
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have approximately equal runtimes. The Adaptive EnsembleDock protocol requires

about twice the runtime as the other three protocols, likely due to a higher rate of

conformer swap rejection. MDS and Adaptive EnsembleDock both have additional

memory overhead. The MDS protocol requires about 2 GB of memory to store the

score table, while the Adaptive EnsembleDock protocol requires anywhere from 200

MB to 1 GB of extra memory to store the larger protein ensembles, dependent on

the size of the protein. The extra memory requirements are roughly additive, with

the hybrid protocol requiring approximately 3 GB for a small target and 4 GB for

a medium-sized target, compared to only 0.6 GB and 1.1 GB respectively for the

baseline protocol.

Encouraged by the promise MDS showed in local docking simulations, I also tested

MDS in global docking simulations. Bootstrapping of the local docking results sug-

gested that MDS may be able to perform similarly to a full local docking simulation

with as few as 500 decoys, with only one target's funnel degrading at that decoy count.

As such, I ran MDS's global simulations with a low decoy count of 10,000, roughly

1%-0.1% of the decoys of a typical global docking run. The global docking results,

as displayed in Figure 4.12, clearly show that 10,000 decoys were not su�cient to

produce thorough global sampling, with no more than a handful of sub-10 Å decoys

generated for any target. The results also show, however, that global docking with

MDS recapitulates the same energy landscape observed in local docking, and that

four targets do not �nd a well populated lower-scoring false energy funnel. This sug-
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Figure 4.12: MDS vs. RMSD to native for each of nine benchmark targets, arranged
by target di�culty. 10,000 models generated by local MDS protocol are shown in
black; 10,000 models generated by global MDS protocol are shown in red. The global
sampling �nds the same energy landscape as the local sampling, but rarely �nds
near-native structures with the same total number of models
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gests that a standard MDS global docking run might produce and enrich near-native

decoys in many targets.

4.5 Discussion

Computational protein�protein docking can be confounded by a diverse set of

problems, including backbone �exibility upon binding, global docking searches, and

lack of structural knowledge of the docking partners. Within the Rosetta framework,

however, all of these problems can potentially be addressed by intelligently increasing

the conformational sampling space of the docking protocol. Sampling increases must

be o�set with e�ciency gains, however, to prevent the computational costs from

exploding. Motif Dock Score (MDS), by virtue of its fast and accurate scoring, will

provide the necessary e�ciency o�sets by �ltering the larger model sets and passing

only a small fraction to the expensive high-resolution phase. As such, MDS will be a

critical component of future enhancements to the RosettaDock protocol.

The MDS protocol that I created shows a marked improvement in accuracy over

centroid scoring. MDS triples the number of targets in which the top 1% of models

are signi�cantly enriched with near-native structures, and it is seven to nine times

as e�ective for discriminating top models, as evidenced by the bootstrapped N5 met-

rics. More generally, MDS captures nearly all of the discriminatory power of the

full-atom score function upon which it is based, exhibiting similar low-resolution and
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high-resolution N5, N100, and N1000 metrics. Most importantly for a low-resolution

score function, MDS achieves these gains in accuracy without sacri�cing computa-

tional e�ciency, running in roughly equivalent time to the centroid scoring method.

The Adaptive EnsembleDock method was less successful, showing minimal gains in

simulation accuracy in only a small number of docking targets.

MDS also compares favorably to other docking protocols. Table 4.3 describes

recent published results from �ve leading docking methods: HADDOCK,77 iAT-

TRACT,67 ClusPro,44 ZDOCK,65 and RosettaDock (v3.2).20 While the methods have

di�erent scopes and report their results in di�erent forms, I was able to assign an N#

success metric (analagous to N5, N100, etc.) to each method. In general, the meth-

ods are good at docking easy, rigid-body targets (∼50% accuracy or better), but they

are all poor when the targets become more �exible (< ∼30% accuracy on di�cult

targets). Albeit on a small benchmark set, MDS maintains this level of accuracy

for easy targets (100%) while showing dramatically improved accuracy for di�cult,

�exible targets (60%). Given these drastic gains, MDS is potentially the �rst step

toward a paradigm shift in protein�protein docking where complexes with moderate

backbone �exibility become tractable docking targets.
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Chapter 5

Conclusion

5.1 My Contributions

Protein�protein interactions underlie countless physiological processes, and they

contribute to diseases as diverse as diabetes, cancer, Alzheimer's, and viral infections.

As humanity learns more about the structure of protein�protein interactions, criti-

cal biological pathways like the immune system will become better understood, new

therapies and cures will become evident, and human health will improve. While exper-

imental techniques are valuable to the determination of protein complex structures,

computational modeling is an important alternative when experimental techniques

are too slow, too expensive, or infeasible for certain targets. For computational tech-

niques to have real-world utility, they must be as accurate and as high-throughput as

possible, and they should, in toto, be able to address a wide range of problems. To

103



CHAPTER 5. CONCLUSION

this end, my graduate research has focused on developing and evaluating new com-

putational methods that improve the �delity, speed, and scope of protein structure

prediction.

My thesis work divided broadly into three areas of focus, each highlighted by a

thesis chapter. Chapter 2 outlined my work toward improving antibody homology

modeling. Motivated by the weaknesses in predicting or even de�ning antibody VL�

VH orientation uncovered by the Second Antibody Modeling Assessment,88 I designed

a four-coordinate geometric framework, LHOC, that can be used to de�ne an empiri-

cally unambiguous VL�VH orientation for any antibody structure; I also developed a

metric, OCD, that measures the distance in LHOC geometric space between any two

antibody structures. Incorporating LHOC and OCD, I built the multiple-template

grafting method for RosettaAntibody, tripling the protocol's accuracy in prediction of

VL�VH orientation and surpassing the prediction accuracy of the competing method,

ABangle. My contributions are included in the current standard version of the Roset-

taAntibody protocol.87

In Chapter 3, I described my work designing and testing sampling methods for

protein�protein docking. After observing that RosettaDock's global search poorly

sampled oblong proteins, I designed Ellipsoidal Dock, a new global sampling method

in which the docking partners are approximated as ellipsoids rather than spheres. My

work on the CAPRI blind prediction challenges proved the utility of Ellipsoidal Dock,

with the protocol producing acceptable or better models for two complexes of oblong
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proteins, the structures of which eluded most groups. During my work with CAPRI,

I also uncovered a number of existing weaknesses in the RosettaDock protocol and

community-wide blind spots in protein�protein docking, highlighting the need for

advanced docking protocols that can handle large complexes, global searches, and

backbone �exibility.

Chapter 4 detailed my work on a low-resolution docking score function, Motif

Dock Score (MDS). I built MDS using the motif score framework, a utility for querying

features of crystal structures and hashing them into a geometrically indexed table, and

optimized it for enrichment of near-native structures during low-resolution docking.

MDS fully replaces the old low-resolution centroid score function33 in RosettaDock,

requiring less time to run and selecting near-native decoys at a rate comparable to the

high-resolution full-atom score function, with the only drawbacks being an increased

memory footprint and a one-time calculation of a motif database. The increased

calculation speed of MDS makes feasible docking protocols requiring decoy counts

one or two orders of magnitude higher than current protocols, setting the table for

future protein�protein docking e�orts to address the limitations observed in Chapter

3.
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5.2 Future Directions

Despite recent advances, there is still much work to do in the �eld of protein struc-

ture prediction. There are a number of approaches that I believe have the potential

to improve the �delity of antibody structure prediction and the scope of protein�

protein docking prediction. I will also highlight a few community-wide issues that, if

addressed, will increase the speed of advances in the �eld.

5.2.1 Antibody Homology Modeling

Homology-based antibody modeling is limited by three stages: prediction of the

VL�VH orientation, prediction of the CDR loops, and prediction of the antibody�

antigen binding mode.

5.2.1.1 VL�VH Orientation

In regards to the VL�VH orientation, while my LHOC coordinate frame and

multiple-template grafting mode have improved the sample space of the cross-domain

docking, they have only partially solved the identi�cation of the correct VL�VH ori-

entation. Though multi-template grafting ensures the domain orientations are quite

diverse, they typically score in similar ranges, making it di�cult to distinguish the

correct orientation from the incorrect ones.

Some of this ambiguity is due to an insu�cient score function. RosettaAntibody
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was last benchmarked before MDS was developed and before the REF15 score func-

tion5 became the Rosetta standard; a new benchmark with these advanced score

functions would likely show at least an incremental increase in prediction �delity. A

larger portion of the ambiguity, however, is likely the fault of our template selection

method. As shown in Chapter 2, the VL�VH orientation of decoys is heavily biased

by the VL�VH orientation of the original grafted template. Since we do not often se-

lect orientation templates that match the native antibody structure, our decoy pool

is often dominated by structures with incorrect VL�VH orientations. Thus, better

prediction of VL�VH orientation is required.

I believe that a comprehensive machine-learned classi�er is the most logical ap-

proach to VL�VH orientation prediction. While the null approach would simply train

on full FV sequences, there are a number of other, more intelligent feature options. In

particular, the V-genes of the light and heavy chains are likely of critical importance

to the VL�VH orientation, as they have well-conserved structures that form the ma-

jority of the VL�VH interface. The CDR lengths, especially the H3, are also intriguing

features, since the breadth of the paratope is in�uenced by the sterics of the CDR

loops. Other features, such as species, degree of humanization, and isotype should

also be considered. With a large number of features, given the sparseness of the anti-

body structural data set, there exists a possibility that the machine-learned classi�er

will be over�tted. Counteracting this tendency, however, is easily achieved with the

forced diversi�cation, such as the one encoded in the multiple-template grafting pro-
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tocol. The classi�er could be forced to make ten distinct template predictions using

di�erent subsets of the feature set, mitigating any over�tting e�ects.

Though better VL�VH orientation prediction will improve our modeling �delity,

the hypervariable nature of antibodies puts a limit on how e�ective a sequence-based

prediction can be: a template-based method can only predict orientations for which

a template exists. The resulting gaps in structural space must be �lled with other

methods. The RosettaAntibody protocol �lls these gaps using random-magnitude

and -direction Monte Carlo moves. While such moves do �ll the missing structural

space, they do not do so e�ciently, with a signi�cant fraction of the accepted moves

placing the domains into non-antibody-like orientations. A more e�cient method

would sample only the appropriate orientational space, easily de�ned by the set of

all known antibody structures. Instead of sampling in random directions and mag-

nitudes, the Monte Carlo moves would be directed along the principal components

of VL�VH orientational space. A larger number of reasonable conformations would

be sampled in the same computational time, enhancing the e�ciency of the protocol.

This method could be implemented using the LHOC framework, but it would be bet-

ter implemented on a geometrically complete VL�VH orientation framework such as

ABangle37 where the principal components could be easily translated to xyz space.
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5.2.1.2 CDR Prediction

Ultimately, the VL�VH orientation must also be predicted in congress with the sec-

ond impediment to antibody modeling, prediction of CDR conformations. Broadly,

CDR prediction breaks down into the easy problem of canonical CDR prediction,

which has been largely solved, and the hard problem of H3 prediction, which is still

largely unsolved. Canonical CDRs are predicted correctly by RosettaAntibody about

80% of the time.88 While incremental improvements in sequence-based prediction will

eventually be made, I believe the simpler path forward is to assign accurate con�-

dences to CDR predictions. If the incorrect predictions are not distinguished from

correct predictions in con�dence, there is no way to improve upon the incorrect predic-

tions without a�ecting the correct predictions. Conversely, if the correct predictions

have a high con�dence and the incorrect predictions have a low con�dence of match-

ing their predicted conformations, the low con�dence CDRs become prime targets for

additional structural prediction, such as scoring multiple canonical conformations in

situ or modeling the CDR de novo. These con�dence values could be assigned sim-

ply using BLAST scores, or more complexly using an HMM with knowledge of key

amino acid-position pairs for each canonical CDR structure. Assignment of accurate

con�dence values combined with structural remodeling of the low-con�dence CDRs

should lead to improved �delity of canonical CDR prediction.

Unlike the canonical CDRs, the H3 has no clear path forward for improved pre-

dictions that I can see. H3 modeling is the quintessential protein modeling problem:
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native-like conformations are rarely sampled, and when they are, they are not eas-

ily discriminated from non-native conformations. A great leap forward is needed to

truly solve H3 prediction. In the meanwhile, incremental gains can likely be made by

increasing the speed at which H3 conformations can be sampled and scored, allowing

for a larger search space to be explored. A modi�ed version of the MDS score function

is a good �rst candidate for such a speed-up. The modi�ed score function would need

to calculate not just cross-chain residue pairs, but also intrachain loop-framework

and cross-loop residue pairs; it would also need to include single-body score terms for

the H3 residues. Such a score function should be developed and benchmarked in the

context of RosettaAntibody.

5.2.1.3 Antibody�Antigen Docking

The �nal hindrance to antibody modeling, antibody�antigen docking, provides

an interesting test case for the future of protein�protein docking. To date, protein�

protein docking has largely focused on docking one partner, made up of one or more

peptide chains, to another partner, also made up of one or more peptide chains. The

protein complexes modeled successfully generally exhibit little rearrangement upon

binding, with no topology changes or large loop motions. Furthermore, the proteins

are generally part of some native pathway, meaning they have co-evolved and typi-

cally have a good degree of shape complementarity, giving insight into the binding

site and restricting the docking search space. Antibody�antigen docking breaks all
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of these rules: the antigen binds to the interface of two antibody domains, making

antibody�antigen docking a three-body problem instead of the normal two-body prob-

lem; antigens don't co-evolve with antibodies, and the complex shape complementar-

ity is entirely determined by transient loops on the antibody, leaving little indication

of the binding site; and antibodies can exhibit large H3 loop motions upon binding to

the antigen. Each of these three problems, multi-body docking, global docking, and

�exible docking, represents a standing challenge in protein�protein docking; to achieve

consistent antibody�antigen docking, all three of these challenges must be addressed.

Fortunately, through work presented in this thesis and advances elsewhere, Rosetta

is primed to tackle all of these challenges in a next-generation docking protocol.

5.2.2 Protein�Protein Docking

5.2.2.1 Multi-Body Docking

Rosetta does not currently support multi-body docking, but just a few adapta-

tions are needed to make it possible. The biggest of these is a required update to

the FoldTree framework. The basic FoldTree implementation de�nes each peptide

chain's primary structure as an edge; the edges are connected in series by jumps,

which are virtual rigid ties that preserve the peptide chains' relative orientation.81

During docking, one of these rigid jumps is made �exible, allowing one half of the

complex to move relative to the other half. This implementation is insu�cient in
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a multi-body context; while the �rstmost and lastmost protein partners would be

able to move independently, any middle partners would not be able to move relative

to the rest of the complex, as their motions would propagate to the chains either

upstream or downstream. Current Rosetta protocols for pseudo-multi-body docking

(e.g. SnugDock) avoid this problem by creating a new FoldTree each time a dif-

ferent protein partner moves relative to the complex; however, this behavior is not

multi-body docking, but iterative two-body docking.

True multi-body docking can be achieved with a new type of FoldTree. This

"Universal" FoldTree, rather than connecting chains in series, would function more

like a hierarchical tree. An antibody-speci�c example of the Universal FoldTree is

compared to the base Rosetta FoldTree in Figure 5.1. The Universal FoldTree will

have a root node representing either some point in space, or some relative point in

the complex, like the center of mass. The root node will be connected by jumps

to daughter nodes representing the independent components of the complex; the

daughter nodes can in turn be connected by jumps to their own daughter nodes,

representing subunits of the independent components. For example, an antibody�

antigen complex may have a Universal FoldTree where the root has two daughters,

the antigen and the antibody, and the antibody has two daughters, the light and the

heavy chain. This hierarchy is in�nitely exensible to as many docking partners and/or

as many tiers of independence as needed. Using this Universal FoldTree, each partner

would be able to move independently relative to the rest of the complex. Additionally,

112



CHAPTER 5. CONCLUSION

Figure 5.1: Representation of (A) the base Rosetta FoldTree and (B) the Universal
FoldTree for the antibody�antigen docking case. The path of traversal and propa-
gation of motion is shown by the direction of the arrows, with protein edges shown
in red and jumps shown in blue. (A) In the base FoldTree, the root is residue 1 of
the �rst protein chain. In antibody�antigen docking, motions propagate dowstream
from the �rst residue of the light chain to the last, then to the heavy chain, then
to the antigen. The central chain (antibody heavy chain) cannot be moved indepen-
dently, and any motions internal to the antibody cause motions in the antigen. (B)
In the Universal FoldTree, the root is an arbitrary point in space known as a virtual
residue. The motions propagate to the center of mass (COM) of the antibody and
antigen, and further from the antibody COM to the light and heavy chain COMs.
From the COMs, the motions propagate both upstream to the beginning of the pro-
tein chains and downstream to the end of the protein chains. Each chain can move
independently to the others, the antibody can move independently to the antigen,
and motions internal to a chain only propagate within the chain.
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two or more docking partners would also be able to move simultaneously using this

framework, allowing ternary or higher order docking moves. An antibody�antigen-

speci�c precursor to the Universal FoldTree is currently being developed by Jeliazko

Jeliazkov.38 Once completed and generalized, it should allow for comprehensive multi-

body docking in Rosetta.

5.2.2.2 Flexible Docking

The improvements to Rosetta's docking protocol shown in Chapter 4 are the �rst

step in an ongoing e�ort to enhance �exible docking. The lower-memory ensembles,

faster conformer switching, and more accurate low-resolution scoring provide the basis

for several planned expansions of the Rosetta �exible-docking protocol. Larger, more

diverse backbone conformer sets will be generated using aggressive methods such as

normal mode analysis and kinematic closure to better mimic the conformer selection

mechanism. Conformers and complexes will be perturbed and minimized in Cartesian

space along principal components of motion observed by the diversi�cation protocols

to better mimic the induced �t and allostery mechanisms. A targeted induced �t

method in which only a small number of loops or regions are made �exible during

docking, enabled by the Universal FoldTree, will be used to address targets such as

antibodies or T102 from Chapter 3. Altogether, I believe these planned enhancements

have the potential to signi�cantly improve Rosetta's �exible docking performance.
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5.2.2.3 Global Docking

Global docking has long been a weak point of RosettaDock, generally being out-

paced by faster FFT methods and outperformed by hybrid methods that incorporate

biochemical and evolutionary data.53 While RosettaDock is unlikely to surpass the

performance of hybrid methods without also incorporating bioinformatics, it can still

be an e�ective tool for truly blind prediction targets, especially if the speed gap be-

tween it and the FFT methods can be narrowed. Both Ellipsoidal Dock and MDS

should prove, in a full benchmark, to provide substantial e�ciency boosts to global

docking in Rosetta. Further e�ciency gains can likely be made by incorporating the

new Rosetta job distribution protocol, JD3,49 into RosettaDock. JD3 allows for Monte

Carlo trajectories to be modi�ed or aborted at protocol checkpoints. Combined with

the MDS score function and other quality �lters, JD3 can be used to remove poor-

scoring and clearly non-native decoys at the earliest stage possible, greatly reducing

the computational time wasted on dead-end trajectories; additionally, the results of

the early trajectories can be used to bias later trajectories, allowing both targeted

sampling of low-scoring regions and increased sampling of poorly sampled geometric

space, further increasing global docking e�ciency within Rosetta.
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5.2.3 External Limitations to Protein Structure Pre-

diction

Beyond the technical limitations, there are also external factors that hinder pro-

tein structure prediction. RosettaAntibody and RosettaDock, as well as any other

protocols (Rosetta or otherwise) that use knowledge-based potentials, are inherently

limited by the databases they use for training. As an example, the PDB is extraor-

dinarily valuable to the Rosetta score function, with its hundreds of thousands of

structures providing the basis for Rosetta's hydrogen bonding energies, rotameric

potential, Ramachandran potential, and many other score terms. Despite its value,

the PDB is deeply imperfect. It is severely lacking in some protein classes (e.g.

membrane proteins, non-human-/non-murine-derived antibodies), making it di�cult

to model these proteins; in other places, it is highly redundant, biasing potentials

derived from an unculled set. It is poorly curated, with little vetting for errors in

structure assignment or �le formatting, necessitating a high degree of standardiza-

tion before use.11 The former shortcoming should abate naturally, albeit slowly, as

more structures are deposited, with the sparse regions �lling in and the dense re-

gions regressing to the mean; this process could be quickened if owners of proprietary

databases (for example, pharmaceutical companies) could be convinced to release at

least the non-pro�t-generating portions of their databases. The latter shortcoming,

however, will require a concerted e�ort to remedy, as depositors currently have lit-
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tle incentive to correct their errors. Because knowledge-based potentials are only as

good as their input data, improving the quality and size of databases like the PDB

will bestow far-reaching bene�ts on a large number of protein structure prediction

protocols.

In a similar vein, computational protocols can only run as fast as their computa-

tional resources allow. As processor technology becomes faster and cheaper, and as

public computational resources become more available, the speed of computational

structure prediction will increase, and more complex protocols will become computa-

tionally viable. Protocols should also begin to fully integrate with parallel processing

to make full use of the newest hardware.

Perhaps the single largest barrier to computational structure prediction is the di�-

culty of use of most scienti�c software, especially packages that are publicly available.

Scienti�c software is typically single use and not generalizable, not broadly stable or

robust across platforms or inputs, not well documented or supported, and not e�-

cient in either time or memory. These de�ciencies are especially true for the Rosetta

package, which is developed in a massively collaborative manner by a relatively �at

hierarchy of academic developers. Most Rosetta developers are amateur program-

mers with little formal training in optimization or memory management. Since most

developers are academics, there is little incentive to clean up or robustify the code

once the scienti�c problem is solved. Without a true project manager to whom all

developers are accountable, the writing of documentation and software tests is not
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strongly enforced. Finally, developer turnover is high, with many leaving the project

once they complete their degree or post-doctoral fellowship, often as the only person

with full knowledge of their code's function and use and the only one responsible for

ensuring their code is not rendered non-functional by one of the hundreds of other de-

velopers; as such, many Rosetta protocols quickly become defunct, or worse, silently

produce incorrect output. Taken together, these issues substantially delay protocol

development and make it di�cult to onboard new users and developers, arti�cially

limiting the utility and reach of Rosetta; solving them will go a long way toward

advancing the �eld of protein structure prediction.
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