
The paper presents an experimental and numerical investigation of the earthquake response of crane 

bridges. The main contributions of the authors to this field consist in: 

 carrying out an experimental campaign on a model of a crane bridge; 

 determining a relevant similarity for the seismic tests which preserves the ratios of seismic 

forces to friction forces and of seismic forces to gravity forces, without added masses; 

 interpreting the experimental results by means of numerical analysis for both low and high 

excitation intensities; 

 proposing a simplified model  of the crane bridge which could be used  as a part of a bigger 

model  to account for possible interaction between the supporting main structure and the 

crane bridge. 
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Abstract 

The experimental and numerical response of crane bridges is studied in this work. To this end, an 

experimental campaign on a scale model of an overhead crane bridge was carried out on the 

shaking table of CEA/Saclay in France. A special similarity law has been used which preserves the 

ratios of seismic forces to friction forces and of seismic forces to gravity forces, without added 

masses. A numerical model, composed of beam elements, which takes into account non-linear 

effects, especially impact and friction, and simulates the earthquake response of the crane bridge, is 

presented. The comparison of experimental and analytical results gives an overall satisfactory 

agreement. Finally, a simplified model of the crane bridge, with only a few degrees of freedom is 

proposed. 
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Abstract 

The experimental and numerical response of crane bridges is studied in this work. To this end, 

an experimental campaign on a scale model of an overhead crane bridge was carried out on 

the shaking table of CEA/Saclay in France. A special similarity law has been used which 

preserves the ratios of seismic forces to friction forces and of seismic forces to gravity forces, 

without added masses. A numerical model composed of beam elements, which takes into 

account non-linear effects, especially impact and friction, and simulates the earthquake 

response of the crane bridge, is presented. The comparison of experimental and analytical 

results gives an overall satisfactory agreement. Finally, a simplified model of the crane 

bridge, with only a few degrees of freedom is proposed. 

 

Keywords: overhead crane bridges, friction, non-linear analysis, seismic tests. 

 

1. Introduction 

The earthquake response of crane bridges is a very important issue related to safety 

requirements for industrial facilities and, especially, nuclear plants. Actually, a failure of a 

component of the crane bridge or of its supports (e.g. supporting steel or concrete runway 

beams) should be avoided. In addition to the consequences on the handling capacity of the 
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facility after the earthquake, a major problem may occur if a part of or the whole crane bridge 

falls on sensitive structures or equipment. Surprisingly, to the authors’ knowledge, a very few 

experimental and analytical research work in this field has been done in the past. The 

dynamics of elastic continua with moving loads has been covered by Fryba [1] and more 

recent work presents the approximate analytical solutions [2-6] and finite element solutions 

[7,8] to similar problems. Regarding the earthquake response of these structures, not many 

publications can be found in the literature. Komori et al [9] carried out seismic tests under 

horizontal excitation whereas Otani et al. [10] focused on the vertical earthquake response of 

a 1/8 scale model. Schukin et Vayandrakh [11] studied the earthquake behavior of a polar 

crane bridge by means of a comprehensive finite element model. Betbeder et al. [12] and 

Betbeder and Labbé [13] dealed with simplified models accounting for the reduction of the 

crane bridge forces due to sliding. Sarh et al. [14] analyzed the behavior of a simplified scale 

model of a crane bridge subjected to random unidirectional excitation and compared it with 

experimental tests. More recently, Kenichi et al [15] carried out a shake experimental 

campaign on a model of a crane bridge focusing on the uplift response of the trolley. 

To have a further insight into the earthquake response of crane bridges an 

experimental campaign of a 1/5 scale model was carried out on one of the shake tables of the 

Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA) in Saclay, France. In 

the following we describe the most important features of the model, the experimental set-up 

and we present the main experimental results. Moreover, we discuss some subtle points 

related to the numerical modeling of the mock-up and we compare the analytical and 

experimental results. 

 

2. Experimental tests 



The mock-up is a simplified 1/5 scale model of a 22.5 m long overhead crane bridge. 

Given that the shake table is a 6 m x 6 m table, this scale is the biggest scale that could have 

been considered. The total mass of the unloaded prototype is of about 100 t. The bridge steel 

girders that support the crane trolley have a rectangular hollow section 1050 mm x 2100 mm. 

The width of the section flanges and vertical walls are 21 mm and 12 mm respectively. The 

runway beams are continuous I type steel beams with a typical span of 10 m. The height of 

the section is 1500 mm, the flanges width and thickness are 600 mm and 35 mm respectively 

and the web thickness is 12 mm. One important issue for the design of the model was the 

determination of the similarity law which is presented in the following subsection. 

 

2.1 Similarity law 

Due to the limitations in the capacities of the experimental facilities, experimental 

models are, usually, reduced scale models. To be representative of the behavior of the 

response of the real structure (prototype), tests on reduced scale models should be carried out 

following similarity laws. A natural way to do this is through dimensional analysis [16, 17, 

18, 19]. Let us look at a quantity of interest, for instance, the vector of relative displacement 

with respect to the shake table displacement at any point of the bridge, at coordinate x , )(xd . 

Assuming a homogeneous, isotropic, rate independent material and a Coulomb dry friction for 

the sliding interfaces, this quantity may be written as a function of the system’s parameters: 

 

 ......,,...,,,,,,,,, iyd LLgtxEd         (1) 

 

where E is the Young modulus, ν is the coefficient of Poisson, μ is the friction coefficient, t 

denotes time, ρ is the mass density,  is the vector of shake table acceleration, L is a 

characteristic length of the structure (e.g. length of the bridge girders). For the sake of 



conciseness we limit ourselves only to the above ten variables ( LgtxEd ,,,,,,,,,  ). 

However, one must keep in mind that several other variables (e.g. nonlinear material 

properties, other geometrical dimensions like the girders’ section dimensions, wheel 

dimensions etc.), play a role in the system’s response. All these are schematically denoted, in 

the “dot” part into the brackets in equation (1) as, for instance, the yield stress y and other 

geometrical dimensions iL . In the present case, the rank of the matrix of the dimensions’ 

exponents of the variables governing the system’s response is equal to 3 (i.e. equal to the 

number of fundamental dimensions: mass, time and length). According to the Vachy-

Buckingham’s Pi theorem, equation (1) can be written in dimensionless form with N-3 

dimensionless variables, N being the number of the initial variables. 
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A similar relation holds if the quantity of interest is the dimensionless stress E/ instead of 

the dimensionless displacement. The products EL /1   and LgE /2   may be seen 

as the ratios of seismic excitation forces to elastic forces and of elastic forces to gravity forces 

respectively. The latter is the Froude number. The dimensionless time LEt //3  is the 

ratio of time to the time needed by sound waves to travel over the length L. )/(4 g

accounts for the ratio of the seismic excitation forces to the friction forces. 

A complete similitude is achieved if all dimensionless variables have the same values 

for both the model and the prototype. In the framework of seismic tests of structures two 

similarity laws are widely used: velocity similarity and, even more frequently, Froude or 

gravity similarity.  Consider a uniform geometrical scaling, that is, the coordinates of the 



model and of the prototype (scale 1 structure) satisfy the relation 0xx  , where   denotes the 

scaling factor (1/5 in this case) and subscript 0 denotes, throughout this paper, quantities 

referred to the prototype. According to the velocity similarity law, all dimensionless products 

in equation (2) are the same for the model and the prototype, except the Froude number 2 .  

If the same material (E, ν, ρ) is used for both the prototype and the model, the above similarity 

implies that the time scaling is        and the ratios of mass,  , stiffness,   and 

eigenfrequencies,  , of the model to those of the prototype are: 

 

                            (3) 

 

3  and 1 similitude imply that the time scaling is        and that the excitation (table) 

acceleration components,  , must be amplified by the reciprocal of the scaling factor i.e. 

               . The resulting displacement, velocity and acceleration components, 

respectively    ,   and  , vary as: 

 

                                              (4) 

 

This law is called velocity similarity because there is no velocity scaling. It is well known that 

the main drawback of this similarity law is that, since the Froude number similitude is not 

satisfied, the ratio between dynamic and static stresses of the model is not the same as in the 

prototype . Moreover, in the present case, where the importance of friction phenomena is 

crucial, if the same coefficient of friction μ, is used for both the prototype and the model, it is 

not possible to respect 4 similarity. Therefore, similarity of the friction forces with respect 

to the seismic excitation forces cannot be achieved unless specific interface materials are used 

with a friction coefficient     times the friction coefficient of the prototype. Given that steel 



to steel friction coefficient is of about 0.20 this would imply a model friction coefficient of 

about 1 which is hardly feasible if not impossible. 

The most frequently used similarity law, in experimental earthquake engineering, is 

the gravity or Froude similarity. In this case, all the dimensionless variables in equation (2), 

including the Froude number, are the same for the model and the prototype. This results in the 

following similarity relations: 

                          

                                               (5) 

 

This similitude law respects similarity of the ratios of friction  and gravity forces to seismic 

excitation forces. However, the necessary condition to meet this requirement is that the mass 

density ρ, should be changed leading to         instead of        . In many cases, 

for instance buildings’ models, this is achieved, in practice, by adding additional masses on 

the slabs of the mock-up. However, adding masses, all over the crane bridge beams, would be 

not only practically complicated, but it would, also, have a considerable impact on the 

stiffness of the crane bridge. Actually, since      , the added masses should be four times 

the mass of the bridge itself. It is obvious that such rigid heavy blocks, put one next to the 

other to increase the mass of the beams, would have, inevitably, increased also the beams’ 

stiffness, since they should be tightly attached to the beams to avoid sliding. 

To by-pass this problem, we have decided to follow another similarity law, 

specifically determined for these tests. The goal is to obtain, as much as possible, the same 

similarity relations given by the gravity similarity without adding masses or changing the 

material properties of the bridge beams. To this end, the hollow section of the model bridge 

beams is not just a geometrically scaled section of that of the prototype. In fact, it can be 

considered that the deformability of the bridge girders is governed, mainly, by their bending 



flexibility. That is, the governing parameters are their section moments of inertia. Of course 

this is true so far as the beam material remains elastic. As it was confirmed, a posteriori, by 

the analytical and experimental results, yielding does not occur for the considered excitation 

intensities. Hence, equation (1) may be modified as follows: 
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where   denotes the section area and    and   denote the section moment of inertia with 

respect to axis   and   respectively. Applying the Pi theorem, the dimensionless equation 

reads: 
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If the quantities of interest are the bending moments or reaction forces M and R respectively , 

a similar relation holds for their  dimensionless counterparts )/( 2gSLM  and )/( SLgR  .. 

Since equation (6) has three more variables than equation (1), there are nine dimensionless 

variables in equation (7) instead of six in equation (2). It is worth noting that the ratio of 

elastic forces to seismic forces used in equation (2), 1 , is, now, replaced by three ratios, 

)/(
~ 3

1 yEISL   , )/(
~ 3

2 zEISL   and )/(
~ 3

3 ESL   . The same holds, also, for the 

ratio of elastic forces to gravity forces which is represented by two dimensionless products 

)/(
~ 3

4 gSLEI y   and )/(
~ 3

5 gSLEI z   instead of one, 2 , in equation (2). The 

dimensionless time is also defined in a different way, as Lgt /
~

6  . As already mentioned, 

we consider that the deformation of the  bridge is governed by bending and phenomena 



associated to longitudinal dynamics are less important. Therefore, we do not apply 3

~


similitude. To meet the requirements imposed by the products 1

~
 , 2

~
 , 4

~
  and 5

~
 , we seek 

a hollow section with height  , width  , and thickness  , so that 0/ SS  (instead of 

       ),           and          . The resulting non-linear system was solved with a 

Newton-Raphson method and gave       mm,       mm and      mm.  

As in the case of Froude similitude, respect of the dimensionless time 6

~
 , implies 0/ tt

which is consistent with the bending frequencies similarity, /1/ 0 ff . This time 

contraction is smaller than that implied if 3  is considered (i.e. 0/ tt ). Regarding the two 

runway beams, we focused on similarity related mainly to their horizontal bending stiffness, 

which gives IPN 240 type beams. 

The above similarity is equivalent to the gravity similarity as far as bending behavior 

is concerned only. In fact, special care has been taken only for bending stiffness but the axial 

stiffness does not vary proportionally to λ. However, distortion of the axial stiffness is not a 

concern for the structure of interest since motions with considerable axial deformations are 

quite high frequency motions, beyond the excitation frequency content. It is, also, worth 

noting that though the correct similarity relation is obtained for bending moments (   ) and 

reaction forces (   ), stresses in the model are lower than those in the prototype. This is due 

to the fact that, since 0/ SS , the sections of the model are bigger than those that would 

have been obtained by uniform geometrical scaling (       ). 

 

2.2 Experimental set-up 

As already mentioned the mock-up is a simplified 1/5 scale model of the prototype, 

made of steel with yield stress equal to 355 MPa. The sections of the bridge girders (beams 

supporting the trolley) and of the runway beams, supporting the whole bridge, are described 



in the previous subsection. Their lengths are 5 m and 2 m respectively. The distance between 

the central axes of the bridge girders is 50 cm. The beams linking the two main bridge girders 

(end trucks) have a box type section 110 mm x 320 mm and their length is equal to 0.8 m. The 

thickness of the section flanges and vertical walls is 30 mm. The trolley is a rigid mass of 

1880 kg. The total mass of the mock-up, including the runway beams, is about 3.9 t. The 

trolley and the bridge are supported by four wheels each. The wheels can be blocked or let 

free to roll. Actually, in real crane bridges, the drive wheels (those connected to the motor) are 

blocked when the motor is turned off. Several sensors, mainly, accelerometers and 

displacement transducers were mounted on the mock-up. In figure 1 a view of the model 

mounted on the shake table is depicted together with the axes of the reference frame 

considered in the experimental campaign and the work herein. A detailed description of the 

model and of the whole experimental set-up can be found in [20]. 

 

2.3 Experimental Campaign 

A comprehensive experimental campaign has been performed using the above 

described model. Special care was taken to identify step by step the model dynamic properties 

which would be useful to the accurate determination of the characteristics of the analytical 

model also. To this end, modal analysis tests, with shock hammer, were carried out of the 

subassembly composed of the main bridge girders only. This structure was put on very low 

stiffness pneumatic springs, resulting in free end boundary conditions. Twenty three-

dimensional accelerometers were mounted on this subassembly to obtain its nine first mode 

shapes and frequencies. The results of the modal analysis are presented in figure 2. 

Then, several configurations of the whole crane bridge, corresponding to different 

trolley locations and different wheel conditions (braked or free to roll) have been considered. 

At the beginning, low intensity white noise acceleration signals were applied to the table. The 



aim of these low intensity tests was to identify the characteristic properties of the model when 

the response is, as much as possible, close to linear response. Assuming linear behavior (i.e. 

sticking contact conditions for the braked wheels), these low intensity tests were used to 

determine the initial eigenmodes of the system. 

Eventually, seismic excitation signals were considered. Seismic signals should be 

compatible with the earthquake motions of the crane bridge supports. Actually, the applied 

excitations must correspond to the ground excitation filtered by the response of the building 

housing the crane bridge. Nevertheless, due to the uncertainties related to the computation of 

floor motions, ground signals were considered. Though this type of excitation may be 

theoretically controversial, the experimental results are still very relevant since they give 

useful information on the earthquake response of crane bridges and they can be used to 

validate numerical simulation codes and methods. The applied signals were artificially 

generated signals compatible with the response spectrum of the Marcoule nuclear plant site, in 

south France. The use of artificial signals, matching a given spectrum, is not, in general, 

recommended for nonlinear problems as the problem in hand. Nevertheless, such signals were 

considered here for the following reasons: a) lack of available real records compatible with 

the actual site conditions b) the target spectrum is a spectrum determined after a specific 

seismological study of the site. Hence it is narrower than commonly used regulations spectra  

and c) it may reasonably and intuitively, though not mathematically rigorous, be expected that 

artificial signals would be, in general, more “severe” than real records, whose spectra fit 

partially or lie under the target spectrum, provided their duration is not too small. In fact, 

because of their unrealistic, wider frequency content, artificial signals will have more energy 

over the whole frequency range of interest than real records and thus they will be more 

demanding for structures exhibiting frequency shift due to nonlinear response. 



  The generated signals were scaled to peak ground accelerations (PGA) equal to 0.2g, 

0.4g and 0.8g. For similitude reasons a time contraction of    was applied to all the excitation 

signals. Tests under mono-axial, bi-axial (horizontal) and tri-axial (horizontal + vertical) 

excitations were carried out. In the following, input acceleration signals in  ,   and   

direction are noted   ,    and    respectively. Figure 3 shows the time histories of    and    

for the case of a PGA equal to 0.8g. For lack of space, only the results of few tests will be 

presented herein. The results of all tests can be found in [20]. 

 

3. Numerical model 

In most analyses, done by practitioners, beam type elements are used for the numerical 

modeling of crane bridges. Actually, nonlinear dynamic analyses with beam element models 

can be run in much shorter time than more complex shell or brick elements models. 

Therefore, our goal was to determine a numerical model composed of beam elements which 

would represent accurately the earthquake response of the crane bridge. Analyses were carried 

out with the homemade finite element (FE) code CAST3M [21]. 

 

3.1 Runway beams 

The runway beams are IPN 240 beams having a span of 2 m. They are fixed on the table plate 

by means of stiffened plates which are deemed to account for clamped end conditions 

(figure 4). At a first glance, one could think that the important issue is the lateral bending 

flexibility of the runway beams which can be accurately taken into account by classical beam 

elements. However, torsion is induced by the horizontal transverse wheel forces which are 

applied on the rail, at the top of the beam. Torsion stiffness for this kind of sections is due, 

mainly, to warping stiffness (i.e. lateral bending of the upper and lower flanges). On the other 

hand classical beam elements account only for St. Venant torsional stiffness which is much 



lower than the warping stiffness in the present case. Moreover, computations revealed that, 

contrary to intuition, the boundary plates did not impose purely clamped conditions. 

Therefore a brick finite element model was used to determine accurately the flexibility of the 

runway beams subject to the wheel forces. 

To highlight the influence of the flexibility of the boundary plates the lateral (in the   

direction) stiffness   of a runway beam subjected to two horizontal forces at the wheels’ 

locations was determined by two different static computations. The results presented here 

correspond to configurations where the initial wheels’ position is symmetrical with respect to 

the mid-span of the runway beams. For the first analysis, the supports of the beams were 

modeled in detail to represent the actual boundary conditions. For the second analysis, the 

runway beam was supposed to be perfectly clamped at the two ends of its span. The deformed 

shapes of the runway beam, resulting from the two static analyses are shown in figure 4. An 

estimate of the frequency    of the first mode of the bridge in the   direction is: 

 

   
 

  
 

  

 
                     (8) 

 

where   is the total mass of the bridge. Taking into account the boundary flexibility resulted 

in a frequency of 9.5 Hz, whereas perfectly clamped conditions lead to a frequency of 

11.5 Hz. The first result is in accordance with the frequency value obtained experimentally. It 

is also observed in figure 4 that the flanges of the runway beam deform so that the usual 

assumption of beam theory that sections do not exhibit in plane deformation is no longer 

valid. 

For the above reasons, it is obvious that runway beams cannot be modeled with 

classical beam models. To reduce the size of the final problem, assembling all bridge 

components, a Guyan reduction (static condensation) has been done so that each runway 



beam model was reduced to a       matrix at the two contact points of the wheels with the 

rail. Such a reduction assumes that the location of the contact points between the wheels and 

the rail will not change significantly during the earthquake response of the bridge. This 

assumption is consistent with the small sliding displacements observed experimentally. It has, 

also, been verified a posteriori by the analytical results. 

 

3.2 Bridge beams connections 

At the beginning the bridge was modeled as an assembly of four beams: the two 

girders supporting the trolley and the two short transverse beams supporting the wheels (end 

trucks). As already mentioned in subsection 2.3, to validate the numerical model a modal 

identification of this assembly was carried out. Comparison between the experimental and the 

analytically computed eigenfrequencies showed that the numerical model based on beam 

elements was much stiffer than the mock-up. 

To understand the higher flexibility of the actual model, a shell element model of the 

end truck has been done and a rigid body rotation of the nodes at the interface with the beam 

girder was imposed. In the case of symmetrical imposed rotations (i.e. zero rotation at the 

mid-span of the end truck) a rotational stiffness of          Nm/rad was found. If  ,  ,   are 

the Young modulus, the moment of inertia and the length (distance between the axes of the 

bridge girders) of the end truck beams respectively, the stiffness according to the beam theory 

is                Nm/rad. The increased flexibility (reduced stiffness) of the mock-up 

joint and of the shell element model may be understood with a look at figure 5. In fact, it is 

observed that, the longitudinal axial stress distribution in the internal wall of the end truck is 

consistent with beam theory (constant all over the height of the section wall) only after a 

certain distance from the interface with the girder. This observation is in agreement with St. 

Venant’s principle and shows that, in the vicinity of the imposed rotation, only a part of the 



internal section wall contributes to the bending stiffness. This joint flexibility cannot be taken 

into account by the beam element model. Therefore, on the basis of the above analysis, 

rotational springs, in the horizontal plane, have been considered at the joints of the bridge 

beams. Their stiffness has been determined either from the shell finite element model or by 

trial and error seeking that the first computed eigenfrequency of the beam element model is 

equal to the first experimental eigenfrequency. It turned out that both methods gave the same 

rotational stiffness value,          Nm/rad. For the same reasons, torsional springs have also 

been inserted between the beam girders and the end trucks to account for the increased 

torsional flexibility of the girders compared to that of a classical beam element model. A very 

good agreement with the eigenshapes and eigenfrequencies obtained by hammer tests is 

observed for the first nine eigenmodes, up to 110 Hz. This illustrated, for the first two 

eigenmodes in figure 2. 

The trolley, moving on the crane bridge girders, is modeled as a rigid body having 

overall dimensions and mass equal to those of the actual trolley utilized of the mock-up. 

 

3.3 Contact nonlinearities 

The finite element model accounts for non-linear effects, especially impact and 

friction, which are the most important nonlinearities of the problem of interest. In the finite 

element model each wheel is represented merely as a node of the model. There is no special 

finite element mesh or other specific model of the wheels. Impact and friction are modeled by 

penalty methods similar to those in [22, 23]. Normal impact force is proportional to the 

penetration of the impacting node multiplied by an interface contact stiffness. A damping 

term is also added to account for a restitution coefficient less than one. Regarding friction, the 

classical elastoplactic penalty method is used [22]. The tangential force varies with respect to 

the sliding relative displacement according to an elastic perfectly plastic law. The yielding 



force (i.e. sliding force) is equal to the instantaneous normal force multiplied by the friction 

coefficient. To simulate possible sticking during impact, the characteristic time associated to 

the tangential motion must be sufficiently shorter than the characteristic time associated to the 

normal motion. This means that the tangential penalty stiffness must be sufficiently higher 

(about 10 times) than the normal penalty stiffness. Moreover, to simulate no penetration 

conditions, penalty stiffness should be, in general, much higher than the other terms of the 

structural stiffness matrix. On the other hand, too high penalty stiffness may cause 

convergence difficulties of implicit algorithms or imply a very small time step in the case of 

explicit algorithms. To determine the optimum values of the penalty stiffness, we compared 

two linear models. One, assuming fixed connection, between the wheels of the trolley and the 

bridge and the supporting bridge girders and runway beams respectively. Another model is 

also built, but, this time, the above connections were modeled by means of penalty springs. 

The minimum values of the penalties’ stiffness giving the same eigenmodes up to a frequency 

of 200 Hz were retained as the optimum penalties stiffness. Actually, compliance with the 

above criterion demonstrates that the considered penalties’ stiffness is high enough to account 

for sticking conditions in the range of frequencies of practical interest. 

Regarding friction, another alternative, which has been used in this work, is the 

nonlinear damping penalty method proposed in [23]. The Coulomb dry friction law is 

regularized as follows: 
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where   is the normal force,   is the friction coefficient     is the relative tangential velocity. 

The adherence friction force is approximated by a nonlinear damping type force for sliding 

velocities lower than a small tangential velocity threshold,  . The value of   is a tradeoff 

between accuracy and computational time. This parameter should be chosen so that a sliding 

velocity equal to   can be considered as a very low velocity for the problem of interest, 

corresponding, practically, to a sticking phase. On the other hand, similarly to penalty 

stiffness, too small values of   (high penalty damping) would increase the computational 

effort. 

The above models are adequate for the modeling of braked wheels. However, the 

situation is different for rolling wheels. In fact, when a wheel is rolling, the friction force in 

the rolling direction is very low and can be neglected. However, this is not the case in the 

perpendicular direction. One could think that the remedy would be an anisotropic friction 

model with two different sliding coefficients in x and y directions. It turns out that such 

models cannot give the right solution because they are not consistent with the physics. 

Actually the contact point of a rolling wheel is in adherence (i.e. sticking) phase and its 

behavior cannot be simulated considering sliding conditions. To address this issue a macro-

element taking into account the kinematics of a wheel and the correct sticking and sliding 

conditions should be used. The development of such a macro-element will be done in future 

work. 

 

4. Experimental results and interpretation 

In this section we focus on the capacity of the above numerical model to interpret the 

experimental results. In a first step it is checked if the finite element model is capable to 

reproduce the experimental results under low intensity excitation i.e. in the case of quasi-

linear behavior of the bridge. Then, the numerical simulation of the test at the highest 



excitation level was carried out and compared to the measured response. In addition the 

sensitivity of the results either to input uncertainties (e.g. value of the actual gap between the 

wheels and the rails) or to modeling assumptions (e.g. beam finite model which does not take 

into account the additional flexibilities discussed in subsections 3.1 and 3.2) has been 

investigated. 

In all cases considered here, the initial configuration of the crane bridge was that 

presented in figure 6. The trolley and the end trucks were located at the mid span of the bridge 

girders and the runway beams respectively. The braked wheels of the trolley and the bridge 

were symmetrical with respect to their respective axes of motion. 

 

4.1 Model validation for quasi-linear behavior 

In the case of quasi-linear behavior, a two-step validation of the numerical has been 

done. First, the eigenfrequencies and eigenshapes computed by a linear model (i.e. without 

impact/friction nonlinearities, assuming sticking conditions) of the bridge were compared to 

those obtained experimentally under low intensity white noise excitation. Regarding the 

experimental modal identification, the underlying assumption was that the excitation 

amplitude was sufficiently low, so that non-linearities could be neglected. The agreement 

between the eigenmodes obtained numerically and experimentally was very satisfactory. 

Then, the above results were compared to those given by a nonlinear analysis of the bridge 

subjected to the shake table white noise excitation. A satisfactory agreement was obtained, 

demonstrating the capacity of the nonlinear model to capture the essential features of the 

response at the limit, when the response is quasi-linear. 

The first three eigenmodes and frequencies of the crane bridge model are shown in 

figure 7. The indicated predominant direction is that corresponding to the higher effective 

mass. The analytically and experimentally determined eigenfrequencies are almost identical 



except the first vertical eigenfrequency which is slightly overestimated by the numerical 

model. The effective masses of these modes in the y, x and z directions are equal to 73%, 98 

% and 86% of the total mass respectively. 

 

4.2 Nonlinear behaviour 

To investigate the capacity of the analytical model to predict the nonlinear earthquake 

response of the crane bridge experimental and analytical results were compared in the case of 

a high excitation intensity. During this test the model was subjected to a bi-axial shake table 

excitation with a peak ground acceleration (PGA) of     . 

As for the numerical simulations, the Oden’s and Martins’ [23] model was used with a 

value of the regularization velocity,  , equal to          and the impact penalty stiffness 

values were determined according to the procedure described in the subsection 3.3. The 

computations were performed with a friction coefficient equal to 0.23 for the braked wheels, 

which is a typical friction coefficient value for steel to steel interfaces. Moreover this friction 

coefficient is consistent with the observed experimental results. Actually, the measured 

acceleration of the trolley in direction x is saturated at about 0.12 g which correspond to an 

apparent friction coefficient of 0.12. Since only two of the four wheels are braked, the actual 

friction coefficient is about twice the apparent friction coefficient. A very low (0.02) friction 

coefficient has been considered for the rolling wheels. A critical damping ratio of 3 % was 

considered for all eigenmodes of the crane bridge substructures with free boundary conditions 

at their points of contact with the other components (e.g. contact points between the wheels of 

the bridge and the runway beam or between the girders and the wheels of the trolley). The 

measured value of the initial gap between the wheels and the rails was 2 mm.  

Particular attention must be drawn to the well-known sensitivity of sliding 

displacement to the low frequency content of the excitation signal. In figure 8 the mean 



horizontal displacement in   direction of the end trucks is shown for three pairs of horizontal 

excitation signals. These excitation signals are identical except a        g shift of their time 

average values,      and     . This shift is consistent with the measurement noise of the 

accelerometers. It may be observed that even such a slight offset leads to considerable 

discrepancies of the responses. The consequence of the inherent uncertainties, even small, of 

the measurements of the low frequency excitation components is that sliding displacements 

cannot be predicted accurately. It is, also, worth noting that in the case of a zero mean 

excitation signal, the bridge slides more in direction   . This is due to the asymmetry of the 

contact conditions (figure 6). In fact, because of the moment due to the vertical eccentricity of 

the mass, the vertical forces on the braked and on the free to roll wheels are not the same. 

When the vertical forces on the free to roll wheels are higher than those on the braked wheels, 

the friction force opposed to the motion is lower than in the contrary case. This kind of 

asymmetric sliding response towards the side of the free to roll wheels was also observed in 

real crane bridges. Though not shown here, a similar asymmetric sliding behavior of the 

trolley in direction    is also observed. Figure 8 demonstrates, also, that, depending on its 

sign, the offset of the excitation signal increases further or decreases the above asymmetric 

sliding under zero mean excitation. 

Because of the above sensitivity, sliding displacement is not a relevant quantity for the 

comparison between analytical and experimental results. Therefore, the comparison focuses 

on absolute accelerations and on the overall girder’s deformation. Furthermore, comparison of 

the acceleration time histories would not have been very meaningful, due to the well-known 

sensitivity of sliding systems’ response. In our opinion, comparison in the frequency domain 

is better suited for drawing, at least, qualitatively conclusions.  

Figure 9 to figure 11, show the pseudovelocity response spectra computed from the 

absolute experimental and analytical accelerations of the bridge for a critical damping ratio of 



1%. This kind of spectra have been preferred to Fourier spectra of the accelerations to avoid 

the highly oscillatory behavior of Fourier spectra. For the sake of completeness, the 

pseudovelocity response spectra of the shake table acceleration are also shown in these 

figures. It may be observed that the analytical model captures, qualitatively, the essential 

features of the experimental results for the different bridge components. Figure 9 shows that 

the analytical model results in a lower pseudovelocity response spectrum of the runway beams 

in direction  . Because of the high rigidity of the runway beams in direction  , the agreement 

between analytical and experimental results in that direction is much better. In fact, it is 

observed that all three spectra are quasi-identical, except in the low frequency range. 

Regarding the response of the girders (figure 10), the analytical model gives satisfactory 

results in both horizontal directions. As for the trolley, figure 11 shows a very good agreement 

between experimental and analytical results in direction  , whereas the agreement in direction 

  is less satisfactory, especially in the frequency range between 7 Hz and 16 Hz. Though not 

shown here, for the sake of conciseness, the analytical model gives good results for the 

absolute accelerations measured on the end trucks also. As a general trend, the pseudovelocity 

response spectra values of the different bridge components, except the trolley, are of the same 

order of magnitude as the pseudovelocity response spectrum of the excitation.. 

The bending moment and stresses in the bridge girders due to horizontal bending are 

important quantities for the assessment of the earthquake behavior of crane bridges butthey 

were not directly measured during the test. Therefore, the capability of the numerical model to 

estimate accurately the girders’ stresses was confirmed comparing the analytical and 

experimental relative horizontal displacements of the girder’s mid span with respect to the end 

truck displacements. Actually, this quantity characterizes the overall horizontal bending 

deformation of the girders. It is worth noting that the two end trucks do not exhibit the same 

displacements. Consequently their mean displacement must be determined. Even though the 



time histories of the analytical and experimental displacements are not identical, the 

agreement may be considered as satisfactory, especially as far as the maximum relative 

displacement is concerned. In fact, the maximum relative displacement amplitudes given by 

the analytical model and measured experimentally are, both, about 1.3 mm. Therefore, given 

the capability of the analytical model to predict the correct deflection amplitude, the axial 

stresses can be estimated analytically. It is found that the maximum axial stress, due to both 

dynamic and static loadings, is equal to 21.4 MPa. Since the yield stress of the utilized steel is 

355 MPa no yielding occurs and the assumption of material linearity is verified. 

 

4.3 Model sensitivity 

To have a better understanding of the influence of input uncertainties or of the 

numerical modeling approximations, two supplemental analyses were done. First, an analysis 

was carried out considering a zero gap between the wheels and the rails. In fact, the actual gap 

value may not be known with accuracy. Even more, it could be thought, that, at high 

excitation level, the exact gap value is of no importance. Thus, the limit case for which the 

gaps are zero has been studied. Another analysis was also done using a beam finite element 

model which does not account for the increased local flexibilities discussed in subsections 3.1 

and 3.2. In this model each runway beam was modeled as a classical beam clamped at both 

ends. However, its torsional constant has been adjusted so as to account for the warping 

torsion effect. Without this adjustment, the first eigenfrequency in direction   would have 

been 14 Hz instead of the actual value of 9.5 Hz (figure 4). No additional rotational springs 

were inserted at the connections between the bridge girders and the end trucks. Actually, it is 

likely that the finite element models, made by practitioners, will not be tuned as the reference 

model, described in subsections 3.1 and 3.2. Regarding modal analysis of the above no-tuned 

model, the first three frequencies of the eigenmodes in  ,   and   directions are 11.0 Hz, 11.7 



Hz and 14.5 Hz respectively. Comparison with the values determined either experimentally or 

with the reference analytical model (figure 7) reveals an overestimation of the frequencies 

varying from 11% to 23%. 

Regarding the nonlinear test at the 0.8g PGA level, the results of the analyses are 

summarized in table 1. These results show that, regardless of the model (i.e. reference or no-

tuned models), the maxima of the horizontal bending moment, of the relative displacement of 

the girder mid span and the sliding displacement in the   direction, are higher when the gaps 

are equal to zero. In this case, impact between the trolley wheels and the girder’s rail occurs 

much more often and gives rise to higher impact force than in the case of      gap. It may, 

also be observed that the average horizontal bending moment value is not zero, especially in 

the case of zero gap. In fact, the horizontal dynamic loading of an individual girder does not 

have zero mean because of the unilateral constraints between the trolley and the girder. An 

approximate estimate of the average bending moment could be given by the formulae giving 

the bending moment at the mid span of a clamped-clamped beam under a concentrated force, 

equal to the average impact force applied at the same point (i.e.                  where 

     is the bending moment,      is the trolley impact force,     denotes time average value 

and   the length of the bridge girder). This approximation is confirmed by the results of 

table 1. Though, as mentioned in the beginning of this subsection, the grosser, no-tuned 

model, is not very accurate in the case of quasi-linear behavior, nonlinearities tend to 

decrease, to some extent, the differences between the two models. 

In addition to the above analyses, related to input uncertainties and modeling 

approximations, another analysis was also carried out using a linear model of the crane 

bridge, assuming sticking contact conditions for the braked wheels, even in the case of high 

excitation intensity. The reason is that, even nowadays, the use of linear models for the 

assessment of the earthquake behavior of crane bridge is common practice. The aim of this 



analysis was to highlight the differences between linear and nonlinear responses. For this kind 

of analysis, a modal critical damping ratio of 0.7 % is considered, instead of 3% for the 

nonlinear case. The reason for considering this lower damping value is explained in the 

following section, dealing with the simplified model. As it can be seen in figure 12, 

accelerations given by the linear model are much higher than those given by the nonlinear 

model. This may be readily explained by the fact that sliding acts as a sort of seismic 

isolation. Though not shown here, the same holds for stresses, which are overestimated by the 

linear model by about      . It is, also, observed that, as expected, nonlinearities result in 

much wider spectra than linear spectra which exhibit amplification in narrow frequency 

ranges in the vicinities of the eigenfrequencies of the structure. 

Another test at high horizontal excitation level (0.8g PGA) was also done but a 

vertical excitation (0.53g PGA) was also added. Figure 13 compares the experimentally and 

analytically obtained response spectra of the trolley’s vertical acceleration. It is observed that 

the peaks on these spectra are slightly shifted towards lower frequencies if compared to the 

eigenfrequencies presented in figure 7c. The frequency of the peak corresponding to the 

analytical model is about 10% higher than that corresponding to the test. This slight 

discrepancy is comparable to that between the eigenfrequencies of the analytical and 

experimental model. As for the response in the horizontal directions, not shown here, for lack 

of space, a good agreement is obtained between analytical and experimental results. 

 

5. Simplified model 

In this subsection a simplified model of the crane bridge is presented. It aims at giving 

a quick estimate of the bridge response under bi-axial horizontal excitation. It could also be 

used as a part of a model including both the support main structure and the crane bridge to 

account for possible interaction between these two structures. Figure 14 shows the 



components of this model which has five intertial DOFs. It is composed of the trolley with 

mass    , the crane girders with mass    , stiffness    , and damping    , and the end trucks 

having an equivalent mass   . In addition springs    and damper dashpots    represent the 

stiffness and damping of the runway beams. Mass     is not the physical mass of the bridge 

girders but it is chosen so that         is equal to the effective mass of the first horizontal 

flexural mode of the crane bridge, considering sticking conditions for the braked wheels of the 

end trucks and the trolley. The stiffness     and damping     are chosen so that the 

corresponding frequency and critical damping ratio are those of the above first horizontal 

flexural mode of the crane bridge.  

Particular attention must be paid to the determination of the damping value. Actually, 

as mentioned in subsection 4.2, the damping taken into account in the finite element model 

was a critical damping ratio of 3 % for all eigenmodes of the crane bridge substructures with 

free boundary conditions. However, in the case of the simplified model, the first eigenmode 

with sticking conditions is considered, thus the damping value will be different. Let us denote 

   and     the nth of N eigenvectors determined under free boundary conditions and the first 

eigenvector under sticking conditions respectively. In the coordinate basis   ,     reads:  

 

      
  

     

  

 
              (11 ) 

 

where   is the mass matrix of the bridge, without the trolley mass and    is the generalized 

mass of the nth eigenmode under free boundary conditions. The dissipated power 

corresponding to a unit generalized velocity of the first mode under sticking conditions (i.e. a 

velocity field equal to    ) reads: 
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where   is the damping matrix, assumed to be diagonalizable in the basis   ,   ,    and    

are the critical damping ratio and the circular frequency of the nth eigenmode under free 

boundary conditions and    ,     and     are the critical damping ratio, the circular frequency 

and the generalized mass of the first eigenmode under sticking conditions. For the case in 

hand, with        , which was the damping considered in subsection 4.2 for the 

eigenmodes with free boundary conditions, the critical damping ratio of the simplified model, 

given by equation (12), is          .  

The total mass of the bridge, including the masses of the girders, the trolley and the 

end trucks is         kg. The equivalent mass of the end trucks is not their physical mass 

but              . The trolley (mass    ) can slide with respect to the bridge girders 

(mass    ). The friction coefficient is the mean friction coefficient of the four wheels used in 

the FE model. Only two over four wheels are braked. Reminding that friction coefficients 

equal to 0.23 and 0.02 for braked and free to roll wheels, respectively, have been considered 

(section 4.2) a mean friction coefficient                       is assumed. This 

friction coefficient accounts for horizontal friction of the horizontal interface between the 

wheels and the girder’s rail. Impact and horizontal friction on a vertical interface occurs, also, 

when the gap between the wheels and the rail is zero. The corresponding friction coefficient is 

0.23. 

The bridge base (end trucks with mass   ) can slide with respect to the points 

representing the runway beams. Regarding the friction coefficient of the horizontal interface 

the same average friction coefficient as for the trolley is considered. In addition, unilateral 

horizontal frictional impact conditions are also imposed between mass    and the springs and 



dampers modeling the runway beam. The spring stiffness,   , is such that the frequency in   

direction is equal to that obtained by the FE model. The damping constant,   , is determined 

to match the assumed Newton’s restitution coefficient,  . For the examples treated here 

       is assumed. For this vertical interface, the same friction coefficient,       , as in 

the FE model is used. The values of the main parameters of the model are summarized in 

table 2. 

The underlying idea of the simplified model is that the deformation of the bridge in 

direction   is approximated by a generalized degree of freedom corresponding to the first 

eigenmode of the bridge under sticking wheel conditions for the braked wheels of the end 

trucks and the trolley. This approximation implies that the higher eigenmodes of the girders 

are assumed to have a quasi-static response. Of course, this approximation is less satisfactory 

under non-linear behavior since the impact and friction forces excite higher modes also. 

However, this simplified model does not aim at giving high accuracy results but rather a 

rough but fast estimate of the crane bridge response. Consistent application of the Lagrange-

Euler equations, using the above kinematic assumption, leads to a system which cannot be 

represented by a discrete mass system like that on figure 14. Nevertheless, numerical 

simulations show that the results of this mathematically more consistent model and the above 

“empirical” model are quite close. That is why only the results of the empirical model are 

presented here. 

The results obtained with the simple model, subjected to the bi-axial excitation at 0.8g 

PGA, are shown in figure 15 and are compared with those of the FE model. For the sake of 

better readability the time histories in the time interval    s   s , where the peak response 

occurs, is presented. By construction, the simple model does not account for the different 

friction conditions between the braked and the free to roll wheels. Hence it cannot reproduce 

the asymmetric sliding response discussed in subsection 4.2. Except the sliding behavior, the 



simple model, captures qualitatively the essential features of the bridge response (e.g. same 

response characteristic time as the FE model) but results in a mild overestimate of the 

response quantities. In fact, the impact forces of the two models exhibit similar, though not 

identical, qualitatively and quantitatively features. Regarding the relative displacement of the 

girder mid-point with respect to the end trucks, the simple model gives a displacement which 

overestimates the mean displacement of the two girder beams of the FE model by about 

34%.As already mentioned in subsection 4.2, the above relative displacement is a measure of 

the deformation of the girders and could be used as a relevant seismic demand index for the 

evaluation of their seismic performance. 

This simplified model could be, easily, improved further including rocking and uplift 

but at the price of adding supplemental degrees of freedom and higher complexity. 

 

6. Conclusions 

In this work the experimental and analytical response of a crane bridge model 

subjected to earthquake excitations is investigated.  

Earthquake tests on a shake table of a 1/5 scale simple model of a crane bridge were 

carried out for different configurations (trolley location, braked or rolling wheels) under 

several excitations signals (bi-axial, tri-axial, growing PGA values). A novelty of the 

experimental campaign was the similarity law which was especially adjusted to ensure the 

correct ratio of seismic forces to friction forces. 

A FE beam model was made. A special care must be given for the analytical model to 

obtain the experimentally determined eigenmodes. In particular, additional flexibilities of the 

girder end truck connections and of the runway beams should be taken into account. 

Regarding the response under high intensity excitation, comparison between analytical and 

experimental results shows that, despite some discrepancies the FE model reproduces the 



essential features of the nonlinear response. The overall agreement is satisfactory, especially 

if one recalls the well-known unpredictability of the response of nonlinear systems in the 

presence of severe impact/friction nonlinearities. In particular, the FE model gives a good 

estimate of the overall deformation of the girders (relative displacement with respect to the 

end trucks) which could be used as a relevant quantity, amongst others, to check the 

earthquake resistance of the crane bridge. Moreover, the FE model is capable to reproduce the 

systematic asymmetric sliding behavior of both the girders and the trolley, observed during 

the tests. 

A simplified analytical crane bridge model is proposed which gives approximate, yet 

satisfactory estimates of the response quantities of interest. This model could be used as a part 

of a bigger model including both the support (i.e. main) structure and the crane bridge to 

account for possible interaction between these two structures. The simplified model cannot 

account for the aforementioned asymmetric sliding behavior. An extension of the simplified 

model, to account for this effect, could be possible but at the price of a higher complexity. 

Future work will address the accurate determination of the reaction forces on the 

runway beams and the improvement of the analytical model. Hence, a further extension of 

this work would consist of some supplemental tests on shake table: a) using excitations which 

are closer to actual crane bridge support motions and b) equipped with suitably designed load 

cells to measure the reaction forces on the runway beams. Regarding the analytical model, a 

specific macro-element could be developed to better simulate the actual friction forces on the 

rolling wheels. 
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Table 1 Response quantities of FE models for the biaxial test at 0.8g PGA level (zero mean 

excitation) 

 

Model Reference FE model No-tuned FE model 

Gaps 2 mm 0 mm 2 mm 0 mm 

Response quantities at the girder’s mid span 

Max. relative displacement     1.3 mm 1.7 mm 1.1 mm 1.4 mm 

Mean impact forces     196 N 847 N 188 N 868 N 

 Max. moment     4537 Nm 5314 Nm 3647 Nm 4568 Nm 

Mean moment     132 Nm 520 Nm 116 Nm 468 Nm 

Max. axial stresses     21.4 MPa 23.5 MPa 19.7 MPa 23.3 MPa 

Global response quantity 

Max. sliding disp.lacement     35 mm 55 mm 30 mm 45 mm 
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Table 1 Parameters of the simplified model 

 

Gaps      

                     

            

                

Corresponding frequency for      9.3 Hz 

Corresponding frequency for    9.5 Hz 

Critical damping ratio for      0.54 % 

Restitution coefficients for    0.7 

Mean horizontal friction coefficient of horizontal interface       

Horizontal friction coefficient of vertical interface  0.23 
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Figure 1. Model of the crane bridge mounted on the shake table. 
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a) 

  

b) 

 

Figure 2. First two eigenmodes of the subassembly composed of the main bridge girders based on 

the shock hammer test. Experimental results at left and analytical results at right. (a)       

                         ; (b)                                . 
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a) b) 

 

Figure 3. Time histories of input accelerations in the case of a bi-axial test. (a) direction  ; (b) 

direction  . 
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a) 

  

b) 

 

Figure 4. Deformed shape of the runway beam under static loading. (a) modeling of the  

actual boundary conditions          ; (b) beam assumed clamped at both ends,    
       . 

 

Figure
Click here to download Figure: Figure4.docx

http://ees.elsevier.com/engstruct/download.aspx?id=551999&guid=5a5015ef-8050-468b-a455-b1be7703a252&scheme=1


  

a) b) 

 

Figure 5. Shell finite element model of the end truck. (a) mesh; (b) axial stresses distribution. 
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Figure 6. Configuration of braked and rolling wheels. 
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a) b) 

 

c) 

 

Figure 7. Mode shapes and frequencies of the finite element model of the crane bridge 

(frequency of the analytical model vs frequency of the specimen). (a) first mode in the   

direction (9.3 Hz vs 9.5 Hz); (b) second mode in the   direction (9.5 Hz for both); (c) third 

mode in the   direction (14 Hz vs 13 Hz). 
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Figure 8. Mean horizontal displacements of the end trucks for different time average values, 

      and     , of the excitation signals. 
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a) b) 

 

Figure 9. Pseudovelocity response spectra of the runway beam at mid span. (a) direction  ; 

(b) direction  . 
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a) b) 

 

Figure 10. Pseudovelocity response spectra of the main bridge girder at mid span. (a) 

direction  ; (b) direction  . 
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a) b) 

 

Figure 11. Pseudovelocity response spectra of the trolley. (a) direction  ; (b) direction  . 
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a) b) 

 

Figure 12. Pseudovelocity response spectra of the main bridge girder at mid span. 

Comparison between linear and non linear results. (a) direction  ; (b) direction  . 
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Figure 13. Pseudovelocity response spectra of the trolley in direction  . Experimental and 

analytical results under 3D excitation. 
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Figure 14. Simplified model. 
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a) b) 

 

Figure 15. Comparison between the results of simplified and FE models. (a) mean relative 

displacement of the girders; (b) impact forces on the runway beams. 
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