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Abstract

In this thesis we study three types of non-equilibrium processes: the depinning

of elastic interfaces, the yielding of sheared disordered solids, and the fracture and

granular flow of brittle solids. All three display scale-invariant behavior. The first

two systems evolve in discrete bursts of motion or avalanches whose magnitudes

follow a power law distribution, while breakup of brittle solids produces a power law

distribution of grain sizes.

The motion of elastic interfaces is studied using simulations of the random field

Ising model. The interface is driven by gradually increasing an external magnetic

field, leading to a series of avalanches whose maximum size diverges at a critical field.

Growth is anisotropic, with the height of an avalanche growing as its width to a power

χ = 0.85± 0.01. Scaling relations and finite-size scaling techniques are used to relate

χ to other critical exponents. The roughness exponent of the growing interface is

predicted to equal χ but is substantially smaller at accessible system sizes.
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ABSTRACT

Molecular dynamics simulations are used to study critical behavior in slowly

sheared disordered solids. The average flow stress rises as a power β of the strain rate.

Finite-size scaling is used to determine β and the exponent describing the divergence

of the correlation length with distance to the critical point. The temporal correla-

tions in the average kinetic energy of the system are used to measure the dynamical

exponent relating the duration of an avalanche to its spatial size.

Lastly, a discrete element model of brittle systems is developed. The model

parameters can be calibrated to match specific material properties including elastic

constants and fracture toughness. The model is used to study the impact of defect

density and strain rate on the fracture of sheared brittle solids. A measure of damage

is related to the initial yield and fragmentation. Subsequent granular flow produces

a power-law distribution of grain sizes that suggests critical behavior at quasistatic

strain rates and large strains. The maximum grain size decreases with increasing

strain rate.
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Chapter 1

Introduction

1.1 Scale Invariance

A physical system exhibits scale invariance when its statistical properties appear the

same under rescalings of length or time.1 For instance, a fractal image looks the same

when the viewer zooms in or out on the image. This is equivalent to rescaling all spatial

coordinates by some factor, x→ bx. Functions can also exhibit anisotropic scale invariance.

For instance, a self-affine function is one in which a rescaling of the argument is equivalent to

a rescaling of the global function: f(bx) = bζf(x) where ζ is known as the Hurst exponent.

Self-affine scaling is observed in stock market prices as well as the height of the earth’s

surface.2,3

In some cases, it is easy to identify the origin of scale invariance and the exact value

of the self-affine exponent ζ. For instance, in a one dimensional random walk one can

1



CHAPTER 1. INTRODUCTION

consider the position of the walker as a function of time x(t). The root mean squared (rms)

displacement of the walker grows as the square root of the time. Therefore, one can deduce

that a statistically similar walk (assuming one cannot resolve the size of a step) is produced

by rescaling time by a factor of b while rescaling the position by b1/2: x(bt) ∼ bζx(t) where

ζ = 1/2. Note that there is not a strict equality as the rescaled function is only statistically

similar to the original. In this case, the scale invariance simply arises from the addition of

random numbers. In other cases, it is not as simple.

One particular class of scale invariance emerges from the dynamics of driven disordered

systems. Similar scaling behavior occurs in many seemingly disparate systems. Gutenberg

and Richter discovered that the energy E released by earthquakes is power-law distributed,4

P (E) ∼ E−τ , with an exponent τ .5 This implies that earthquakes are scale invariant and

there is no characteristic size up to the upper cutoff of the power-law due to the finite size

of a fault.6 Such power-law distributions have also been seen in the magnetization of a

ferromagnetic material. As domain walls rearrange and align with the field, they produce

bursts of noise called Barkhausen noise. The magnitude of this noise is also power-law

distributed.7,8 Earthquakes and Barkhausen noise also produce temporally scale invariant

time signals with a non trivial exponent known as a pink noise exponent.9,10

Scale invariant distributions have also been identified in many other dynamical pro-

cesses, including fracture and fragmentation. The propagation of a crack front displays

jerky dynamics similar to earthquakes.11 The resulting crack surface also displays self-affine

roughness.12 The volumes of rock fragments generated from ballistic impact, crushing, ero-

sion, etc have often been found to be power-law distributed and many different exponents

2



CHAPTER 1. INTRODUCTION

have been measured.13,14 Lastly, the size distribution of ice floes in the ocean produced by

melting, freezing, and collisions also follows a power law.15,16

1.2 Dynamical Criticality

Models of scale invariance often draw on the concepts of equilibrium critical phenom-

ena.17 Critical points occur at second order phase transitions, such as the water vapor

critical point or the Curie point for ferromagnetic materials. Away from the critical point

there is a correlation length ξ that characterizes the maximum range of correlations. This

correlation length diverges as the system approaches the critical point. At the critical point

fluctuations occur on all scales and correlations decay as a power of distance. Critical points

can be characterized by a set of scaling exponents that describe the decay of correlations

and the divergence of ξ near the critical point. Renormalization group theory calculates

these exponents from the scaling of thermodynamic functions with increasing length scale.

A powerful result is that systems that share the same underlying symmetries and dimension

fall into universality classes and are described by the same set of critical exponents.18 For

example fluid phase separation and Ising ferromagnets are in the same universality class.

This implies that a simple, reduced model that contains the correct fundamental symmetries

and interactions can be used to study the critical behavior of a real system.

An analytical connection between avalanches and criticality was first formulated in

1983 when Fisher proposed a mean field theory describing the presence of a critical point

at the onset of sliding of charge density waves.19 This is known as a depinning transition

3
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as it separates a pinned, static phase from a moving phase. The critical behavior at the

transition could be described by renormalization of a dynamical equation of motion rather

than thermodynamic functions like the free energy.20,21

Depinning transitions are found in a large class of d dimensional driven interfaces.22,23

In d = 2, examples include the dynamics of a crack front,11,24 fluid contact lines,25,26 and

forest fire fronts.27 In d = 3, depinning transitions have been studied in fluid invasion

in porous rock,28 the motion of magnetic domain walls discussed above,29,30 and cell mi-

gration.31 In all these cases, interfaces propagate through a medium containing quenched

disorder. Quenched disorder consists of hetereogeneities that are frozen into the system and

do not vary in time. This is in contrast to annealed disorder where the noise fluctuates in

time. At small driving forces an interface is pinned by the quenched disorder and will not

advance. As the driving force is increased, the interface advances in a series of bursts or

avalanches. The size of the largest avalanche grows as the driving force approaches a critical

value Fc. At Fc, the size of avalanches follows a power-law distribution. As the force is

increased above Fc, the noise is no longer capable of pinning the interface and it propagates

with some finite velocity that grows as a power of the distance above the critical force.

Critical behavior has also been observed when yield stress materials are sheared. Yield

stress materials such as granular packings,32,33 colloids,34 bubble rafts,35 and foams36 will

not flow unless a critical stress is exceeded. The yielding transition is therefore a transition

between a jammed phase and a flowing phase, much like the onset of motion in depinning.

It has been argued that interface depinning and the yielding transition are in the same

universality class and can be described using the same mean field theory exponents.37 Other

4
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work suggests the exponents are different38,39 due to different symmetries in the elastic

interactions coupling different regions.40 It has also been demonstrated that the addition

of inertia in yielding changes the critical exponents of avalanches.38,39 Inertia is important

in many physical systems such as earthquakes.

1.3 Self-Organized Criticality

An interesting question still remains, why do so many dynamical systems in nature

demonstrate critical behavior? To reach an equilibrium critical point a control parameter

must be finely tuned to a critical value of the temperature, density, or some other state

variable. A theory was proposed in 1988 by Bak, Tang, and Weisenfeld that systems with

many interacting degrees of freedom may contain a critical attractor, some minimally stable

state that systems evolve to.41 This was termed self-organized criticality. This idea was

exemplified by the evolution of a growing sand pile. As sand is slowly and randomly dropped

onto a pile, the pile grows until it reaches a critical slope at which point depositing additional

grains triggers avalanches on all length scales, a critical steady state.

Although later work demonstrated real sand piles do not actually produce true critical

behavior,42,43 the theory of self-organized criticality provided a motivation for the origin

for the emergence of critical dynamical behavior. As Fisher had also pointed out, if the

critical point is at zero rate, one does not need to tune a parameter but merely drive the

system slowly.22 More recent work has converged on this view as the most common origin

for non-equilibrium critical phenomena such as the depinning and yielding transitions.44

5
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It has been suggested that the process of fragmentation at finite rates45,46 and the

subsequent breakup of grains in flow,14 known as comminution, represent instances of self-

organized criticality. If these processes do represent critical behavior, the nature of such a

critical point is not well understood. For instance, it is not clear what dynamical equation

could be studied under renormalization or what would be the equivalent to a steady state

in comminution, since grains may continue to fracture at large strains. We show below that

increasing rate lowers the maximum size of grains and thus criticality in flow can only occur

at zero rates.

1.4 Outline of Thesis

Each of the three following chapters focuses on a different example of non-equilibrium

scale invariance emerging in a disordered system. Since the systems are very different,

each chapter contains a detailed introduction with background material on past work, a

description of the methods used, a discussion of the results, and a summary. In each

case, we use computer simulations to identify fundamental behavior and determine critical

exponents corresponding to each critical point. We study simple, idealized models, but the

measured exponents are expected to apply to a wide range of physical systems in the same

universality class. As in equilibrium systems, the universality class should only depend on

symmetries and not on the specific form of atomic interactions, crystal lattice, or other

details.

In the second chapter we explore the dynamics of interfaces driven through a d di-

6
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mensional random medium. Most studies of interface depinning have assumed that the

interface can be reduced to a single valued function of the d− 1 dimensions perpendicular

to the direction of motion. This assumption simplifies the analysis but artificially breaks

the isotropy of the underlying Hamiltonian. Real interfaces are fully d dimensional mani-

folds and can be multivalued. To address this limitation, our simulations model fully d = 3

dimensional domain wall motion in the random field Ising model. Avalanches grown in the

model are anisotropic with the height normal to the interface `⊥ scaling as a power of the

lateral extent `‖: `⊥ ∼ `
χ
‖ where χ is distinct from previous studies of depinning. A scaling

theory that incorporates anisotropy is derived and tested by studying many properties of

the system using finite-size scaling techniques.

The third chapter examines the related problem of the yielding transition. We use

molecular dynamics simulations in two and three dimensions and finite-size scaling tech-

niques to accurately identify the critical exponents governing the scaling with strain rate

for the first time. Scaling relations are obtained and tested for the behavior of a range of

system properties near the critical point including the average flow stress, fluctuations in

the flow stress, temporal correlations, and diffusion.

In the fourth chapter we study the fracture and granular flow of brittle, isotropic solids.

This chapter describes how the model is constructed to capture key material properties such

as the elastic moduli and fracture toughnesses. Then we present results highlighting the

impact of defect density and strain rate on the initial fracture of two and three dimensional

solids. In particular we track the growth of cracks and the evolution of a damage parameter

and relate this to the stress in the system. Next, we look at comminution in the granular

7
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flow regime. Our model produces a power-law distribution of grain sizes in both two and

three dimensions in the quasistatic limit. At a finite rate, there exists a maximum grain

size that decreases with increasing rate. Finally, we discuss how material properties affect

the statistics of grains and the internal friction.

The final chapter discusses general conclusions from the work. Results from the three

prior chapters are condensed and relations to other work are discussed. Future directions

of research are proposed.
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Chapter 2

Anisotropic Avalanches in

Depinning

2.1 Introduction to Depinning

As mentioned in the introduction, an important class of non-equilbrium critical behav-

ior is that of the motion of an elastic interface through a medium with quenched disorder.19

This is a very diverse class of systems and includes problems such as magnetic domain wall

motion,29,30 fluid invasion in porous media,28 contact line motion,25,26 and the propagation

of crack fronts.11,24 The onset of athermal motion of a driven interface is called a depinning

transition and occurs at a critical driving force Fc. As F increases towards Fc the inter-

face advances between stable states in a sequence of bursts of motion termed avalanches.

Avalanches in depinning exhibit scale-free behavior and have a power-law size distribution.

9
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The maximum size of an avalanche grows as F approaches Fc and can be related to a di-

verging correlation length. For F > Fc the interface is never stable, and avalanches are

associated with fluctuations in the rate of growth. As F increases, these fluctuations be-

come smaller. The value of Fc is determined by a competition between the disorder and the

elastic cost of deforming the interface. Different universality classes have been identified,

depending on whether disorder is large or small8,30,47–49 and whether elastic interactions

are local or have a long, power-law tail.50,51

A magnetic domain wall or fluid interface can have any orientation in a d dimensional

system and the driving force always favors advance perpendicular to the local orientation.

At high disorder, the growing interface becomes self-similar with a fractal dimension related

to percolation.52 At low disorder, elastic interactions are able to spontaneously break

symmetry and enforce an average interface orientation.28,30,53,54 The interface becomes

self-affine, and fluctuations in height along the average surface normal rise as `ζ where

ζ < 1 is the roughness exponent and ` is the displacement in the d − 1 dimensions along

the interface.

Most models of interface motion focus on the self-affine regime and begin with the

assumption that the height is a single-valued function.20,21,55–60 While this simplifies the

application of analytical methods, it explicitly breaks the spatial symmetry of the phys-

ical system and may thus change the universality class. The above models also use an

approximation for the elastic energy that is only valid when derivatives of the height are

much less than unity. These assumptions may not be self-consistent because the regions

of extreme disorder which are important to pinning61 also create large forces and therefore

10
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large surface slope and curvature.62 Moreover, motion can be stopped at any field by a

single unflippable spin or uninvadable pore. Such extreme regions need not stop a fully d−

dimensional interface. A multi-valued interface can have overhangs that advance around

regions of strong disorder and merge to create enclosed bubbles that are left behind the

advancing interface. This process is clearly observed in advancing fluid interfaces.63

In this chapter we examine the critical depinning transition in a model that does not

impose an interface orientation, the d = 3 random field Ising model (RFIM).48 Simula-

tions with more than 1012 spins are analyzed using finite-size scaling, and scaling relations

between exponents are derived and tested. While the domain wall between up and down

spins is not single valued, growth is strongly anisotropic. The correlation lengths along and

perpendicular to the interface diverge near the critical point with different exponents ν‖ and

ν⊥, respectively. Individual avalanches show the same growing anisotropy, with the height

scaling as width to the power χ = ν⊥/ν‖ = 0.85 ± 0.01. The anisotropy is also consistent

with scaling relations for the distribution of avalanche volumes and lengths and the max-

imum volume and lengths. The scaling of the total rms interface roughness is consistent

with ζ = χ, and the power law describing changes in roughness with separation along the

interface appears to approach χ as L increases near the critical point.

These results are quite different from earlier work on the RFIM. Calculated exponents

were consistent with scaling relations that assumed χ = 153 but used systems with linear

dimensions more than 40 times smaller30 for which we show finite-size effects are significant.

Later work used systems up to four times larger and found χ = 0.9±0.1 was still consistent

with unity.64 All earlier work concluded that the roughness exponent ζ was consistent with

11
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the mean field value of 2/3 and less than χ.

The results are compared to studies of the quenched Edwards-Wilkinson (QEW) equa-

tion, a single-valued interface model that is often used for domain wall motion.57,59,60,65

Some exponents, such as the power law describing the distribution of avalanche volumes

are nearly the same in both models.30,59 However the anisotropy is quite different.

In Sec. 2.2 we describe the implementation of the RFIM model and different growth

protocols used. Results are presented in Secs. 2.3 to 2.6. In Sec. 2.3, the critical field and

correlation length exponent are first identified using the fraction of avalanches which span

the system. Next the divergence of avalanches as the system approaches the critical field

and the distribution of avalanches at the critical field are calculated. Finally we propose a

scaling of the total volume invaded in the system as a function of distance to the critical

point. In Sec. 2.4 we look at the morphology of avalanches including the average dependence

of the height on the width and the distributions of widths and heights. Next we consider

the scaling of avalanches that span the system. In Sec. 2.5 we study the scaling of the

interface morphology. We look at the total width of the interface, self-affine scaling, and

the statistics of overhangs. Finally in Sec. 2.6 we look briefly at behavior for different

strengths of disorder. In Sec. 2.7 we summarize our results and compare to past work.

12
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2.2 Methods

We simulate athermal motion of a domain wall in the RFIM on a cubic lattice in d = 3.

The Hamiltonian of the system is given by:

H =
∑
<i,j>

sisj −
∑
i

(ηi +H)si (2.1)

where si = ±1 is the state of the ith spin, H is the external magnetic field, and ηi is the

local random field. Interactions extend only to nearest neighbors and the coupling strength

is defined as the unit of energy. The random local field is taken to be Gaussian distributed

with a mean of zero and a standard deviation of ∆.

Previous work has determined that there exists a critical value of the noise ∆c ∼

2.5 separating two universality classes.54 In the limit of ∆ > ∆c, fluctuations in noise

dominate the Hamiltonian such that interactions become irrelevant. Therefore, the local

orientation of the interface does not significantly favor a direction of growth and the problem

reduces to invasion percolation.30,66 The invaded volume has a self-similar hull described by

percolation theory.52 In the limit of small noise, ∆ < ∆c, interactions lead to more compact,

cooperative growth producing a self-affine interface. In Sec. 2.6 we briefly study systems

at a range of ∆ and verify the transition from isotropic growth above ∆c to anisotropic

growth below ∆c. Exponents for several ∆ below ∆c are consistent and we focus on results

for ∆ = 1.7 in all other sections.

Interfaces are grown with fixed boundary conditions along the direction of growth and

periodic boundary conditions perpendicular to growth. The upper and lower boundaries
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consist of layers of down and up states respectively, necessitating the presence of a domain

wall within the bulk. In the periodic directions, the system has a width of Lx = Ly = L

while the height of the box along the direction of growth is typically set to Lz = 2L. A

larger vertical dimension helps ensure the upper boundary condition does not interfere with

growth for most simulation runs.

Systems are initialized with all spins in the down state except for the bottom layer,

creating an initially flat domain wall. Spins are only allowed to flip up if they lie on the

interface, i.e. if one of their neighbors is up. This requirement is motivated by models

with a conservation law such as fluid invasion where fluid must flow along a connected

path to new regions.48 This rule ensures that there is a single domain wall separating the

unflipped region at large z from flipped spins and is the usual assumption in scaling theories

of interface motion through a disordered medium. In contrast, studies of Barkhausen noise

in hysteresis loops of the RFIM allow disconnected spins to flip and this changes things like

the critical disorder ∆c.
8,49,67

The RFIM considered here only has cubic symmetry, but past studies show that scaling

of interface growth is isotropic in both the self-affine and self-similar regimes.55,68,69 Planar

growth along facets of the lattice only occurs for a bounded distribution of random fields

at very weak disorder.69,70 This is in sharp contrast to models that explicitly break sym-

metry by assuming the interface is a single-valued function of height.55,57,59,60,65,68 Some

2+1 dimensional models even have direction-dependent critical fields and other anisotropic

properties.55,68 Given the established isotropy of growth in our model we consider the sim-

plest case where the sides of the box are aligned with the nearest-neighbor directions and
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the initial interface has a (001) orientation.

Growth occurs athermally through single spin-flip dynamics. The external magnetic

field is initialized to the lowest value that will excite a single spin on the interface to flip up.

The stability of neighboring down spins is checked and they are flipped up if this lowers the

global energy. This procedure can lead to a chain reaction and is repeated until all spins are

stable along the interface. The “no-passing rule”71,72 guarantees that the resulting interface

is independent of the algorithmic order in which spins are flipped. The magnetic field is

then increased to flip the least stable remaining spin and the process is repeated until either

the interface reaches the upper boundary or the field is well above the critical point. Less

than 2% of systems of size L = 1600 hit the boundary at a height of 3200 before reaching

the critical field. This process produces invaded volumes such as the examples in Fig. 2.1

rendered using the Open Visualization Tool (OVITO).73

Each time the external field is incremented, the resulting cluster of flipped spins is

recorded and grouped as a single avalanche. The volume and linear dimensions of each

avalanche are calculated. Because the interactions are short range, all spins in a cluster are

connected. Some avalanches can have a length of L or larger in the direction perpendicular

to growth due to the periodic boundary conditions. If these avalanches percolate, colliding

with a periodic image of themselves, specifying their lateral size is ambiguous. We will refer

to these avalanches as spanning avalanches and two examples are seen in Figs. 2.1a-b. We

exclude spanning avalanches from most analysis unless otherwise mentioned. Avalanches

which are truncated by reaching the upper boundary are always excluded.
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Figure 2.1: Flipped spins in a sample simulation of size L = 100 are shown for different
stages of growth corresponding to (a) H ≈ 1.44579 and (b) H ≈ 1.45853. Contiguous
spins are grouped by their associated avalanche and colored accordingly. Along the cross-
section one can see more examples of small avalanches at low heights which grew at smaller
values of the external field H. At larger heights, growth occurred at a higher value of
H and larger avalanches are visible. The final avalanche (teal) in (a) is an example of a
semi-spanning avalanche that wraps across a periodic boundary condition and percolates.
The final avalanche (blue) in (b) is an example of a fully-spanning avalanche that has a
footprint of L2 and advances the entire interface. The set of spins which could potentially
flip in response to an increase in H in (b) are rendered in (c). These unflipped spins can
either be on the external interface or contained inside a bubble. Four bubbles consisting of
either six unflipped spins or a single unflipped spin are indicated by arrows. The remaining
visible region constitutes the external interface. Note that it is not a single-valued function
of height and large overhanging regions are visible at the bottom cross-section. Particles
are colored by height for improved visibility.
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We further divide spanning avalanches into two classes: semi-spanning and fully-spanning

avalanches. We define the footprint of an avalanche as the total area of all flipped spins

projected into the x− y plane. The footprint of any avalanche is contained in the interval

[1, L2] by definition. We define semi-spanning avalanches as percolating events that have a

footprint less than L2. A specific example is shown in Fig. 2.1a. Fully-spanning avalanches

are percolating events that have a footprint equal to L2 such as the final avalanche seen in

Fig. 2.1b. The differences between these two classes of spanning avalanches are discussed

in Subsec. 2.4.3.

Any unflipped down spin with a neighbor in the flipped up state is a potential site for

an avalanche. However, as seen in Fig. 2.1c, these spins can be sorted into two topologically

distinct regions: the external interface and bubbles. The external interface consists of spins

that are connected to the upper boundary of the cell by an unbroken chain of unflipped

spins. This interface delimits the extent of propagation. Alternatively, certain spins with a

strong pinning force may become surrounded by the domain wall and enclosed in a bubble.

While avalanches could still grow in bubbles, they would be heavily constrained by the

geometry of the bubble and would not contribute to the structure of the external interface.

Therefore they are excluded from all analysis in this chapter. This rule is analogous to the

problem of incompressible fluid invasion where growth within bubbles is not allowed. The

average fraction of volume behind the external interface that is in bubbles is quite small

and nearly independent of H and L. For ∆ = 2.1, bubbles make up less than 0.02% of the

volume and for ∆ = 1.7 this fraction decreases below 0.001% as seen in Fig. 2.2.

In addition to the growth protocol described above, a second protocol was also imple-
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Figure 2.2: Porosity or the percent of volume in bubbles versus the distance to the critical
field ΔH = Hc − H for systems with Δ = 2.1 (blue) and 1.7 (red). Here Hc = 1.490115
and 1.46305 for Δ = 2.1 and 1.7 respectively.

mented. In this method, the external field is set at a fixed value and unstable spins are

continually flipped until the interface is stable. In this protocol, we do not resolve individ-

ual avalanches. This allows for efficient parallelization of the code allowing simulation of

larger system sizes. As referenced before, the “no-passing rule”71,72 guarantees the resulting

interface does not depend on the parallelization scheme. Using the primary protocol and

tracking individual avalanche growth, we simulate systems up to a size of L = 3200 and

with the alternate protocol we reached system sizes of L = 25600, flipping more than 1012

spins. At all system sizes, many simulations were run with different realizations of disorder

and results were averaged.
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2.3 Avalanche Volume

In this section we look at the statistics of the magnitude or volume of an avalanche.

First we determine the critical field by studying the fraction of volume invaded that consists

of spanning avalanches in Subsec. 2.3.1. Next we look at the divergence of the average

avalanche volume to identify the critical exponent associated with their size in Subsec.

2.3.2. This exponent is then related to theoretical distributions of avalanche magnitudes

and predictions are verified in Subsec. 2.3.3. Finally, we use these results to propose a

theory describing the scaling of the total volume invaded in Subsec. 2.3.4.

2.3.1 Fraction of Volume from Spanning Events

As the external field is increased, the domain wall advances through a sequence of

avalanches. The size of the largest avalanche increases with external field, indicating a

growing correlation length. The critical field Hc is defined as the field where the correlation

length diverges and interfaces in an infinite system will depin and advance indefinitely. In

a finite-size system the depinning transition is broadened. There is a range of H where

the correlation length is comparable to the system size L. In this range, interfaces in some

systems will remain pinned while others will advance to the top. In this subsection we will

use finite-size scaling methods to determine Hc and the scaling of the in-plane correlation

length ξ‖ from simulations with different L.

For a self-affine system, correlations may be different for motion along and perpendicular

to the interface. We define a correlation length along the interface as ξ‖ and a correlation

length in the direction of growth as ξ⊥. Both are expected to diverge at the critical field in
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an infinite system with exponents ν‖ and ν⊥, respectively:

ξ‖ ∼ |Hc −H|−ν‖

ξ⊥ ∼ |Hc −H|−ν⊥ .
(2.2)

We define χ = ν⊥/ν‖ such that ξ⊥ ∼ ξχ‖ .

The total volume invaded over an interval of external field is defined as the number

of spins that become unstable and flip. For a finite system, a fraction Fs of these flipped

spins will be part of system-spanning avalanches, while the rest are in smaller avalanches.

At very low fields where ξ‖ � L, no avalanches will span the system and Fs = 0. At very

large fields, H > Hc, Fs → 1 as the system becomes depinned at all system sizes and the

largest, spanning avalanches dominate the increase in volume.

Fig. 2.3 shows the change in Fs with H for different system sizes. For each L, the

size of increments in H was chosen to be small enough to resolve the transition but large

enough to reduce noise. After calculating Fs for each interval, the curves were further

smoothed by applying a rolling average across all sets of three adjacent intervals. At fields

above Hc, many systems have already reached the top of the box and stopped evolving. We

therefore discarded poorly sampled data points at large values of H > Hc. The transition

from growth by finite avalanches to spanning avalanches sharpens as L increases. Using a

simulation cell of height 2L ensured that Fs was not significantly affected by finite system

height.

In finite-size scaling theory one assumes that the only important length scales in the
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Figure 2.3: The fraction of volume invaded due to system spanning avalanches over a small
interval of H is calculated for the values of L indicated in the legend. A dashed vertical
line indicates Hc = 1.46305. The inset shows the collapsed data using the finite-size scaling
procedure described in Eq. (2.3) with a value of Hc = 1.46305 and ν‖ = 0.79.
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system are the correlation lengths, ξ‖ and ξ⊥, and the system size, L. Finite-size effects

are expected when the largest correlation length approaches L. The simulation cell is taller

than it is wide and we find ξ⊥ < ξ‖, so ξ‖ dominates the finite-size effects. Functions like Fs

then depend on the dimensionless scaling variable L/ξ‖. Using Eq. 2.2, Fs can be expressed

in terms of the field as:

Fs ∼ f
(

(H −Hc)L
1/ν‖

)
(2.3)

where the scaling function f should be independent of L. Given the limiting behavior of Fs,

f(x) must approach zero for x� −1 and one for x� 1. Note that Eq. 2.3 gives Fs = f(0)

for all L at H = Hc. Therefore the critical field must correspond to the location where all

curves cross in Fig. 2.3. This intersection occurs at a value of Hc ∼ 1.46304±0.00003. Here

and below, the error bars do not represent a standard deviation, but indicate the maximum

range over which data collapse within statistical fluctuations. Koiller and Robbins had

previously found Hc for various values of ∆ in this system.54 Although the value of Hc was

not explicitly determined for ∆ = 1.7, our result is consistent with interpolations of their

data from nearby values of ∆.

Eq. 2.3 also implies that all curves should collapse when plotted against (H −Hc)L
ν‖

for the correct value of ν‖. For all scaling collapses in the following plots, we choose to use

a common value of Hc = 1.46305 based on consideration of the above estimate of Hc and

the scaling of other system properties discussed later in the manuscript. The inset of Fig.

2.3 shows a successful collapse of Fs with a value of ν‖ = 0.79. Based on the sensitivity of

the collapse to changes in ν‖, the data is consistent with ν‖ = 0.79 ± 0.02. This value is

close to prior estimates of ν‖ = 0.75± 0.0254 and 0.75± 0.0530 in the RFIM. Ref. 30 and 54
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used scaling approaches that assume χ = 1, which may have impacted the reported value.

The RFIM with a uniform instead of Gaussian distribution of random fields is expected to

be in the same universality class and past simulations found ν‖ = 0.77(4).70 For the QEW

model of interface growth, the mean field value of ν is found to be 3/4.21 Arguments in Ref.

20 suggest 3/4 is a lower bound on the actual exponent. Epsilon expansions give 0.67 and

0.77 to first and second order, which suggests that ν could be slightly above the mean-field

value.57

The maximum distance a depinning avalanche can advance the interface is set by the

box height. One might wonder whether this artificial threshold could affect the scaling of

Fs. As an alternative measure, we considered the footprint of an avalanche, the projected

area in the x − y plane of all spins flipped by an avalanche. This measure is independent

of how far an avalanche propagates in the ẑ direction. Over an interval of H, avalanches

will cumulatively advance the interface over a region equal to the sum of their footprints.

Note that some avalanches may overlap such that certain regions may advance more than

once. In analogy to Fs, one can then define the fraction of the area advanced by spanning

avalanches, Fa. We find Fa scales in the same manner as Fs with consistent estimates of Hc

and ν‖. This verifies that the results of Fs are not affected by alternative scaling behavior

of spanning avalanches.

Another useful measure is Fss, the fraction of growth in semi-spanning avalanches. Fig.

2.4 shows that Fss obeys a scaling relation like (2.3) with the same Hc and ν‖ but a different

scaling function fss(x). For each L, Fss rises from zero at small H to a maximum below Hc

and then drops as fully-spanning avalanches begin to dominate growth. From Figs. 2.3 and
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Figure 2.4: The fraction of volume invaded due to semi-spanning avalanches over a small
interval of H is calculated for the values of L indicated in the legend and scaled according to
a finite-size scaling procedure similar to Eq. (2.3). The collapse uses values of Hc = 1.46305
and ν‖ = 0.79.

2.4, we see that semi-spanning and fully-spanning avalanches begin to be important when

Hc−H is smaller than about 10L1/ν‖ and 5L1/ν‖ , respectively. This is useful in estimating

the region where L > ξ‖.

Note that f(0) has a value of about 0.97 that is very close to unity. This implies

that almost all the incremental growth near Hc is due to spanning avalanches. Spanning

avalanches also make up roughly 75% of the cumulative invaded volume from the initial flat

interface to Hc. The importance of large avalanches is related to the power-law distribution

of avalanche sizes that we discuss in the next two subsections.
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2.3.2 Divergence of Avalanche Volumes near Hc

As noted above, spanning avalanches are more related to depinning above Hc than the

approach to Hc from below. In addition, their height is bounded only by the arbitrary

height of the simulation box. In contrast, the vertical growth of non-spanning avalanches is

naturally correlated to their lateral extent. Thus we focus here on non-spanning avalanches,

providing a discussion of spanning avalanches in Subsec 2.4.3. Non-spanning avalanches that

grow close to Hc, after the appearance of spanning avalanches, are included as they exhibit

the same scaling as avalanches grown prior to the first spanning avalanche.

We define a normalized probability distribution of non-spanning avalanche volumes S,

P (S,H,L), which depends on both the current value of the field H and the size of the

system L. At the critical point, the distribution of avalanches is expected to decay as a

power law with an exponent τ , P (S,Hc,∞) ∼ S−τ . Away from the critical point the power

law will extend to a maximum volume, Smax, that reflects the influence of a limiting length

scale `. In general this will be the smaller of the system size L and the correlation length

ξ‖. The maximum volume will scale as power of this length, `α, where α is another critical

exponent.

Having defined the behavior of the distribution, we can determine how statistical mo-

ments of avalanches depend on Smax. The mth moment of the avalanche volume is calculated
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by integrating the distribution up to the maximum avalanche cutoff Smax:

〈Sm〉 =

∫
P (S,H,L)SmdS (2.4)

〈Sm〉 ∼
∫ Smax

Sm−τdS (2.5)

For values of m > τ − 1, this integral is dominated by the largest avalanches and scales as:

〈Sm〉 ∼ Sm−τ+1
max . (2.6)

Alternatively, if m < τ−1, the integral is dominated by the smallest avalanches and will not

diverge as a power of Smax but instead saturate. As shown next, the integral diverges for

m = 1, but not for m = 0. This implies that 1 < τ < 2 and that P (S,H,L) is independent

of H and L for small S.

We will focus on the average size 〈S〉 (m = 1) as the lowest moment that gives informa-

tion about Smax. We define the variable ∆H ≡ Hc −H as the distance to the critical field

from below. To study the variation of 〈S〉 with ∆H, S is averaged over all nonspannning

avalanches that nucleated in an interval of field. The width of the interval decreases as the

logarithm of ∆H for ξ‖ < L to minimize changes in Smax over the interval. A fixed width

is used for ∆HL1/ν‖ < 2, where ξ‖ � L.

Fig. 2.5a shows the increase in 〈S〉 with decreasing ∆H at different L. For each L,

〈S〉 shows a power law divergence, 〈S〉 ∼ ∆H−φ, and then saturates at a value of ∆H that

shrinks with increasing L. In the power law regime where L > ξ‖ , we can use Eq. 2.6 and
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Smax ∼ ξα‖ to determine a scaling relation:

φ = ν‖α(2− τ). (2.7)

In the saturated region, ξ‖ > L, Smax ∼ Lα and 〈S〉 ∼ Lφ/ν‖ .

Given the above scaling behavior we can construct a finite-size scaling ansatz similar

to Eq. (2.3):

〈S〉 ∼ Lφ/ν‖g
(
L1/ν‖∆H

)
(2.8)

where g(x) is a new scaling function. In the asymptotic limit of x � 1, g(x) will scale

as x−φ to reproduce the power law in Eq. (2.6). Alternatively, when x � 1, g(x) must

approach a constant such that 〈S〉 ∼ Lφ/ν‖ .

Finite-size scaling only holds near the critical point. Close examination of Fig. 2.5a

shows that the slopes of curves for all L change for ∆H > 10−2. This is consistent with

later results in the text that show critical behavior only for ∆H < 10−2. Thus we only

include fields in this range in finite-size scaling collapses. Note that 〈S〉 has saturated at

∆H > 10−2 for L = 100. Results for L = 25 and 50 saturated even farther from the critical

regime and we do not include results for these small systems in this chapter.

Fig. 2.5b shows a scaling collapse of curves for different L using ν‖ = 0.79 and φ = 1.64.

Testing the sensitivity of the collapse to these parameters, we estimate uncertainties of

ν‖ = 0.79±0.02, consistent with our above estimate, and φ = 1.64±0.04. A direct measure

of φ from Fig. 2.5a yields 1.64 ± 0.04. Within errorbars, this is consistent with the result
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Figure 2.5: (a) The average volume of an avalanche 〈S〉 calculated at different values of
∆H for systems with size L indicated in the legend. Note that the slope characterizing
changes in 〈S〉 drops slightly for ∆H > 10−2. (b) Scaling collapse for Eq. (2.8) with values
of φ = 1.64 and ν‖ = 0.79. Only data near the critical point ∆H < 10−2 are included.

Dashed lines in both panels indicate power-law scaling with φ = 1.64.
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from Ref. 30, φ = 1.71± 0.11.

A similar scaling procedure could also be performed on larger moments. However,

the higher moments do not depend on any additional exponents and they have increased

sensitivity to the largest events which are the hardest to sample.

2.3.3 Avalanche Distribution

Having seen how the maximum avalanche volume Smax depends on H and L, we next

focus on the regime near Hc, where ξ‖ > L, and calculate the distribution of S in order to

isolate the exponents τ and α. In this limit, Smax will no longer be limited by ξ‖ but rather

by L. We select avalanches that nucleated sufficiently close to the critical point such that

ξ‖ > L and designate the distribution as P (S,L), dropping the dependence on field. Based

on the length of the plateau in Fig. 2.5b, we consider all non-spanning avalanches in the

range 0 < ∆H < 10L−1/ν‖ . This is consistent with the range where spanning avalanches

dominate growth in Figs. 2.3 and 2.4. Consistent scaling results were obtained for half and

one tenth of this range.

To calculate P (S,L), avalanches are logarithmically binned by size and the number of

events in each bin is divided by the size of the bin before normalizing the distribution. The

resulting distributions, seen in Fig. 2.6a, have a clear power-law regime followed by a cutoff

at a value of Smax that grows with increasing system size. As noted above, the fact that

P (S,L) is constant at low L implies τ > 1. This is consistent with a direct evaluation of the

slope which gives τ = 1.28± 0.01. More accurate values are obtained by finite-size scaling.
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Figure 2.6: (a) The probability distribution of the volume of avalanches is calculated for
the system sizes indicated in the legend at ∆H sufficiently close to the critical point such
that ξ‖ > L, corresponding to ∆H < 10L−1/νx . The dashed line represents a power law
with τ = 1.28. (b) The same data is collapsed by scaling with system size according to Eq.
(2.9) with exponents τ = 1.28 and α = 2.84. Avalanches of S < 103 are excluded from the
scaling.
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The cutoff seen in Fig. 2.5b will depend only on the ratio of S to Smax allowing us to

write an expression for the distribution as:

P (S,L) ∼ L−ατfp(S/Lα) (2.9)

where fp(x) is another universal scaling function. For x � 1, fp goes to zero while for

x � 1 one must have fp(x) ∼ x−τ in order to recover the power-law scaling with S. This

scaling should only apply for sufficiently large S and L. In the previous subsection we found

changes in behavior for ∆H < 10−2. Here we see evidence of deviations from scaling in

avalanches with S < 103. In Subsec. 2.4.1 we see the discreteness of the lattice is important

for these small avalanches and thus they are excluded from finite-size scaling collapses.

Including them does not significantly affect our best fit estimates for exponents but affects

the quality of the collapse.

Fig. 2.6b shows a finite-size scaling collapse based on Eq. (2.9). Based on the quality

of the fit we estimate the values and uncertainties of the exponents as τ = 1.280 ± 0.005

and α = 2.84 ± 0.02. As noted above, this value of τ is between 1 and 2 and is consistent

with direct evaluation of the slope in Fig. 2.6a and the value found for the RFIM in Ref.

30, τ = 1.28± 0.05. From Eq. (2.7), our values of τ and α predict φ = 1.62± 0.05 which is

in agreement with the directly measured value.
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2.3.4 Volume Invaded

In Subsec. 2.3.2 the scaling of the average volume of an avalanche 〈S〉 was determined.

Here the analysis is extended to develop a scaling relation for the divergence of the total

integrated volume. Over a small increase in external field from H to H + dH, the interface

will advance a volume dV :

dV ∼ 〈S〉AA(H,L)R(H,L)dH, (2.10)

where A is the number of spins on the external interface and the nucleation rate R is the

number of avalanches nucleated per spin per change in field. Here, 〈S〉A indicates an average

over all avalanches including spanning avalanches. Since the largest avalanches dominate

〈S〉A for τ < 2, spanning avalanches contribute most to dV . This explains why Fs is near

unity close to Hc (Fig. 2.3). We begin by studying how A and R evolve with increasing H

and L.

The area A is defined as the number of flipped spins that are on the external interface

and adjacent to unflipped spins. One could also count the number of unflipped spins

adjacent to these flipped spins or the number of bonds between flipped and unflipped spins.

These measures differ by less than 0.1% for all H and L and thus give the same scaling

behavior.

The area of the interface is initially equal to L2. As the interface advances and roughens,

A increases. Even a single-valued rough interface defined on the cubic lattice will have

A > L2 because of discrete steps in height on the lattice. If the interface steps up by
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n sites, there will be n spins on the interface at the same x, y. Overhangs produce a

further increase in A because there may be multiple horizontal interfaces at each x, y. The

contribution of overhangs to A is discussed in Subsec. 2.5.3.

To remove the trivial dependence of area on L2, we define the relative area AR(H,L) ≡

A(H,L)/L2. Figure 2.7 shows how AR grows as H approaches Hc. For each L, the value

of AR saturates as ∆H decreases. The onset of saturation occurs at the same ∆H as other

quantities discussed in this chapter, and is associated with ξ‖ reaching L. In contrast to

other quantities, the limiting value of AR remains finite. Since Figure 2.7 is a linear-log plot,

one can see that AR grows less than logarithmically with increasing L. The inset of Fig. 2.7

shows that the data is consistent with convergence to a finite limiting value AR,Lim = 2.05

as L ∼ ∞. Data for all L and ∆H < 10−2 are collapsed by assuming a power law approach

to AR,Lim with an exponent ψ:

AR,Lim −AR(H,L) ∼ L−ψ/ν‖fA
(

∆HL1/ν‖
)

(2.11)

where fA(x) is a new scaling function that saturates for x � 1 and scales as fA(x) ∼ xψ

for x � 1. The quality of the collapse is consistent with ψ = 0.23 ± 0.05 and AR,Lim =

2.05± 0.05. Due to the dependence on many parameters, it is difficult to get more accurate

estimates of these values.

The value of AR,Lim increases with the strength of the noise ∆. For ∆ = 2.1, we find

AR,Lim = 3.52 ± 0.05 with the same value of ψ within our errorbars. In the self-similar

regime (∆ > ∆c), the surface area of the invaded volume will scale at least as rapidly as
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Figure 2.7: The surface area of the external interface normalized by L2 is shown as a
function of external field for L given in the legend. Inset: Collapse of data in main panel for
∆H < 10−2 using Eq. 2.11 for AR,Lim = 2.05, ψ = 0.23 and ν‖ = 0.79. Data was generated
using the alternative growth protocol where spins are flipped until a stable interface is
reached at a fixed value of the external field.

LDf , where Df > 2 is the fractal dimension. Therefore, we expect AR,Lim to diverge as ∆

approaches ∆c, but do not study this transition here.

We now turn our focus to the rate R(H,L) at which avalanches nucleate per spin per

increment of external field. The rate R is calculated by tallying the number of avalanches,

both spanning and non-spanning, nucleated over an interval of field and then dividing the

total by the duration of the interval and the surface area. Intervals are evenly spaced on an

axis of log ∆H. As seen in Fig. 2.8, R does not depend on L and becomes independent of

∆H for ∆H < 10−2. This is part of the evidence used to determine that the critical region

is limited to ∆H < 10−2. Fig. 2.8 confirms that sufficiently close to the critical point the

nucleation rate is independent of ∆H and extensive with the surface area. This is expected
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Figure 2.8: The rate of avalanche nucleation R(H,L) over logarithmically spaced intervals
of H for values of L indicated in the legend.

for interface motion since the interface moves into new regions of space and the no-passing

rule is obeyed20,53 and was verified for the case of fluid invasion.53 Note that very different

behavior has been observed for critical behavior in sheared systems where the entire system

is perturbed by internal avalanches and they produce stresses that are not positive definite.

In these systems the rate of avalanches rises less rapidly than the system size.38,39,74,75

Equipped with these results, we now derive an expression for the total volume invaded

at fields below the onset of finite-size effects or spanning avalanches. If no avalanches span

the system, then 〈S〉A = 〈S〉. From Eq. (2.6), 〈S〉 ∼ ∆H−φ diverges as H approaches

Hc. For small enough ∆H, AR and R are approximately constant. In this limit, the total
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Figure 2.9: The total volume invaded normalized by L2 is calculated as a function of H for
values of L indicated in the legend. A power law with exponent 1 − φ = −0.64 is overlaid
for comparison and follows the data for about a decade.

volume invaded per unit area scales as:

〈V 〉/L2 ∼
∫
〈S〉dH ∼

∫
∆H−φdH ∼ ∆H−φ+1. (2.12)

Figure 2.9 shows V/L2 as a function of H and L. A dashed line indicates the expected

power law divergence using the value of φ = 1.64 from Subsec. 2.3.2. The data appears to

follow the expected scaling for about a decade from 5× 10−5 to 5× 10−4. Finite-size effects

set in at smaller ∆H. As shown above, the variation in AR remains significant down to

∆H ∼ 5× 10−4.
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2.4 Avalanche Morphology

The measurement of the exponent α in Fig. 2.6 allows us to estimate the anisotropy of

correlations in the system. In d dimensions, the largest avalanches will span an area ∼ ξd−1
‖

and reach a height ∼ ξ⊥. From Eq. (2.2) and the definition of χ, this implies α = d− 1 + χ.

Previous scaling relations assumed that χ = 128,30 or the roughness exponent ζ.20 Our

result for α implies χ = 0.84±0.03 in three dimensions, which is midway between unity and

previous measurements of ζ ∼ 2/3.30,54 This would imply that χ is a distinct exponent and

there is a novel anisotropy in the RFIM not previously seen in other depinning systems. To

test this, we consider the morphology of avalanches in this section. In Subsec. 2.4.1, we

calculate the moments of individual avalanches to determine how the width and the height

of avalanches vary. Next in Subsec. 2.4.2 we calculate the distributions of the width and

height. Finally in Subsec. 2.4.3 we look at how the scaling of spanning avalanches differs

from non-spanning avalanches.

2.4.1 Avalanche Height Versus Width

In order to define the width `‖ and height `⊥ of an avalanche, we define a second

moment tensor with components lαβ, where α and β represent the directions x, y, or z.

Given an avalanche with a center of mass located at (xcm, ycm, zcm), we define the tensor

components as:

lαβ =
1

S

S∑
i=1

(αi − αcm) (βi − βcm) (2.13)
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where the summation over i corresponds to a sum over all S spins flipped by the avalanche.

For avalanches that cross a periodic cell boundary, the positions of spins are unwrapped

across the boundaries such that their position is measured relative to the original nucleation

site.

Since periodic boundary conditions force the global motion to proceed in the ẑ direction,

avalanches will align with this orientation on average. However, an individual avalanche

may nucleate and grow along a locally sloped region of the surface. In these instances,

the avalanche’s normal vector may not correspond to ẑ. To avoid biasing the results by

assuming a local growth direction, we considered the eigenvalues of the second moment

tensor, a method used in Ref. 64. We associate `2⊥ with the smallest eigenvalue and `2‖ with

the geometric average of the largest two eigenvalues.1 This decision is based on both the

fact that ξ⊥ < ξ‖ and the fact that growth is promoted along the local interfacial orientation

due to the destabilizing effect of flipped neighbors. This definition will minimize the ratio

`⊥/`‖ and therefore will also minimize estimates of χ.

The corresponding eigenvectors of the second moment tensor indicate the direction of

growth. At small scales, the orientation of the interface is arbitrary and the direction of the

eigenvector v̂min associated with the smallest eigenvalue also varies. For self-affine surfaces

the orientation is more sharply defined at large scales. We find v̂min becomes more aligned

with ẑ as the size of the avalanche, S, increases relative to the size of the system. We

quantify this alignment by the polar angle θ defined as cos θ = v̂min · ẑ. For L = 3200,

avalanches with S ∼ 108 have a root mean square (rms) deviation in angle from ẑ of ∼ 6◦.

1Using the arithmetic mean gives equivalent results.
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In contrast, the rms angular deviation grows to ∼ 39◦ for small avalanches consisting of 103

spins.

Values of `‖ and `⊥ were calculated for avalanches which nucleated sufficiently close to

the critical point such that the largest avalanches were limited by system size rather than the

correlation length. As in the previous subsection, the range was set to 0 < ∆H < 10L−1/ν‖ .

In Fig. 2.10a, `⊥ is plotted as a function of `‖ for a representative set of avalanches grown in

a system of L = 3200. There is a broad spread among individual avalanches but `⊥ clearly

grows sublinearly with `‖, implying χ < 1 and thus that avalanches become proportionately

flatter as they grow in size. The power law rise is also clearly larger than previously measured

values of the roughness exponent, ζ = 0.67, and consistent with our estimate of χ = 0.84

at the start of this section.

To accurately measure χ, we binned avalanches by `‖ and calculated the average value

of `⊥ for systems of a given L. Fig. 2.10b shows that the mean height of an avalanche grows

as a power of the width before being cut off due to finite-size effects. Note that the apparent

power law changes for very small avalanches. The height can only vary in discrete steps of

unity and this will affect the scaling of avalanches with small `⊥. Based on the change in

slope in Fig. 2.10b and the lack of scaling for L < 100, we only include avalanches with

`⊥ > 2 in scaling collapses. This corresponds to `‖ ∼ 5 and S ∼ 103, which is consistent

with the cutoff used in scaling P (S,L).

In the critical region, results for `‖ and `⊥ should collapse when each is scaled by an

appropriate power of the system size L. The maximum width of an avalanche is limited
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by L due to the finite box size and the restriction that an avalanche is non-spanning. The

corresponding maximum height an avalanche can attain must scale as Lχ. The inset in

Fig. 2.10b shows that curves for different L collapse when each length is scaled by its

maximum value. Varying χ, we find a collapse is achieved for the range of χ = 0.85± 0.02.

Alternatively, one could bin by `⊥ and average `‖. This process produces similar values of

χ.

We also studied the quantities `′‖ ≡
√
lzz and `′⊥ ≡ (lxxlyy)

1/4, which measure anisotropy

relative to the periodic boundaries. As seen in Fig. 2.11, the scaling behavior is similar to

using moments but not as good. There appears to be a slight upwards shift in the height `′⊥

of avalanches with increasing system size, particularly for smaller avalanches. As described

in Sec. 2.5, a larger system will ultimately reach a rougher final interface. This will increase

the apparent `′⊥ by mixing in `′‖. We therefore focus on the principal component definition

in the next subsection as it produced cleaner results.

2.4.2 Distributions of Width and Height

As for the distribution of avalanche volumes in Subsec. 2.3.3, one can also define the

probability for a given linear dimension at a given H and L, P (`,H,L) where ` is either

`‖ or `⊥. These distributions are expected to decay as a power law with an exponent τ‖ or

τ⊥. This power law will only persist up to a maximum cutoff set by either the correlation

length or the system size. As in Fig. 2.6a, we focus on the critical distribution P (`, L) at H

close enough to the critical point that avalanches are limited by the finite system size rather

than the correlation length. Figs. 2.12a-b show P (`‖, L) and P (`⊥, L), respectively. The
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Figure 2.11: (a) The height and width of the avalanches shown in Fig. 2.10 but measured
along the ẑ direction and in the x−y plane rather than from the moments of the avalanche.
(b) The average height of avalanches along ẑ is binned and averaged for different widths in
the x− y plane for the indicated L. The dashed line has a slope of χ. Curves are collapsed
in the inset for `‖ > 5 by scaling the avalanche width by the system size L and the height

by Lχ with χ = 0.85.
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Figure 2.12: The probability distributions of the (a) width and (b) height of avalanches
for values of L indicated in the legend of (c) that grew at fields near the critical regime
0 < ∆H < 10L−1/ν‖ . The distributions in (a) and (b) are collapsed by scaling with system
size using exponents χ = 0.85, τ‖ = 1.79, and τ⊥ = 1.94 in (c) and (d), respectively. Data
for `| < 5 or `⊥ < 2 are excluded from scaling. Dashed lines in each panel indicate the

power law determined from finite-size scaling.

distributions are seen to decay with different exponents before being cut off at a threshold

that grows with L.

Following Eq. (2.9), one can construct finite-size scaling equations for the distributions

of the heights and widths of avalanches. As demonstrated in Fig. 2.10b, the maximum

width of an avalanche will scale in proportion to L and the maximum height will scale in

proportion to Lχ. Thus α in Eq. (2.9) is replaced by 1 or χ for `‖ and `⊥, respectively.

Figs. 2.12c-d show finite-size scaling collapses for both quantities. By varying the choice

of exponents we determined the data is consistent with τ‖ = 1.79± 0.01, τ⊥ = 1.94± 0.02,
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and χ = 0.85± 0.01. In both collapses, we exclude avalanches with length scales `‖ < 5 or

`⊥ < 2 since they do not follow the power-law scaling in Fig. 2.10a.

The τ exponents are not independent and can be related to each other as derived in

Ref. 64. In Fig. 2.10a, one can see that, on average, individual avalanches exhibit the

same anisotropy as the correlation lengths, typically `⊥ ∼ `χ‖ . Thus we assume this scaling

will hold when considering the statistics of many avalanches. For length scales `‖ < ξ‖ and

`⊥ < ξ⊥ we can equate the probability that avalanches are in a range with corresponding

values of `‖ and `⊥: P (`‖)d`‖ ∼ P (`⊥)d`⊥. Using this expression, one can derive a scaling

relation relating the τ exponents to χ:

χ =
ν⊥
ν‖

=
1− τ‖
1− τ⊥

(2.14)

Using our estimates of τ‖ and τ⊥, this yields an estimate of χ = 0.84±0.02, again consistent

with our findings. Similarly, one can relate the rate of avalanches over a small interval of

volumes, dS, to the rate of avalanches over a small interval of widths, d`‖, and derive a

relation between τ for the volume distribution and τ‖:
64

τ =
d− 2 + χ+ τ‖

d− 1 + χ
. (2.15)

Plugging in our values for τ‖ and χ we find a prediction of τ = 1.28 ± 0.01 in strong

agreement with the value directly measured in Fig. 2.6.

One other scaling relation is implied by our results. As noted in the previous subsection
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and Subsec. 2.3.4, the ratio 〈V 〉/L2 ∝ ∆H−(φ−1) near Hc. This is proportional to the

average height of the external interface because the volume left behind in bubbles is a

small constant fraction of the total volume. The average height of the interface should be

at least as big as the height of the largest avalanches. Since `⊥ ∝ ∆H−ν⊥ , this implies

φ− 1 ≥ ν⊥. Within our errorbars, our directly measured values of φ− 1 = 0.64± 0.04 and

ν⊥ = 0.67± 0.02 are consistent with this relation and suggest that:

φ = 1 + ν⊥. (2.16)

The numerical results in Refs. 28 and 30 were consistent with χ = 1 and they tested a

scaling relation φ = 1 + ν that is equivalent to Eq. 2.16 in that limit.

Overall, in these past two subsections we proposed and tested a theory of avalanches

that accounts for the anisotropy in correlation lengths. From these results, we identified

several measures of χ confirming it is distinct from both 1 and the previously measured

roughness exponent. Next we explore how this scaling changes for spanning avalanches.

2.4.3 Spanning Avalanches

Defining the morphology of a spanning avalanche is complicated. Having percolated,

each flipped spin has different paths connecting it to a nucleation site in any periodic

images. There is no longer a well defined reference point to define the lateral position (x, y)

of a flipped spin. Therefore, neither the second moment tensor lαβ nor its eigenvalues are

uniquely defined. However, the height of an avalanche can still be estimated using the
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metric `′⊥ =
√
lzz as the calculation of lzz is not affected by the periodicity of the lateral

boundary conditions. As discussed above, this is not an ideal measure of the height for

small avalanches. However, spanning avalanches are large and sample the global slope of

the interface. Therefore spanning avalanches are expected to closely align with ẑ such that

`′⊥ is a reasonable measure of their height.

From the definition of χ and Eq. (2.2), the height of the typical non-spanning avalanche

is expected to grow as a power of S with exponent χ/α ≈ 0.3. As spanning avalanches detect

the finite boundaries there is no guarantee that they will obey the same scaling.

To test for deviations from scaling, we calculate `′⊥ and S for all avalanches nucleated

close to the critical point for L = 3200. As above, we considered fields in the range

0 < ∆H < 10L−1/ν‖ such that ξ‖ > L. In Fig. 2.13, `′⊥ is plotted as a function of S for a

sample of avalanches of size S > 106. Data is separated by the degree of spanning for each

avalanche. Although there is a large amount of scatter for S < 5× 109, `′⊥ is seen to grow

as a power of S. This data is consistent with the predicted exponent of χ/α = 0.3. Above

this scale, the height starts to grow proportionally to S. This threshold approximately

corresponds to the division between semi and fully-spanning avalanches.

The distinct scaling of fully-spanning avalanches seen in Fig. 2.13 can be understood

in the context of their definition. Once an avalanche grows to have a footprint of L2, the

width of the avalanche is fixed at the box size. Growth in the total volume must then be

proportional to an increase in height. As seen in Fig. 2.1, a fully spanning avalanche can

have a much larger aspect ratio of height to width than a semi-spanning avalanche. One
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Figure 2.13: Height of an avalanche in the ẑ direction as a function of volume. As indicated
in the legend, non-spanning avalanches are red triangles, semi-spanning avalanches are
green squares, and fully-spanning avalanches are blue circles. Straight lines have a slope of
χ/α ≈ 0.3 (dotted) and 1.0 (solid).

might also anticipate this change in scaling due to similarities of fully-spanning avalanches

to depinning. Once an avalanche grows to have a footprint L2, flipped spins cover the

entire cross-section. Although it is still possible for some parts of the multivalued interface

to be pinned, they are usually left behind in bubbles and the external interface is totally

renewed. Thus, fully-spanning avalanches are more representative of motion above the

depinning transition and their scaling is not relevant to the behavior at H < Hc of interest

in this chapter.

To verify this interpretation, we also analyzed the probability distribution of S including

semi-spanning avalanches, PSS(S,L), as well as all avalanches, PA(S,L). These distributions

are calculated using the same method used in Fig. 2.6a. In Fig. 2.14, (a) PSS(S,L) and
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(b) PA(S,L) are scaled using the scaling ansatz in Eq. (2.9). These collapsed curves both

resemble those of P (S,L) in Fig. 2.6b for S/Lα . 10−2. Above this scale, the distributions

deviate due to the inclusion of spanning avalanches.

In Fig. 2.14a, we see the upper cut off PSS(S,L) collapses. Therefore, the maximum

volume of semi-spanning avalanches grows as Lα. This is in agreement with the behavior

seen in Fig. 2.13 where semi-spanning avalanches scale in the same manner as non-spanning

avalanches. However, the maximum volume of fully-spanning avalanches no longer scales

as Lα. As seen in Fig. 2.14b, PA(S,L) has two drops at large S. The first scales as

Lα and reflects the limiting size of semi-spanning avalanches. The second drop occurs at

a threshold scaling as L3 and is due to fully-spanning avalanches. As a fully-spanning

avalanche has a width of L, this scaling implies the maximum height scales proportional to

L. In our protocol, avalanches are censored if their growth is interrupted by hitting the top

of the box. This produces an artificial maximum height L. Therefore, this phenomenon

is consistent with our above argument: fully-spanning avalanches depin and advance the

interface by an amount that scales with L.

2.5 Interface Morphology

Having identified a distinct anisotropy in avalanches, we now explore how this impacts

the morphology of the advancing interface. One can study the statistical properties of stable

interfaces without resolving all preceding avalanches. Therefore, we were able to use our

alternative growth protocol where we simply flip spins until a stable interface is reached at
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Figure 2.14: The probability distribution of avalanche volumes is calculated including (a)
non-spanning and semi-spanning avalanches and (b) all avalanches for values of L given in
the legend. Data are rescaled using the scaling relation in Eq. (9) with exponents τ = 1.28
and α = 2.84. In (a) the data collapse on to a common curve. In (b) data collapse below
a drop in the curves that occurs at SL−α . 0.1. Then curves for larger L extend to larger
SL−α. This portion of the curves collapses if α is increased to 3, indicating that the height
of spanning avalanches scales with L instead of Lχ. The dashed lines show a power law
decay with τ = 1.28.
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a fixed field. The no-passing rule guarantees that this stable interface is independent of the

growth rules, and efficient parallelization of the code allows us to study system sizes up to

L = 12800. In the following we identify the interface position with the set of flipped spins

on the external interface that are adjacent to unflipped spins. Using the unflipped spins

gives nearly identical results, particularly at large scales. In Subsec. 2.5.1 we first look at

the scaling of the total interface roughness then look at the roughness on smaller length

scales in Subsec. 2.5.2 to test self-affine scaling. Finally, in Subsec. 2.5.3 we look at the

properties of overhangs on the surface.

2.5.1 Total Interface Roughness

We first explore the total interface roughness, WT (L,∆H), defined as the root mean

squared (rms) variation in the height h(x, y) of all interfacial spins on the external interface.

Note that the height is multivalued and all spins at a given x and y are included in calculating

WT . Fig. 2.15a shows how WT grows as H approaches Hc for different L. The interface

starts as a flat plane with WT = 0 at large ∆H. As ∆H decreases, the interface advances

and roughens. For each L, WT grows as an inverse power of ∆H and then saturates.

Saturation occurs at a larger roughness and smaller ∆H as L increases.

WT is expected to grow at least as rapidly with decreasing ∆H as the height of the

largest avalanches, i.e. ξ⊥. Smaller or larger variations could be observed if successive events

were anticorrelated or correlated on scales of order ξ‖ to spread or concentrate growth.

Assuming there are no such correlations, we predict WT ∼ ∆H−ν⊥ from Eq. (2.2). Fitting

the power-law region in Fig. 2.15a gives ν⊥ = 0.67± 0.02. Given our measured value of ν‖
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Figure 2.15: (a) The rms height variation of the external interface WT as a function of
external field is shown for the values of L indicated in the legend. A dashed line of slope
δ = 0.65 is shown. (b) The same data is shown after scaling the axes with powers of system
size using χ = 0.85 and ν‖ = 0.79.
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this implies χ = 0.85± 0.04 in close agreement with our other results for χ.

The finite-size saturation of WT in Fig. 2.15a can be understood in terms of the scaling

of the maximum height of an avalanche with L. The maximum height of a non-spanning

avalanche is seen in Fig. 2.12 to grow in proportion to Lχ. This would suggest WT will

saturate at a value proportional to Lχ. Close to Hc, fully-spanning avalanches will also

contribute to the structure of the interface. As discussed above, fully-spanning avalanches

have a height that scales as L. However, as seen in Fig. 2.1, the height of a fully-spanning

avalanche is not necessarily correlated with the interface width. If the entire interface is

advanced a fixed distance it does not change the width of the interface. Only the external

topology of a fully-spanning avalanche is relevant. Assuming fully-spanning avalanches do

not alter the scaling with L, we propose the following scaling ansatz for WT :

WT ∼ ξ⊥fW
(
L/ξ‖

)
. (2.17)

where fW (x) is a new scaling function. To satisfy the limiting scaling behavior, fW (x) goes

to a constant for x� 1 and scales as xχ for x� 1.

Fig. 2.15b shows a finite-size scaling collapse of the data in Fig. 2.15a. As before, we

restrict data to ∆H < 10−2 as the lower fields do not represent critical behavior. Good

scaling collapses are obtained for χ = 0.85 ± 0.01 and ν‖ = 0.79 ± 0.02. These values are

consistent with those found above. It is worth noting that WT saturates at ∆H ≈ 10L1/ν‖

for different L. This onset of finite-size saturation in WT occurs at about the same field as

the onset of finite-size effects in 〈S〉 shown in Fig. 2.5b. This is evidence that fully-spanning
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avalanches do not alter the scaling of the total interfacial width as assumed by the ansatz

in Eq. (2.17).

2.5.2 Test of Self-Affine Scaling

The anisotropy in avalanches and the fact that WT grows sublinearly with L are con-

sistent with self-affine scaling. For a self-affine surface, the rms variation in height W over

an ` by ` square in the x− y plane scales as:

W (`,H,L) ∼ `ζ (2.18)

where ζ is the roughness or Hurst exponent.76 For a finite system, one expects the total

roughness to scale as Lζ , implying ζ = χ from the results above. This is inconsistent with

past values of ζ and we now test this scaling.

One complication is that the surface height h(x, y) is not a single-valued function, as

usually assumed for self-affine surfaces. In order to circumvent regions of strong pinning,

the system is capable of lateral growth that produces overhangs in the external interface.

Previous studies have shown that these overhangs have a characteristic size that diverges

as ∆ → ∆c.
54 We focus on ∆ = 1.7 to reduce their size, but found similar behavior for

∆ = 2.1, 2.0, 1.5, and 1.0.

To calculate W , the periodic x − y plane was divided into square cells of edge `. For

each cell, all interfacial sites contained in the projected area were used to calculate the rms

variation in height over the cell. Taking an average over N` cells of size `× ` gives the scale

53



CHAPTER 2. ANISOTROPIC AVALANCHES IN DEPINNING

dependent roughness:

W (`,∆H,L) =
1

N`

∑
i

√
〈(z − 〈z〉)2〉 (2.19)

where the summation is across all N` cells and the angular brackets represent averages

within each cell.2

Figure 2.16a shows how W (`,∆H,L) evolves during growth for L = 12800. The curves

rise more slowly with ` below a lower scale `min. This is associated with the size of the

overhangs mentioned above, which lead to a finite width even for ` = 1. For both single

and multivalued interfaces we find different scaling with ` below `min ∼ 25. For larger `, W

appears to rise as a power law before saturating at a roughness that grows as H approaches

Hc. This asymptotic value corresponds to WT (L,∆H).

Closer inspection shows that the power law rise in W with ` is of limited range and

has a power-law exponent that depends on ` and ∆H. To reveal this, W is multiplied by

`2/3 and replotted in Fig. 2.16b. This would produce horizontal lines if ζ had the mean

field value of 2/3.77 For small ∆H (L1/ν∆H < 10), there may be a factor of 30 over which

the curves are straight and thus follow a power law. However, there is a steady rise in the

slope with ∆H. Fig. 2.16c shows similar scaled plots of W at the critical field for different

L. Once again there is a power law region that grows with L, but no clear saturation in

slope that would indicate an approach to the limiting ζ. For ∆H = 10−6 and L = 12800,

the slope has risen to about 0.75, which is substantially above the mean-field exponent but

well below χ (straight dashed line).

The results in Fig. 2.16 imply either that growing interfaces are still affected by fi-
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Figure 2.16: (a) The rms fluctuation in height W (`,∆H,L) is calculated for a system of
size L = 12800. Values of ∆HL1/ν‖ , rounded to two significant digits, are indicated in the
legend. A dashed line is drawn with a slope of 2/3. (b) The same values of W are divided
by the mean-field power law `2/3. A line is included that would correspond to 0.85. (c) The
variation of W with ` at ∆H = 10−6 for the indicated values of L. Once again W is divided
by the mean-field behavior and the line corresponds to ζ = 0.85.
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nite system size or that the interfaces are not simply self-affine. Some growth processes

produce multi-affine surfaces where different moments of the height variation produce dif-

ferent scaling exponents. To test this we studied the scaling of the mean absolute value

of height changes and the fourth root of the fourth power of height variations. The same

scaling behavior was observed as for the rms height change. We also examined the scaling

of single-valued interfaces corresponding to the highest spin at a given x, y or the average

spin height at each x, y. In Fig. 2.17a, the single valued roughness, Ws, is plotted as a

function of ` and in Fig. 2.17b Ws is divided by `2/3. Similar to past results,54,78,79 we

see the roughness differs slightly at small `. However, the single-valued interfaces show the

same shift in power law with ∆H and L, with similar exponents.

Another possibility is that depinning avalanches erase memory of the initial interface

orientation and that subsequent growth is self-affine relative to the new local orientation. To

test this we used a technique like that used in finding the normal component of avalanches.

For each interface section of size ` × ` normal to the global growth direction the moment

tensor was calculated and the smallest eigenvalue was taken as the height variation. This

approach maximizes the apparent ζ because it reduces the roughness at small ` and has

little effect at large `. In Fig. 2.17c the smallest eigenvalue We is plotted as a function of `

and in Fig. 2.17d it is divided by `2/3. The range of power-law scaling is smaller using this

metric and the exponent showed a similar increase with decreasing ∆H and increasing L.

The largest value of the apparent slope increased only to 0.79 which is still smaller than χ.

The origin of the change in apparent exponent seems to be the variation in roughness at

small ` with increasing L and decreasing ∆H. Growing interfaces often follow the Family-
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Figure 2.17: (a) The rms fluctuation in height Ws(�,ΔH,L) for a single valued interface is
calculated for a system of size L = 12800. Values of ΔHL1/ν‖ , rounded to two significant
digits, are indicated in the legend. A dashed line is drawn with a slope of 2/3. (b) The
same values of Ws are divided by the mean-field power law �2/3. A line is included that
would correspond to 0.85. In (c) and (d), similar curves to (a) and (b) are shown except
the roughness is calculated using the smallest eigenvalue of the multivalued interface We.
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Vicsek relation.80 At each position the roughness grows as `ζ and then saturates. The value

of ` where saturation occurs grows as the interface advances, as does the total roughness.

Fig. 2.16 shows similar behavior with decreasing ∆H with one important difference. The

value of W at points before saturation rises steadily as the interface advances, while Family-

Vicsek scaling assumes that the small ` roughness is unchanged.

Fig. 2.18 shows how the roughness at a fixed ` varies with L close to the critical

point (∆H = 10−6). The previous subsection showed that WT = W (` = L,∆H =

0, L) ∝ Lχ. If W (`,∆H = 0, L) ∝ `χ with no dependence on L, then one would have

W (L, 0, L)/W (`, 0, L) ∝ (L/`)χ and the plots in Fig. 2.16 would be power laws with the

same slope. However, W (`, 0, L) grows with L and this decreases the ratioW (L, 0, L)/W (`, 0, L)

and thus the apparent exponent. If W rose as a power of L, there would be a persistent

difference between ζ and χ. However the linear-log plot in Fig. 2.18 shows that the growth

in W is slower than logarithmic. This supports the conclusion that ζ converges to χ in the

thermodynamic limit and the variation with L in W at small ` is large enough to explain

the apparent difference of ∼ 0.1 for our system sizes.

Finally, we look at how the roughness at a fixed ` and L saturates as ∆H → 0. In Fig.

2.19a, W (` = 25,∆H,L) is plotted as a function of ∆H for different system sizes indicated

in the legend. As ∆H decreases, W is seen to rise before saturating at a distance to the

critical point that decreases with increasing L. At ∆H = 0, it appears that the roughness

approaches an asymptotic limit, defined as Wlim(`), as L→∞. In Fig. 2.19b, the difference

∆W = Wlim(25) −W is plotted as a function of ∆H for Wlim(25) = 9.85. At values of

∆H > 10−2, ∆W appears to decay as a power of decreasing ∆H with an exponent of
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Figure 2.18: (a) The roughness at ` equal to the values indicated in the legend is calculated
as a function of L at a field of ∆H = 10−6. (b) The values of W and L in (a) are normalized
by `χ and ` respectively.
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Figure 2.19: (a) W (� = 25,ΔH,L) as a function ΔH for L indicated in the legend. A hori-
zontal dashed line indicates a value of W = 9.85. (b) Curves of ΔW = 9.85−W (25,ΔH,L)
versus ΔH. A dashed line is drawn with slope 0.21. Inset includes data scaled according to
Eq. 2.20 using ν‖ = 0.79 and σ = 0.21. Only data for ΔH < 10−2 is included in the scaling

collapse.

σ = 0.21±0.07. As L increases, this power law is cut off closer to Hc. Accurately measuring

the value of σ is difficult as any identifiable power law depends on the choice of Wlim(25).

Here Wlim(25) was chosen such that the power-law extends the closest to the critical field

for L = 12800. As before, we can use finite-size scaling theory to construct a scaling ansatz:

ΔW ∼ L−σ/ν‖fΔW (ΔHL−1/ν‖) (2.20)

where fΔW (x) is a new universal scaling function. To match the observed behavior, we

predict fΔW (x) approaches a constant for x � 1 and fΔW (x) ∼ x−σ for x � 1. This

scaling equation is used to collapse the data in the inset of 2.19b. This analysis suggests

one may be able to extract the roughness in the limit of infinite system size on a length

scale � and may help identify ζ.

In Fig. 2.20a, Eq. 2.20 is used to scale curves of ΔW for � = 12−400. Here the value of σ
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Figure 2.20: (a) Scaled data such as that seen in the inset of Fig. 2.19 for values of �
indicated by shape and L indicated by color in the legend. Scaling collapses are based on
Eq. 2.20 using values ν‖ = 0.79 and σ = 0.21. Only data for ΔH < 10−2 and � < L is
included in the scaling collapse. In (b), values of Wlim(�) used for the collapse in (a) are
plotted as a function of �. Dashed lines are drawn with slopes 0.67, 0.79, and 0.85.

is assumed to be fixed to 0.21, while different values of Wlim were used for each collapse. No

systematic method was employed to fit the value of Wlim so one anticipates significant error.

Data from larger systems sizes would greatly improve estimates. The values of Wlim used

are plotted as a function of � in Fig. 2.20b. These values represent a theoretical roughness

at the critical point for an infinitely large system, W (�,ΔH = 0, L = ∞). From the data

in Fig. 2.20b, one cannot determine whether there is an obvious power law Wlim ∼ �ζ but

estimates are consistent with ζ � 0.79. The larger values of � are the most important but

also have the most error.

It is interesting to compare our results to previous studies. Past simulations for the

RFIM30,54 were consistent with ζ = 0.67 ± 0.3, but used L ≤ 768 and only saw scaling to

about � = 300. Our results for comparable L give similar apparent slopes, but data for

larger L reveal that this slope is not the limiting value. Studies of models with explicitly

broken symmetry and single valued interfaces have found ζ = 0.753 ± 0.002 using systems
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with L ≤ 400.58 It is possible that breaking symmetry leads to a reduction in ζ, but it would

be interesting to verify this with larger simulations. Indeed epsilon expansion calculations

for single-valued models yielded ζ = 0.67 and 0.86 at first and second order, and estimated

a converged value of 0.82 ± 0.1.57 It is interesting that the last prediction is close to the

value of χ found here.

2.5.3 Overhangs

In the previous subsection, we found that the interface continues to roughen on length

scales ` < ξ‖ as H increases, complicating measurement of the roughness exponent. This

subsection quantifies the contribution of overhangs to the roughness as systems approach

the critical point and shows that they become irrelevant as L→∞.

To identify multivalued locations on the interface, we first find the minimum and max-

imum height of the interface at each (x, y), hmin(x, y) and hmax(x, y), respectively. The

interface is multivalued wherever the difference dh(x, y) ≡ hmax(x, y)−hmin(x, y) is nonzero.

Looking at Fig. 2.1 one sees that dh(x, y) can be nonzero where there is a vertical

cliff or a true overhang with unflipped spins below. If N(x, y) is the number of interface

spins at (x, y), then there will be a cliff with no overhangs where N(x, y) = dh(x, y) + 1.

The total number of unflipped spins that are part of one or more overhangs at (x, y) is

∆z(x, y) = dh(x, y)−N(x, y) + 1. The fraction of the projected interface that contains an

overhang, FO, is just the fraction of (x, y) where ∆z is nonzero.

Figure 2.21 shows how FO evolves with ∆H and L. Initially, the interface is flat and
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Figure 2.21: The percentage of the projected area for which there are overhangs on the
interface is calculated as a function of distance from the critical field at the L indicated in
the legend. A horizontal dashed line indicates 0.124. Inset: the data in the main panel is
collapsed using a similar finite-size scaling ansatz to Eq. (2.11) where ∆FO = 0.124 − FO

and ψ = 0.3. A dashed line with slope 0.3 is overlaid on the data.

FO is zero for all L. As the system approaches the critical point, FO grows for all L before

saturating at a field ∆H that decreases with increasing L. The saturating percentage

rises more slowly than logarithmically with L and appears to approach an asymptotic limit

between 12 and 13% as L → ∞. Assuming that the difference ∆FO from the asymptotic

value decays as ∆H−ψ
′

one can derive a scaling relation analogous to Eq. (2.11). As shown

in the inset of Fig. 2.21, the data can be collapsed fairly well with ψ′ = 0.3 ± 0.05 and a

limiting fraction of 0.124± 0.005. Note that the fraction of the surface where cliffs occur is

roughly twice FO, and that both fractions increase as ∆ rises towards ∆c.

The above analysis shows a significant portion of the interface consists of overhangs and

suggests that they could impact the scaling of interface roughness. However, the average
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Figure 2.22: The average overhang height is calculated at different values of the external
fields for the indicated L. A line of logarithmic growth is included for comparison.

of the total height in overhangs at a given position, 〈∆z〉 grows slowly. As seen in Fig.

2.22, 〈∆z〉 appears to diverge logarithmically as H → Hc before saturating at a value that

increases roughly logarithmically with L. Ref. 54 found a similar slow growth in dh, which

is always greater than ∆z. Because of the slow growth, the ratios 〈∆z〉/Lχ and 〈dh〉/Lχ go

to zero as L→∞ and H → Hc when ∆ < ∆c.

Next we consider the probability distribution of individual values of ∆z, P (∆z). In

Fig. 2.23, P (∆z) is plotted as a function of ∆z for the indicated values of ∆HL1/ν‖ and

L = 12800. As H → Hc, the distribution decays more slowly and larger overhangs are

identified. It is possible that one may be able to extract a length scale λ describing this

rate of decay although it is not obvious there is a domain of pure exponential decay. Using

a least mean squares regression over the range of P (∆Z) = 10−4 to 10−5, we extracted the
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Figure 2.23: The distribution P (Δz) as a function of Δz for the indicated ΔHL1/ν‖ for
L = 12800. The data is sampled at ΔH = 10−6. WT (L) is approximated as 0.13Lχ for
χ = 0.85. Dashed lines indicate decay lengths of 1/λ. Inset shows values of λ versus
ΔHL1/ν‖ with a dashed line representing a power law with exponent −0.4.

values of λ plotted in the inset of Fig. 2.23 as a function of ΔHL1/ν‖ . We find λ possibly

grows as a power law with exponent 0.4 with decreasing ΔHL1/ν‖ before saturating at the

onset of finite-size effects. This is an interesting exercise but it is unclear whether this

accurately represents the divergence of a length scale governing the height of overhangs. It

would be useful to further study this result with larger systems.

Alternatively, we also find the distribution is well approximated by a stretched expo-

nential with an exponent near 0.5 as shown in Fig. 2.24. Log-linear plots of P (Δz) versus

Δz1/2 in Fig. 2.24 at ΔH = 10−6 follow straight lines until the statistical errors become

too large. To reveal the scaling of overhangs with L, Δz1/2 is normalized by a fit to WT (L)

from Fig. 2.15, WT (L) ≈ 0.13Lχ with χ = 0.85. Because successive lines in Fig. 2.24 shift
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Figure 2.24: The distribution P (∆z) as a function of (∆z/WT (L))0.5 for the indicated L.
The data is sampled at ∆H = 10−6. WT (L) is approximated as 0.13Lχ for χ = 0.85.

to the left with increasing L, overhangs shrink relative to the total rms interface roughness

WT (L) as L increases. The distribution of fluctuations in the width of the interface from

the mean is roughly Gaussian, suggesting the largest overhangs are comparable to the max-

imum local fluctuations in the height for small L. In comparison, at large L the largest

overhangs are only a fraction of the rms roughness and much less than the maximum fluc-

tuations in height. We therefore conclude that overhangs can lead to significant finite-size

effects in small systems but are an irrelevant contribution to the surface morphology in the

thermodynamic limit.

Overhangs are not isolated features and one expects there to be lateral correlations.

To account for lateral structure, we clustered adjacent (x, y) locations where ∆z > 0 into

aggregated overhangs and calculated the total volume V of each aggregated overhang. The
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volume is simply defined as the sum of all the clustered values of ∆z. The probability

distribution of V decays as a power of V with an exponent consistent with τO ∼ 1.87±0.05

as seen in Fig. 2.25. This power law extends to an upper cutoff Vmax that increases as

H → Hc. Assuming Vmax ∼ ∆H−η with η a new exponent, we propose the following

scaling ansatz

P (V ) ∼ ∆HητOgO(V∆Hη) (2.21)

where gO(x) is a universal scaling function which scales as x−τO for x � 1 and rapidly

decays to zero for x � 1. This relation will only hold before the onset of finite-size effects

at ∆HL1/ν‖ ≈ 10. Using this relation, the data in Fig. 2.25 is collapsed in the inset. Based

on the sensitivity of the collapse, we estimate η ∼ 1.3 ± 0.1 and τO ∼ 1.87 ± 0.05. The

relation of these exponents to others is currently unknown.

As the exponent τO < 2, the arguments used in Subsec. 2.3.2 imply that the volume of

the largest overhangs will dominate the average volume. Fig. 2.25 implies that the maxi-

mum volume diverges as H → Hc, so the characteristic volume of an aggregated overhang

will also diverge. However, this divergence is considerably slower than the divergence of

the volume of the largest avalanche which scales as ∆H−ν‖α ∼ ∆H−2.25. Thus as with

other results in this subsection, the nontrivial scaling of overhangs may lead to interesting

finite-size effects but becomes irrelevant at the critical field in infinite systems.
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Figure 2.25: The probability distribution of the volume V of aggregated overhangs is cal-
culated at values of ∆HL1/ν‖ indicated in the legend for L = 12800. Note that ∆H < 0.01
for all curves. A dashed line indicates a power law of exponent 1.87. Inset: the data in the
primary panel is collapsed using eq. (2.21) and values of η = 1.3 and τO = 1.87.

2.6 Varying the Strength of the Disorder

In this final section, we briefly look at varying the strength of the disorder ∆. As

noted above, previous work has identified a critical value of the disorder ∆c ≈ 2.5.54 This

multicritical point separates a self-similar regime (∆ > ∆c) from the self-affine regime

studied here (∆ < ∆c).

In the self-similar regime one expects isotropic growth. As interactions are relatively

less important than the random field, growth does not depend heavily on local orientation

but rather percolates through random regions where the noise promotes growth. Therefore,

avalanches are expected to be isotropic. To confirm this theory, avalanches were grown in

systems of ∆ = 3.5 for a variety of system sizes. A critical field of Hc ≈ 1.3637 was roughly
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Figure 2.26: (a) Mean values of `⊥ as a function of `‖ for ∆ = 3.5 > ∆c and for the system
sizes indicated in the legend. The dashed line has a slope of unity. (b) Data for different L
with `‖ > 1 are collapsed by scaling both axes by L.

identified by studying the divergence in the total volume invaded. Using a value of ν = 0.88

from Koiller and Robbins,54 non-percolating avalanches that nucleated close to the critical

point, (Hc −H) < 20L−1/ν , were identified. As in Sec. 2.4, the eigenvalues of the second

moment tensor were used to define `‖ and `⊥. One can no longer necessarily associate these

metrics with a width and height of an avalanche as there is no reason to assume avalanches

will have a particular orientation. Instead, these metrics are best understood as the smallest

and largest dimensions of an avalanche.

In Fig. 2.26a the average value of `⊥ is calculated for logarithmically spaced bins of `‖

for systems of a given L. Similar to Fig. 2.10a, the average value of `⊥ scales as a power of

`‖ for `‖ > 1 before saturating due to finite-size effects. Direct measurement of the power

law is consistent with an exponent of unity, implying avalanches scale isotropically. Scaling

both `⊥ and `‖ by L for `‖ > 1, one finds the curves collapse as seen in Fig. 2.26b. This

confirms expectations that avalanches are isotropic in the self-similar regime.

Next, we test whether the scaling of the total interfacial width, WT , depends on ∆.
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Figure 2.27: Plots of the total interface roughness as a function of ΔH for different Δ are
collapsed according to the finite-size scaling relation in Eq. (2.17). (a) Results for Δ < Δc

collapse with χ = 0.85 and ν‖ = 0.79. (b) Results for the self-similar regime, Δ > Δc,
collapse with χ = 1 and ν = 0.84. Results for the critical point, Δ = 2.5, do not collapse in
either panel.

Data was run for values of Δ = 1.0, 1.5, 2, 2.5, 3, and 3.5 and values of Hc = 1.4066, 1.4517,

1.4831, 1.5101, 1.4773, and 1.3637 were used, respectively. As above, these values of Hc

were approximately identified by observing at what field the volume invaded diverges as a

function of L. In Fig. 2.27a, curves of WT as a function of ΔH = Hc −H for the indicated

values of Δ ≤ Δc and L are scaled according to Eq. (2.17) using values of χ = 0.85 and

ν‖ = 0.79. For Δ < Δc, all curves are seen to collapse indicating χ = 0.85. In contrast,

data for Δ = 2.5 does not collapse.

In contrast, equivalent curves for Δ ≥ Δc are collapsed in Fig. 2.27b using χ = 1 and

ν = 0.84. Again, curves for Δ = 2.5 do not collapse suggesting this data is very close to the

multicritical point. This is further evidence that correlations are isotropic in the self-similar

regime.
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Values Prior RFIM QEW Predictions

ν‖ 0.79(2) 0.75(5)30 0.80(5)81 0.7757

0.77(4)70

0.75(2)54

ν⊥ 0.67(2)
α 2.84(2)
τ 1.280(5) 1.28(5)30 1.30(2)59

1.25(2)60

τ‖ 1.79(1)

τ⊥ 1.94(2)
φ 1.64(4) 1.71(11)30

ζ ≥ 0.75 0.67(2)30 0.75(2)81 0.8657

2/354 0.753(2)58

χ 0.85(1) 0.8657

Table 2.1: Summary of critical exponents found here for the RFIM and prior results for the
RFIM and QEW equation with corresponding references. Prior studies of the RFIM were
consistent with ν⊥ = ν‖ and χ = 1. Predicted exponents are from two-loop renormalization
group calculations. Numbers in parentheses give uncertainties in the last significant digit.
Scaling relations involving these exponents are found in equations (2.7), (2.14), (2.15),
(2.16).

2.7 Summary of Depinning

Finite-size scaling studies of systems with linear dimensions from 100 to 12800 spins

were used to determine critical behavior at the onset of domain wall motion in the 3D

RFIM. Most interface growth models force the interface to be a single-valued function and

fix the mean direction of growth. In contrast, an interface in the RFIM can move in any

direction and the driving force is always perpendicular to the local surface. Nonetheless, the

interface breaks symmetry and locks in to a specific growth direction when the rms random

field is small enough, ∆ < ∆c ≈ 2.5. Results are presented for ∆ = 1.7, but similar scaling

was observed for ∆ = 1.0, 1.5, 2, and 2.1. Critical exponents are summarized in Table 2.1.
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At the critical driving field in an infinite system there is a transition from motion

through unstable jumps between stable states to steady motion at a nonzero velocity. In a

finite system the transition occurs over a finite range of fields. Near Hc there is a growing

probability that avalanches may span the system and even advance the entire system (fully

spanning avalanches). Finite-size scaling of the fraction of volume invaded by spanning and

fully spanning avalanches was used to determine Hc and the in-plane correlation length

exponent ν‖ (Fig. 2.3). Past studies used either the fraction of sites invaded in a cubic

system30 or the probability of spanning a cubic system.54 This overestimates Hc because

growth is anisotropic and the typical height of the interface at Hc is only of order Lχ. The

correlation length exponent is also affected.

As H approaches Hc from below, the mean volume of avalanches grows as 〈S〉 ∼ ∆H−φ

until it saturates due to the finite system size. The value of φ and an independent measure

of ν‖ are obtained by scaling results for different L (Fig. 2.5 and Eq. (2.5)). At Hc the

probability distribution of S decreases as S−τ up to a maximum size that scales as Lα (Fig.

2.6). The values of α and τ were determined by scaling the distributions for different L.

Independently determined exponents agreed with the scaling relation given in Eq. (2.7).

The mean height and width of avalanches and their distributions must obey analogous

scaling relations. Finite-size scaling collapses in Subsec. 2.4.1 test these relations and

reveal a clear anisotropy in growth (Fig. 2.10). The height of avalanches `⊥ diverges with a

different exponent ν⊥ near Hc and the height and width of individual avalanches are related

by `⊥ ∼ `χ‖ with χ = ν⊥/ν‖ (Fig. 2.12). The divergence of the mean height of the interface

is consistent with the growth in the size of the largest avalanche: ν⊥ = 1− φ (Eq. (2.16)).
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Table 2.1 contrasts results obtained here with past studies of the RFIM and related

models. Refs. 30 and 54 assumed χ = 1. This leads to a reduced set of scaling relations

that were consistent with their exponents. Note that their values of ν‖, τ , and φ are

consistent with our results but have much larger error bars because of the smaller system

sizes available. Slightly larger systems in Ref. 64 gave an indication that χ was less than

unity, but could not rule out χ = 1.

The largest difference from past work on the RFIM is the value of ζ. These references

considered the scaling of roughness with ` at a given L and found results were consistent

with the mean field value of 2/3.30,54 As seen in Subsec. 2.5.2, this measure is strongly

affected by system size. The slope on log-log plots rises continuously as H goes to Hc and

L increases. Results for L ∼ 1000 are consistent with ζ ≈ 2/3, but values up to 0.75 are

observed for L = 12800 (Fig. 2.16). These changes appear to be related to overhangs

that lead to growing roughness at small scales as L increases. The results in Subsec. 2.5.3

support the conclusion that these changes become irrelevant at the critical point. We find

that the total rms roughness is not significantly affected by overhangs and scales as Lχ with

χ = 0.85± 0.02 for all L ≥ 100 (Fig. 2.15).

Table 2.1 also includes results for the evolution of single valued interfaces governed by

the QEW Equation. Estimates of the avalanche distribution exponent τ are consistent with

the value measured in Subsec. 2.3.3 for the RFIM.59,60 The roughness exponent ζ found

in the QEW equation is consistent with our lower bound for ζ although it is distinct from

χ.58 Interestingly, results from two-loop functional renormalization group analysis indicate

ζ = 0.86.57 This prediction of ζ is even closer to the exponent χ identified in this chapter.
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Finally, scaling relation results from simulations81 of ν‖ = 0.80 ± 0.05 and the two-loop

renormalization group result57 of ν‖ = 0.77 cannot be distinguished from our measurement

of ν‖ for the RFIM.

Comparing numerically measured exponents for the RFIM and QEW equation, one

cannot conclusively determine whether they are distinct. However, our measure of ζ is a

lower bound which we anticipate will approach χ = 0.85 with increasing L, while simulations

of the QEW give the smaller value of ζ = 0.75.81 This difference suggests the RFIM

resides in a different universality class than the QEW equation. Furthermore, although

the morphology of overhangs becomes irrelevant in the thermodynamic limit, the ability

of a fully d dimensional interface to grow laterally is still important and fundamentally

changes the system’s response to extreme pinning sites. We find over 10% of the projected

area consists of overhangs indicating lateral growth is an important mechanism in the

propagation of RFIM domain walls.

The anisotropy of individual avalanches has not yet been measured in the d = 2+1 QEW

equation, however Rosso et al.59 measured the maximum size of avalanches in d = 1 + 1

and found it scales as ξ1+ζ . The anisotropy of avalanches has also been directly studied

in single-valued models of directed percolation depinning (DPD) in d = 2 + 1, producing

results consistent with χ = ν⊥/ν‖ = ζ where ζ = 0.58± 0.03.82 It is interesting that χ = ζ

in DPD although it is important to note that DPD resides in a distinct universality class

described by the quenched Kardar-Parisi-Zhang equation.55,56

The studies presented here show that finite-size effects remain important until very
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large system sizes and small ∆H. Given recent conclusions about the importance of rare

events in the QEW model,61 it would be interesting to extend past QEW studies to the

much larger sizes studied here. Further studies on the RFIM and QEW models are also

needed to clarify the relation between χ and ζ. This work clearly identifies an anisotropy

exponent χ = 0.85 in several independent measures that have not been applied to the QEW.

While the roughness exponent measured for individual interfaces approaches χ, it remains

significantly below χ even for L = 12600. An important topic for future work will be to

confirm that ζ approaches χ as predicted by current scaling theories or show that ζ remains

distinct from χ and new theories are needed.
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Chapter 3

Yielding

3.1 Introduction to Yielding

Yield stress materials, or Bingham plastics, are materials that do not flow unless a

critical yield stress σc is exceeded. This type of behavior has been identified in a wide

variety of disordered solids including foams, emulsions, colloids, granular media, and bulk

metallic glasses.83 The transition from a jammed state to an unjammed state at σc is known

as the yielding transition40 and is a particular type of jamming transition.84

The behavior of yield stress materials at this critical point is remarkably similar to

that of the depinning interfaces discussed in the previous chapter. As σ is quasistatically

increased towards σc, the system experiences local plastic rearrangements or avalanches.

The maximum size of an avalanche diverges as σ → σc. This divergence in avalanche size

corresponds to a diverging correlation length that represents the maximum length scale of
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cooperative motion in avalanches, ξ ∼ (σ− σc)−ν where ν is a critical exponent. Above σc,

the system will flow with an average strain rate ε̇ that scales as ε̇ ∼ (σ − σc)β where β is a

critical exponent commonly known as the Herschel-Bulkley exponent.85 Close to σc, there

are large fluctuations in flow caused by localized avalanches. As σ continues to increase,

these fluctuations decrease.

In the thermodynamic limit, the yielding transition corresponds to an infinitely small

strain rate. In a finite system, which is typically studied due to experimental or computa-

tional constraints, the transition from jamming below σc to flowing above σc is broadened

over a range of stresses. Therefore, the yielding transition is often studied using constant

strain rate as opposed to constant values of the stress. Experiments on bulk metallic

glasses86,87 as well as molecular dynamic simulations38,39 at quasistatic strain rates have

identified a power-law distribution of the magnitude of avalanches. The size of the largest

avalanche has been found to diverge with increasing system size.38,39 The measured ex-

ponents are inconsistent with those found in depinning, implying that yielding is in a dif-

ferent universality class. Coarse grained mesoscopic models have also seen similar scaling

of avalanches75,88–90 although it is not clear whether these models accurately represent the

universality class of a continuous system.

Some researchers have argued that yielding is in the same universality class as depin-

ning, but simulations have shown the critical exponents are different.38–40 The biggest

discrepancy is in the rate of avalanche nucleation, which scales extensively for depinning

and subextensively for yielding.38,39 Lin and Wyart have argued that the yielding transition

is distinct from the depinning transition due to the nature of interactions between regions
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of the systems.40 In depinning, interactions always have the same sign. If one region of

the interface advances it pulls all nearby regions with it. In contrast, in a sheared solid,

the activation of a shear transformation zone, the fundamental unit of rearrangement in

a disordered solid,91 produces a multipolar stress field.92 This implies that as one region

of the solid relaxes it may stabilize or destabilize neighboring regions depending on their

relative position.

In this work we study the limit of finite strain rates (FSR) using molecular dynamics

simulations of 2D and 3D disordered solids containing up to 7 × 106 particles. We use

finite-size scaling techniques to accurately measure several critical exponents for the first

time in 2D and 3D including ν and β as well as the dynamical exponent z which relates

the duration of an avalanche to its size. We also propose new scaling relations that provide

bounds on β/ν using measures of quiescence in the system. Finally we describe and test a

theory for the scaling of temporal correlations with strain rate.

In Sec. 3.2 we describe the simulation methods and initial system preparation. Typical

behavior in steady state flow at a constant strain rate is then presented in Sec. 3.3. In Sec.

3.4 the average flow stress is collapsed using a finite-size scaling ansatz providing accurate

measurements of σc, ν, and β. The fluctuations in stress are then addressed in Sec. 3.5,

followed by a discussion of the emergence of quiescence and the implied bound on β/ν in

Sec. 3.6. We next identify the scaling of temporal correlations in avalanches by analyzing

the power spectra of the kinetic energy versus time in Sec. 3.7 and finite-size effects in Sec.

3.8. In Sec. 3.9 we look at particle transport, identifying a novel dependence on system

geometry in 2D. A further brief look at the impact of deformation geometry is given in Sec.
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3.10. Finally, in Sec. 3.11, we provide a summary of results in this chapter, compare to

results in other works, and propose open questions for future research.

3.2 Methods

We simulate pure shear of two and three dimensional disordered packings using molec-

ular dynamics. The systems are bi-disperse and are similar to models used in other work

studying the yielding transition.38,39,93–95 The two types of disks or spheres are labeled A

and B and have the same mass m. Particles of type i and j interact through an attractive

Lennard-Jones (LJ) potential: Uij(r) = 4uij
(
(aij/r)

12 − (aij/r)
6
)
, where aij and uij are

the diameter and interaction strength, respectively. To limit the range of interactions, the

potential is smoothly interpolated to zero at rc = 1.5aij . This is accomplished using a

fourth order polynomial function that starts at a distance of 1.2aij .

Particles of type A and B have radii 0.5a and 0.3a, respectively, where a is taken as the

unit of length. The radii are additive, so the effective diameters are aAA = a, aAB = 0.8a

and aBB = 0.6a. The self-interaction strengths are uAA = uBB = u, where u is taken as the

fundamental unit of energy. We have considered two values of the cross interaction, uAB = u

and 2u. Increasing the strength of the cross interaction encourages the system to mix so

we refer to the two choices as the neutral and mixing models, respectively. The values of

aij are chosen to help ensure that the system remains disordered as it is sheared by adding

geometrical frustration.93,96 While bidispersity increases the energy barrier to nucleate and

grow crystalline domains,97 the ground state of the neutral model is still a phase separated,
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crystalline state and segregation was observed in 2D simulations. In contrast, the ground

state of the mixing model is expected to be a mixed configuration due to energetically

favorable cross interactions. No evidence of segregation or crystallization was observed in

our simulations and, unless noted, results presented below are for the mixing model.

A unit of time can be defined as t0 =
√
a2m/u. All quantities in the following text are

presented in units of a, u, t0 or appropriate combinations. For example strain rates are in

units of t−1
0 and stress is in units of u/ad, where d is the spatial dimension.

Simulations were run in LAMMPS using the velocity-Verlet algorithm with a timestep

of ∆t = 0.005.98 The focus here is on critical behavior of athermal, overdamped systems.

Thus a Langevin damping force was applied to all particles: ~Fdamp = −Γm~vna, where ~vna is

the non-affine component of the velocity that reflects deviations from the local environment.

No Langevin noise term is added since the effective temperature is zero. Unless noted, Γ = 2,

which is well within the overdamped regime.38,39

Initial particle configurations were prepared in a manner similar to that used in prior

papers.93,94 Particles were randomly placed in a square or cubic box of side length L with

periodic boundary conditions and initial density ρi. The number of particles of type NA

and NB had a fixed ratio of NA/NB = (1 +
√

5)/4. A cosine potential was then applied

between particles to separate overlapping particles for a time of about 25. This potential

was then replaced with the LJ potential and the system was expanded to the desired final

density ρ over another time interval of 25. Simulations in 3D used ρi = 1.8 and ρ = 1.7 and

the final cubic box length ranged from L = 20 to 162. Simulations in 2D used ρi = 1.6 and
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ρ = 1.4, and the final square box had L = 55 to 1753.

Systems were deformed under pure shear by applying an affine transformation to par-

ticle positions at a constant uniaxial strain rate ε̇. The components of the stress tensor σαβ

were calculated from the virial and kinetic energy.99

Initial simulations used conventional periodic cells with fixed orientation. The x dimen-

sion of the periodic cell, Lx, was expanded at strain rate ε̇ ≡ 1
Lx

dLx
dt , while the remaining

dimensions were contracted to preserve area or volume. In 2d, y was contracted at ε̇, while

for 3D, y and z were contracted at ε̇/2. This contraction limits the maximum strain that

can be applied because Ly eventually becomes comparable to the range of interactions.

To access larger strains we imposed the same pure strain deformation using Kraynik-

Reinelt (KR) boundary conditions in 2D100 and generalized KR boundary conditions in

3D.101 These methods deform the box shape and change the choice of periodic lattice

vectors in a sequence of steps that prevents any cell dimension from becoming too small.

Our implementation of these boundary conditions was heavily based on the source code of

Nicholson and Rutledge.102 Modifications were made to apply the strain through an affine

shift in particle positions as opposed to using the SLLOD equations of motion.103

Fig. 3.1 illustrates the evolution of shear stress σ ≡ (2σxx − σyy − σzz)/4 and pressure

p ≡ −(σxx + σyy + σzz)/3 with strain for the neutral and mixing potential. This data is for

3D systems with L = 80 and ε̇ = 2×10−4, but similar results are seen for other systems and

in prior work.38,39 For both potentials, there is a peak in σ at about 7% that indicates yield.

This initial yield stress is known to depend on the preparation of the initial state.104–106
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ε

Figure 3.1: The shear stress (red/yellow lines) and the pressure (blue/green lines) are
plotted as a function of strain for the models indicated in the legend. Dashed lines indicate
the neutral potential while solid lines indicate the mixing potential. Data is collected from
a system of size L = 80 at a rate of ε̇ = 2× 10−4.

From Fig. 3.1 we see that the shear stress shows a clear evolution with strain up to

ε ∼ 0.25 to 0.5, while the pressure continues to evolve until strains of 1 or more. Studies of

the radial distribution functions show that the structure evolves during this initial period.

The number of AB neighbors increases for mixing interactions and decreases for the neutral

potential, leading to segregated regions in 2D.

Our goal is to study critical behavior after the system has reached steady state so the

data below uses the KR approach. To ensure data are only collected after all memory of the

initial preparation has been erased, systems were first sheared over a strain of 20 at a high

rate, ε̇ = 10−3 and 2 × 10−3 in 2D and 3D, respectively. The strain rate was then slowly

incremented downward, straining at each lower rate until a new steady state was reached.
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The strain to reach steady state after each change in rate decreased with decreasing rate,

and saturated when finite-size effects were evident. We checked that simulations starting

from lower rates and higher rates gave the same results.

The applied strain rate ε̇ varied between 10−3 and 10−7 in 2D and 2×10−3 and 2×10−7 in

3D. During deformation we evaluated the shear stress, pressure, kinetic energy per particle

K, and diffusive motion of particles relative to the affine deformation, 〈|∆~r|2〉. Energy

introduced through shear is dissipated by the Langevin damping described above.

3.3 Time Dependence of Stress and Kinetic Energy

Figure 3.2(a) shows the variation of shear stress with strain in steady-state shear at

the indicated strain rates. The system is 3D with L = 40, but similar trends are seen

for all systems. We first discuss behavior in the quasistatic (QS) limit, illustrated by the

results for ε̇ = 2×10−7. The stress rises linearly as elastic energy is stored in the system and

then drops when the system becomes mechanically unstable, causing an avalanche of plastic

rearrangement. During each avalanche, stored elastic energy is converted into kinetic energy

as shown in Fig. 3.2(b). Since we are in the overdamped limit, K follows the rate of energy

dissipation through plastic deformation. In between avalanches there is a small background

level that grows with rate. During each avalanche, K rises as plastic deformation spreads

and then decays as the rate of plasticity drops back towards zero. In the QS limit, K

reaches the background level before the next instability is triggered. The integral of K

over the duration of an avalanche corresponds to the energy per particle dissipated and is
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proportional to the drop in stress ∆σ. In general there is a correspondence between K and

dσ/dt that is verified in Sec. 3.7.

The QS curves in Fig. 3.2 show a broad distribution in the magnitude of the stress drop

∆σ and kinetic energy released. Many avalanches produce drops in stress, ∆σ, that are

hard to see because the percentage change is small. The plot of K shows an expanded view

of the first 10% of the strain in Fig. 3.2(a). The peak energy varies by more than 6 orders

of magnitude for the avalanches shown and the integrated energy dissipated varies even

more. Past studies of this system examined the critical scaling in the limit of low rates.38,39

Since σ is intensive, the total released energy scales as S ≡ Ld∆σ where d is the spatial

dimension. There is a power-law distribution of S, P (S) ∝ S−τ , in the thermodynamic

limit. In a finite system the maximum avalanche size Smax ∼ Lα where α = 0.9± 0.05 and

1.1 ± 0.1 in 2D and 3D, respectively.38,39 As L → ∞ the QS stress approaches a critical

value σc and the fluctuations in stress vanish as discussed in the next subsection.

3.4 Scaling of Steady State Flow Stress

In the limit of infinite system size, the system will be jammed (ε̇ = 0) if a constant

stress less than σc is applied. At σ > σc, the system will flow at a finite rate that grows

with the distance to the critical stress:

ε̇ ∼ (σ − σc)β , (3.1)
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Figure 3.2: Example traces of shear stress (a) and average kinetic energy (b) as a function
of strain for a 3D system of size L = 40 in steady state. The system was strained at the
rates indicated in the legend of (a). Note that the range of strains in (b) is smaller to reveal
all avalanches. Small avalanches produce stress drops smaller than the line width in (a).
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where β is a critical exponent. This relation is commonly known as the Herschel-Bulkley

law85 and at stresses sufficiently close to σc one expects to see critical behavior and a unique

value of β for a wide class of materials that all reside in the same universality class.

Our simulations are at constant strain rate, but Eq. 3.1 still applies in the thermody-

namic limit. As expected, Figure 3.2 shows an increase in the mean stress with increasing

shear rate. There is also an important change in the form of the curves. Both the stress

and kinetic energy become smoother with increasing rate. Each avalanche takes time to

evolve. As the strain rate increases, new mechanical instabilities are nucleated before large

avalanches finish. In Fig. 3.2, increasing ε̇ from 2 × 10−7 to 2 × 10−6 reduces the maxi-

mum size of stress drops and K does not decrease much between some stress drops. By

ε̇ = 2× 10−5, the stress shows undulations rather than sharp drops and one can no longer

distinguish individual avalanches or quiescent periods between avalanches in the kinetic

energy.

The changes in Fig. 3.2 can be related to a characteristic correlation length ξ that

diverges as σ approaches the critical stress:

ξ ∼ |σ − σc|−ν , (3.2)

where ν is a second critical exponent. Combining this expression with Eq. 3.1 yields:

ξ ∼ ε̇−ν/β . (3.3)
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This length scale represents the maximum spatial range over which particles cooperatively

rearrange during an avalanche. A finite system will be in the QS limit when ξ > L, so that

avalanche size is only limited by the finite system dimensions. The system will move to

the finite strain rate (FSR) limit when the rate is large enough that ξ < L, and rate limits

avalanche size. In Fig. 3.2, this transition occurs somewhere between ε̇ = 2 × 10−6 and

2 × 10−5. From Eq. (3.3) the transition rate should scale as L−β/ν and scaling results for

different L will allow β/ν to be determined.

Fig. 3.3 shows the variation of shear stress with rate for the indicated system sizes in

2D and 3D. Each point represents an average over ensembles as well as a strain interval in

steady-state. Data are only presented up to ε̇ = 10−3 in 2D and 2 × 10−3 in 3D because

higher rates showed large deviations from critical scaling as discussed in Sec. 3.7. Systems

with L > ξ are expected to exhibit the same stress. At high rates, the correlation length

is small and results for all but the smallest L in 3D have converged onto a common curve

by ε̇ = 10−3. As the strain rate decreases, the correlation length grows until it reaches the

size of the next largest system, L = 40. This system then transitions to the QS regime, and

finite-size effects cause a deviation from the critical stress curve. The inset of Fig. 3.3(b)

shows how results for each L deviate from those for larger L as ε̇ decreases. Note that for

each L there is a limiting yield stress, σ(0, L), as ε̇ → 0. As L increases, σ(0, L) increases

towards the critical yield stress σc.

The Herschel-Bulkley law in Eq. 3.1 applies to infinite systems. Therefore, we first

focus on data taken from systems that have not yet developed finite-size effects because

ξ < L. For this subset of the data, 〈σ〉 does not depend on L and thus is representative of
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Figure 3.3: The average shear stress as a function of strain rate for systems of size L
indicated in the legends for (a) 2D and (b) 3D. The insets in each panel show a zoomed
view of low rate data. The horizontal dashed lines indicate σc = 1.1895 in 2D and 1.2500
in 3D.
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an infinite system. To reveal the power-law scaling, we plot σ against ε̇1/β for the value of β

that produces the best straight line. As shown in Fig. 3.4, the best fit gives β = 1.76±0.05

in 2D and 1.50 ± 0.05 in 3D. The errorbars represent an estimate of the range where the

available data is consistent with power-law scaling. Using a least mean squares linear

regression, we can then identify an intercept of σc = 1.1899 ± 0.0005 and 1.2498 ± 0.0005

for 2D and 3D, respectively. These error bars are roughly estimated by accounting for the

standard error of the fitted parameter, uncertainty in β, and uncertainty in what data is

included in the fit. This estimate of σc is refined in later plots yielding best estimates of

1.1895 in 2D and 1.2500 in 3D.

The emergence of finite-size effects in Fig. 3.3 provides information on the rate de-

pendence of ξ that can be extracted using finite-size scaling techniques. As is typical in

finite-size scaling theory, we assume that the only relevant length scales in the system are

L and ξ. Then the shear stress will only depend on the dimensionless scaling variable

L/ξ ∝ Lε̇ν/β and L. The resulting scaling ansatz can be written as:

〈σ〉 − σc ∼ L−1/νg(ε̇Lβ/ν) (3.4)

where g(x) is a universal scaling function. For large ε̇Lβ/ν finite-size effects are unimportant

and the critical scaling is recovered if g(x) ∼ x1/β for x� 1. For small x, g must approach

a constant that represents the shift of σ(0, L) from σc.

Equation 3.4 implies that results for all L should collapse if (〈σ〉 − σc)L1/ν is plotted

against ε̇Lβ/ν . Figure 3.5 shows collapses for both 2D and 3D data. Plots for different
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Figure3.4:Stressplottedagainststrainratetoapowerof1/βchosentogivethelinear
scalingexpectedfromEq.3.1.(a)2DdatafortheindicatedLwithastraightlinefitto
datafoṙ whereξ<Lthatgivesβ=1.76andσc=1.1895.(b)3Ddatawithastraight
linefitgivingβ=1.50andσc=1.2500.
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exponents are consistent with σc = 1.1895 ± 0.0003u/a2 and β/ν = 2.31 ± 0.05 in 2D and

σc = 1.2500± 0.0003u/a3 and β/ν = 3.0± 0.1 in 3D. Combined with the values of β given

above, one has ν = 0.76± 0.03 and ν = 0.5± 0.02 for 2D and 3D, respectively.

3.5 Standard Deviation of the Shear Stress

Further information about the critical exponents can be obtained by considering fluc-

tuations in the system. As noted above, the standard deviation of the stress, ∆σ ≡√
〈σ2〉 − 〈σ〉2, decreases with system size in the QS limit.39 One finds39

∆σQS ∼ L−φ , (3.5)

where φ is another critical exponent and the subscript QS indicates the relation holds in

the quasistatic limit where ξ > L. The value of φ reflects the strength of correlations in the

system and one can define two upper bounds for a d dimensional system.39 If correlations

have a finite range, stress-drops in different regions add incoherently and ∆σ ∼ L−d/2.

Correlations can only slow the decrease in fluctuations with L, implying φ ≤ d/2. The scale

of fluctuations must also be at least as large as the magnitude of the stress drop during

the largest avalanche. The energy released in the largest avalanche scales as Smax ∼ Lα

implying a change in the intensive stress of ∆σ ∼ L(α−d). Since this is a lower bound on

fluctuations, φ ≤ d− α.

At finite strain rates, regions of size ξd are uncorrelated and their contributions to σ

will add incoherently. Near the critical point the fluctuations in stress within each subregion
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Figure3.5:(a)The2DdatainFig.3.3(a)isrescaledusingthefinite-sizescalingrelationin
Eq.(3.4)withvaluesofβ=1.76,ν=0.76,andσc=1.1895.Thedashedlinerepresentsa
power-lawwithanexponent1/β=0.57.Theinsetincludesazoomedinviewofthesame
scaleddataonalinear-logscaletoshowvaluesofσ<σcalsocollapse.(b)3Ddatafrom
Fig.3.3(b)rescaledwithβ=1.5,ν=0.5,andσc=1.25.Thedashedlineisapower-law
withexponent1/β=0.67.Theinsetincludesazoomedinviewofthesamescaleddataon
alinear-logscale.
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Figure3.6:StandarddeviationofstressmultipliedbyLd/2asafunctionofrateforthe
indicatedLin(a)2Dand(b)3D.
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should scale as ∆σξ ∼ ξ−φ. The number of these uncorrelated subregions will scale as Nξ ∼

(L/ξ)d. Therefore, fluctuations in the total stress scale as ∆σ ∼ ∆σξN
−1/2
ξ ∼ L−d/2ξd/2−φ.

This expression can be reexpressed in terms of strain rate using Eq. (3.3):

∆σFSR ∼ L−d/2ε̇(φ−d/2)ν/β , (3.6)

where the FSR subscript is used to emphasize that this scaling holds in the finite strain

rate limit. Note that in the special case of φ = d/2 the QS and FSR limits both scale as

L−d/2 and fluctuations are independent of rate.

In d = 3, Salerno and Robbins measured α = 1.1±0.1 in the overdamped limit implying

φ is more strictly bounded by d/2.39 This upper limit was found to be consistent with their

actual measurement of φ = 1.5± 0.2. From the above equations, this implies that ∆σL3/2

should be nearly independent of system size and rate. Fig. 3.6(b) confirms this prediction.

In the QS limit, ∆σL3/2 is near 25 for all L. Results for L = 20 are below other curves by

slightly more than statistical errors, but the deviation is only a few percent and previous

QS results showed deviations from critical scaling for this small system size.39 In this QS

regime our results are consistent with φ = 1.47± 0.07 in agreement with Ref.39 In the FSR

limit, all of the results collapse within statistical errors. While there is a small decrease in

∆σL3/2 with increasing rate that might suggest φ < d/2, the change is only 30% over more

than two decades in rate. This also implies that φ is no smaller than 1.4 and consistent

with φ = d/2.

For d = 2, past results gave α = 0.9 ± 0.05 in the overdamped limit.39 This gives a

94



CHAPTER 3. YIELDING

slightly larger upper bound than d/2, so we may expect that φ = d/2 = 1. Fig. 3.6(a)

shows a plot of ∆σL against rate for multiple system sizes. In the QS limit the results for

large L collapse, implying φ = d/2. As L decreases the QS values drop slightly, which is

consistent with deviations from critical scaling in small systems. All of the results collapse

in the FSR limit. As in 3D, there is a small decrease with increasing rate, but the results

are consistent with φ = d/2 = 1 with an uncertainty of less than 0.1.

In Fig. 3.7, the variance of the kinetic energy ∆K per particle scaled by Ld/2 is plotted

as a function of strain rate for the indicated values of L. As rate decreases, ∆K is seen

to approximately decrease as ε̇1/2. Deviations from this power-law are highlighted in the

figure insets where ∆Kε̇−1/2 is plotted as a function of rate.

As demonstrated in Sec. 3.7, there is an approximate correspondence between K and

dσ/dt. It is therefore reasonable to predict ∆K will scale with the same power of L as ∆σ

in Eqs. (3.5) and (3.6). This is consistent with the high rate data seen in the insets of

Fig. 3.7 where ∆K ∼ L−d/2. At quasistatic rates, a minor deviation (< 10 %) in scaling

from L−d/2 is identifiable in 3D. This could either be a correction in scaling or indicate a

deviation in φ from 1.5 consistent with φ = 1.42± 0.03.

In the QS limit, the dependence on strain rate can also be easily explained. As the rate

continues to decrease, the same sequence of avalanches evolves. Therefore the integral of

K(t) or K2(t) will not depend on ε̇. However, any moment of K(t) will be weighted by the

total time and therefore will scale in proportion to ε̇. This implies 〈K2〉 will dominate 〈K〉2
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Figure3.7:StandarddeviationofkineticenergymultipliedbyLd/2asafunctionofratefor
theindicatedLin(a)2Dand(b)3D.Dashedlinesinbothpanelsshowpowerlawswith
exponentsof1/2.Insetsshow∆K −̇1/2tohighlightdeviationsinscaling.
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such that the variance will scale as ε̇. Therefore we suggest:

∆KQS ∼ L−φε̇1/2 (3.7)

where the QS subscript emphasizes that this relation only holds in the quasistatic limit.

In the FSR limit, one could imagine that similarly ∆KFSR ∼ ∆σFSRε̇
1/2. This relation is

appealing but no simple proof is known to the authors. In the next section, we will use this

observation to place a limit on the value of β/ν.

3.6 Condition for Overlapping Avalanches

In the QS limit, the same sequence of avalanches occurs in a system independent of rate.

Increasing ε̇ just decreases the quiescent periods between avalanches (Fig. 3.2). Growth

will transition to the FSR limit above a rate ε̇L ∼ L−β/ν where the largest avalanches do

not have time to grow and are limited by ξ instead of L. A necessary, but not sufficient,

condition for avalanches to grow to their maximum size is that there are quiescent periods

between avalanches. In this section we identify the largest rate where there are quiescent

periods ε̇QL, which sets an upper bound on ε̇L and thus gives a lower bound for β/ν.

The strain rate ε̇QL will decrease with increasing system size as more avalanches are

nucleated. We define a critical exponent x such that ε̇QL ∼ L−x. To determine whether the

system has quiescent periods we evaluate the minimum and maximum kinetic energy, Kmin

and Kmax, during steady state shear. At rates ε̇ < ε̇QL, the ratio RK ≡ (Kmax−Kmin)/Kmax

is approximately unity as K ≈ 0 during phases of inactivity. At rates ε̇ > ε̇QL, the system
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undergoes constant activity and RK will decrease with rate. This transition is demonstrated

in Fig. 3.2b. Results for different L should collapse when RK is plotted as a function of

ε̇/ε̇Q ∼ Lxε̇. Fig. 3.8 shows scaling plots for 2D and 3D systems. Results for all system

sizes collapse with x = 2± 0.05 and 3± 0.1 in 2D and 3D, respectively. The value of x sets

a lower bound on β/ν. This bound appears to be an equality in 3D but not in 2D.

Other measures of the onset of quiescence give the same scaling. For example, the root

mean squared kinetic energy
√
〈K2〉 scales as ε̇ in the FSR as K is nearly constant and

the average kinetic energy 〈K〉 grows linearly with rate due to conservation of energy. In

the QS limit, the magnitude of fluctuations in the kinetic energy are much larger than the

average and
√
〈K2〉 ∼ ∆KQS ∼

√
ε̇L−φ from Eq. (3.7). When the fluctuations in kinetic

energy are much larger than the average, one would anticipate reaching a quiescent state

with effectively zero kinetic energy. As shown in Fig. 3.9, results for different L can be

collapsed using the same values of x = 2 in 2D and x = 3 in 3D that collapsed data in Fig.

3.8. Note that this scaling suggests that x = 2φ if the assumptions used to derive Eq. (3.7)

are valid.

To estimate the rate ε̇QL where there is no quiescent period, we calculate the total time

TL for all the avalanches in a unit strain under QS conditions. This would be the maximum

time for non-overlapping avalanches and thus give a lower bound for ε̇QL > 1/TL. If the

rate was decreased any further it would necessitate a gap between avalanches.

In the QS limit,39 the number of avalanches per unit strain in a range dS scales as

R(S,L)dS. The avalanche rate R(S,L) ∝ LγS−τ up to a maximum avalanche size Smax L
α.
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Figure3.8: RatioRK ≡(Kmax−Kmin)/Kmax plottedagainsṫ for(a)2Dand(b)3D
systemswiththeindicatedL. TheinsetsshowthatscalingratebyLycollapsesdatafor
differentsizeswithy=2.0±0.05and3.0±0.1in2Dand3D,respectively.
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Figure3.9:Rootmeansquaredkineticenergyasafunctionofratein(a)2Dand(b)3Dfor
thesystemssizesindicatedinthelegends.Dashedlinesshowpowerlawswithexponentsof
unity.Insetsshowthatthedatacollapseswhenrateandrmskineticenergyarescaledby
Lyfory=2.0and3.0in2Dand3Drespectively. Dashedlinesindicatepowerlawswith
exponentsof1.0and0.5.
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The duration T of an avalanche is usually expressed in terms of a dynamical exponent z

relating T to the linear dimension ` of an avalanche: T ∼ `z ∝ Sz/α. Combining these

relations we find:

TL ∝ Lγ
∫ Smax

dSS−τSz/α (3.8)

∝ Lγ
∫ Lα

dSS−τ+z/α ∝ Ly (3.9)

with y ≡ γ+ z+α(1− τ). Inserting the values of these exponents determined elsewhere we

find y ∼ 3 in 3D and 2.4 in 2D. Thus y ≥ x and y ≈ β/ν in both dimensions. The inequality

between y and x in 2D implies that there is significant temporal overlap of avalanches that

allows periods of quiescence at higher rates than expected from y or β/ν.

3.7 Temporal Power Spectra of K and σ in FSR Limit

The stress-strain and kinetic-strain curves in Fig. 3.2 contain additional information.

In particular, the signals encode the dynamical structure of individual avalanches that can

be revealed by calculating the temporal power spectrum S(ω). To calculate Sσ(ω) or SK(ω)

the time series of σ or K was divided into consecutive intervals of 10% strain in 2D and 5%

strain in 3D with values at fixed time intervals of t0. A fast Fourier transform (FFT) with

Hamming windowing function was used to calculate the power spectrum for each interval

and the results were then averaged over all intervals. Each spectrum was multiplied by the

strain rate such that spectra would not depend on the duration of time over which they

were calculated. To minimize noise, the ensemble averaged spectrum was further averaged
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Figure3.10: Thepowerspectrumofthekineticenergy(blue)andω2Sσ(ω)(red)asa
functionofωforasystemofsizeL=80atarateof4×10−7.Thepowerspectrumofthe
kineticenergyisshiftedverticallybyafactorof105.

overintervalsofangularfrequencyωthathavealogarithmicspacing. Thecurveswere

thenfurthersmoothedbyapplyingarollingmean. Twodatapointsatlowerandhigher

frequencieswereincludedintheaverage.

FromFig.3.2weseethatσhasasawtoothform,withdropsthatcorrespondtopeaks

inavalancheactivity. Sincethederivative,dσ/dt,correspondstotherateofplasticity,

w2Sσ(ω)revealsthetemporalstructureofavalanches.Incontrastthepowerspectrumof

plasticityisdirectlyrelatedtoSK(ω).Fig.3.10comparesSK andω
2Sωfora3Dsystem

ofsizeL=80atarateof4×10−7.Thisrateishighenoughthatnofinite-sizeeffectsare

expected(seeFig.3.4).Thetwoquantitiesshowverysimilarbehavior.Themaindifference

isthatartifactsrelatedtoaliasingatthehighestωleadtoaslightlyslowerdropinω2S(ω)

thanSK(ω). WepresentdataforSK(ω)below,butfoundsimilarscalingcollapsesforω
2Sσ.
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Figures 3.11a-b show the power spectra of large 2D and 3D systems at the indicated

rates, which are chosen to be in the FSR regime. For each rate there is an initial power

law rise as ωρ, followed by a peak and a power law decay with ω−δ. The initial rise as ωρ

implies the existence of anticorrelation at long times. There appears to be a characteristic

recurrence time in the time signal of the kinetic energy. The decay seen at large frequencies

with an exponent δ is an example of pink noise and represents timescales on which there are

temporal correlations due to intra-avalanche dynamics.107 The peak frequency for each rate

in Fig. 3.11a-b corresponds to the duration of the largest avalanche Tmax. As noted above,

Tmax ∼ Sz/αmax where z is the dynamic exponent. In the FSR limit Tmax ∼ ξz ∼ ε̇−zν/β.

At high frequencies, S(ω) increases with increasing rate. As derived later in this section,

S(ω) scales as ε̇η where η is a critical exponent. In Fig. 3.11c-d, the high frequency data

is collapsed with an exponent of η = 1.00 ± 0.02 in 2D and 1.00 ± 0.01 in 3D. Direct

measurement of the power laws associated with changes in ω are consistent with exponents

of δ = 0.92± 0.04 and ρ = 0.7± 0.08 in 3D and δ = 0.62± 0.05 and ρ = 0.8± 0.08 in 2D.

To understand the form of S(ω) we follow past calculations10 and assume the kinetic

energy represents a sum over contributions from independent avalanches of energy Si. Each

is assumed to have a similar shape, but with a time duration Ti ∼ Sz/αi . Since the dissipated

energy is proportional to Si and is given by the integral of LdK over an avalanche, the time

profile of K during an avalanche at time ti scales as K(t − ti) ∼ L−d(Si/Ti)h((t − ti)/Ti),

where h(x) is the characteristic avalanche shape. Summing over avalanches i during a unit
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Figure3.11:Thepowerspectrumasafunctionofωforasystemofsize(a)L=1753ain
2Dand(b)80in3Dattheindicatedstrainrates.Thedatain(a)and(b)isreplottedin
(c)and(d),respectively,scalingS(ω)bẏηforη=1in2Dand3D.Dashedlinesin(a)
and(b)representpowerlawswithexponentsρ=0.8in2Dandρ=0.7in3D.Dashedlines
in(c)and(d)haveexponentsδ=0.62in2Dand0.92in3D.

104



CHAPTER 3. YIELDING

strain yields:

K(t) =
∑
i

L−d(Si/Ti)h((t− ti)/Ti) . (3.10)

If the avalanches are uncorrelated, they contribute independently to the power spectrum:

SK(ω) =
∑
i

L−2dS2
i |f(ωTi)|2 (3.11)

where f(ωTi) is the Fourier transform of an individual avalanche. Eq. 3.11 can converted

into an integral over the rate of avalanches per unit strain:

SK(ω) = L−2d

∫
dSR(S,L)S2|f(ωTi)|2 (3.12)

In the FSR limit R(S,L) ∼ S−τ (L/ξ)dξγ up to Smax ∼ ξα. The number of events of

size S over a fixed interval of strain ∆ε = ε̇∆T is therefore equal to ε̇∆TLdξγ−dR(S,L).

One can then write

SK(ω) ∼ L−dξγ−d∆T ε̇
∫ Smax

dSS2−τ |f(ωTi)|2, (3.13)

where T = Sz/α. As T ∼ Sα/z, we can write f(ωTi) = g(ωα/zS) then substitute v = wα/zS

leaving:

SK(ω) ∼ L−d∆T ε̇1+ν/β(d−γ)ω−α(3−τ)/z

∫ vmax

dvv2−τ |g(v)|2 (3.14)

where vmax = ωα/zSmax and ξ was replaced using Eq. (3.3).

If one assumes the indefinite integral in (3.14) converges,49 one finds δ = −α(3− τ)/z
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and η = 1+ν/β(d−γ). However, as τ < 2, this integral will not converge unless |g(v)|2 ∼ v−q

where q > 3 − τ in the limit of large v. Assuming that the integral does not converge for

v →∞, the scaling depends on q. Carrying out the definite integral gives:

SK(ω) ∼ L−d∆T ε̇ηω−qα/z (3.15)

where η = 1 + ν/β(d − γ + α(τ + q − 3)) and δ = qα/z. Kuntz and Sethna argued that

for depinning transitions q = 1.10 Assuming this applies to yield, this would predict values

of δ = 0.96 ± 0.09 and η = 1.04 ± 0.09 in 3D and δ = 0.64 ± 0.04 and η = 1.03 ± 0.08 in

2D.38,39 These values are in strong agreement with the values of η and δ measured directly

in Fig. 3.11.

Finite-size scaling implies that Tmax is the only time scale in the critical regime. The

power spectrum should obey a scaling relation:

S(ω) ∼ ε̇agω(ωε̇zν/β) (3.16)

where a is a critical exponent and gω(x) is a new universal scaling function that scales as

x−δ for x� 1 and xρ for x� 1. As S(ω) scales as ε̇η in the high rate limit a = η − zδν/β.

Figure 3.12 shows collapses of the data using Eq. 3.16. Given the values of β/ν, δ, and η

determined above, the fits give z = 1.15 ± 0.04 in 3D and z = 1.40 ± 0.05 in 2D. In 2D,

there appears to be a finite-size effect at high rates as the shape of the scaling function

gω(x) varies with ε̇.
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Figure3.12:(a)ThedatainFig.3.11aiscollapsedforfrequenciesω<0.5accordingtoEq.
(3.16)withexponentsη=1,δ=0.62,z=1.4,andβ/ν=2.3.(b)Asimilarscalingforthe
3Ddatawithvaluesofη=1,δ=0.92,z=1.15,andβ/ν=3.0. Dashedlinesrepresent
powerlawswithexponents(a)δ=0.62andρ=0.8and(b)δ=0.92andρ=0.7.
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3.8 Finite-Size Effects in the Temporal Power Spectra

As the system begins to transition to the QS limit, Tmax saturates at Lz. In Fig. 3.13,

S(ω) is plotted for the indicated system sizes that have begun to show finite-size effects

at a rate of (a) 10−7 in 2D and (b) 2 × 10−7 in 3D. At frequencies below T−1
max, the power

spectrum plateaus over a range of ω before dropping with decreasing ω. This low frequency

cutoff of the plateau is found to decrease with decreasing strain rate. This suggests that on

timescales above Tmax, the time signal K(t) resembles white noise before anticorrelations

emerge at some value of the strain at which recurrence is seen. We note that in the largest

systems, the plateau cannot be well resolved.

As the system size increases, we see S(ω) decreases at high frequencies. In the insets

of Fig. 3.13, the power spectrum is scaled by a power of system size, Lλ. We find the

spectra collapse at high frequencies for values of λ = 2.00 ± 0.02 in 2D and 3.00 ± 0.02 in

3D. This can be understood using arguments similar to those in the previous section. In

the QS limit, the number of avalanches of size S that nucleate over an interval of time ∆T

will scale as ε̇∆TLγR(S,L). One can then derive an analogy to Eq. (3.14):

SK(ω) ∼ L−2d+γ ε̇∆Tω−α(3−τ)/z

∫ vmax

dvv2−τ |g(v)|2 (3.17)

where again v = ωα/zS and we assume |g(v)|2 ∼ v−q. Using Tmax ∼ Lz and Smax ∼ Lα, the

integral can be evaluated yielding:

SK(ω)ε̇∆T ∼ Lλω−qα/z (3.18)
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Figure3.13:Thetemporalpowerspectraforsystemsstrainedatarateof(a)10−7in2D
and(b)2×10−7in3D.Systemsizesareindicatedinthelegend.Insetsshowthesamedata
scaledbyLλforλ=2.0in2Dand3.0in3D.
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where λ = γ+α(3− τ − q). If we assume q = 1 and use previous measurements of γ, α, and

τ in Refs.,38,39 this predicts λ = 1.93± 0.14 in 2D and 2.78± 0.16 in 3D. This is consistent

with the directly measured values of λ above.

As a final test of our theory, we narrow our focus to the peak value of the power

spectrum Smax(ω) as a function of both L and ε̇. From Eq. (3.16), we expect Smax(ω) to

scale as ε̇aL−d in the FSR regime where a = ε̇η−zδν/β . In Fig. 3.14a-b we plot Smax(ω)

normalized by ε̇aL−d as a function of ε̇ for the indicated values of the system size. We find

minimal dependence on ε for a value of a = 0.70 in 2D and 0.62 in 3D. This is consistent

with the prediction of a = 0.65± 0.03 in 3D but in 2D a is predicted to equal 0.63± 0.04.

We note that in 2D there is significant error introduced due to the evolution of the universal

scaling function at high rates which likely explains this inconsistency.

The data in Fig. 3.14a-b can be collapsed using finite-size scaling techniques. We

assume the only relevant length scales are ε and L, implying the crossover will occur at

a rate of ε̇ ∼ L−β/ν . In Fig. 3.14c-d, the above data is collapsed using the previous

measurements of β/ν in both 2D and 3D.

3.9 Particle Diffusion

As a system is strained, particles will plastically rearrange and exchange neighbors

during avalanches. The accumulated distance particles have travelled due to plasticity can

be measured using the mean-squared non-affine displacement, 〈|∆~r|2〉. This specifically

does not include the distance a particle has moved due to the affine motion from the box

110



l

l

l

l

l

l

l

l
l l l

l

l

l

l

l

l

l

l l l l l l
l

l

(a)

10−3

10−6 10−4

ε×

S
m
ax
(ω
)L
d
ε×z
δ
ν
β
−
η

l

l

55
110
219
438
876
1753

l

l

l

l

l

l

l
l l l l

l

l

(b)

10−3

10−6 10−4

ε×

S
m
ax
(ω
)L
d
ε×z
δ
ν
β
−
η

l 20
40
80
160

l

l

l

l

l

l

l

l
l l l

l

l

l

l

l

l l l l l l

(c)

10−3

10−2 100 102

ε×Lβν

S
m
ax
(ω
)L
d
ε×z
δ
ν
β
−
η

l

l

l

l

l

l

l
l

l

(d)

10−3

10−2 100 102

ε×Lβν

S
m
ax
(ω
)L
d
ε×z
δ
ν
β
−
η

CHAPTER3. YIELDING

Figure3.14:Themaximumvalueofthepowerspectrumscaledbẏ aL−dasafunctionof
strainratefortheindicatedvaluesofLin(a)2Dand(b)3Dforvaluesofa=0.7in2Dand
0.62in3D.Thepeakinthespectrumiscollapsedbyscalingthestrainratewithafactor
ofLβ/νusingavalueof(c)β/ν=2.3in2Dand(d)β/ν=3.0in3D.
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shear. Previous studies have identified that the mean-squared non-affine displacement grows

linearly with strain in 2D94,108 and 3D.109 One can therefore define an effective diffusion

coefficient D quantifying the magnitude of particle transport. In this section we will first

focus on diffusion in 2D then discuss changes in behavior in 3D.

In the QS limit, it has been observed that D grows linearly with L in 2D.94,108 Two

explanations have been proposed for this observation. The first is that the maximum span

of a slip line L sets the diffusion of particles which assumes α = 1.108 The second is based

on the observation that plastic deformation is correlated over an interval of strain that

scales as L−1.94 In the FSR limit, D has been found to increase with decreasing rate before

plateauing at a rate that decreases with increasing L.110 Data for different system sizes

was collapsed using a theory that assumes β/ν = 2. This collapse included systems up to

a maximum of order 105 particles (L ∼ 300).

To calculate the diffusion coefficients, simulation runs were broken up into intervals of

5% strain. For each interval, the cumulative non-affine displacement was calculated and

output every increment of 0.1% strain. We tested outputting the instantaneous as well as

the average non-affine displacement over the increment but found no significant difference

between the two methods. A least mean squares linear regression was then used to fit the

data for each interval, providing an estimate of the diffusion coefficient at that particular

value of the strain.

We first consider the effect of the global system geometry on the diffusion. In KR

boundary conditions, the simulation box is regularly remapped with a period of strain
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approximately equal to εKR ≈ 0.96. This remapping is what allows deformation to reach

arbitrarily large elongational strains. We therefore define εM = ε mod εKR as the current

location of the system in strain space. Different values of εM will correspond to different

lattice vectors. We divided εM into equal sized bins and calculated an average diffusion

coefficient for each interval at a given rate and system size. In Fig. 3.15a, the average

diffusion coefficient is plotted as a function of εM for a system of size L = 400 for the

indicated strain rates. At high rates of ε̇ = 10−3 or 10−4, no dependence on εM can be

identified. At these rates, the system is expected to be in the FSR regime based on Fig.

3.5. As the strain rate is decreased and QS effects emerge, one can identify peaks in the

diffusion coefficient at values of εM = 1/4εKR and 3/4εKR. The evolving diffusion coefficient

implies the linear relation between the non-affine displacement and strain is not valid over

large intervals of strain. However, this evolution is minor over the strains of 5% used here.

In Fig. 3.15b the diffusion coefficient is plotted as a function of εM for systems of different

sizes strained at a rate of 10−5. At this rate, we see small systems, L ≤ 438, all exhibit

peaks at the vertical dashed lines while larger systems, which are still in the FSR limit,

do not. This suggests the emergence of these peaks is a finite-size effect. It can also be

observed that after a system has fully reached the QS limit, such as L = 55, the peaks stop

growing and the diffusion coefficient reaches a limiting value at all values of εM .

At strains corresponding to εM = 1/4εKR and 3/4εKR, the system is in a state where

the direction of maximal shear stress remaps periodically onto itself as demonstrated in

Fig. 3.16. Therefore we propose that this enhanced diffusion occurs when system-spanning

avalanches are able to self reinforce across the period boundary. It is important to note that
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Figure3.15:(a)Theaveragediffusioncoefficientplottedasafunctionof M for2Dsystems
ofL=438strainedattheindicatedrates.(b)Similardataisplottedatafixedrate
=̇10−5forsystemsizesindicatedinthelegend.Verticaldashedlinesrepresentvaluesof

M =1/4KR and3/4KR.
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Figure 3.16: Periodic unit cells (red) using the KR boundary conditions at a value of (a)
εM = 1/4εKR and (b) 3/4εKR. Blue dashed lines indicate the unit cell at εM = 0 for
reference. The lattice has been rotated into the lab frame such that the principal stress
vectors are aligned vertically and horizontally. Solid black diagonal lines at 45◦ therefore
indicate the direction of maximal shear stress and are positioned to remap periodically back
onto themselves at these values of εM . Pronounced plastic activity is observed along these
lines for strains near these special values.

no other system properties discussed in this chapter demonstrated a dependence on εM .

Interestingly, it also appears that once finite-size effects emerge the value of the diffusion

coefficient at εM = 0 and 1/2εKR becomes suppressed relative to the FSR value as seen in

Fig. 3.15b. It is possible that at these values of εM an avalanche would misalign such that

particles on one side of the slip plane would emerge on the other when crossing the periodic

boundary conditions. Therefore, one could imagine the logarithmic average of the diffusion

coefficient across εM for systems that have just reached the onset of finite-size effects would
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still be comparable to that of systems fully in the FSR limit. This logarithmic average

would only differ once the system fully reaches the QS regime and the peaks stop growing.

Based on this observation, we calculate a logarithmic average of the diffusion constant

across all values of εM , DAve. This is a measure of the overall diffusion of the system for

all strains. In Fig. 3.17a DAve is plotted as a function of ε̇ for the system sizes indicated in

the legend. At large rates, DAve becomes independent of L and decreases with increasing ε̇.

If the diffusion coefficient scales as the lateral span of the largest avalanche it would imply

DAve ∼ ξ ∼ ε̇ν/β in the FSR limit. Direct measurement of this exponent yields a value

consistent with ν/β = 0.42 ± 0.03 implying a value of β/ν = 2.38 ± 0.07 consistent with

above measurements. Note that the behavior in the FSR limit is insensitive to εM . This

implies that the scaling with ε̇ is not influenced by the choice of box geometry.

The power law divergence of DAve with decreasing rate in Fig. 3.17 is cut off at a strain

rate that decreases with increasing L due to finite-size effects. We therefore propose the

finite-size scaling ansatz

DAve ∼ LfD(ε̇L−β/ν) (3.19)

where fD(x) is a universal scaling function containing the expected scaling in the FSR and

QS limits. In the limit x � 1, fD(x) ∼ xν/β , and in the limit x � 1, fD(x) approaches

a constant. In Fig. 3.17b the data in Fig. 3.17a can be collapsed using a value of β/ν

consistent with 2.3 ± 0.1. This is in agreement with measurements of β/ν in previous

sections and with the observed scaling of the diffusion coefficient in the QS limit.94,108 We

also tested calculating a linear mean DAve over different intervals of εD. While this does not
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affect the power-law scaling observed in the FSR limit, the data was generally incapable of

being scaled and the QS value of DAve generally did not scale as L.

The strong variation in diffusion with the alignment of periodic boundary conditions

is a novel finding and is not unique to the KR boundary conditions. A similar effect was

identified using simple shear and conventional pure shear geometries. In simple shear, a

diffusion coefficient could be defined for the non-affine displacement in the gradient direc-

tion.110 When the lattice vectors return to an orthogonal configuration such that avalanches

aligned in the gradient direction would overlap with their periodic images, a similar increase

in diffusion was noticed in the QS limit. Lastly, using conventional pure shear geometries,

excess diffusion was noticed when the ratio of the box lengths reached an integer value such

that a 45◦ line could wrap back onto itself. We note that previous studies of diffusion using

conventional pure shear geometries started with an initial square box. Therefore, at strains

shortly after yielding it is unlikely that one could identify a strong effect as no such align-

ment would be reached.94 Furthermore, the magnitude of the effect increases with system

size such that studies of small systems in simple shear may not identify it.108,110

In three dimensions, the diffusion displays relatively simple behavior. Previous QS

studies failed to dientify a strong dependence on system size.109 In Fig. 3.18, the diffusion

coefficient is plotted as a function of strain rate for systems of size L indicated in the

legend. As the strain rate decreases, a small rise in diffusion can be identified before the

diffusion saturates for all systems sizes below rates of ∼ 2 × 10−4. The plateau has a

minor dependence on system size although it appears to reach an asymptotic maximum

with increasing L. This suggests there is no divergence in diffusion at the critical point and
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Figure3.17:(a)TheaveragediffusioncoefficientDAveplottedasafunctionofrateforthe
indicatedsystemsizesin2D.(b)Theabovedataisscaledaccordingtothefinite-sizescaling
procedureinEq.(3.19)usingavalueofβ/ν=2.32.Dashedlinesinbothpanelsrepresent
power-lawscalingwithν/β=0.43.
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Figure3.18:Diffusioncoefficientasafunctionofstrainrateforthesystemsizesindicated
inthelegendin3D.

nocriticalexponentsassociatedwithitsratedependence.In3D,avalanchescanformslip

planesorientedwithanyazimuthalangletothecompressivedirection.Itispossiblethis

scramblesanycorrelationsinparticlestransport.

3.10 SimpleShearGeometry

Simplesheardeformationisfundamentallydistinctfromthatofpuresheardeformation

duetothenatureoftheperiodicboundaryconditions.Inparticular,thedirectionof

maximalshearstress(theflowdirection)isalwaysalignedwiththeperiodicboundary

conditions.Asseenintheprevioussection,alignmentofperiodicboundariescanintroduce

effectsonparticletransportintheQSlimit.Herewelookathowsuchbehaviormayaffect

otherpropertiessuchastheflowstress.
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In Fig. 3.19a, the average shear stress from simulations with a simple shear geometry is

plotted as a function of rate for 2D systems of size L indicated in the legend. This data was

collected using the mixing model at equally large strains as the simulations run with KR

boundary conditions. The trends in the data resemble those seen in 3.3a except the onset

of finite-size effects is marked by a shoulder in the shear stress. In Fig. 3.19b, this data is

scaled according to the procedure in Eq. (3.4) using the above measurements of β and ν as

well as a value of σc = 1.1645. Notably, in the FSR limit, measurements of β are found to

be consistent with KR results. The bump in shear stress however prevents the data from

collapsing onto a single curve during the transition to the QS limit. However, the strain

at which the bump in shear stress emerges still plausibly scales as Lβ/ν . This suggests the

critical exponents ν and β may not depend on the deformation geometry. However, the

origin of this transient deviation in in the shear stress is not known and it is surprising

that σc is different. No noticeable difference was observed in the scaling of other system

properties such as the temporal power spectrum. Future work studying the origin of this

deviation and the spike in diffusion would be useful.

3.11 Summary of Yielding

Simulations of 2D and 3D sheared disordered packings of LJ particles were used to

identify critical exponents in the yielding transition. This work focused on the effect of finite

strain rates in order to identify scaling on the approach to the critical point. Exponents were

accurately measured for the first time using finite-size scaling techniques. The measured

exponents are summarized in Table 3.1.
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Figure3.19:(a)Theaverageshearstressasafunctionofthestrainratefor2Dsystemsof
sizeLindicatedinthelegendstrainedusingasimplesheargeometry.Theinsetcontainsan
expandedviewoflowratedata.Adashedhorizontallinehighlightsσc=1.1645.(b)The
abovedataisapproximatelyscaledaccordingtothefinite-sizescalingrelationinEq.(3.4)
usingvaluesofβ=1.76,ν=0.76,andσc=1.1645.Theinsetin(b)includesanexpanded
viewofthesamedatausinglinear-logaxestohighlightvaluesofσ<σc.
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Values 2D Estimates 3D Estimates Definition

ν 0.76± 0.03 0.50± 0.02 ε̇ ∼ (σ − σc)β
β 1.76± 0.05 1.50± 0.05 ξ ∼ (σ − σc)−ν
z 1.40± 0.05 1.15± 0.04 TAvalanche ∼ `zAvalanche

φ 1.0± 0.1 1.5± 0.1 ∆σ ∼ Lφ
δ 0.62± 0.05 0.92± 0.04 S(ω) ∼ ω−δ
η 0.7± 0.02 0.64± 0.02 S(ω) ∼ ε̇η
x 2.0± 0.05 3.0± 0.1 ε̇QL ∼ L−x

Table 3.1: Summary of critical exponents found here for 2D and 3D.

Using the finite-size scaling ansatz in Eq. (3.4), we were able to calculate accurate

values of β and ν. This scaling ansatz only depends upon the value of the critical yield

stress σc in the thermodynamic limit. In this chapter we also proposed the existence of

a critical exponent x that determines the emergence of quiescence in the system. This

exponent is argued to equal 2φ and provides a lower bound for β/ν. In 3D, x may be equal

to β/ν.

The measured value of β/ν = 2.31 ± 0.05 in 2D is distinct from a previous report of

2 based on MD simulations.110 The estimate of 2 was based on finite-size scaling of the

diffusion coefficient in systems smaller than our L = 200 system. For these small system

sizes, one would not be able to detect a deviation of β/ν from 2. Other measurements

have been made of β using MD including β = 2111 and β = 2.33112 in 2D and β = 3112 in

3D. These measurements were based on stress data from system sizes up to ∼ 104 particles

equivalent to our smallest or second smallest system. These measurements, particularly in

3D, are not consistent with the values measured in this work, however one would expect a

very narrow range of critical scaling for these small system sizes. In contrast to the finite-
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size scaling ansatz in Eq. (3.4), past work with discrete elasto-plastic models on a lattice

used a size dependent σc(L) in their proposed finite-size scaling ansatz.40 The values found

here for β and ν are also distinct from those measured in the elasto-plastic models.40

The scaling of fluctuations in stress is consistent with previous results39 that demon-

strated that φ = d/2. This is further evidence that fluctuations in stress are set by the

incoherent addition of N ∼ Ld incoherent signals. If the size of fluctuations were deter-

mined by the size of the largest avalanche, it would suggest that ν = 1/(d− α).39,40 Based

on measurements of α from Salerno and Robbins,38,39 this relation would predict a value

of ν = 0.91± 0.04 and 0.53± 0.03 in 2D and 3D, respectively. Although it does not appear

that ν = 1/φ, we do note that this scaling relation accurately predicts ν in 3D but not in

2D. It has been argued that when φ = d/2, as seen here, one does not expect to have an

equality between ν and 1/φ.113

In studies of lattice-based models with instantaneous information propagation, it was

found that z < 1.40 As physical restrictions of information transport require z ≥ 1, it

was therefore suggested that z = 1.114 Measurements of the dynamical exponent here in

fact show z > 1 in both 2D and 3D. Lin and Wyart have also proposed the dynamical

exponent can been related to the Herchel-Bulkley exponent using a scaling relation β =

ν(1 − α + z).40,114 Our estimates of z combined with previous estimates of α38,39 predict

values of β = 1.9 in 2D and 1.5 in 3D using this relation. While the 3D prediction agrees

with our measured β, the 2D results disagree.

Finally, we also propose a scaling theory for the temporal power spectrum as a func-

123



CHAPTER 3. YIELDING

tion of strain rate in the FSR limit. A scaling relation describing the QS limit in cases

where the avalanche distribution exponent τ < 2 has previously been proposed by Kuntz

and Sethna.10 This theory assumes that the typical avalanche profile contains many high

frequency flutuations which they argue implies q = 1. As seen in Sec. 3.7, this suggests

δ = 0.64± 0.04 in 2D and 0.96± 0.09 in 3D consistent with the directly measured values of

δ in Table 3.1. One important difference with the work in this paper is that they considered

a model related to interface growth where the rate of avalanches is extensive in system size.

In yielding the rate of avalanches scales as Lγ with γ < d.

This work has provided accurate measurement of many exponents of the yielding tran-

sition in the overdamped limit for the first time. Earlier work in the quasistatic limit showed

that the addition of inertia changes the nature of the critical point.38,39 It would be valuable

for future work to measure dynamic exponents in the underdamped and critically damped

limits to determine how inertia affects the FSR regime. In addition, the work here has

focused exclusively on the steady state. Recent work in MD has identified the presence of

a second order critical point in the transition between ductile to brittle yielding in glasses

as the quench rate of the glass is decreased.115 Further studies of the transition to steady

state as a function of strain rate and system preparation could prove valuable.
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Chapter 4

Brittle Fracture

4.1 Introduction to Brittle Fracture

Brittle materials such as cement, rock, glass, and ceramics, fail rapidly with minimal

prior plasticity. This abrupt failure therefore gives little to no forewarning. Due to the

ubiquity of brittle materials in construction, it is no surprise that characterizing brittle

crack growth has been a major focus of research for many decades. Improved theories of

brittle fracture are also important to design better ballistic armor116,117 and understand

the mechanics of tectonic motion.118

Many brittle materials are isotropic at the scale of crack propagation. Glass is atom-

istically disordered and many ceramics or rocks are polycrystalline. On long enough length

scales, the random orientation of polycrystalline domains averages to produce an isotropic

response. The direction of crack growth in such isotropic materials is determined by the
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spatial location of defects, flaws, and other cracks as well as the local stress field. Therefore

in order to accurately simulate the microscopic details of brittle fracture, one needs a model

that includes elastic interactions between regions of damage and is able to model strong

nonlinearities at crack tips.119 The fracture of brittle materials also involves many dynamic

processes such as crack nucleation, growth, and coalescence that may need to be modeled

for a large population of cracks.120

Particle-based models are an ideal simulation technique for brittle fracture as they

naturally allow for material discontinuities.121 In this chapter, we design a particle-based

model and use it to study a wide range of phenomena in brittle fracture. These simulations

allow us to fully resolve microscopic dynamics in failure and track the evolution of individual

cracks as they merge to form fragments that are further broken during granular flow. The

results in this chapter are focused on bridging length scales and providing the information

needed for the construction of macroscopic continuum models.

In Sec. 4.2 we will describe the model, including the preparation of initial conditions,

the functional form of interactions, and the numerical algorithms used. Following this, Sec.

4.3 describes the calibration of the parameters of the model to match the elastic response

and fracture toughness of the target ceramic materials. Having laid out the model, we

first focus on the initial fracture of brittle solids in Sec. 4.4. The dependence of failure

on defect density and strain rate is found to agree with theories of wing crack growth in

defected systems.122 We will also discuss other findings, including a reduction in the elastic

modulus due to damage. In Sec. 4.5 we look at the subsequent granular flow regime where

confinement causes particle breakup, or comminution. In the quasistatic limit, we identify
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a power-law distribution of grain sizes. The evolution of this distribution with strain is non-

trivial and counters assumptions made in continuum models of breakage.123,124 At finite

strain rates, we find the size of the largest grain is limited, suggesting critical behavior

emerges only in the quasistatic limit. We also measure the internal friction coefficient as

a function of rate and material properties and show that changing Poisson’s ratio affects

the anisotropy of grains. Finally in Sec. 4.6 we will pull together results and discuss future

directions of research.

4.2 Model

Discrete element models (DEMs) are a very popular technique for modelling brittle

fracture. DEMs discretize a solid into a collection of particles each representing a funda-

mental region of matter with size much larger than atoms. These particles exert forces

on each other using a variety of interactions including attractive bonds between regions

of unbroken material. These bonds can break under specified conditions allowing for the

nucleation and propagation of cracks.121,125

There also exist many continuum models that are able to resolve dynamic crack growth.

These may require regular remeshing or may use meshless techniques,126,127 but are gen-

erally not well suited to problems that involve the nucleation, growth, and coalescence

of many cracks.126 These models also require physically accurate constitutive equations to

produce realistic dynamics. Despite these difficulties, sophisticated and accurate continuum

methods have been used to study brittle fracture processes.128
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In order to model brittle materials we use a combination of ideas from molecular dyan-

mics (MD) and DEMs. Our model is expanded from initial tests by Maloney and Robbins

that used breakable bonds in MD simulations to study brittle shear bands.129 The model

is implemented using a powerful software package, the Large Scale Atomic/Molecular Mas-

sively Parallel Simulator (LAMMPS).98 LAMMPS was chosen as it is open-sourced, easily

modifiable, has a large userbase, supports MPI parallelization using spatial domain decom-

position, and contains a large suite of numerical methods.

In order to simulate granular flows consisting of many decades of grain sizes, we require

a computationally cheap model that can be scaled to large system sizes. The model was

therefore designed to use a simplified representation of particles and minimalistic interac-

tions. Removing nonessential degrees of freedom from a particle simplifies the numerical

integration of the equations of motion. Minimizing the number of free parameters stream-

lines the process of calibrating material properties and reduces the computational cost of

calculating forces. The model was also designed to include realistic defect distributions from

experimental data. To ensure that these extrinsic defects dominate nucleation of cracks, it

was important to minimize other sources of heterogeneity. In particular, the model ensures

a homogeneous elastic response with little non-affine motion at low strains. Tests were

made to ensure the model accurately produces results from experiments. For instance, a

goal is to recreate emergent behavior such as wing crack growth.130

In the following subsections we describe the preparation, implementation, and parame-

terization of the model. In Subsec. 4.2.1 we describe the fundamental particles of the model

and the preparation of the initial system. This includes preparing the initial population
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of particles as well as building the topological network of interactions. In Subsec. 4.2.2

we then describe the specifics of the interactions used in the model. This includes details

on how the interactions support fracture and how damping is incorporated in the system.

Finally in Subsec. 4.2.3 we describe the numerical protocols used in simulations.

4.2.1 System Preparation

Systems are constructed out of collections of point particles. Each point particle repre-

sents some locally coarse-grained region of space. Some simulations use a 2D geometry that

could be calibrated to model plane-strain deformations, while others are fully 3D. Each

particle has d translational degrees of freedom where d is the dimension of the system.

The rotational degrees of freedom of each particle are not resolved. This choice greatly

reduces the complexity of the model. Note that a cluster of these point particles will still

have rotational degrees of freedom that emerge from the translation of each particle. This

is in contrast to most DEMs that use rotational spheres,125,131–134 clusters of rotational

spheres,133 or polygons as the fundamental discrete element.135,136 To date we have not

identified any shortcomings due to removing rotational degrees of freedom.

In two dimensions, a bidisperse mixture of particles of type A and B was used to

introduce geometric frustration and prevent crystallization.96 Particles of type A have a

radius of a and particles of type B have a radius of 3/5a where a is the fundamental

unit of length.93 A constant ratio of the number of particles of each species was used:

NA/NB = (1 +
√

5)/4. This is the same choice made in Chapter 3. In three dimensions,

monodisperse particles were used with a radius defined as a. As long as the system box
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measured at least 10a in each dimension, no evidence of crystallization was identified. All

particles were assigned a mass of m.

Our primary interest is studying isotropic, brittle fracture. This could represent glasses

or polycrystalline materials on length scales larger than that of crystalline grains. We

therefore initialize the system by preparing random packings of particles. Although a reg-

ular lattice of discrete elements can produce an isotropic elastic response on large length

scales,137,138 the lattice directions are expected to bias the direction of crack growth. In-

deed, molecular dynamics studies of 2D hexagonal lattices of particles with breakable bonds

found that the trajectory of cracks was highly anisotropic since bond breakage followed the

lattice vectors.139–141 In contrast, crack growth in a random packing of spheres does not

have this anisotropy.132

The initial random packings of particles were prepared using a method similar to that

used in prior papers93,94 and described in Chap. 3. Particles were randomly placed in a box

with periodic boundary conditions using a number density of 1.35a−2 in 2D and 0.86a−3 in

3D. A cosine potential and viscous damping term were used to rapidly push particles off

of their neighbors. The potential was then swapped for an attractive Lennard-Jones (LJ)

interaction and the system was melted and then rapidly quenched. An attractive interaction

was chosen as it helped to space particles evenly around their neighbors. Examples of

particle packings are shown in Fig. 4.1.

After producing the initial packing of particles, a Delaunay triangulation142 was used

to construct a network of neighboring particles. Each vertex coincides with a particle and
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Figure 4.1: Small subsets of initial random packings of particles and their bond topology in
2D (left) and 3D (right). Note the presence of two distinct particle sizes in two dimensions.

each edge in the graph corresponds to a bond between two particles. In 2D, one bond

angle was defined for every vertex in a given triangle. In 3D, three angles were defined for

every vertex of a tetrahedron, one for each triangular face intersecting at the vertex. A

Delaunay triangulation was chosen as it is easily reproducible and guarantees every particle

is the vertex of at least one triangle or tetrahedron and has at least two bonds in 2D or

three bonds in 3D. This ensures that there are no rattlers in the system - particles with

unconstrained degrees of freedom.143 Other methods of producing this network were tested

and no significant changes were identified in the results. However, each method requires an

independent parameterization of material properties as described in the next section.

The Delaunay triangulation resulted in an average of 6 or ∼14.2 bonds and 6 or ∼36.9

angles per particle in 2D or 3D, respectively. In order to reduce the amount of information

communicated between subdomains of the spatial decomposition, a maximum bond length

131



CHAPTER 4. BRITTLE FRACTURE

of 5/4 × 21/6a was defined in 3D. Any bond longer than this threshold was then pruned.

Correspondingly, any angle defined using this bond was also removed. We found that this

length restriction produced no new rattlers and had a minimal effect on results. However,

removing these bonds reduced the interprocessor communication load by a factor of two.

The number of bonds per atom decreased to ∼11.0 and the number of angles per atom

to ∼24.4. Therefore, this restriction had the additional benefit of speeding up simulations

by approximately 33%. Presumably stricter thresholds could be set to further accelerate

simulations.

4.2.2 Interactions

Particles interact with three distinct types of interactions. The first is a repulsive

central-body force between non-bonded particles. These interactions represent forces be-

tween separate solid grains. Within a connected grain, bonded particles interact with an

attractive central-body force as well as a three-body angular interaction. In this section,

we describe these three interactions: UNB, UB, and UA where NB, B, and A stand for

non-bonded, bonded, and angular. At the end we will discuss damping between particles.

The non-bonded potential is a function of the pairwise distance between two particles

as well as, in 2D, the particle types. We model this interaction using a purely repulsive LJ

potential:

UNB(r) =


4u
((

aNB
r

)12 −
(
aNB
r

)6)
+ uB, r < rc = 21/6aNB

0, r ≥ rc = 21/6aNB

(4.1)
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where u and aNB are the energy and length scales of the interaction. The constant u is

defined as the fundamental energy scale. If there are multiple types of materials in the

system, there is a distinct value of u for each material, and the largest is chosen as the

fundamental energy unit. We set aNB as the arithmetic mean of the radii of the two types

of interacting particles. In 3D, this implies aNB = a, the fundamental unit of length in

the system. One could imagine scaling aNB by a constant factor to reduce the volume of a

broken system. This could originate from fracturing a porous solid. Currently, if the entire

initial bond network was removed such that all particles only interact with the repulsive

UNB, the system would be at a positive pressure due to the preparation of the initial system.

This hypothetical pressure depends on the initial particle density and quench rate. We have

not investigated how changing aNB would affect results.

The second interaction is the pairwise force between bonded particles. This interaction

is a function of both the current and initial distances between the two particles. Therefore,

this potential depends on the reference state of the material. This construction contrasts

with commonly used potentials in MD simulations which only depend on the current dis-

tance. We construct UB piecewise out of a repulsive and attractive component:

UB(r, r0) =


UB,R(r, r0), r < r0

UB,A(r, r0), r ≥ r0

(4.2)

where r0 is the initial separation in the undeformed solid. We want the original refer-

ence state to be free of residual forces or stresses and therefore require UB,R(r0, r0) =

UB,A(r0, r0) = 0.
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For the repulsive force, we again use a cut and shifted LJ interaction as in Eq. (4.1).

Here we set the length scale aB equal to 2−1/6r0 such that the potential is at its minimum at

r0. The energy scale uB is set equal to ua2
B. We choose to scale the energy by a2

B such that all

bonds have an equal stiffness kLJ = 36×22/3u/a2. Early tests indicated that homogenizing

the stiffness helped minimize non-affine deviations from the elastic response of a solid under

loading. We also shift the repulsive LJ potential by a constant uB + UA,R(r0, r0) such that

the energy is continuous at r0.

For the attractive force, we choose to use a polynomial function:

UB,A(r, r0) =


C0 + C2(r − r0)2 + C4(r − r0)4, r < λcr0

0, r ≥ λcr0

(4.3)

where λc is a new free parameter and C0, C2, and C4 are four coefficients. Here λc represents

a critical stretch for each bond. Once a bond stretches past this threshold it is irreparably

broken and any further interactions between the two particles revert to UNB. This allows

for the model to support fracture.

The coefficients Ci are chosen to meet several conditions and depend on both r0 and

λc. The second coefficient, C2, is chosen to be equal to kLJ/2 where kLJ is the stiffness of

the LJ potential. This ensures the elastic response of the bonded potential is equivalent

in compression and in stretch. The other two coefficients, C0 and C4 are chosen such that

UB,A smoothly interpolates to zero with no discontinuities in the derivative at r = λcr0.
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Based on these conditions the values of these coefficients are:

C0 = −9× 22/3(λc − 1)2ur2
0 (4.4)

C2 = 18× 22/3u (4.5)

C4 = −9× 22/3(λc − 1)−2ur−2
0 (4.6)

One could consider adding a third order term to Eq. (4.3) which would allow one to control

the energy of each bond or the critical force at which a bond breaks. This could be useful

for fitting additional fracture properties of the material but we did not find it necessary.

Finally, we define the angular interaction UA. The angular interaction will be a function

of the initial angle θ0, the current angle θ, and the current stretch of the two bonds that

form the angle, λ1 and λ2. The potential is decomposed into the product of two functions:

UA(θ, θ0, λ1, λ2) = UA,θ(θ, θ0)FA,λ(λ1, λ2) (4.7)

First we will discuss the angular component and then focus on the stretch component.

The angular interaction is also constructed piecewise:

UA,θ(θ, θ0) =


D0 + kA

2 (θ − θ0)2 +D4(θ − θ0)4, θ < θc

0, θ ≥ θc

(4.8)

where kA and θc are two new free parameters and D0 and D4 are constants. Here kA is the

stiffness of the angular interaction and θc represents a critical angle. If the deviation in the
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angle from the initial angle exceeds θc the angular interaction will permanently break. The

coefficients are chosen such that UA,θ smoothly approaches zero at θ = θc implying:

D0 = −1

4
kAθ

2
c (4.9)

D4 = −1

4
kAθ

−2
c (4.10)

The other component of the angular interaction depends on the stretch of each bond.

If one of the bonds associated with the angle breaks the angle will break as well. To avoid

discontinuities in angular forces when bonds break, the angular interaction is multiplied by

a smoothing function. This function is a function of the maximum stretch of the two bonds:

λmax = max(λ1, λ2):

FA,λ(λmax) =



1, λmax ≤ 1

1 + S2λ
2
max + S4λ

4
max, 1 < λmax < λc

0, λmax ≥ λc

(4.11)

where S2 and S4 are two new coefficients. The coefficients are chosen such that FA,λ and

its derivative are zero at λmax = λc:

S2 = −2(λc − 1)−2 (4.12)

S4 = (λc − 1)−4 (4.13)

In the limit of large θc, the interaction can be approximated as a torque spring which only
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Figure 4.2: Two hypothetical bonded networks are shown in (a) and (b). The network in
(a) will produce a floppy mode if the red dashed bond is deleted. The network in (b) would
remain rigid if the same bond were to be deleted. This distinction cannot be made without
traversing the entire ntework.

breaks when bonds break.

In d dimensions, a cluster of N particles will be rigid as long as dN − d(d + 1)/2 =

Nc − Nss where d(d + 1)/2 is the number of rigid rotations and translations, Nc is the

number of constraints (interactions), and Nss is the number of states of self stress.144,145

If this equation is not met, the cluster will contain at least one zero mode, an internal

degree of freedom that costs no energy to move. Rigid, brittle materials of course do not

have any zero modes. If one wanted to prevent the introduction of any free floppy modes

in the system, one could possibly use two rules. First one could prevent a bond or angle

from breaking if it introduced a floppy mode. This could be difficult to implement as one

cannot generally determine whether a floppy mode is introduced without using expensive

algorithms that scale as O(N) where N is the number of particles.146 For instance, in Fig.

4.2 the removal of the dashed red line may or may not produce a floppy mode and one

cannot tell without traversing the entire network.
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Alternatively, one could imagine a second rule that may be unnecessarily strict but

would ensure no floppy modes were introduced. For instance, one could require every bond

have at least one angle in 2D and two angles in 3D. This ensures all bond connections

are rigid. A model including this feature was tested but proved to be too computationally

complex. Each bond needs to know the current number of associated atoms. This is an

expensive procedure due to the data structures used in LAMMPS. In addition, one would

also need to interpolate the bond potential to zero as angular interactions break, further

increasing the computational cost. We find floppy modes are generally only prominent on

small length scales, typically representing one or two dangling bonds. Therefore they are

expected to have a minimal effect on macroscopic behavior and they were not eliminated

from the system.

In a real solid, energy released in fracture will flow to degrees of freedom on smaller

length scales. Therefore, there are usually no thermal effects in fracture or granular flow

of brittle material. However, in our DEM there is a minimum length scale, and a constant

influx of energy will cause a steady rise in temperature which can lead to melting. To prevent

heating, we apply a damping force on all neighboring particles. Neighboring particles are

defined as particles which interact either through bonds or non-bonded forces. We use a

form of damping commonly used in dissipative particle dynamics (DPD):147

~FD(~r, δ~v) = −γ
(

1− r

rmax

)2

(r̂ · δ~v) (4.14)

Here ~r is the vector between the two particles, δ~v is the difference in velocities, rmax is
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the maximum distance of the interaction (rc for nonbonded particles and r0λc for bonded

particles), and γ is a free parameter. This force damps relative differences in velocity and

is also known as Kelvin damping. It is Galilean invariant and is therefore the lowest order

term that one would expect to emerge in an isotropic solid.148 We find the specific value of

γ has no apparent affect on material properties and only controls the rate at which energy

is dissipated. In simulations that model single crack growth and do not release significant

amounts of energy we set γ = 0. In simulations that are run to large strains we find γ = 50

dissipates energy sufficiently rapidly to prevent the emergence of thermal effects over the

range of strain rates considered.

4.2.3 Simulation Protocol

One can define the fundamental time scale τ of the system using the fundamental

length a, mass m, and energy u: τ =
√
ma2/u. As mentioned above, in instances where

multiple materials are simulated, u represents the largest interaction energy and thus sets

the smallest timescale. Particle dynamics are numerically integrated using a velocity-Verlet

solver using a timestep of either 0.01 or 0.005τ .

Deformation is applied to a solid by expanding or compressing the periodic boundary

conditions and moving particles affinely at constant strain rates unless otherwise mentioned.

In periodic systems, a variety of lattice vectors were chosen including orthonormal lattice

vectors as well as the KR and generalized KR boundary conditions discussed in Chap. 3.
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4.3 Parameterization

The formulation of interactions in the last section contains three free parameters: kA,

λc, and θc for simulations of a single type of material. These three parameters all have mea-

surable effects on simulation results. In this section we discuss how the model is calibrated

to match real material properties.

4.3.1 Elastic Response

In order to calculate the bulk modulus of a system, we generate a square or cubic

sample with a side length of 800a in 2D or 100a in 3D. Hydrostatic compression is applied

up to a volumetric strain of 0.5% at a constant rate. A least mean-squared error (LMSE)

linear regression was used to fit the pressure as a function of strain and estimate the bulk

modulus. In Fig. 4.3 the bulk modulus is plotted as a function of the angular stiffness kA

in (a) 2D and (b) 3D. As the angular stiffness increases, we see the bulk modulus slightly

increases. Adding in stronger interactions would be expected to increase the stiffness of the

system. However, the effect is less than ten percent. We therefore roughly approximated B

as a constant, 52u/a2 in 2D and 39u/a3 in 3D. This approximation implies that the energy

scale essentially sets the bulk modulus of the system. The elastic response of the material

does not depend on fracture properties of the model and therefore λc and θc have no impact

on the bulk modulus.

In order to fully parameterize the elastic response, we need to be able to independently

adjust the shear modulus relative to the bulk modulus. As seen above, the angular stiffness

has a negligible affect on the bulk modulus of the system. However, one would anticipate
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Figure4.3:ThebulkmodulusversusangularstiffnesskAin(a)2Dand(b)3D.

Figure4.4:(a)Ahypotheticalsetofbondedparticlescontainingtwoangularinteractions
(dashedlines).(b)Thesameconfigurationafterapplyingatheoreticaldiagonalshear
leadingtocompressionoftheredangularinteractionandextensionoftheblueangular
interaction.

itwouldhaveasubstantialimpactontheshearmodulus. Thisismotivatedbythehy-

potheticalconfigurationofbondedparticlesinFig.4.4a. Onecanapplyadiagonalshear

withoutelongatingthecentralbondthatconnectsthegreenandbluesetsofparticles.Thus

thestrengthofthebondedinteractionuwouldhavenoimpactontheresistancetoshear.

However,thetwoangularinteractionsindicatedbythedashedarcswouldresistsucha

shearmodeasseeninFig.4.4b.
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Figure4.5:TheshearmodulusversusangularstiffnesskAin2D(a)and3D(b). Dashed
lineshaveslopesof3.4and3.6andinterceptsof25and21in(a)and(b)respectively.

Inordertocalibratetheshear modulusinthe model,systemswerepreparedwith

dimensionsof800×800ain2Dand200×200×12in3D.Systemswerethenstrained

undersimplesheartoastrainof0.5%ataconstantrate. Asbefore,theshearmodulus

wascalculatedusingaLMSEfittotheresultingshearstress.InFig.4.5thefittedshear

modulusisplottedasafunctionofangularstiffness.Incontrasttotheresultsforthebulk

modulus,theshearmodulusincreasesroughlylinearlywithincreasingangularstiffness.

InFig.4.6,wecalculatePoisson’sratio,ν=(B−G)/(B+G)in2Dand(3B−2G)/(6B+

2G)in3D,asafunctionofangularstiffness. Poisson’sratiodecreaseswithincreasing

angularstiffnessduetotheincreaseintheshearmodulus. Thisdatademonstratesthe

abilitytomodeltheelasticresponseofawiderangeofmaterials.IncreasingkAcaneven

modelauxeticmaterials(ν<0).NotethatthemeasuredPoisson’sratioatkA=0,0.268

in2Dand0.329in3D,isveryclosethetheoreticalresultforarandompackingofsmooth

sphereswithcentralbodyforces,1/4in2Dand1/3in3D.149

SeveralotherDEMshavebeencalibratedtomodelalargerangeofelasticresponses.
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Figure4.6: Poisson’sratioversusangularstiffnesskA in2D(bluecircles)and3D(red
triangles). AhorizonaldashedlinehighlightsaPoisson’sratioof0.17,theapproximate
valueofboroncarbide.150

Someofthesemodelsuseregularlatticesofdiscreteelements137,138andothersuserandom

packingsofspheres.134,136Thesemodelsallcontroltheelasticreponsebyusingbondsthat

transmitbothradialandtransverseforces. Thisrequireseitherresolvingtherotational

degreesoffreedomormodellingirregularpolygons. OtherDEMsthatdonotmodelsuch

transverseforceshavebeenrestrictedtofixedPoisson’sratios.131Theuseofpointparti-

cleswiththreebodyinteractionsinthisworkisanovelmethodofcontrollingtheelastic

response.

4.3.2 FractureToughness

Havingfittheelasticresponseofthemodel,wenextturnourattentiontomeasuring

fracturepropertiesofthemodel.OftenDEMscalibratethecompressiveortensilestrength
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of a simulated solid134,151 which is distinct from the toughness.152 The strength of a ma-

terial depends heavily on preexisting distributions of defects or cracks. Microscopic defects

have been experimentally observed to dominate failure of brittle materials and greatly af-

fect the measured strength.116,153,154 Defects provide nucleation sites for crack growth,

greatly reducing energy barriers for fracture. One goal is to model individual defects in

a homogeneous matrix of material. Therefore, the ideal calibration of strength should be

independent of defect distributions. In experimental tests of fracture toughness, an initial

crack is typically provided to diminish the dependence on other preexisting cracks or de-

fects. In this section, we calibrate the mode I and mode II fracture toughnesses, KIC and

KIIC, respectively. Mode I crack growth is due to tensile opening and mode II crack growth

is due to simple shear.

In order to measure the mode I fracture toughness, we prepare a sample with a preexist-

ing crack. In 2D, an elliptical crack was created with the major axis aligned perpendicular

to the direction of loading in a square sample with side length 800a. The ellipse had a minor

axis of 2a and a major axis of 20a. The crack was created by removing all particles that lay

within the region and their associated bonds and angles. Any other bonds that crossed the

minor axis and their associated angles were also removed. All bonds that spanned periodic

boundary conditions were broken to produce free boundary conditions. In 3D, a similar

quasi-2D, plane-strain configuration was used. An elliptical crack with major and minor

axes of 20a and 2a was placed in a square of side length 200a with free boundary conditions.

The crack was extended through the third dimension of length 12a with periodic boundary

conditions. The geometry of the 3D system is seen in Fig. 4.7. After preparing the sample,
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all particles within a distance of 3a from the boundary perpendicular to the major axis of

the crack were displaced at a constant speed to produce tension. Systems were strained

until the initiation of crack growth and failure of the sample.

From the peak tensile stress σf , we calculated the approximate fracture toughness given

the width of the square box L and length of the initial crack LC :155

KIC = σf
√
πLC/2

[
1− 0.025(LC/L)2 + 0.06(LC/L)4

]√
sec

πLC
2L

(4.15)

This calculation assumes an infinitely thin crack. Tests varying crack width, box height,

and system size found results varied only ∼10% which we take as the uncertainty due to

finite size. Larger simulations can be run if there is a need for more precision. The resulting

fracture toughness as a function of critical stretch λc is plotted in Fig. 4.8 in (a) 2D and (b)

3D for the values of the angular stiffness indicated in the legend. In both cases, the fracture

toughness is seen to rise roughly linearly with λc. This is reasonable as λc is approximately

proportional to the failure strain. In addition, the slope of the relation is seen to rise with

increasing angular stiffness or decreasing Poisson’s ratio. This is primarily due to changes

in Young’s modulus. Finally, there is a dependence on θc that is not shown. At large values

of λc, there exists a measurable dependence on θc. If θc is small, angles begin to break

before bonds break, reducing the fracture toughness. However, this dependence is small, at

most 10%, and is therefore ignored.

In Fig. 4.9, the distance between a broken bond and the initial crack tip is plotted as

a function of the time at which the bond broke in (a) 2D and (b) 3D for different values of

145



CHAPTER 4. BRITTLE FRACTURE

Figure 4.7: Rendered image of crack geometry used for mode I fracture calibration in 3D
looking into the periodic dimension along the crack. The black border indicates the initial
extent of the free boundary. The box has a side length of 800a and the elliptical crack has
a major axis of 20a and a minor axis of 2a. A tensile displacement was applied on the red
particles located within a distance of 3a from the top and bottom of the box.
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Figure 4.8: Mode one fracture toughness KIC as a function of critical bond stretch λc for
values of the angular stiffness indicated in the legend in (a) 2D and (b) 3D.

Poisson’s ratio. The maximal distance of a broken bond ahead of the initial crack provides

a measure of the distance the crack has travelled. Initially a few bonds break right at the

tip of the crack. This breakage accelerates until eventually the crack begins to grow at

a constant speed equal to the maximum crack velocity Vc. In isotropic, brittle materials,

the maximum crack velocity is found to be less than the theoretical maximum set by the

Rayleigh wave speed cR.
156 Here we find the maximum crack velocity to be approximately

0.55cR at all values of ν considered in 3D. The crack velocities are indicated by the dashed

lines in Fig. 4.9b. No significant dependence of Vc on λc or θc was observed. We also tested

the dependence of the crack velocity on the damping. No significant dependence of the

crack speed on γ was found. However if one were to damp the absolute velocity as opposed

to relative velocities, an increase in the damping strength would cause a decrease in the

maximum crack velocity. These results do not change with a reduction in the loading rate.

Studies of crack growth in MD simulations have found that reflections of sound waves

from the boundaries can affect measurements of the crack speed.141,157 However, in 2D and

3D the speed of sound is approximately 10a/τ implying propagation of phonons across the
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Figure 4.9: The distance between broken bonds and the initial crack tip as a function of
the time at which the bond broke for the indicated values of the angular stiffness in (a) 2D
and (b) 3D. Dashed lines in (b) have slopes of 0.55cR where the Rayleigh speed cR is 4.5,
5.6, 6.1, and 6.5 a/τ for systems of kA equal to 0, 3, 5, and 7 u respectively.

system would take roughly 80τ in 2D or 20τ in 3D. Aside from a few bonds that break at

very small strains, the crack is seen to reach its maximum speed on a shorter timescale. This

suggests that reflections do not affect our measurements. If more accurate measurements of

Vc were required, one could consider increasing the system size or constructing a surrounding

region of viscious damping to remove the possibility of phonon reflection.141,157

Measuring mode II fracture toughness is experimentally challenging in brittle materials

such as rock where KIIC > KIC. Measurements require complicated loading geometries

in order to suppress mixed mode crack growth.158,159 In simulations however, we can

artificially suppress mode I crack growth and force shear cracks even with simple loading

geometries. Systems were prepared with identical geometries described above except that

the box is fully periodic and the crack is oriented diagonally to the box lattice vectors as

seen in Fig. 4.10. Pure shear is applied, compressing vertically and expanding horizontally,

at a constant strain rate. In order to suppress mode I growth, two classes of bonds are

defined as seen in Fig. 4.10. Bonds that are associated with particles aligned along the
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shear crack direction (red) will break at the given values of λc or θc. All other bonds (blue)

are not allowed to break. Two classes of angles are also defined in a similar fashion. This

forces cracks to grow diagonally, producing a pure mode II shear crack.

In Fig. 4.11a-b, the ratio of KIIC/KIC is plotted as a function of θc for the values of

λc indicated in the legend and kA = 3. Increasing θc increases mode II fracture toughness

relative to mode I fracture toughness. The effect is more pronounced at smaller values of

λc. Alternatively, in Fig. 4.11c-d, kA is varied for a fixed value of λc = 1.05. The increase

in KIIC/KIC with increasing θc is also enhanced for larger values of kA which leads to larger

angular forces. Although untangling the relation between these parameters is complicated,

this data does demonstrate that it is possible to independently calibrate KIIC relative to

KIC. As accurate values of KIIC do not exist for many brittle materials, we do not further

characterize this dependence.

4.3.3 Boron Carbide Calibration

Our focus is modeling the behavior of boron carbide (BC), a very hard ceramic used to

make ballistic armor. Experimentally measured material properties of BC are summarized

in Table 4.1. In this subsection, we describe the procedure of calibrating the above model to

represent BC. First we describe a mapping of the fundamental constants to real units based

on a coarse-graining length scale. Next a particular set of model parameters is chosen and

the resulting elastic response and fracture toughness of the model are compared to those

of BC. Finally, we validate that this choice of model parameters is capable of reproducing

important features of compressive failure in brittle solids such as BC.
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Figure 4.10: Zoomed in image of crack geometry used for mode II fracture calibration in
3D. The image shows a region of approximately 50a by 50a. The elliptical crack has a major
axis of 20a and a minor axis of 2a. Particles are bonded by two types of bonds, unbreakable
bonds (blue) and breakable bonds(red).

Material property Measurements

Density ρ = 2520 kg/m3160

Bulk modulus B = 232 GPa161

Poisson’s ratio ν = 0.17160

Mode I fracture toughness KIC = 2.5 MPa
√

m160

Mode II fracture toughness Unknown
Maximum crack velocity 480 m/s,160 2000 m/s154

Table 4.1: Summary of BC material properties.
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Figure 4.11: Ratio of mode II fracture toughness K2C to mode I fracture toughness K1C

as a function of critical bond stretch θc. Ratio calculated for values of λc indicated in the
legend and kA = 3 in 2D (a) and 3D (b). Ratio calculated for values of kA indicated in the
legend and λc = 1.05 in 2D (c) and 3D (d).
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Parameters Value Dependence on a

a 0.125µm a
m 20 fg a3

u 10−11 J a3

τ 0.2 ns a1/2

Table 4.2: Summary of fundamental constants for the 3D model based on the chosen coarse
graining of BC.

Given the length scale of a coarse grained particle, a, one can calculate the correspond-

ing values of the other fundamental constants m, u, and τ in real units. Here we set the

radius of each particle to 0.125µm and calculate the values of the other fundamental con-

stants listed in Table 4.2. The choice of a is based on the spatial resolution of micro CT

scans described in the next section. The value of m is determined by matching the mass of

a single coarse-grained particle to an equivalent volume of BC. Similarly, the value of u is

derived by equating the bulk modulus of the model to that of BC. Lastly, the value of τ is

calculated as
√
a2m/u. If a different value of a is chosen, these fundamental constants will

scale as a power of a/0.125µm indicated in Table 4.2.

The free parameters of the model, kA, λc, and θc, are then determined by fitting the

Poisson’s ratio, mode I fracture toughness, and mode 2 fracture toughness to those of BC.

For the 3D system, we choose values of kA = 3.0u, λc = 1.05, and θc = 10◦ corresponding

to values of ν = 0.17, KIC = 5.6 MPa m1/2, and KIIC = 12.9 MPa m1/2. The Poisson’s

ratio is equivalent to that listed in Table 4.1 for BC. The value of KIC is within a factor of

two of the predicted value for BC. However, one could calibrate λc to match KIC exactly.
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As we do not know of a published value of KIIC for BC, the value of θc does not correspond

to an experimental measurement and was simply chosen. If an accurate measurement of

KIIC was made for BC, one could determine the appropriate value of θc. It is interesting

to note that the model has a crack velocity that corresponds to 1930 m/s, which is within

the range of experimentally measured values for BC in Table 4.1.

In 2D we use a similar set of parameters except kA = 2.5 corresponding to ν = 0.20.

These parameters are used in the rest of this work unless otherwise specified. As there is

no measure of thickness in the 2D system, one cannot make the conversion to real units.

However, we made the decision to define τ = 0.2 ns and u = 1.3× 10−11 J/a such that the

bulk modulus of the 2D system corresponds to the bulk modulus of BC. Here the factor of

1.3/a is the ratio of the measured 3D bulk modulus to the 2D bulk modulus. This decision

was made to ease comparisons between data for 2D and 3D systems.

In boron carbide, uniaxial compressive failure is expected to be dominated by the growth

of wing cracks.122 To test for wing crack growth in our model, we use simulation protocols

and geometries similar to those described above to measure the mode I fracture toughness.

As shown in Fig. 4.7, we use a diagonal crack instead of a horizontal crack and apply a

compressive displacement. Using the parameterization for BC in Table 4.1, we found this

geometry produced wing crack growth as seen in Fig. 4.12a. The growth of wing cracks

is found to be quite robust to variations in the crack geometry. Wing cracks are often a

challenge to reproduce in DEMs but have been seen before in both 2D162,163 and 3D164

models. Wing cracks were also identified in simulations of elliptical penny cracks.
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Figure 4.12: Spatial images of crack growth for uniaxially compressed samples with a Pois-
son’s ratio of (a) 0.17 and (b) 0.25. Particles are colored by the change in bond energy
qualitatively highlighting regions of bond breakage.

Interestingly, if we turn off angular interactions (set kA = 0) we generally find a stronger

mix of shear crack growth as seen in Fig. 4.12b. However the direction of secondary crack

growth is quite sensitive to the crack width and system size.

4.4 Transition from Fracture to Granular Flow

Brittle solids fail very rapidly and the transition from an intact solid to a broken mass

of fragments depends strongly on the initial defects in the sample.116,153,154 These defects

could include preexisting cracks or inclusions. Such flaws have been seen to nucleate wing

cracks which can subsequently grow and rapidly coalesce leading to failure.120 A perfectly

homogeneous brittle solid would have no such extrinsic nucleation sites and one would

expect a larger energy barrier to initiate crack growth. This would increase the yield stress.

Not only does the distribution of defects impact when and where wing cracks grow, the
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resulting wing cracks affect the elastic response of the material.165,166

The fracture of brittle materials also depends strongly on the rate of mechanical loading.

Brittle materials often fail at larger yield stresses at higher rates.167 At higher rates, a larger

population of cracks participate in failure due to an interplay between the strain rate and

crack velocity.153,168 At low rates, only a small population of the weakest defects may be

activated, making the extremes of the defect distribution important. At high rates a larger

population of defects comes into play and more typical defects contribute to failure.122,169

Rate also affects the nature of the fragmented state. More crack growth at higher rates

will produce a finer distribution of fragments.151,170 Several theories have been proposed

to capture this behavior.171,172

Constitutive models have been designed that include these effects.122,173,174 These

models often dsecribe the evolution of a damage parameter which measures the local con-

centration of wing cracks in a single element.175 To produce physically accurate results, the

evolution of the damage and its effect on the stress in the system must be understood.

The evolution of damage has been studied using finite-element models168 but mesh ef-

fects can limit the evolution of cracks. Measuring damage experimentally in situ is not an

easy task. Experiments have been performed that use high-speed photography to track a

projected view of crack growth153 or fully track the 3D growth of fracture planes in qua-

sistatic loading at incremental strains.176,177 New techniques are being developed that may

allow experimentalists to track the dynamical evolution of crack distributions.178 However,

full access to the dynamical evolution of the microstructure remains a challenge.
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In this section, we used the model described in the preceding sections to study general

trends in the effect of defect density and strain rate on the fracture and failure of brittle

solids. We also calculate and track the evolution of damage in the model and relate it to the

evolution of the stress. In the next subsection we discuss simulation details specific to this

section. In Subsec. 4.4.2 we track the evolution of the stress, crack growth, and damage

at a fixed density of defects. Finally in Subsec. 4.4.3 results are presented for simulations

with varying initial defect densities.

4.4.1 Simulation Methods

In order to capture a realistic population of defects we use micro CT scans of BC

provided by Moorehead et al.179 As seen in Fig. 4.13a, these BC samples contain three

populations of defects: voids (black), low density carbonaceous regions (dark gray), and

high density aluminum nitride (white). Each image is roughly partitioned into the four

categories using a simple thresholding of pixel intensity. We do not attempt to perform an

accurate decomposition of the images into different phases, perform noise reduction, or limit

the maximum defect sizes such as in the work by Moorehead et al. To further simplify the

model, we only include carbonaceous defects. We assume aluminum nitride regions behave

like BC and treat voids as carbonaceous. The carbonaceous regions are soft enough that

they nucleate cracks almost as efficiently as voids. Fig. 4.13b shows an example of the

resulting geometry of carbonaceous defects.

In order to model carbonaceous defects, we first require calibration of model parame-

ters. Specific material properties of these defects are difficult to measure experiementally.
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Figure 4.13: (a) Example micro CT scan provided by Moorehead et al.179 The image is
approximately 550 µm in diameter. (b) Rendered set of three dimensional defects extracted
from a volume of ∼ (25µm)3.

However nanoidentation tests of BC samples found that the elastic modulus of graphitic

inclusions is approximately a quarter of that of BC.180 We therefore define udefect = 0.25u

and kA,defect = 0.75u assuming no change in Poisson’s ratio. Since we have no information

on the fracture toughness of defects we leave λc = 1.05 and θc = 10◦. The interactions

at the interface between regions of BC and carbonaceous defects have values of ucross and

kA,cross. These values are set to the harmonic mean of the corresponding coefficients for

BC and the carbonaceous defects.

Initial systems were generated with periodic boundaries of size L = 200µm in 2D and

L = 25µm in 3D. Spatial maps derived from the micro CT scans described above were

overlaid on the periodic cell of the simulation to produce defects. The maps were coarse

grained on a length scale of a = 0.125µm. This method produces planar boundaries of

defects that end at the edges of the CT image. These truncated defects could potentially bias
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the location of crack growth however no evidence of abnormal behavior at the boundaries

was detected. Future studies could remove discontinuities by mapping defects across the

boundaries, removing boundary defects, or using fixed boundary conditions.

The initial area or volume fraction of defected material is defined as ρi. Based on CT

scans, this density was found to be ∼ 3% in 2D and ∼ 17% in 3D. Adjacent regions of

defected material were spatially clustered to identify individual defects. To vary the defect

density, individual defects were randomly deleted until a desired lower density of ρ was

reached. We define ρR = ρ/ρi as a measure of the number of defects in the sample.

Simulations in this section were run using constant volume, pure shear deformations.

The box lattice vectors were chosen to align with the directions of principal stress. In 2D,

the box period in the x direction Lx was compressed at a rate ε̇ while the box period in the

y direction Ly was expanded. In 3D, Lx was compressed at a rate ε̇ while both Ly and Lz

were expanded at a rate ε̇/2. The shear stress is defined as σs ≡ (σxx − σyy)/2 in 2D and

σs ≡ (2σxx − σyy − σzz)/4 in 3D where σij are the components of the stress tensor. Units

of time and stress have been converted to seconds and GPa to ease the comparison to real

materials.

4.4.2 Rate Effects in Brittle Fracture

In Fig. 4.14, stress-strain curves at the indicated strain rates are plotted for (a) 2D and

(b) 3D systems with relative defect density ρR = 1. Note that these abnormally high rates

reflect the particularly small length scale that is being resolved. High rate effects will not

emerge on micron length scales unless there are extraordinarily large rates.

158



CHAPTER 4. BRITTLE FRACTURE

(a)

0

2

4

6

0.00 0.01 0.02 0.03 0.04 0.05
Strain

S
he

ar
 s

tre
ss

 G
PA

 5 x 104

 1.5 x 105

 5 x 105

 1.5 x 106

 5 x 106

(b)

0

4

8

12

0.00 0.01 0.02 0.03 0.04 0.05
Strain

S
he

ar
 s

tre
ss

 G
PA

 1.5 x 105

 5 x 105

 1.5 x 106

 5 x 106

Figure 4.14: The shear stress as a function of strain for a sample strained at the rates
indicated in the legend in (a) 2D and (b) 3D. Dashed lines in (a) have a slope of 2G and
1.2G and the dashed line in (b) has a slope of 3G. Large filled points highlight approximate
strains where the initial elastic response ends, the damaged elastic loading starts and stops,
and the system fully fails for each rate.

First we focus on behavior seen in the 2D system. At low strains at all rates, the shear

stress increases linearly with strain with a slope equal to 2G. This is consistent with the

definition of shear stress and strain in the previous subsection. Elastic loading extends

up until an initial yield strain εY,i. As the strain rate increases, εY,i increases. At low

rates there is a rapid, almost discontinuous drop in stress at εY,i. As rate increases, this

transition becomes smoothed out. At all rates the system returns to elastic loading after

the initial yield. However, the damage has caused a 40% reduction in the elastic modulus

of the system. The system finally fragments into discrete grains at a strain εY,f . Higher

fragmentation stresses are identified at higher rates, consistent with what is observed in

experiments.

Similar behavior is identified in the 3D system. The system elastically loads as the

shear stress grows with a slope of 3G up to a strain of εY,i that increases with increasing

rate. After initially yielding, the system loads with a reduced modulus before ultimately
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failing. However, in 3D the reduction in the modulus depends on the rate at which the

system was strained. At the lowest rate a 35% reduction in the modulus is measured while

there is a 65% reduction at the highest rate.

Decreasing ε̇ below the rates shown in Fig. 4.14 did not significantly affect the response,

indicating that the lowest rates correspond to quasistatic (QS) loading. At higher rates than

those shown, transitions associated with damage and failure are difficult to define. Future

work should focus on larger systems in 3D in order to probe a wider range of strain rates.

The stress response in the system can be connected to the growth of cracks in the

sample. In Fig. 4.15 the spatial positions of broken bonds are rendered in the material

reference frame for a 2D sample strained at a rate of (a) 1.5× 106s−1 and (b) 1.5× 105s−1.

The color of bonds corresponds to the designated values of strain in Fig. 4.14a. Prior to

initial yielding, bonds colored in red have broken. These represent small wing cracks that

nucleated from defects. At the higher rate, more wing cracks have been activated. After the

initial yield, wing crack growth accelerates as indicated by green bonds. Cracks have grown

to span the compressive axis in the low rate limit. In an unconfined simulation, this could

potentially correspond to failure. At higher strains the system still behaves as an elastic

solid with a reduced modulus. Crack growth slows during this new elastic regime and only

the bonds highlighted in blue have been broken. At still higher strains, the system begins to

deviate from elastic loading and the bonds in purple break leading to material failure. This

late stage growth consists primarily of crack coalesce. The percolation of cracks in both

periodic directions leads to the complete failure of the solid and the transition to granular

flow.
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Figure 4.15: Locations of broken bonds in the material reference frame from a 2D sample
strained to failure at a rate of 1.5×106s−1 (a) and 1.5×105s−1 (b). The vertical direction is
the direction of compression. Colors of bonds correspond to the interval of strain in which
they broke. These strain intervals are highlighted by large filled circles in Fig. 4.14a. Red
bonds correspond to bonds that broke before the initial elastic response ends. Green bonds
broke before the onset of elastic loading with the reduced modulus. Blue bonds broke before
the end of this elastic loading. Lastly, purple bonds broke right before the system failed.
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The general trends in wing crack growth seen here agree very well with observed ex-

perimental behavior. In uniaxial compression of ice, wing cracks are seen to nucleate off of

parent cracks.120 These cracks then grow until surface interactions lead to the growth of

coalescent cracks and failure. The colaescence of cracks is often linked to the peak stress

in loading.153 A similar partitioning of crack growth was performed in 2D systems using

finite-element models.168

We also performed a similar characterization of crack growth in 3D samples. The

locations of broken bonds in a 3D sample strained at the lowest rate are rendered in Fig.

4.16. As before, the color represents the interval of strain over which the cracks broke as

indicated in Fig. 4.14b. At low strains, several planar wing cracks nucleate in red before

yield. Note that some of these wing cracks are occluded by other broken bonds. After

the initial yielding, cracks in green span one of the periodic boundary conditions lead to a

reduction in the modulus. Elastic loading continues until all of the blue bonds have broken

and a crack has grown to span the other periodic boundary. Failure occurs rapidly as purple

bonds break causing the coalescence of different wing cracks. At high rates, a much larger

population of cracks participate in failure and visibility is greatly reduced.

In order to quantify the size and number of cracks in the system, we calculate a damage

metric D:122,174

D =
1

V

∑
Cracks

`3i (4.16)

where V is the volume of the sample and `i is the length of the ith crack. An analogous

definition in 2D uses the sum of `2i normalized by the area of the sample. To calculate D,
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Figure 4.16: Locations of broken bonds in the material reference frame from a 3D sample
strained to failure at a rate of 1.5 × 105s−1. The vertical direction is the direction of
compression. As in Fig. 4.15, colors of bonds correspond to the interval of strain in which
they broke as indicated by filled circles in Fig. 4.14b. Red bonds broke prior to the initial
yield. Note that some smaller red wing cracks are occluded by later growth. Green bonds
broke prior to the interval of damaged elastic loading. Blue bonds broke before the end of
this interval and lastly purple bonds broke prior to complete failure. Stray, isolated broken
bonds were filtered out to improve visibility.
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Figure 4.17: Sample configuration of clustered broken bonds in 2D. All bonds constituting
a single crack are color coordinated.

we first need to cluster sets of broken bonds into cracks. Broken bonds were mapped to a

discrete cubic or square lattice with a cell length of a. Cells containing broken bonds were

grouped with any nearest or second nearest neighbor to form clusters. Sample clusters of

broken bonds identified as cracks are shown in Fig. 4.17.

Each clustered set of broken bonds was used to calculate the length of a crack. Unless

the crack percolated, any disjointed section of a crack that crossed a periodic boundary was

remapped to the corresponding image. A bounding box was then placed over the crack and
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its diagonal was used to calculate a length scale ` of the crack. This definition maximizes

the length of a crack. A value of D was then calculated at regular strain increments. It is

important to note that this measure of the damage is not guaranteed to grow monotonically

with strain. If two system spanning cracks with length ` = L were to coalesce, the damage

defined in Eq. (4.16) would decrease by a factor of at least (2 −
√

2)L3/V . We therefore

define the damage at a strain ε as the maximum value of D in the interval [0, ε]. This

guarantees that the damage increases monotonically with strain.

The damage is plotted as a function of strain in Fig. 4.18 for (a) 2D and (b) 3D

systems at the indicated values of the rate. Damage is accumulated more rapidly at low

rates. The strains at which the system initially yields are approximately indicated by the

first filled-in circle for each curve and failure corresponds to the final point. In 2D, the

damage remains below 0.1 in the elastic regime. During the initial yield, D rises above

unity. Damage continues to grow during the interval where the system responds with a

lower elastic modulus, and failure occurs at D between 3 and 5. In 3D, D has reached 1.4

to 3.0 before yield and rises less precipitously during yield. Failure occurs at D = 8 to 12.

The level of damage corresponding to the initial yield may increase with increasing rate but

statistical fluctuations are comparable to the changes. As seen in Figs. 4.15 and 4.16, the

initial yield demarcates the onset of system spanning crack growth. Therefore, at larger

strains the damage becomes poorly defined due to the periodic boundary conditions.
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Figure 4.18: Damage as a function of strain for a sample strained at the rates indicated in
the legend in (a) 2D and (b) 3D. Large, filled points correspond to the same values of strain
indicated in Fig. 4.14.

4.4.3 Impact of Defect Density on Failure

In the above subsection, we studied the behavior of a sample prepared with a fixed

defect density. We now explore how varying the density of defects ρR impacts the brittle

failure of solids. Here we primarily focus on the initial yield at a strain εY,i. In Fig. 4.19a,

traces of stress versus strain are plotted for 2D systems with the indicated values of ρR, that

are strained at (a) ε̇ = 5 × 104s−1 and (b) ε̇ = 5 × 106s−1. As ρR decreases, εY,i generally

increases. However, the magnitude of this effect depends on the rate. At low rates, εY,i is

insensitive to ρR until ρR decreases below about 0.1. In contrast, at high rates εY,i varies

rapidly as ρR drops from unity and changes less at low ρR. At both rates, the ultimate

fragmentation stress does not appear to depend on defect density in a systematic way.

These observations are consistent with theoretical expectations.122,168,169 Failure at

low rates is expected to depend on the extremes of the distribution of defects: only the

least stable defects participate in failure. At ρR = 1, the 2D sample contains approximately

1100 discrete defects. If ρR is reduced by a half, one still has approximately 500 defects.
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Figure 4.19: (a-b) Stress versus strain for 2D systems strained at a rate of (a) 5 × 104s−1

and (b) 5 × 106s−1 for the indicated relative density ρR of defects. (c-b) Similar data is
plotted for 3D systems strained at a rate of (c) 1.5 × 105s−1 and (d) 5 × 106s−1. Dashed
lines in (a) and (b) have slopes of 2G and 1.2G. Dashed lines in (c) have slopes of 3G and
1.95G. Dashed lines in (d) have slopes of 3G and 1.05G.
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The distribution of defects is still well sampled and it is likely the least stable defects are

still represented. Therefore little change in εY,i is expected. In contrast, once the defect

density drops by a factor of 20, only 50 or so defects remain. Further reductions in ρR have

a high probability of pruning the relevant defects and significantly increasing εY,i.

At high rates, the average number of defects is important. Many cracks need to grow

simultaneously in order to keep up with the high rate of deformation. Many or all defects

participate in failure so a reduction in the number of defects from 1000 to 500 has a large

probability of reducing the number of defects that are activated and thus increasing εY,i. In

contrast, when one has only a handful of defects, say 20, some cracks will need to nucleate in

the homogeneous bulk regardless of which defects remain. This requires a much larger local

stress and effectively sets εY,i at the bulk strength. Therefore, the removal of additional

defects is unlikely to significantly affect εY,i.

In order to solidify these observations and begin making quantitative predictions, it is

important that future work simulate a large ensemble of random initial conditions. Mea-

suring the variation in εY,i at a given ρR and rate is much more informative than studying

results from a single ensemble. Furthermore, it is also important to characterize the distri-

bution of defects being used and activated.

In Fig. 4.19c-d, similar stress versus strain curves are plotted for 3D systems strained

at rates of (c) 1.5 × 105s−1 and (d) 5 × 106s−1. These samples contain a smaller number

of initial defects, approximately 300 at ρR = 1, so it is even harder to make claims without

more statistics. As in the 2D case, decreasing the density of defects is generally associated
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with larger values of εY,i at both rates. For this particular sample, εY,i does not depend

much on ρR for values of ρR ≤ 0.5. In the QS limit, this observation could result if the

relevant defect was never removed. As in the 2D case, the ultimate failure stress does not

exhibit a strong dependence on initial defect density at low rates but does in the high rate

limit where there is an increase in the ultimate failure stress with decreasing ρR.

In Fig. 4.20 the damage is plotted as a function of strain for the same samples as in

Fig. 4.19. In 2D, low rate results for all ρR show a rapid rise in damage from D < 0.1 in the

elastic regime (ε < εY,i) to D > 1 after yielding. At higher strains, D is fairly constant. At

high rates (Fig. 4.19b), damage accumulates more slowly with strain and does not saturate

before fragmentation. The rate of damage accumulation rises as the relative defect density

decreases.

The dependence on ρR at high rates can be understood in terms of the evolution of

cracks in the system. At high values of ρR, defects nucleate wing cracks at small strains

and the cracks grow gradually with strain. At a low value of ρR, the few remaining defects

all nucleate wing cracks that slowly grow until suddenly cracks begin nucleating in the

defect-free bulk leading to a rapid acceleration in damage accumulation.

In 3D systems sheared at the low strain rate (Fig. 4.20c), damage gradually rises to ∼1

in the elastic regime before yield. During yielding, D rapidly grows to values of D > 5. At

higher strains, ε > εY,i, damage continues to rise before plateauing around 8− 10 for all ρR.

At the faster strain rate, D does not rise as rapidly during the initial yield. However, D

increases much more dramatically at higher strains plateauing at a larger value of 13− 14.
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Figure 4.20: (a-b) Damage versus strain for 2D systems strained at a rate of (a) 5× 104s−1

and (b) 5× 106s−1 for the indicated density ρR of defects. (c-d) Similar data is plotted for
3D systems strained at a rate of (c) 1.5× 105s−1 and (d) 5× 106s−1.
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4.5 Granular Flow

After fracture, the material has fragmented into separate grains and shear produces

granular flow. If there is little to no confining pressure, the system will dilate to facilitate

relative motion of grains.181 In a confined system, grains may need to fracture in order to

maintain flow in a process known as comminution. The behavior of granular flow without

fracture already reveals a wealth of interesting phenomena182 and the addition of grain

breakage only further expands this realm. In this section we will study shear at larger

strains to observe comminution in the granular flow regime.

A particularly intriguing phenomenon is the emergence of a scale invariant distribution

of grains in fracture and comminution. In many granular samples, the distribution of grain

sizes V is found to decay as a power of size: P (V ) ∼ V −τ . Such distributions have been

identified in media collected from the lunar surface,183 fault gorges,184 residue from crushed

ores,185 fractured gypsum spheres,45 as well as many other sources.13 In addition, the size

of ice floes in the ocean also is power-law distributed due to fracture from collisions.16,186

Due to the scale-invariance of power-law distributions, breakage has been proposed to be an

example of self-organized criticality.14,45,46 In some sense, this phenomena is the opposite

of the problem of bubble coarsening where bubbles in foams coalesce to form larger bubbles

and can produce a scale invariant state187

If this behavior originates from an underlying critical point, the nature of the critical

point is poorly understood in comparison to the nonequilbrium critical points of depinning

and yielding discussed in Chapters 2 and 3. For instance, the critical point in depinning
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and yielding corresponds to the steady-state evolution of a quasistatically driven system.

In fracture, grains are created over a very short time span and there is no steady-state. In

comminution, it is not clear whether a steady state could exist as one can imagine grains

will continue to break. In compression of grains, there is some indication that an ultimate

state is reached as the void ratio goes to zero.188–190 However experiments using shear

have identified breakage at large strains191 and have suggested the distribution may not

reach a steady state until strains in excess of 150%.192 One also might wonder whether the

exponent τ produced in fracture is the same as the exponent produced in comminution or

if there even exists a universal τ . A range of values of τ have been measured in granular

media ranging from 1.48 to 2.18.13 Finally, there is no knowledge of what non-equilibrium

dynamical equation describing comminution could be studied using renormalization group

theory.

Analytic latticed-based models of fragmentation have been devised based on the prob-

ability of failure in a cubic section of a solid.13,193,194 Renormalization procedures using

coarse graining of these lattice models have been proposed and their results suggest there

may be a fixed point in fragmentation. However, these models do not describe dynamic

behavior nor has their connection to experiment been robustly tested.194 Furthermore, the

predicted exponent τ depends on the specifics of the model used and estimates can vary

from 1.66 to 1.95.13 One would expect a unique exponent for a critical point.

Scale invariance has also been studied using discrete element models. Such particle-

based models are ideal as they naturally allow the presence of discontinuities, and grains

can fracture without any need for remeshing. Many DEM simulations are based on arti-
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ficial fracture rules where discrete particles are replaced with a predetermined collection

of particles upon reaching a critical stress state.195–197 Such work has found power-law

distributions of grain sizes in compression. These models depend upon a separation of time

scales between the strain rate and the time scale on which grains fracture, restricting results

to the quasistatic limit. In addition, the results depend on the implementation of fracture,

and different values of τ have been measured depending on how fracture occurs.197 This

suggests poorly devised, unphysical rules of fracture could lead to artificial behavior.

Other discrete element models, such as the one described earlier in this chapter, rep-

resent grains as collections of smaller discrete particles which can break apart.151,198,199

Such models have been applied to study the fragmentation of an impacted sphere151,198 or

the crushing of a confined granular media.199 These studies have generally been restricted

to small system sizes and have only been able to measure less than one or two decades

of power-law scaling in the grain size distribution. Measurements of τ for the impact of

spheres include 1.9,151,198 1.25,198 and 1.0198 depending on the details of interactions. In

granular compression, a range of exponents from 1.27 to 1.82 was measured with increasing

compressive force.199

In this section, we focus on the evolution of the grain size distribution with strain and

methodically test the impact of finite strain rate and variations in material properties. In

Subsec. 4.5.1, we lay out the simulation details and shear geometry. Following this, we

study the evolution of an initially intact sample sheared to large strains. We then look at

the impact of rate in Subsec. 4.5.1 and find the maximum grain size and internal friction

coefficient both decrease with increasing rate. Lastly, in Subsec. 4.5.4 we briefly look at
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how decreasing Poisson’s ratio leads to an increase in granular anisotropy and an increase

in the friction coefficient.

4.5.1 Simulation Methods

In this section, we again use pure shear as described in Subsec. 4.4.1. However, in

order to reach large strains, we use Kraynick-Reinelt (KR) boundary conditions in 2D100

and generalized KR boundary conditions in 3D,101 as described in Chapter 3.

We again use values of kA = 2.5 and 3.0 in 2D and 3D, respectively. As before, we also

set λc = 1.05 and θc = 10◦ in both 2D and 3D. This choice in 3D corresponds to the elastic

response of boron carbide. All units of stress are therefore scaled to units of GPa based on

the bulk modulus of boron carbide.

For simplicity, all samples are initially homogeneous and contain no defects. Therefore,

there is no underlying length scale which represents a. In this section, all measurements of

length or time are in units of a or τ .

4.5.2 Quasistatic Granular Flow

We first discuss granular flow results in the quasistatic limit. Rates of 10−5 and 3×10−5

were identified to be sufficiently slow in 2D and 3D, respectively, such that no significant

changes in behavior were identified at lower rates. Therefore, all results in this subsection

use these rates. In Fig. 4.21 typical stress strain curves are plotted for 2D and 3D systems.

The initial solids are fully intact with no defects. Failure coincides with the nucleation of
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Figure 4.21: Stress strain curves for a systems strained at a rate of (a) 10−5 in 2D and (b)
3× 10−5 in 3D.

cracks in the homogeneous bulk that then rapidly grow, leading to failure. Upon yielding,

the system flows at a relatively low flow stress that gradually decreases with increasing

strain.

An example 2D granular state at a strain of 100% is rendered in Fig. 4.22. Grains

consist of a set of connected particles. Every independent grain is colored differently to

highlight the large disparity in grain sizes. A large fraction of the mass of the system is

contained in a single large grain that is colored blue. As can be seen, this grain is unstable

and is about to fracture in several locations.

To characterize such granular states, we study the evolution of the grain size distribu-

tion. In this section we define N(M) as the number of grains of a particular mass M . The

distribution is not normalized so that changes in the number of particles with increasing

strain can be seen. At predetermined values of the strain, the set of grains is calculated

using a list of broken bonds in the system. Grain sizes are then binned in logarithmically

spaced intervals of mass M . The total number of grains in each bin is then divided by
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Figure 4.22: Grains in a 2D system sheared to 100% strain. Particles comprising a single
grain are indicated by color. The large blue grain spans the periodic boundary conditions
at the top and bottom of the simulation box. Many cracks in this grain are visible.
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the bin’s width to account for increasing bin width with increasing M . The resulting dis-

tributions were then averaged across different random ensembles to improve statistics. To

further reduce noise, a rolling mean was applied to the distribution, averaging all sets of

three adjacent data points.

In Fig. 4.23a-b, size distributions are plotted for (a) 2D and (b) 3D systems at the

values of strain indicated in the legends. Small grains are not expected to represent critical

behavior and statistics are likely affected by the finite size of a single particle. We estimate

the lower limit of critical behavior is set by Mmin ∼ 10 particles in 2D and 80 particles in

3D. Focusing on values of M > Mmin, N(M) is consistent with a power law decay up to

an upper cutoff Mmax. For M > Mmax, the distribution rapidly drops to zero. At even

higher values of M , the distribution spikes back up. This spike represents mass in very large

fragments of size Mbulk. Such grains, as the large blue grain seen in Fig. 4.22, represent

some bulk portion of the fragmented mass that is non-critical and is degrading with time.

As the strain increases, Mmax increases, extending the power-law regime. There is

growth in N(M) for M < Mmax as Mbulk decreases. This represents the flow of mass from

large remnants of the initially fractured solid to smaller lengths that are part of the critical

distribution. As mass flows downwards, the number of particles on all scales M < Mbulk

appears to grow at the same rate, preserving the power law. Direct measurements of the

exponent at high strains are consistent with a value of τ = 1.67 ± 0.04 and 1.55 ± 0.05 in

2D and 3D, respectively.

In Fig. 4.23c-d, N(M) is scaled by M τ to emphasize deviations from scaling and the
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τ τ

Figure 4.23: (a-b) The number of grains as a function of volume at the indicated values of
strain for a system in (a) 2D and (b) 3D. Dashed lines represent power-law scaling with an
exponent τ = 1.67 in (a) 2D or 1.55 in (b) 3D. (c-d) The above data is scaled by M τ to
emphasize deviations from scaling for (c) M > Mmin = 10 in 2D and (d) M > Mmin = 80
in 3D.
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decay in Mbulk. All curves are nearly horizontal between Mmin and Mmax indicating that

τ is independent of strain. The height of the curves rises at first. In this regime, Mbulk

provides a source of mass, fueling the growth of the critical regime and an increase in Mmax.

In the 2D system, Mmax reaches Mbulk at ε ≈ 1.778. At larger strains, there is no bulk

source of mass and N(M) decreases as continued granular breakup transfers mass from the

power-law regime to length scales M ≤ Mmin. In 3D simulations Mmax has not reached

Mbulk at the largest strains, indicating systems should be further strained to maximize

Mmax.

These results provide novel insight into the evolution of the grain size distribution and

the possible nature of a critical point. Upon fracture, a power-law distribution is already

identifiable. This is consistent with previous findings that impacted spheres produce a scale

invariant distribution of fragments without undergoing significant granular flow.45,151,198

The power-law is cut off at some upper length scale defined by Mmax. As the system

subsequently flows, Mmax appears to grow with increasing strain. This continues until

finite-size effects emerge when Mmax approaches Mbulk. This suggests the critical point

may exist at the limit of infinite system size and strain. This may correspond to a steady

state in the flow of mass to smaller length scales. It would be useful to have data for

different system sizes to test this possibility with finite-size scaling techniques.

4.5.3 Rate Effects

Having studied the quasistatic limit, we now look at the effect of finite strain rates on

comminution. In Fig. 4.24, results from the same initial sample are rendered after shearing
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Figure 4.24: Sample comminuted samples strained to 100% at a rate of (a) 10−5, (b) 10−4,
and (c) 10−3. Color corresponds to the change in energy in bonds. Blue roughly represents
particles that have no broken bonds while red represents particles that have broken the
majority of their bonds.

to strains of 100% at a rate of (a) 10−5, (b) 10−4, and (c) 10−3. Color emphasizes the

locations of broken bonds. Note that the configuration in Fig. 4.24a is the same as Fig.

4.22. As the strain rate increases, a smaller maximum grain size is identified. To quantify

this effect, we study the dependence of N(M) on rate.

Figure 4.25a includes plots of N(M)M τ for 2D systems strained at a rate of 10−4 up

to the value of strain indicated in the legend. Distributions are truncated at a value of

Mmin = 10. After the initial fracture at low strains, one can already identify a power-law

decay in N(M). However, in contrast to the QS limit, this decay has a different exponent.

As the strain increases, there is an increase in both the upper cutoff of the power law,

Mmax, as well as the apparent exponent. Mbulk decreases faster such that Mmax ∼ Mbulk

at lower strains of around 0.3. This explains the limitation of Mmax observed in Fig. 4.24.

As Mmax grows, the measured exponent also increases until saturating at a value consistent

with 1.73± 0.05 that is distinct from the value measured in the QS limit. Upon saturation,

Mmax begins to decrease and the distribution again starts to fall as mass flows to length
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τ τ τ

τ τ τ

Figure 4.25: Number of grains of a particular volume M scaled by M τ for systems sheared
to strains indicated in the legend in (a-c) 2D and (d-f) 3D. Systems were strained at rates
of (a) 10−4, (b) 3 × 10−4, and (c) 10−3 in 2D and (d) 10−4, (e) 3 × 10−4, and (f) 10−3 in
3D. Data only plotted for grains of volume M > 10 in 2D and M > 80 in 3D. Dashed lines
in (a-c) represent power-law scaling with an exponent (a) τ + 0.06, (b) τ + 0.14, and (c)
τ +0.32 in 2D systems for τ = 1.67. Dashed lines in (d-f) represent power-law scaling with
an exponent (d) τ , (e) τ + 0.05, and (f) τ + 0.2 in 3D systems for τ = 1.55.

scales represented by M < Mmin.

At higher rates of 3 × 10−4 and 10−3 in Fig. 4.25b-c, respectively, similar trends

emerge. The measured decay exponent of N(M) increases with strain before saturating at

even higher values of 1.81± 0.08 and 2.0± 0.15 at rates of 3× 10−4 and 10−3, respectively.

In 3D systems, qualitatively similar behavior is seen with increasing rate. At a rate of 10−4

no deviation in τ is detected but at rates of 3× 10−4 and 10−3 direct measurements of the

exponent are consistent with values of 1.6± 0.04 and 1.85± 0.15, respectively.

These observations suggest the presence of highly unusual behavior at finite rates. The

decrease in the maximum grain size suggests the critical point only exists in the quasistatic

limit. However, the origin of the variation in exponent is unknown. More detailed analysis
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of these distributions with improved statistics is required. As seen in Chapter 3, a finite

correlation length is expected at a finite rate. This finite correlation length sets the extent

of the power-law distribution but does not affect the exponent τ in the yielding transition.

These simulations can also be used to extract useful information about the rate de-

pendence of the flow stress and internal friction coefficient, roughly approximated as the

ratio of the pressure to the shear stress. In order to reduce the magnitude of fluctuations,

the stress and pressure versus strain curves were averaged across different random ensem-

bles and smoothed using a rolling mean. In Fig. 4.26a-b, the shear stress is plotted as a

function of strain for (a) 2D and (b) 3D systems strained at rates indicated in the legend.

The shear stress increases with rate. In Fig. 4.26c-d, the ratio of the shear stress to the

pressure is plotted as a function of strain. This is a measure of the internal friction in the

system and shows a decreasing friction coefficient with increasing rate. This is driven by a

larger increase in the pressure relative to the shear stress with increasing rate. This may

explain why shock experiments measure lower friction coefficients in granular packings than

quasistatic experiments.

4.5.4 Material Properties

Finally, we briefly look at how changes in the elastic properties of the solid affect

granular flow. Two dimensional simulations were run for sheared samples with different

values of the angular stiffness kA. As discussed in Subsec. 4.3.1, increasing kA decreases

Poisson’s ratio. In Fig. 4.27a, N(M)M τ is plotted from simulations sheared to strains of

56% at a rate of 10−5 using different values of kA. For all values of kA except for kA = 12,
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Figure 4.26: Stress strain curves for (a) 2D and (b) 3D systems strained at the rates
indicated in the legends. The ratio of shear stress to pressure is plotted as a function of
strain for (c) 2D and (d) 3D systems strained at the rates indicated in the legends of (a)
and (b), respectively.
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Figure 4.27: Number of grains of a particular volume M scaled by M τ for systems sheared
to a strain of 56% at a rate of 10−5 (a) and 10−4 (b) for the values of kA indicated in the
legend.

no deviation in τ can be identified. For kA = 12 there may be a minor increase in τ . This

data suggests τ does not depend significantly, if at all, on the elastic response of the system

in the QS limit. To confirm this result would require better statistics. In addition, the

evolution of N(M) should be studied as a function of strain for each value of kA and the

rate dependence should be checked to confirm the data is in the QS limit for all kA. For

instance, it is possible that a lower rate is required to reach the QS limit for large kA (small

ν). If so, this could explain why a deviation is only seen for the largest value of kA.

Next we look at how the structure of grains may depend on kA. In Fig. 4.28 a granulated

state generated from strains of 100% at a rate of 10−4 is rendered using a value of (a) kA = 0

and (b) kA = 12. These values correspond to values of ν = 0.25 and −0.1, respectively. The

sample with a larger Poisson’s ratio appears to have to more angular and less anisotropic
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Figure 4.28: Example comminuted samples strained to 100% at a rate of 10−4 for a value
of kA = 0 or ν = 0.25 (a) and kA = 12 or ν = −0.1 (b). Color corresponds to the change
in energy in bonds. Blue roughly represents particles that have no broken bonds while red
represents particles that have broken the majority of their bonds.

grains.

To quantify the anisotropy of grains, we use the technique used in Chapter 2 to quantify

the anisotropy of avalanches. The second moment tensor of each grain is calculated and

diagonalized. The ratio r2 of the maximum and minimum eigenvalues then characterizes

the aspect ratio of each grain. Data was collected for systems sheared to 100% strain at a

rate of 10−4 for different values of kA. Grains were divided into logarithmically spaced bins

of volume and an average aspect ratio r was calculated for each bin. The average aspect

ratio is plotted as a function of angular stiffness in Fig. 4.29 for grain sizes indicated in

the legend. Small grains have no detectable anisotropy, but larger grains generally become

more anisotropic at larger values of kA or smaller Poisson’s ratios. This is an interesting

effect and suggests that the elastic response of a material may have a significant impact on
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ν ν ν ν ν

Figure 4.29: The average aspect ratio of grains with a volume in the range indicated in the
legend as a function of angular stiffness for a system sheared to a strain of 100% at a rate
of 10−4. Corresponding values of ν are indicated.

granular structure without changing critical exponents.

Lastly, we look at the effect of the elastic response on the flow curves. In Fig. 4.30a,

stress-strain curves are plotted for the indicated values of kA. Increasing kA or decreasing

ν leads to a larger flow stress. In Fig. 4.30b, the ratio of shear stress to pressure is plotted,

revealing a general increase in the friction coefficient with larger kA or smaller ν. Other

work has shown that grain shape affects friction in flow200 suggesting that this effect may

originate from the change in grain structure.

4.6 Summary

Simulations of sheared 2D and 3D brittle solids were used to probe the dependence

of fracture and comminution on rate, defect density, and material properties. These sim-

ulations demonstrate the flexibility of the proposed discrete element model and highlight
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Figure 4.30: (a) Stress strain curves for systems strained at a rate of 10−4 for the values of
kA indicated in the legends. (b) The ratio of shear stress to pressure is plotted as a function
of strain for the values of kA indicated in the legend of (a).

a broad range of applications. Many results in this chapter were drawn from initial ex-

ploratory simulations indicating there is a great deal of potential future work.

Focusing on fracture and failure, direct measurement of damage was compared to

changes in the stress-strain curves and mapped to different regimes of crack growth. Damage

was found to accumulate over a broader interval of strain at high rate and failure involved

the participation of many more defects, as expected from prior work.122,169 If macroscopic

changes in the stress or other system properties can be related to well defined thresholds

of damage as a function of rate, it would be very useful for damage-based constituitive

models.122,174

In pure shear deformation, we found that the initial yield occured when cracks spanned

the system. This did not lead to failure of the sample, as the solid continued to elastically

load with a reduced modulus. This reduction in modulus depended on rate in 3D samples.

No reduction in the elastic modulus was detected in the lead up to the initial yield. Failure

of brittle materials depends heavily on loading geometry201 so it would be useful to apply
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these methods to other loading geometries such as uniaxial compression. It would also

be useful to evaluate how elastic properties of materials change with damage. The effect

of damage on Poisson’s ratio is unknown and any information on the dependence could

improve constituitive models.122,174

Studying failure in samples with different defect densities, we found an interaction

between the number of active defects and rate that is consistent with theoretical predic-

tions.122,169 This observation was based on a single sample, and more quantitative state-

ments could be made if a full ensemble of systems was studied. The interaction of rate and

defect activation has been studied before using continuum based 2D simulations168,169 and

it would be helpful to compare to results from DEM simulations. Furthermore, information

on the impact of defect density and rate on the distribution of fragment sizes could help

test theories of fracture157,171,172 or provide a framework for the development of continuum

scale models that capture the transition from fracture to granular flow.

In comminution we find evidence that a critical point may exist at quasistatic rates in

the limit of infinite strains. The exponent characterizing the decay of the distribution of

grain sizes likely does not depend on the elastic response of the material. We find a power-

law can be identified immediately after fracture and it extends up to a maximum grain size

that increases with strain. The evolution of grain size distributions plays an essential role

in continuum models of comminution123,124,202 and the evolution seen here conflicts with

common assumptions that distributions linearly evolve to reach an ultimate state.123,124

While an ultimate distribution may exist in compression where the void ratio goes to zero,

in pure shear we see continued breakup of mass as mass always flows to smaller length

188



CHAPTER 4. BRITTLE FRACTURE

scales.

At high rates, we see the introduction of a maximum grain size. Interestingly, we identify

a complicated evolution of the distribution. At small strains, the exponent describing power-

law decay is smaller than the QS value. As the strain increases, the exponent increases

before saturating at some maximum value that increases with increasing rate. The origin

of such an effect is unknown but it could suggest a mechanism for the variety of power-law

exponents measured in natural systems and simulations. Other mechanisms may also exist,

such as changes with loading geometry.

Future work should focus on the evolution of the grain size distribution in systems of

varying sizes. Presumably smaller systems would exhibit QS behavior at higher rates. It is

unknown whether a different value of τ would be measured in the QS limit. Varying system

size would also allow for the use of finite-size scaling techniques.

Lastly, we briefly looked at the dependence of flow stress and measures of internal

friction as a function of rate and material properties. The flow of comminuted systems is

very complicated and very little data is available on the rate dependence.203,204 Additional

information could therefore be useful in calibrating continuum models.
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Conclusion

In this thesis the dynamics of three types of systems have been explored using sim-

ulations. In each system, scale invariant behavior was observed and characterized. This

work has identified new phenomena in each of the three systems, and has also accurately

measured many critical exponents for the first time.

We first studied the driven dynamics of magnetic domain walls in the random field Ising

model. Here we simulated a fully d dimensional interface and identified a new anisotropy

in avalanches. The anisotropy exponent is distinct from previous measurements of the

roughness exponent and suggests that the random field Ising model may be in a distinct

universality class from the quenched Edwards-Wilkinson model.57,59,60,65 This work also

explores novel evolution in surface morphology, particularly in the growth of overhangs.

Whether the anisotropy exponent for avalanche growth χ is equal to the roughness exponent

ζ or if the surface is even self-affine is still an open question.
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Next we studied the yielding transition using molecular dynamics simulations of sheared

disordered solids. Using finite-size scaling techniques, we performed the first accurate mea-

surements of many dynamic exponents in a continuum system. Exponents are found to be

distinct from those measured in discrete lattice models,40 suggesting that discrete models

describe a separate universality class. In particular, this work found that the dynamical ex-

ponent z is greater than one in both 2D and 3D. The observation of z < 1 in lattice models

suggest an unphysically rapid transfer of information.40 Results were also used to test many

scaling relations proposed here as well as in previous work. Interesting geometrical effects

are identified in the transport of particles in 2D, suggesting an avenue for future research.

Finally we studied brittle fracture and granular flow using a particle-based model related

to discrete element models (DEMs). This model used a novel combination of ideas from MD

simulations and typical DEMs. The model contained a minimal number of free parameters

which were used to calibrate both the elastic response and the fracture toughness of a solid.

Simulations were then used to study the transition from fracture to granular flow. Tracking

the evolution of cracks allowed for the calculation of damage as a function of strain. Growth

in damage was then related to changes in stress-strain curves and regimes of crack growth.

Complicated interactions were identified between defect density and rate and compared

to existing theories.122,168,169 Finally, we studied simulations of comminution. Results

suggest a critical point may exist for quasistatically sheared systems at infinite strains. The

introduction of finite rate led to a variation in the measured exponent which could partially

explain the wide variety of experimentally measured exponents. Results from a range of

system sizes would help resolve this question. Results also explored the effect of strain rate
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and material properties on flow stress and internal friction.
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[46] J. A. Åström, B. L. Holian, and J. Timonen, “Universality in fragmentation,” Physical

Review Letters, vol. 84, no. 14, pp. 3061–3064, 2000.

198



BIBLIOGRAPHY

[47] M. Cieplak and M. O. Robbins, “Dynamical transition in quasistatic fluid invasion in

porous media,” Physical Review Letters, vol. 60, no. 20, pp. 2042–2045, 1988.

[48] H. Ji and M. O. Robbins, “Transition from compact to self-similar growth in dis-

ordered systems: Fluid invasion and magnetic-domain growth,” Physical Review A,

vol. 44, no. 4, pp. 2538–2542, 1991.
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[50] S. Ramanathan, D. Ertaş, and D. S. Fisher, “Quasistatic crack propagation in het-

erogeneous media,” Physical Review Letters, vol. 79, no. 5, pp. 873–876, 1997.

[51] O. Duemmer and W. Krauth, “Depinning exponents of the driven long-range elastic

string,” Journal of Statistical Mechanics: Theory and Experiment, no. 1, pp. –, 2007.

[52] J. Adler, Y. Meir, A. Aharony, and A. B. Harris, “Series study of percolation moments

in general dimension,” Physical Review B, vol. 41, no. 13, pp. 9183–9206, 1990.

[53] N. Martys, M. O. Robbins, and M. Cieplak, “Scaling relations for interface motion

through disordered media: Application to two-dimensional fluid invasion,” Physical

Review B, vol. 44, no. 22, pp. 12 294–12 306, 1991.

[54] B. Koiller and M. O. Robbins, “Morphology transitions in three-dimensional domain

growth with Gaussian random fields,” Physical Review B - Condensed Matter and

Materials Physics, vol. 62, no. 9, pp. 5771–5778, 2000.

[55] L. A. N. Amaral, A. L. Barabási, and H. E. Stanley, “Universality classes for interface

199



BIBLIOGRAPHY

growth with quenched disorder,” Physical Review Letters, vol. 73, no. 1, pp. 62–65,

1994.

[56] M. Kardar, G. Parisi, and Y.-C. Zhang, “Dynamic scaling of growing interface,”

Physical Review Letters, vol. 56, no. 1, pp. 1–4, 1986.

[57] P. Chauve, P. Le Doussal, and K. J. Wiese, “Renormalization of pinned elastic sys-

tems: How does it work beyond one loop?” Physical Review Letters, vol. 86, no. 9,

pp. 1785–1788, 2001.

[58] A. Rosso, A. Hartmann, and W. Krauth, “Depinning of elastic manifolds,” Physical

Review E, vol. 67, no. 2, p. 021602, 2003.

[59] A. Rosso, P. Le Doussal, and K. J. Wiese, “Avalanche-size distribution at the de-

pinning transition: A numerical test of the theory,” Physical Review B - Condensed

Matter and Materials Physics, vol. 80, no. 14, pp. 1–10, 2009.

[60] P. Le Doussal, A. A. Middleton, and K. J. Wiese, “Statistics of static avalanches in

a random pinning landscape,” Physical Review E - Statistical, Nonlinear, and Soft

Matter Physics, vol. 79, no. 5, pp. 3–6, 2009.
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