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1. ABSTRACT 

 
The cellular framework that constitutes the building blocks of every living organism 

undergoes significant changes and transformations throughout its live time. In humans, 

many processes that involve these cellular changes can greatly influence the healthspan and 

survival of individuals, two of such processes include: aging and cancer. The two related, yet 

independent processes both arise due to the deterioration of ‗naïve‘ cellular function, and the 

deficiency—later inability, of cells to properly regulate its physiology. Published studies have 

demonstrated a bi-phasic relationship between cancer and aging. With the incidences of 

cancer increasing with increasing age, followed by a plateau point and subsequent decrease; 

with cancer-type dependent shifts in this plateau point with age. There are a multitude of 

factors that affect the initiation and rate of progression of these cellular changes, and they 

stem from both intrinsic factors—such as the individuals‘ underlying molecular and 

phenotypic profiles (i.e. genetics and protein expressions)—and extrinsic factors, such as 

lifestyle and environmental influences. To gain better understanding of these two naturally 

occurring processes, I took a piece-wise approach and asked two overarching questions. In 

regards to aging I asked how does the biochemical and biophysical features of cells construct 

the phenotypic portrait of human aging, and cane it be used to determine the biological age 

of individuals? Likewise, in regards to cancer: how does the cells‘ physical properties 

associate with cancer progression and metastasis, and can it predict metastatic state based on 

the features of individual cells? 



 iii 

In the first part of this study, I focus on human aging. Many studies have shown that 

there are marked changes in the cells‘ molecular profiles and phenotypic behaviors with 

increasing age. To better understand this I procured a cohort of primary dermal fibroblasts 

and measured various aspects of the cellular biochemical framework (cell secretions, DNA 

damage response and DNA organization, cytoskeletal content and organization, and ATP 

content), as well as cellular biophysical features (morphology, motility, wound closure, 

traction strength, and cytoplasmic rheological properties). With this comprehensive 

approach, I was able to quantify age-dependent changes in various cellular features, and use 

these features to further predict biological age with a high degree of certainty. Knowing the 

biological age of an individual is important, since it is now apparent from the literature that 

the biological age is a better predictor of human healthspan and longevity than their 

corresponding chronological age.  

Secondly, according to the American Cancer Society, two out of every five persons 

in the US will develop cancer during his/her lifetime, with ninety percent of cancer-related 

deaths resulting from metastases, i.e. the migration of cancer cells from the primary tumor to 

distal sites in other organs. Since the completion of the Human Genome Project, researchers 

have focused on trying to understand the genetic basis of metastasis in an effort to better 

predict disease progression and uncover new therapeutic targets. However, possibly due to 

the inherent heterogeneity of cancer, no genetic signatures that clearly delineate cells from 

the primary tumors versus cells from metastatic sites have been found. Recent estimates 

suggest that millions of cells are shed from a primary tumor site each day, yet, progression to 

metastatic disease often take years, suggesting that metastasis is a highly inefficient process. 

From a biophysical perspective, I reasoned that in order to successfully overcome the 
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difficult multi-step metastatic cascade—invasion and migration through the dense, tortuous 

stromal matrix, intravasation, survival of shear forces of blood flow, successful re-

attachment to blood vessel walls, colonization at distal sites, and reactivation following 

dormancy—metastatic cells may share precise sets of physical properties. And these key 

physical properties (which can be thought of as the ensemble effects of it‘s genetic, 

epigenetic and proteomic profiles, etc.) may contribute to the progression and diminished 

response to therapeutics exhibited by metastatic cells. Using a cohort of 13 clinically 

annotated PDAC (Pancreatic ductal adenocarcinoma) patient samples, cells were subjected 

to a phenotyping platform that I have co-developed—htCP (high-throughput cell 

phenotyping). This study revealed that using biophysical features described by the variations 

in the cellular morphological features, I was able to discover a phenotypic signature for 

metastasis, demonstrated in pancreatic and breast cancers, for both 2D and 3D 

environments. 
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CHAPTER 1: INTRODUCTION—THE MECHANOBIOLOGY 

OF AGING 

 
Aging is a complex, multifaceted process that induces a myriad of physiological 

changes over an extended period of time. Aging is accompanied by major biochemical and 

biomechanical changes at macroscopic and microscopic length scales that affect not only 

tissues and organs, but also cells and subcellular organelles. These changes include 

transcriptional and epigenetic modifications; changes in energy production within 

mitochondria; and alterations in the overall mechanics of cells, their nuclei, and their 

surrounding extracellular matrix. In addition, aging influences the ability of cells to sense 

changes in extracellular-matrix compliance (mechanosensation) and to transduce these 

changes into biochemical signals (mechanotransduction). Moreover, following a complex 

positive-feedback loop, aging is accompanied by changes in the composition and structure of 

the extracellular matrix, resulting in changes in the mechanics of connective tissues in older 

individuals. Consequently, these progressive dysfunctions facilitate many human pathologies 

and deficits that are associated with aging, including cardiovascular, neurodegenerative 

disorders and cancer. Here, I present recent work highlighting some of the primary 

biophysical changes occurring in cells and tissues that accompany the aging process.  

4.1 MECHANICS AND THE ECM 

The extracellular matrix (ECM) plays an essential role in the architecture and function of 
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composite tissue networks. This noncellular component provides the structural scaffold in 

which cells grow and assume their niche to ensure the proper functioning of tissues and 

organs in living organ- isms. The ECM primarily consists of water, polysaccharides, and 

proteins; and the composition and topology of the ECM in each tissue is unique and 

remarkably heterogeneous, which stems from the dynamic biochemical and biomechanical 

dialogue between various cellular and noncellular components during development (Frantz 

et al., 2010). In mammals, the ECM is composed of approximately 300 proteins that regulate 

tissue homeostasis, organ development, inflammation, and disease (Gilkes et al., 2014; Naba, 

2012). The major constituents of the approximately 300 proteins that make up the ECM are 

fibrous proteins (i.e. collagen, elastins, fibronectins, and laminins) and proteoglycans (i.e. 

hyaluronic acid, heparan sulfate, and keratin sulfate). These proteins are primarily secreted 

and assembled by fibroblasts, and form the organized meshwork that constitutes the 

mechanostructural framework of tissue networks (Frantz et al., 2010; Gilkes et al., 2014).  

Briefly, proteoglycans have a variety of roles in maintaining proper tissue 

homeostasis and function including environmental buffering, tissue hydration, and providing 

force-resistance properties through the formation of hydrated gels within the interstitial 

space (Jarvelainen et al., 2009). However, the main contributors to the content, mechanical 

structure, and rates of remodeling and degradation of the ECM are the fibrous proteins and 

their associated proteinases and enzymes. These dynamic interactions between cells and their 

surrounding microenvironments undergo significant changes as a function of age, both 

locally and in bulk. As a result, these changes can lead to systemic dysfunctions and the onset 

of pathogenesis, i.e. impaired wound healing (Minimas, 2007), the formation of scar tissue, 

enhanced metastasis, and cancer progression (Gilkes et al., 2014). In healthy individuals, the 
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unique contents and ratios of the ECM‘s components (e.g. the ratio of fibrous proteins to 

proteinase and enzyme levels) dictate the homeostatic relationship between ECM 

remodeling and degradation. Therefore, for proper mechanical integrity of the ECM there 

must exist a balance in the coordinated secretions of ECM components and in its 

subsequent remodeling and degradation by the resident cells (Cruz-Munoz and Khokha, 

2008; Mott and Werb, 2004; Nagase et al., 2006; Nagase and Woessner, 1999).  

4.1.1 Degradation and Remodeling of the ECM 

The timely deposition and degradation of the ECM is an important feature in the 

development, morphogenesis, repair, and remodeling of tissues in living organisms (Nagase 

et al., 2006). Under physiological conditions, the degradation and remodeling of the ECM is 

tightly regulated by a large family of enzymatic proteins, primarily matrix metalloproteinases 

(MMPs) (Mott and Werb, 2004; Nagase and Woessner, 1999), tissue inhibitors of 

metalloproteinases (TIMPs) (Cruz-Munoz and Khokha, 2008; Nagase et al., 2006), 

crosslinking transglutaminases, and enzymes such as lysyl oxidases (Frantz et al., 2010). 

MMPs are small-molecule endopeptidases that can break the peptide bonds of nonessential 

amino acids. These enzymes are collectively able to degrade a wide array of ECM proteins, 

but can also cleave cell-surface receptors, which can lead to downstream activation or 

inactivation of various pathways and interactions, including cell–matrix interactions, cell–cell 

interactions, and secretions of growth factors (Nagase et al., 2006). Humans have 

approximately 24 MMP genes, which code for 23 MMPs (two genes code for MMP-23) that 

are involved in the degradation of various components of the ECM. For instance, MMP-2 

and MMP-9 are able to cleave elastin, type IV collagen, and several other ECM molecules, 

and MMP-2 can digest type I, II, and III collagen. Studies have shown that the activity of 
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MMPs tends to be low or negligible at normal steady-state tissue conditions; however, the 

precise expression levels are transcriptionally controlled through feedback mechanisms, 

which include signaling from inflammatory cytokines, growth factor hormones, cell–cell 

interactions, and cell–matrix interactions. In addition, the functional regulation of MMPs are 

controlled by (a) the local availability and expression levels of endogenous precursor 

zymogens, and (b) inhibition by the complimentary inhibitor TIMPs (Nagase et al., 2006; 

Nagase and Woessner, 1999). Thus, the intimate homeostatic interactions among MMPs, 

TIMPs, and other components of the ECM are critical to proper remodeling and the proper 

functioning of tissues.  

4.1.2 The role of ECM Components in Aging 

The ECM has been a central topic of discussion in aging studies for several years. It is 

associated with numerous age-related diseases and dysfunctions, most of them involving 

connective tissue, cartilage, bone, blood vessels, and skin (Labat-Robert, 2004). The current 

view is that the ECM‘s control of the molecular network is driven by the synthesis of 

components that are genetically and transcriptionally regulated but also environmentally 

influenced, thus facilitating a cohort of complex biochemical and biomechanical cues. In the 

following sections I discuss the roles and interaction of the various components of the 

ECM, and the alterations that lead to progressive dysfunction in aging tissues (Figure 1).  

Collagen, being the most abundant and the primary structural element of the 

ECM— comprising more than 90% of the ECM and 30% of all proteins present in the 

human body (Gilkes et al., 2014; Van Der Rest, 1991)—provides the structural integrity and 

tensile strength of tissues and organs, (such as tendons, ligaments, bone, and cartilage), 

regulates cell adhesion and migration, and directs tissue development (Rozario and 
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DeSimone, 2010). The secretion and assembly of collagen fibers are mediated by fibroblasts 

that reside within the stromal matrix, or fibroblasts that are recruited from neighboring 

tissues (De Wever et al., 2008; Frantz et al., 2010; Gilkes et al., 2014). By exerting tangential 

stretching forces on the collagen, the fibroblasts under the physiological conditions of the 

tissues can organize the collagen fibrils into sheets and cables, which in turn drastically 

changes the alignment of the collagen-fiber network (Frantz et al., 2010). This dynamic 

change in the alignment of collagen fibers by the fibroblasts results in reciprocal changes 

through feed-forward signaling that further dictates the orientation, morphology, and 

alignment of neighboring cells (e.g. keratinocytes and epithelial cells) (Guo et al., 2013). 

Collagen molecules and fibers typically bind to other components of the ECM, such as 

elastins, whose fibers provide the elastic and recoil properties of tissues that undergo 

repetitive stretching. However, tissue stretching is limited by the intrinsic properties of this 

heterogeneous, composite mixture of collagens with high tensile strength and the highly 

elastic elastins (Frantz et al., 2010; Robert, 1998).  
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Figure 1 Age-related dysfunction of the extracellular matrix (ECM). Interactome of the effects of ECM 
deregulation and mechanical deficiency, cellular and nuclear mechanics, mitochondrial dysfunctions, and 
cellular damage—e.g., exposure to, and buildup of, advanced glycation end-products (AGEs) in long-lived 
proteins, such as collagen and elastin (Frantz et al., 2010; Vijg and Campisi, 2008)—on the aging phenotype. 
Concomitantly, these effects combine to foster a multidirectional feedback cascade that leads to pathogenesis 
and disease. Red dashed arrows represent potential bidirectional interactions. Red question marks illustrate 
potential functional interactions that warrant further study to identify the magnitude of their contribution to 
age-dependent functional decline. Abbreviations: MMPs, matrix metalloproteinases; ROS, reactive oxygen 
species; TIMPs, tissue inhibitors of metalloproteinases. 

 

Another major component of the ECM is fibronectin (FN), which is intimately 

involved in directing the organization of the interstitial ECM, and has a crucial role in cell 

adhesion and attachment, and cell migration. When FNs are stretched and unfolded via 

forces exerted by resident fibroblasts, cryptic binding sites are exposed, resulting in changes 

in cellular behavior and in the mechanical regulation of the ECM (Smith et al., 2007). 

Laminins, unlike FNs, which are ubiquitous, primarily constitute the basement membrane, 

which experiences age-associated changes (Labat-Robert, 2003). Although the various 
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fibrous protein components of the ECM differ in structure and function, they collectively 

play a vital part in the overall function, or dysfunction, of the ECM.  

Numerous changes occur during the aging process and these lead to changes at the 

gross physioanatomical level. Tissues from elderly individuals have a characteristic thinning 

of the basement membrane, which is in part due to reductions in the biosynthesis of 

basement membrane protein, and elevated levels of MMP-mediated degradation and 

remodeling (Frantz et al., 2010; Kwak, 2013). Separate studies have provided evidence that 

on the transcriptional level there is an increase in the amount of messenger RNA (mRNA) 

coding for FNs, as well as a subsequent increase in downstream FN biosynthesis with age, as 

measured by enzyme-linked immunosorbent assays (ELISAs) (Labat-Robert, 2004). 

Although FN is present in abundance during development, and decreases post-development, 

the marked increase that occurs with age may suggest that FN has alternating roles as a 

function of age. In addition, resident fibroblasts in tissues from older donors tend to be 

growth-arrested, have reduced sensitivity to apoptotic signals, and express elevated levels of 

interleukins, cytokines, and reactive oxygen species (ROS)—a phenotype that is indicative of 

senescent cells (see Mechanobiology of Senescence and Frailty, below) (Frantz et al., 2010; 

Vijg and Campisi, 2008) (Figure 1).  

The presence of these senescent cells within the tissue microenvironment, which 

increases with age (Baker et al., 2011), induces a state of chronic inflammation. This 

inflammation, combined with reduced glycosaminoglycans (Frantz et al., 2010), reduced 

expression levels of TIMPs, reduced crosslinked elastin content (Robert, 1998), elevated 

levels of activated MMPs, elevated levels of plasminogen activator inhibitors, elevated levels 

of elastase activity, and elevated levels of mitochondrial-related ROS, compromises the 
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integrity of the elastin and collagen networks, and the basement membrane (Callaghan, 

2008). This deficiency in the structural integrity of the ECM is also associated with a 

decrease in the biosynthesis of precollagen 1; a subsequent decrease in collagen fibrils (Fisher 

et al., 2009; Varani et al., 2006); and deregulation of the activity of MMPs, which is 

controlled partly through an increase in cJUN/AP-1 and cell-bound integrins such as α2β1, 

which has been observed by assessing the levels of both mRNA and protein in tissues, such 

as skin, bone, and cardiac tissue (Fisher et al., 2009). In addition, studies conducted on 

samples of sun-protected skin from elderly donors (older than 80 years) exhibited a marked 

decrease in collagen production relative to controls from a younger cohort (aged 18–29 

years), suggesting that these reciprocal effects stem from complex contributions associated 

with both somatic damage and intrinsic aging (Vijg and Campisi, 2008). Coupled with the 

fact that there are fewer interstitial fibroblasts in aged skin relative to young skin, this speaks 

to reductions in growth capacity and reductions in ECM alignment capabilities occurring as a 

function of age (Varani et al., 2006).  

Although the production and organization of collagen in aged tissue correlate with 

loose, poorly organized structures, surprisingly, these collagen fibers tend to be 

inappropriately crosslinked. This increased collagen crosslinking (Saito and Marumo, 

2010)—which has been observed in skin (Fisher et al., 2009; Varani et al., 2006), cardiac 

tissue, and blood vessels (Kwak, 2013)—has been partially attributed to a buildup of 

advanced glycation end-products (AGEs) and byproducts of lipid oxidation occurring 

through exposure to UV light (Frantz et al., 2010). The elevated levels of AGEs that occur 

with age result from somatic damage to the regulatory machinery that is tasked with the 

sensing, degradation, and clearing of these products from the local tissue; the damage to the 
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regulatory machinery fosters the accumulation of AGEs in long-lived structural proteins, 

such as collagen and elastins (Vijg and Campisi, 2008). Taken together, this loose, 

disorganized, fragmented collagen network with local regions of enhanced crosslinking is 

associated with an increase in local tissue stiffness, reduced tissue resilience, and fibrosis, 

which is characterized by areas of low collagen solubility and degradation (Kwak, 2013), 

poor fiber alignment, and increased Wnt signaling (Brack et al., 2007). These ECM changes 

further facilitate mechanically weak tissue and less deformable blood vessels, leading to 

impairments in the overall function of organs, such as bone, heart, and kidney (Fisher et al., 

2009; Frantz et al., 2010; Kwak, 2013; Vijg and Campisi, 2008). This uncharacteristic 

mechanical state of the ECM fuels a vicious feed-forward signaling cascade that severely 

compromises the local and bulk organization, and the integrity of both the fiber network and 

the residing cells (i.e. fibroblasts and epithelial cells), leading to perpetual tissue dysfunctions. 

These changes further potentiate age-related pathologies, which account for the increases in 

mortality and comorbidities observed in elderly individuals (Sprenger et al., 2010; Vijg and 

Campisi, 2008) (Figure 1).  

4.1.3 Effects of Age, Cellular and ECM Mechanics on Functional Wound Healing 

Aging entails numerous functional and structural changes, many, but not all of which 

adversely affect life span and survival. Although intrinsic aging may begin to explain the 

convergence in aging phenotypes expressed in various living organisms, the accumulation of 

damage, along with the propagated stochastic errors in bioinformational processes, and the 

attenuation of such damages, could explain the differences in longevity seen in various living 

organisms (Vijg and Campisi, 2008). Exposure to acute injury activates a cascade of intra- 

and extracellular signaling pathways that induce repair and wound healing (Frantz et al., 
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2010). In humans, optimal wound healing is a complex, dynamic process that encompasses a 

number of overlapping and coordinated phases that include hemostasis, inflammation, 

proliferation, and remodeling (Ashcroft, 2002; Gosain and DiPietro, 2004; Guo and 

Dipietro, 2010). This continuum of wound healing, and its corresponding biophysical 

functions, must occur in the proper sequence, at specific times, for specific durations, and at 

the optimal magnitude of response (Guo and Dipietro, 2010). The first events that 

characterize wound response are hemostasis and inflammation—that is, the formation of a 

fibrin clot and the aggregation of platelets that stimulates the infiltration of inflammatory 

cells—such as monocytes and macrophages—to the sites of injury and the damaged ECM 

(Frantz et al., 2010; Guo and Dipietro, 2010). These inflammatory cells serve to (a) release an 

abundance of chemotactic signaling molecules, such as proinflammatory cytokines, 

interleukins, growth factors, and MMPs (Guo and Dipietro, 2010); (b) ingest foreign 

materials and apoptotic cells; (c) increase vascular permeation and promote angiogenesis 

(Gosain and DiPietro, 2004); and (d ) recruit and stimulate fibroblast activity, such as 

proliferation, migration, and ECM remodeling through chemotactic signal gradients (Frantz 

et al., 2010). Once fibroblasts and other cell types are recruited, they synthesize and deposit 

the required ECM proteins, including collagen type I and III, FNs, and the proteoglycan 

hyaluronic acid. This elevated mechanical state of the wounded environment induces the 

mechanical and chemical transdifferentiation of cells, for instance of mesenchymal stem cells 

into myofibroblasts (De Wever et al., 2008; Gosain and DiPietro, 2004; Guo and Dipietro, 

2010; Trappmann et al., 2012). The highly contractile myofibroblasts (Guo and Dipietro, 

2010) are able to secrete ECM proteins that degrade and remodel the ECM, and promote 

mechanically and chemically induced directional migration towards the wound site, a process 
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termed epithelialization (Ashcroft, 2002; Frantz et al., 2010; Gosain and DiPietro, 2004).  

A result of the age-related deterioration of the cellular-response machinery is that the 

wound- healing process in older adult individuals is impaired, not only in ECM modification 

but also in the sensing and interpretation of biomechanical and biochemical signals. In vitro 

studies conducted to measure the motility as a function of age of fibroblast cells plated on 

flat substrates, have indicated that there is a decrease in overall single-cell translocation with 

age (Pienta, 1990). Wound healing in elderly individuals is hampered (Goodson, 1979) by a 

cohort of factors including a decreased capacity to produce ECM components, such as 

collagens and elastins; increased collagen fragmentation; increased MMPs; reduced collagen 

solubility and increased fibrosis; a reduced rate of HIF-1α (hypoxia- inducible factor-1α) 

mRNA and HIF-1α production (Liu et al., 2008), which influence ECM production (Gilkes 

et al., 2014; Williamson, 2013); a decreased sensitivity to chemotactic and mechanical 

stimulation (Wu et al., 2011a); reduced motility and translocation by single cells and clusters 

of cells (Pienta, 1990; Williamson, 2013); a reduced proliferation and number of fibroblasts 

in older tissue; an increased ratio of senescent to normal cells (Baker et al., 2011); enhanced 

ROS (Frantz et al., 2010); depleted adenosine triphosphate (ATP) generation (Vijg and 

Campisi, 2008); and reduced epithelialization (Ashcroft, 2002).  

Together with these intracellular mechanical and extracellular changes, there are 

numerous other factors that affect wound healing, which are both directly and indirectly 

affected by the aging process. These include nutritional status; activity levels; cigarette and 

alcohol consumption; chronic diseases, such as diabetes and peripheral vascular conditions; 

and chronic psychological stress (Guo and Dipietro, 2010). Studies have shown that sex 
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hormones play a major part in age-related deficits in wound healing. Compared with older 

females, older males show delayed healing of acute wounds, which is partially attributable to 

the hormones estrogen and androgen and their precursor steroids, all of which appear to 

have significant effects on wound healing. In one study, it was demonstrated that estrogen 

has significant effects on wound healing. When estrogen was topically applied, there was a 

marked acceleration in wound closure, an effect observed in both males and females 

(Ashcroft et al., 1999).  

4.2 AGING AND CELL MECHANICS 

Accumulating evidence indicates that aging correlates with progressive changes in the 

mechanical integrity and impaired response of cells and tissues to mechanical forces 

(Berdyyeva et al., 2005; Dulinska-Molak et al., 2014; Lieber et al., 2004; Schulze et al., 2012). 

It has long been hypothesized that the altered mechanical compliance of aging tissues is 

primarily attributable to changes in the composition, micro- and nanostructure, and 

organization of the ECM (Pelissier et al., 2014; Schulze et al., 2012; Sokolov et al., 2006). 

However, the complex interactions of biological, biophysical, and biochemical processes, 

which are characteristic of living organisms, result from the combined effects of not only 

physical changes in the ECM but also in the mechanical compliance of cells. These changes 

in cell compliance in response to stress perturbations affect the intrinsic ability of cells to 

sense and transduce mechanical signals (Wu et al., 2011a), ultimately mediating physiological 

degradation and loss of function at the gross physioanatomical level. These changes include 

the increased incidences of cardiovascular disease and cancer (Lopez-Otin et al., 2013), 

reduced muscle mass, and weakening of the bone through the onset of disorders such as 

osteoporosis, osteoarthritis, and frailty (Walston et al., 2006).  
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4.2.1 Cell Mechanics 

Aging correlates with modulations in cell mechanics. This matters because a multitude of 

cellular and subcellular processes depend critically on the dynamic mechanical deformability 

of the cytoplasm (Wirtz, 2009); these processes include the regulation of gene expression 

(Pravincumar et al., 2012), the translocation and replication of organelles within the 

cytoplasm (Lee, 2005; Minin et al., 2006), the movement and biogenesis of mitochondrial 

bodies along cytoskeletal tracks (Anesti and Scorrano, 2006), and cell polarization during 

wound healing (Kole, 2005). These mechanical changes also regulate the ability of cells to 

protrude, adhere, migrate, and squeeze through 3D matrices and blood vessels (Wirtz et al., 

2011b).  

Technological advances during the past 15 years have led to a wide range of 

sophisticated methods for measuring both the global and local viscoelastic properties of 

cells. These methods include atomic force microscopy (AFM) (Kirmizis, 2010; Nawaz et al., 

2012; Sokolov, 2007), particle-tracking microrheology (Wirtz, 2009; Wu et al., 2012), optical 

stretching (Roth et al., 2013; Zhang and Liu, 2008), magnetic twisting cytometry (Celedon et 

al., 2011; Puig-De-Morales, 2001), and micropipette aspirations (Lim et al., 2006; 

Pravincumar et al., 2012). These methods feature different spatiotemporal resolutions, 

leading to complementary mechanical measurements of cells and tissues.  

Many key cellular components and their mutual interactions orchestrate the complex 

response of cells to changes in their mechanical properties, which undergo dysfunctional 

changes with age and age-associated pathogenesis. A critical player in this mechanical 

regulation of cells is the cytoskeleton, the highly entangled network of filamentous proteins 

(Schulze et al., 2012) that provides cells with their structure and morphology (Wirtz, 2009). 
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The cytoskeleton consists of three types of filamentous proteins: microfilaments (F-actin), 

intermediate filaments, and microtubules, all of whose content, organization, and dynamics 

greatly influence the ability of cells to sense and respond to mechanical stimuli. Other players 

in this mechanical regulation of cellular compliance include (a) the biomechanical properties 

of the cell membrane and cytoplasm (e.g. membrane viscosity, which is influenced by lipid 

and protein contents, ratios of cholesterol to phospholipids, and the local and/or bulk 

viscosity of the protein and lipid solutions within the cytoplasm, leading to so-called non-

Newtonian behavior whereby force and deformation are not proportional) (Ajmani, 1998); 

(b) the density of intracellular organelles [e.g. the mitochondria and endoplasmic reticulum 

(ER) within a local region of the cell, which is indirectly linked to the local cytoskeletal 

architecture, because these organelles are anchored to cytoskeletal tracks and consequently 

have coupled dynamics (Starodubtseva, 2011)]; (c) the local concentration and activity of 

cytoskeletal proteins [Rho guanosine triphosphatases (GTPases), crosslinkers, and motor 

proteins (Tseng et al., 2005)]; and (d ) the transport of water throughout the cell, either via 

external osmotic stimulation or from the internal dynamics of the cytoskeleton and other 

organelles (Jiang and Sun, 2013; Stroka et al., 2014).  

Another important contributor to cellular mechanics, which is often overlooked but 

could potentially play a major part in the functional mechanics of cells, is the memory and 

homeostasis of cells‘ internal machinery in the production and organization of proteins. To 

obtain a more intuitive understanding of this concept, we consider the following example. 

Cells that are repeatedly exposed to mechanical stimulation—for instance in vitro through 

repeated tapping with an AFM tip (Deng et al., 2005; Icard-Arcizet et al., 2008) or in vivo in 

patients with dilated cardiomyopathy that has been induced via prolonged tachycardia and 
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atrial fibrillation (Popesc, 2012) leading to irregular and asynchronous heart beats—will 

develop changes in the compliance of cells and tissue in the local area experiencing the 

mechanical stimulation. Similarly, recent in vitro studies have shown that when serum-

starved cells, which have low levels of organized F-actin, are exposed to external mechanical 

stimulation generated by shear flows or mechanical stretching of the underlying substrate, 

their cytoplasm rapidly assembles actin into highly organized fibers, and a distinct 

perinuclear actin structure called the actin cap (Chambliss et al., 2013a; Gay, 2011; Khatau et 

al., 2009; Kim et al., 2012) emerges. Through activation of the ROCK (Rho-associated 

coiled-coil kinase) pathway, this increased F-actin organization adds to the mechanical 

rigidity of the cytoplasm by strengthening physical connections among the cytoskeleton and 

the nucleus and the ECM (Wirtz, 2009). Although F- actin structures are highly dynamic in 

nature, progressive shifts occur during aging in regards to the homeostatic ratio of cells with 

organized versus loosely organized structures, and cells with high versus low F-actin content. 

These shifts in the content and structure of F-actin, in turn, facilitate increased dysfunction 

in the mechanical phenotypes of cells and their surrounding tissues. However, this impaired 

homeostasis and the inability of cells to elastically respond to stresses, which are 

characteristic of the age-related phenotype, are, in part, due to intrinsic aging and to 

prolonged exposure to mechanical stimulation, coupled with somatic damage to proteins and 

organelles (Vijg and Campisi, 2008), which fuel mechanical deterioration and loss of 

function.  

4.2.2 Mechanical Changes as a Function of Age 

Changes in the mechanical properties of cells are hallmarks of the aging process 

(Starodubtseva, 2011). Indeed, numerous studies have demonstrated that there is a strong 
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correlation between age and cytoplasmic stiffness (i.e. cytoplasmic compliance or 

deformability is reduced with age) (Figure 2). Studies that have applied AFM to adherent 

human cells [epithelial cells (Berdyyeva et al., 2005; Sokolov et al., 2006; Sokolov, 2005), 

fibroblasts (Dulinska-Molak et al., 2014), and cardiac myocytes (Lieber et al., 2004)] seeded 

on flat substrates have shown that cells consistently respond to mechanical activation with a 

stiffening response as a function of increasing age. This suggests that age-dependent 

cytoplasmic stiffening is not cell-type specific. Moreover, this stiffening affects all cell 

regions (the cell edge, cytoplasm, and perinuclear region) (Berdyyeva et al., 2005). 

Experiments conducted using a microfluidic optical stretching device that measures the 

elasticity of detached cells also have shown that there is enhanced stiffening with increasing 

age (Schulze et al., 2012). Even suspended samples of red blood cells derived from healthy 

donors experience reduced deformability as a result of stiffening with increasing age 

(Ajmani, 1998; Ward, 1991).  

Amid these studies, there exist conflicting results that show cytoplasmic softening 

with age (Zahn et al., 2011). However, this study brings up an interesting premise that 

warrants further investigation: cellular heterogeneity. Cellular heterogeneity, plays an 

important part in dictating cellular diversity and cell function—that is, how cells process 

information and respond to perturbations—during healthy human cellular functioning and 

aging (Glauche, 2011; Muller-Sieburg, 2012). Although often neglected in aging studies, 

heterogeneity can be dictated by many factors, in vitro and in vivo, from both cell-intrinsic 

and cell-extrinsic factors, such as stochasticity in cellular morphogenesis, the cell-cycle state, 

cell–cell and cell–matrix interactions, genetic predispositions, lifestyle (factors such as 

nutrition or diet, and exercise), and environmental factors and exposures. To some degree, 
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cell-to-cell differences are always present in any cell population, and the ensemble-averaged 

behavior of a population (cellular as well as for an individual patient or donor) may not 

represent the behavior of any single entity (Altschuler and Wu, 2010). In light of this, further 

studies are needed that are based on large sets of samples from donors, that address both the 

single-cell and single-individual levels, to decipher the relationship between heterogeneity 

and aging. These studies should place special emphasis on the bidirectional effects of aging, 

and on the rate and emergence of dysfunctional age- related phenotypes with respect to both 

cell-intrinsic and cell-extrinsic factors. Results from such studies may lead to the 

development of novel approaches for patient stratification and therapeutic interventions to 

combat age-associated dysfunctions and pathologies.  

The age-dependent increase in the rigidity of cells is accompanied by the onset of 

numerous diseases, including vascular degeneration (Zieman et al., 2005), cardiac 

dysfunction (Harvey and Leinwand, 2011), and cancer (Suresh, 2007). Considering the 

importance of cellular mechanics to the correct physiological functioning of cells (Schulze et 

al., 2012), an improved understanding of the underlying molecular basis for this mechanical 

dysfunction is essential. Clearly, the cytoskeleton plays a central role in modulating cell 

mechanics with age (Schulze et al., 2012). Since the state of actin, intermediate filaments, and 

microtubule polymerization contribute to the mechanical rigidity of cells, it is important to 

understand how the content, structure, and organization of these cytoskeletal components 

changes with age. Fluorescence-activated cell-sorting (FACS) flow cytometry analysis has 

indicated that the level of globular actin (G-actin) is maintained and does not change 

significantly with increasing age. However, F-actin content increased significantly with age in 

dermal fibroblasts from a young donor cohort ranging in age from 20 to 27 years to those 
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from an older donor cohort ranging in age from 61 to 72 years. Hence, increased levels of F-

actin and constant levels of G-actin, corresponding to an increased ratio of F-actin to G-

actin, suggests that actin assembly is enhanced in cells derived from older donors versus 

those from younger donors (Schulze et al., 2012). Not only is there more F-actin in cells 

from older donors (Figure 3), but there is also (a) increased cytoskeletal volume in cells 

from older donors relative to cells from younger donors, (b) increased cytoskeletal 

crosslinking and bundling [that is, effects from crosslinking proteins, such as fascin and α-

actinin (Esue et al., 2009; Tseng et al., 2001; Tseng et al., 2005)], (c) an associated increase in 

cytoskeletal density (more fibers per unit area), and (d ) reduced variation in fiber density 

(that is, a narrower distribution equals a more similar fiber density per cell) associated with 

increased age (Berdyyeva et al., 2005; Sokolov, 2005) (Figure 2).  

The intermediate filament vimentin (Mendez et al., 2014), and to a lesser extent 

microtubules, can contribute to cell mechanics (Kole, 2005). However, FACS analysis has 

indicated no statistically significant changes in the content of microtubules and vimentin in 

suspended dermal fibroblasts from donors of different ages. In addition, the location of F-

actin just beneath the plasma membrane and the high mechanical strength of the actin cortex 

suggest that F-actin and its associated proteins collectively dominate the viscoelastic 

response of cells to small deformations (Schulze et al., 2012). This provides further 

confirmation of the hypothesis that the mechanically rigid phenotypes observed in older 

individuals are linked to altered (a) actin polymerization and (b) actomyosin contractility, 

which is dictated by the content and organization of F-actin fibers and the associated motor 

protein, myosin (Berdyyeva et al., 2005; Dulinska-Molak et al., 2014; Schulze et al., 2012). 

Although the vast majority of the literature has focused on how the properties of the 
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cytoskeleton (primarily F-actin) drive enhanced stiffness with age, it will be interesting to 

understand how the other aforementioned factors, such as the properties of cell membranes 

and the local distribution of intracellular organelles, contribute to the cellular stiffening 

response that occurs with age. 

 
Figure 2 Interactome illustrating the functional coupling of cellular and nuclear mechanics, and their influences 
on biochemical mediators and responses. Age-related phenotypes, which foster functional decline and cellular 
degeneration, are associated with the disruption of multidirectional interactions between biomechanical and 
biochemical pathways. Red question marks illustrate potential functional interactions that warrant further study 
to identify the magnitude of their contribution to age-dependent functional decline. Abbreviation: ROS, 
reactive oxygen species. 
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4.2.3 Reversal of Age-Associated Mechanical Phenotypes 

The characteristic changes in the mechanical properties of aging cells induce physiological 

dysfunctions and present avenues for deficiencies in mechanosensation and 

mechanotransduction (Pelissier et al., 2014; Wu et al., 2011a). In efforts to better understand 

how to potentially reduce these age-dependent mechanical dysfunctions in cells and tissues, 

studies have been geared toward assessing the possibility of reversing the mechanical 

phenotypes of cells derived from elderly individuals (Dulinska-Molak et al., 2014; Sokolov et 

al., 2006). Due to the dominating effects of the actin cytoskeleton and the increased F-actin 

content (Dulinska-Molak et al., 2014; Schulze et al., 2012) observed in cells from older 

donors, (i.e., fibroblasts, cardiac myocytes, and red blood cells), a widely studied target for 

possible phenotypic reversal is the use of pharmacological agents that affect F-actin. Studies 

conducted using the F-actin-depolymerizing drug cytochalasin B and the F-actin-stabilizing 

drug jasplakinolide indicate that fibroblasts treated with cytochalasin B that were aged in 

vitro on a dish (>50 doublings) regressed to levels of cytoplasmic stiffness comparable to 

those of earlier passage cells (<25 doublings) (Sokolov et al., 2006; Sokolov, 2005). In 

addition, dermal fibroblast cells from a young donor cohort resembled the cytoplasmic 

mechanics of samples from older donors after treatment with jasplakinolide (Schulze et al., 

2012). Similarly, human fibroblasts exposed to an antiwrinkle tripeptide demonstrated 

decreased cytoplasmic stiffness, with larger effects seen in samples from older donors (aged 

60 years) relative to samples from younger donors (aged 40 and 30 years). This reversal was 

partly due to direct effects on the cytoskeleton, primarily F-actin, as seen from changes in 

the content, structure, and contractility after treatment (Dulinska-Molak et al., 2014). 

However, although these studies show evidence of mechanical reversal in vitro by 
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manipulating actin directly, additional studies should be performed to further elucidate and 

identify reversal in vivo, and to evaluate the role of cytoskeletal control on cellular aging.  

4.2.4 Mechanical Properties of Cells in Models of Accelerated Aging 

In recent years, much effort has been made to elucidate and understand the mechanisms of 

various aging pathologies, as well the onset of maladies that resemble the normal aging 

process, which are termed accelerated aging (Capell et al., 2007). A well-studied set of such 

accelerated aging diseases falls under the general category of laminopathies, which arise from 

content and structural dysfunctions in the intermediate filament lamin A/C, encoded by the 

LMNA gene. In somatic cells, lamins are separated into two subcategories: A-type lamin 

(lamins A and C, which result from alternative splicing of the LMNA gene) and B-type 

lamin (lamins B1 and lamin B2/B3, encoded by the LMNB1 and LMNB2 genes, 

respectively) (Zwerger et al., 2011). These laminopathies include Hutchinson–Gilford 

progeria syndrome (HGPS), Werner‘s syndrome and Emery–Dreifuss muscular dystrophy 

(Capell et al., 2007). A study using cells derived from mice models deficient in lamin A/C 

has shown that there is a significant loss of cytoplasmic stiffness relative to wild-type 

controls as assessed by cellular microrheology (Lee et al., 2007b). LMNA−/− cells treated 

with the actin- and microtubule-depolymerizing drugs, latrunculin B and nocodazole, 

respectively, demonstrated cytoplasmic stiffness similar to that of control cells. As expected, 

wild-type LMNA+/+ cells treated with these drugs showed a decrease in cytoplasmic 

stiffness, down to levels comparable with that of LMNA−/− cells (Lee et al., 2007b). Taken 

together, these results indicate that direct cytoplasmic mechanical properties stemming from 

deficiencies in lamin A/C (in both content and structure)—which are characteristic of 

models of accelerated aging—occur contrary to the widely accepted body of knowledge with 
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regards to cytoplasmic stiffness increasing with increasing age. This suggests that although 

numerous studies have shown that there is a decrease in the fraction of cells expressing 

lamin A/C as age increases (Afilalo et al., 2007; Duque and Rivas, 2006), there may be 

compensatory effects in lamin A/C structure, localization, and organization that dominate 

these accelerated-aging diseases, but have diminished effects on normal aging processes, thus 

providing avenues for further study.  

 
Figure 3 Overview of age-dependent cellular, nuclear, and extracellular changes associated with age. A Young 
and old epithelial microenvironments where age-dependent changes involve cellular atrophy, thinning of the 
basement membrane, degradation of the extracellular matrix, local regions of fibrosis, an increased number of 
and thicker actin filaments, and enhanced nuclear lobulations. B Overview of LINC (linker of nucleoskeleton 
and cytoskeleton) complex proteins that physically connect the cytoskeleton to the nuclear lamina. The nuclear 
envelope comprises nuclear pore complexes that enable the transport of cargo in and out of the nucleus. The 
envelope also contains SUN1 and SUN2 proteins, which span the inner nuclear membrane and interact with 
the nuclear lamina, namely with lamin proteins. SUN proteins also contain a KASH-binding domain, which 
enables their interactions with KASH-domain proteins. KASH proteins span the outer nuclear membrane and 
provide a direct link to various cytoskeletal filaments, including microtubules, F-actin, and intermediate 
filaments. KASH-domain proteins include Nesprin-1, -2, -3, and -4. Directly underneath the nuclear lamina is 
nuclear DNA in the form of chromatin. The structural connection of KASH and SUN proteins between the 
cytoskeleton and chromatin facilitate mechanotransduction between the cell exterior and the nuclear interior. 
Abbreviation: IF, intermediate filament. 

4.3 NUCLEAR MECHANICS 

The nucleus, which stores the cell‘s genetic information, is directly involved in the functional 

activity of the entire cell. Although conventionally thought of as a static structure, the 

nucleus is a dynamic organelle that is constantly subjected to mechanical forces, which in the 
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context of aging and disease can result in nuclear alterations and deformities. Nuclear 

mechanics in response to mechanical perturbations are highly dependent on the structure 

and compliance of the nucleus.  

The nuclear envelope consists of an inner and outer membrane, with approximately 

30–50 nm of perinuclear space; the nuclear envelope separates the cell‘s cytosol from its 

genetic material. It is composed of two phospholipid bilayers that have approximately 50–

100 associated membrane-bound and integral proteins (Schirmer et al., 2003). The two 

membranes are interrupted by nuclear pore complexes, which mediate the transport of 

macromolecules between the nucleus and the cytoplasm. Directly beneath the inner nuclear 

membrane is a dense protein network, termed the nuclear lamina (Isermann and 

Lammerding, 2013) (Figure 3). This nuclear lamina has an essential role in determining the 

mechanical properties of the nucleus (Ivanovska et al., 2010; Pajerowski et al., 2007). The 

nuclear lamina is composed primarily of V-type intermediate filaments, or lamins. Although 

B-type lamins are essential for viability, A-type lamins are developmentally regulated. Lamins 

A and C provide the nucleus with structural support, contribute to the stiffness and stability 

of the nucleus, and are essential for the direct connection between the cell‘s cytoskeleton and 

the nucleus (Zwerger et al., 2011). As a result, lamin A/C is required for enabling the 

mechanotransduction of forces from the extracellular environment via focal adhesions 

through the cytoskeleton and into the nuclear interior (Ostlund et al., 2009; Zwerger et al., 

2013), a connection that is mediated by lamin-associating proteins. These include SUN-

domain-containing proteins, which are localized at the inner nuclear membrane, and the 

KASH-domain proteins, which are localized at the outer nuclear membrane (Isermann and 

Lammerding, 2013) (Figure 3). SUN proteins interact with the nuclear lamina and the 
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nuclear pore complex as well as with other nuclear proteins, such as emerin. KASH-domain-

containing proteins bind to major networks of cytoskeletal filaments. These include nesprin 

1 and 2 giant (nuclear envelope spectrin repeat) isoforms, which bind to, respectively, actin 

and microtubule filaments; nesprin 3, which interacts with intermediate filaments via plectin 

and nesprin 4; and KASH 5, which binds to microtubule filaments (Gundersen and 

Worman, 2013). Together lamins and SUN and KASH proteins comprise the LINC (linker 

of nucleoskeleton and cytoskeleton) complexes (Figure 3).  

Through these nucleo–cytoskeleton connections, nuclear responses to external or 

extracellular forces can be transmitted from the plasma membrane to the nucleus (Chambliss 

et al., 2013a), resulting in intranuclear rearrangement and deformation. Recent studies have 

demonstrated that disrupting the LINC complex by using dominant negative constructs of 

nesprin and SUN proteins prevented nuclear deformations in response to the stretching of 

the cell‘s underlying substrate (Lombardi et al., 2011). Nuclear deformations and 

architectural rearrangements can promote conformational changes in nuclear proteins as well 

in the nuclear interior, namely in chromatin. These changes include the release of 

transcription factors as well as the movement of segments of chromatin to and from 

transcription- ally active or repressed regions. This physical tethering is a direct result of the 

interactions between nuclear lamins and chromatin (Isermann and Lammerding, 2013). 

Ultimately, the mechanical properties exhibited by the nucleus are a synergy of (a) the 

nuclear lamina content; (b) the interconnections among the nu- clear lamina, the 

cytoskeleton (through the LINC complexes), and chromosomal DNA (through lamin-

associated proteins); and (c) the content of the nuclear interior (which is partially mediated by 

the osmotic flux of water and ions in and out of the nucleus).  
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4.3.1 Aging and Nuclear Mechanics 

Cytoskeletal mechanics are tightly coupled to nuclear mechanics (Figure 2). Hence, aging 

promotes not only cytoskeletal changes but also nuclear changes (Isermann and 

Lammerding, 2013; Scaffidi and Misteli, 2006). During development, when stem cells 

differentiate into distinct lineages, nuclear mechanics change with differentiation. Live-cell 

confocal tracking of nuclear lamina and the use of micromanipulation methods have 

indicated that nuclear stiffness greatly increases when terminal differentiation is induced in 

human adult stem cells and hematopoietic stem cells (Bhattacharya et al., 2009; Ivanovska et 

al., 2010; Pajerowski et al., 2007). In addition, mouse embryonic stem cells display greater 

mechanical plasticity than their differentiated counterparts (Pajerowski et al., 2007). In part, 

this may be due to the lack of expressed Lamin A in embryonic stem cells, which is a key 

mediator of mechanical and structural support for the nucleus cells (Stewart and Burke, 

1987).  

Nuclear abnormalities and the physiological dysfunctions in the nuclear structure 

associated with human aging and disease have been extensively studied with regards to 

laminopathic models of aging. Cells from HGPS patients show progressive abnormalities in 

their nuclear shape and architecture, with excessive nuclear lobulations or blebbing, and 

invaginations (Eriksson et al., 2003; Taimen et al., 2009). The nuclear morphological changes 

that occur in accelerated-aging models also occur in normal aging (Haithcock et al., 2005; 

Scaffidi and Misteli, 2006). In the HGPS model, the observed nuclear abnormalities have 

been linked to the accumulation of mutated lamin (progerin) within the nuclear lamina, and 

have more recently been observed in cells from healthy aged donors (Scaffidi and Misteli, 

2006). Progerin accumulation has been observed in the nuclei of cells in the blood vessels 
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and skin of normally aging individuals (McClintock et al., 2007; Olive et al., 2010). Lamin 

A/C, which is required for the structural linkage between the nucleoskeleton and 

cytoskeleton, is essential for mechanical support of the nucleus, and enables force 

transmission across the nuclear envelope (Dahl et al., 2008; Isermann and Lammerding, 

2013). Thus, a weakened, dysfunctional nuclear lamina is more susceptible to the various 

stresses and types of mechanical loading that occur within the human body. Nuclei from 

cells harboring mutations or deletions in lamins display decreased nuclear stiffness and 

increased vulnerability to mechanical strain (Broers et al., 2002; Lammerding et al., 2006; 

Lammerding et al., 2004; Sullivan et al., 1999). Further, vascular smooth muscle cells from 

normally aging individuals have higher levels of prelamin A, a precursor of lamin A that is 

present in cells from HGPS, where the cells of younger individuals lack detectible amounts 

(Ragnauth et al., 2010). Furthermore, the Caenorhabditis elegans aging models display age-

dependent changes in nuclear structure, such as aberrant shape changes (Haithcock et al., 

2005). As a consequence of this age-associated softening of the nucleus, intracellular and 

extracellular mechanical cues may drive inappropriate reorganization of chromatin (which is 

intimately tethered to the cytoskeleton), thus facilitating genomic instability, as well as errors 

in heterochromatin, and epigenetic errors and defects (Lopez-Otin et al., 2013) (Figure 2).  

4.3.2 Heterochromatin and Epigenetics 

Chromatin is a complex of nuclear DNA wrapped around histone proteins (Dawson and 

Kouzarides, 2012). The basic structural unit of chromatin, the nucleosome, is approximately 

147 base pairs of DNA wrapped around histone octamers. Histones are positively charged 

structures that facilitate DNA compaction by acting as spools for negatively charged DNA 

to wrap around. Dynamic and highly regulated modifications to DNA and histones occur via 
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chromatin-modifying enzymes. These modifications alter DNA accessibility and chromatin 

structure, and concomitantly regulate gene expression without making direct changes to the 

genome. These heritable modifications to the cellular phenotype that occur independently of 

changes to the DNA sequence is termed epigenetics (Dawson and Kouzarides, 2012). 

Epigenetic modifications are essential for normal development and enable the differentiation 

of cells into different lineages (Handy et al., 2011). For DNA, the primary modifications are 

the covalent addition of methyl groups to cytosine residues at the C5 position. These 

modifications that induces tight wrapping of the DNA into heterochromatin bundles are 

associated with gene silencing in eukaryotes and is essential for controlling the architecture 

of the nucleus (Esteller, 2008; Law and Jacobsen, 2010). DNA methylation occurs with the 

DNA methyltransferase-3 family of de novo DNA methyltransferase-1. However, pathways 

involving the establishment of DNA methylation patterns, including the addition and 

removal of methyl groups and their maintenance, require further characterization and 

insight.  

Histones are essential structures that regulate gene expression through 

posttranslational modifications at various residues through the modulation of DNA packing. 

These modifications that constitute the epigenetic code includes acetylation and methylation 

at lysine (K), methylation at arginine (R), and phosphorylation and methylation at serine (S) 

(Esteller, 2008). Each modification and its location influence differential gene expression. 

For example, the acetylation of histone H3 at lysine 36 is typically associated with loose 

DNA packing and transcriptional activation. Methylation of histone H3 at K9 and K27, and 

histone H4 at K20, are associated with translational repression and DNA compaction (Karpf 

and Matsui, 2005). Histone modifications occur as a result of enzyme activity, i.e. the activity 
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of histone acetylases, deacetylases, methylases, and demethylases. Further, chromatin is 

divided into two major categories: first, heterochromatin, which is condensed DNA 

containing transcriptionally inactive genes (Allfrey et al., 1964), and, second, euchromatin, 

which is a relatively open DNA structure containing mostly transcriptionally active genes 

(Goldberg et al., 2007).  

The nuclear interior is also a major contributor to the mechanical properties of the 

nucleus. Experiments using micropipette aspiration have demonstrated that chromatin 

provides the majority of the resistance to force deformation in unswollen nuclei (Dahl et al., 

2005; Rowat et al., 2008). In addition, alterations to the structure and organization of 

chromatin—such as the inhibition of histone deacetylase, differentiation, or the increased 

expression of heterochromatin proteins—promote changes in nuclear mechanical properties 

(Dahl et al., 2005; Ivanovska et al., 2010; Meshorer et al., 2006; Pajerowski et al., 2007).  

4.3.3 Aging, Chromatin and Epigenetics 

Chromatin and epigenetic modifications are critical, from early development through to 

older age. For example, the ability of stem cells to differentiate into various lineages requires 

not only changes to the structure of chromatin but also distinct and directed epigenetic 

alterations that allow access for the binding of transcription factors (Bibikova et al., 2008; 

Meshorer et al., 2012). Moreover, because the structure and organization of chromatin 

influence the mechanics of the nucleus, these changes may explain the changes in nuclear 

deformability that occurs with differentiation.  

In HGPS models, the accumulation of mutated lamin within the nuclear envelope is 

accompanied by the loss of peripheral heterochromatin directly beneath the nuclear lamina 
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(Goldman et al., 2004). A similar reorganization of chromatin throughout aging has been 

observed both in human cell lines and in C. elegans (Haithcock et al., 2005). Many changes in 

histone modification are associated with increased age, including an increase in histone 

acetylation at H4K16, trimethylation of H4K20 and H3K4, and a decrease in methylation of 

H3K9 and H3K27 (Fraga and Esteller, 2007; Han and Brunet, 2012). In addition, a number 

of histone modifications have been associated with an increase in life span and survival. For 

example, the loss of histone demethylases for H3K27 promotes longevity in worms by 

altering insulin and insulin-like growth factor (IGF) signaling (Jin et al., 2011), which are key 

pathways known to regulate life span in yeast, C. elegans, fruit flies, and rodents, presenting 

promising avenues for investigations in humans.  

In addition, an age-dependent decrease in total genomic DNA methylation has also been 

observed (Romanov and Vanyushin, 1981): because DNA methylation elicits the formation 

of constitutive heterochromatin, its decrease promotes deheterochromatinization, facilitating 

enhanced nuclear compliance. Although a decrease in heterochromatin occurs with age, its 

accumulation has also been observed at specific sites. In rat liver and kidney cells, total levels 

of histone H4 methylation at lysine 20 (H4K20me) increase with age (Sarg et al., 2002). In 

addition, recent studies have observed that the accumulation of heterochromatic domains 

was associated with senescence and cellular aging. These domains, termed senescence-

associated heterochromatic foci, form repressive chromatin structures that are directly 

involved in the repression of genes that promote cell growth (Narita et al., 2003). 

Recognition of the loss of peripheral chromatin and the changes in cellular epigenetics that 

occur with age has led to a notion of age-associated heterochromatin reorganization, which 

potentially results in genome-wide transcriptional changes (Oberdoerffer and Sinclair, 2007) 
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4.4 MITOCHONDRIAL DYSFUNCTION 

As organisms age, specific changes occur that lead to diminished integrity in the 

mitochondrial structure–function relationship (Lopez-Otin et al., 2013; Sahin and DePinho, 

2012). For many years, it was postulated that there was an intimate relationship between 

organismal aging and mitochondrial dysfunction, but the question of whether dysfunctions 

in mitochondria drive the aging phenotype or vice versa, is still under debate, and resolving 

this issue remains a major challenge in aging research (Conley, 2007; Seo et al., 2010; 

Trifunovic and Larsson, 2008). Regardless of the order of the chicken or the egg, it is clear 

that the decline in mitochondrial function has a key role in the aging process, and this 

decline is associated with the onset and progression of age-related disorders (Seo et al., 

2010). The popular free-radical theory of aging proposes that this cumulative damage to 

biological macromolecules caused by ROS leads to irreversible cellular damage and overall 

functional decline (Harman, 1965; Lopez-Otin et al., 2013; Seo et al., 2010). This theory has 

been further extended to include mitochondrial ROS, and shows that the accumulation of 

age-associated alterations in mitochondrial DNA (Chomyn and Attardi, 2003) and global 

cellular damage lead to impaired efficacy of the respiratory–electron transport chain, 

mitochondrial biogenesis, and induce a perpetual feed-forward production of ROS. This 

results in a vicious positive-feedback loop that fosters exponential increases in oxidative 

damage and dysfunctions, which resonate at the cellular, tissue, and gross physioanatomical 

levels (Chomyn and Attardi, 2003; Cui et al., 2012; Seo, 2008; Seo et al., 2010).  

Mitochondria are highly complex and dynamic organelles that can alter their 

organization, morphology, size, and bioenergetics in response to intra- and extracellular cues 

(Seo et al., 2010). Mitochondrial bodies undergo bidirectional cycles of regulated processes—
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fusion and fission—that, in turn, influence their morphology (Santel, 2000; Seo et al., 2010), 

dynamics (Karbowski et al., 2004; Koopman et al., 2006), bioenergetics (Benard et al., 2007; 

Benard and Rossignol, 2008), and even has a role in cell-cycle regulation and growth (Finkel 

and Hwang, 2009; Mitra et al., 2009). As with any properly functioning, adaptive system, the 

cell maintains regulative control over mitochondrial fusion and fission processes. At steady-

state conditions, homeostasis results in functionally stable, yet heterogeneous, mitochondria 

(Collins, 2002). However, this balance can be shifted in favor of either fusion or fission, 

based on the time-dependent, functional, and energetic needs of the cell. Decreased 

mitochondrial fusion results in mitochondrial fragmentation due to continuous fission, and 

is associated with increased mitochondrial outer membrane permeabilization and decreased 

mitochondrial membrane potential. In contrast, decreased fission induces long, highly 

interconnected mitochondrial networks, which are associated with enhanced mitochondrial 

membrane potential (Seo et al., 2010).  

Different cell types exhibit different mitochondrial structures as a function of their 

location and roles [e.g. in terms of energetic needs consider heart cells versus lung cells 

(Calvo and Mootha, 2010)], their stress levels (apoptotic versus healthy) as well as their phase 

within the cell cycle (G0/G1 versus S versus G2M phases) (Benard et al., 2007; Benard and 

Rossignol, 2008; Mitra et al., 2009). Healthy myoblasts and fibroblasts are often highly 

networked structures, possessing both fragmented and tubular mitochondria. However, 

during the G1/S transition, mitochondria coalesce into a giant, single tubular network, 

displaying hyperpolarization and increased generation of ATP (Mitra et al., 2009). This 

characteristic increase in ATP production, brought about by electrical coupling of the 

mitochondria, is not surprising because the membrane potential serves as the ionic gradient 
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for ATP generation (Finkel and Hwang, 2009). During this transition, increased ATP 

production—the energy currency of the cell—is understandable because during the S phase 

the cell is involved in the synthesis and reorganization of numerous proteins (e.g., 

cytoskeletal proteins, such as F-actin and microtubules) and organelles (such as, the Golgi 

apparatus and the ER). As the cells continue into the different phases of the cell cycle and 

progress toward mitosis, the mitochondria attain a larger fraction of fragmented, 

topologically distributed mitochondria (Finkel and Hwang, 2009). Moreover, as an organism 

ages, there are characteristic changes in, and deterioration of, essential components that 

make up the mitochondrial regulatory and repair machinery (i.e., mitophagy, cell-cycle 

control and proliferation), consequently giving rise to dysfunctional phenotypes. These 

dysfunctional phenotypes further induce and facilitate adverse effects on overall 

mitochondrial health (e.g., morphology and biogenesis) and on cellular bioenergetics (ATP 

production). In the next section, we discuss some of the primary mitochondrial age-

dependent dysfunctions.  
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Figure 4 Age-related mitochondrial dysfunction. Mitochondrial function becomes deficient with age-associated 
changes, including cellular damage, decreased mitochondrial biogenesis, and compromised membrane integrity. 
This leads to dysfunctional regulation of cellular processes, and a complex feedback cascade that perpetuates 
the dysfunction. In healthy, young individuals, levels of reactive oxygen species (ROS) are maintained within 
the optimal range that promotes longevity and survival. However, during aging, when ROS regulation becomes 
progressively more inefficient in dictating cellular responses to stress, it leads to impaired bioenergetics and cell 
death (Lopez-Otin et al., 2013). A key question that remains to be answered is how heterogeneity and 
functional diversity relate to the perpetuation or remediation of these dysfunctions, and whether this occurs 
through mitochondrial dysfunction, functional diversity, or both. The red dashed arrow represents a potential 
bidirectional interaction; the gray dashed arrow represents the interaction that has been proposed in the 
literature but warrants further study. Red question marks illustrate potential functional interactions that warrant 
further study to identify the magnitude of their contribution to age-dependent functional decline. 
Abbreviations: ATP, adenosine triphosphate; mtDNA, mitochondrial DNA.  

 

Many time-dependent mitochondrial dysfunctions occur with age, including 

diminished efficacy of the electron-transport chain—due to increased electron leakage, 

increased oxidative stress (Massudi et al., 2012), and ROS production—reduced ATP 

production, and a marked decline in mitochondrial function [especially in samples of muscle 

tissue (Short et al., 2005)] and turnover—due to reduced biogenesis, inefficient 
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mitochondrial degradation, or both; and mitophagy (Lopez-Otin et al., 2013; Seo et al., 2010; 

Terman, 2010) (Figure 4). The findings of many studies have supported an increase in ROS 

as chronological age increases; however, confounding results regarding the negative, positive, 

or neutral effects of mitochondrial ROS, or a combination of these, have recently sparked a 

reevaluation of the mitochondrial free-radical theory (Lopez-Otin et al., 2013). Studies 

conducted in C. elegans (Doonan et al., 2008) and mice (Van Remmen et al., 2003) suggest 

that ROS may prolong life span and survival. However, comprehensive studies on mice that 

had genetic modifications to increase mitochondrial ROS production and oxidative damage 

did not find accelerated aging. Similarly, separate studies that increased antioxidant defenses 

(Perez, 2009) and impaired mitochondrial function in mice (Trifunovic and Larsson, 2008; 

Trifunovic, 2004) did not extend life span or accelerate aging, respectively. However, a novel 

framework postulated by Lopez-Otin et al. (Lopez-Otin et al., 2013) may help explain the 

confounding evidence regarding the roles of ROS. As organisms age, there is an increase in 

the associated cellular stresses and damage, which concomitantly facilitate an increase in 

ROS production that maintains survival. However, there is an upper limit (and this limit may 

be inter- and intra-organism dependent) beyond which the ROS levels betray their original 

homeostatic purpose and eventually aggravate, rather than alleviate. This increased level of 

ROS facilitates the perpetual cell-associated damage (Lopez-Otin et al., 2013) and fuels 

bidirectional ECM dysfunction through enhanced collagen fragmentation and activation of 

MMPs (Fisher et al., 2009), as well as by altering the architecture and activity of actomyosin 

cytoskeletal contractility (Muliyil and Narasimha, 2014) (Figure 4).  

As previously stated, mitochondria are highly dynamic structures that can rapidly 

adapt their morphology and function in response to a wide range of chemical and 
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mechanical stimuli, whether intracellular or extracellular, or both. Progressively, 

mitochondria experience age-dependent decreases in morphological plasticity and the 

capacity for biogenesis (Seo et al., 2010). In healthy cells, mitochondrial fusion provides a 

synchronized internal cable for the translocation and mixing of metabolites, whereas 

mitochondrial fission facilitates the equal distribution of mitochondria into daughter cells 

during cell division, and allows for the regulated degradation of damaged mitochondria 

through autophagy (Chen and Chan, 2009; Seo et al., 2010). The reduction in the efficiency 

of mitochondrial bioenergetics that occurs as a function of age may result from multiple 

converging mechanisms, including (a) reduced mitochondrial biogenesis, (b) the 

accumulation of mutations and deletions in mitochondrial DNA, (c) an increase in ROS and 

oxidative damage to mitochondrial proteins, (d) an increased destabilization of the 

macromolecular organization of the respiratory chain complexes and super complexes, (e) 

changes in the lipid composition of the of the mitochondrial membranes, (f) deficiencies in 

mitochondrial dynamics resulting from an imbalance of fusion and fission events, and ( g) 

defective mitochondrial turnover and quality control by mitophagy. As a direct result of 

these age-dependent dysfunctions—which are functions of intrinsic and extrinsic aging 

(Conley, 2007)—oxidative damage may surpass a crucial threshold, resulting in ineffective 

maintenance of functional mitochondria, thus fueling senescent phenotypes and triggering 

apoptosis, and leading to substantial changes in mitochondrial morphology, irreversible cell 

death (Seo et al., 2010), altered cytoskeletal dynamics (Muliyil and Narasimha, 2014), and 

deficient ECM (Figure 4).  

Other studies have shown that mitochondrial integrity and function can be preserved 

and ameliorated during the aging process by lifestyle practices (e.g., by ensuring appropriate 



 

 36 

nutrition, or engaging in alternate-day fasting or calorie restriction) (Trifunovic and Larsson, 

2008); physical stimulation, primarily for muscle cells (e.g., through endurance training or 

exercise); early diagnosis of age-related phenotypes (e.g., prefrail or frail phenotypes) 

(Scheibye-Knudsen, 2013); and therapeutic interventions (Lopez-Otin et al., 2013; Seo et al., 

2010).  

4.5 AGING AND DISEASE 

Despite improvements in health-care delivery and life expectancy during the past century, 

age continues to be the greatest risk factor for most chronic diseases and pathologies, 

including a range of cardiovascular and neurodegenerative conditions, and cancers. The 

mitochondrial, cellular, and extracellular changes described above are likely contributors to 

accumulating cellular dysfunctions, and ultimately, to these pathophysiological disease 

processes. Although further study is needed to find clearer connections among these age-

related cellular changes and chronic disease states, some components and mechanisms are 

already understood, and are hereby described below.  

4.5.1 Mechanobiology and Senescence and Frailty 

In the 1950s it was believed that the aging process perpetuated solely by the increase in 

damage to proteins, lipids, and nucleic acids resulting from oxidative damage, i.e. oxygen free 

radicals. Indeed, recent studies have shown that increasing or decreasing the activity of cell-

defense pathways against such radicals can modulate the longevity of an organism (158, 159). 

Moreover, some scientists have postulated that aging occurs as a result of the accumulation 

of cellular damage, i.e. the accumulation of nuclear DNA damage, misfolded proteins, and 

telomere erosion (160, 161). Interestingly, similar cellular damage is associated with 
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senescence. Senescence is defined as a state of irreversibly arrested cell growth that occurs as 

a result of genomic stress or oncogenic stimulation. In response to damaging stimuli, cells 

enter senescence via the initiation of either one or two tumor-suppressive pathways. These 

include the p53 and pRB pathways. Both proteins are important transcription factors and 

cell-cycle regulators. In response to cellular damage, these proteins halt the cell cycle in an 

attempt to rectify the damage via a p53-dependent response to damage (161). When damage 

is irreparable, cells are permanently halted from cell-cycle progression and fail to undergo 

cell division. This is a means of preventing the perpetuation of cellular damage from one 

generation to the next, and thus potentially providing a tumor-protection mechanism for 

cells in response to oncogenic stimuli (162, 163).  

Although senescence is thought to be beneficial in this regard, it has recently been 

demonstrated to promote an increase in the secretion of cytokines, growth factors, and 

proteinases (163). This enhanced secretion is termed the senescence-associated secretory 

phenotype. This phenotype contributes to age-related pathologies by stimulating tissue 

remodeling and promoting tumor progression. These processes include enhanced invasion, 

proliferation, loss of cell-to-cell contacts, and an apparent epithelial-to-mesenchymal 

transition (163, 164). Senescent cells increase as a function of age (161, 165). Studies 

conducted to clear senescent cells from mice models have resulted in delayed age-related 

pathologies (Baker et al., 2011). In addition, such manipulations have shown that the mice 

had an increased ability to perform exercise and displayed increased adiposity (165), resulting 

in a less frail phenotype.  

Mechanical changes have also been shown to occur as cells enter into senescence. 

The most apparent is the dramatic change in cell morphology. Senescent cells acquire 
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significantly enlarged cell morphology due to the continued stimulation of the cell-growth 

pathways, MAPK (mitogen- activated protein kinase) and mTOR (mammalian target of 

rapamycin) (166). Senescence is also linked to increased expression of the intermediate 

filament vimentin, decreased expression of actin and tubulin, and decreases in the focal 

adhesion protein paxillin and c-Src (167). Further, senescence is associated with spatial 

alterations to the nuclear lamina, along with the resulting changes in the shapes of the 

nuclear lamina and nucleus. This includes increased nuclear lobulations and invagination, as 

well as the local accumulation of lamin A in the nuclear envelope (168). Changes in the 

expression of mechanosensing and mechanotransducing proteins may alter how senescent 

cells in vivo properly respond to internal and external stressors. Although further studies are 

required in regards to the mechanical changes that occur with senescence, recent work using 

multipotent human mesenchymal stem cells has demonstrated that senescent cells can be 

characterized by decreased cytoskeletal stiffness, contractility, and motility (169).  

Frailty is an age-dependent syndrome that is often synonymous with disability and 

comorbidity, in which frail individuals have a high risk of falls, hospitalization, and morbidity 

(170). In a study performed by Fried et al. (170), a frail individual was further defined as one 

who met at least three of the following criteria: an unintentional decrease in weight during a 

year, fatigue, weakness as measured by grip strength, slow walking speed, and low levels of 

physical activity. These characteristics, defined at the physiological level is predictive of 

deteriorating mobility and falls, and is much more likely to predict mortality when these 

individuals are compared with age-matched nonfrail individuals. Despite the potential of cell 

mechanics to act as a label-free marker and the clinical importance of frailty, it remains to be 

assessed and clinically validated whether cell mechanics can predict frailty; a notion that is 
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proposed later in chapter 2. 

4.5.2 Cardiovascular Disease 

Cardiovascular disease, which includes all pathologies and malignancies related to the heart 

and circulatory system, continues to be one of the leading causes of death in the United 

States (171). The primary cause of cardiovascular disease is atherosclerosis, which results 

from the buildup of plaque on the inner walls of arteries, veins and capillaries, which, in turn, 

causes hardening (reduced elasticity) and narrowing of blood vessels. However, evidence 

suggests that age-related changes in cardiomyocytes and valvular tissues that result in heart-

valve malfunction and congestive heart failure are increasingly important causes of morbidity 

and mortality in older adults. Although important risk factors for cardiovascular disease 

include obesity, high blood pressure, and diabetes (172), age is a major contributor, as 

evidenced by the fact that most cardiovascular diseases are not present until middle or older 

age. This may be due to the decline of normal heart function with age: for example, the 

increase in cardiomyocyte apoptosis, the decrease in cell contractility and increased stiffness, 

as well as hypertrophy and fibrosis (173), as presented earlier. Apoptosis, which is typically 

characterized morphologically by cell shrinkage and chromatin compaction, is postulated to 

occur partly as a result of a decline in mitochondrial function (172). Contractile cells, such as 

cardiomyocytes, require large amounts of energy to maintain proper cellular function. 

However, as dysfunctional mitochondria accumulate with age (172), cells lose the ability to 

meet their energy demands. The accumulation of dysfunctional mitochondria initiates cell 

death and can lead to a chronic loss of cells within the heart (174). This in turn influences 

the contractile properties of the heart, which are especially apparent in cardiovascular 

diseases such as dilated cardiomyopathy, which is characterized by thinning of the 
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ventricular wall and enlargement of the ventricular chamber (175). Dilated cardiomyopathy is 

marked by mutations in various cytoskeletal-associating and -regulating proteins, as well as 

proteins critical to the mechanotransduction of forces between the cell exterior and interior. 

Some of these include mutations in β-myosin heavy chain protein, which can cause 

ventricular wall thinning; α-tropomyosin 1, which may cause ventricular wall stiffening; and 

the intermediate filament desmin, which is linked to enlargement of the ventricular chamber. 

Mutations in genes encoding lamin A/C and the focal adhesion protein vinculin, have also 

been associated with dilated cardiomyopathy (175). Moreover, the functional loss of these 

proteins internally affects the contractility of cardiomyocytes and influences their ability to 

respond to contractile changes, which in turn disrupts cellular mechanotransduction, and 

circulatory rhythm.  

Heart disease is not solely attributed to the loss of cellular function in 

cardiomyocytes, but also to the decline in function of surrounding cells. Cardiac 

fibroblasts—which produce, maintain, and remodel the ECM within cardiac tissue—decline 

as a function of age (176); in addition, aging hearts tend to harbor more fibrotic regions 

compared with hearts from younger individuals. The excessive deposition of collagen and 

the resulting fibrotic scars promote stiffening of the heart and impede the contractile 

function of cardiomyocytes (175).  

Changes in the ECM have also been linked to age-associated cardiovascular disease. 

For example, the increased production and deposition of FN, together with the increased 

inappropriate crosslinking of collagen, and AGE accumulations is associated with the aging 

process (177, 178). Changes in the structure of the ECM also influence cardiomyocytes by 
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causing changes in their morphology and in tissue architecture, which, in turn, influence the 

orientation of actin filaments, the organization of sarcomeres, contractility, and 

myofibrillogenesis (179, 180). Excessive crosslinking of ECM proteins further induces 

alterations in the mechanics of the cardiomyocyte microenvironment, where the contractile 

activity and organization of myofibrils increase with extracellular stiffness thereby facilitating 

this dysfunctional crosstalk. The mechanosensation and changes in the extracellular 

environment and focal adhesions is critically dependent on cytoskeletal tension (181). 

Moreover, epigenetic modifications have been shown to be associated with cardiovascular 

disease, hypertension, and diabetes, which could be the missing hereditary link among these 

diseases (182, 183). For example, methylation status is directly correlated with type II 

diabetes; a possible contributor to heart disease, but this warrants further study.  

The aging of blood vessels appears to be an important contributor to cardiovascular 

pathology. The aging of vessels results in vascular remodeling and decreases the elasticity of 

arteries, and together these promote vascular stiffening (184). Age-dependent changes, such 

as increased inappropriate collagen crosslinking and decreased elastin content, are major 

contributors to vascular stiffness and hypertension. Increased hypertension further 

propagates deficiencies in the collagen microstructure and vessel stiffness, thus, acting as a 

positive-feedback mechanism that perpetuates the pathology (184). Together, the total 

contributions of mechanobiology to the proper function of the heart are critical. In addition, 

minute intrinsic and environmental alterations seem to reap large effects and are associated 

with the pathogenesis of various cardiac deficiencies.  

4.5.3 Neurodegenerative Disease 

Neurodegenerative diseases encompass a group of disorders that are characterized by the 
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progressive loss of the function or structure of neurons and the central nervous system. 

These include diseases such as Alzheimer‘s, Parkinson‘s, and amyotrophic lateral sclerosis. 

Similar to cardiovascular diseases, aging remains the leading risk factor for 

neurodegenerative diseases—that is, age makes patients both more prone to these diseases 

and their cells less capable of self-repair. One major cause of age-related neurodegenerative 

diseases is the accumulation of disease-specific misfolded proteins within regions of the 

central nervous system. These proteins are insoluble, filamentous aggregates of normally 

soluble proteins (184). The aggregates contain fibers that dis- play the properties of amyloid 

fibrils having β-sheet structure (184, 185). The accumulation of these proteins leads to the 

progressive loss of neuronal function and inflicts damage on synapses (186). These 

aggregates begin to accumulate early in life, but manifest as various diseases during mid- or 

late life (184). Although, most neurodegenerative diseases are characterized by the 

accumulation of protein, there remains striking diversity among the diseases. These 

differences arise primarily from the diversity of proteins deposited in each disease. For 

example, β-amyloid peptides and tau or tau-phosphorylated proteins accumulate in 

Alzheimer‘s disease, α-synuclein and ubiquitin accumulate in Parkinson‘s disease, and mutant 

huntingtin proteins accumulate in Huntington‘s disease (186, 187). Each disease differs in its 

spatiotemporal pattern of protein aggregates. Depending on the particular neurodegenerative 

disease, aggregates have been shown to occur in either the extracellular, intra-cytoplasmic, or 

intranuclear regions of neurons, astrocytes, and oligodendroglia.  

In addition to protein aggregation, chronic inflammation is largely associated with 

age-related neurodegenerative diseases. Neuroinflammation results from the chronic 

activation of immune responses, which include those mediated by active microglia in the 
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degenerating areas (187, 188). Microglia cells are macrophages that colonize the central 

nervous system during embryonic development and are responsible for controlling 

inflammation, repair, and regeneration (187, 189). In response to pathology or injury, 

microglia are activated and rapidly change their morphology to express the required 

inflammatory proteins, which, in turn, accelerate many pathophysiological processes in the 

central nervous system. Moreover, these morphologically active microglia are present in the 

central nervous system of a large number of patients with neurodegenerative diseases and 

might attest to the chronicity of inflammation found in these pathologies (190). 

4.5.4 Cancer  

Among age-related pathologies, cancer is one of the most prevalent, where approximately 40 

percent of individuals will be diagnosed with cancer during their lifetime. Various risk factors 

influence the likelihood of an individual developing neoplastic disease; of these cofactors, 

age is the greatest contributor (Krtolica and Campisi, 2002). Cancer incidence increases 

steadily with age (Figure 5), peaks, plateaus and even decreases thereafter (Frank, 2007). In 

addition, about 50 percent of all neoplasms affect 12 percent of individuals over the age of 

65 (R.M. Yancik, 1998).   
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Figure 5 Relationship between cancer and aging. A. plot of cancer incidences as a function of age for both 
males and females. B. plot of cancer incidences versus mortality as a function of age in the US. Plots adopted 
from ‗Individual aging and cancer risk: how are they related?‘ (Ukraintseva and Yashin, 2003) 

 

Of the various cancer subtypes, carcinomas, which originate from epithelial tissues, 

are the most prevalent in aging population, with breast, lung and prostate being the most 

common (Krtolica and Campisi, 2002). Several factors are involved in promoting the 

development of malignancies in the elderly. Some of these include the accumulation of 

DNA damage or genomic instability as well as the cellular microenvironment. Further, 

physical changes accompanying cancer progression enable cells to reorganize themselves as 

well as their environment. The cancer local environment is significantly influenced by the 

secretion of MMPs and other proteases (Coppe et al., 2008), possibly endowing cancer cells 

to migrate with less steric hindrances. Further, cells utilize cell surface receptors to sense the 

mechanical and biochemical properties of their environment. Therefore changes to 

surrounding tissue and ECM may pose changes to cell behavior via mechanotransduction 

from the cell surface to the cytoskeleton and to the nucleus. These may further provide 

optimal conditions that may contribute to disease progression.   

Metastasis, which involves the spreading of cancer cells from one organ of origin to 

a distant organ, is responsible for over 90% of all cancer-related deaths (Wirtz et al., 2011a). 
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Metastasis, a complex multistep process, which involves the dissemination of cells from the 

primary tumor, intravasation through the endothelium, circulation through the blood vessels, 

adhesion to the blood vessel wall, extravasation, and colonization and growth at a secondary 

site (Wirtz et al., 2011a). Each step involved in the metastatic cascade involves mechanical 

and morphological changes. In particular EMT (epithelial to mesenchymal transition) is a 

primary step in the metastatic cascade, where cells transition from an epithelial morphology, 

having rich cell-cells contacts, to a mesenchymal morphology characterized by the loss of 

cell-cell contacts and the development of a motile phenotype. In addition, cells acquire the 

ability to secrete MMPs (matrix metalloproteases) which promote the local digestion and 

remodeling of the laminin- and collagen-rich basement membrane (Hotary et al., 2006), 

thereby enabling carcinoma cells to effectively cross into the stromal environment and 

proceed with their metastatic process.  

Mechanics are critical for invasion and metastasis. Although important, there are 

various thoughts in regards to cancer and cell mechanics. One school of thought regards all 

mechanical proprieties between tumors as similar regardless of the tissue of origin, while the 

other believes that though many tumors share numerous physical characteristics, each tumor 

is mechanically distinct based on the tissue of origin—where different cancers may have 

various means of invasion that are optimized by based on the cancer type and environment 

(Jonietz, 2012). Studies have shown that cells derived from metastatic tumors demonstrate 

decreased cellular compliance relative to cells derived from metastatic sites. 

The development and validation of novel, integrated techniques with well-annotated 

clinical specimen from aging individuals will help establish cell mechanics as a reliable, high-

throughput, label-free diagnostic of actual biological age and prognostic of outcomes of age-
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related diseases. A key question that remains to be fully addressed is the issue of enhanced 

progression and the deficiencies in therapeutic responses experienced by elder patients. 

Although numerous studies have indeed demonstrated intimate correlations between age-

related alterations and changes in cellular mechanobiology, further research is needed to 

establish direct causality of these pathologies from changes in mechanics. Little is known in 

regards to whether changes in mechanobiology drive deficient aging phenotypes or vice 

versa. This information is integral in building our current understanding of the features that 

both promote and perpetuate age-related pathologies.  

4.6 SUMMARY 

Cellular properties change markedly with aging, and likely have a profound impact on age-

related phenotypes and a host of age-related chronic disease states. Alterations in intra- and 

extracellular support structures, mitochondria, chromatin, and histones, and the emergence 

of senescent cells, all likely contribute to these changes. Future studies that help to facilitate 

the understanding of the connections between these cellular changes and the evolution of 

chronic disease states will be important next steps in the development of novel prevention 

and treatment strategies.  
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CHAPTER 2: EMERGENT PATTERNS OF CELLULAR 

PHYSIOLOGY IN HUMAN AGING 

 

Aging is the progressive physiological degradation of organs and tissues characterized by 

phenotypic transformations that dictate the biochemical and biophysical states of living 

organisms. Aging leads to tissue dysfunctions and cellular functional declines, which 

influence the primary risk factors for major human pathologies such as cancer and cardio-

vascular disorders.  Here, we develop a platform to simultaneously probe the biophysical and 

biochemical changes that occur in human dermal fibroblasts as a function of age. This 

platform allows us to determine the extent of phenotypic transformations that occur at the 

single-cell level to quantify individuals‘ functional biological age. Results indicate that 

biophysical characteristics (cell morphology, mechanics, and migration) predict biological age 

with a significantly higher level of certainty than more conventional biochemical properties 

(secretomic profiles, DNA repair, nuclear organization, ATP content, and cytoskeletal 

content and organization).  Based on these results, a single-cell high-throughput platform is 

further developed to predict biological age based on cellular functional outputs. 

4.7 INTRODUCTION 

Aging is a complex, multifaceted process of progressive deterioration of integrity and 

functional decline across multiple organ systems (Belsky et al., 2015; Lopez-Otin et al., 
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2013).  Thought to arise from the time-dependent accumulations of cellular damage and 

tissue dysfunctions (Lopez-Otin et al., 2013), aging is characterized by phenotypic 

transformations that dictate the biochemical and biophysical states of living organisms. In 

humans, aging is considered to be a predominant risk factor for numerous pathologies that 

negatively impacts human healthspan and survival, while driving up age-related morbidities 

(Belsky et al., 2015). Moreover, many diseases that have been considered disparate in the 

fundamental mechanisms of their progression have more recently understood to be 

connected (Kennedy et al., 2014; Lopez-Otin et al., 2013). With a growing elder adult 

population—population above the age of 80 years projected to triple by 2050—the 

manifestations of negative implications of age-related disorders on human health pose major 

healthcare and financial burdens on society (Belsky et al., 2015; Harper, 2014). In efforts to 

mitigate some of these negative effects of our aging population on society, it has been 

postulated that we focus on developing ways to extend human healthspan and delay 

biological aging itself (Burch et al., 2014). Concomitantly, recent developments in 

Geroscience—the study of how aging relates to chronic disease manifestation—have 

garnered the curiosity and excitement of researchers to developing new methods to 

determine the biological age of individuals, with the hope that resulting discoveries will help 

facilitate interventions that could potentially delay biological age progression and the onset 

of chronic age-related diseases (Belsky et al., 2015; Bocklandt et al., 2011; Horvath, 2013; 

Kennedy et al., 2014; Wirtz et al., 2011b).  

 For many decades, the primary focus of aging research has been based on the 

progressive changes in the molecular profiles and gross pathophysiology in living organisms. 

Paradoxically, changes in the biophysical properties of the cells comprising these age-related 
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dysfunctional tissues—apparent hallmarks of the aging process—has for many years taken a 

back seat. These dysfunctions that resonate at the cellular level have profound effects on the 

functional decline of organisms, and furthermore enhance their susceptibility to various 

pathologies, including cancer, cardiovascular and musculoskeletal disorders (Ingber, 2003; 

Makale, 2007; Wirtz, 2009). A solution to decipher some of the key cellular features that 

undergo significant changes as a function of age, we procured a panel of primary human 

dermal fibroblast samples from individuals ranging in age from 2-96 years (Table 2.1).  

Table 1 Donor derived samples of dermal fibroblasts 

 

With these samples, we conducted a variety of biochemical and biophysical assessments 

aimed at understanding some of the fundamental factors that drive age-associated changes in 

cellular mechanics and phenotypic plasticity. We hypothesized that because cells make up the 

building block for all living organisms, age-dependent biochemical and biophysical features 
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are encoded in cells and consequently measurements of cellular features will shed light on 

the cellular aging process. Secondly, by studying these primary cell samples spanning such a 

large age range, we could systematically interrogate these age-associated relationships to 

develop a platform to determine the functional biological age of ‗apparently healthy 

individuals‘ based solely on cellular functional outputs.  Thirdly, to preserve information 

about phenotypic cellular heterogeneity, hundreds of single cells were assessed for each type 

of measurement, and as such we can assess the contributions of cellular heterogeneity on the 

age-outlook of healthy individuals.  

4.8 MATERIALS AND METHODS 

4.8.1 Cell lines and culture 

Human dermal fibroblasts, that are part of the Baltimore longitudinal study of aging (BLSA), 

were purchased from Coriell Cell Repositories (Camden, New Jersey) and were cultured in 

high-glucose (4.5mg/ml) DMEM supplemented with 15% (vol/vol) fetal bovine serum 

(Hyclone, Logan, UT) and 1% (vol/vol) penicillin-streptomycin (Sigma, St Louis, MO). All 

cell lines were maintained at 37 oC in a humidified, 5% CO2, 95% air incubator. Cells were 

passed every 3-4 days for a maximum of five passages for use in experiments.  

4.8.2 Cell motility  

Cells were seeded at low density (2000 cells/ml) unto tissue culture treated 24-well dishes 

(Corning, Corning, NY) and allowed to adhere for 24h. After cell attachment, the dish was 

mounted onto a Nikon TE2000 microscope (Nikon, Melville, NY) equipped with a 

motorized stage (Prior scientific) and an environment control—to maintain physiological 

conditions of temperature, CO2 levels and humidity (Pathology devices). Phase contrast 
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images were recorded using a Cascade 1K CCD camera (Roper Scientific, Tucson, AZ) with 

a low magnification 10X Plan Fluor lens (N.A. 0.3, Nikon). Cell motility parameters were 

determined via the tracking of single cells using image recognition software 

(MetaMorph/Metavue). The changes in the cell positions were recorded every 3 min for 

20h, out of which 10h was used for analysis. The cellular displacements were calculated using 

the corresponding x and y coordinates, and the final motility parameters (i.e. MSD, 

anisotropic index, etc.) were calculated using the Anisotropic Persistent Random Walk 

model (APRW) (Wu et al., 2015).  

4.8.3 Scratch wound measurements  

Cells were seeded to confluence in tissue culture treated 6-well dishes (Corning) and allowed 

to adhere for 24h. Three vertical and horizontal scratches were made in the confluent 

monolayer of cells using a 0.1-10μl pipet tip, to reduce artifacts that may arise due to 

orientation and boundary effects. Subsequently, cells were washed once with 1X PBS to 

remove cellular debris and then immediately mounted onto a Nikon TE2000 microscope 

(Nikon, Melville, NY), where images were acquired as previously stated. Images were 

recorded every 3 minutes for a total duration of 20h, and were analyzed using NIS Elements 

software (Nikon). The cell-free area was traced every hour for the total duration of the 

movie, for 10 positions per sample, with each position normalized based on its initial cell-

free area. The wound half-life was calculated using a 2-point interpolation method per 

position, and the wound closure rates were calculated based on exponential decay kinetics. 
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4.8.4 Immunofluorescence and High-throughput cell phenotyping  

Dermal fibroblast samples were seeded at low confluence unto tissue culture glass bottom 8 

chambered dishes (EMD Millipore) and allowed to adhere for 24h. Cells were fixed with 4% 

paraformaldehyde (Electron Microscopy Sciences) for 12 min, permeabilized with 0.1% 

Triton X-100 (Fisher) for 10 min, and blocked with 1X PBS supplemented with 1% (w/vol) 

bovine serum albumin (BSA) (Gemini). For morphology, cytoskeleton, and nuclear 

organization experiments, F-actin filaments were stained with Alexa-Fluor 488-conjugated 

phalloidin (Invitrogen) and Nuclei stained with H33342 (Sigma). For DNA damage response 

experiments, cells were treated apriori with 10ug/ml of Bleomycin (EMD Millipore) for 1h 

followed by drug wash out and incubation in fresh media for 2hrs then immediately fixed 

with 4% paraformaldehyde. γH2AX foci were stained using anti-γH2AX mouse monoclonal 

antibody (EMD Millipore), and subsequently counter stained with Alexa-Fluor 568 anti-

mouse secondary antibody (Invitrogen), in addition to F-actin and nuclei. Using custom 

image processing software, cellular and nuclear morphology were quantified using 

information generated from the F-actin and nuclear channel respectively. The protein 

content parameters (i.e. F-actin content, γH2AX content, etc.) were calculated using the 

intensity–based measurements per region of interest (after correction of non-uniformities in 

the intensity fields) within the delineated cellular and nuclear regions of interest per single 

cell, in procedure previously described (ref). 

4.8.5 Cellular stress-exertion  

8000Pa collagen coated—bead-embedded Polyacrylamide gels (PAG) were fabricated as per 

procedure delineated by Aratyn-Schaus et al., on 35mm glass bottom dishes (Mattek 

Corporation). Briefly, Cells were seeded at low density and allowed to incubate and adhere 
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for ~24h, after which the dishes were mounted onto a Nikon T300 microscope equipped 

with a motorized stage and automated fluorescence capabilities, controlled by NIS Elements 

software. For each single cell imaged per sample, an in-focus phase contrast image and a 

fluorescent image—at the corresponding bead excitation wavelength were acquired 

(fluorescent images of bead array was captured with the beads located at the top of the PAG 

in focus to achieve the most accurate deformation of the gel surface by the cells). After 

image acquisition of the cells and positions of interest, the sample was washed once with 1X 

PBS and the cells were allowed to detached using 0.25% Trypsin-EDTA (Invitrogen), and 

incubated for ~20 min. Subsequently, detached cells were washed off with a 1X PBS rinse, 

and positions that harbored the cells of interest were checked to ensure that all cells had 

detached. Once all the cells had detached, a second fluorescent image of the bead array was 

acquired, and each set of three images per position, per sample was analyzed to assess the 

cellular stresses. Using a custom Matlab script, the two fluorescent images were aligned using 

an image cross correlation algorithm, and the local bead displacement vectors within the 

traced cell-region of interest were quantified. The quantified bead displacements (difference 

in bead position in relaxed and stresses substrate) delineated the stresses exerted by the 

single cells onto the substrate, and as such was used to estimate the traction stresses. 

4.8.6 Intracellular microrheology  

Intracellular microrheology experiments were conducted as outlined in Wu et al. (Nature 

protocols, 2012). Briefly, cells were seeded in 35mm plastic dishes and allowed to adhere for 

24hrs. Next, adhered cells were ballistically injected with fluorescent 100nm polystyrene 

beads (Invitrogen). Cells were washed with 1X PBS and allowed to recover at physiological 

conditions for 4hrs and then re-seeded at single cell level in 35mm glass bottom dishes and 
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allowed to attach for an additional 24hrs. Subsequently, dishes were mounted onto a TE2000 

microscope, equipped with a motorized stage and an environmental control unit and cells 

were imaged. The displacements of the beads were tracked and analyzed using custom 

Matlab software. 

4.8.7 High-throughput cellular secretomics  

~50,000 cells were seeded in tissue culture 24 well dishes (Corning) and allowed to adhere 

for 16hrs. Once cells had attached, fresh media was added per single well, and left for 24h at 

physiological conditions, after which the conditioned media, containing the cellular 

secretions were harvested and analyzed for 23 secreted proteins of interests as previously 

described (Lu et al., 2013). 

4.8.8 ATP production  

Cells were seeded into cell culture treated 96 well dishes and allowed to adhere for 24h. 

Using a commercially available ATP assessment kit (Invitrogen), the cells were assayed as 

described in the manufacturer‘s manual and luminescence measurements were used to 

determine inter-cellular ATP contents. 

4.8.9 Generalized linear model and cellular age prediction  

Using the data collected from experiments for both biochemical and biophysical features we 

conducted bivariate analysis making use of a generalized linear model. The generalized linear 

model is a form of an ordinary linear regression that allows the response of a variable to be 

related to the expected value via a data-driven link function. Using this approach we are able 

to relate pairs of parameters and assess the correlation and prediction errors as a function of 

sample age. 
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4.8.10 Statistics  

All experiments were conducted in in duplicated with technical repeats. Correlation having a 

Pearson correlation coefficient of above 0.2 and less that -0.2 was considered as correlated, 

with values in between the range considered not correlated. Statistical significance was 

assessed using one-way-anova.  

 

 

4.9 RESULTS 

4.9.1 Donor-derived skin fibroblasts encode conserved aging information through 

biochemical features 

Extensive evidence indicates that phenotypic transformations of cells accompany aging and 

that these biochemical changes induce significant effects on cellular physiology (Darling and 

Di Carlo, 2015; Starodubtseva, 2011). These changes further facilitate the deterioration of 

normal functions of organs, tissues, and cells (Lopez-Otin et al., 2013). Here, we have 

developed a systematic approach to identify some of the key changes that accompany the 

aging process at the single-cell level. Cells were first subjected to a cohort of biochemical 

characterization assays (F-actin content and organization, DNA organization and repair 

response, secretomics, and ATP content) to determine how these phenotypic parameters 

were modulated with age, and how these features combined to define a molecular signature 

of aging. 
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F-actin content and organization dictates key cellular functions, including cell 

morphology, cell migration, and cell deformability, features that are all essential for the 

proper functioning of healthy cells in tissues (Wirtz, 2009). Utilizing a recently developed 

and validated microscopy-based single-cell phenotyping platform (Chambliss et al., 2013b; 

Chen et al., 2013), we found a significant increase in F-actin content per cell, and also found 

that the spatial organization by way of actin filament bundling increased as a function of age 

(Figure 6A). Together with previous reports of increased F-actin content and decreased G-

actin content with increasing age using flow cytometry (Schulze et al., 2012), our results 

corroborate the results that cells harbor significant F-actin cytoskeletal reorganization with 

increasing age. 

Recent studies have suggested that, through external mechanotransduction 

mechanisms involving the cytoskeleton, cells can modulate their chromosomal organization 

through the physical forces exerted by the dynamics of cytoskeletal proteins mainly F-actin 

fibers and microtubules (Isermann and Lammerding, 2013; Kim et al., 2013). Here we 

investigated the effects of increasing age on the kinetics of DNA damage response (DDR). 

Results from our single-cell phenotyping platform indicated that for increasing age, there 

was a delay DNA repair responses for cells after exposure to bleomycin. Specifically, we 

observed heightened level of γH2AX foci present within the nucleus of single cells, and an 

increase in the cell-to-cell variation in local intranuclear γH2AX content after drug washout, 

as denoted by the γH2AX peak number (ρ=0.59) and the coefficient of variation (CV) in 

intranuclear γH2AX signals (ρ=0.50) (see more details in Methods, Figure 6B).  
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Prompted by this observed reduction in DNA repair as a function of increasing age, 

we asked whether this change in DDR kinetics could in part be due to changes in the 

organization of nuclear DNA and chromatin. The application of our single-cell phenotyping 

platform showed that there was indeed a global reorganization and change in the abundance 

of spatially defined intranuclear material as a function of increasing age. We observed an 

increase in the spatial localization and a complimentary increase in the diversity of 

heterochromatin to euchromatin ratios, as measured by an increase in nuclear entropy 

(ρ=0.37) and skewness (ρ=0.58) (see more details in Methods, Figure 6C). These findings 

together with the observed changes in F-actin content and organization support a cellular 

framework of bidirectional interactions between the regulated dynamics of extra-nuclear 

cellular machinery, (i.e. cytoskeleton) and the response of transcriptionally defined DNA and 

chromatin. 
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Figure 6 Biochemical assessment of cellular phenotypes as a function of age; A-E demonstrates the 
biochemical assays used, with sample plots showing trends per parameter as a function of age. A. Cytoskeletal 
parameters—primarily F-Actin content and organization within the cell, B. DNA damage response as measured 

by the content, organization and localization of γH2AX stains within the nucleus as a function of Bleomycin 
exposure, C. Nuclear organization—measure of global organizational patterns of DNA and chromatin as 
stained by H33342. D. Secretomic profiles of 21 measured proteins measured using high-throughput 
secretomic profiling platform, E. cellular ATP production per sample as a function of age, F. Heat map 
illustrating biochemical features as a function of age, each column denotes an individual age-dependent sample, 
and each row denotes a single biochemical parameter (each parameter is normalized based on z-score). 
Unsupervised hierarchical clustering was used to determine the natural clusters of features within the dataset, 
with each color per dendrogram branch representing a single cluster (6 clusters in biophysical dataset based on 

the Euclidean distance among parameters). Heat map on left, labeled ‗κ‘, denotes the color-coded parameters 

based on the biochemical assays used in the study. Heat map on the right, labeled ‗ρ‘, represents the Pearson 
correlation coefficient of the trends per single parameter as a function of age. G. Correlation analysis for single 
variate biochemical features, showing that ATP content arose as the top biochemical age correlate having an 

absolute value of Pearson correlation coefficient of p=0.64. 

 

As a part of normal cellular physiology, cells constitute the chemical milieu of their 

surroundings by the release and the depletion of soluble factors, primarily inflammatory 

cytokines and growth factors. This dynamic response of cells to the local concentration of 

secreted factors provide a means by which cells communicate signals among themselves, 
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thus cueing a wide assortment of chemical-based transductions that is vital for the proper 

functioning of the cells and their cellular environment (Lopez-Otin et al., 2013). Using a 

recently developed and validated high-throughput cell secretion microchip technology (Lu et 

al., 2013), we assessed 23 secreted proteins simultaneously to determine both the secreted 

factors that changed, and the extent of the change as a function of age.  Results indicated 

that there was a modulated change in the abundance of secreted factors/proteins as a 

function of increasing age. Although the majority of secreted molecules assessed displayed 

minimal changes with increasing age, IL-6, a proinflammatory cytokine, stood out as a key 

secreted molecule that increased significantly as a function of increasing age (ρ=0.52) 

(Figure 6D). In addition, IL-8 exhibited interesting biphasic secretion dynamics as a 

function of increasing age, with young donor cells showing an increase in IL-8 secretion to 

around age 20, then a steady decrease in its secretion with increasing age there after. 

Together, these results demonstrate quantifiable shifts in steady state levels of secreted 

molecules as a function of age, which may influence cellular dysfunctions that adversely 

affect cellular physiology.  

The energy factory of cells—the mitochondria—has for many years been extensively 

studied and branded as a key facilitator of the dysfunctional aging phenotype (Bratic and 

Larsson, 2013; Lopez-Otin et al., 2013). In our study, we asked whether there was a 

significant decrease in cellular energetics as a function of increasing age within our sample 

set of donors. Confirming results of decreased ATP production with increasing age shown in 

other independent studies (Green et al., 2011), our results indicated that there was indeed a 

significant, steady decrease in the intracellular ATP content as a function of increasing age 

(Figure 6E).  This result supports the notion that a deficiency in ATP production may drive 
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dysfunctional phenotypes, in regards of cellular functions, as the proper function of cells 

require ATP—the primary energy currency of cells. 

Since many of the biochemical features measured demonstrate significant changes as 

a function of increasing age, we asked whether these features exhibited natural groupings 

that could be used to better describe aging at the cellular level. Using unsupervised 

hierarchical clustering analysis, we determined that there were approximately six distinct 

groups within the biochemical feature space (Figure 6F), as denoted by the dendrogram on 

the left side of the heat map, with colors on the dendrogram branches corresponding to the 

various cluster identities. As shown by the heat map, from the assessment of global trends 

within the global biochemical feature space and within clusters, we determined that 

approximately 31% of the parameters exhibited positive trending correlations with increasing 

age, 9% showing a negative trending correlation and 60% showing no significant correlation 

with age. 

4.9.2 Changes in cellular biophysical features as a newly defined hallmark of aging 

Molecular investigations have for a long time dominated aging research with fewer studies 

focused on the cellular changes of biophysical. However, molecular changes often lead to 

changes in cell functions, and in particular changes in biophysical properties of cells. 

Motivated by changes in F-actin content and organization, and the observed decrease in 

mechanical integrity of elder adults, we hypothesized that mechanical properties of cells can 

define a signature of cellular aging. To test this hypothesis, we conducted a series of 

biophysical measurements on the same healthy donor samples of different ages used for our 

previous biochemical studies. Results indicate that a cascade of cellular features changed with 

increasing age.  
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The migratory propensities and the coordination of cellular movements play a critical 

role in healthy skin physiology and wound healing (Martin, 1997). Here, we first assessed the 

migratory properties of dermal fibroblasts, and demonstrated that there were profound 

decreases in the speed and distance explored by single cells as a function of increasing age 

(Figure 7A). Furthermore, analysis of cell trajectories from young donors exhibited a higher 

degree of persistence and directionality relative to cells from elder adult donors, as indicated 

by the strongly correlated decrease in the anisotropic index as a function of increasing age 

(ρ=-0.97). 

Similarly, collective movements of cells demonstrate a decrease in the rate of closing 

scratch wounds, with both impaired coordination and directed persistence, as a function of 

increasing age. Assessment of the cell-free areas as a function of time showed that for a 

young and an elder adult donor respectively, there was a significant decrease in the extent of 

wound closure with time as a function of increasing age (left panel of Figure 7B). 

Furthermore, calculations of the closure rates quantitatively demonstrated a decrease with 

increasing age (ρ=-0.69), and a corresponding increase in the wound half-life (ρ=73). 

Together, these results indicate that there is a significant decrease in cellular movements and 

the distance explored with increasing age. Additionally, results indicate that cells from young 

donors are more coordinated and persistent in their motion relative to cells from elder adult 

donors.  

 In order to migrate, cells exert pushing and pulling forces on surrounding cells and 

their underlying substrate. These balances of traction stresses exerted by cells facilitate their 

migration and a cohort of other functions including cell division, and ECM remodeling and 
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alignment (Frantz et al., 2010; Gilkes et al., 2014). To determine whether there was a change 

in the magnitude of cellular stresses exerted as a function of increasing age, we calculated the 

vector displacements of fluorescent-bead markers in the local region underneath the cells of 

interest. Interestingly, cells displayed a slight increase in total traction stress as a function of 

increasing age. In addition, calculations to determine the index of cellular stress 

disproportionality—defined as the vector distance between the geometric centroid of the cell 

of interest, and its corresponding stress centroid, which we term the stress anisotropy—

demonstrated that cells from healthy donors displayed an enhanced stress disproportionality 

(ρ=0.72) with increasing age (see more details in Methods, Figure 7C). Collectively, these 

results indicate that amidst the increases in traction stresses observed in cells from elder 

adult donors, there is a subsequent increase in the disproportionality of the localization of 

traction stresses per cell, suggesting that there may be a conglomerate of interacting effects 

such as increased adhesion/cell-substrate interactions, which may potentially limit their 

coordinated movements and migratory functions, that may impair the physiology and 

efficacy of vital processes such as wound healing.  

Considering the importance of cellular mechanics to the proper physiological 

functioning of cells and tissues, an improved understanding of how the underlying molecular 

machinery interacts with and drives cellular mechanics is important (Wirtz, 2009). A 

multitude of cellular and subcellular processes depend critically on the mechanical 

deformability and dynamics of the cytoplasm, from the regulation of gene expression (Kim 

et al., 2013; Kim et al., 2014) to the polarization and movement of cells (Hale et al., 2011; 

Khatau et al., 2012; Lee et al., 2007a). To determine the effects of age on cellular mechanical 

properties, we utilized particle-tracking microrheology to probe the changes in cellular 
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viscoelasticity and deformability (Wu et al., 2012). We found that cells derived from elder 

adult donors exhibited a higher level of cytoplasmic stiffness—reduced deformability, 

relative to cells derived from young donors (Figure 7D). This result of increased 

cytoplasmic stiffness, indicated by the reduction in the mean squared displacements of 

submicron particles embedded within the cytoplasm of cells with increasing age, which 

facilitates the diminished motion of the particles as a result of the high frictional drag, can be 

partially explained by the observed increase in F-actin content and bundling.  

The measure of morphological plasticity presents an avenue for the fast and 

inexpensive study of ensemble cellular changes with age. To further assess these biophysical 

changes, we investigated cellular morphological features by utilizing our high-throughput cell 

phenotyping (htCP) platform. Using htCP, we assessed hundreds of individual cells per 

condition, thereby identifying morphological changes associated with age. We observed an 

increase in the cellular and nuclear sizes with increasing age (Figure 7E). Furthermore, 

dermal fibroblasts displayed a wide assortment of complex morphologies and irregularities in 

the shapes of their cells and nuclei. As a means to describe the complexities in the cell and 

nuclear shapes we computed a list of shape descriptors that provides a quantitative handle 

for our qualitative observations. Cells from elder adult donors displayed increased shape 

boundary irregularities (as measured by parameters described by their boundary roughness 

and boundary curvature) for both nuclear and cell shapes, relative to that of young donors. 

Collectively, our results indicate that cells harbor increased levels of altered cellular and 

nuclear morphologies with increasing age. 
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Figure 7 Biophysical assessment of cellular phenotypes reveals age-dependent relations; A-E demonstrates the 
various biophysical characterizations, with sample plots delineating the trends per parameter as a function of 
age: A. 2D single cell motility—measure of the time-dependent single cell movement on a 2D substrate as a 
function of time, B. scratch wound –measure of multicellular movement of cells to close a scratch made in a 
confluent monolayer of cells as a function of time, C. cellular traction strength—measure of the stress exerted 
by a cell to distort a deformable polyacrylamide (8KPa) substrate containing fluorescent bead markers, D. 
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microrheology—measure of cytoplasmic deformability and viscoelastic properties of the cytoplasm, and E. 
cellular and nuclear morphology as assessed by the delineated cell and nuclear boundaries extracted from 
fluorescent microscopy images. F. Heat map showing the cellular biophysical features extracted per sample as a 
function of age, each column denotes an individual age-dependent sample, and each row denotes a single 
biophysical parameter (each parameter is normalized based on z-score). Using unsupervised hierarchical 
clustering analysis the cellular features were clustered and reordered, with dendrogram on the left illustrating 
the higher order association and natural clusters existing within the data set. Color-coded branches of the 
dendrogram illustrate 6 distinct clusters within the dataset, (6 clusters in biophysical dataset based on the 

Euclidean distance among parameters). Heat map on left labeled ‗κ‘ denotes the color-coded parameters based 

on the assays from which the parameters were extracted. Heat map on right-hand side labeled ‗ρ‘ denotes the 
Pearson correlation coefficient of the trend for each parameter as a function of age. G. Correlation analysis for 
biophysical features, with the overlay trend line for the biochemical correlation distribution. 

 

To further decipher the fundamental contributions of age on the changes to cellular 

biophysical properties, we normalized parameters to their z score and assessed the global 

trends and natural clusters within the dataset. Statistical analysis of the correlation trends 

showed that the majority of the parameters exhibit an increase in the magnitude of the 

feature with increasing age; 29% of parameters showed negative trending correlations—

decrease with increasing age, 21% of parameters showed no significant correlation trends, 

and 50% of the parameters showed positive trending correlations—increase as a function of 

increasing age (Figure 7F-7G). Using unsupervised hierarchical clustering analysis, we 

determined the higher order structure and the natural clusters among the biophysical 

parameters within the data set. Clustering analysis revealed 6 distinct clusters within the 

dataset, as delineated by the color-coded dendrogram branches on the left side of the heat 

map. These clusters did not merely delineate parameters from a single experiment into one 

group, but included parameters across experiments into high-order structures and groupings 

that lend insight into cellular functionality and phenotypes. Global analysis of the cellular 

features present within each of the 6 clusters help describe fundamental biophysical 

phenotypes including: cluster 1 (green)—cell and nuclear size and shape irregularity 

descriptors; cluster 2 (navy blue)—cellular mechanical properties, primarily cellular traction 
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stress descriptors; cluster 3 (light blue)—cell shape and geometric polarity descriptors; 

cluster 4 (yellow)—cell and nuclear orientation and geometry descriptors; cluster 5 (red)—

cellular migratory propensities and cytoplasmic malleability; and cluster 6 (magenta)—

nuclear shape and geometric polarity descriptors. Together, these results indicate that the 

clustering of single descriptors of cellular biophysics delineate distinct phenotypes, giving 

insights into age-associated cellular functional changes. For instance, in cluster 5 the motility 

parameters clustered with the parameters describing the cytoplasmic deformability and the 

rate of scratch wound closure. Furthermore, data suggests that univariate analysis of 

biophysical features may provide a handle for quantitative age-predictive capabilities, as 

some single features that constitute the biophysical phenotypes (i.e. Anisotropic index, 

nuclear size) correlate strongly with age. 

4.9.3 Cellular heterogeneity is a hallmark of aging 

The study of how cellular heterogeneity influence age-related phenotypes as a function of 

cellular features has been understudied in aging research. Recent evidence indicates that 

genetically identical cell populations can give rise to diverse cellular phenotypes (Lu et al., 

2013; Niepel et al., 2009). Here, we assessed the extent of cell-to-cell variation as a function 

of age to decipher how the heterogeneity of biophysical and biochemical features help to 

define the cellular phenotypes exhibited during healthy aging. Interestingly, results indicated 

that cell-to-cell variation was indeed a defining feature of aging with a trend towards an 

increase in cellular diversity with increasing age. Of the 70 cellular biophysical features 

assessed approximately 39% of the features exhibited increased heterogeneity (ρ>0.2), 27% 

exhibited deceased heterogeneity (ρ<-0.2), and 34% exhibited weak correlations (-

0.2<ρ<0.2) as a function of increasing age (Figure 8A). Furthermore, in regards to cellular 
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heterogeneity of biochemical features, 27% exhibited increased heterogeneity (ρ>0.2), 27% 

exhibited decreased heterogeneity (ρ<-0.2), and 45% exhibited weak correlations (-

0.2<ρ<0.2) as a function of increasing age (Figure 8B).  

 

Figure 8 Intercellular heterogeneity provides additional insight into age-dependent trends as a function of 
cellular biophysical and biochemical features. A-B. Variations in cellular biophysical A, and biochemical B 
features, the z score normalized heat maps and corresponding color-coded dendrograms illustrate the clustered 

index of heterogeneity per sample. Heat map on left, labeled ‗κ‘, denotes the color-coded parameters based on 

the biophysical and biochemical assays used in the study. Heat map on the right, labeled ‗ρ‘, represents the 
Pearson correlation coefficient of the trends per single parameter as a function of age. C-D Correlation analysis 
for biochemical (C) and biophysical (D) heterogeneity features with an overlay of the corresponding mean 
value trend lines. 

 

To test whether the natural groupings within the dataset could provide added 

information in regards to global trends within the dataset, we utilizing unsupervised 

hierarchical clustering and identified 5 clusters and 4 clusters within the biophysical and 

biochemical feature space, respectively. Interestingly, most of the biophysical features 

exhibiting increased variation defining divergent phenotypes were primarily associated with 

cluster 1 (red)—which contains features describing the cells‘ polarity and geometry—and 

decreased variation defining convergent phenotypes were primarily associated with clusters 3 
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and 4 (navy blue and green)—which contains features describing the cells‘ mechanics. 

Furthermore in regards to the biochemical heterogeneity most of the convergent phenotypes 

were associated with cluster 3 (purple) and cluster 4 (red)—which contains nuclear texture 

features elucidating meta-structural organization of DNA, and on features describing F-actin 

organization. Together, our results indicate that cellular heterogeneity is an important 

hallmark of aging that exhibits quantifiable changes with age that can be used to gauge the 

extent of age-related deterioration of cellular phenotypes. 

4.9.4 Biophysical signatures display stronger association with age relative to 

biochemical signatures 

Next, we asked the following questions: (i) can we predict the biological age of a donor 

based solely on the quantification of cellular features—from univariate and/or bivariate 

analysis, and (ii) can we achieve better prediction power using biophysical or biochemical 

features alone, or with the combination of biophysical and biochemical features. First, using 

a univariate analysis, we rank-ordered the parameters based on the magnitude of their 

Pearson correlation coefficient. Taking the top 10 rank-ordered biochemical and biophysical 

features within the combined cellular feature space, we determined the predicted age and fit 

error (averaged absolute difference between the predicted and chronological age) for all 10 

features (Figure 9A).  Analysis revealed a mean fit error of ~8 years for the top univariate 

predictor (cellular anisotropy based on motility experiments), down to a fit error of ~21 

years for the tenth univariate predictor (nuclear curvature peak number, which describes the 

shape irregularity of the nucleus). Furthermore, a greater fraction of biophysical parameters 

displayed higher Pearson correlation coefficients and lower fit errors in the rank-ordered list 

of all cellular features relative to the biochemical features. Hence, a univariate analysis of 
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biophysical features predicted age with a greater level of certainty relative to biochemical 

features of cells. The inclusion of additional samples validated these results, showing that 

biophysical parameters were indeed better predictors of biological age than biochemical 

parameters. 

 
______________________________________________________________________________________ 

Figure 9 Age-associated parameters provide a reliable means to predict the biological functional age index of 
donor samples based on cellular features. A. Univariate analysis is the top 10 highest correlated parameters 
reveal that other than the anisotropy, there is a high fit-error associated with the use of single parameters to 
predict age index. Heat map on left denotes the predicted age of the 9 samples assessed in the training dataset, 
with the single map labeled ‗p‘ illustrating the Pearson correlation coefficient and the map labeled ‗e‘ illustrating 
the fit error. Heat lab to the left displays the corresponding data for the validation samples; with the age-
dependent trend of the top predictor in the univariate analysis illustrated by the scatter plots on the right. B. 
Plot showing overall correlation analysis for mean values and heterogeneity feature sets demonstrating that 
biophysical single variate features correlate more strongly with age relative to biochemical feature sets. (C-E) 
Using a bivariate generalized linear model of cellular features, we compared whether C. two biophysical 
features vs. D. two biochemical features vs. E. one biophysical and one biochemical feature was able to 
determine the age index with higher accuracy. The top 5 bivariate combination of the various sets demonstrates 
that the combination of two biophysical features, and one biochemical and one biophysical features predicts 
the age with comparable levels of accuracy, which showed higher accuracy when compared to the 2 
biochemical features. 
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 To further assess the predictive power based on the cellular feature space, we 

utilized a bivariate analysis method using a generalized linear model approach. The model 

took the general form:  ( )      (  ). Where E(Y) represents the expected value of Y, 

Xβ is the linear predictor of parameter β (in our case the biophysical and biochemical 

features), and g is the data-dependent link function. Results indicate that bivariate analysis 

using biophysical features (Figure 9B) had a better prediction power, with a lower 

prediction error relative to using biochemical features alone (Figure 9C). Furthermore, the 

combination of features, one biophysical and one biochemical (Figure 9D) resulted in 

comparable predictive power relative to predictions using biophysical features alone. Our 

results indicate that for the top 5 bivariate predictors of biological age in each category, 

comparing the best and 5th best predictors demonstrated that; combinations of two 

biophysical features had a mean prediction error ranging from ~6 years to 7 years; 

combinations of two biochemical features had a mean prediction error ranging from ~10 

year to 13 years; and the combination of one biochemical and one biophysical feature had a 

mean prediction error ranging from ~6 year to 8 years.  

To validate the result, we included an additional 5 untested samples as part of a 

validation set. Results revealed consistency; with further confirmation provided via leave-

one-out validation method using all 14 samples (training and validation samples), thus 

providing an unbiased estimation of predictive accuracy with age (Table 2). In addition, with 

the inclusion of information from the clustering analysis demonstrated that combinations of 

features from different clusters exhibited a stronger predictive power, relative to feature 

combinations from within the same cluster. Thus suggesting that the natural groupings of 
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features per single cluster provides similar information and does not provide much added 

benefit to biological age predictions. It is also important to note that for the top 5 prediction 

pairs within each category, the combination of mean-valued features with heterogeneity 

features seemed to offer enhanced prediction, with 60% of the top 5 biophysical prediction 

pairs having at least 1 parameter describing the heterogeneity of the feature, 100% for the 

biochemical prediction pairs, and 60% for the combination of biophysical and biochemical 

features respectively. 

Table 2 Top bivariate predictors with validation 

 

Together, our results demonstrate a robust method to predict the biological age of healthy 

donors based on the quantifications of cellular biochemical and biophysical features with 

biophysical features predicting with higher certainty, and the combination of heterogeneity 

features displaying enhanced prediction. 
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4.9.5 Can morphological analyses of cellular features predict cellular biological age? 

Having demonstrated that we can robustly determine the biological age of donors with the 

use of cellular features, from a practicality stand point we asked whether we could use 

cellular and nuclear morphological features alone to predict biological age. Comparing the 

resolution, experimental burden, financial burden, and general feasibility of experimentation 

(Table 3), we determined that morphology-based assessment provided an inexpensive and 

time-efficient means to assess cell samples. In addition, morphological assessment of  

Table 3 Table of assays demonstration experimental feasibility 

 

 

samples provides the potential for preclinical and/or clinical translation to assess features 

that are associated with various disease states, and exposures to intrinsic and extrinsic factors 

(such as radiation and chemotherapy) that may induce phenotypes resembling accelerated 

age disorders observed in patients. Results indicate that the use of bivariate morphological 

based features alone indeed predicted biological age robustly with a high level of accuracy, 

with the best prediction pair having a mean prediction error of ~7 years for the training set, 

~1 years for the validation set, and ~6 years from the leave-one-out validation set (Table 4). 

Interestingly, the majority of the top 10 morphology-based prediction pairs constituted a 
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combination of features describing heterogeneity of the feature and a mean-valued feature, 

further indicating that cellular heterogeneity is significantly associated with human aging. 

 

 

 

Table 4 Top Morphological predictors with validation 

 

4.10 DISCUSSION 

Recent studies have indeed demonstrated an intimate association between changes in cellular 

phenotypes and the functional deterioration with age (Belsky et al., 2015; Bocklandt et al., 

2011; Horvath, 2013; Lopez-Otin et al., 2013). Therefore, to better understand the nature 

and behaviors of complex living systems, the development of integrated approaches to study 

health and disease as a function of age is essential (Burch et al., 2014; Kennedy et al., 2014). 

Here we utilized a systematic approach to decipher some key age-associated phenotypic 

changes, in efforts to improve our understanding on how cellular biochemical and 

biophysical features define the emergent patterns of cellular physiology observed in human 

aging. With this approach, we were able quantify the global changes in cellular features as a 
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function of age, and further gauge the levels of inter-cellular heterogeneity to develop a 

comprehensive platform to predict the biological age of donor samples as a function of 

health and disease. 

Measuring the aging process is controversial (Belsky et al., 2015), partly because a 

definitive ‗ground truth‘ does not exist, and there is no absolute metric for what an 

individual‘s cellular physiology or phenotypic outlook should be as a function of their age. A 

solution to define the phenotypic aging spectrum is by using either: (a) cross-sectional donor 

samples spanning the age range of interest, or (b) longitudinal sampling of individuals over a 

defined age range and subsequently defining the relationship between their chronological age 

and their predicted biological age. To determine whether the aging process harbored some 

semblance of ergodic behavior, or if the rate of aging in individuals was similar to cross-

sectional aging rate for the total cohort, we procured 2 sets of additional samples from 

individuals at 3 time points, spanning an age range of 17 and 15 years respectively. Since the 

top pair predictors came from the assessment of cellular biophysical features (Figure 10A) 

and from morphological features (Figure 10B), we quantified the biological age of the 

longitudinal samples using our generalized linear model approach for both cases. Results 

indicate that donor 1 (orange) displayed a slightly faster rate of aging relative to donor 2 in 

both the biophysical (Figure 10C) and morphological (Figure 10D) prediction pairs. 

Coincidentally, the cross-sectional rate of aging for the entire cohort (not including 

longitudinal samples) fell between donor 1 and donor 2, with the average relationship 

between chronological age and biological age using an additive model being: ~2.2 for donor 

1, ~1.92 for the cross-sectional cohort, and ~1.62 for donor 2; donor 1>cross-sectional 

samples>donor 2. 
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Figure 10 Biological age prediction in longitudinal samples; (A-B) Plots illustrating the global correlation 
between the predicted biological age and the chronological age of all samples (training and validation sets) for 
the top A biophysical prediction pair and B the top morphological prediction pair. C biophysical prediction pair 
and D morphological prediction pair with the inclusion of 2 longitudinal sample sets 

4.11 SUMMARY 

Understanding the diversity of the aging process, as a function of age-group dependent 
tendencies, gender, race, and other individual characteristics is also important. With our 
platform, we address some of these concerns providing early data that suggests that aging 
may be different both as a function of gender and age group, as well as demonstrating the 
capabilities to study other characteristics.  

 

______________________________________________________________________________________ 

Figure 11 Top multivariate predictors and the suggestive effects of gender. A plot showing the differential age 
(difference between the predicted age and chronological age) as a function of chronological age. (B-E) Using 
the top 5 bivariate prediction pairs for each category: B biochemical-biochemical, C biochemical-biophysical, D 
biophysical-biophysical and E morphological features. Additionally, data suggests that there may be inherent 
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differences in the aging process for males and females, with the differential age as a function of chronological 
age showing concensus between the top prediction categories of F biophysical-biophysical and G 
morphological feature sets. 

 

The notion that fundamental properties of human aging can be slowed or reversed has 

fascinated humankind for millennia, and with the development of these integrated platforms 

to study aging, we may potentially be able to make progressive strides towards prolonged 

human healthspan, and uncovering the effectual demographic inputs such as gender (Figure 

11) on the aging process. This study has presented the utility of a platform that can 

potentially address (1) the proximal causes of cellular aging, (2) mechanisms and common 

components on how aging enables disease progression, and vice versa, and (3) potential to test 

a broad set of interventional strategies in humans and model organisms. To hone in on these 

implications we used the top morphological bi-variate prediction pair to determine the 

cellular functional age of individuals both as a function of healthy aging and disease. With a 

cohort of 32 samples 17 healthy aging spanning ages 2-96 years, 5 longitudinal aging, 6 

HGPS samples and 4 Werner‘s syndrome (HGPS and Werner‘s syndrome representing the 

accelerated aging cohort) were ran our age prediction algorithm and determined the function 

age. Results demonstrated that a clear delineation within the dataset of 3 subgroups that we 

further categorized as (1) naïve aging, (2) accelerated aging, and (3) delayed aging (Figure 

12). 
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Figure 12 Age prediction for a cohort of 32 samples using the top morphological bi-variate pair predictor. A. 
Plot showing the chronological age vs. the predicted age for all 32 samples, with blue circles showing the 
training set samples, red circles showing validation set samples, orange circles showing longitudinal samples, 
green circles showing the HGPS samples, and the black circles showing the Werner‘s syndrome. B. 
Chronological age versus the prediction age differential. Samples clustered into 3 main categories delineated by 
the shadings, turquois shading representing delayed aging group, magenta shadings representing normal healthy 
aging, and finally the light blue shading representing accelerated aging (primarily consisting of HGPS and 
Werners syndrome and one samples from the training set). 

CHAPTER 3: EVOLUTION OF CELLULAR MORPHO-

PHENOTYPES IN CANCER METASTASIS 

Intratumoral heterogeneity greatly complicates the study of molecular mechanisms driving 

cancer progression and our ability to predict patient outcomes. Here we have developed an 

automated high-throughput cell-imaging platform (htCIP) that allows us to extract high-

content information about individual cells, including cell morphology, molecular content and 

local cell density at single-cell resolution. We further develop a comprehensive visually-aided 

morpho-phenotyping recognition (VAMPIRE) tool to analyze irregular cellular and nuclear 

shapes in both 2D and 3D microenvironments. VAMPIRE analysis of ~39,000 cells from 13 

previously sequenced patient-derived pancreatic cancer samples indicate that metastasized 

cells present significantly lower heterogeneity than primary tumor cells. We found the same 

morphological signature for metastasis for a cohort of 10 breast cancer cell lines. We further 
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decipher the relative contributions to heterogeneity from cell cycle, cell-cell contact, cell 

stochasticity and heritable morphological variations.  

4.12 INTRODUCTION 

Pancreatic ductal adenocarcinoma (PDAC), is one of the most devastating human 

malignancies, it is characterized by extensive local invasion, early systemic dissemination, and 

pronounced resistance to chemotherapy and radiotherapy (Vincent et al., 2011). Five-year 

survival rates for patients diagnosed with invasive pancreatic cancer is < 3% (Adham et al., 

2008; Bradley, 2008; Lillemoe, 1995; Nitecki et al., 1995; Schnelldorfer et al., 2008; Siegel et 

al., 2012). Multiple studies have been conducted to investigate the molecular mechanisms of 

tumorigenesis for pancreatic cancer (Campbell et al., 2010; Garcea et al., 2005; Jones et al., 

2008; Yachida et al., 2010). The recent sequencing of the PDAC genome by Jones et al. 

confirmed that the majority of patients harbor mutations in one of four genetic "mountains" 

- KRAS, TP53, CDKN2A/p16 and SMAD4/DPC (Jones et al., 2008). Confounding this 

genetic landscape, however, was the fact that beyond these four "mountains", one finds a 

plethora of low-frequency somatic mutations ("hills"), which greatly add to the complexity of 

the PDAC genome. This confounding genetic landscape is in part a result of ongoing cancer 

cell evolution driven by genomic instability (Burrell et al., 2013; Campbell et al., 2010) and 

cellular heterogeneity (Burrell et al., 2013; Gerlinger et al., 2012; Navin et al., 2011). Even 

though accumulating evidence indicates that metastatic tumors are established by sub-clones 

of primary tumors (Campbell et al., 2010; Jones et al., 2008), non-consensus genomic 

profiles displayed by metastatic tumors greatly limit the ability of genetic profiling to assess 

tumors and predict clinical outcomes (Jones et al., 2008; Stephens et al., 2012).  
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To metastasize, a cell must overcome multiple obstacles in the metastatic cascade 

(Chaffer and Weinberg, 2011) - invasion and migration through the dense, tortuous stromal 

matrix (Friedl and Alexander, 2011); intravasation(Reymond et al., 2013), survival from shear 

forces of blood flow (Fidler, 2003), successful re-attachment to blood vessel walls(Chaffer 

and Weinberg, 2011; Fidler, 2003)– are directly associated with the physical properties of 

cells (Wirtz et al., 2011a). Thus, cell physical properties and cell phenotypic profiles are likely 

deterministic descriptors of metastasis. In fact, highly metastatic cells often show a 

mechanically softer cytoplasm compared to non-metastatic cells in many types of cancers 

(Cross et al., 2007). Furthermore, various cell line model systems demonstrate common 

changes in physical properties, such as traction forces, migratory behavior, and mechanical 

stiffness (Jones et al., 2006; Lee et al., 2012; Paszek et al., 2005; Wirtz et al., 2011b). 

However, these studies do not account for patient-to-patient variations, thereby the role of 

heterogeneity that is considered a hallmark of cancer has not been fully addressed (Fidler, 

2003; Jones et al., 2008; Klein et al., 2002; Price et al., 1986).  

To determine the role of cell physical properties association between tumor 

evolution and metastasis, we investigated the morphology of multiple different PDAC cell 

lines with fully sequenced exomes (Jones et al., 2008). The cell lines originated from either 

the primary site in the pancreas or from metastatic sites. We developed a high-throughput 

machine-vision system to rapidly record and analyze the morphology of thousands of cells, 

which we call visually-aided morpho-phenotyping recognition (VAMPIRE). VAMPIRE 

analysis allows us to classify irregular cellular and nuclear shapes and provide an effective 

visual aid to display and compare these shapes.  Several thousand individual cells are 

characterized in < 20 min for each cell line. We show that cell morphology is a complex 
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product of cell cycle, local cell density, cell stochasticity and heritable cell variations. We 

found that the primary tumor cell lines present significantly higher heterogeneity and 

heritable cell variations in cell and nuclear shape compared to cells derived from metastatic 

sites. We found the same relation among 10 tested breast cancer cells lines. Together, our 

results provide evidence at the cell phenotypic level that metastasis arises through clonal 

selection, and indicate that cellular physical properties play an important role in cancer 

progression. 

4.13 MATERIALS AND METHODS 

4.13.1 Cell culture 

To keep experimental cell samples in low passage number, a maximum of five passages were 

allowed after thawing cell samples from deep storage for experiments. All cell lines were 

cultured at 370C and 5% CO2, approximately 10 days prior to imaging. The culture medium 

for patient derived pancreatic cancer cells is DMEM (Invitrogen, Carlsbad, CA) with 10% 

FBS (Gemini Bio-Products, Sacramento, CA). HPDE cells were maintained in Keratinocyte-

SFM medium (Invitrogen) with 0.1 ng/ml hEGF (Invitrogen) and 25ul/ml bovine pituary 

extract (Invitrogen). HPNE cells were maintained in the medium which is composed of 25% 

low glucose DMEM (Invitrogen), 70% M3 base media (Incell, San Antonio, TX), 5% FBS, 

25μg/ml Gentamicin (Quality Biological, Gaithersburg, MD), and 10ng/ml hEGF. 

Antibiotics were supplemented in all culture medium with the concentration of 100 IU/ml 

penicillin, and 100μg/ml streptomycin (Sigma-Aldrich, St. Louis, MO). Cell lines were 

passed every 3 to 4 days, based on their growing conditions.  
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Table 5 List of the patient-derived pancreatic cancer cell lines used in this study 

 

Breast carcinoma cell lines were purchased from ATCC (American type cell culture, 

Manassas, VA) with authentication done by the provider. Cells (BR01-BR03, BR06-BR11) 

were cultured on tissue culture dishes in RPMI-1640 medium (Gibco) supplemented with 

10% fetal bovine serum (Hyclone-Fisher, Logan, UT) and 1% Penicillin-streptomycin 

(Sigma). BR04 and BR05 were culture in Dulbecco‘s modified eagle‘s medium (Cellgro, 

Herndon, VA), supplemented with 10% fetal bovine serum (Hyclone) and Penicillin-

streptomycin (Sigma).  

Table 6 List of the breast cancer cell lines used in this study 

 

4.13.2 3D cell culture  

Cell-impregnated 3D collagen matrices were prepared as described previously (1-3). Briefly, 

cells suspended in a 1:1 (v/v) ratio of cell culture medium and reconstitution buffer (0.2 M 
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4-(2- hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 0.26 M NaHCO3 in 

nanopure water) were mixed with the appropriate amounts of soluble rat tail type I collagen 

(BD Biosciences, San Jose, CA, USA) to achieve a final concentration of 2mg/ml. Adequate 

amount of 1M sodium hydroxide was added to attain a final pH of 7, after which the 

mixture was added to a 24-well glass bottom dish (Greiner Bio-one, NC), and immediately 

transferred to the incubator maintained at physiological conditions of 37
o 

C and 5% CO2, 

to allow for collagen polymerization and cell spreading. During preparation, all ingredients 

were kept chilled on ice to avoid premature polymerization, with care taken to avoid the 

formation of bubbles during mixing. Samples were incubated overnight and were fixed and 

stained in preparation for image acquisition.  

4.13.3 Immunostaining and fluorescence microscopy  

Approximately 12,000 cells were plated in each well of a 24-well glass bottom plate (MatTek, 

MA), corresponding to approximately 20% surface coverage to ensure single cell resolution. 

After 16 h incubation, cells were fixed with 3.7% para-formaldehyde for 12 min at room 

temperature. Cells were then permeabilized with 0.1% Triton X-100 (Sigma) for 10 min; 

nonspecific binding was blocked with phosphate-buffered saline (PBS) supplemented with 

1% albumin from bovine serum (BSA) for 40 min. Nuclear DNA was stained with Hoechst 

33342 (Sigma) at 1:50 dilution, cytoplasm was stained with the non-specific dye HCS 

CellMask Deep red stain (Invitrogen) at 1:20000 dilution, and actin was stained with 

phalloidin Alexa Fluor 488 (Invitrogen) at a 1:40 dilution.  

Fluorescently labeled cell samples were visualized with a Nikon digital sight DS-

Qi1MC camera mounted on a Nikon TE300 epifluorescence microscope (Nikon Melville, 
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NY), and equipped with a motorized stage and motorized excitation and emission filters 

(Prior Scientific, Rockland, MA) controlled by NIS-Elements (Nikon). For each sample, 

eighty-one (9-by-9 square grid) fields of view from a low-magnification lens (10x Plan Fluor 

lens; N.A. 0.3, Nikon) were used covering a contiguous area of 6.03 mm x 4.73 mm (28.5 

mm2). Three fluorescence channels for Hoechst 33342, Alexa Fluor 488 and Alexa Fluor 647 

and one phase-contrast channel were recorded to obtain the necessary morphometric 

information about the nucleus and cellular body of every single cell within the scanning 

region. Segmentation of nuclear and cellular shape from images was conducted using a 

custom MATLAB code. Cellular and nuclear segmentation was validated using both manual 

tracing of cells and nuclei and using high- magnification imaging (40x Plan Fluor lens; N.A. 

1.3, Nikon), as explained in the main text.  

4.13.4 Image calibration  

Unavoidable non-uniform illumination of the samples presents challenges when conducting 

intensity-based cell segmentation of fluorescent images. The calibration was performed using 

glass-bottom dish contained dyes for the different fluorescent channels. For each channel, 

two images were acquired: with and without illumination, which were denoted as I
F 

and I
B 

respectively. The calibrated images, I
CAL

, for reducing the non-uniform illumination of 

fluorescent images and non-uniform distribution of intensity offset was obtained from raw 

images, I
RAW

, through the following equation,  

I
CAL

= (I
RAW

-I
B
)/(I

F
-I

B
) × <I

F
-I

B
>   

Calibrated images were further used for nuclei and cell segmentation and quantification. 
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4.13.5 Segmentation of cellular and nuclear boundaries  

To segment individual cells and nuclei, we used slightly different approaches. For nuclear 

segmentation, because of the relatively circular shape and relatively even intensity of the 

Hoechst stain, we filtered calibrated images (as described in the previous section) with a 23 x 

23 pixel normalized Gaussian filter (similar scale as the size of nuclei) and a same size of 

averaging filter same size to obtain Gaussian intensity, I
G
, and average intensity, I

M
. 

Subtracting I
M from I

G gives I
N
, the nuclear intensity values without regional background. 

Empirical testing showed that a threshold setting of 10 was optimal.  

Images of cells were first processed with a 3x3 averaging smoothing filter to reduce 

noises. Proper estimation of background intensity level is critical to threshold cell boundaries 

accurately. Most fields of view in an image are cell-free; therefore, large portions of pixels 

reflect background intensity. The background intensity was characterized by the mode value 

and standard deviation of these pixels. Here, we adopted an iterative process for robust 

background intensity distribution. Briefly, we give an intensity threshold value, I
TH

, to find a 

subset of pixels, IS, with intensity value that is less than this intensity threshold. The intensity 

threshold value for the next iteration is then updated using the following equation,  

I
TH = I

BG + 3.5 × I
RBG

 

where I
BG is the most frequent intensity among I

S 
and I

RBG is the standard deviation of I
S
. 

The first threshold value was set using the maximum intensity of image. Three to five 

iterations generally resulted in stable values of I
BG and I

RBG
, which represent the average 

background intensity value and associated noise in background intensity magnitude, 
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respectively. Next, we used I
BG and I

RBG to select the signal region of fluorescently labeled 

cells. We defined the threshold factor, thcell to select all the pixels in the image with an 

intensity value larger than a threshold intensity( =I
BG + thcell × I

RBG
). The value for thcell was 

optimized by empirical observation, which was usually between 2 and 5.  

Implementing the above approach, we determined cell boundaries using phalloidin- 

stained F-actin images. F-actin usually gives a stronger signal at the cell boundary than at the 

cell center, differentiating the boundary from the cytoplasm with less bias than a more 

homogenous dye (such as HCS cell mask). In contrast, HCS cell mask intensities 

concentrated around the nucleus - the thicker region of the cell - and decayed towards the 

edge of the cell; because of the low NA objective, the edge intensity values was blurred, 

making edge detection very sensitive to bias and sample-to-sample variations.  

However, this method only worked for isolated cells. When cells were very close to 

one another or in direct contact, edge intensity values given by phalloidin staining were all 

above background and did not allow for direct segmentation. In these cases, we could use 

HCS cell mask to perform watershed segmentation and identify edges between contacted 

cells. Then collected set of nuclei and cell objects were used to calculate their associated 

morphological descriptors, as described in the next section. Overall, the more than 95% of 

cells are segmented accurately based on manual inspection.  

4.13.6 Decomposition of 2-dimensional shape and identification of shape modes  

Alignment of cell shapes and nucleus shapes was implemented using Procrustes analysis (4, 

5). In brief, after the boundary coordinates of each segmented cellular or nuclear shape in an 

image were obtained, they were resampled to 50 positions that divided the boundaries 
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evenly. The boundary coordinates were then subtracted by their mean value so that the 

center of the object was located at the coordinate (0, 0). The scale of a shape (S) was 

calculated using the normalized coordinates, Z = (xi, yi). To unify the scale, the boundaries 

coordinates of a shape was further normalized by dividing it by the scale (S). To eliminate 

the variation of shape due to rotational or mirror effects, we first aligned the major axis of a 

shape with the horizontal axis by applying a rotational matrix (VM) to the boundaries 

coordinates. The rotational matrix was obtained from the singular vector decomposition of 

Z, where Z = UMSMVM
T

. The average shape ZR was obtained by averaging the 

normalized boundaries coordinates of all cells from different cell lines. For each cell shape, a 

rotational matrix Q that minimized the distance between ZR and Z, i.e.,  

Ε= (QZ- ZR) (QZ- ZR)
T

 

was obtained from the singular value decomposition of ZR
T

Z = URSRVR and Q is the 

matrix product VU
T

. Due to the fact that cellular and nuclear shapes are enclosed objects, 

each of the 50 coordinates were used as a starting point in either counterclockwise or 

clockwise directions and the corresponding linear sets were examined to identify the 

sequence that yielded minimization of E for each shape. Coordinates from this aligned shape 

were used as descriptors for the shape. Principal component analysis (PCA) was then applied 

on these descriptors for all cell samples to obtain eigenshape vectors. The principal 

components from the eigenshape vectors that spanned 95% of total variance were used as 

simplification set of descriptors for cellular or nuclear shapes. K-means clustering analysis 

was then implemented to identify the shape subtypes, i.e. shape modes, based on these 
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principal components descriptors. The number of shape modes was identified based on 

separation index (6) and Xie and Beni index (7).  

4.13.7 Determination of the phases of the cell cycle for each single cell  

DNA content of each nucleus was estimated by integrating nuclear intensity of Hoechst 

33342 labeled DNA (8). Histograms of DNA content for each cell lines revealed the 

distribution of the cell cycle phases. To determine the percentage of cells in each of the cell-

cycle phase, i.e. G1 phase, S phase and G2/M phase, we fit the DNA content distribution 

using the Dean Jett polynomial model (9). Therefore, at a given value of DNA content from 

a cell we estimated its phase at the cell cycle.  

4.13.8 Determination of the cell clustering or singlet status  

For each scanned cell sample, the locations of nuclei on the motorized stages (xs, ys) were 

estimated from the stage location of the image field, (x
IS
, y

IS
), and cell locations in the image 

field, (x
I
, y

I
), through the following equation: 

(xs, ys) = (x
IS
, y

IS
) + px × (x

I
, y

I
) 

where px is the pixel size of image. Hence, the distance of a cell to the nearest neighbor cell 

was measured. Average radius of pancreatic epithelium cells is approximately 25 μm and 

hence if cell has no direct physical contacts with other cells, i.e. the singlet cells, the 

estimated least distance to the nearest cells singlet cells condition are twice the cell size (=50 

μm). The singlet cell condition was estimated based on the cell with the nearest distance to 

next cells more than 50 μm. The clustering cells are the cells do not fulfill this criterion.  
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4.13.9 Sub-sample cross-validation for prediction accuracy  

In addition to the blind tests described in the main text, to measure predictive accuracy, we 

used a repeated random sub-sampling cross-validation strategy based on increasing number 

of cells. We first randomly selected 9 cell lines among 11 PT or metastasis cell lines and build 

a classifier using generalized linear model. We then applied this classifier to the other 2 cell 

lines that are represented by the randomly selected cell sample with specified sample size. 

The process was then repeated 200 times to estimate overall sensitivity, specificity, and 

accuracy.  

4.14 RESULTS 

4.14.1 The htCIP assay and VAMPIRE analysis 

We developed a high-throughput cell imaging platform (htCIP) that allowed us to extract 

high-content information for individual cells, including cellular and nuclear morphology, 

molecular content, and local multi-cellular organization (Figure 13A). A low-magnification, 

low numerical aperture objective was used in this assay, which allowed for rapid imaging of a 

large number of individual cells. We validated the cell shapes extracted by this assay by 

comparing the results obtained from automated segmentation and manual tracing (Figure 

14A and 14B). We verified that the use of this low-magnification objective had sufficient 

optical resolution for measuring cellular and nuclear features by comparing results obtained 

using low- and high-magnification lenses (Figure 14C). We used this assay to identify a 

potential morphological signature of metastasis in pancreatic ductal adenocarcinoma 

(PDAC) using nine previously sequenced (Jones et al., 2008), patient-derived, primary tumor 

(PT; five lines) and liver metastatic (LM; four lines) cell lines. In addition, two distinct non-
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neoplastic pancreatic epithelial cell lines (NM) were included for cross comparison (Table 

3.1).  

 

Figure 13 High-throughput cell imaging platform (htCIP) and morphology of PDAC cells.  A. Cell samples 
were seeded on 24-well glass plates and then fixed and stained. Images were acquired on an automated-stage 
epifluorescence microscope using a standardized scanning grid. Each fluorescence channel was subsequently 
processed using custom software and data was then extracted for analysis. B. Sixteen randomly chosen, 
horizontally aligned cell and nuclear traces from each patient-derived pancreatic cancer cell line shown here for 
qualitative visual comparison. C. Three-dimensional scatter plot showing the wide spectrum of conventional 
morphological descriptors, cell size, shape factor (SF) and cell aspect ratio, for the pancreatic cancer cell lines 
used in this study (n = 11 samples and 39,000 individual cells). D. This panel shows that even for highly similar 
values of cell size, SF and cell aspect ratio represented by range of red spot in panel C, the corresponding cells 
can still display a wide range of shapes not captured by these conventional morphological descriptors. 

 

We analyzed the shape of thousands of individual cells and their nuclei. For direct 

visual assessment of cell and nuclear shapes, rotationally-invariant shapes of cells and 

associated nuclei were obtained by aligning the major axis of the cell/nucleus outlines along 

the horizontal axis. (see more details in Materials and Methods). Randomly selected subsets 

of individual cell traces did not reveal overt morphological differences between PT and LM 

cells, presumably due to the irregularity of cell shapes (Figure 13B). Morphological features, 

such as size, shape factor, and aspect ratio, have been widely used to describe cell shape, yet, 
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these features could not reflect the extent of cell shape variations, since even a small subset 

of cells displaying an extremely narrow range of values of these conventional shape 

descriptors appeared radically different from each other (Figure 13C and 13D). 

 

Figure 14 Automated cell segmentation: comparison with manual segmentation. A. Cellular and nuclear 
segmentation of four representative cells using the automated software approach used in this work (purple) and 
manual tracing (blue). B. Segmentation of the same 100 randomly selected cells using both methods. Results 
show that boundaries of cells obtained from the automated segmentation process correspond well with 
manually traced boundaries of cell and nucleus. C. The same cells were imaged using a high N.A (1.45), high 
magnification (60X) objectives and using a low N.A (0.3), low magnification (10X) objective. Automated 
segmentation of the same cells and nuclei was performed using both objectives. Cell and nuclear traces from 
100 randomly selected cells are shown. The well corresponding cell and nucleus traces from both setups 
suggest the low N.A and low magnification objective yield the sufficient segmentation resolutions. 

 

 To address this problem, we developed the VAMPIRE assay, which analyzes 

irregular cellular and nuclear shapes and provides a visual aid for the direct comparison of 

cell morphologies (Figure 14A). The VAMPIRE assay identifies representative shape modes 

among cell shapes presented by all cells and determines the occurrence of these shape modes 

for large cell populations. VAMPIRE analysis comprises four essential steps: I) the 

determination of the coordinates of equally-spaced points along the nuclear and cellular 

shapes; II) the reduction of the number of morphological descriptors using principal 

component analysis (PCA); III) the identification of shape modes, and IV) the analysis of 
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shape mode distributions. To represent the infinite number of possible cell shapes, we used 

50 points (i.e. 100 coordinates) equally spaced along the periphery of any given cell, defined  

 

Figure 15 Visually-aided morpho-phenotyping recognition (VAMPIRE) analysis. A. Demonstration of 
VAMPIRE analytical processes. B-D. Heat maps show the probability of cells in each nucleus and cell shape 
modes (P(NSk)  or P(CSk)) for each different sample (B and C). Heat maps show the population distributions of 
different paired nuclear and cellular shapes modes (P(NSk&CSj) ) for different samples (D). Color coding (blue 
to red) corresponds to low and high occurrence. E. A panel of five heterogeneity properties, including CV of 
nucleus (CV(RN)) and cell size (CV(RC)), entropy of nucleus (S(NS)) and cell shape (S(CS)), and entropy of 
paired nucleus-cell shape (S(NS&CS)) was used to represent overall heterogeneity profiles of cell morphology 
of 9 PT and LM samples. The magnitude of heterogeneity of these cell populations is shown in a heat map 
where color from red to green indicates increasing degree of heterogeneity. F. Images of PAC01 cells and 
PAC09 cells. Nuclei and F-actin are labeled in blue and green. 

here as ―features‖. As previously demonstrated (Keren et al., 2008; MacLeod, 1999; Pincus 

and Theriott, 2007; Tsai et al., 2003), any cell shape can be represented by a limited number 
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of eigenshapes determined by PCA applied to all cell features (100 times the total number of 

cells for all conditions, i.e. 100 x 39,000). The scaling factor of a given cellular or nuclear 

shape was computed and used to unify the scale of all analyzed shapes, eliminating the 

confounding effects of cell and nuclear size. An alignment procedure was then used to 

eliminate the effects of rotational variations in the PCA (Figure 15A, upper left). The 

projection scores of nucleus shapes and cell shapes on eigenshape vectors that comprise 

95% of variations were used to represent cell shapes.  

We found that 95% of shape variations for all nuclei and cells were captured by just 

12 and 16 eigenshape vectors, respectively. This result further confirmed that the shape 

factor or the aspect ratio of a cell (a single parameter) was insufficient to accommodate the 

observed large variations in nuclear and cellular morphology. As a proof of concept, we were 

able to accurately reconstruct the experimentally determined morphologies of randomly 

selected cells using the 12 and 16 eigenshape vectors, respectively (Figure 15A, bottom left).  

 

Figure 16 Evaluation of optimum nuclear and cellular shape subtypes (cluster number) using the separation 
index (S) and the Xie and Beni‘s index (XB). The optimum number of clusters should minimize the value of 
the index. Here, nuclear shapes and cellular shapes are parameterized by their value at a set of previous 
identified eigenshape vectors. K-means clustering analysis was applied to nucleus shape samples and cell shapes 
sample using different cluster number and S index and XB index were calculated for each condition. A-B. Plots 
show the S index (A) and XB index (B) as function of cluster numbers (shape subtypes) from nucleus shapes. 
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C-D. Plots show the S index (C) and XB index (D) as function of cluster numbers (shape subtypes) using cells 
shapes. 

 

Eigenshape vectors are mathematically defined and data-driven. Even though their 

association with morphology can be graphically represented, their underlying biological 

meaning is difficult to illustrate. Therefore, we further implemented a K-means clustering 

analysis to empirically identify representative morphological subtypes among these cells. 

From our dataset of over 39,000 cells encompassing all the studied PDAC samples, we 

found that cells and nuclei could be categorized into 12 different modes for nuclear shapes 

and 15 different modes for cellular shapes (Figure 15A, middle panel). The number for 

shape modes was estimated using the separation index and the Xie and Beni index (Figure 

16) (Bensaid et al., 1996; Xie and Beni, 1991). Corresponding shape modes for each 

individual cell were assigned and the distribution profiles of cellular and nuclear shape 

modes from PDAC cell samples were examined, thus revealing unique signatures for 

different PDAC cell samples (Figure 15A, right panel (IV)). The robustness of this analysis 

was confirmed by reproducing results from replicate biological samples (Figure 17).  
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Figure 17 Robustness of the VAMPIRE analysis. To ensure the repeatability and reliability of the identification 
of shape modes using this quantitative assay, different preparation of the PAC004 cell samples were imaged 
and their nucleus shapes were collected. The eigenshape vectors for nucleus which were identified previously 
from all pancreatic cancer cell lines were applied to decompose a nucleus shape k in to a vectors Pk in which 

the vector components represent the projection value at various eigenshape vectors. Individual shape modes as 
previously identified can also be represented by the same sets of vector (PS). The shape mode which has 

minimum paired distance to the Pk were the designated shape mode for the nucleus shape k. Thus, for each 

obtained nucleus shapes a nucleus shapes mode were assigned and nuclear shape mode distribution of different 
experiments was obtained. A. The very consistent nuclear shape mode distribution was observed in all 
experiment replicates cell samples and is users independent. B. Nuclear shape mode distributions from samples 
being imaged at different days after fixation and fluorescent labeling show a conserved trend. C. Nuclear area 
and circularity as a function of dish orientation. 

 

4.14.2 Cell morphology signature for metastasis  

Analysis of shape mode distributions demonstrated that a morphological phenotype could 

sometimes be shared between two different PDAC cell samples (Figure 15B, 15C and 

Figure 18A). However this similarity was not shared across all PT or all LM samples. 

Instead, we found that PT cells displayed a more uniform distribution of nuclear shape 

C 
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modes than LM cells. The same trend held in paired nucleus-cell shape mode distributions 

(Figure 15D). This suggested that metastasis was associated with cell morphological 

heterogeneity.  

 

Figure 18 Hierarchy clustergram of nucleus shape mode composition for PDAC cells and number of gene 
alterations. A clustergram shows the probability of cells in each nucleus shape modes (P(NSk)) for different 

PDAC cell lines. Color coding (red to green) corresponds to low and high occurrence. Hierarchy clustering 
results show that several PDAC cells display similar nucleus shape mode distributions, PAC05, PAC06, PAC07; 
PAC08, PAC09, PAC10; and PAC04, PAC03 respectively. PAC05, PAC06 and PAC07 have similar 
compositions of nucleus shape modes. B. A dot plot shows the number of gene alterations for each PT and 
LM cell lines. No significant difference (P > 0.4) was found between PT and LM cell lines using student t-test. 

 

Thus, we evaluated the heterogeneity profiles of PDAC samples using the coefficient 

of variance (CV) of nucleus and cell size, the ―Shannon entropy‖ of nucleus and cell shape 

mode distributions, and the entropy of nucleus-cell paired shape mode distributions (Figure 

15E). This analysis revealed a clear pattern of significantly elevated morphological 

heterogeneity among PT samples in contrast to LM samples (Figure 15F and Figure 19A-

19E). Of note, this different degree of heterogeneity in shapes was not detectable when 

using ―conventional‖ morphological descriptors (Figure 19F-19I). This morphological 

heterogeneity was similarly not reflected in the variations in the number of somatic 

A 

B 
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mutations in PT and LM cells (Figure 18B). We estimate that, on average, the number of 

altered genes in LM cell lines was only slightly higher but not significantly (P = 0.40) 

compared to PT cell lines. Furthermore, we found that breast cancer cells derived from 

metastatic sites  

 

Figure 19 Morphological properties of PDAC cells. A-E. The scatter plot shows the distribution of nuclear 
shape entropy (A), cell shape mode entropy (B), paired nucleus-cell shape mode entropy (C), CV of nucleus 
size (D), CV of cell size (E) for LM samples and PT samples. F-G. Coefficient of variation of the shape factors 
for LM and PT samples are plotted. H-I. Average nucleus size (H) and cell size (I) is also insignificant different 
between LM samples and PT samples. 

 

also exhibited lower heterogeneity relative to cells derived from primary tumors (Figure 26 

and Table 6). Together, our results suggest that cell dissemination from a primary tumor to 

distant locations is associated with the loss in cell morphological heterogeneity.  
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4.14.3 Cell heterogeneity in 3D environments 

We next studied whether the difference in morphological heterogeneity between LM and PT 

cells held when these cells were fully embedded in 3D collagen matrices, a more 

physiological relevant condition (Wu et al., 2014). Therefore, we extended our methodology 

to analyze cell morphology in 3D matrices (Figure 20A). To reduce complexity, we analyzed  

 

Figure 20 Cellular heterogeneity in 2-D and 3-D environments. A. Strategy to analyze cell morphology in 3D 
collagen matrices. Z-stack images are obtained through the sequential imaging at different z position. A low-
pass filter is then applied to individual images following by maximum z-projection. Cell morphology in 
projected image is then obtained and subject to VAMPIRE analysis. B. Images of PAC01 cells and PAC09 cells 
in 3-D collagen matrices after z-projection. Nuclei and F-actin are labeled in blue and green.  C and D. Nucleus 
shapes modes and cell shape modes are identified by VAMPIRE analysis for cells in 3-D matrices. Histograms 
show nuclear and cellular shape mode distributions for PAC01, PAC03, PAC06 and PAC09 cells. More than 
100 cells were analyzed for each sample. E. Cell morphological heterogeneity properties in both 2D and 3D 
environments. Strong positive correlation is observed for CV of nucleus size (Pearson‘s correlation coefficient 

 

 

projected 2D images from z-stack image sets. Cell shapes in the projected images were then 

extracted and subjected to VAMPIRE analysis. We applied this analysis to four PDAC 

samples, which exhibited different morpho-phenotypes (Figure 20B). As expected, cells in 
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3D matrices displayed more irregular shapes than the same cells placed on 2D substrates 

(Figure 20C and 20D).  However, the distribution of shape modes in PT cells remained 

more heterogeneously distributed than LM cells. Morphological heterogeneity in nuclear 

shape, nuclear size, cell shape, and cell size for cells on 2D substrates strongly correlated 

with those in 3D collagen matrices (Figure 20E). Hence, morphological heterogeneity could 

be a cell intrinsic signature that is independent of the ―dimensionality‖ of the cellular 

environment.  

4.14.4 Cell morphology dependent on cell cycle and local cell density  

Progression through the cell cycle increases cell size and modulates cell shape (Chen et al., 

2013; Kafri et al., 2013). In addition, PDAC cells form cell-cell contacts and ductal-like 

structures (Hezel et al., 2006). Hence, cell cycle and cell-cell contacts could influence 

morphological heterogeneity. The htCIP assay also provides accurate intensity measurements 

and multi-cellular status at the single-cell level and allows for the direct investigation of the 

association of cell morphology with cell cycle and local cell density (Wu et al., 2011b). First, 

we ensured that DNA content distribution measured by htCIP and standard flow cytometry 

were similar (Figure 21A). Next, we computed the precise locations of cells, which enabled 

us to extract cell-cell contact information, without losing counts of cell-cell contacts for cells 

that were at the boundaries of individual images (Figure 21B). 

Table 7 Correlation coefficients of heterogeneity parameters between PT cells and LM cells in different 
conditions 
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By combining information on cell cycle and cell-cell contacts with VAMPIRE 

analysis, we analyzed how cell morphology depended on cell cycle and local cell density 

(Figure 21C and 21D). In general, cell and nuclear sizes increased simultaneously with an 

increase in DNA content and a decrease in local cell density. The distribution of shape 

modes was also dependent on cell cycle phase and local density. The fractions of cells in 

most of shape modes (P(NSk), P(CSk)) were also correlated with DNA content and local 

density (Figure 21E and 21F). We found that heterogeneity difference between LM and PT 

cells did not result from effects of cell cycle or local cell density since this difference 

remained when comparing cells in any specific cell cycle phase (either G0/G1, S or G2/M 

phases) or specific density conditions (Figure 21G and 21H). However, the heterogeneity 

differences between LM and PT cells were generally stronger for specific clustered cells 

compared to overall cell populations (Table 7).  
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Figure 21 Effects of cell cycle and local cell density on cell heterogeneity. A and B. htCIP provides versatile 
single- D)  (B), for cells on 2D 
substrates. C and D.  Relation of cell morphology with progression of cell cycle (C) and increase in local cell 
density (D) for PAC01, PAC03, PAC06 and PAC09.  Cells were sorted based on their DNA content and 
divided into 9 groups with equal sample size. Probability of cells found in different nucleus and cell shape 
modes (P(NSk), P(CSk)) at these groups are shown in heat maps. The averaged DNA contents, normalized 
nucleus size and normalized cell size for these groups are shown in the plot next to the heat maps. Nucleus and 
cell size are normalized by dividing the lowest value among all groups. The same procedures are used to show 
effect of local cell density on cell morphology. E and F. Nucleus and cell shape modes, filled with colors to 
show correlation between DNA content and occurrence of individual shape modes (E). Color coding from red 
to green corresponds to Pearson‘s correlation coefficient from -1 to 1. The same procedure is applied to show 
correlation between local cell density and occurrence of shape modes (F). G. Overall heterogeneity profiles of 
cell morphology of PAC samples in the G0/G1, S and G2/M phases. H. Overall heterogeneity profiles of cell 

D=0) semi-crowded (0 < 

D < 4), an D  4). The heterogeneity of these samples is shown in a heat map where color from 

red to green indicates increasing degree of heterogeneity. 

 

Furthermore, it has been previously shown that metastatic melanoma cells exhibit 

dynamic phenotypes in response to microenvironmental perturbations(Yin et al., 2013). 

Together, these results suggest that specific cellular and micro-environmental conditions may 

enhance differences in biophysical properties associated with metastasis. The most distinct 
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differences between LM and PT were observed in the CV of cell sizes among singlet cells, 

the CV of nucleus sizes among clustered cells, and the entropy in nuclear shapes among 

singlet cells. A three-dimensional plot corresponding to these features showed a clear 

separation among LM, PT, and NM (Figure 22A), suggesting that the loss of morphological 

heterogeneity was a robust metastatic phenotypic signature. 

 

 

Figure 22 Predictive signature for metastatic pancreatic cancer cells. A. A 3-D scatter plot shows delineation 
between different types of samples using CV of nuclear size distribution among cell clusters, CV of cell size 
distribution among singlet cells and entropy of nucleus shape among single cells for each sample. Three distinct 
subgroups, respectively composed of PT, LM and NM samples, are readily observed.  Two new patient-derived 
pancreatic cancer cell lines, a primary tumor cell line (PAC21) and a lung metastases cell line (PAC20), were 
introduced as validation samples and these two parameters were measured. The location of these two 
parameters from the new primary tumor derived cell line well overlays with the PT cluster previously obtained 
with the training set. The cell line derived from lung metastatic region co-clusters with LM cluster previously 
obtained with the training set. B. Relationship of repeating somatic mutations between PT and LM is 
represented using a circos plot. No distinct somatic mutation signature is identified for cells derived from the 
metastatic site. 

 

 

4.14.5 Validation for the metastatic morphological signature 

To further validate this metastatic morpho-phenotypic signature, we analyzed two additional 

pancreatic cancer cell lines, cells derived from a pancreatic primary tumor (PAC21) and cells 

derived from a lung metastasis (PAC20).  The new PT cell line was located in the proximity 
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of other PT cell lines from the original training dataset, while the cell line derived from the 

lung metastasis overlapped with training LM cell lines (pink square and circle in Figure 

22A).  

We further performed a sensitivity analysis of the discrimination between PT and 

LM. We repeated random sub-sampling cross-validation and investigated the accuracy of 

using these parameters to predict metastatic status. Different sample sizes were tested and 

the accuracy in predicting metastatic status reached > 95% for a sample size of ~ 300 cells 

(Figure 23). Together these results suggest that the lower variation in morphology is 

predictive of cells derived from metastatic sites. Importantly, among our tested patient-

derived cells, no distinctive mutational signature was identified between metastatic and 

primary cell lines (Jones et al., 2008) (Figure 22B, and see interactive figure at 

http://biostat.jhsph.edu/~jleek/code/figure2.html). Although most of the PT and LM 

samples that we tested harbor mutations in KRAS, TP53, SMAD4 and CDKN2A, we did 

not find an individual mutation or set of mutations that occurred exclusively in either all PT 

or all LM samples, respectively. This finding indicates that the distinct morphological 

characteristics of PT cells and LM cells were not directly associated with the occurrence of 

specific somatic mutations.  
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Figure 23 A predictive model for metastatic pancreatic cancer cells. A. CV cellular size distribution of singlet 
cells was used as predictor of metastatic characteristic for a cell line. Accuracy, specificity and sensitivity as a 
function of sample size are shown in the plot. Overall accuracy reaches 95% when using ~250 singlet cells. B 
and C. The same procedure was applied using the CV of nuclear size distribution and the entropy of nuclear 
shape as predictors. Overall accuracy reaches 95% with a sample size of ~350 cells. 

 

4.14.6 Hierarchy of cell heterogeneity  

Intrinsic morphological variations could be due to stochasticity that is not passed to 

progenies or may persist over several generations (heritable cell variations). To study the 

origin of intrinsic variations displayed by PDAC cells, diluted cells were placed on substrates 

and their morphologies were measured after four-day growth. PDAC cells formed several 

spatially distinct colonies. We found that PDAC cells within different colonies exhibited 

distinct morphological phenotypes (Figure 24A).  

Pair-wise correlation analysis on cellular and nuclear size showed an elevated 

correlation for PAC01 and PAC09 cells in close proximity of each other. Since the same 

trend was found when we sampled cells within the G0/G1 phase, we conclude that this 

morphological consistency was not due to cell-cycle synchronization (Figure 24B).  To 

further understand the origin of morphological heterogeneity, we compared the variance in 

nucleus size and cell size for cells in different cellular state (i.e. cell cycle) and extracellular 



 

 104 

conditions (i.e. local cell density) (Figure 24C). The results showed that singlet cells showed 

more variance  

 

Figure 24 Hierarchy of cell heterogeneity. A. Images of PAC01 and PAC09 cells after four-day growth from a 
sparse initial seeding density and show cells forms several spatially and morphologically distinct progenies. 
Detailed view of cell images in highlighted areas are shown in the bottom. B. Paired correlation analysis of 
nucleus size and cell size for PAC01 and PAC09 cells. Elevated correlation for cells in proximity was found in 
both all population and cells in G0/G1 phase. After randomly permutation label cells, this correlation 
disappears. C. Bar graphs show the average variances of nucleus size and cell size among different pancreatic 
cancer cells including PAC01, PAC02, PAC03, PAC04, PAC06, PAC07, PAC08 and PAC09. Variance of cells 
depends on the underlying cellular conditions including singlet, crowding, in G0/G1 phase, in G2/M phase. 

p>) for all cells and for cells in G0/G1 phase is 
also shown. The variances are scaled by the variance among all populations. Great decrease in variations in 
both nucleus size and cell size were found for clonal cells at G0/G1 phase. D. A plot illustrates that observed 
cell heterogeneity are combination of different effects including cell cycle, cell-cell contact, cell stochasticity and 
heritable cell variation. A proposed mathematical model to describe cellular heterogeneity is shown in the 
bottom. E. CV of averaged nucleus size and averaged cell size among different progenies is used to measure 
heritable variation for both LM (PAC01~PAC04) and PT (PAC06~ PAC09). LM display in average lower 
heritable variation in both nucleus size (P < 0.05) and cell size (P > 0.05). 
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compared to overall cell populations (which contain cell clusters), but cell crowding within 

clusters greatly reduced this variance. Cells randomly distributed in different cell cycle phases 

also led to increase in variance. Variance of nucleus and cell size for cells in the G1/G0 

phase was ~50% and ~30% lower than overall population, respectively.  However, variance 

in cell size for cells in the G2/M phases was ~40% higher than for the overall population. 

Importantly, the average variance of nucleus size and cell size for individual progenies for 

cells in the G0/G1 phase was ~80% and ~50% lower than the overall population. This 

decrease in size variance within clonal populations disappeared after random (computer-

based) permutation of cells in each experiment (Figure. 24A). Further, we found that 

nucleus shape, but not cell shape, of PDAC cells within colonies also had significantly lower 

variance than the overall population (Figure. 24B). This result demonstrates that cellular 

heterogeneity of PDAC cells result from a combination of cell cycle, cell-cell contacts, 

heritable cell variations, and cell stochasticity.  

Based on these results, we propose a model describing cell heterogeneity based on 

our results (Figure 23D). We measured the level of intrinsic cellular variation for LM and 

PT cells: LM cells display in average lower heritable variation in nucleus size (P < 0.05), cell 

size (P > 0.05), nucleus shape and cell shape (Figure 23E and Figure. 24C). Together, our 

results suggest that a decrease in intrinsic cell-to-cell variations is strongly associated with 

metastasis. 



 

 106 

 

Figure 25 Hierarchy of cell morphological heterogeneity. A. Bar graphs show the average variances of nucleus 
size and cell size among different pancreatic cancer cells at different underlying cellular conditions after random 
permutation of cells in each experiment. Variation in nucleus size and cell size is independent of cellular 
condition after random permutation. B. Bar graphs show the average variances of nucleus shape and cell shape 
among different pancreatic cancer cells at different underlying cellular conditions. The shape variances are 
measured by total variance among projection scores in eigen shape vectors and normalized by the variance 
among all populations. Great decrease in variations in nucleus shapes was found for clonal cells at G0/G1 
phase. C. Variance of averaged nucleus shape and averaged cell shape among different progenies are used to 
measure heritable variation for both LM (PAC01~PAC04) and PT (PAC06~ PAC09). LM display in average 
lower heritable variation in both nucleus shape and cell shape (P > 0.05). 

  

4.15 DISCUSSION 

Automated microscopy and image analysis based on multivariate morphological features is a 

powerful tool to profile single cells for drug discovery and toxicity predictions (Futamura et 

al., 2012; Perlman et al., 2004) and to characterize heterogeneous cellular responses (Slacka et 

al., 2008). Recent studies utilizing a similar strategy of principal components analysis and 

unsupervised classification to identify discrete cell shapes for RNAi screen found that gene 

expression alterations can mediate morpho-phenotypes of cells (Almendro et al., 2013; 

Schrock et al., 1996; Yin et al., 2013). Here, we analyzed the morphology of cells derived 

A B 

C 
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from patients harboring primary tumors and metastases. We demonstrated that direct use of 

cell traces (i.e. boundary coordinates) after registration can be an effective way to describe 

complex cell shapes as opposed to the use of conventional morphological descriptors such 

as cell shape factor and aspect ratio (Yin et al., 2013). One primary advantage of the 

morpho-phenotype analysis proposed in this study is the capability to visualize nuclear and 

cellular morphologies respectively.  

Intraturmoral and intertumoral heterogeneity present not only clinical difficulties, but 

also obstacles to cancer diagnosis, prognosis and treatment (Gerlinger et al., 2012). The 

study of tumor heterogeneity could have broad impact in cancer management. Our current 

understanding of tumor heterogeneity in cancer progression stems primarily from studies at 

the genomic and transcriptomic levels (Almendro et al., 2013; Campbell et al., 2010; 

McGranahan and Swanton, 2015; Navin et al., 2011), but little is known at the cellular 

phenotypic level, and in particular morphology. In this study, we have established that 

morphological heterogeneity is significantly higher in primary tumors than in metastasized 

tumor cells, for both pancreatic and breast cancer. This result suggests that metastatic clones 

derived from subpopulation of a primary tumor that meet the challenges of metastatic 

barriers, facilitate the phenotypic convergence seen in metastatic samples, which has also 

been implicated from whole-genome sequencing studies (Yachida et al., 2010). In our study, 

we provide quantitative evidence of evolution-selection of cancer metastasis at the cell-

phenotypic level. Together, these results suggest that the clonal diversity exhibited within 

primary tumor populations that stems from their underlying genomic diversities contribute 

to the convergent morphology observed in metastatic samples.  
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The analysis of BR04 (MDA-MB-231), a triple negative breast cancer cell line that is 

derived from a metastasis site, exhibited a high degree of morpho-heterogeneity. 

Interestingly, all triple negative breast cancer cells (BR04, BR07, BR08 and BR010) 

consistently displayed a high level of morphological heterogeneity (Figure 26B). In addition, 

a recent study that assessed the genomic diversity of breast cancer tissue sections has also 

shown that that triple negative breast cancer cells exhibit high genomic diversity (Almendro 

et al., 2014).  

 

Figure 26 Heterogeneity of Breast cancer cell morphology A. A heatmap shows the degree of morphological 
heterogeneity of breast cancer cell lines, including 4 lines derived from primary tumors at disease stage IIB (PT) 
and 6 lines derived from metastatic site (M) at disease stage IV (see detailed information of cell lines in 
Supplementary Table 3). B. A 3-D scatter plot shows CV of nuclear size, CV of cell size and entropy of cell 
shape of PT (circle) and M (square) of breast cancer cell lines. The cell lines with ER/PR/HER2 negative (TN) 
are highlighted (+). C and D. Plots show The CV of nuclear size (C) and shape entropy (D) for breast cancer 
cell lines derived from metastatic lesion (M) and primary tumors (P). Nuclear size and nuclear shape entropy is 
positively correlated with decrease of tumor stage (i.e. metastatic or primary tumor), and Pearson correlation 

coefficients (ρ) of 0.33 and 0.20. E and F. The CV of cellular size (E) and shape entropy (F) for breast cancer 
cell lines derived from metastatic lesion (M) and primary tumors (P) were shown. The Pearson correlation 

coefficient (ρ) for cellular size and shape entropy with tumor stages is 0.42 and 0.42. 
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Recently, studies have shown that genomic heterogeneity in primary tumors is linked to 

worse prognosis in breast cancer and esophageal cancer (Maley et al., 2006; Park et al., 2010). 

The fact that the study of morphological heterogeneity corresponds well with these genomic 

studies suggest that the measurement of phenotypic morphological heterogeneity, and 

functional profiles can be a powerful, high-throughput, and cost-effective platform to 

diagnose primary tumors compared to single-cell genomic analysis. Since our analysis also 

demonstrates that morpho-phenotypes of cells can be influenced by their 

microenvironmental conditions (e.g. cell density), the direct phenotypic analysis of intact 

tissue sample such as the tissue sections of primary tumors may impose added 

complications. An alternative way to apply our single-cell analysis for clinical tumor samples 

would be to harvest cells directly from dissected fresh or frozen tumors, and observe the 

cellular morphology under uniform microenvironmental conditions to minimize the effects 

that may be introduced as a function of heterogeneity in microenvironmental conditions 

(Navin et al., 2011). Nevertheless, morphological analysis should be highly compatible with 

circulation tumor cells samples to profile CTCs heterogeneity (Baccelli et al., 2013; Powell et 

al., 2012). 

It is generally believed that the fastest growing cell clone will eventually dominate cell 

population with time. Our high-throughput and high-content single cell phenotyping analysis 

reveals the paradigm of cellular heterogeneity and distinct, heritable cell subtypes in 

individual cancer cell lines. Cells with different cell morphological subtypes would likely have 

different cell functions and underlying molecular compositions. Identification and isolation 

of cell subtypes in a cell line model system can greatly benefit cancer studies that rely 

primarily on cell line model systems, such as molecular mechanism studies—since the effects 
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of molecular alterations can directly translate into cell functions without complexities due to 

mixed cell subtypes. It is also imperative to understand the underlying conditions that drive 

the formation of these distinct cell subtypes that exist in the cell line model, and the 

evolutionary trajectories of different subtypes. Future work will be needed to elucidate the 

role of stochastic gene expression or genomic instability, and their causative role in divergent 

cellular behaviors. 
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