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Abstract

Traumatic Brain Injury (TBI) has been intensively studied for several decades.

Much attention has been directed towards mild TBI (mTBI) due to the increased rates

of occurrence compared to other types of TBI especially in military and sports. There

are two general approaches to study mTBI: computational and experimental, and each

approach complements the other. The experimental direction provides observations

of injury as well as the necessary material behavior for the computational models,

while the computational models can simulate injury-inducing events which cannot be

performed experimentally (in humans).

In this work, we use the computational approach to examine how heterogeneities

in the human brain a�ect the mechanical response and/or the deformation of the

brain tissue in mTBI. We focus on white matter, the vasculature network and gray

matter. Constitutive models for white matter have evolved from linear elastic to

isotropic hyperelastic and �nally to transversely isotropic hyperelastic material. Al-

though experimental evidence points to anisotropy of white matter in both tension

and shear, prior models have accounted for anisotropy in tension but not in shear.
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ABSTRACT

We investigate the e�ects of shear anisotropy in mTBI by comparing two models: one

that captures anisotropy in both tension and shear to another model that captures

only tension anisotropy. With respect to vasculature, there is very limited literature

that studies the e�ects of the vasculature on the mechanics of mTBI. In this work,

we build two models (with and without vasculature) to investigate vasculature e�ects

on the likelihood of injury. Finally, we investigate the e�ects of gray matter hetero-

geneity by building two models, one with homogeneous gray matter and another with

heterogeneous gray matter. To our knowledge, the e�ect of gray matter heterogeneity

has not been investigated in computational models although recent experiments pro-

vide evidence of heterogeneity in gray matter. Since the most commonly used injury

criteria in recent literature are strain-based, we compare the strains predicted by the

two models to address the main questions we raised about heterogeneity (how white

matter shear anisotropy, vasculature network and gray matter heterogeneity a�ect the

mechanics of mTBI). Our results show that two heterogeneity sources, white matter

shear anisotropy and the vasculature, signi�cantly in�uence the brain deformation

and subsequently the predicted injury.

Thesis advisor and primary reader: Prof. K. T. Ramesh

Secondary Readers: Prof. Philip Bayly and Prof. Thao (Vicky) Nguyen
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Chapter 1

Introduction

1.1 Traumatic Brain Injury: Motivation

Sudden loading of the head can cause injury de�ned as Traumatic Brain Injury (TBI).

Such loading can result from falls, auto accidents, blasts and contact sports like

boxing, rugby, and American football. Based on the condition of the injured head,

brain injury is typically categorized as either penetrating injury or closed-head injury.

As the name suggests, penetrating injury requires the penetration of an object (such

as a bullet) into the scalp, skull and dura (a thin layer of a soft tissue that covers the

brain) causing damage along and around the penetration path. Closed-head traumatic

brain injury is further broken down into three classi�cations: severe, moderate or

mild, as shown in Table 1.1 (Adapted from DVBIC [14]). Brie�y, severe TBI is

usually accompanied by long loss of consciousness (LOC) and multiple lesions and
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Table 1.1: Classi�cation of closed-head injury adapted from DVBIC [14]. LOC=Loss Of

Consciousness, hrs=Hours, mins=Minutes, *Confusion or Disorientation **Structural MRI

Mild TBI Moderate TBI Severe TBI

LOC ≤30 mins >30 mins & <24 hrs ≥24 hrs

Confusion* <24 hrs >24 hrs >24 hrs

Memory Loss <24 hrs >24 hrs & <7 days ≥7 days

CT scan normal abnormal abnormal

MRI** normal normal or abnormal usually abnormal

hemorrhaging (physical tissue damage and internal bleeding) in the brain that can

be clearly identi�ed in standard medical imaging like Magnetic Resonance Imaging

(MRI) or Computed Tomography (CT) scans. Moderate TBI is also easily identi�ed

using standard medical imaging, mostly CT scans, but it is usually accompanied by

shorter LOC. However, mild TBI (mTBI) is more di�cult to diagnose since it does not

show any evidence of injury on standard imaging, especially at the very acute stage

of injury, and LOC does not always accompany mTBI (classi�cation information is

adapted from DVBIC [14]).

High rates of mTBI combined with the di�culty of diagnosis have made it a major

topic of research for the past few decades (Gerbeding and Binder [15], Namjoshi

et al. [16], Krave et al. [17], Kerr et al. [18], Hollis et al. [19]). With the general

public being aware of the increased rates and the devastating long-term disabilities
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associated with mTBI, more pressure is being put on researchers and governments to

better understand and ultimately decrease the rate of incidence. For these reasons, we

choose to contribute towards the understanding of mTBI. An improved understanding

of the mechanics of brain deformation during a traumatic event will also help in setting

up better safety standards, in addition to helping physicians in the early diagnosis

and treatment of mTBI.

1.2 Anatomy of the Head

The brain is surrounded by many other materials; making the structure of the head

quite complicated. The brain "�oats" in the skull due to the existence of a protective

�uid called the Cerebro-Spinal Fluid (CSF). The CSF not only protects the brain, but

also provides necessary nutrients and carries away metabolic wastes from the brain.

Three layers of meninges surround and protect the brain: the dura, the arachnoid

and the pia maters. The sti� dura extends to separate the left and right hemispheres

forming the falx membrane, and separates the cerebrum from the cerebellum forming

the tentorium membrane. The arachnoid space has multiple trabeculae that help

cushion the brain and provide passageways for the CSF circulation (Saboori and

Sadegh [20], Zoghi-Moghadam and Sadegh [21]).

In addition to the surrounding materials, the brain is a complicated structure on

its own. A generalized categorization of the brain tissue divides it into two main

components: white matter and gray matter. The gray matter consists mainly of
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neural cell bodies and glial cells which are randomly oriented. On the other hand,

the white matter mainly consists of axonal bundles surrounded by glial cells. The

axonal bundles, through which the electrical signals of the brain travel, form a �ber

network that is sti�er than the surrounding cells (Kruse et al. [22]).

An additional level of complexity to the brain tissue arises from the vascular

network. The blood supply enters the brain from the base of the skull via major

arteries (Vertebral/Basilar and Carotid) as shown in Figure 1.1 (Huettel et al. [5]).

These arteries anastamose to form the Circle of Willis. Multiple branches originate

before and from the Circle of Willis to provide the oxygenated blood to the whole

brain. The blood �ows through the brain tissue from arteries (the largest is 5 mm

in diameter) to arterioles (few hundreds of µm in diameter) to the capillaries (up to

a few µm in diameter). In the capillary bed, oxygen is supplied to the brain and

deoxygenated blood travels from the capillaries to the venules and larger veins which

drains into the sagittal and transverse sinuses and �nally to the jugular vein.

1.3 Diagnosis of mTBI

To date, there is no uni�ed or global clinical de�nition of mTBI. One of the �rst clinical

classi�cations is the Glasgow Coma Scale (GCS) which is based on the patient's

consciousness (eye opening and verbal and motor tasks) after the injury (Teasdale

and Jennett [23]). A score of 13-15 on GCS indicates a mild injury. However since the

GCS is built on a simple aspect (consciousness and responsiveness of the patient) other
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Figure 1.1: A bottom view of the brain showing major arteries and the circle of Willis

(inside the rectangle) (Huettel et al. [5]).

organizations have created other scales or used GCS in addition to other conditions

for mTBI classi�cation. In 1991, the Colorado Medical Society classi�ed mTBI based

on confusion, amnesia and loss of consciousness (Kelly et al. [24]), and this was later

(in 1997) amended by the American Academy of Neurology to include the patient's

mental status (e.g.: orientation, concentration and memory tests) (Neurology [25]).

Around the same time, the American Congress of Rehabilitation Medicine issued new

criteria for mTBI based on GCS of 13-15 in addition to one or more of the following

conditions: loss of consciousness, amnesia, change in mental status (like disorientation

or confusion) or focal neurological de�cits. In addition to these conditions, they
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also added exclusion criteria which were loss of consciousness lasting more than 30

minutes, GCS <13 after 30 minutes and/or post traumatic amnesia lasting more

than one day (Kay et al. [26]). A decade later the WHO Collaborating Center Task

Force on Mild Traumatic Brain Injury also used similar, but more re�ned, diagnostic

criteria. Beginning 30 minutes or more after injury the patient should score 13-15

on GCS and have one or more of the following: confusion, disorientation, loss of

consciousness not exceeding 30 minutes, post traumatic amnesia lasting for a day or

less, neurological abnormalities and intracranial lesion. In this criterion, if any other

symptoms appeared the person should no longer be classi�ed as an mTBI patient.

Of course there are other criteria issued by di�erent centers (e.g.: Mayer et al.

[27], Aubry et al. [28], McCrory et al. [29], Marshall et al. [30]), but the key point is the

range of criteria for clinical diagnosis of mTBI. Further, the complete history of the

patient can greatly a�ect the outcome of mTBI. For example, having previous head

injuries increases symptoms and chances of long-term cognitive impairments (Mayer

et al. [27], Harmon et al. [31], Dams-O'Connor et al. [32]). Moreover, repeated sub-

concussive (lower loadings than what would normally cause mTBI) events might also

cause neurological impairments or lead to chronic traumatic encephalopathy (Mayer

et al. [27], Gardner and Ya�e [33], Stewart et al. [34]).

To help physicians in the early diagnosis of mTBI, computational models have

been used to predict possible injuries in the brain given a de�ned loading condition.

The location of predicted injuries can be connected to the possible loss of cognitive
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functions through tractography maps of the brain. E�orts in computational modelling

of mTBI will be discussed in the following section.

1.4 Computational Modeling of mTBI

Computational models are needed to investigate injurious events that can not be

studied by performing controlled experiments on humans. There are several compo-

nents in each computational model: structure, material models (characterization and

constitutive modeling) and injury criteria. Section 1.2 discussed the head anatomy

which provides information about possible head structures. We will discuss the other

modeling components in the following subsections.

1.4.1 Brain Tissue Characterization

Extensive e�orts have been made towards characterizing the brain tissue using mul-

tiple techniques. The experimental results show a wide range of mechanical behavior

for the brain tissue. For example, the complex shear modulus of brain tissue quoted

in the literature ranges from few hundred Pa to tens of kPa. Figure 1.2 shows a

summary of these results presented by Meaney et al. [6] from multiple experimental

studies: Shuck and Advani [35], Fallenstein et al. [36], Bilston et al. [37], Arbogast

and Margulies [38], Peters et al. [39], Arbogast and Margulies [40], Thibault and Mar-

gulies [41], Brands [42], Bilston et al. [43], Darvish and Crandall [44], Lippert et al.
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Figure 1.2: A wide range of the brain's complex shear modulus from experimental studies,

summarized by Meaney et al. [6].

[45], Nicolle et al. [46], Hrapko et al. [47], Shen et al. [48] and Garo et al. [49]. Possible

sources of this wide range include variations in age, post mortem time, strain rate,

species and temperature of the sample. Further details of each potential source of

variation are discussed in the following subsections.

1.4.1.1 Variations Between Species

Studies of brain tissue characterization in the literature have used samples from ani-

mals (like pigs (Gefen and Margulies [50]), cows (Pervin and Chen [51]), rats (Gefen

et al. [52]), mice (Dodgson [53]), monkeys (Galford and McElhaney [54]) and rabbits

(Koeneman [55])), in addition to human cadavers (Franceschini et al. [56]). Some

data is obtained from tissues from patients undergoing brain surgery that is not be-

8



CHAPTER 1. INTRODUCTION

lieved to a�ect the brain properties (e.g. Prange and Margulies [57]). In recent years,

Magnetic Resonance Elastography (MRE) provided the option of in-vivo mechanical

characterization in humans (Kruse et al. [22], Green et al. [58]), mice (Clayton et al.

[59]) and ferrets (Feng et al. [60]).

In an e�ort to study inter-species variability, Galford and McElhaney [54] com-

pared shear properties of human and monkey brain samples. The shear modulus of

monkey brain samples was 50% higher than human samples. Another work by Prange

and Margulies [57], studied the di�erences between human and porcine brain prop-

erties. The study concluded that human brain is 30% sti�er than pocine brain. On

the other hand, other groups did not �nd any di�erences between human and porcine

tissues (Nicolle et al. [46, 61]), human and murine tissues (Atay et al. [62]) or human

and rat tissues (Vappou et al. [63]). Figure 1.3 shows the scatter of the brain's shear

modulus as a function of frequency obtained from multiple published studies in the

literature (Chatelin et al. [7]). It is not clear that there are statistically signi�cant

di�erences between the moduli of humans and that of other species. However, the

scatter of shear modulus data in Figure 1.3 suggests an increase in the shear modulus

for all species with increasing frequency (e.g.: shear modulus G= 500 Pa at 0 Hz

frequency, G= 2,000 Pa at 50 Hz and G=15,000 Pa at 1800 Hz frequency).
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Figure 1.3: A comparative plot showing shear modulus response of brain samples from

multiple species (Chatelin et al. [7]). We conclude from this scattering that there is no

de�ned di�erence between the brain properties of humans and other animals in literature.
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1.4.1.2 In�uence of Age

In addition to the species di�erences, the change of brain tissue with respect to age

is another factor that might a�ect the mechanical response. Thibault and Margulies

[41] found an increase in sti�ness as porcine age increased. Additionally, adult porcine

tissues exhibited viscoelasticity while infant samples did not. A similar observation

of increased sti�ness with age was evident in the rat brain experiment of Elkin et al.

[64]. In contrast, Sack et al. [65] showed a decrease in sti�ness as human age increases

using MRE technique (sample age range: 18-88 years). Overall, the sti�ness of brain

tissue is age dependent but it is not clear yet whether it decreases or increases with

age.

1.4.1.3 In�uence of Post-Mortem Time

In general, biological tissues including the brain are expected to degrade with post-

mortem time, causing a change in their mechanical properties. To date, there is no

speci�c protocol that controls experimental studies on the brain response in terms of

post-mortem time. Hence, the di�erent times in brain characterization experiments

(ranging from a few hours to a few days post-mortem) can contribute to the wide

scatter in reported brain properties.

Some experiments have shown insigni�cant e�ects of long post-mortem times on

the brain's mechanical properties (Darvish and Crandall [44], Shen et al. [48], Atay
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et al. [62]). However, Vappou et al. [63] performed experiments on rats to study post

mortem e�ects which revealed a decrease of 50% in the brain's shear modulus was

observed after 24 hours post-mortem. In contrast, the opposite trend was reported by

Garo et al. [49] who performed experiments on porcine brains. Six hours post-mortem,

they observed that the brain started to sti�en at a �xed rate of 27 Pa per hour. Hence,

they recommended that brain tissue be tested within six hours post-mortem. This

recommendation is not always followed in the literature.

1.4.1.4 Strain Rate E�ects

There have been numerous e�orts to study strain-rate e�ects on the mechanical prop-

erties of brain tissue (Table 1.2). Some e�orts studied the related issue of change in

the mechanical properties of the brain tissue with change in lodaing frequency (Shuck

and Advani [35], Hrapko et al. [66]).

Most of these e�orts used porcine brain tissue to study the e�ects of strain-rate

on the mechanical properties of the brain (Miller and Chinzei [69, 70], TAMURA

et al. [71, 72], Begonia et al. [73], Rashid et al. [74]). Begonia et al. [73] studied fresh

porcine tissues under three compressive strain rates (0.00625, 0.025 and 0.1 s−1). The

study showed an increase in sti�ness as the strain rate increased. A similar �nding

was made by Rashid et al. [74] who tested fresh porcine brain tissue in compression

under strain rates of 30, 60 and 90 s−1. Another supporting study to the �ndings

above is the work of TAMURA et al. [72], who tested porcine tissue in tension with
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Table 1.2: A summary of strain-rate studies in the literature. C=Compression,

T=Tension, H=Human, B=Bovine, RM= Rhesus Monkey, P=Porcine, Ts=storage temper-

ature, Tt=testing temperature, RT=Room Temperature, Rf=Refrigerated, NR=Not Re-

ported.

Study Test Source Rates/Frequencies Temperature (oC)

Estes and McElhaney [67] C H, RM 0.08, 0.8, 8, 40s−1 Tt=37o

Shuck and Advani [35] S H 5-350 Hz NR

Donnelly and Medige [68] S H 30, 60, 90, 120, 180s−1 Ts=4o, Tt=RT

Jin et al. [2] C,T,S H 0.5, 5, 30s−1 Ts=4o, Tt=37o

Miller and Chinzei [69] C P 0.64, 0.0064 and

0.64x10−5s−1

Ts=5o, Tt=22o

Miller and Chinzei [70] T P 0.64, 0.0064s−1 Ts=5o, Tt=22o

TAMURA et al. [71] C P 1, 10, 50s−1 Ts=Rf, Tt=20o

Hrapko et al. [66] S P 1-10Hz Ts=4o, Tt=7-37o

TAMURA et al. [72] T P 0.9, 4.3, 25s−1 Ts=4o, Tt=RT

Begonia et al. [73] C P 0.00625, 0.025, 0.1s−1 Tt=25o

Rashid et al. [74] C P 30, 60, 90s−1 Ts=4-5o, Tt=22o

Pervin and Chen [51] C B 0.01, 0.1, 1000, 2000,

3000s−1

Ts=37o, Tt=25o

Bilston et al. [43] S B 0.01-20Hz NR
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(a) (b) (c)

Figure 1.4: Summary of average stress at 50% strain of gray and white matters at varying

strain rates from the study by Jin et al. [2]. **p<0.001. (a) Tension, (b) Compression, and

(c) Shear test results.

strain rates of 0.9, 4.3 and 25 s−1, and observed an increase in the sti�ness as the

strain rate increased. Overall, porcine brain tissue has been shown to be sti�er as

strain-rate increases regardless of the loading mode (tension or compression).

Human brain samples also showed the same behavior in a set of experiments

carried out by Jin et al. [2]. Cadaver brain tissue was tested in tension, compression

and shear under three strain rates: 0.5, 5 and 30 s−1 (low, medium and high, shown

in Figure 1.4). For all the tests performed, a clear dependency of the strain rate was

evident. Altogether, the brain tissue is dependent on the strain rate regardless of the

species or the testing direction (compression, tension or shear).
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1.4.1.5 Temperature E�ect

The temperature at which brain samples are stored and the temperature of the tissues

at the time of testing also a�ects the mechanical response of such soft biological

tissues. The work of Hrapko et al. [66] revealed an increase in the brain modulus with

the decrease of temperature, using porcine brain tissue under high-rate compression

tests. Another study by Peters et al. [39] reached the same conclusion using bovine

(calf) brain tissue. On the other hand, an increase in tissue sti�ness stored at 37oC

vs 0oC of porcine tissue was reported by Zhang et al. [75]. Since most tissues in the

literature are preserved between freezing (0oC) and body (37oC) temperatures, part

of the variability in the brain's mechanical characteristics comes from the di�erent

storage temperatures. Note that storage and/or testing temperatures are not always

recorded in the literature.

1.4.2 Constitutive Modeling

1.4.2.1 Brain Tissue Constitutive Modeling

Material models used to describe the brain tissue have evolved over the years. Linear

elasticity was initially used to model the behavior of the brain tissue (e.g., Kimpara

and Iwamoto [76], Zhang et al. [77], Roberts et al. [78], Chatelin et al. [79]). Hy-

perelasticity began to be used (Kyriacou et al. [80], Rashid et al. [81], Mihai et al.

[82], Laksari et al. [83]) as the evidence of the non-linear behavior of the brain tis-
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sue accumulated (Jin et al. [2], Budday et al. [84]). Table 1.3 summarizes the most

commonly used constitutive models for the brain in the mTBI literature. Recently,

many computational models use the Holzapfel-Gasser-Ogden (HGO) model which is

an anisotropic hyperelastic constitutive law. The usage of an anisotropic model for

the brain tissue comes from two main reasons: evidence of brain tissue anisotropy

(Velardi et al. [1], Jin et al. [2], Arbogast and Margulies [40], Feng et al. [85], Diguet

et al. [86]) and correlation of �ber orientation with damage measures (discussed in

the next subsection).

Researchers have also used structural (Arbogast and Margulies [97], Meaney [98])

and biphasic models (Franceschini et al. [56], Cheng and Bilston [99], Basser [100])

to describe the brain tissue. The idea behind structural modeling is to capture the

nature of axonal �bers in the brain which are not naturally fully stretched. Hence, the

�bers will not be engaged at smaller strains. Once a speci�c strain value is reached,

the �bers will be fully stretched and add extra sti�ness to the brain tissue. Biphasic

models, as the name suggests, treat the brain tissue as a mixture of two phases: solid

and �uid. This idea is supported by the high content of water in the brain tissue

(Tauber et al. [101]). The key advantage of biphasic models is the ability to capture

�uid di�usion in the brain which is only captured at small strain-rates. Thus, for

dynamics injurious loading conditions the biphasic models are typically not used.
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Table 1.3: A summary of the constitutive models used for the brain tissue in mTBI

literature. Iso=Hyperelastic Isotropic, Aniso=Hyperelastic Anisotropic.

Constitutive Model Type References

Linear Elastic - Kimpara and Iwamoto [76], Zhang et al. [77],

Roberts et al. [78], Chatelin et al. [79]

Neo-Hookean Iso Kyriacou et al. [80], Budday et al. [87], Mac-

Manus et al. [88]

Mooney-Rivlin Iso Rashid et al. [81], Laksari et al. [83], Mendis et al.

[89]

Fung Iso Rashid et al. [81], Mihai et al. [82], Rashid et al.

[90]

Ogden Iso Prange and Margulies [57], MacManus et al. [88],

Rashid et al. [90], Kaster et al. [91]

Quadratic Anisotropic Aniso Wright and Ramesh [92], Ning et al. [93]

Holzapfel-Gasser-Ogden Aniso Wright et al. [3], Giordano and Kleiven [94, 95],

Colgan et al. [96]

Structural - Arbogast and Margulies [97], Meaney [98]

Biphasic - Franceschini et al. [56], Cheng and Bilston [99],

Basser [100]
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1.4.3 Injury Criteria

A variety of brain injury criteria have been developed over the past decades. We will

divide them into three categories: Macroscale based, Microscale based and Cellular

level injury criteria which are described in the next subsections.

1.4.3.1 Macroscale (Head) Based Injury Criteria

Due to the ease of measuring general head kinematics (compared to local tissue defor-

mations), macroscale injury criteria were developed and are often used in automotive

safety and contact sports. Some criteria were developed using several reconstructed

injurious and non-injurious events. The ratio of injury incidents to the total incidents

(injurious and non-injurious) for a speci�c loading can provide a probabilistic measure

of injury occurrence.

The �rst published injury criterion was published in the 1960 by Lissner et al. [102]

(which is also published in 1966 by Gurdjian et al. [8]) and is frequently referred to

as The Wayne State Tolerance Curve (WSTC) (Figure 1.5, adapted from Greenwald

et al. [9]). The curve de�nes a relationship between the maximum linear acceleration

and the impact duration (extracted from animal and cadaver head experiments), and

any point above the curve is considered an injurious condition.
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Figure 1.5: The Wayne State Tolerance Curve which is used as a brain injury predictor

(Gurdjian et al. [8], Greenwald et al. [9])

Around the same time, The Gadd Severity Index (GSI) was proposed by Gadd

[103] which is of the form

GSI =

∫ t

0

a2.5dt (1.1)

where a is the e�ective acceleration (in g's) and t is the time (in seconds). Based on

the WSTC, Gadd [103] proposed a threshold value of GSI=1000 beyond which the

brain will be injured.

In 1972, the National Highway Tra�c Safety Administration (NHTSA) established

the Head Injury Criterion (HIC) (Marjoux et al. [104], based on Versace [105]'s data),

de�ned as

HIC =

{
(t2 − t1)

{
1

t2 − t1

∫ t2

t1

adt

}2.5
}
max

(1.2)
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where a is the resultant head acceleration in g's and t1 and t2 are in seconds. Based

on the NHTSA recommendation in the Federal Motor Vehicle Safety Standards And

Regulations (FMVSS), the time interval (t2−t1) should be either 15 or 36 milliseconds

(Giordano and Kleiven [94]).

The �rst work to introduce angular acceleration into head injury criteria was

published a little less than two decades after HIC by Newman [106]. They developed

the Generalized Acceleration Model for Brain Injury Tolerance (GAMBIT) which

takes the following form

GAMBIT,G(t) =

{(
a(t)

ac

)m
+

(
α(t)

αc

)n} 1
s

(1.3)

where a is the linear acceleration (in g's), α is the rotational acceleration (in rad/s2),

and the values of m,n, s, ac and αc were �tted to �eld accident data of Kramer and

Appel [107] (n = m = s = 2.5, ac = 250g and αc = 25rad/s2). A study based on

pedestrian collisions suggested G = 1 for 50% probability of severe head injury (Feist

et al. [108]).

Newman later collaborated with other researchers to develop a new criterion called

the Head Injury Power (HIP) (Newman et al. [109, 110])

HIP =
3∑
i=1

mai

∫
aidt+

3∑
i=1

Iiiαi

∫
αidt (1.4)

where m is the mass (in kg), Iii is the moment of inertia in the ith direction (in kgm2),

a is the translational acceleration (in g's), α is the rotational acceleration (in rad/s2).
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A value of HIP≈12.8 kW was set for 50% probability of concussion (Newman et al.

[109]).

The most recent macroscale injury criterion is the Brain Injury Criterion (BrIC)

proposed by Takhounts et al. [111]. While none of the previous criteria used angular

velocity as a predictor, this work de�ned BrIC as

BrIC =

√(
wx
wxc

)2

+

(
wy
wyc

)2

+

(
wz
wzc

)2

(1.5)

where wx, wy and wz are maximum angular velocities around each axis and wxc, wyc

and wzc are critical angular velocities calculated from a Cumulative Strain Damage

Measure (CSDM) of 0.5 based on a selected strain threshold (covered in the next

section). Hence, if the value of BrIC=1, a 50% probability of concussion is expected.

1.4.3.2 Microscale (Tissue) Based Injury Criteria

Multiple tissue-scale deformation measures have been used as injury criteria including

multiple stresses (e.g.: von Mises stress (Anderson et al. [112]), shear stress (Yao

et al. [113]) or pressure (Ward et al. [114])) and strains (e.g: shear strain (Kimpara

and Iwamoto [76]), principal strain(Deck and Willinger [115]), Cumulative Strain

Damage Measure (CSDM) (Takhounts et al. [116]), strain rate (King et al. [117]) or

a combination of strain and strain rate (Viano and Lovsund [118])) (Table 1.4). To

set a speci�c threshold, real-world injurious event reconstruction (e.g. Zhang et al.

[119], Kleiven [120], Trosseille et al. [121]) or laboratory animal studies (e.g. Anderson

et al. [112], Shreiber et al. [122], Margulies and Thibault [123]) are used.
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1.4.4 Cellular Level Injury Criteria

In-vivo and in-vitro experiments on animal nerves or cell cultures have been performed

to obtain injury thresholds at the cellular level. Stretching is applied to cell cultures

(Weber et al. [124], Geddes and Cargill [125], Elkin and Morrison III [126], Morri-

son III et al. [127]) or a single nerve (one family of �ber bundles) (Bain and Meaney

[128], Gray and Ritchie [129], Saatman [130]) and the morphology, cell integrity or

nerve function is monitored throughout the experiment. The onset of change (e.g.:

cell degeneration or death, abnormal cell signals or abnormal morphology) de�nes the

strain threshold for injury prediction. Table 1.5 shows some of the injury thresholds

obtained at the cellular level.

The cellular level injury criteria can not be directly applied on the tissue level due

to the di�erence in the length scale between the two. Tamura et al. [131] studied the

di�erence between the global (tissue level) and local (cellular level) tissue strains by

performing experiments on fresh porcine brain samples. The recorded global tensile

and compressive strains in the tissue were 0.33 and -0.12, respectively, while the

strains were 0.07 and -0.03, respectively, in the nerve �bers (cellular level). Hence, a

relationship between the tissue level and cellular level strains must be de�ned before

using cellular level criteria for global tissue injury predictions.

Further more we should note that cellular level injury criteria have been de�ned

under di�erent strain-rates. Geddes and Cargill [125] found that the response of cell
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Table 1.5: Cellular level injury thresholds derived experimentally in-vivo and in-vitro.

Experiment Strain Threshold Reference

Cell cultures 0.2-0.3 Geddes and Cargill [125]

0.1-0.2 Elkin and Morrison III [126]

0.2 Morrison III et al. [127]

0.31 Weber et al. [124]

Single Nerve 0.18 Bain and Meaney [128]

0.33 Gray and Ritchie [129]

0.15-0.25 Saatman [130]

cultures is strain rate dependent (for three tested strain-rates 1, 5 and 10/s) while

Elkin and Morrison III [126] experimental results indicate that cell death is dependent

on the combination of strain and strain-rate (�ve di�erent strain-rates tested: 0.1,

1, 10, 20 and 50/s). On the other hand, Cullen and LaPlaca [132] found that cell

cultures viability (in 2D and 3D setups) is not strain-rate dependent using two rates

of 20 and 30/s. Thus, the selection of an injury criterion should ideally be for the

appropriate strain-rate associated with the intended application to avoid strain-rate

e�ects.
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1.5 Overview of the Thesis

In the previous sections we showed multiple aspects that could introduce hetero-

geneity in the brain response including, but not limited to, structural variations and

material characterization. In this work, multiple aspects of heterogeneity are inves-

tigated. First, the e�ect of white matter shear anisotropy in the injury predictions

of mTBI is investigated in Chapter 2. Two models, one with shear anisotropy and

one without, are simulated for an injurious loading and the predicted damage will be

compared between the two. The following two chapters (Chapters 3 and 4) address

the role of incorporating the vasculature network in a 3D head model for mTBI pre-

dictions. Maximum strains, strain distributions and injury predictions are compared

between two models, with and without the vasculature network. The last aspect of

heterogeneity in this work is the gray matter, which is discussed in Chapter 5. Two

models, one with homogeneous gray matter and one with heterogeneous gray matter,

are used to simulate an injurious loading. Finally, the work is summarized and future

directions will be suggested in Chapter 6.
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Chapter 2

Shear anisotropy in mTBI: A white

matter constitutive model

2.1 Introduction

Most early TBI computations treated brain tissue as isotropic material (Zhang et al.

[77], Zhou et al. [133], Kleiven and von Holst [134], El Sayed et al. [135], Taylor

and Ford [136]). With the discovery of the brain's �ber network, some TBI models

have used anisotropic descriptions for the white matter and isotropic descriptions to

represent gray matter (Velardi et al. [1], Wright et al. [3], Wright and Ramesh [92]).

The anisotropic models have been developed by using both continuum (e.g.Ning et al.

[93]) and structural (e.g.Lanir [137]) approaches. However, all of the TBI models to
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date have accounted for anisotropy in tension but not in shear, despite clear evidence

of shear anisotropy in white matter (Jin et al. [2]).

The �nite element method is often used as a computational tool to study mTBI

and estimate injury in humans. These models are either two dimensional (2D)(Wright

et al. [3], Wright and Ramesh [92], Shugar and Katona [138]) or three dimensional

(3D)(Zhang et al. [77], Roberts et al. [78], Chatelin et al. [79], Colgan et al. [96], Ward

and Thompson [139], Ruan et al. [140]) models, and di�er greatly in the anatomical

details that are considered, ranging from low to high �delity.

In this chapter we will address white matter heterogeneity by developing a material

model for white matter that captures anisotropy in both tension and shear. The

material parameters are determined by calibration with respect to data from the

literature and the calibrated model is then validated against live human data in a non-

injurious content. The validated model is then used to simulate a speci�c National

Hockey League (NHL) incident that resulted in injury. In order to demonstrate the

role of shear anisotropy in mTBI modelling, the results of the new material model are

compared to the results obtained with a model that includes only tension anisotropy.

2.2 Materials and Methods

The materials in brain tissue are typically separated into two types: white matter

and gray matter. The gray matter primarily consists of neuronal cell bodies and is

typically modeled as an isotropic material. On the other hand, the white matter is
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largely composed of axons surrounded by various types of glial cells forming a network

of �ber bundles. The existence of this network causes the material to have a di�erent

response if stretched parallel to the �ber direction than if stretched perpendicular

to the �ber direction (Velardi et al. [1]). A similar anisotropy applies to the shear

response (Jin et al. [2]). Thus, white matter is an anisotropic material in both tension

and shear. In this section, a constitutive model for white matter is described which

includes both modes of anisotropy.

2.2.1 Constitutive Model

We start with a simple volume of material with �bers in one direction (Figure 2.1a).

The initial �ber direction a0 in the reference con�guration and the new �ber vector

a in the deformed con�guration are related through the deformation gradient F and

the �ber stretch λ by

Fa0 = λa. (2.1)

The strain energy function for a transversely isotropic material is usually repre-

sented using three invariants for the isotropic response of the material,

I1 = trC, I2 =
1

2
[(trC)2 − tr(C2)], and I3 = detC, (2.2)

and two pseudo-invariants for the anisotropic response (Spencer [141])

I4 = a0 ·C · a0 = λ2 and I5 = a0 ·C2 · a0 (2.3)
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CHAPTER 2. SHEAR ANISOTROPY IN MTBI

where C is the Right Cauchy-Green tensor. Note that while I4 depends only on the

�ber stretch, I5 is much more complex. The �fth invariant, I5, carries information

about the interactions between the �ber and the other component which is the matrix

material in our case (Holzapfel [142]). Since white matter is a nearly incompressible

material and the model will be used in a �nite element computation, the strain energy

function is assumed to be partitioned to avoid shear locking, so that

W = WV olumetric +WIsochoric (2.4)

where WV olumetric is the strain energy part allowing volume change and WIsochoric

captures deformation without any change in volume. The deformation gradient tensor

F is modi�ed to

F = J
1
3F (2.5)

where J = detF is the volume ratio (WV olumetric=f(J)) and F is the deformation

gradient with constant volume (WIsochoric=f(F)). Accordingly the invariants Ii are

expressed in terms of the modi�ed Cauchy-Green tensor C = F
T
F. We now assume

that the isochoric strain energy, WIsochoric, is composed of two parts, one representing

the isotropic response of white matter (assumed to be Neo-Hookean) and the other

representing the �ber reinforcement:

WIsochoric = WIsotropic +WAnisotropic (2.6a)

WIsotropic = C1(I1 − 3) (2.6b)

WAnisotropic = C2(I4 − 1)2 + C3(I5 − I4
2
) (2.6c)
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where C1, C2 and C3 are material parameters. TheWAnisotropic incorporates anisotropy

in both tension and shear, and I1, I4 and I5 are de�ned analogously to I1, I4 and I5

when F is replaced by F. Note that the second term in equation 2.6c represents the

�ber-matrix interaction only. The values of the material parameters C1, C2 and C3

can be determined (e.g.) from three experiments:

1. Tension perpendicular to the �bers to obtain C1 since this mode is dominated

by the matrix response to deformation.

2. Tension along the �ber direction to obtain C2 (mode dominated by the �ber

stretch contribution).

3. Shear perpendicular to the �bers to obtain C3 (mode dominated by the �ber-

matrix shear interaction).

We note that, to our knowledge, previous mTBI anisotropic white matter models

have not accounted for the �ber-matrix interactions and I5 in the formulation de-

spite the recommendation to use both invariants (I4 and I5) to model transversely

anisotropic soft tissues (Murphy [143]) and to include at least three invariants to

model non-linear transversely isotropic materials (Destrade et al. [144]).

Finally, the volumetric part of the strain energy is described in terms of the volume

ratio J and the bulk modulus K, as is widely used in other studies for white matter

(Colgan et al. [96], Cloots et al. [145], Ganpule et al. [146])

WV olumetric =
K

2

(
J2 − 1

2
− lnJ

)
(2.7)
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Note that this formulation ful�lls all the requirements for a volumetric strain energy

function (e.g. behavior in extreme tension or compression) as discussed in the work

by Doll and Schweizerhof [147].

With these de�nitions of the strain energy, the constitutive equation of white

matter can be derived following Holzapfel [142] with the Cauchy stress tensor σ

related to the strain energy density by

σ =
2

J

{
I3
∂W

∂I3

I +

(
∂W

∂I1

+ I1
∂W

∂I2

)
b− ∂W

∂I2

b
2

+ I4
∂W

∂I4

a⊗ a + I4
∂W

∂I5

(a⊗ ba + ab⊗ a)

}
(2.8)

where I is the identity tensor and b = FF
T
is the modi�ed Left Cauchy-Green tensor.

To understand the e�ects of the shear anisotropy (I5), we compare our results to

those obtained using an anisotropic model without shear anisotropy: the Holzapful-

Gasser-Ogden (HGO) model which was used by Wright et al. [3]. For a single family

of �bers in a representative volume, the HGO model used by Wright et al. [3] was:

WIsotropic = C1(I1 − 3),

WAnisotropic =
k1

2k2

{
ek2〈E〉

2 − 1
}
, (2.9)

where E = κ(I1 − 3) + (1 − 3κ)(I4 − 1), k1 is a parameter representing tension

anisotropy, k2 is a scaling factor and κ is the �ber dispersion parameter. Note that

the special case of κ = 0 and a single �ber family and for small k2 (as in Wright et al.

[3]), equation 2.9 reduces to the same form as equation 2.6 with C3 = 0 (i.e., only the

I4).
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2.2.2 Material Properties

Now that we have de�ned the constitutive models, we need to determine the parame-

ters C1, C2 and C3 of equation 2.6, k1, k2 and κ of equation 2.9 and the bulk modulus

K of equation 2.7. Parameters for equation 2.9 were taken directly from Wright

et al. [3] (Table 2.1). The bulk modulus K is chosen to be 2.19GPa, consistent with

some (but by no means all) of the prior literature for TBI computations(Yao et al.

[113], Takhounts et al. [116], Watanabe et al. [148]).

Since we expect the brain tissue to be strain-rate dependent (Estes and McElhaney

[67], TAMURA et al. [72], Begonia et al. [73], Budday et al. [149]), we incorporate

viscoelastic e�ects through a Prony series (described in the next subsection). For

this particular implementation, C1, C2 and C3 should be determined from low strain

rate data of tension and shear experiments performed with respect to the dominant

�ber direction, and there are few studies that have this information. Jin et al. [2]

examined tissues from four regions of human adult brains: Cortex, Thalamus, Corpus

Callosum and Corona Radiata. Compression, tension and shear tests with respect to

�ber direction were performed for all four regions using three strain rates (0.5, 5 and

30s−1). An attempt to �t all the material parameters to the 0.5s−1 strain rate data

(lowest strain rate in Jin et al. [2]'s dataset) results in a negative value for C3, which

is not allowed in this hyperelastic model. It is possible that there are variations in the

experimental data because of e�ects such as the long post-mortem time of the samples
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(averaging 4 days post mortem) or the fact that each test direction was performed on

a di�erent subject (gender and age di�ered, the latter ranging from 48 to 94 years).

The net result is that we can not use the three tests of the low strain rate (0.5s−1)

in Jin et al. [2] experiment to determine the full set of C1, C2 and C3. Instead we

consider the work of Velardi et al. [1]. They performed tensile tests on fresh adult

porcine brain tissue from three di�erent regions: Cortex, Corpus Callosum (CC) and

Corona Radiata (CR) at a strain rate of 0.1s−1. For both CC and CR, tension tests

were performed both parallel and perpendicular to the �bers allowing us to obtain

C1 and C2 (Figure 2.2 (top and middle, respectively)). However, Velardi et al. [1] did

not perform shear testing with respect to the �ber direction. To obtain C3, therefore,

we used the work of Jin et al. [2]. The parameter C3 is determined by �tting the Jin

et al. [2] results for shear perpendicular to the �ber direction (Figure 2.2 (bottom)).

A nonlinear least squares method was used for all parameters, which are shown in

Table 2.1. Since both experimental studies (Velardi et al. [1], Jin et al. [2]) we used for

the �tting are performed under low strain rate loading (0.1 and 0.5s−1 respectively),

we consider the �tted parameters to de�ne the long-term response of the material.

The viscoelastic modulus behavior will be described in the next subsection.

Given the availability of data, we have had to mix two tissue sources (porcine and

human) when obtaining our parameters. Prange and Margulies [57] compared the

properties of porcine and human brain tissue, and found that human brain tissue was

sti�er than the porcine tissue. On the other hand, Nicolle et al. [61] obtained shear
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Figure 2.2: Determination of the material parameters for the shear anisotropic model

(equation 2.6). The �rst Piola-Kirchho� (PK) stress is plotted vs. the corresponding stretch

(top and middle), and vs. the shear strain (bottom). The experimental measurements are

taken from the work of Velardi et al.Velardi et al. [1] and Jin et al.Jin et al. [2]The �ts allow

us to obtain C1 (top), C2 (middle) and C3 (bottom). Note: the relationship between the 1st

PK stress (P ) and the Cauchy stress σ (equation 2.8) is Jσ = FPT .
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Table 2.1: Values for the material parameters in the shear anisotropic model (equation

2.6) determined by �tting the results of Velrdi et al.Velardi et al. [1] and Jin et al.Jin et al.

[2], and in the HGO model (equation 2.9) used by Wright et al.Wright et al. [3]

Shear Anisotropic Model HGO Model

C1(Pa) 148 3200

C2(Pa) 61 -

C3(Pa) 505 -

k1(Pa) - 2716

k2 - 0.0001

κ - From DTI(0− 1/3)

viscoelastic material properties for porcine tissue, compared them to human tissue

properties reported in the literature, and concluded that porcine tissue sti�nesses

were within the range of human tissue sti�nesses. Similarly, Nicolle et al. [46] found

no di�erence in the material properties of the brain tissue between the two species. In

this context of the data in the available literature, we believe that using two di�erent

tissue sources to calibrate our model is reasonable.
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CHAPTER 2. SHEAR ANISOTROPY IN MTBI

of the �ber bundle for each voxel recorded. Since gray matter does not have a preferred

orientation, we used equation 2.9 with the �ber dispersion κ set to 1/3 for gray matter.

Since the brain tissue mechanical behavior is dependent on the strain rate (Estes and

McElhaney [67], Donnelly and Medige [68], TAMURA et al. [72], Rashid et al. [74]),

we adapted a one-term Prony series shear modulus to compensate for the strain rate

e�ect from Wright et al. [3]. The calibrated shear modulus (2C1) is considered as the

long-term shear modulus, and using a commonly reported ratio long-term and short-

term moduli (Wright et al. [3], Zhang et al. [119]) the value of the long-term modulus

is extracted. Tables 2.2 and 2.3 summarize the material models and parameters,

respectively, for all other structures.

All other details about the material models and properties used for each structure

(other than what we derived here for the white matter) may be obtained from Wright

et al. [3], which we use as a benchmark. Both our computational simulations and

Wright et al. [3] are two dimensional with identical head structure and mesh. Valida-

tion of both models is performed using an in-vivo brain deformation experiment on a

human subject (covered in the next subsection). In this way, we focus on the e�ects

of shear anisotropy and eliminate all other sources that could produce di�erences in

the results.

Since �nite element calculations can be a�ected by the mesh size, we conducted

a mesh sensitivity analysis. A constant angular acceleration is applied to three mesh

sizes: 1) Fine mesh with max element size of 1 mm 2) Medium mesh with max ele-
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Table 2.2: Material models used for the head structures other than white matter. The

viscoelastic model is a one term Prony series de�ning the long-term and short-term shear

moduli (µ∞ & µ0 respectively) and the decay constant β. The 1st-Order Ogden model

requires de�ning the shear modulus µ1 and the dimensionless parameter α1. The Mie-

Gruneisen equation of state requires de�ning the reference density ρ0, velocity constant c0,

two material constants s and Γ0 and viscosity η.

Material Model Equation

Cerebellum NeoHookean W = C1(I1 − 3) + K
2

(J − 1)2

Cerebrum Viscoelastic µ(t) = µ∞ + (µ0 − µ∞)e−tβ

& Cerebellum

Skull and Dura Linear Elastic E, ν

Bridging Veins 1st-Order Ogden W = µ1
α1

(λ1
α1

+ λ2
α1

+ λ3
α1 − 3) + K

2
(J − 1)2

CSF Mie-Gruneisen EOS p =
ρ0c20ξ

(1−sξ)2
(
1− Γ0ξ

2

)
+ Γ0ρ0Em, ξ = 1− ρ0

ν

ment size of 2 mm 3) Coarse mesh with max element size of 4 mm. For the medium

and coarse meshes, elements were a combination of four and three node plane strain

elements while the �ne mesh is composed of only four node plane strain elements (by

converting MRI voxels directly to elements). For each mesh, we examine the evolution

of the area fraction of white matter that has been deformed to axonal strains(strain

along the �ber direction) greater than some threshold. For all strain levels, we observe

that the di�erence between the �ne and medium meshes is smaller than the di�er-
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Table 2.3: Values for the material parameters used for the head structures other than

white matter.

Material Parameters

Cerebellum C1 = 2432, K = 2.19GPa

Cerebrum and Cerebellum µ∞ = 2C1, µ0 = 10.6C1

Skull E = 8000MPa, ν = 0.22

Dura E = 31.5MPa, ν = 0.45

Bridging Veins µ1 = 25.63kPa, α1 = 11.12, K = 2.19GPa

CSF ρ0 = 1004kg/m3, c0 = 1489m/s, s = 1.79

Γ0 = 1.65, η = 0.001Pa.s

ence between medium and coarse meshes. We have also examined convergence with

respect to the locations of the largest damage. Given this convergence, we selected

the medium mesh for the results presented here.

2.2.4 Validation of the HeadModel for Non-Injurious

Loading

Accurate modelling of the brain tissue is a key factor in determining the level of injury

during traumatic events. We validate our head model by simulating the in-vivo brain

rotational motion experiment of Knutsen et al. [4] Volunteers with no history of brain
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injury used a device that induces a non-injurious rotation about the horizontal/axial

plane of the head inside the MRI at Henry Jackson Foundation (HJF). The tagged

MRI technique was then used to extract the 3D brain motions. The acceleration

pro�le obtained from the experiment is applied to the axial slice of our model, and

the resulting computed shear strains are compared to the experimental values.

Figure 2.4 shows the computed shear strains in the axial slice from our shear

anisotropic model (equation 2.6) and from the HJF experiment at four times. These

times are based on the experimental data, which were collected and processed every

18 milliseconds, beginning 9 milliseconds after the loading. The evolution of shear

strain is captured by the model in the following senses. After 45 milliseconds, both

the experiment and the model have the maximum shear strains reaching the middle of

the brain, indicating consistent shear wave speed, and the locations of maximum and

minimum strains are generally consistent between the simulation and the experiment.

To quantify this full �eld spatial validation for the model, we examine the statis-

tical level of agreement using four di�erent tests discussed by Ganpule et al. [146]: 1)

Index of Agreement (dr) 2) Coe�cient of E�ciency (E2) 3) Root Mean Squared Error

(RMSE) to observations Standard deviation Ratio (RSR) and 4) Correlation Score

(CS) (Table 2.4). For these statistical measures, we de�ne the measured shear strains

from the HJF experiment as the observed data Oi, and the results from our shear

anisotropic model simulation as the predicted data Pi. Table 2.5 shows the results of

all the statistical measures. For dr (Willmott et al. [150]), E2 (Legates and McCabe
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CHAPTER 2. SHEAR ANISOTROPY IN MTBI

[151]) and RSR (Moriasi et al. [152]), the results are closer to the �better� end of

the range (the upper end for dr and E2 and the lower end for RSR). Unfortunately,

these particular metrics do not yet have a de�ned �level of goodness�. For the CS

results, the �rst two time frames (27 & 45 ms) are classi�ed as fair agreement while

the last two time frames (63 & 81 ms) are classi�ed as marginal agreement (Kimpara

et al. [153]). However, since our model is intended to be used for injurious loading

which typically lasts between 15 and 36 ms, we �nd the overall statistical results to

be acceptable.

The simulation, of course, has some advantages over the experiment: higher tem-

poral and structural resolutions. While the experimental data is available only every

18 milliseconds (can be improved to 6 ms), the simulation data can be extracted with

much �ner resolution, e.g. every millisecond. Since injurious loading usually lasts

from 15 to 30 milliseconds, the simulation produces a �ner sense of the evolution of

strains. Moreover, the experiment does not capture strains within the ventricles very

well, which could a�ect the calculated strains in the surrounding tissues. We note

also that Knutsen et al. [4] eliminated rigid body rotation only at the �rst part of the

experiment (before the head stops completely by 3-4 degrees), but did not correct for

rigid body motion afterwards. Other discrepancies between the experiment and the

simulation could arise from structural di�erences between the subject heads in the

experiment and the computation, or the large spacing of the experimental tag lines

in comparison with simulation element size (8 mm as compared to 1-2 mm).
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CHAPTER 2. SHEAR ANISOTROPY IN MTBI

Table 2.5: The degree of agreement between the shear anisotropic model and the HJF

experiment at four speci�c times, using the measures described in Table 2.4.

Time (ms) 27 45 63 81

dr 0.42 0.23 0.28 0.29

E2 -0.28 -0.98 -0.73 -0.66

RSR 1.13 1.40 1.31 1.29

CS 53.70 47.16 39.44 42.29

2.2.5 Injury Criteria

De�ning an injury threshold for mTBI remains very di�cult. No single injury thresh-

old has yet been globally accepted. The di�culty arises because of the contribution

of so many factors in any traumatic event, including but not limited to: location

of impact (if any), direction of motion, rotational and translational accelerations,

duration of the event, nature of the subject's neck, age and so forth. Accordingly

multiple biomechanical thresholds have been used in the literature such as coup and

contrecoup pressure (Ward et al. [114]), von Mises stress (Kleiven [120]), principal

strains (Kleiven [120]), strain rate (King et al. [117]) and axonal strain (Wright et al.

[3]). Since our new model is intended to better describe the white matter tissue, we

selected the axonal strain injury threshold. Bain and Meaney [128] tested the optic

nerves of guinea pigs and suggested an optimal threshold for axonal strain injury
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of 18%. In our simulations, if the element strain along the axonal bundle (�ber)

direction reaches or exceeds 18%, the element is considered damaged (and remains

damaged even if the strain decreases subsequently).

2.2.6 An injurious Event

We now assign the known injury-causing loading conditions for each model/orien-

tation (sagittal, coronal and axial). A reconstructed NHL incident previously used

by Wright et al. [3] is examined, so as to directly compare model results. For each

orientation, the corresponding linear and angular accelerations are applied in explicit

FE simulations. Since the known loading curves (Wright et al. [3]) have a duration of

only �fteen milliseconds and cuto� at non-zero values, we extend the curves so that

the acceleration magnitudes are linearly decreased to zero over 5 milliseconds (and

remain zero thereafter). However, the total simulation time is determined by the

time needed for shear wave propagation inside the brain (Ganpule et al. [146]). The

simulations are stopped when the damage of white matter ceases to evolve (change

in damage of 0.25% or less for three consecutive milliseconds) in all loading cases.

2.3 Results

The shear anisotropy simulation results for the injury case are presented in Figure

2.5a in terms of the axonal strain (damage) distributions in the three cross-sections.
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The degree of damage in each case is quite di�erent from that previously obtained by

Wright et al. [3] using the HGO model with only tension anisotropy.

The injury levels predicted by the two models are compared in Figure 2.5b. Red

areas in the �gure indicate elements of white matter in which the axonal strain reached

or exceeded the injury threshold of 18% (any element that ful�lls the injury criterion

is considered damaged for the rest of the simulation). Overall, the damage predicted

by the shear anisotropic model is clearly higher than the HGO model predictions.

Besides comparing damage location, the area of damage in each slice was also

investigated. The percentage of damaged area Ω, is calculated as

Ω =

∫
AWM

AεAxon≥18%dA∫
AWM

AdA
× 100 (2.10)

where AεAxon>18% is area of white matter elements with axonal strain exceeding 18%

and AWM is the white matter area.

Using equation 2.10, the percent damage for each slice predicted by both models

are calculated. In the axial slice, the predicted damage by the shear anisotropic model

is almost three times the value predicted by the HGO model and the coronal and the

sagittal slices also show more damage (compare values at end of simulations in Figure

2.6).

In addition to damage comparison, radial-circumferential shear strains are com-

pared for the two models as shown in Figure 2.7. For all orientations, the overall

shear strains are higher in the shear anisotropic model (top row of each sub-�gure)
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CHAPTER 2. SHEAR ANISOTROPY IN MTBI

Figure 2.6: Time evolution of the total damage predicted by the HGO and shear anisotropic

models. Solid lines represent the shear anisotropic model and dashed lines represent the

HGO model. Note the higher amounts of damage predicted by the shear anisotropic model.

compared to the HGO shear strains (bottom row of each sub-�gure). This obser-

vation is also mainly due to the di�erence in material properties between the shear

anisotropic model and the HGO model.

2.4 Discussion

Signi�cant di�erences in resultant damage between the two models are evident, as

shown in Figure 2.5b. We note that most computational models show damage pri-

marily at the boundaries between white and gray matters, due to the di�erences in

sti�ness between the two tissues. It is likely that some of the damage at these bound-
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CHAPTER 2. SHEAR ANISOTROPY IN MTBI

We �nd it useful to examine the damage history, i.e. the progress of damage

throughout all time-frames of the simulation. Figure 2.6 shows the damage predicted

by the shear anisotropic (solid lines) and the HGO (dashed lines) models as a function

of time. The damage in the axial slice was not only higher than the other cases but

also developed over a longer time. This is consistent with the loading conditions, and

more speci�cally the angular acceleration in the z direction (applied to the axial slice)

which has the maximum magnitude compared to the other two directions (applied

to coronal & sagittal slices). Nevertheless, the damage predicted by the HGO model

stops evolving as soon as the loading is stopped at 15ms while in the shear anisotropic

model, the damage continued increasing until around 40ms. This may be because of

the slower shear wave speed in the shear anisotropic model (0.5 m/s compared to 2.4

m/s in the HGO model).

A comparison of the radial-circumferential shear strains reveals di�erences be-

tween the two models in addition to the damage di�erences. For the coronal and

the sagittal slices, the shear anisotropic model predicts higher levels of shear strains

(Figures 2.7b and 2.7c) and damage in the brainstem. Such damage is not seen in

the HGO simulation. Montgomery et al. [155] examined mild traumatic brain in-

jury patients and found that the majority of the patients had abnormal brainstem

function even after six weeks from the injury. Another study by Delano-Wood et al.

[156] on veterans with chronic mild to moderate traumatic brain injury revealed a

link between brainstem white matter integrity and the loss of consciousness after the
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injury. Due to the inclusion of shear anisotropy in the shear anisotropic model, the

brainstem experiences higher shear strains which translate to higher predicted dam-

age compared to HGO predictions (Figure 2.5b). Note, however, that our simulations

include only one family of �bers in each element.

Our simulations using our validated material model strongly suggest that consider-

ing shear anisotropy (e.g. through the addition of I5) is important for computational

predictions of mTBI. The injury predictions of the shear anisotropic model are signif-

icantly di�erent than those predicted by the HGO model in terms of level of injury,

location of injury and shear sensitivity. Although the injury threshold that we use

is often used in the literature, we believe that more work is needed to correlate the

symptoms presented by the injured subject with the predicted damage outcomes.

Further, since the real �ber network of the brain has many crossing �bers, the shear

anisotropic model needs to be improved to accommodate multiple families of �bers.

Finally, we intend to extend this work for full 3D simulations of brain injury.

2.5 Summary of This Chapter

We have developed and validated a model for human white matter that captures

both tension anisotropy and shear anisotropy using a �nite element 2D head model

with three representative slices. The white matter damage predicted by the shear

anisotropic model is higher than that predicted by the HGO model (which does not

account for shear anisotropy), and the damage history is more sensitive to the shear

53



CHAPTER 2. SHEAR ANISOTROPY IN MTBI

wave propagation in the brain tissue. The shear anisotropic model predicts higher

degrees of damage in the brainstem for at least one injurious event, perhaps correlated

with the observed brainstem damage in some mTBI.

We conclude this chapter by emphasizing the importance of modelling shear

anisotropy in white matter, since it changes the degree of predicted damage and

the corresponding injury predictions are correlated with some mTBI observations in

the literature.

The next chapter will discuss the second aspect of heterogeneity which is the

vasculature network in�uence on the brain deformation under inertial loading.
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Chapter 3

The In�uence of the Arterial network

e�ects on brain biomechanics under

inertial loading∗

3.1 Introduction

The second heterogeneity-causing component in the brain is the vasculature network.

Since it is an anatomical/structural element, we �rst provide a quick review of the

∗The work of this chapter was done in collaboration with the Image Analysis and Communications Lab (Je�rey

Glaister & Prof. Jerry Prince) and the Center for Neuroscience and Regenerative Medicine at the Henry M. Jackson

Foundation for the Advancement of Military Medicine (Dr. Andrew Knutsen & Prof. Dzung Pham). Sections

3.4.1 and 3.4.2 were executed and written by Je�rey Glaister in addition to the distance from nearest blood vessel

calculations on the MRI segmented volume. Co-registration of the subject's structural MRI and the tagged MRI

volumes for validation was performed by Dr. Andrew Knutsen .
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anatomical evolution in mTBI modelling. When the �rst 3D studies of computational

mTBI started, there were minimal anatomical details in the models. Structures in-

cluded in these studies were typically the skull, the brain and the Cerebro-Spinal Fluid

(CSF) (e.g. Hosey [157]). Either the falx, the tentorium or both were added to some

3D models a few years later (Dimasi et al. [158], Kang et al. [159], Takhounts et al.

[160]). Although models with just these structures (Skull, brain, falx, tentorium and

CSF) have low anatomical �delity, some groups continue to use similar models when

fast/low-cost computations are critical (Roberts et al. [78], Chatelin et al. [79]). Over-

time, further anatomical details have been added to the models, including: meninges,

dura, white matter, gray matter and bridging veins (Zhang et al. [77], Giordano and

Kleiven [94], Colgan et al. [96], Zhang et al. [161]). However, very limited studies are

directed towards the cerebral vasculature network (Omori et al. [162], Parnaik et al.

[163], Zhang et al. [164], Ho and Kleiven [165]).

In 2000, Omori et al. [162] considered a simple half-circular model representing

a sagittal plane. Applying a rotational pulse to two models, one with vasculature

and one without, higher stresses were observed around the vasculature and in the

subarachnoid space. Based on these results, the authors recommended the inclusion

of vasculature in future models. Two years later, a related group performed a compu-

tational study considering a more anatomically correct sagittal slice model to study

the e�ects of vasculature (Zhang et al. [164]). Linear acceleration and angular veloc-
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ity pulses were applied to two models, one with and one without vasculature. Both

principal and shear strains were compared, concluding again that it was important

to include the vasculature network in computational models. In 2004, two physical,

yet simple, head models were used by the same group to experimentally investigate

the e�ects of vasculature (Parnaik et al. [163]). An aluminum cylinder was used to

represent the skull, a silicone gel for the brain tissue and silicone tubes represented

the blood vessels. The two models, which were a simple half cylinder representation

of the coronal plane with and without vessels, were subjected to a number of di�erent

rotational scenarios using a two-segment pendulum setup. By tracking embedded

markers in each model, displacements and principal strains were calculated and com-

pared between the two physical models. The authors concluded that vasculature has a

limited e�ect on the global brain deformation. The �rst computational 3D vasculature

e�ects study was published a few years later in 2007 (Ho and Kleiven [165]). In that

work, the vasculature network obtained from computed tomography angiography was

added to an existing (Kleiven and von Holst [134], further validated in Kleiven [166])

�nite element model. Two 3D head models, one with and one without vasculature,

were subjected to two loading scenarios: translational and rotational accelerations.

Comparing the principal strains (both average strains and strain patterns), led to a

conclusion that vasculature e�ects are not signi�cant. This result contradicted the

earlier 2D computations. However, note that statistical measures were not used to

quantify the strain distribution di�erences in any of the aforementioned studies. Such

57



CHAPTER 3. VASCULATURE EFFECTS UNDER INERTIAL LOADING

measures are valuable for drawing conclusions from such complex and heterogeneous

computations and experiments.

In this chapter we examine the in�uence of the vasculature network on brain

biomechanics under non-injurious rotational acceleration loading by presenting two

versions of a 3D head model, one with vasculature (speci�cally the arterial network)

and one without. The arteries are speci�cally chosen due to two main reasons: they

are sti�er than the veins and hence will create a higher degree of heterogeneity, and

most importantly arteries can be segmented from a non-invasive Magnetic Resonance

Angiography (MRA) known as the Time-Of-Flight (TOF).

3.2 Problem Statement

We begin with the following hypothesis:

Including the arterial network in computational head models of mTBI signi�cantly

alters brain deformations, and consequently injury predictions, under inertial

loading.

To test this hypothesis, two computational models will be built, one with vascu-

lature and one without. Material parameters needed to model arteries will be �tted

to a published experimental study. All other material models and parameters will

be acquired from previous computational models of mTBI in the literature. Hence,

the two models will be identical in material models and parameters except for the
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addition of the arterial network. The model with vasculature network will be vali-

dated against in-vivo human brain deformation experiment in the literature. Once

the model is validated, a simpli�ed version of the model (in terms of material models)

will be used to test the hypothesis by comparing largest principal strains and shear

strains between two models, one with and one without vasculature.

3.3 Inertial Loading Test Case

The inertial loading that we selected to test the hypothesis is a non-injurious angular

acceleration from Chan et al. [10]. A healthy subject with no prior history of head

injury is placed in a device inside the Magnetic Resonance Imaging (MRI) scanner

what was developed in a previous study of the same group (Knutsen et al. [4]). The

device has a counter weight that will rotate the head axially once the subject release

a lock. The position of the head is recorded using an MRI-compatible optical position

sensor and the acceleration is calculated by di�erentiating the position history twice.

Both the position and the acceleration for the subject we will use in our computational

study are shown in �gure 3.1, and are applied directly to the skull in the computations.

We provide the acceleration pro�le to give a sense of how the loading di�ers from

injurious scenarios in acceleration pro�le and magnitude.
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Figure 3.1: Position (left) and angular acceleration (right) histories for a healthy subject

in-vivo experiment from Chan et al. [10].

3.4 Building the 3D head models

We build two computational head models based on Magnetic Resonance Image (MRI)

data from a healthy subject. The MRI is �rst segmented to produce the 3D head

model without vasculature. Then, Time-Of-Flight (TOF) imaging of the same subject

is segmented to obtain the arterial network structure, which is then added to the

MRI segmentation creating the second model with vasculature. The Material Point

Method is used to transfer the segmented heads into two computational models (with

and without vasculature). Finally, material models and properties will be assigned.
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3.4.1 MRI segmentation

The MRI analysis pipeline starts with inhomogeneity correction (Tustison et al. [167])

of the subject's T1-w and T2-w MRI. The T1-w MRI is rigidly registered to the

Montreal Neurological Institute-152 atlas resampled to 0.8mm isotropic voxels and the

T2-w MRI is transformed to this space. The T1-w and T2-w MRI are used to estimate

a brain mask (Roy et al. [168]) for skull stripping. To obtain an initial multi-atlas

segmentation, 30 Neuromorphometrics atlases (http://www.neuromorphometrics.

com/) are deformably registered to the subject's T1-w MRI using the ANTs software

package (Avants et al. [169]). The atlases contain T1-w MRIs and label maps with

62 cortical labels per hemisphere. The initial segmentation is generated by fusing the

30 deformed label maps using joint label fusion (Wang et al. [170]). The multi-atlas

segmentation is re�ned to be consistent with reconstructed inner and outer cortical

surfaces (Huo et al. [171]).

Additional structure-speci�c processing pipelines are applied to segment the falx

cerebri and tentorium cerebelli. The falx and tentorium are segmented using the

re�ned multi-atlas segmentation and the subject's Susceptibility Weighted MR Image

(SWI) (Glaister et al. [172]). Brie�y, the cortical labels produced by the re�ned

multi-atlas segmentation are expanded using fast marching into the longitudinal and

transverse �ssures (Glaister et al. [173]). The labels are expanded up to 5 mm or

until they reach another label. The set of voxels where gray matter labels from
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the left and right hemispheres meet in the longitudinal �ssure de�ne the initial falx.

Likewise, the set of voxels where cerebellum and cerebrum gray matter labels meet

in the tranverse �ssure de�ne the tentorium. To re�ne the initial falx, a set of �ve

atlases with SWI and a manually-segmented falx are deformably registered to the

subject's SWI (Glaister et al. [172]). The boundary of the re�ned falx is determined by

applying the continuous-STAPLE fusion algorithm (Commowick and War�eld [174])

to corresponding boundary points.

3.4.2 TOF segmentation

Brain blood vessels are segmented from TOFMagnetic Resonance Angiography (MRA)

images. The TOF MRA is corrected for inhomogeneities (Tustison et al. [167]) and

rigidly registered to the T1-w MRI. The TOF MRA voxel intensities are represented

by a mixture model consisting of a Rayleigh distribution and three Gaussian distribu-

tions (Hassouna et al. [175]). The lowest intensities correspond to cerebrospinal �uid,

bone, and background air and are represented by a Rayleigh distribution. Gray and

white matter brain tissues are represented by two Gaussian distributions and the high-

est intensities, which correspond to blood vessels, are represented by a single Gaus-

sian distribution. The distribution parameters are estimated using an Expectation-

Maximization algorithm (Hassouna et al. [175]). A binary map of blood vessel voxels

is produced by setting voxels that belong to the blood vessel distribution according

to a maximum a posteriori classi�cation to 1 and other voxels to 0. The �nal blood

62



CHAPTER 3. VASCULATURE EFFECTS UNDER INERTIAL LOADING

vessel segmentation is generated by taking the largest connected component in the

binary map to remove small objects.

Note the TOF segmentation provides the arterial network only. Segmenting the

venous network requires another modality of medical imaging (x-ray based angiogra-

phy) which is invasive. Hence, the venous network is not resolved in our model.

3.4.3 MPM implementation

The most commonly used computational method in TBI studies is the Finite Ele-

ment Method (FEM), used, e.g., in Chapter 2. However, we use the Material Point

Method (MPM) so as to overcome FEM complications like mesh entanglement and

di�culties in meshing complex structures since MPM is a meshless method. Hence,

segmented MRI structures can be directly converted to materials points for the MPM

implementation which we will introduce in the next paragraph.

The �rst introduction of a meshless particle method was by Harlow [176]. He

established the Particle In Cell (PIC) computational technique for �uid dynamics in

which �uid particles �ow through a �xed grid. A few decades later, in 1994-1996,

the PIC method was extended for solid mechanics and called the Material Point

Method (MPM) (Sulsky et al. [177], Sulsky and Schreyer [178], Sulsky et al. [179]).

The solution combines advantages of Eulerian (Fixed grid = No mesh distortion) and

Lagrangian (Tracked points in space = Complete deformation history) solution meth-

ods together. First, material points are set in space with a background grid. State
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variables are transformed from the material points to the grid nodes using an inter-

polation function (similar to the shape functions concept in FEM). The incremental

solution is calculated at the grid and then interpolated back to the material points up-

dating their current state (location, stresses, strains, ... etc). Then, the background

grid is reset and the whole process is repeated again until the required loading or

simulation time. Note that information is never stored on the grid and deformation

history is carried by the material points only. A comparison between MPM and FEM

in problem setup and solution steps is shown in Table 3.1. Computationally, FEM is

more expensive in terms of preprocessing (creating the mesh) specially for complex

structures while MPM is more expensive in the solution procedure due to the need

for double interpolation at each time step.

A Generalized Interpolation Material Point (GIMP) scheme was introduced by

Bardenhagen and Kober [180] to account for the �nite spatial extent occupied by

each particle (instead of the old lumped mass approach). There are several interpo-

lation functions derived for the GIMP scheme of MPM such as: undeformed GIMP

(uGIMP), convected particle GIMP (cpGIMP) and Convected Particle Domain Inte-

gration (CPDI) (Sadeghirad et al. [181]). uGIMP is very e�cient for small deforma-

tions but might su�er an unphysical material fracture (i.e.: numerical fracture) if the

strains are too large (changes to the initial particle domain are not allowed in uGIMP).

The use of cpGIMP will solve the numerical fracture problem, but this interpolation

does not capture shear deformations (allows particle stretching only). To overcome
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both obstacles (large strains and shear deformations), CPDI is used which converts

the rectangular domain of particles to parallelogram allowing for shape changes.

In our model, to reduce computational cost, the segmented structure with an

isotropic resolution of 0.8 mm is reduced down to an isotropic resolution of 1.6 mm

(Figure 3.2). The reduction was performed by assigning an inital grid with cell-size

of 1.6 mm with, typically, two particles (or material points) in each direction per cell.

The points in each cell are then sorted based on their structure label. The structure

with the highest number of points in that cell will be selected to represent cell with

one point in the center and the original material points are deleted. However, if that

cell contains vasculature points, it will be directly converted to single vasculature

point in the center of the cell. The process is repeated over the whole head space

until the whole structure is reduced to 1.6mm resolution. A new background grid, on

which the governing equations will be solved, is then setup with a cubic cell size of 3.2

mm and two material points in each direction totaling 436,826 points for the whole

head (Note in Ho and Kleiven [165] the resolution was not reported but the total

number of elements based on their mesh density study in Kleiven and von Holst [134]

was 7,500 elements. To have a comparative measure between our resolution and that

in Ho and Kleiven [165], typically each cell in our model has 8 particles and hence

our model has about 54,600 cells or elements). The spatial gradients on the grid are

calculated using the assigned interpolation function. To eliminated instabilities from
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large and/or shear deformations, we use the CPDI interpolation function as suggested

in the literature (Sadeghirad et al. [181]).

Uintah Computational Framework† is used for our MPM implementation which

allows for easy parallel computing and has been validated against well controlled

experiment using a phantom head (Ganpule et al. [182]) and recently used for soft

tissues in the literature (Ionescu et al. [183], Ganpule et al. [184]). The setup requires

de�ning materials as points in space with the corresponding models and parameters,

an interpolation scheme, a displacement loading condition and the computational

global space on which the solution will be carried out. If a material point leaves

this global domain during the simulation, due to large deformations for example,

the point will not be tracked and the information of that point will be lost. This

setup introduces challenges in simulating large head displacements especially in the

translational direction.

To summarize the MPM implementation, two models one with and one without

vasculature are built with material point spacing of 1.6mm and a cubic grid cell-

size of 3.2mm. Resolved arteries have an average vessel size of around 2.5 mm.

The e�ect of unresolved arteries is assumed to be incorporated in the brain tissue

properties. Finally, the CPDI interpolation scheme is chosen to account for large and

shear deformations which are expected in brain deformations under inertial loading

(Ganpule et al. [184]). (For more information on the MPM implementation, refer to

†http://uintah.utah.edu/
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Appendix A)

Figure 3.2: Left: A cut through the model with blood vessels showing all segmented

structures (Skull, CSF, ventricles, falx, tentorium, white matter, gray matter, brainstem

and blood vessels). Right: The whole model making all structures transparent except the

blood vessels. For MPM implementation, a �xed background grid is overlaid on the model

with cubic cell size of 3.2mm and two material points in each direction (material point

spacing = 1.6mm). Note: The vasculature network is mainly connected with some isolated

islands of arterial vessels.

3.4.4 Material Models & Properties

There are six distinct materials in our head models: Skull, CSF, falx, tentorium,

gray matter, white matter and blood vessels. Since the purpose of this study is to

evaluate the e�ects of adding the vasculature network on the brain response, we start

by selecting a material model for the vasculature, with the parameters obtained from
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published experiments on cerebral vasculature.

Although mechanical properties of the brain vessels were studied in the 1970s

(e.g.: Hayashi et al. [185]), the �rst comprehensive experimental study was performed

by Monson et al. [11] in 2003. Fresh cerebral vessels were extracted from humans

undergoing brain surgery for diseases that were believed to not a�ect the cerebral

vasculature. Both arteries and veins were preconditioned and tested within 4-6 hrs

from extraction. The stress-stretch curves generated for all the samples presented

in that study are shown in �gure 3.3. We focus on the behavior of arteries for this

study. Figure 3.3 shows a clear variability in the arterial behavior, perhaps due to

the non-homogeneous structure of these biological tissues, age of the donor and size

of the vessel. We also observe that the behavior is non-linear with small slope at the

beginning of the curve (most commonly known as the toe-region) and a much higher

slope at larger stretches. The toe-region has multiple sizes across the tested arterial

samples. Additionally, note that the behavior of arteries does not show strain-rate

dependency since the dynamic and quasi-static curves have similar slopes.

Given the non-linearity, we select the Mooney-Rivlin strain energy function to

represent the behavior of cerebral arteries. The Mooney-Rivlin strain energy density

function is

WMR =
µ1

2
(I1 − 3)− µ2

2
(I2 − 3). (3.1)
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Figure 3.4: The �tting result for the blood vessels in our head model to an artery sample

behavior from Monson et al. [11]. The Mooney-Rivlin parameters are µ1= 25 MPa and µ2=

20 MPa.

The parameters µ1 and µ2 are �tted to one of the artery samples in Monson et al.

[11] with the �t shown in �gure 3.4. With this �t, µ1 and µ2 are 25 and 20 MPa,

respectively, and the e�ective shear modulus is 5 MPa calculated following Holzapfel

[142] (µEffective = µ1 − µ2).

The skull is assumed to be modeled as a linear elastic material with Young's

modulus of 6.5 GPa and Poisson's ratio of 0.2 as is commonly used in computational

models of mTBI (Zhang et al. [77], Chen and Ostoja-Starzewski [186], Willinger et al.

[187]). Linear elastic behavior is also assumed for the falx and tentorium with Young's

modulus of 31.5 MPa and Poisson's ratio of 0.45 (Miller et al. [188]). Finally the CSF

(and similarly the ventricles since they are �lled with CSF) is modeled using the Tait
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equation of state with density ρ=1004 kg/m3, bulk modulus K=2.19 GPa and γ=7.15

(Ganpule et al. [184], Cole and Weller [189]).

The gray matter is modeled as a Neo-Hookean hyperelastic material with a three-

term Prony series to incorporate the strain-rate dependency of the shear modulus as

follows

G(t) = G∞ +G0

N∑
i=1

gie
−t
τi or G(t) = G0

[
1−

N∑
i=1

gi
(
1− e

−t
τi

)]
(3.2)

where N is the number of Prony series terms, G(t) is the shear modulus, G0 is the

instantaneous shear modulus, G∞ is the long-term shear modulus, gi is the Prony

series constant and τi is the relaxation time. The following parameters are used for

the gray matter: G0=2750 Pa, G∞=385 Pa, g1=0.625, g2=0.055, g3=0.182, τ1=2,

τ2=11 and τ3=47.5 seconds (Ganpule et al. [184] and Lee et al. [190]). We also note

that relaxation times are too long for the application (relaxation times in seconds

vs. tens or hundred micro-second application) and further tests with much shorter

relaxation times are needed for future implementation.

Since some e�orts in the literature extract viscoelastic properties in the frequency

domain (e.g. Magnetic Resonance Elastography (MRE) studies), the Prony series

equation can be converted to the frequency (ω) domain by applying Fourier Transform

F (ω) =

∫ ∞
−∞

f(t)e−iωdt↔ f(t) =
1

2π

∫ ∞
−∞

F (ω)eiωdω (3.3)

Applying Fourier transform on equation 3.2, the resulting storage and loss moduli
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(G′ and G′′, respectively) are

G′(ω) = G0

[
1−

N∑
i=1

gi

]
+G0

N∑
i=1

gi
τ 2
i ω

2

1 + τ 2
i ω

2
(3.4)

and

G′′(ω) = G0

N∑
i=1

gi
τiω

1 + τ 2
i ω

2
(3.5)

where the storage modulus is the real part of the transformed function and the loss

modulus is the imaginary part‡. For example at 0 Hz, the storage modulus is 279.5

Pa which is comparable to low strain rate experiments shear modulus (e.g. Velardi

et al. [1]). A direct comparison between MRE data and shear modulus obtained using

standard mechanical tests is not straight forward due to the small displacements and

frequencies applied in the MRE experiments and the missing direct link between

strain rates and frequencies.

The white matter is modeled as an anisotropic hyperelastic material using the

HGO model as described in equation 2.9 with a one term viscoelastic Prony series

for the shear modulus to account for tissue viscoelasticity. The material parameters

required for the HGO viscoelastic model are: instantaneous shear modulus G0=1520

Pa, long-term shear modulus G∞=286 Pa, stress constant k1=121 kPa, stress factor

k2=0.0001 and time constant τ=2 seconds (adapted from Velardi et al. [1], Ganpule

et al. [184] and Lee et al. [190]). Another parameter is required for the HGOmodel and

that is the �ber dispersion κ. This parameter is dependent on the fractional anisotropy

‡The conversion from time domain to frequency domain is adapted from unpublished work by

Dr. Yuan-Chiao Lu.
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(FA) of white matter which is obtained from the Di�use Tensor Image (DTI) (for the

same subject we used to build the head structure (from Chan et al. [10])). The degree

to which the axonal �ber bundles are aligned determine the value for FA which can

range from 0 (no preferred alignment ⇒ isotropic) to 1 (perfectly aligned �bers ⇒

transversely anisotropic). The relationship between the �ber dispersion and FA is as

follows (derived in Wright et al. [3]):

κ =
1

2

−6 + 4FA2 + 2
√

3FA2 − 2FA4

−9 + 6FA2 (3.6)

If we substitute the lower and upper limits for FA in equation 3.6, κ will have

the range 0 to 1/3 where 0 corresponds to perfectly aligned �bers (i.e. transversely

anisotropic) and 1/3 corresponds to randomly oriented �bers (i.e. isotropic). The

remaining component to complete the de�nition of white mater is the initial �ber

direction (a0) for each material point. This �nal piece of information is also obtained

from the subject's DTI by extracting the �rst principal direction for each white matter

voxel. Finally, the bulk moduli for the cerebrum and the cerebellum are assumed to

be 1.46 and 1.19 GPa, respectively (Ganpule et al. [184]).

3.5 Validation

Before applying any inertial loading, we �rst validate the 3D model with vasculature

against live human brain deformation experiment (Knutsen et al. [4]). The same
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(a) (b)

Figure 3.5: Loading conditions used for the validation of our 3D head model from Knutsen

et al. [4] experiment. An axial rotation of the head (a) is produced by a counter-weight �xed

to the special MRI device which induces a non-injurious angular acceleration (b).

healthy subject we used to build our 3D model is placed in a device that induces

rotational acceleration around the superior-inferior axis (axial rotation). The angular

position of the head is recorded (Figure 3.5a), and the angular acceleration is then

calculated which has a maximum value of around 180 rad/s2 (Figure 3.5b).

During the loading, tagged MRI technique (Axel and Dougherty [191] and Bayly

et al. [192]) is used to capture the brain deformation in twelve di�erent axial planes,

spaced around 1 cm away from each other, covering the brain from the top until

most of the cerebellum. The tag are lines overlaid on each axial plane with tag-line

spacing of 8 mm. The images are then processed using Harmonic Phase (HARP)

method (Osman et al. [193]) to calculate the 2D principal strain in each slice. Since
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the loading is planar (rotation is applied only axially), there is very little motion out

of the axial plane making the 2D calculations reasonable in this particular case.

Co-registering the full head segmentation with the tagged MRI volume was per-

formed such that we can make a point-to-point comparison between the two. Figure

3.6a shows the co-registered volume, where it is clear that the cerebellum gray matter

is not fully accounted for in the validation structure due to the setup of tagged MRI

experiment (Knutsen et al. [4]). The loading condition from the experiment is applied

to this model using Uintah framework as explained in Section 3.4.3. The maximum

principal strain is extracted from the simulation results for every material point and

compared to the corresponding value in the experiment.

We used the statistical agreement measures explained in section 2.2.4 (Table 2.4)

to quantify the level of agreement between the model and the experiment. The

maximum principal strain in the experiment is considered as the observed data (Oi)

and the maximum principal strain in the simulation as the predicted data (Pi). Since

the experimental strain calculations were performed on each slice in 2D, we apply the

statistical agreement formulas on each slice separately (Figure 3.6b shows a sagittal

cut of the model with the tagged slices labeled in red).

Note that the experimental temporal resolution (times at which strains are calcu-

lated) is 18 ms starting from time 9 ms as the initial con�guration (deformation of the

tag lines was not observed until 9 ms). Given this, we compare the largest maximum

principal strains from our simulation to those calculated in the experiment for the
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results acceptable. Further, the di�erence in the spatial (tag lines spacing of 8mm

in the experiment vs grid cell size of 3.2mm in the model) and temporal (strains

calculated every 18ms in the experiment vs every 1ms in the simulation) resolutions

between the experiment and the simulated model could have contributed to the level

of agreement between the two.

3.6 Impact of the Arterial Network

Now that the model is validated, we will use the model to investigate the hypothesis in

Section 3.2. We begin with the simplest case, where the brain tissue will be modeled as

an isotropic material to reduce the level of complexity in our study. Largest Principal

Strain and shear strains will be extracted since both were used as an injury predictor

(section 1.4.3). Using this simpli�ed approach, the results of the two models, with

and without vasculature, will now be compared to evaluate the hypothesis.

3.6.1 Isotropic Limit

The white and gray matters are modeled as Neo-Hookean hyperelastic materials with

viscoelastic shear modulus represented by a one-term Prony series (Equation 3.2).

The material parameters are chosen to be consistent with computational head models

in the literature (Zhang et al. [77], Taylor and Ford [136]), and are shown in table 3.3.

Note that with these material parameters the di�erence between the arteries e�ective
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Table 3.2: Statistical agreement results between maximum principal strains of the 3D head

model with vasculature and the experimental strains of Knutsen et al. [4]. Colors for the

Correlation Score (CS) indicate rating: Good , Fair , Marginal and Unacceptable . Note

that the minimum values for CS are occurring at the one of the lowest three slices, mainly

due to the abrupt cut at the base of the model.

Time (ms) 27 45 63

Average 0.379 0.291 0.601

dr Max 1.11 0.433 2.98

Min 0.0166 0.056 0.024

Average -5.29 -1.66 -10.9

E2 Max -0.981 -0.612 -0.747

Min -14.1 -6.71 -57

Average 2.37 1.58 2.96

RSR Max 3.89 2.78 7.62

Min 1.41 1.27 1.32

Average 58 63.4 53.1

CS Max 76.2 77.3 72.2

Min 42.8 32.4 25.8
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Table 3.3: Material parameters for the white and gray matters consistent with compu-

tational head models in the literature. A hyper-elastic Neo-Hookean model is used with a

single term prony series to account for viscoelasticity.

Parameter White matter Gray matter

G∞ (kPa) 7.8 6.4

G0 (kPa) 41 34

(1/τ = β) (s−1) 700 700

shear modulus and the brain tissue shear modulus is three orders of magnitude (5MPa

to 7kPa, respectively). Such di�erence strengthen the hypothesis of section 3.2.

3.6.2 Results

Two simulations are performed with the identical loading conditions, boundary con-

ditions, materials and material properties except for vasculature (in other words: one

simulation with arteries and one simulation without arteries). The results of the two

simulations are compared to each other in three ways: average strains, maximum

strains and strain distributions. Two strain measures are used: the Largest Princi-

pal Strain (LPS) and the radial-circumferential shear strain (Ert). Both measures

were used as injury predictors (as explained in section 1.4.3.2) and have been used in

one or more of the previous vasculature e�ects studies in the literature (Omori et al.
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[162], Parnaik et al. [163], Zhang et al. [164], Ho and Kleiven [165]). Additionally, the

relation between LPS and distance from the nearest blood vessels will examined.

3.6.2.1 Average Strain

Average LPS and Ert over the whole white matter volume is plotted at every 5ms (in

a non-injurious scenario we do not expect rapid changes in the deformation, hence we

do not extract averages at every ms) as shown in �gure 3.7. The average is calculated

as

Average LPS =

∑N
i=1 LPSi
N

(3.7)

where N is the number of white matter material points.

Overall, the simulation without blood vessels has higher average strains which is

expected since the addition of vessels adds to the overall sti�ness of the brain and

hence leads to lower average strains. The onset of divergence in the average strain be-

tween the two models (with and without vasculature) starts at 20ms, perhaps because

at this time, the loading condition is transitioning from acceleration to deceleration

motion (Figure 3.1). To better understand this observation, further investigation us-

ing multiple loading curves that di�er in the time to transition phase, for example, is

needed.
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(a) (b)

Figure 3.7: a) Average LPS and b) Ert strains plotted at every 5ms for the simulations

with and without blood vessels. Overall average strains are higher in the simulation without

blood vessels due to lower overall sti�ness.

3.6.2.2 Maximum Strain

Figure 3.8 shows the maximum values of LPS and Ert at every 5ms for both sim-

ulations. In general, the simulation without blood vessels shows higher maximum

LPS strains after 20 ms. Maximum strain di�erence between the two simulations

is about 5% in LPS (∆LPSmax) and 4.3% in Ert (∆Ertmax). Keeping in mind that

the highest strains are about 11% for LPS and 9.5% for Ert both in the simulation

without blood vessels, we found that the di�erences (∆LPSmax and ∆Ertmax) are con-

sidered signi�cant (average strains of the simulation with blood vessels are about half

of those calculated in the simulation without blood vessels). Note that maximum

strains in Figure 3.8 shows the same behavior as average strains (Figure 3.7) in terms
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(a) (b)

Figure 3.8: a) Maximum LPS (left) and b) Ert strains plotted at every 5ms for the

simulations with and without blood vessels. Di�erences between the two simulations exist,

with higher overall maxima in the simulations without blood vessels due to lower overall

sti�ness.

of divergence onset between the two models and that the strains in the model with

vasculature are about half those in the model without vasculature.

We also compare the locations of maximum LPS at di�erent times of the loading

(temporal) in the two simulations. Figure 3.9 shows the locations of maximum LPS

in the two simulations at time 40ms looking through two di�erent planes, coronal and

sagittal. There is a clear di�erence between the two simulations in terms of maximum

LPS location. The simulation with blood vessels predicted maximum strains in the

subject's left hemisphere (Figure 3.9a, red squares on the right), and there is no

prediction of maximum strains in the same location from the simulation without

blood vessels. Hence, the existence of the vasculature network greatly a�ected the
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locations of maximum strains (nearly 50% reduction in maximum LPS and Ert strains,

and di�erent predictions of maximum LPS locations).

3.6.2.3 Strain Distribution

A better idea of the strain �eld within the brain can be obtained by comparing the

strain distributions (LPS and Ert) of the whole volume of white matter. Figure 3.10

shows histograms of the strain distributions for both LPS and Ert where strain values

are on the x-axis and the frequency of occurrence (total number of material points with

the same strain value) are on the y-axis. In addition to the visual di�erence between

the two distributions, we notice that the distributions from the simulation without

blood vessels have wider tails indicating higher overall strains. This is consistent

with the results we obtained in sections 3.6.2.1 and 3.6.2.2 (higher overall average

and maximum strains).

To make the comparison more quantitative, we run chi-squared test on the distri-

butions using degrees of freedom from the histograms and 5% signi�cance level (α).

The chi-squared test is used to obtain a statistical measure of the hypothesis that

adding the vasculature network signi�cantly changes the strain distribution. If the

calculated p-value of the chi-squared test is less than the chosen signi�cance level

of α=5%, the hypothesis is statistically con�rmed. Chi-squared results at four dif-

ferent times 10, 20, 30 and 40ms indicate signi�cant di�erences (p-value<0.00001,

hence less than α=0.05) between the two distributions as shown in Table 3.4 and
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(a)
(b)

Figure 3.9: Maximum LPS locations are shown for the simulation with blood vessels (red

squares) and the simulation without blood vessels (blue circles) by looking through two

planes a) coronal and b) sagittal. It is very clear that the locations of temporal maxima

di�er from one simulation to another. For example, in this time instance, the simulation

with blood vessel predicted maximum strains in the subject's left side (red squares to the

right of the coronal view (a)).
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Table 3.4: Chi-squared test results indicating signi�cant di�erences between the two sim-

ulations in terms of LPS and Ert strain distributions for signi�cance level α=0.05.

Time (ms) χ2 χ2
(N,1−α) p-value

10 4195 132.1 <0.00001

LPS 20 27029 224.2 <0.00001

30 80742 149.9 <0.00001

40 40507 145.5 <0.00001

10 2276 156.5 <0.00001

Ert 20 72168 113.1 <0.00001

30 62998 179.6 <0.00001

40 31298 179.6 <0.00001

hence con�rm that the addition of the vasculature network signi�cantly changes the

strain �elds within the brain. Moreover, note that the distributions are not normal

but skewed. Given the skewness, average strains are not a good comparison measure

because they do not represent the bulk behavior of the material (the average for a

skewed distribution does not coincide with it's peak).

3.6.2.4 Strain w.r.t. Nearest Blood Vessel

We examine strains around the vasculature network in the simulations with and

without blood vessels to explore the relationship, if any, between maximum strains and
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(a) (b)

Figure 3.10: a) LPS and b) Ert strain distributions at time 40ms for the simulations with

and without blood vessels. The frequency values indicate total number of material points

with the same strain value. Although visual di�erences are clear, we also run chi-squared

statistical test and statistically con�rmed the di�erence (p-value<0.00001). Also, the wider

tails of the distributions from the simulation without blood vessels are consistent with the

observation of higher overall average and maximum strains in the previous subsections.

their location with respect to the nearest blood vessel. First distance from the nearest

blood vessel voxel in the original segmentation volume (MRI and TOF segmentations

of secions 3.4.1 and 3.4.2) is calculated based on voxel spacing as shown in Figure 3.11.

Then, the distances are mapped to our 3D head model using the nearest neighbor

search method.

Figure 3.12 shows LPS on the y-axis and distance from the blood vessels on the

x-axis at time 40ms for the two simulations, with and without blood vessels, using

the method in the previous paragraph. Note, the distance is acquired in the reference
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vessels are explained by the high sti�ness of the blood vessels. Since higher sti�ness

means higher resistance to deformation (and hence smaller strains), the nearby brain

tissue will also be a�ected by this resistance. Additionally, since the deformation

of brain tissue next to the vessels is restricted, the soft brain tissue away from the

vasculature will deform more.

3.7 Discussion

The model without vasculature predicted higher overall average and peak strains.

This is likely due to lower e�ective sti�ness of the combined brain tissues compared

to the model with vasculature. Similar �ndings were made in the previous studies by

Parnaik et al. [163], Zhang et al. [164] and Ho and Kleiven [165]. The fourth study

by Omori et al. [162] only reported shear stress patters which were found to be higher

in the model with vasculature.

None of the previously published studies about vasculature e�ects explicitly com-

pared locations of temporal maxima (Locations of maximum strains at di�erent times

of the loading). Our simulation results indicated di�erences between the two mod-

els in terms of the temporal maxima. A new region (or location) of maximum LPS

appeared in the simulation with blood vessels in the left cerebral hemisphere of the

model. Identifying locations of higher strains is important since each position is linked

to a speci�c cognitive function. Accordingly, we may be able to identify regions within

the brain that are more susceptible to damage/injury. Although the applied loading
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(a) (b)

Figure 3.12: The relation between strain values and distance from blood nearest blood

vessel at 40 ms for the simulations (a) with and (b) without blood vessels (By virtually

adding the vasculature structure in the simulation without blood vessels). The distance

is measured in the reference con�guration so each point can only change strain magnitude

with time. High strains in both simulations forms two peaks (highlighted with red curves).

While the second peak (between 15 to 20 mm away from nearest blood vessel) did not

change location, the �rst peak shifted it's center from 10 mm to 5 mm and is narrower in

the simulation with blood vessels. This indicates that introducing the vasculature network

in the model caused a shift in the �rst peak due to the high sti�ness of the vasculature

compared to the brain tissue.
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in our study is non-injurious, we expect a similar outcome when applying injurious

loading (di�erences in maximum LPS locations).

In addition to di�erences in maximum LPS locations, our study shows signi�cant

di�erences in the strain distributions of the two simulations. This study is the �rst

to provide quanti�cation of strain distributions in the e�ort to investigate the role

of the vasculature. Contradictory results (with no distribution quanti�cation) were

previously reported in the literature. Zhang et al. [164] and Parnaik et al. [163]

studies revealed di�erences in strain patterns while the work by Ho and Kleiven

[165] reported no di�erences in the strain patterns between the two models, with and

without vasculature. In 3D simulations, like ours and Ho and Kleiven [165], it is

very di�cult to draw conclusions by visual inspection of the strain �elds of the whole

brain, and that might a�ect the conclusions drawn (of no di�erence in the strain

distributions in the case of Ho and Kleiven [165]).

Our investigation about the relationship between the LPS and the distance from

the nearest blood vessel revealed an interesting observation. The existence of vascu-

lature network appears to cause high strains to concentrate or cluster around 5 mm

away from the nearest blood vessel. Since the average vessel size is about 2.5 mm,

the higher strains are found at a distance that is around twice the average vessel size.

This result indicates that higher sti�ness of the blood vessels limits the deformation of

nearby brain tissue causing further deformation in the soft brain tissue once the e�ect

of vasculature sti�ness decreases at a distance of around twice the average vessel size.
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A similar observation was reported by Ryu et al. [12] at very di�erent scales (Figure

3.13). Brain slices of deceased veterans with history of mTBI were analyzed in terms

of neuro-pathology. Di�use axonal damage is observed at 50 to 200 um away from

the nearest arteriole (average cerebral arterioles size is about 60 um). Although there

are di�erences in the length scale (arteries with average size of 2.5 mm in our study

vs. arterioles with average size of 60 um) and loading conditions (non-injurious in our

study vs injurious in Ryu et al. [12]), but the scaling factor is common between the

two studies (high strains, consequently injury, at a distance that is around twice the

average vessel size). To form a better understanding of this observation, further in-

vestigation is needed for multiple length scales and possibly di�erent types of loading

conditions.

At this point, it is clear that the results supports the hypothesis of section 3.2

in that the vasculature may indeed have signi�cant e�ect on the brain deformation.

Further enhancements to the vasculature model can be applied like: 1) including the

anisotropic behavior of the vessels 2) adding the venous network and 3) considering

white matter anisotropy.

The next step is to examine the hypothesis while applying injurious loading con-

dition. The results of the new simulations, with the injurious loading condition, will

further emphasize on the signi�cance of the vasculature network by comparing the

predicted brain damage of the two models (with and without vasculature). Ulti-

mately, the goal is to build a model that can capture realistic brain deformation and
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Figure 3.13: A brain slice showing axonal injury in a human subject adapted from Ryu

et al. [12]. The dark spots represents damaged axons, which form clusters around the

arterioles. (b) and (c) are enlargements of the blocked areas in (a) and (b), respectively.

The subject had blast exposure 1 year before death and a concussion from assault 2 months

prior to death.

predict damage based on applied loading conditions to help physicians in acute in-

jury diagnosis and improve the designs of helmets and automobiles for better safety

standards.
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3.8 Summary of This Chapter

Investigating the e�ects of vasculature on the brain response required building two

models one with vasculature and one without. Material parameters for the vasculature

were �tted to an experiment in the literature while all parameters for the other tissues

were directly taken from published computational studies. After validating the model

against in-vivo brain deformation experiment, axial non-injurious loading condition

was applied to both models and results are compared from several viewpoints. We �nd

that the inclusion of the vasculature network is signi�cant for the following reasons:

• Maximum largest principal strain and radial-circumferential strain decreased

about 50% after the addition of the vasculature and locations of maximum

strains di�ered between the two models. The strains from the two models start

to diverge at around 20 ms which is the transition phase between acceleration

and deceleration motions.

• Strain �elds are signi�cantly di�erent since statistical chi-squared test with

segni�cance level of 0.05 resulted in p-value<0.00001. This statistical study

was not performed in any of the previous studies.

• A shift in high LPS strains from 10 mm to 5 mm away from the blood vessels

indicates how the addition of the sti� vasculature restricted deformation of brain

94



CHAPTER 3. VASCULATURE EFFECTS UNDER INERTIAL LOADING

tissue right next to the vessels and forces soft brain tissue away from the vessels

to deform more.

In the next chapter, we further investigate the role of vasculature network on the

brain deformation under injurious loading. Predicted injuries in the models with and

without vasculature will provide insights on the impact of adding the vasculature

network to computational models of mTBI. Furthermore, the e�ect of the loading

direction on the predicted injury is going to be explored.
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Chapter 4

The E�ects of Vasculature on Mild

TBI∗

4.1 Introduction

In Chapter 3, we demonstrated that the cerebral arteries a�ect the brain deformations

under non-injurious inertial loading. Of the four previous studies in this area, only

Ho and Kleiven [165] had a 3D computational model including vasculature. However,

all of these studies (Omori et al. [162], Parnaik et al. [163], Zhang et al. [164], Ho and

Kleiven [165]) applied injurious loading (acceleration pulses) and predicted possible

high strains and/or stresses in the brain tissue (potential injury locations).

∗The work of this chapter was done in collaboration with the Image Analysis and Communica-

tions Lab (Je�rey Glaister and Prof. Jerry Prince). TRACULA segmentation in Section 4.3.2 was

executed by Je�rey Glaister.
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In this chapter, we examine how the vasculature network a�ects the brain defor-

mation under injurious loading. The investigation is divided into two parts. First,

we recap brie�y the 3D head model development with the MPM implementation.

Then, an injurious loading condition from an NHL accident is applied to two models,

one with and one without vasculature. Once the e�ects of vasculature are captured,

we also examine how the loading direction a�ects the predicted injury in terms of

severity and location.

4.2 Methods

In this section, we recall brie�y the 3D head model built in Chapter 3 and the MPM

implementation of the model. Then, the loading condition will be de�ned and two

study cases will be established.

4.2.1 The Three Dimensional Head Model

To build the 3D head model we used the MRI and TOF images of the subject in

section 3.4 and followed the same procedures in sections 3.4.1 and 3.4.2. For a quick

recap, the captured anatomical structures are: skull, CSF, ventricles, white and gray

matters, falx, tentorium and cerebral arteries. The segmentation order was performed

such that the vasculature is added at the last step, so that we can develop a model
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with vasculature and another model without vasculature. The segmented volumes

have an isotropic resolution of 0.8 mm.

4.2.2 Material Point Method Implementation

As we explained in section 3.4.3, the choice of the computational method (MPM) is

to overcome complications in the �nite element method (such as mesh entanglement

and di�culty meshing complex structures). Similar to our application in section

3.4.3, the segmented structure is reduced to 1.6mm isotropic resolution (to cut down

on the computational cost) and the convected particle domain interpolation is used

to capture large and shear deformations. In this Chapter, we use two versions of the

head model, one with and one without vasculature, and the material properties of

section 3.4.4 which have been used in the validation of our model (section 3.5).

4.2.3 Injurious Loading and Injury Criterion

To simulate injurious scenario we used the loading conditions of the NHL accident of

section 2.2.6. Since the MPM application requires the displacement loading condition

and not the acceleration, we integrate the NHL accelerations (Figure 4.1b) twice to

produce the position pro�le for the three directions: axial (z-direction), coronal (x-

direction) and sagittal (y-direction) as shown in Figure 4.1c. The axial rotation has

the highest magnitude (≈ 8000 rad/s2), followed by the coronal rotation (> 6000

rad/s2) while the sagittal (Y) has the lowest rotational acceleration (< 3000 rad/s2).
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If we look at the position pro�le, the axial loading rotates the head about 23 degrees,

the sagittal follows with about 4.6 degrees and then the coronal rotation of 3.4 degrees.

Recall from section 3.4.3, that the Uintah framework for MPM implementation

requires de�ning a global computational space, typically bigger than the simulated

object, and any points leaving this domain during the loading/deformation will not

be tracked (in other words, the deformation information for that point will be lost).

Hence, to lower the computational cost associated with the global domain setup we

choose the coronal (X) loading (Figure 4.2 a and b) and apply it as follows:

• Study #1, E�ect of Vasculature in mTBI: Apply the acceleration pro�le to the

axial direction for the two head models, with and without vasculature (Figure

4.2c). The choice of the axial direction loading is important to make a better

connection between the injurious scenario in this chapter and the non-injurious

case of Chapter 3.

• Study #2, E�ect of Loading Direction on white matter injury predictions: Ap-

ply the acceleration pro�le on the head model with vasculature once in each

direction: axial, coronal and sagittal (Figure 4.2d). This case will give us in-

sights on the level of vulnerability of white matter with respect to the loading

direction.

99



❈❍❆ ❚❊❘✹✳ ❱❆❙❈❯▲❆❚❯❘❊❊❋❋❊❈❚❙❖◆▼❚❇■

✭❛✮

✭❜✮ ✭❝✮

❋✐❣✉❡✹✳✶✿❛✮❆❝❤❡♠❛✐❝❤♦✇✐♥❣❤❡❝♦♦❞✐♥❛❡② ❡♠♦❢❤❡❤❡❛❞✉❡❞✐♥♦✉ ✉❞②

❛♥❞ ❤❡❝♦ ❡♣♦♥❞✐♥❣ ♦❛✐♦♥✳❜✮❚❤❡❛♥❣✉❧❛❛❝❝❡❧❡❛✐♦♥❛❜♦✉ ❤❡①✲❛①✐ ✭❝♦♦♥❛❧

♦❛✐♦♥✮✱②✲❛①✐✭❛❣✐❛❧♦❛✐♦♥✮❛♥❞③✲❛①✐✭❛①✐❛❧❛❝❝❡❧❡❛✐♦♥✮♦❢❛♥◆❍▲❛❝❝✐❞❡♥ ❡✲

♣♦❞✉❝❡❞❢♦♠ ❲✐❣❤❡❛❧✳❬✸❪✳❝✮❚❤❡❛♥❣✉❧❛♣♦✐✐♦♥♣♦✜❧❡❝❛❧❝✉❧❛❡❞❜②✐♥❡❣❛✐♥❣

❤❡❛❝❝❡❧❡❛✐♦♥♦❢❤❡◆❍▲❛❝❝✐❞❡♥ ✇✐❝❡✳

✶✵✵



❈❍❆ ❚❊❘✹✳ ❱❆❙❈❯▲❆❚❯❘❊❊❋❋❊❈❚❙❖◆▼❚❇■

✭❛✮ ✭❜✮

✭❝✮

✭❞✮

❋✐❣✉❡✹✳✷✿❛✮❚❤❡❛♥❣✉❧❛❛❝❝❡❧❡❛✐♦♥❛♥❞❜✮❚❤❡❛♥❣✉❧❛♣♦✐✐♦♥♣♦✜❧❡❈❤♦❡♥❢♦

❚❤❡ ✇♦ ✉❞✐❡✐♥❤✐❝❤❛♣❡✳■♥❤❡❋✐ ✉❞②✭❝✮✐♥❥✉②♣❡❞✐❝✐♦♥✇✐❧❧❜❡❝♦♠♣❛❡❞

❜❡✇❡❡♥ ✇♦♠♦❞❡❧✱♦♥❡✇✐❤❛♥❞♦♥❡✇✐❤♦✉✈❛❝✉❧❛✉❡✳❚❤❡♥✱❤❡♠♦❞❡❧✇✐❤✈❛❝✉❧❛✲

✉❡✇✐❧❧❜❡✉❡❞❢♦ ❤❡❡❝♦♥❞ ✉❞②✭❞✮♦❡①❛♠✐♥❡❤❡❡✛❡❝♦❢❤❡❧♦❛❞✐♥❣❞✐❡❝✐♦♥♦♥

✐♥❥✉②♣❡❞✐❝✐♦♥✳

✶✵✶



CHAPTER 4. VASCULATURE EFFECTS ON MTBI

Clearly, for both case studies, the loading is expected to cause injury in the brain

tissue, hence an injury threshold must be de�ned. Since the white matter is modeled

as a transversely anisotropic material (Equation 2.9) with the dominant axonal bundle

direction a0, axonal strain will be used as an injury predictor. Recall from section

2.2.5, an optimal axonal strain threshold of 18% is adapted from the experiment of

Bain and Meaney [128]. This injury criterion has been widely used in the recent

literature (Wright et al. [3], Wright and Ramesh [92], Ji et al. [194], Zhao et al. [195],

Sullivan et al. [196]). For a better comparison to the results of Chapter 3, the Largest

Principal Strain (LPS) will also be computed and used as a comparative measure. Two

LPS thresholds were established in the literature from accident reconstructions, 31%

(Deck and Willinger [115]) and 21% (Kleiven [120]). We will use the LPS threshold

of 31% in our computational study.

4.3 Results

The results of the �rst case study will be shown �rst. The extent and locations of

predicted injury will be compared between the two models, with and without vascula-

ture. After investigating the role of vasculature network in terms of injury predictions,

the second case study results will be examined. The model with vasculature is used

in three simulations each with a di�erent loading direction. First, white matter tracts

will be segmented based on a tractography atlas. Maximum strains (LPS and axonal

strain) in the white matter overall volume and in each white matter tract will be

102



CHAPTER 4. VASCULATURE EFFECTS ON MTBI

compared between the three loading directions. Additionally the injury predictions

will be explored using the thresholds of LPS≥31% and axonal strain, εAxon ≥18%).

4.3.1 Vasculature e�ects in mTBI

Two simulations, with and without vasculature, with rotational acceleration applied

to the axial direction were performed. Largest principal strain (LPS) is used as a

comparative measure to results of Chapter 3 and axonal strain (εAxon) is also used

to utilize the sophistication of white matter in this chapter. To understand localized

e�ects, strains in the white matter substructures (cerebral-WM, cerebellar-WM and

brainstem) are calculated.

4.3.1.1 Injury Predictions: Extent of Injury

The injury predictions based on εAxon >18% and LPS>31% are located in the cere-

brum only (In the second study we will show the e�ect of loading direction on each

white matter substructure). The extent of injury is examined in terms of volume

fraction (Vf ) which is calculated as follows

Vf =
# of white matter mater material points exceeding the threshold

Total # of white matter material points
. (4.1)

Table 4.1 shows the volume fractions of the cerebrum. Using both measures,

the simulation without blood vessels predicted slightly higher injury levels. This

observation is consistent with the results of Chapter 3, which showed higher overall
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Table 4.1: Injury predictions for the simulations with and without blood vessels using both

Largest Principal Strain (LPS>31%) and axonal strain (εAxon>18%) as injury measures.

The values represent volume fractions (Vf ) of the cerebrum above the strain threshold.

Vf with blood vessels Vf without blood vessels

LPS>31% 5×10−3 5.5×10−3

εAxon>18% 3.25×10−3 3.3×10−3

averages and maximum strains in the simulation without blood vessels. We should

note that changing the threshold value or the strain measure will lead to a di�erent

result.

4.3.1.2 Injury Predictions: Locations of Injury

Locations of predicted injury are extracted for both measures as shown in Figure 4.3.

Injury predicted using the model with vasulature is shown in red while the blue color

represents injury locations predicted using the model without vasculature. Di�erences

in predicted injury locations by each model are evident. Also, we note the di�erences

in the injury locations in one model but using the two injury criteria of εAxon >18%

and LPS>31% (i.e.: Compare the red locations between Figure 4.3a and 4.3c). Note

that there are multiple locations of predicted injury in a single/isolated material point

which require further investigation in the future using multiple resolutions to check

if the reason is numerical locking or not. This could also depend on the process
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of interpolating the DTI information to extract the �ber direction, which does not

necessarily form a connected network due to the inclusion of a single family of �bers.

4.3.2 E�ect of loading direction on injury predictions

In this section, since the focus is on injury predictions, injury will be investigated in

each white matter substructure (using LPS and axonal strain) and in major white

matter tracts (using axonal strain only). To identify which white matter points

belongs to which tract we used the TRActs Constrained by UnderLying Anatomy

(TRACULA) method (Yendiki et al. [197]). This method compares DTI volumes to

tractography atlas and segment white matter tracts according to the atlas informa-

tion. The extracted white matter tracts are listed in Table 4.2. Recall in our head

model only the arteries are resolved, hence the results in this section will be a�ected if

we add the venous network and more speci�cally the bridging veins since they impose

a distinct boundary condition at the superior (top) surface of the brain.

4.3.2.1 Maximum Strains

Maximum strains experienced by white matter substructures are listed in Table 4.3.

The cerebellum has consistent maximum strains with respect to loading direction

using both LPS and εAxon, it experiences higher strains when loaded in the coronal

direction followed by the sagittal and then the axial directions. If we look to the

cerebrum and the brainstem, we �nd that the axial direction strains predicted using
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(a) (b)

(c)
(d)

Figure 4.3: Location of damaged material points for the largest principal strain criterion

(showing (a) front and (b)side views) and the axonal strain criterion (showing (c) front and

(d)side views) for both models with (red squares) and without (blue circles) vasculature

(Black points represent the blood vessels). Signi�cant di�erences exist between the two

models since there are many isolated locations predicted by one of the models but not the

other. We should also note that locations of damage di�er from one injury criterion to

another.
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Table 4.2: Extracted white matter tracts using TRACULA method (Yendiki et al. [197]).

Tract # Abbreviation Full Name

1 ATRL Anterior Thalamic Radiation Left

2 ATRR Anterior Thalamic Radiation Right

3 CABL Cingulum - Angular (infracallosal) Bundle Left

4 CABR Cingulum - Angular (infracallosal) Bundle Right

5 CCGL Cingulum - Cingulate Gyrus (supracallosal) bundle Left

6 CCGR Cingulum - Cingulate Gyrus (supracallosal) bundle Right

7 CSTL Cortico-Spinal Tract Left

8 CSTR Cortico-Spinal Tract Right

9 FMAJ Corpus callosum - Forceps Major

10 FMIN Corpus callosum - Forceps Minor

11 ILFL Inferior Longitudinal Fasciculus Left

12 ILFR Inferior Longitudinal Fasciculus Right

13 SLFPL Superior Longitudinal Fasciculus - Parietal bundle Left

14 SLFPR Superior Longitudinal Fasciculus - Parietal bundle Right

15 SLFTL Superior Longitudinal Fasciculus - Temporal bundle Left

16 SLFTR Superior Longitudinal Fasciculus - Temporal bundle Right

17 UNCL Uncinate fasciculus Left

18 UNCR Uncinate fasciculus Right
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LPS and εAxon are consistent in the following sense: highest strains are predicted in the

cerebrum and lowest in the brainstem using both measures. Further, maximum LPS

is the same for the cerebrum when loaded coronally versus sagittally but maximum

axonal strain is higher in the cerebrum under sagittal rotation. Hence, the cerebrum

is more likely injured when loaded in the axial direction followed by the sagittal

direction and then the coronal direction.

The brainstem maximum LPS is experienced when loaded in the coronal direc-

tion followed by the sagittal direction while maximum axonal strain is the opposite.

However, the brainstem experienced low strains when loaded in the axial direction.

Therefore, susceptibility to injury in the brainstem is very low when loaded axially

since the maximum LPS strain is only 12% (about one third of the injury threshold)

and the maximum axonal strain is only 10% (about half the injury threshold).

The cerebellum experienced the highest LPS and axonal strains when loaded in

the coronal direction followed by the sagittal and then the axial direction making

it more susceptible to injury during coronal loadings. The geometry of each white

matter substructure possibly a�ected the vulnerability to injury in the three loading

directions which we will explain further in the discussion.

Clinical (McKee et al. [198]) and computational (Ghajari et al. [199]) e�orts in

the literature focused on the location of injury and maximum strains with respect

to the gyri (the folds) and sulci (the grooves) of the cerebral cortex. Both studies

(McKee et al. [198], Ghajari et al. [199]) have shown that more injured cites (clinical
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Table 4.3: Maximum Largest Principal Strain (LPS) and axonal strain (εAxon) experienced

by the white matter substructures: cerebrum, cerebellum and brainstem.

Cerebrum Cerebellum Brainstem

Axial 0.47 0.21 0.12

Max LPS Coronal 0.35 0.45 0.59

Sagittal 0.35 0.32 0.39

Axial 0.3 0.16 0.1

Max εAxon Coronal 0.225 0.315 0.23

Sagittal 0.26 0.235 0.255

Figure 4.5 shows maximum axonal strain, εAxon, experienced by the white matter

tracts for each loading direction. Most of the tracts experienced higher axonal strains

when loaded in the axial direction except tracts 4, 8, 12 and 15 (CABR, CSTR, ILFR

and SLFL) which have higher strains in the sagittal loading direction and tracts 7

and 13 (CSTL and SLFPR) with higher strains in the coronal loading case. High

axonal strains in each tract could possibly indicate higher vulnerability to injury for

a speci�c loading direction. To have a more solid conclusion, we will investigate the

predicted injury in the next section. Note, no correlation is found between locations

of maximum axonal strains with respect to the gyri and sulci of the cerebral cortex.
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Figure 4.5: Maximum axonal strain (εAxon) for each tract in Table 4.2 experienced in each

loading direction scenario.

4.3.2.2 Injury Predictions

Table 4.4 shows volume fractions of white matter substructures with injurious strains

(LPS≥31% and εAxon ≥18%) as a measure of the extent of injury. The volume frac-

tions are calculated using Equation 4.1. Coronal loading a�ected both the cerebellum

and the brainstem the most, while axial loading caused higher degree of injury (higher

Vf ) in the cerebrum.
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Table 4.4: Injured volume fractions for each white matter structure. Injury thresholds are

31% and 18% for LPS and εAxon, respectively.

Cerebrum Cerebellum Brainstem

Axial 5×10−3 0 0

Vf of LPS≥31% Coronal 0.1×10−3 0.068 0.0223

Sagittal 0.5×10−3 0 0.015

Axial 3.25×10−3 0 0

Vf of εAxon ≥18% Coronal 0.3×10−3 0.035 0.0035

Sagittal 2.25×10−3 0 0.015

Injury levels of white matter tracts based on the volume fraction are shown in

Figure 4.6. Like white matter substructure Vf calculations, injured volume fractions

of white matter tracts are calculated based on the ratio between material points

exceeding injury threshold to total material points of each white matter tract. No

injury is observed in tracts 4, 13 and 15 (CABR, SLFPR and SLFL). The sagittal

loading was most injurious for tracts 2, 7, 8 and 12 (ATRR, CSTL, CSTR and ILFR)

while the axial loading caused higher injury (in terms of Vf ) in all other tracts. By

comparing these results with the maximum axonal strains in each tract, we can see

that the extent of injury in white matter tracts is not necessarily correlated with

the maximum strains (e.g.: tract #7, CSTL, maximum axonal strain resulted from

coronal loading while injury level is higher in the same tract under sagittal loading).
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Figure 4.6: Maximum axonal strain (εAxon) for each tract in Table 4.2 experienced in each

loading direction scenario.

4.4 Discussion

In the �rst case study we evaluated the predicted injury in terms of extent and

location for the two models: with and without blood vessels. The injured volume

fractions of white matter in the model without blood vessels are higher using both

injury thresholds (axonal strain εAxon >18% and Largest Principal Strain LPS>31%).

This result agrees with the �ndings in Chapter 3, in which maximum and average

strains are also observed in the simulation with blood vessels. The added sti�ness
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from the vasculature network increases the overall sti�ness of the brain tissue and

hence decrease the strains and predicted damage.

When comparing locations of predicted injury, the two models (with and without

vasculature) show di�erences in the locations of injured material points. Several

regions of predicted damage in the model with blood vessels were not injured using the

model without blood vessels and vice-versa. This observation leads to the conclusion

that adding the vasculature network is important for mTBI injury predictions, which

is not carefully compared in the previous literature of vasculature e�ects in mTBI

(Omori et al. [162], Parnaik et al. [163], Zhang et al. [164], Ho and Kleiven [165])).

Also, the two injury criteria (LPS and εAxon) show di�erent regions within the brain

being injured. This result raises a question about which injury criterion should be

used for injury predictions. Since there are no direct links between actual observations

of mTBI and speci�c injury locations, the choice of injury criterion is not obvious.

The second case study focused on the e�ect of loading direction on the brain re-

sponse using the model with blood vessels. The highest overall white matter strains

and injured volume fractions are associated with the coronal loading (Tables 4.3 and

4.4). Hence, white matter susceptibility to injury overall is highest for coronal load-

ing. However, injury in the segmented white matter tracts is induced the most when

axial loading is applied. To resolve this contradiction in the extent of predicted injury

between overall white matter results (coronal loading is the most injurious) and the

results of individual tracts (axial loading is more injurious), we focus our attention on
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the results of individual white matter structures: cerebral-WM, cerebellar-WM and

brainstem. The cerebrum is most vulnerable to injury under axial loading while the

cerebellum is more vulnerable to injury under coronal loading and the brainstem is

more vulnerable to injury under coronal and sagittal loadings (Based on volume frac-

tions using both thresholds, axonal strain εAxon >18% and Largest Principal Strain

LPS>31%). The cerebrum higher volume fractions under axial loading agrees with

the tracts vulnerability to injury since most of the resolved tracts using TRACULA

method lie in the cerebrum.

Additionally, extent of injury results also agree with the geometry of each structure

with respect to axis of rotation (Figure 4.7). The cross-sectional area perpendicular

to the axis of rotation is a measure of original/reference length, which can be used to

estimated the local moments experiences by each structure (The longer the moment

arm (wider cross-sectional area perpendicular to the axis of rotation in our case),

the higher the induced moment). The cerebrum has its widest cross-sectional area

perpendicular to the axial axis of rotation increasing the amount of shearing, and con-

sequently strains, in the white matter tissue. Similarly, the cerebellum has its widest

cross-sectional area perpendicular to the coronal axis of rotation. The brainstem, on

the other hand, have its widest cross-sectional area perpendicular to both the coronal

and sagittal axes, which explains why it experienced higher levels of injury under the

coronal loading using LPS as an injury threshold and under sagittal loading using

axonal strain as an injury predictor.
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values of largest principal strain were associated with loading in the coronal direction

compared to the sagittal loading. Furthermore, Takhounts et al. [201] reconstructed

collegiate football games and used �nite element modelling to study the severity of

injury based on the impact/loading direction. Their study concluded that coronal im-

pacts resulted in a higher degree of injury compared to the sagittal loading direction.

Altogether, our �ndings about the coronal loading being the most injurious compared

to the sagittal loading agrees with the aforementioned studies in the literature.

Moreover, multiple groups of researchers have performed experiments in di�erent

loading directions using human primates and non-primate animals (Smith et al. [13],

Krave et al. [17], Gutierrez et al. [202], Runnerstam et al. [203], Browne et al. [204],

Gennarelli et al. [205]). Sagittal and coronal rotational e�ects were compared in an

experiment on monkeys by Gennarelli et al. [205]. The head of the animal is �xed to

a device which induced a sixty degrees rotation in each direction. Coronal rotations

produced brain lesions (scar tissue) in the corpus callosum and the cerebellum in

addition to prolonged disabilities. These outcomes generally agree with our results

which predicted overall white matter higher injuries and injury in the cerebellum

only after coronal rotations. Smith et al. [13] performed axial and coronal rotational

experiments on pigs and compared axonal damage and coma severity. Axial rotations

produced substantial damage to the brainstem which is correlated with persistent

coma whereas coronal rotations produced more extensive damage to the frontal and

parietal lobes of the cerebrum. While these results seems to contradict ours, the
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observation can be explained if we examine the anatomy of the brainstem in pigs

compared to humans. Axial rotations of the pig heads are perpendicular to the long

axis of the brainstem and the opposite is true for coronal rotations. Hence, pig

axial rotations are similar to human coronal rotations and vice versa (pigs coronal

rotations are similar, anatomically, to human axial rotations), as shown in Figure

4.8. By this analogy, our results are consistent with Smith et al. [13] in the following

sense: rotations perpendicular to the brainstem's long axis produce more damage to

the axons of the brainstem, while rotations around the axis of the brainstem produce

more damage to the cerebral white matter. Another coronal to axial comparison

using pig experiments is performed by Browne et al. [204]. Axial rotations induced

loss of concussion and more di�use axonal injury in cerebral white matter and in

the brainstem. Using the same analogy we just explained about the long axis of the

brainstem, our results con�rms the same vulnerabilities to injury for human coronal

rotations (which are equivalent to pigs axial rotations).

Of course any computational study has some limitations. Our study using a

3D head model of a single subject and one speci�c loading condition revealed dif-

ferences between the results of the model with and the model without vasculature.

The extent of the di�erence between the two model could change using a di�erent

subject or a loading condition. Hence, further investigation using multiple models

built based on di�erent subjects will provide a better global conclusions about the

e�ects of vasculature in mTBI. Moreover, there are no clear connections, yet, between
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4.5 Summary of This Chapter

Two studies were executed in this chapter. the �rst study focused on the e�ects of

vasculature network in mTBI. Extent of injury based on injured volume fractions are

higher in the model without blood vessels. The overall sti�ness of the brain tissue

increases after the addition of the sti� vasculature network and hence decrease the

amount of deformation in the tissue. Moreover, the two models, with and without

vasculature, predicted di�erent injury locations which is key established early diag-

nosis of mTBI. However, since well documented cases of mTBI patients including

loading condition, acute symptoms and long-term complications do not exist yet, it is

not obvious which injury predictor (largest principal strain or axonal strain) is better

than the other.

The same loading pro�le used in the �rst study (a rotational loading with maxi-

mum acceleration of about 6000 rad/s2) applied once to each direction: axial, coronal

and sagittal. The level of injury is calculated based on two commonly used thresh-

olds in literature which are the largest principal and axonal strains. Overall coronal

rotation is the most injury inducing among the three directions. This observation

agrees with accident reconstruction studies and animal experiments of mTBI in the

literature.

In the next chapter, the e�ect of gray matter heterogeneity in mTBI is going to

be examined. The largest principal strain results of two models, with homogeneous
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and heterogeneous gray matter, will provide insights on the importance of modelling

gray matter substructures in head models for mTBI.
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Chapter 5

Gray Matter Heterogeneity in mTBI∗

5.1 Introduction

The last component of brain heterogeneity in our study is gray matter. Gray matter

consists of neuronal cell bodies surrounded by glial cells such as oligodendrocytes,

microglia and astrocytes. The morphology of the cells in gray matter lacks a dominant

orientation, and hence the gray matter is usually treated as an isotropic material.

There are several gray matter regions within the brain, including cortical gray matter,

thalamus, putamen, hippocampus, basal ganglia, caudate and hypothalamus. Recent

studies have shown that there are di�erences in mechanical properties of the several

gray matter substructures (Lawson et al. [206], Elkin et al. [207], Finan et al. [208]).

∗The work of this chapter was done in collaboration with Je�rey Glaister and Prof. Jerry Prince

from the Image Analysis and Communications Lab. Segmentation of gray matter substructures was

executed by Je�rey Glaister.
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Moreover, speci�c gray matter substructures have been linked to mTBI cognitive

impairments (Grossman et al. [209], Hicks et al. [210], Gosselin et al. [211]) which

suggests that they may play an important role in injury prediction and identi�cation.

In this chapter we will explore the consequences of the heterogeneity of gray matter

through computational modelling. Two models, with homogeneous and heterogeneous

gray matters, will be simulated using an injurious loading from the previous chapter.

Strains within each gray matter substructure will be compared and injury will be

estimated using a gray matter injury threshold published in the literature.

5.2 Methods

In order to study how the heterogeneity of gray matter a�ects the deformation under

injurious loading, we will �rst identify regions of interest (i.e.: gray matter substruc-

tures), then build two models, one with the identi�ed regions of interest and one with

homogeneous gray matter. An injurious loading will then be selected and applied to

each model.

5.2.1 Gray Matter Substructures

Although numerous experiments in the literature focused on characterizing the brain

tissue, very few have targeted localized characterization, using rats (Lee et al. [190],

Elkin et al. [212]), pigs (Elkin et al. [213], Chen et al. [214]) and more recently
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human brains (Finan et al. [208]) . Based on these experiments, which constitute

the only available tissue properties in the literature, we choose to focus our study on

the following four gray matter substructures: caudate, hippocampus, putamen and

thalamus.

Following the same methods of section 3.4.1, the four gray matter substructures

are segmented as shown in Figure 5.1. The �nal segmentation of the whole head

has the following structures: skull, CSF, falx, tentorium, white matter (cerebral,

cerebellar and barinstem), caudate, hippocampus, putamen, thalamus, other gray

matter (cerebral and cerebellar), ventricles and arteries.

(a)
(b)

Figure 5.1: (a) Front and (b) top views showing the four segmented gray matter substruc-

tures: caudate (green), hippocampus (sand), putamen (purple) and thalamus (red).
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5.2.1.1 Material Models & Properties

Gray matter has been modeled as an isotropic material due to the randomly oriented

cells forming the gray matter structure. Accordingly, linear-viscoelastic or hyper-

viscoelastic constitutive laws were used in published computational studies of mTBI

to represent gray matter (e.g. Kleiven [120], Taylor and Ford [136], Ganpule et al.

[184]). Since we used a hyper-viscoelastic representation for gray matter in Chapter 3

(section 3.3), we continue using the same formulation, and assign material properties

for each substructure. The hyper-viscoelastic model (Neo-Hookean with shear mod-

ulus represented by a Prony series) requires assigning the long-term shear modulus,

relaxation times and Prony series constants (G∞, τi and Gi or gi = Gi
G0
, respectively

where G0 is the instantaneous shear modulus).

Elkin et al. [213] performed micro-indentation experiments on fresh porcine brain

samples to extract the viscoelastic parameters required for a Prony series shear mod-

ulus representation. Regions tested were: hippocampus, dentate gyrus, cortex, tha-

lamus, corona radiata, corpus callosum, brainstem and cerebellar gray and white

matters. For our application, we used the thalamus and the average hippocampus

material properties from Elkin et al. [213]; the parameters for the Prony series are

shown in Table 5.1 (Note: in the study by Finan et al. [208] on human brains, only the

hippocampus properties were presented and they are within the con�dence interval

drawn by both studies Finan et al. [208] and Elkin et al. [213]). For the remain-

ing two substructures, caudate and putament, the parameters are adapted from the
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work of Lee et al. [190]. Cortex, hippocampus and caudate/putamen of rat brains

were characterized using micro-indentation tracked by Optical Coherence Tomogra-

phy. Experimental indentation curves were used in a �nite element model to estimate

the material parameters for each region using di�erent Poisson's ratios (ν= 0.35, 0.4,

0.45 and 0.49). Since the brain tissue is typically considered to be nearly incom-

pressible (Pervin and Chen [51], Miller and Chinzei [69], Rashid et al. [74]), we used

the material properties of the putamen and caudate obtained using Poisson's ratio of

ν=0.49 (Table 5.1).

Note that, based on the available gray matter substructures characterization in

literature, we have had to use material properties of multiple species (rats/murine

and pigs/porcine). Nevertheless, the experimental work of Atay et al. [62] reported

no di�erence between human and murine brains and Nicolle et al. [46] and Nicolle

et al. [61] revealed no di�erence between human and porcine brain tissues.

The rest of the materials in the model (skull, CSF, other gray matter volumes,

vasculature, falx, tentorium and white matter) are modeled exactly as in section 3.4.4

with the same material descriptions (constitutive laws and material parameters). Note

for the homogeneous model, all gray matter regions (including the four segmented

substructures) are assigned the gray matter material properties of section 3.4.4.
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Table 5.1: Prony series shear modulus properties assigned to gray matter substructures

which are adapted from published experimental studies.

Properties Reference

Hippocampus G∞=216 Pa, G1=973.5 Pa, G2=285 Pa,

G3=238.5 Pa, τ1= 0.013 s, τ2= 0.22 s and

τ3= 4.5 s

Elkin et al. [213]

Thalamus G∞=179 Pa, G1=750 Pa, G2=362 Pa, τ1=

0.02 s and τ2= 1.34 s

Elkin et al. [213]

Caudate/Putamen G∞=110 Pa, G0=700 Pa, g1= 0.61,

g2=0.135 , g3=0.103 , τ1=1.45 s, τ2=10

s and τ3=110 s

Lee et al. [190]
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5.2.2 MPM Implementation

As in the previous two chapters, the segmented resolution of 0.8 mm (isotropic) is

reduced down to 1.6 mm isotropic resolution with a cubic grid cell-size of 3.2 mm to

cut down computational costs. Each cell typically has two particles in each direction.

The two models (homogeneous vs heterogeneous gray matter) are simulated for the

time of the loading pro�le using the same implementation as in section 3.4.3 (Uintah

framework for MPM implementation).

5.2.3 Loading conditions

Results of the previous chapter (section 4.3.2.1) revealed that the cerebrum is a�ected

(higher strains and injury predictions) the most when loaded in the axial direction.

For this reason, we use the same loading condition of section 4.2.3 applied to the axial

direction. The maximum acceleration of this loading curve is about 6000 rad/s2 and

the resultant rotation is about 3.4 degrees around the axial axis.

5.3 Results

The maximum value of Largest Principal Strain (LPS) for each structure is extracted

at every 5 ms for the homogeneous and heterogeneous gray matter models (Fig-

ure 5.2). No di�erences are observed between the results from the two simulations.
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However, there are di�erences between the substructures: Higher values of LPS are

observed in the caudate followed by the hippocampus then the putamen and �nally

the thalamus. This ranking (of high strains between the four substructures) could be

dependent on the applied loading direction.

We also investigate the di�erences between the two simulations in terms of max-

imum shear strains (Figure 5.3). Similar to LPS, results are nearly identical when

comparing the maximum shear strains for all four structures in the two simulations

(homogeneous and heterogeneous gray matter).

To our knowledge, the only gray matter injury threshold in the literature is that

reported by Kleiven [120]. Based on National Football League reconstructed acci-

dents, a value of 26% maximum principal strain was set as an injury predictor for

gray matter. Using this threshold for our analysis, injury is only predicted in the

caudate (of course, identically in both models). The same analogy of injury volume

fraction in equation 4.1 is applied, and the predicted injured volume fraction of the

caudate is about 1.2% in the two models. Figure 5.4 shows locations of injured ma-

terial points in the caudate (red squares) (Injury locations are also identical in both

models, homogeneous and heterogeneous gray matter). White matter injured mate-

rial points are overlaid on the same volume (green triangles), and we observe that

there is a cluster of injured white matter near the predicted injury in the caudate.
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(a) (b)

(c) (d)

Figure 5.2: Maximum largest principal strain history for the (a) caudate (b) hippocampus

(c) putamen and (d) thalamus extracted at every 5 ms for the two simulations (homogeneous

vs heterogeneous gray matter). Clearly, there are no signi�cant di�erences between the two

models.
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(a) (b)

(c) (d)

Figure 5.3: Maximum shear strain history for the (a) caudate (b) hippocampus (c) puta-

men and (d) thalamus extracted at every 5 ms for the two simulations (homogeneous vs

heterogeneous gray matter). Results of the two models are identical.
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(a)
(b)

Figure 5.4: Injury locations in the caudate (red squares) along with injury in cerebral

white matter (green triangles) using largest principal strain as a predictor shown in two

views: (a) front and (b) top. Notice that injury in the caudate neighbors white matter

injury. The light green clouds represent the caudate material points.

5.4 Discussion

Both strain measures (largest principal strain and maximum shear strain) revealed

the insigni�cance of accounting for gray matter heterogeneity in the predictions of

strains, and eventually injury, in gray matter. Even the locations of maximum LPS

are identical in the two models.
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A possible reason for the observed identical response is that the shear modulus

of gray matter substructures does not change greatly from one region to another (all

values are of the same order of magnitude), which are con�ned by white matter (Long-

term and short-term shear moduli for white matter are 286 and 1520 Pa, respectively).

The minimum long-term shear modulus is in the caudate and putamen which has a

value of G∞=110 Pa while the maximum is in the cortical gray matter, G∞=385

Pa (Hippocampus and thalamus have long-term shear moduli of 216 and 179 Pa,

respectively). On the other hand, the instantaneous shear modulus is an order of

magnitude higher for cortical gray matter, hippocampus and thalamus compared to

the caudate and putamen (2750 Pa for cortical gray matter, 1291 Pa for hippocampus

and thalamus compared to 700 Pa for caudate and putamen). Based on the low

instantaneous shear modulus in the caudate and putamen, injury is expected in both.

However, LPS exceeded the threshold of 26% in the caudate only (red squares in

Figure 5.4). This obersvation might be related to overall high strains in the vicinity

of the caudate as shown in Figure 5.4. Neighboring white matter (green triangles)

exceeded the injury threshold of LPS≥31% near the caudate predicted injury location.

White matter injury predictions using LPS as a threshold could be an indicator of

injury in neighboring gray matter. Note that more injurious cases must be studied

to further investigate this hypothesis.
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5.5 Summary & Conclusions

We developed two models one with homogeneous gray matter and another with �ve

di�erent regions of gray matter (heterogeneous): cortical and other sub-cortical gray

matter (same properties as the homogeneous model), caudate, hippocampus, thala-

mus and putamen. The choice for the resolved gray matter substructures was based

on available tissue characterization in literature. An injurious loading is applied to

both models and injury is considered using a Largest Principal Strain (LPS) thresh-

old of 26% from the work by Kleiven [120]. From the results of the simulations we

conclude the following:

• Assigning experimental material properties for di�erent gray matter substruc-

tures did not a�ect the deformation or injury predictions within these regions.

• For the currently available gray matter properties and thresholds in literature,

heterogeneous modelling of gray matter is not necessary in mTBI predictions.
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Chapter 6

Summary & Future Directions

The role of anisotropy and multiple aspects of brain heterogeneity was investigated

throughout this work. The computational modelling approach allowed studying the

e�ects of each source of heterogeneity separately. Major remarks will be concluded in

the next section with a summary of the covered brain heterogeneity e�ects in mTBI

in this work. Suggestions for future directions will follow in a separate section.

6.1 Concluding Remarks

In this work we used computational tools to examine the e�ects of the following:∗

• White matter shear anisotropy.

• The addition of arterial network to head models of mTBI.
∗For data archives, please refer to Appendix C
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• Applied loading direction.

• Gray matter heterogeneity.

Except for gray matter heterogeneity, all of the other aspects have been shown to

be signi�cant in terms of injury predictions. Further, common injury locations at the

borders of white and gray matter are captured in all of our models (2D model, 3D

model with vasculature and 3D model without vasculature).

The length scales we currently incorporated in the full 3D head model are shown

in Figure 6.1. Resolved anatomy is highlighted with the red box, while the green box

identi�es length scales incorporated in the material model. The in�uence of arterioles

and capillaries is essentially incorporated in the homogenized white and gray matter

properties.

Our model is highly sophisticated in terms of anatomical details. Structures re-

solved in the current 3D head model are: skull, CSF, ventricles, falx, tentorium,

cerebral white and gray matters, cerebellar white and gray matters, brainstem and

arteries. The resolution of the model is 1.6 mm in all directions which can be increased

once computational capabilities advance in the next few years. The tractography in-

formation in Chapter 4 adds another level of anatomical sophistication. Not only

overall white matter injury can be predicted, but also injury in each tract, which pro-

vides a more anatomically related location of injury (providing the ability to predict

possible cognitive impairment related to each tract).
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Injury vulnerability of white matter based on the loading direction is investigated

in Chapter 4. Two injury criteria are used, Largest Principal Strain (LPS) and axonal

strain. Each resulted in di�erent locations of predicted injury which raises the ques-

tion of which threshold we should use in mTBI predictions. Mainly, the choice of the

LPS was due to the need for results comparisons with other models in the literature

which modeled white matter as an isotropic material. On the other hand, the axonal

strain couples the cellular mechanisms of injury with the tissue strains.

Ultimately, mTBI events should be captured and reconstructed to provide load-

ing conditions for computational analysis and an acute diagnosis and symptoms of

the injured persons must be documented. Based on these two components, simula-

tions can be performed and injury criteria that result in predictions closer to reality

(corresponds better with the symptoms experienced by the injured subject) can be

identi�ed. Although we can argue that axonal injury is related to the cellular function

of the material, we can not conclude yet which injury criteria is the best or should be

used in future mTBI computations due to the lack of such well documented injurious

cases.

6.1.1 Summary of brain heterogeneity e�ects in mTBI

In chapter 2, we developed a material model for white matter that captures tension

and shear anisotropy. Such a model has not been used before for mTBI predictions.

We used the axonal injury criterion to predict white matter injury which is an indi-
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Chapters 3 and 4 explored the e�ects of adding the vasculature network to 3D

head models. Maximum principal strain and radial circumferential strain distribu-

tions showed statistically signi�cant di�erences (p-value<0.00001) between the two

models, with and without vasculature. Moreover, locations of maxima for both mea-

sures di�ered between the two models. The existence of the sti� vasculature network

shifted the locations of maximum strains (and predicted injury) and resulted in new

locations of injury and/or high strains. Therefore, including the vasculature network

in computational models of mTBI is important. Further, in Chapter 4 we showed how

the degree of injury changes when the loading direction is changed. The morphology

of each white matter structure and the axis of rotation are the two factors a�ecting

the predicted injury level with respect to loading direction (Axial rotation resulted in

higher degree of injury in the cerebrum while coronal rotation induced higher levels

of injury in the cerebellum and the brainstem). Using the TRACULA method, some

white matter tracts are segmented and the degree of injury in each tract is calculated

for each loading direction. Injury levels in white matter tracts per loading direction

agreed with the results obtained for the whole white matter volume. The results of

white matter vulnerability to injury based on the applied loading direction can be

used in the diagnosis of mTBI at the acute stage of injury or to further enhance safety

designs (e.g: helmets or automobile designing).

The e�ects of gray matter heterogeneity is investigated in Chapter 5. No signi�-

cant di�erences are observed in the predicted injury (neither in the degree of injury
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nor in the predicted locations of injury).

We conclude from this work that the addition of white matter shear anisotropy

and the structure of arterial network play an important role in injury predictions.

Consequently, both must be incorporated in safety designs, either in the automotive

industry (car, seatbelt or airbag design), sports (helmet designing or game rules) or

army applications (helmets). Similarly, our results on white matter susceptibility to

injury based on the loading direction may be useful in some sports by adding new rules

to eliminate, or at least decrease, occurrences of the most injurious loading scenarios.

Locations of predicted injury can also be used clinically as an initial prediction of

cognitive de�cits and a starting point for targeted drug delivery (pharmaceutical

treatment) or localized brain stimulation.

6.2 Future Directions

Our methods can be further enhanced to better represent the mechanics and defor-

mations of soft tissues or further improve the ability of mTBI injury predictions as

follows:

• The shear anisotropic model introduced in Chapter 2 can be incorporated in

a 3D study to further explore the extent of shear anisotropy e�ects on injury

predictions. The 3D modelling will showcase a more realistic �ber network and

brain deformation which can be directly related to mTBI observations in the
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whole head instead of selected slices.

• The shear anisotropic model can be extended to account for �ber dispersion

and/or more than one family of �bers. In reality, the �ber network in the brain

have many crossing �bers. The addition of �ber dispersion will provide better

information about how anisotropic the white matter is at each material point.

This information is directly related to the fractional anisotropy in DTI and

hence can be extracted along with the primary �ber direction. Adding another

family of �bers is harder than introducing �ber dispersion. The addition of a

second family of �bers requires the information of the families to be readily

available from medical imaging and the appropriate experiments to extract the

material parameters needed for the model. To date, there are no reports in the

literature that characterize brain tissue with crossing �bers.

• The 3D full head model with vasculature can be further enhanced in terms

of anatomical details. The addition of the venous network, for example, will

provide an extra level of sophistication. The reason behind leaving out the ve-

nous network in our model is the di�culty in segmenting the venous system

separately. The Time Of Flight (TOF) technique we used to segment arter-

ies in our work is a non-invasive method that captures the fast moving �ow

inside the arteries using MRI. The use of other techniques like X-ray based An-

giograms could help in segmenting the venous system, however it requires the

administration of an iodine-based dye to track blood �ow.
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• The material model we used for the arteries in Chapters 3, 4 and 5 is an isotropic

hyperelastic model �tted to the experimental work by Monson et al. [11]. The

material parameters obtained based on those tensile experiments are technically

representative of the tissue response in that direction only (tensile loading along

the length of artery � axial response). More experiments were performed by the

same group a few years later to incorporate source and size e�ects (Monson et al.

[215]) and the biaxial response of arteries (Monson et al. [216]). These three

factors can also be incorporated in the constitutive model for arteries in the

future.

• A well controlled animal study can provide a higher level of con�dence in the

solution method and predicted locations of injury. This can be achieved by

comparing the experimental results from the animal study to a corresponding

computational model. If the predictions of the computational model match the

experimental observation, the length scale associated with the resolution can be

used as an input for human studies. Also, if the injury hot spots are captured

in the model including single material point injuries, we will provide prove that

these single material point injury predictions are not due to numerical locking.

• Last but not least, the 3D head model developed in this work to predict damage

in white and gray matters can further be extended to account for blood �ow

changes. The extension requires a model for the brain tissue that couples the

brain deformation with the blood �ow in the brain. One possibility is to use
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the biphasic theory to couple brain deformation (solid phase) with the blood

�ow (liquid phase), which has been applied before to model soft tissue in the

literature (e.g.: Mow et al. [217], Spilker and Suh [218] and Cohen et al. [219]).

We developed a theoretical framework for the biphasic theory application to

couple brain deformation and blood �ow, details of which are presented in

Appendix B.
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Appendix A

MPM Implementation Using The

Uintah Computational Framework

In this appendix, we will develope a simple guide to use the Uintah computational

framework for the MPM implementation used in our work. First, the steps required

to build/install Uintah∗ will be described. Then, the process of submitting an input

�le will be explained. Finally, post-processing the output of Uintah using VisIt and

MATLAB softwares will be brie�y discussed. For further details about Uintah, the

reader is referred to the original documentation at:

https://www.sci.utah.edu/publications/SCITechReports/UUSCI-2009-007.pdf.

∗http://uintah.utah.edu/
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A.1 Building Uintah

The source �le of Uintah can be downloaded from the University of Utah Uintah

web-page: http://uintah.utah.edu/. The size of our simulations is relatively large

(we used 24 nodes, each is Intel Haswell dual socket with 12-core processors, 2.5GHz,

30MB cache and 128GB RAM). Move (e.g.: using WinSCP software) the downloaded

source �le to the computational cluster (we used the Maryland Advanced Research

Computing Center (MARCC)), and follow these steps:

• Unzip the source code using: tar xvf code.tar

• Move inside the unzipped folder (the name might be di�erent than what we

show here): cd JHUUintah_SVN_brain

• Move to the "build" directory (if it does not exist, create it): cd build

• Load the following module to use it for installing Uintah (if it does not exist,

request it from your computing cluster admin team): module load cmake

• Load VisIt module to con�gure VisIt for post-processing (if it does not exist,

request it from your computing cluster admin team). Note you should use the

version number available on your computing cluster, the number here is an

example): module load visit/2.9.1

• Load intel (use the version available on your computing cluster, the number

shown here is an example): module load intel/18.0
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• Con�gure VisIt and Intel (change the paths for openmpi and VisIt based on your

computing cluster paths): ../JHUUintah_SVN_brain/src/con�gure -enable-

64bit �without-fortran �enable-optimize=-O3

-with-mpi=pathTo/openmpi/intel/18.0 CC=icc CXX=icpc

�no-create �no-recursion �with-visit=pathTo/visit/2.9.1

• Build Uinath using the command: make all -j 4

If no errors appeared (e.g: due to wrong module version number and/or folder or

�le paths), Uintah is built and ready to be used.

A.2 Uintah Simulations: Basics

Once Uintah is installed, jobs can be submitted. For our application, the mate-

rial points have speci�c locations in space (as extracted from the Magnetic Reso-

nance Imaging (MRI) volume). Each structure should have a separate �le with three

columns representing the structure's xyz coordinates (based on it's unique intensity

value in the segmented MRI). The points �les must have the extension "pts" (e.g.:

CSF.pts). Assigning points in space requires a pre-processing step to divide all mate-

rial points in space into smaller subsets assigned to each processor using the following

command (pfs) executed in the same directory where your input �le is located on the

cluster (Note: change paths to openmpi and StandAlone/tools/pfs/pfs based on their

location on your cluster):
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1 / so f tware /apps/mpi/openmpi /3 .1/ i n t e l /18 .0/ bin /mpirun / s c ra t ch / groups /

kramesh1/Fatma/UintahNew/JHUUintah_SVN_brain/ bu i ld /StandAlone/ t o o l s /

p f s / p f s Input . ups

Listing A.1: Preprocessing an input �le using pfs command

Then, you can submit the input �le using the sus executable located in the "Stan-

dAlone" directory inside the "build" directory created in the previous section (i.e.:

build/StandAlone/sus) as follows (Note: change paths to openmpi and StandAlone/-

sus based on their location on your cluster):

1 / so f tware /apps/mpi/openmpi /3 .1/ i n t e l /18 .0/ bin /mpirun / s c ra t ch / groups /

kramesh1/Fatma/UintahNew/JHUUintah_SVN_brain/ bu i ld /StandAlone/ sus

Input . ups

Listing A.2: Submitting an input �le using sus command

A simple script to run the above two steps (preprocessing using pfs and submitting

the job using sus commands) have the following form:

1 #!/ bin /bash − l

2 #SBATCH

3 #SBATCH −−job−name=NameIt

4 #SBATCH −−time =28:00:00

5 #SBATCH −−nodes=5

6 #SBATCH −−ntasks−per−node=24
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7 #SBATCH −−pa r t i t i o n=p a r a l l e l

8 #SBATCH −−mail−type=end

9 #SBATCH −−mail−user=email@jhu . edu

10 module load i n t e l /18 .0

11 / so f tware /apps/mpi/openmpi /3 .1/ i n t e l /18 .0/ bin /mpirun / s c ra t ch / groups /

kramesh1/Fatma/UintahNew/JHUUintah_SVN_brain/ bu i ld /StandAlone/ t o o l s /

p f s / p f s Input . ups

12 / so f tware /apps/mpi/openmpi /3 .1/ i n t e l /18 .0/ bin /mpirun / s c ra t ch / groups /

kramesh1/Fatma/UintahNew/JHUUintah_SVN_brain/ bu i ld /StandAlone/ sus

Input . ups

Listing A.3: A simple script combining preprocessing and submitting an input �le

In the above code, �ve nodes with twenty four processors each (totaling 120 pro-

cessors) are requested for twenty eight hours to run the two steps: preprocessing and

submitting the input �le. Speci�cations of the input �le are de�ned in the Uintah

documentation mentioned at the beginning of this section.

A.3 Post-processing Uintah Output Using VisIt

and MATLAB

Uintah outputs the database in a folder commonly referred to as the "uda" direc-

tory, which contains the original input �le, points �les, check points folder (if any),

requested time-steps folders and other outputs depending on the speci�cations in the
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original input �le. Download the whole "uda" directory from the computing cluster

into your machine and open the index.xml �le in VisIt (which is an open source soft-

ware provided by the Lawrence Livermore National Laboratory†). We will explain

how to perform three main tasks in VisIt: Plot the structure, write expressions and

export the database and how to further post-process VisIt output database using

MATLAB.

A.3.1 How to Plot the Structure

Open the index.xml �le in VisIt (File > Open File OR Under "Sources" section click

on: Open) and follow these steps:

1. Under the "Plots" section, Click on: Add > Pseudocolor > p.color

2. Select * to plot the whole structure using a single color or pick the structure/-

material number you want to plot.

3. Under the "Plots" section, Click on: Draw. Your selected structure should

appear in the active window and a corresponding item appears in the plot lists

(e.g.: if you plot structure/material # 1, in the plot list you will see an item

named Pseudocolor-p.color/1).

4. To change the color of the plotted structure, double click on the structure's

†VisIt can be downloaded here: https://wci.llnl.gov/simulation/computer-codes/visit/

downloads
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item under the "Plot" list. The "Pseudocolor Plot Attributes" window should

appear. Under the Data tab, choose a color from the color table and click Apply.

You can also change Opacity in the same tab. Make sure to click Apply after

you change any attribute and click Dismiss when you are done.

5. To change the the size of the material points, double click on the structure's

item under the "Plot" list. The "Pseudocolor Plot Attributes" window should

appear.Under the Geometry tab, change "Point size (pixels)" to the desired size

and click Apply then Dismiss.

6. You can add as much items as you like and you can use the "Hide/Show" button

under the "Plots" section to hide or show any item in the list.

A.3.2 How to Write Expressions

Uintah has a limited number of variables you can extract at each time step. Principal

strain vector, for example, is not available. However, you can use VisIt to write

the equations (VisIt refers to them as expressions) needed to calculate the desired

output. Here is an example of how to calculate the principal strain vector assuming

you requested the deformation gradient of the particle in your input �le:

1. From the top bar menu, click on: Controls > Expressions. The Expressions

window should open. All the steps below are performed in this window.

2. Click on: New. First, we must calculate the Lagrangian strain. On the right
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side under the De�nition list in the "Name" �eld write: E (or any name you

prefer). In the "Type" �eld, choose "Tensor Mesh Variable" from the drop-down

menu. We know that Lagrangian strain E = 1
2
(F TF −I) where I is the identity

tensor. Hence, under the Standard Editor De�nition, write 0.5*(. Then to add

the transpose function click on: Insert Function > Tensor > transpose. Your

De�nition now will look like: 0.5*(transpose(). To add the deformation gradient

click on: Insert Variable > Tensors > p.deformationMeasure > *. The De�-

nition will now be: 0.5*(transpose(<p.deformationMeasure/*>). Now multi-

ply by the deformation gradient: 0.5* (transpose(<p.deformationMeasure/*>)

*<p.deformationMeasure/*>. To create the identity tensor, You can use F−1F .

To get the inverse function, click on: Insert Function > Tensor > inverse. Follow

the same steps to add the deformation gradient. Your �nal de�nition should look

like: 0.5*(transpose(<p.deformationMeasure/*>) * <p.deformationMeasure/*>

- inverse(<p.deformationMeasure/*>) *<p.deformationMeasure/*>).

3. To calculate the principal strains vector, click on: New. In the "Name" �eld,

write: E_Principal (or any name you like). In the "Type" �eld, choose "Vec-

tor Mesh Variable" from the drop-down menu. Now click on: Insert Function

> Tensor > principal_tensor. Under the Standard Editor De�nition, princi-

pal_tensor() should appear. Put the cursor inside the bracket and then click:

Insert Variable > Tensors > E (or the name you chose for the Lagrangian Strain

Tensor created in the previous step).
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4. To save the components of the principal strain vector separately, click: New.

In the "Name" �eld, write: E_Principal_1 (or any name you like). In the

"Type" �eld, choose "Scalar Mesh Variable" from the drop-down menu. Click

on: Insert Variable > Vectors > E_Principal (or the name you choose for

the principal strain vector in the previous step). Under the Standard Editor

De�nition, E_Principal should appear and write [0] next to it (Now it should

read E_Principal[0]). Note: to save the second and third components follow the

same steps but use [1] and [2] for the second and third components, respectively.

The expressions feature is very helpful in creating all the variables you want to

extract for further post-processing.

A.3.3 How to Export Database

First you need to draw the variable you wish to extract. Follow the steps in section

A.3.1 but instead of plotting p.color plot E_Principal_1, for example, created in the

previous section. Then you can export the result by following these steps:

1. Click on: File > Export database. The Export Database window should open.

2. In the �eld "Directory name", write the full path to the folder you want to save

the database in. If you do not recall the full path, click on the three dots button

to choose a folder.

3. In the �eld "File name", write a name for the database you are extracting.
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4. From the drop-down menu "Export to", choose XYZ. This format will export

the current XYZ location of each material point in addition to the plotted

variable.

5. You can add extra variables to the output database. Since we have multiple

materials/structures in our model, it is useful to extract the color (which in-

dicates the material number based on the order of the materials in your input

�le). To add the color, Click on: Add Variable > Scalars > p.color > *. Then

Click Apply.

6. You can add as many variables as you like but make sure that the variables are

all scalars (or vectors) but do not mix scalars and vectors, it will not output

correctly. (Note: You can always use the expressions feature to convert vectors

into scalars like what we did for the principal strain vector in the previous

subsection). When you are done adding extra variables, click: Export. The

generated �le will have the extension ".xyz". The number of columns in this

�le is equal to the number of added variables plus four. The �rst three columns

will be current XYZ locations, followed by the added variables in the same

order you added them and then the plotted variable. There will be a column of

question marks and some random text lines which we will remove in the next

section using a MATLAB script.
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A.3.4 MATLAB Post-processing

Further post-processing is probably needed after VisIt, and MATLAB is one of the

most commonly used post-processing softwares, or languages, in the engineering �eld.

The �rst step is to clean-up the xyz database �le from text lines and question marks.

The following code can be used for this purpose:

1 %Clean Up V i s i t F i l e s from text l i n e s and unwanted d i g i t s

2

3 c l c

4 c l e a r

5

6 %This l i n e d e f i n e s the s u f f i x used f o r the t imes teps you want to proce s s

7 %You can change i t to match your f i l e s

8 %You can automate the gene ra t i on o f t h i s l i n e too

9 time={ ' 00 ' , ' 05 ' , ' 10 ' , ' 15 ' , ' 20 ' , ' 25 ' , ' 30 ' , ' 35 ' , ' 40 ' } ;

10

11 %I n i t i a l and end par t s o f the f i l e name ( change them acco rd ing ly )

12 f i l e i n i t i a l= 'E1_0 ' ;

13 f i l e e n d=' . xyz ' ;

14

15 f o r i =1: l ength ( time )

16 f i l ename=s t r c a t ( f i l e i n i t i a l , time{ i } , f i l e e n d ) ;

17

18 S = f i l e r e a d ( f i l ename ) ; %read as s t r i n g
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19 %remove ques t i on marks , "chunk" l i n e and the l i n e be f o r e "chunk" a l l

t oge the r

20 newS = regexprep (S , { ' [^\n]+\n [^\n ]∗ chunk [^\n ]∗\n ' , ' ^\? ' } , { ' ' , ' ' } , '

l i n e ancho r s ' ) ;

21 %Save the c l eaned f i l e

22 f i d = fopen ( s t r c a t ( ' Clean/ ' , f i l e i n i t i a l , time{ i } , ' Clean ' , f i l e e n d ) , 'w ' ) ;

23 fw r i t e ( f i d , newS) ;

24 f c l o s e ( f i d ) ;

25 end

Listing A.4: MATLAB script to clean-up VisIt XYZ �les.

You can use this script to clean-up a single �le by removing the "for" loop and

directly write your �le name inside the function fopen (line 16 in the script) and

change the new (cleaned) �le name (line 21 in the script) such that it reads: �d =

fopen (yourNewFileName, 'w').

Another possible post-processing step is to extract Largest Principal Strain (LPS)

(E_Principal_1 of section A.3.2), for example, for a speci�c structure and save the

locations of LPS>0.31 (Injury threshold in our model). Also, let's plot the LPS

distribution at time 15 ms. To do that you can use the following script:

1 c l e a r

2 c l c

3

4 %Su f f i x o f XYZ f i l e s , in t h i s case i t i s s im i l a r to the time vec tor t

5 time={ ' 00 ' , ' 01 ' , ' 02 ' , ' 03 ' , ' 04 ' , ' 05 ' , ' 06 ' , ' 07 ' , ' 08 ' , ' 09 ' , ' 10 ' , . . .
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6 ' 11 ' , ' 12 ' , ' 13 ' , ' 14 ' , ' 15 ' , } ;

7 t =0:15;

8

9 %Structure under i n v e s t i g a t i o n

10 % 8 Cerebrum , 9 Cerebellum , 20 Brainstem

11 s t r u c tu r e =8;

12 i f s t r u c tu r e==8

13 name='Cbrm ' ;

14 e l s e i f s t r u c tu r e==9

15 name='Cblm ' ;

16 e l s e i f s t r u c tu r e==20

17 name='Bstem ' ;

18 end

19 end

20 end

21

22 %Axial wBV

23 f i l e i n i t i a l= ' Axia l /E1Clean/Eprinc1_0 ' ;

24 f i l e e n d=' Clean . xyz ' ;

25

26 %i n i t i a l i z a t i o n

27 E1max31Axial=ze ro s (1 , l ength ( t ) ) ;

28

29 f o r i =2: l ength ( time )

30 f i l ename=s t r c a t ( f i l e i n i t i a l , time{ i } , f i l e e n d ) ;
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31 data=load ( f i l ename ) ;

32 %This f i l e has e i gh t columns , the f i r s t 3 are cur rent XYZ

33 % Columns 4−6 are d isp lacement in X, Y and Z , column 7

34 % i s the mate r i a l / s t r u c tu r e number and column 8 i s E_Principal_1

35 data ( : , 1 )=data ( : , 1 ) +0.1228; %Un−Sh i f t X i f needed

36 data ( : , 2 )=data ( : , 2 ) +0.0988; %Un−Sh i f t Y i f needed

37 data ( : , 3 )=data ( : , 3 ) +0.0916; %Un−Sh i f t Z i f needed

38 %Restore r e f e r e n c e po s i t i o n (X=x−dx )

39 data ( : , 1 : 3 )=data ( : , 1 : 3 )−data ( : , 5 : 7 ) ;

40 %Delete d i sp lacement data (dx )

41 data ( : , 5 : 7 ) = [ ] ;

42

43 %Extract data

44

45 indexAxia l=f i nd ( data ( : , 4 )==s t ru c tu r e ) ;

46 dataAxia l=data ( indexAxial , [ 1 : 3 , 5 ] ) ;

47

48 %Percentage (Volume Fract ion ) and l o c a t i o n s f o r E1>31%

49 indexPos=f i nd ( dataAxia l ( : , 4 ) >0.31) ;

50 E1max31Axial ( i )=length ( indexPos ) / l ength ( indexAxia l ) ;

51 i f l ength ( indexPos )>0

52 AxialPosMax31X10=dataAxia l ( indexPos , 1 ) ;

53 AxialPosMax31Y10=dataAxia l ( indexPos , 2 ) ;

54 AxialPosMax31Z10=dataAxia l ( indexPos , 3 ) ;

55 f i l enameLoc=s t r c a t ( ' Axia l /E1Clean/E1Locs/E1max31 ' ,name , time{ i } ,
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' . tx t ' ) ;

56 Al l=[AxialPosMax31X10 AxialPosMax31Y10 AxialPosMax31Z10 ] ;

57 save ( f i lenameLoc , ' A l l ' , '−a s c i i ' )

58 end

59

60 %Di s t r i bu t i on at time 15

61 i f ( t ( i )==15)

62 CbrmWMPosX15=dataAxia l ( indexPos , 1 ) ;

63 CbrmWMPosY15=dataAxia l ( indexPos , 2 ) ;

64 CbrmWMPosZ15=dataAxia l ( indexPos , 3 ) ;

65 %save histogram data

66 [CbrmWMHistN15 ,CbrmWMEdges15]= h i s t c oun t s ( dataAxia l ( : , 4 ) ) ;

67 end

68 end

69

70 f i g u r e (1 )

71 c en t e r s=(CbrmWMEdges15 ( 1 : end−1)+CbrmWMEdges15 ( 2 : end ) ) /2 ;

72 b=bar ( cente r s ,CbrmWMHistN15) ;

Listing A.5: MATLAB script to extract Largest Principal Strain (LPS) for a speci�c

structure and save locations of LPS>0.31 in addition to plotting the LPS distribution at

time 15 ms.

Of course there are plenty of ways to post-process VisIt databases. We introduced

two examples here and you can apply the concept for other post-processing needs.
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A Biphasic Theoretical Framework to

Couple Brain Deformation with

Cerebral Blood Flow in mTBI

Changes in Cerebral Blood Flow (CBF) have been observed and characterized in

severe TBI (Martin et al. [220], Bouma et al. [221]). Martin et al. [220] closely

monitored patients with severe closed head injury from day 0 (day of injury) to day

15 post injury in multiple University of California at Los Angeles Medical Centers.

Right after injury, a decrease in CBF during day 0 followed by hyperemia (increase in

blood supply to the brain) during days 1-3 post injury was observed. The following

days (4-15) post injury, cerebral vasospasm (increase in blood velocity inside arteries

with overall decreased blood supply to the brain) was recorded. Animal studies
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reported a decrease in CBF during the �rst twenty four hours post injury (Clevenger

et al. [222], Immonen et al. [223]). A similar scenario, but at a lower level, may

occur after mTBI. However, to date, none of the e�orts in literature established a

framework to theoretically couple the blood �ow with the brain deformation.

Recall from section 1.4.2.1, the biphasic theory has been used to model the

Cerebro-Spinal Fluid (CSF) di�usion in the brain tissue during deformation (Cheng

and Bilston [99], Basser [100]). Also, it has been used for modelling drug delivery into

the nervous tissue (Chen and Sarntinoranont [224]). In this appendix, we introduce,

for the �rst time in the literature, a biphasic theoretical framework to predict CBF

changes by coupling CBF and brain deformation.

B.1 Derivation of the Constitutive Equations:

The Biphasic Theory

The biphasic theory for soft tissues was �rst introduced by Mow et al. [217] to model

the human articular cartilage by utilizing the mixture theory of Craine et al. [225]

and Green and Naghdi [226]. In this section, we utilize the work of Mow et al. [217]

to derive the coupling between the brain tissue and CBF. Subscripts s and f will be

used for the solid (brain tissue) and �uid (blood) phases, respectively. We begin with

the following assumptions:

• Both phases exist at each material point ⇒ iso strain case (ε = εs = εf and

160



APPENDIX B. BIPHASIC THEORY TO PREDICT CBF CHANGES IN MTBI

σ = σs + σf ).

• For simplicity, we assume that the solid phase is a linear elastic solid which has

the following constitutive relation:

σs = λstr(ε)I + 2µsε (B.1)

where λs and µs are the lamé constant and shear modulus of the solid phase,

respectively.

• The �uid phase is assumed to be an incompressible, isotropic, Newtonian �uid

which has the following constitutive relation:

σf = −pI + 2µf ε̇ (B.2)

where p and µf are the hydrostatic pressure and viscosity of the �uid phase,

respectively.

The volume is preserved (V = Vf + Vs) and the bulk densities, ρi of both phases

are de�ned as

ρs =
ms

V
and ρf =

mf

V
(B.3)

where mi is the mass of each constituent. The density of the mixture is given by

ρ = ρs + ρf . (B.4)

Further, we de�ne the body force per unit mass for the mixture (Fb) as

ρFb = ρsF
b
s + ρfF

b
f (B.5)
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and the velocity of the mixture (v) as

ρv = ρsvs + ρfvf . (B.6)

To calculate the local equations of motion for each constituent, we use the balance

of linear momentum

ρs
∂vs

∂t
= ∇.σs + ρsF

b
s + Fi (B.7)

and

ρf
∂vf

∂t
= ∇.σf + ρfF

b
f + Fi (B.8)

where Fi is the interaction force between the solid and �uid phases and the mixture's

linear momentum is the sum of equations B.7 and B.8 as

ρ
∂v

∂t
= ∇.σ + ρFb. (B.9)

Since velocities between constituents di�er, the interaction force can be assumed

to be a drag force which is de�ned as

Fi =
1

k
(vf − vs) (B.10)

where k is the coe�cient of permeability. In geo-materials literature(e.g.: Srivastava

et al. [227], Bogdanov et al. [228], Selvadurai and Gªowacki [229]), the permeability

coe�cient is related to the change in pressure and the volumetric �ow rate by Darcy's

law (Whitaker [230])

Q = −k
µ
∇P (B.11)
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where Q is the volumetric �ow rate and ∇P is the change in pressure per unit length.

The blood �ow in the arteries has been modeled in the literature using Poiseuille's

Law (Sumpio [231], Ku and Zhu [232]) which is of the form

∆P =
8µLQ

πr4
(B.12)

where ∆P is the change in pressure, Q is the volumetric �ow, µ is the dynamic

viscosity, L is the length of the blood vessel and r is the radius of the blood vessel. This

model assumes that the blood �ow is laminar and the blood vessel size is constant.

Rearranging equation B.12 to

∇P =
∆P

L
=

8µ

πr4
Q (B.13)

results in a form similar to equation B.11. Hence, by comparing equations B.11 and

B.13, the permeability, k, can be calculated as

k =
πr4

8µ
. (B.14)

Substituting the strain-displacement (εs = 1
2
(∇us + ∇Tus)), strain rate-velocity

(ε̇f = 1
2
(∇vf +∇Tvf )) and displacement-velocity (v = ∂us

∂t
) relationships into equa-

tions B.1 and B.2 and then substitute the stresses into the linear momentum (equa-

tions B.7 and B.8)

ρs
∂2us

∂t2
= (λ+ µs)∇(∇.us) + µs∇2us + ρsF

b
s +

1

k

(
vf −

∂us

∂t

)
(B.15)

ρf
∂vf

∂t
= −∇p+ µf∇(∇.vf ) + µf∇2vf + ρfF

b
f −

1

k

(
vf −

∂us

∂t

)
(B.16)
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which is equivalent to the Navier-Stoke's equation derived for each constituent. Since

we assumed that the �uid phase is incompressible,

∇.vf = 0 (B.17)

which reduces equation B.16 to

ρf
∂vf

∂t
= −∇p+ µf∇2vf + ρfF

b
f −

1

k

(
vf −

∂us

∂t

)
(B.18)

Furthermore, to simplify the coupling between the linear momentum equation, we

assume that the �uid velocity is much larger than the solid velocity (vf >> vs =

∂us

∂t
⇒
(
vf − ∂us

∂t

)
≈ vf ) and that the body forces can be neglected. Equations B.15

and B.18 further reduced to

ρs
∂2us

∂t2
= (λ+ µs)∇(∇.us) + µs∇2us +

1

k
vf (B.19)

ρf
∂vf

∂t
= −∇p+ µf∇2vf −

1

k
vf (B.20)

Hence, equations B.14 and B.20 can be used to solve for the �uid phase velocity

which is then substituted into equation B.19 to solve for the solid phase displacement

(we will talk about the radius r of equation B.14 in the next section).

B.2 Application Challenges

There are several challenges in the biphasic theory application for the Cerebral Blood

Flow (CBF) alteration predictions. First, to calculate the permeability (equation
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B.14) the radius of the blood vessel should be de�ned. Under the assumption that

both phases exist at each material point, there is no clear de�nition for the radius

r. Therefore, an "equivalent radius" (requiv.) for the arterial network must be de�ned

for the calculation of the permeability.

The second challenge arises from the requirement of an initial condition to solve for

the �uid phase velocity in equation B.20. The normal blood supply to the human brain

is approximately 750 milliliter per minute (or 12.5×10−6 cubic meter per second)

which represents the volume �ow rate (Qrest) at rest (Lassen [233], Kety and Schmidt

[234]). If the equivalent radius is de�ned, the initial velocity magnitude (at rest) can

be derived from Qrest as follows

Qrest = A||vf0|| where A = πr2
equiv. ⇒ ||vf0|| =

Qrest

πr2
equiv.

(B.21)

Nevertheless, traumatic injuries rarely occur when the person is at rest. Esti-

mation of CBF for other than rest status is not trivial. Multiple factors contribute

to the CBF during exercise, for example, which are either chemical, cardiovascular,

metabolic or neural innervation factors (Querido and Sheel [235]). Moreover, deter-

mining the direction of the velocity is not trivial either.

Although the application of biphasic theory to predict changes in CBF is very

challenging, future advances in medical research and CBF monitoring might open

new doors for this application.
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Data Archives

Data in this work is located in the Ramesh Lab Craedl∗ account under the brain

injury biomechanics project as follows:

• Shear Anisotropy Study (including validation, Chapter 2): https://ramesh-lab.

craedl.org/directory/3312/.

• Vasculature E�ect Study: Validation (Chapter 3): https://ramesh-lab.craedl.

org/directory/3335/.

• Vascualture E�ect Study: Non-Injurious Study (Chapter 3): https://ramesh-lab.

craedl.org/directory/3322/.

• Vascualture E�ect Study: Injurious Study (Chapter 4): https://ramesh-lab.

craedl.org/directory/3323/.

∗https://ramesh-lab.craedl.org/.
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• Loading Direction Study (Chapter 4): https://ramesh-lab.craedl.org/directory/

3328/.

• Gray Matter Heterogeneity Study (Chapter 5): https://ramesh-lab.craedl.

org/directory/3332/.
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