
ROBUST TEXT CORRECTION

FOR GRAMMAR AND FLUENCY

by

Keisuke Sakaguchi

A dissertation submitted to The Johns Hopkins University

in conformity with the requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

August, 2018

c© Keisuke Sakaguchi 2018

All rights reserved

Abstract

Grammar is one of the most important properties of natural language. It is a set of

structural (i.e., syntactic and morphological) rules that are shared among native speakers in

order to engage smooth communication. Automated grammatical error correction (GEC) is

a natural language processing (NLP) application, which aims to correct grammatical errors

in a given source sentence by computational models.

Since the data-driven statistical methods began in 1990s and early 2000s, the GEC com-

munity has worked on establishing a common framework for its evaluation (i.e., dataset and

metric for benchmarking) in order to compare GEC models’ performance quantitatively. A

series of shared tasks since early 2010s is a good example of this.

In the first half of this thesis, I propose character-level and token-level error correction

algorithms. For the character-level error correction, I introduce a semi-character recurrent

neural network, which is motivated by a finding in psycholinguistics, called the Cmabrigde

Uinervtisy (Cambridge University) effect or typoglycemia. For word-level error correc-

tion, I propose an error-repair dependency parsing algorithm for ungrammatical texts. The

algorithm can parse sentences and correct grammatical errors simultaneously.

ii

ABSTRACT

However, it is important to note that grammatical errors are not usually limited to mor-

phological or syntactic errors. For example, collocational errors such as *quick/fast food

and *fast/quick meal are not fully explained by only syntactic rules. This is another im-

portant property of natural language, called fluency (or acceptability). Fluency is a level

of mastery that goes beyond knowledge of how to follow the rules, and includes know-

ing when they can be broken or flouted. In fact, the GEC community has also extended

the scope of error types from closed class errors (e.g., noun numbers, verb forms) to the

fluency-oriented errors.

The second half of this thesis investigates GEC while considering fluency as well as

grammaticality. When it comes to “whole-sentence” correction, by extending the scope of

errors considering fluency as well as grammaticality, the GEC community has overlooked

the reliability and validity of the task scheme (i.e., evaluation metric and dataset for bench-

marking). Thus, I reassess the goals of GEC as a “whole-sentence” rewriting task while

considering fluency. Following the fluency-oriented GEC framework, I introduce a new

benchmark corpus that is more diverse in various aspects such as proficiency, topics, and

learners’ native languages.

Based on the fluency-oriented metric and dataset, I propose a new “whole-sentence”

error correction model with neural reinforcement learning. Unlike conventional maximum

likelihood estimation (MLE), the model directly optimizes toward an objective that consid-

ers a sentence-level, task-specific evaluation metric. I demonstrate that the proposed model

outperforms MLE in human and automated evaluation metrics.

iii

ABSTRACT

Finally, I conclude the thesis and outline ideas and suggestions for future GEC research.

Primary Readers and Advisors: Benjamin Van Durme and Matt Post

Secondary Reader: Philipp Koehn

iv

Acknowledgments

First and foremost, Benjamin Van Durme and Matt Post were great advisors, and I am

truly grateful to both of them for taking me as a student. When I faced many challenges dur-

ing my Ph.D. study, they were always supportive and helped me to get over the difficulties.

Ben’s unwavering support allowed me to pursue my research interest with a lot of freedom.

His wide and deep knowledge of computer science, linguistics, cognitive science, and the

philosophy of language was always inspiring to me. Matt taught me how to write a solid

research paper, write (and maintain) beautiful code, create beautiful slides, and make good

presentations. He always helped me to untangle complicated issues and make them into

a simple but strong core research question from a wide perspective. Thank you, Ben and

Matt. I am very proud to be one of your students. I can’t thank you enough for everything

you have done for me.

I want to also thank Philipp Koehn for being a member of my thesis committee. I

learned a lot of ideas from machine translation and applied them to my task. Also, I really

enjoyed attending his machine translation reading group.

I would like to say thanks to Jason Eisner and his reading group members for the in-

v

ACKNOWLEDGMENTS

tellectual and interesting discussions about various topics in natural language processing

and machine learning. I have learned a lot about dependency parsing and reinforcement

learning in this reading group. This knowledge helped to make my thesis more technically

solid.

I also would like to give special thanks to Kevin Duh for always being concerned about

me, ever since I was a student at Nara Institute of Science Technology (NAIST). When I

applied to CLSP, he wrote me a reference letter, which actually led me here. I am so lucky

to have worked with you both in Japan and the US.

At JHU, I have been very fortunate to learn a lot through talking with faculty mem-

bers at the CLSP, HLTCOE, and the Department of Cognitive Science, specifically Ra-

man Arora, Najim Dehak, Mark Dredze, Craig Harman, Hynek Hermansky, Sanjeev Khu-

danpur, Tom Lippincott, Dan Povey, Suchi Saria, Shinji Watanabe, David Yarowsky, Tal

Linzen, Kyle Rawlins, Paul Smolensky and Akira Omaki. Their lectures, seminars, and

discussions have stimulated my intellectual curiosity.

I would like to thank Ben’s labmates (blab) and my classmates and colleagues for their

support in various ways, from chitchat to deep technical discussions, including Nick An-

drews, Adrian Benton, Charley Beller, Annabelle Carrell, Yuan Cao, Tongfei Chen, Ryan

Cotterell, Ryan Culkin, Shuoyang Ding, Seth Ebner, Matthew Francis-Landau, Frank Fer-

raro, Aparajita Haldar, Katie Henry, Nils Holzenberger, Ting Hua, Jonathan Jones, Huda

Khayrallah, Rebecca Knowles, Gaurav Kumar, Chu-Chen Lin, Vimal Manohar, Rebecca

Marvin, Chandler May, Arya McCarthy, Hongyuan Mei, Poorya Mianjy, Sebastian Mielke,

vi

ACKNOWLEDGMENTS

Courtney Napoles, Jason Naradowsky, Nanyun Violet Peng, Adam Poliak, Pushpendre

Rastogi, Dee Ann Reisinger, Adi Renduchintala, Rachel Rudinger, Rashmi Sankepally, Pe-

ter Schulam, Pamela Shapiro, David Snyder, Adam Teichert, Tim Vieira, Dingquan Wang,

Felicity Wang, Yiming Wang, Aaron Steven White, Travis Wolfe, Zack Wood-Doughty,

Winston Wu, Patric Xia, Hainan Xu, Xuchen Yao, Mahsa Yarmohammadi, Sheng Zhang,

Xiaohui Zhang, and many others. Primarily, it was very fortunate for me to work with

Courtney Napoles in several projects. Her detailed analyses of language learners’ writing

are always impressive. Thank you, Courtney.

Ruth Scally, Yamese Diggs, Carl Pupa, and Zack Burwell helped a lot with adminis-

trative work. Their help made me more efficient and reduced a huge amount of my stress.

Thank you so much.

Off-campus, I am also lucky to work with Joel Tetreault on various aspects of grammat-

ical error correction, with Nitin Madnani and Mike Heilman at ETS as an intern, and with

Mary Swift and Bill Murdock at IBM as an intern. Thank you for giving me such great

opportunities.

I would like to thank my previous supervisors, Yuji Matsumoto and Mamoru Komachi,

at Nara Institute of Science and Technology. I am very lucky to have started my career in

natural language processing in their lab.

I would also like to acknowledge that my Ph.D. research was generously funded by the

Nakajima Foundation.

My life in Baltimore has been supported by a number of wonderful friends. I would

vii

ACKNOWLEDGMENTS

like to thank my friends Jeff and Judi Seal, Peta Richkus, Haichong (Kai) and Airi Zhang,

Hirofumi Kawaguchi, Ryutah Kato, Natsuki Arai, Yuri Amano, Yutaka Nagahata, Jason

Naradowsky for their warm support in what has been such an exciting and unpredictable

life in Baltimore.

I would like to thank my parents Yasuyuki and Etsuko, my brothers Shunsuke and

Ryosuke, and my parents-in-law Shuichi and Tamiko Senga for always being supportive

and concerned about me. I also thank my two month twin boys, Taiga and Leo, for “en-

couraging” me to write up this thesis as efficiently as possible. Finally, I am grateful for

the love and patience from my wife, Nozomi. Without her support, encouragement, and

patience, I could not have completed this thesis.

viii

Dedication

This thesis is dedicated to my wife, Nozomi Sakaguchi.

ix

Contents

Abstract ii

Acknowledgments v

List of Tables xv

List of Figures xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Brief History of Automated Grammatical Error Correction 3

1.3 Grammaticality and Fluency . 6

1.4 An Overview of This Thesis . 8

2 Background 12

2.1 Evaluation Metrics . 13

2.2 Methods . 19

x

CONTENTS

2.3 Datasets . 24

2.4 Summary . 29

3 Character-level Error Correction: Robsut Wrod Reocginiton via Semi-Character

Recurrent Neural Network 31

3.1 Introduction . 32

3.2 Raeding Wrods with Jumbled Lettres . 34

3.3 Semi-Character Recurrent Neural Network 37

3.4 Character-based Neural Network . 40

3.5 Experiments . 41

3.5.1 Spelling correction results . 42

3.5.2 Corroboration with psycholinguistic experiments 48

3.6 Summary . 50

4 Token-level Error Correction: Error-repair Dependency Parsing for Ungram-

matical Texts 52

4.1 Introduction . 53

4.2 Model . 55

4.2.1 Non-directional Easy-first Parsing 55

4.2.2 Error-repair variant of EF . 56

4.3 Experiment . 59

4.3.1 Data and Evaluation . 59

xi

CONTENTS

4.3.2 Results . 63

4.4 Conclusions . 65

5 Reassessing the Goals of Whole Sentence Error Correction 68

5.1 Introduction . 69

5.2 Current issues in GEC . 72

5.2.1 Annotation methodologies . 72

5.2.2 Evaluation practices . 75

5.3 Creating a new, fluent GEC corpus . 77

5.3.1 Data collection . 79

5.3.2 Human evaluation . 80

5.4 What is the Best Annotation–Evaluation Combination? 83

5.4.1 Experiments . 84

5.4.2 Results . 85

5.5 GEC System Evaluation by Non-experts 89

5.5.1 Experiments . 90

5.5.2 Results . 91

5.6 Conclusion . 92

6 A Fluency Corpus and Benchmark for Grammatical Error Correction 95

6.1 Introduction . 96

6.2 The JFLEG corpus . 97

xii

CONTENTS

6.3 Evaluation . 98

6.4 Conclusions . 101

7 Sentence-level Error Correction: Neural Reinforcement Learning for sentence

level GEC 103

7.1 Introduction . 104

7.2 Model and Optimization . 106

7.2.1 Maximum Likelihood Estimation 108

7.2.2 Neural Reinforcement Learning 109

7.2.3 Reward in Grammatical Error Correction 111

7.2.4 Minimum Risk Training and Policy Gradient in Reinforcement Learn-

ing . 111

7.3 Experiments . 115

7.3.1 Data . 115

7.3.2 Hyperparameters . 116

7.3.3 Baselines . 116

7.3.4 Evaluation . 118

7.3.5 Results . 119

7.3.6 Analysis . 121

7.4 Summary . 121

8 Conclusions and Future Directions 122

xiii

CONTENTS

A Efficient Elicitation of Annotations for Manual System Evaluation 129

A.1 Introduction . 130

A.2 Models . 133

A.2.1 Expected Wins . 134

A.2.2 The Hopkins and May (2013) model 136

A.2.3 TrueSkill . 139

A.2.4 Data selection with TrueSkill . 144

A.3 Experimental setup . 145

A.3.1 Datasets . 145

A.3.2 Perplexity . 146

A.3.3 Accuracy . 147

A.3.4 Parameter Tuning . 148

A.4 Reduced Data Collection with Non-uniform Match Selection 149

A.5 Clustering . 151

A.6 Conclusion . 152

Vita 182

xiv

List of Tables

1.1 Examples of the six base error types in the Helping Our Own (HOO) shared
task (adapted and modified from Dale, Anisimoff, and Narroway (2012)). . 4

1.2 Four quadrant of grammaticality and fluency. 7
1.3 Four quadrant of grammaticality and fluency from the NUCLE language

learner corpus. 7

2.1 Metric scores of three artificially contrived systems, input source sentences,
and top three system outputs. 17

2.2 GEC corpora and the basic information 24
2.3 GEC corpora available for free and several desired properties. 25
2.4 Proportion of errors in Cambridge Learner Corpus 27
2.5 Proportion of errors in the NUS Corpus of Learner English 28

3.1 Example sentences and results for measures of fixation excerpt from Rayner
et al. (2006). 35

3.2 Example spelling correction outputs for the Cmabrigde Uinervtisy sentences. 43
3.3 Spelling correction accuracy (%) with different error types on the entire

test set. 44
3.4 Spelling correction accuracy (%) with different error types on the subset of

test set (50 sentences). 44
3.5 scRNN accuracy (%) on jumbled word recognition with different BPTT

parameters. There were no statistically significant differences among them. 46
3.6 scRNN accuracy (%), the standard deviation, and the size of model file

(KB) on jumbled word recognition with respect to the number of units of
LSTM. 46

3.7 Example sentences and results for spelling correction accuracy by scRNN
variants depending on different jumble conditions. 47

3.8 Error analysis of scRNN variants. 47

4.1 Unlabeled dependency accuracy results with the 5x5 models and test sets. . 63

xv

LIST OF TABLES

4.2 Grammaticality scores by 1-4 scale regression model (Heilman et al., 2014). 63
4.3 Successful and failure examples by EREF. The edits are represented by

[-deletion-] and {+insertion+}. 65

5.1 Examples and counterexamples of technically grammatical and fluent sen-
tences. 77

5.2 An example sentence with expert and non-expert fluency edits. 77
5.3 An example sentence with the original NUCLE correction and fluency and

minimal edits written by experts and non-experts. 81
5.4 Human ranking of the new annotations by grammaticality. 82
5.5 System ranking obtained from human ranking (adapted from Grundkiewicz,

Junczys-Dowmunt, and Gillian (2015). 85
5.6 Correlation between the human ranking and metric scores over different

reference sets. 86
5.7 Inter-annotator agreement of pairwise system judgments within non-experts,

experts and between them. We show Cohen’s κ and quadratic-weighted κ.1 91

6.1 A sentence corrected with just minimal edits compared to fluency edits. . . 97
6.2 JFLEG annotation instructions. 99
6.3 Scores of system outputs. ∗ indicates no significant difference from each

other. 100

7.1 GEC corpora for training . 114
7.2 Summary of baselines, MLE and NRL models. 117
7.3 Human evaluation and GLEU evaluation of system outputs on the develop-

ment and test set. 118
7.4 M2 (F0.5) scores on the dev set. 119
7.5 M2 (F0.5) scores on the test set. 119
7.6 Ratio of pairwise (preference) judgments between NRL and MLE. NRL>MLE:

NRL correction is preferred over MLE. NRL<MLE: MLE is preferred over
NRL. NRL=MLE: NRL and MLE are tied. 120

7.7 Example outputs by MLE and NRL . 120

8.1 GEC corpora available for free (for research purposes) and desired properties.124

A.1 System rankings presented as clusters (WMT13 French-English competition).131

xvi

List of Figures

2.1 An example of the edit lattice created by token-based dynamic programming. 15
2.2 Illustrative example of the neural encoder-decoder model (adapted from

(Sutskever, Vinyals, and Le, 2014)). 22

3.1 Schematic Illustration of semi-character recurrent neural network (scRNN). 33
3.2 Example of the masked priming procedure. 34
3.3 Learning curve of training scRNN with different BPTT parameter (on dev

set): first 40k iterations (top) and its enlarged view between 20k and 40k
iterations (bottom). 45

4.1 Illustrative example of partial derivation under error-repair easy-first non-
directional dependency parsing. 54

4.2 Unlabeled dependency accuracy results with the 5x5 models and test sets
(higher is better). 62

4.3 Grammaticality scores by 1-4 scale regression model 64

5.1 An ungrammatical sentence that can be corrected in different ways. 72
5.2 Mean GLEU scores with different numbers of fluency references. The red

line corresponds to the average GLEU score of the 12 GEC systems and
the vertical bars show the maximum and minimum GLEU scores. 87

5.3 Screenshot of the GEC grammaticality judgment task (HIT). 89
5.4 Output of system rankings by experts and non-experts, from best to worst.

Dotted lines indicate clusters according to bootstrap resampling (p ≤ 0.05). 91

7.1 Illustrative example of the neural encoder-decoder model with attention
(adapted from Bahdanau, Cho, and Bengio (2014)). 106

7.2 Illustration of the exposure bias. 107

A.1 TrueSkill’s vwin and the corresponding loss function in the Hopkins and
May model as a function of the difference t of system means. 141

xvii

LIST OF FIGURES

A.2 TrueSkills vtie and the corresponding loss function in the Hopkins and May
model as a function of the difference t of system means (ε = 0.5, c = 0.3,
and d = 0.5). 142

A.3 Heat map for the ratio of pairwise judgments across the full cross-product
of systems in the WMT13 French-English translation task. 149

A.4 Heat map for the ratio of pairwise judgments across the full cross-product
of systems used in the first 20% of TrueSkill model. 150

A.5 Heat map for the ratio of pairwise judgments across the full cross-product
of systems used in the last 20% of TrueSkill model. 150

A.6 The number of clusters according to the increase of training data for WMT13
French-English (13 systems in total). 153

A.7 The result of clustering by TrueSkill model with 1K training data from
WMT13 French-English. 154

A.8 The result of clustering by TrueSkill model with 25K training data. 155

xviii

Chapter 1

Introduction

1.1 Motivation

Natural language is characterized by its grammar: a set of structural (i.e., syntactic)

rules for composing words, phrases, clauses, and sentences. Grammar enables native

speakers to communicate with the language smoothly. In English, as shown in the fol-

lowing simple example, the subject-verb-object (SVO) word order rule tells which noun

phrase (person) is the subject or the object for the hitting event.

(1) Kim hit Bob.

(2) Bob hit Kim.

Grammar is shared among native speakers to make smooth communication, and to put it

the other way around, sentences that contain grammatical errors break the smooth commu-

1

CHAPTER 1. INTRODUCTION

nication among speakers.

English is the most widely used language, and there are 400 million native speakers in

the United States, Britain, and the Commonwealth. However, there are a billion non-native

English learners in the world (Guo and Beckett, 2007), and that number is expected to grow

at a fast pace. For non-native speakers of English, learning all the English grammar is a

huge obstacle, and the resulting grammatical errors often prevent smooth communication

with native and non-native speakers in English. Therefore, correcting grammatical errors

is important to bridge the gap between native and non-native speakers of English.1

To correct grammatical errors in writing, we may often turn to professional editors

who are the experts of the English language, but this method is sometimes inefficient with

respect to time, and the cost is not always reasonable.2 Automated grammatical error cor-

rection (GEC hereafter) is a computational method that automatically detects grammatical

errors and corrects them.3 Once we train a GEC model, a number of users can benefit from

it with little cost and time.
1Of course, grammatical error correction is important not only for non-native speakers but also native

speakers of English. For example, in some high-stakes environments, such as business, medical, and legal
domains, grammatical errors may critically affect the stakeholders. In fact, many professional proofreading
services exist.

2Again, it often depends on the document’s importance. For high-stake domains, people would likely rely
on professional editors for the accuracy of edits.

3In this thesis, I focus on GEC for English learners’ writing as the main scope.

2

CHAPTER 1. INTRODUCTION

1.2 Brief History of Automated Grammatical Er-

ror Correction

GEC is one of the applications in natural language processing (NLP hereafter), and

it becomes increasingly important as the population of non-native speakers grows more

rapidly. GEC originated in the 1980s, when simple string matching and/or rule-based syn-

tactic analysis were used.4 In the 1990s and early 2000s, data-driven statistical methods

began to overtake the rule-based methods. However, the community did not fully benefit

from the paradigm shift because (1) language learner corpora were scarce and corpora is

necessary for training models, and (2) the community did not have a common framework

(i.e., dataset and metric for benchmarking) for its evaluation, unlike other NLP areas, such

as syntactic parsing with the Penn TreeBank (Marcus et al., 1994).

The GEC community began to address these issues in the 2010s. One of the greatest

impacts on the community was “Helping Our Own” (HOO), a GEC shared task (Dale and

Kilgarriff, 2011; Dale, Anisimoff, and Narroway, 2012) in which participants used the

same dataset to train and evaluate their models. The shared tasks allowed us to compare

GEC models’ performance explicitly. In other words, the community can quantify the

progress of developing GEC systems. After completion of the HOO shared tasks, the

GEC community continued to run another series of shared tasks in CoNLL (The SIGNLL

Conference on Computational Natural Language Learning) in 2013 and 2014 (Ng et al.,

4I do not go into extensive detail about early days of GEC research. For more details, I encourage readers
to refer to Leacock et al. (2014).

3

CHAPTER 1. INTRODUCTION

Error Type Source Correction
Substitution I could only travel on July I could only travel in July
Deletion I am looking forward your reply I am looking forward to your reply
Insertion I have booked a flight to home I have booked a flight home
Substitution The hotel is located on a seaside The hotel is located on the seaside
Deletion I will give you all information I will give you all the information
Insertion One of my hobbies is the photography One of my hobbies is photography

Table 1.1: Examples of the six base error types in Helping Out Own (HOO) shared
task (adapted and modified from Dale, Anisimoff, and Narroway (2012)). The first three
rows contain preposition errors, and the last three rows contain determiner errors.

2013; Ng et al., 2014).

Each of the shared tasks has extended the scope of error types. In the HOO shared

tasks, the targets of grammatical errors were mainly prepositions and determiners (Ta-

ble 1.1), and the CoNLL 2013 added other closed-class error types: noun number, verb

form, and subject-verb agreement.5 These error types are very common in language learn-

ers’ writings and are relatively easy to define as a classification task. As systems improved

and more advanced methods were applied to the task, the definition evolved to include

whole-sentence correction, or correcting all errors in the CoNLL 2014 shared task (Ng et

al., 2014), including word tone errors (e.g., formal or informal), collocation/idiom errors,

and so on.

It is important to note that these new error types do not necessarily violate syntactic

rules, i.e., grammar. Let’s take a look at the following sentences.

(1) *From this scope, social media have shorten our distance.

5Technically, deletion errors (e.g., I am looking forward []/to your reply.) are not as simple as the other two
types (i.e., substitution and insertion errors) because detecting deletion errors includes searching positions (or
indices) in the sentence that potentially have the errors (e.g., the head of a noun phrase).

4

CHAPTER 1. INTRODUCTION

(2) *From this scope, social media has shorten our distance.

(3) From this scope, social media has shortened our distance.

(4) From this perspective, social media has shortened our distance.

(5) From this perspective, social media has shortened the distance between us.

The first sentence is ungrammatical because of the violation of subject-verb number agree-

ment, and it contains the wrong present perfect form (have + past participle) in English

grammar. In the second sentence, the agreement error has been corrected, but it is still

ungrammatical because of the present perfect form error. At this point, we can count and

compare the number of grammatical errors (i.e., grammaticality) between the two sen-

tences. Before the whole sentence correction in the CoNLL 2014 shared task, the commu-

nity paid attention to this perspective. Specifically, the systems are expected to detect and

correct as many grammatical errors as possible. In this sense, the third sentence is perfectly

grammatical.

In the fourth sentence, the writer has further edited the word “scope” to “perspective”,

which makes the sentence sound better to native English speakers. At this point, however,

we do not have a way to quantify and compare the differences between sentences (3) or

(4) just by grammaticality, i.e., counting the number of violations of grammatical rules. In

other words, both sentences are perfectly grammatical, but native speakers still discrimi-

nate among them according to their naturalness. We can still make the fourth sentence more

natural by changing the phrase “our distance” to “the distance between us” as in the fifth

5

CHAPTER 1. INTRODUCTION

sentence. This naturalness cannot be explained only by grammaticality, and of course, this

fact becomes critical when it comes to evaluating GEC systems in the whole-sentence cor-

rection scheme, but the community has overlooked this aspect in the CoNLL 2014 shared

task and the following work with the same benchmarking scheme. Therefore, we need an-

other explicit measurement or metric to capture the differences among the five sentences

above, and it is what we call fluency.

1.3 Grammaticality and Fluency

As we have seen in the previous section, we want a measurement that can capture a sen-

tence’s naturalness to native speakers. In linguistics, it is called fluency (or acceptability).6

The difference between grammaticality and fluency is demonstrated in Table1.2. The four

quadrants show the distinction between grammaticality and fluency for each combination.

The first example (a) shows a famous sentence by Chomsky (Chomsky, 1957), which is

grammatical but not fluent. The second example (b) is grammatical and fluent, and the

third sentence (c) is neither grammatical nor fluent. Finally, the last example (d) is fluent

but not grammatical, as we often find in colloquial sentences, speech transcription, etc.

Table 1.3 shows corresponding examples for each quadrant in the real GEC context that is

extracted from the NUCLE language learner corpus (Dahlmeier, Ng, and Wu, 2013).

It is important to note that these two concepts are not completely orthogonal and inde-

pendent. Generally, grammatical sentences tend to be more fluent and vice versa. Accord-
6Although both terms are often used, I use “fluency” throughout this thesis.

6

CHAPTER 1. INTRODUCTION

Not Fluent Fluent
Grammatical (a) Colorless green ideas sleep fu-

riously.
(b) Harmless young children sleep
quietly.

Not Gram-
matical

(c) Color green idea furious sleep. (d) He wouldn’t know this world in
which we live in.

Table 1.2: Four quadrant of grammaticality and fluency.

Not Fluent Fluent
Grammatical (a) Firstly , someone having any

kind of disease belongs to his or
her privacy.

(b) In addition, it is impractical to
make such a law.

Not Gram-
matical

(c) It is unfair to release a law only
point to the genetic disorder.

(d) I don’t like this book, it’s really
boring.

Table 1.3: Four quadrant of grammaticality and fluency from the NUCLE language learner
corpus.

ing to Lyons (1968), grammaticality is defined as a part of fluency that can be explained

by the rules, and fluency is a more primitive notion than grammaticality and more speaker-

oriented than linguist-oriented.

As we have seen in the previous section, the GEC community has apparently changed

the scope of error types from linguistic aspects (e.g., determiner errors, preposition errors,

etc.) to natural daily usages (e.g., formal/informal errors, word choice errors, etc.) Despite

the pivot, however, the community has kept using the same evaluation scheme based only

on grammaticality. Specifically, the community has overlooked the validity and reliability

of evaluation metrics and benchmarking datasets with respect to fluency.

The main goal of this thesis is to address the concern about “whole-sentence” correc-

tion with fluency and to improve the performance of GEC based on the reassessed evalua-

tion framework. Of course, we are also interested in conventional character or token-level

7

CHAPTER 1. INTRODUCTION

grammatical error correction, as we will see in the following chapters, where fluency is not

directly taken into account.7 These traditional error correction tasks will give us a brief

overview and important technical challenges in error correction and noisy-text processing

in general. In fact, in the real world, we are surrounded by and live with a huge amount of

noisy texts, such as OCR (optical character recognition), texts in social media, and speech

transcriptions. These texts include various kinds of errors such as typos, neologisms, ab-

breviations, reparanda and interregna. In this respect, GEC is also regarded as one of the

noisy-text processing tasks in NLP. Therefore, taken together, I will discuss more back-

ground on the issues in “whole-sentence” correction in the next chapter, followed by the

character and token-level correction, and then I will come back to sentence-level correction.

A more detailed outline of this thesis is described in the next section.

1.4 An Overview of This Thesis

As briefly mentioned in the previous section, the main goal of this thesis is to re-

assess “whole-sentence” error correction by considering fluency in the evaluation metric

and benchmarking dataset and to build fluency-oriented GEC models according to the re-

assessment. In addition, this thesis proposes character and token-level (conventional) gram-

matical error correction models to gain a high-level perspective and challenges in noisy text

processing in general. This thesis’s detailed overview and contributions are summarized as

follows:
7It depends on the scope of the task. Spelling and grammar checking are still important tasks.

8

CHAPTER 1. INTRODUCTION

Chapter 2 introduces relevant work in whole-sentence GEC. In particular, the chapter

summarizes the field of GEC in recent years regarding evaluation metrics, datasets, and

methods. The chapter also briefly presents important issues that prior work has overlooked.

Chapter 3 focuses on character-level errors. Primarily, this chapter proposes a robust

word recognition model for character-level errors. In psycholinguistic literature, it has

been shown that humans have a robust word processing mechanism, where some jumbled

words (e.g., Cmabrigde / Cambridge) are recognized with little cost, but computational

models for word recognition (e.g., spelling checkers) perform poorly on data with such

noise, which is called the Cmabrigde Uinervtisy (Cambridge University) effect. Inspired

by the findings from the Cmabrigde Uinervtisy effect, I propose a word recognition model

based on a semi-character recurrent neural network (scRNN). In the experiments, I demon-

strate that the scRNN performs significantly more robustly in spelling correction (i.e., word

recognition) than existing spelling checkers and character-based convolutional neural net-

works. Furthermore, I demonstrate that the model is cognitively plausible by replicating a

psycholinguistics experiment on human reading difficulty with the model.

Chapter 4 moves on to token-level error correction. In this chapter, I propose a parsing

algorithm that can correct token-level grammatical errors and parse dependency structures

jointly. The algorithm is an extension of Goldberg and Elhadad (2010)’s non-directional

transition-based formalism by adding three additional actions: SUBSTITUTE, DELETE, and

INSERT. These new actions allow us to substitute, delete, or insert tokens during parsing

sentences. Because the new actions may cause an infinite loop in derivation (e.g., infi-

9

CHAPTER 1. INTRODUCTION

nite substitutions and insertion-deletion alternations), I also introduce simple additional

constraints that ensure the parser’s termination. I evaluate the model with respect to ac-

curacy and grammaticality improvements for ungrammatical sentences, demonstrating the

scheme’s robustness and applicability.

Chapter 5 and the following chapters consider “whole-sentence” GEC. First, chapter

5 describes issues in sentence-level GEC with respect to the evaluation metrics, datasets,

and annotation scheme for the benchmark. As briefly explained in Section §1.3, the GEC

community has mainly focused on improving and evaluating grammaticality on character

and token-level errors such as spelling errors and closed-class errors (e.g., determiners,

prepositions, verb-forms, subject-verb agreements, etc.). Also, the conventional annotation

scheme relies on fine-grained error codes, which results in (1) very low inter-annotator

agreement, even among experts, and (2) gold-standard edits that sound unnatural to native

speakers of English. To address these issues, I introduce an alternate annotation scheme for

GEC that considers fluency as well as grammaticality by asking whole-sentence rewrites

instead of token- (or very short phrase) level edits with fine-grained error code constraints.

I claim that the new annotation scheme has a stronger correlation with human judgment on

widely used GEC metrics, which encourages a fundamental and necessary shift in the goal

of GEC toward producing native fluency. I also explain an efficient way to collect human

judgments to rank GEC systems via crowdsourcing. The method is based on a Bayesian

online pairwise ranking aggregation called TrueSkill, and the technical details are described

in Appendix A.

10

CHAPTER 1. INTRODUCTION

Chapter 6 presents a new dataset for benchmarking, JHU FLuency-Extended GUG

corpus (JFLEG), following the suggestions in Chapter 5. Compared with other GEC cor-

pora, JFLEG includes a broad range of learners’ proficiency as well as whole-sentence flu-

ency edits. I also show the result of benchmark by four leading GEC systems on this

dataset.

Chapter 7 proposes an end-to-end sentence-level GEC model that uses a neural encoder-

decoder model with reinforcement learning. Unlike conventional maximum likelihood esti-

mation (MLE), this model directly optimizes toward an objective that considers a sentence-

level, task-specific evaluation metric, avoiding the exposure bias issue found in MLE. I

demonstrate that the proposed model outperforms MLE in human and automated evalua-

tion metrics, achieving the state of the art in a fluency-oriented GEC corpus.

Chapter 8, the final chapter, concludes the thesis and outlines ideas and suggestions

for future research in GEC.

11

Chapter 2

Background

In this chapter, we will take a quick tour of the recent progress in grammatical error

correction (GEC) in terms of the evaluation metrics, methods (i.e., models), and datasets

for benchmarking. Although we start with studies from the 1980s, we primarily focus on

related work published since 2000 indicating the issues that impede research progress in

this area. As we saw in the introduction, the main theme here is the pivot of error types

from character- and token-level error correction to whole-sentence error correction, namely

grammaticality to fluency. This shift to whole-sentence error correction seems reasonable,

but the extension of the scope has prompted some discrepancies regarding the appropriate

benchmarking. This chapter attempts to make the issues clear and search for a solution to

them. In the following sections, we first look at the evaluation metrics (§2.1), then move

on to the GEC models (§2.2) and GEC corpora (§2.3).

12

CHAPTER 2. BACKGROUND

2.1 Evaluation Metrics

Automated evaluation metrics are essential for keeping track of the progress of research.

They enable us to compare performances among different models objectively. The objec-

tive comparison includes synchronic evaluation, as in shared task competitions, and di-

achronic evaluation, such as tracking the improvement of the state-of-the-art performance.

Thus, it is very important to understand the evaluation metrics. They are something like a

compass which should be shared and agreed on the research community. In other words,

if the compass is not accurate, the community will be lost or waste time and labor in the

wrong direction.

In the context of GEC, the task began from character and/or token-level error correction,

in which the evaluation is simple and straightforward. The occurrence of these errors is

typically measured by accuracy, precision, recall, and F-score (also called F-measure, F1

score), which is the harmonic mean of precision and recall. Roughly speaking, they are

computed by accumulating the number of binary (i.e., correct and incorrect) predictions.

Technically, given the following quadrants, each metric is calculated as follows:

Positive (gold) Negative (gold)
Positive (prediction) True Positive (TP) False Positive (FP)
Negative (prediction) False Negative (FN) True Negative (TN)

13

CHAPTER 2. BACKGROUND

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-score = 2 · Precision · Recall
Precision + Recall

In GEC, it is often very confusing to understand what “positive” and “negative” mean.

The positive label means that the token has an error and should be corrected, while the

negative label indicates that the token is correct and should be kept as it is. Namely,

• True Positive: the target token has an error, and the model makes the correct predic-

tion.

• False Positive: the target token does not have an error, but the model makes a change

incorrectly.

• False Negative: the target token has an error, but the model fails to detect it (“do-

nothing”).

• True Negative: the target token does not have an error, and the model does nothing.

In the history of GEC, these standard metrics have been used when the task was rela-

tively simple, such as classification problems (e.g., correcting prepositions). For example,

14

CHAPTER 2. BACKGROUND

feeds word! feeds a word
<latexit sha1_base64="RP0YlZc16vMce7RituN3oovUcz4=">AAACGnicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUASwuxsbzJkdmeZ6TWGJd/hxV/x4kERb+LFv3HyOMTEgoaiqpvuLj+RwqDr/jgrq2vrG5u5rfz2zu7efuHgsGZUqjlUuZJKN3xmQIoYqihQQiPRwCJfQt3v34z9+gNoI1R8j8ME2hHrxiIUnKGVOgWvhfCIWQgQGDpQOhjRlhbdHjKt1YDOu2zqdwpFt+ROQJeJNyNFMkOlU/hqBYqnEcTIJTOm6bkJtjOmUXAJo3wrNZAw3mddaFoaswhMO5u8NqKnVgloqLStGOlEnZ/IWGTMMPJtZ8SwZxa9sfif10wxvGpnIk5ShJhPF4WppKjoOCcaCA0c5dASxrWwt1LeY5pxtGnmbQje4svLpHZe8tySd3dRLF/P4siRY3JCzohHLkmZ3JIKqRJOnsgLeSPvzrPz6nw4n9PWFWc2c0T+wPn+BdI4ofM=</latexit><latexit sha1_base64="RP0YlZc16vMce7RituN3oovUcz4=">AAACGnicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUASwuxsbzJkdmeZ6TWGJd/hxV/x4kERb+LFv3HyOMTEgoaiqpvuLj+RwqDr/jgrq2vrG5u5rfz2zu7efuHgsGZUqjlUuZJKN3xmQIoYqihQQiPRwCJfQt3v34z9+gNoI1R8j8ME2hHrxiIUnKGVOgWvhfCIWQgQGDpQOhjRlhbdHjKt1YDOu2zqdwpFt+ROQJeJNyNFMkOlU/hqBYqnEcTIJTOm6bkJtjOmUXAJo3wrNZAw3mddaFoaswhMO5u8NqKnVgloqLStGOlEnZ/IWGTMMPJtZ8SwZxa9sfif10wxvGpnIk5ShJhPF4WppKjoOCcaCA0c5dASxrWwt1LeY5pxtGnmbQje4svLpHZe8tySd3dRLF/P4siRY3JCzohHLkmZ3JIKqRJOnsgLeSPvzrPz6nw4n9PWFWc2c0T+wPn+BdI4ofM=</latexit><latexit sha1_base64="RP0YlZc16vMce7RituN3oovUcz4=">AAACGnicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUASwuxsbzJkdmeZ6TWGJd/hxV/x4kERb+LFv3HyOMTEgoaiqpvuLj+RwqDr/jgrq2vrG5u5rfz2zu7efuHgsGZUqjlUuZJKN3xmQIoYqihQQiPRwCJfQt3v34z9+gNoI1R8j8ME2hHrxiIUnKGVOgWvhfCIWQgQGDpQOhjRlhbdHjKt1YDOu2zqdwpFt+ROQJeJNyNFMkOlU/hqBYqnEcTIJTOm6bkJtjOmUXAJo3wrNZAw3mddaFoaswhMO5u8NqKnVgloqLStGOlEnZ/IWGTMMPJtZ8SwZxa9sfif10wxvGpnIk5ShJhPF4WppKjoOCcaCA0c5dASxrWwt1LeY5pxtGnmbQje4svLpHZe8tySd3dRLF/P4siRY3JCzohHLkmZ3JIKqRJOnsgLeSPvzrPz6nw4n9PWFWc2c0T+wPn+BdI4ofM=</latexit><latexit sha1_base64="RP0YlZc16vMce7RituN3oovUcz4=">AAACGnicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUASwuxsbzJkdmeZ6TWGJd/hxV/x4kERb+LFv3HyOMTEgoaiqpvuLj+RwqDr/jgrq2vrG5u5rfz2zu7efuHgsGZUqjlUuZJKN3xmQIoYqihQQiPRwCJfQt3v34z9+gNoI1R8j8ME2hHrxiIUnKGVOgWvhfCIWQgQGDpQOhjRlhbdHjKt1YDOu2zqdwpFt+ROQJeJNyNFMkOlU/hqBYqnEcTIJTOm6bkJtjOmUXAJo3wrNZAw3mddaFoaswhMO5u8NqKnVgloqLStGOlEnZ/IWGTMMPJtZ8SwZxa9sfif10wxvGpnIk5ShJhPF4WppKjoOCcaCA0c5dASxrWwt1LeY5pxtGnmbQje4svLpHZe8tySd3dRLF/P4siRY3JCzohHLkmZ3JIKqRJOnsgLeSPvzrPz6nw4n9PWFWc2c0T+wPn+BdI4ofM=</latexit>

feeds word! feeds words
<latexit sha1_base64="XHOks4y9YNYhJek3y5kWmdFxAHc=">AAACGXicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSEGZne5MhszvLTK8xLPkNL/6KFw+KeNSTf+PkcdDEgoaiqpvuLj+RwqDrfju5ldW19Y38ZmFre2d3r7h/UDcq1RxqXEmlmz4zIEUMNRQooZloYJEvoeEPrid+4x60ESq+w1ECnYj1YhEKztBK3aLbRnjALAQIDB0qHYxpW4teH5nWakgXXTPuFktu2Z2CLhNvTkpkjmq3+NkOFE8jiJFLZkzLcxPsZEyj4BLGhXZqIGF8wHrQsjRmEZhONv1sTE+sEtBQaVsx0qn6eyJjkTGjyLedEcO+WfQm4n9eK8XwspOJOEkRYj5bFKaSoqKTmGggNHCUI0sY18LeSnmfacbRhlmwIXiLLy+T+lnZc8ve7XmpcjWPI0+OyDE5JR65IBVyQ6qkRjh5JM/klbw5T86L8+58zFpzznzmkPyB8/UDhkSh2w==</latexit><latexit sha1_base64="XHOks4y9YNYhJek3y5kWmdFxAHc=">AAACGXicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSEGZne5MhszvLTK8xLPkNL/6KFw+KeNSTf+PkcdDEgoaiqpvuLj+RwqDrfju5ldW19Y38ZmFre2d3r7h/UDcq1RxqXEmlmz4zIEUMNRQooZloYJEvoeEPrid+4x60ESq+w1ECnYj1YhEKztBK3aLbRnjALAQIDB0qHYxpW4teH5nWakgXXTPuFktu2Z2CLhNvTkpkjmq3+NkOFE8jiJFLZkzLcxPsZEyj4BLGhXZqIGF8wHrQsjRmEZhONv1sTE+sEtBQaVsx0qn6eyJjkTGjyLedEcO+WfQm4n9eK8XwspOJOEkRYj5bFKaSoqKTmGggNHCUI0sY18LeSnmfacbRhlmwIXiLLy+T+lnZc8ve7XmpcjWPI0+OyDE5JR65IBVyQ6qkRjh5JM/klbw5T86L8+58zFpzznzmkPyB8/UDhkSh2w==</latexit><latexit sha1_base64="XHOks4y9YNYhJek3y5kWmdFxAHc=">AAACGXicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSEGZne5MhszvLTK8xLPkNL/6KFw+KeNSTf+PkcdDEgoaiqpvuLj+RwqDrfju5ldW19Y38ZmFre2d3r7h/UDcq1RxqXEmlmz4zIEUMNRQooZloYJEvoeEPrid+4x60ESq+w1ECnYj1YhEKztBK3aLbRnjALAQIDB0qHYxpW4teH5nWakgXXTPuFktu2Z2CLhNvTkpkjmq3+NkOFE8jiJFLZkzLcxPsZEyj4BLGhXZqIGF8wHrQsjRmEZhONv1sTE+sEtBQaVsx0qn6eyJjkTGjyLedEcO+WfQm4n9eK8XwspOJOEkRYj5bFKaSoqKTmGggNHCUI0sY18LeSnmfacbRhlmwIXiLLy+T+lnZc8ve7XmpcjWPI0+OyDE5JR65IBVyQ6qkRjh5JM/klbw5T86L8+58zFpzznzmkPyB8/UDhkSh2w==</latexit><latexit sha1_base64="XHOks4y9YNYhJek3y5kWmdFxAHc=">AAACGXicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSEGZne5MhszvLTK8xLPkNL/6KFw+KeNSTf+PkcdDEgoaiqpvuLj+RwqDrfju5ldW19Y38ZmFre2d3r7h/UDcq1RxqXEmlmz4zIEUMNRQooZloYJEvoeEPrid+4x60ESq+w1ECnYj1YhEKztBK3aLbRnjALAQIDB0qHYxpW4teH5nWakgXXTPuFktu2Z2CLhNvTkpkjmq3+NkOFE8jiJFLZkzLcxPsZEyj4BLGhXZqIGF8wHrQsjRmEZhONv1sTE+sEtBQaVsx0qn6eyJjkTGjyLedEcO+WfQm4n9eK8XwspOJOEkRYj5bFKaSoqKTmGggNHCUI0sY18LeSnmfacbRhlmwIXiLLy+T+lnZc8ve7XmpcjWPI0+OyDE5JR65IBVyQ6qkRjh5JM/klbw5T86L8+58zFpzznzmkPyB8/UDhkSh2w==</latexit>

feeds
<latexit sha1_base64="t+e/OxNG0t9W3xqbESulUac/3ho=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbSbt0swm7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE45vZ37nEbQRiXrASQpBzIZKRIIztJLvIzxhHgEMzLRfrbl1dw66SryC1EiBZr/65Q8SnsWgkEtmTM9zUwxyplFwCdOKnxlIGR+zIfQsVSwGE+Tzm6f0zCoDGiXalkI6V39P5Cw2ZhKHtjNmODLL3kz8z+tlGF0HuVBphqD4YlGUSYoJnQVAB0IDRzmxhHEt7K2Uj5hmHG1MFRuCt/zyKmlf1D237t1f1ho3RRxlckJOyTnxyBVpkDvSJC3CSUqeySt5czLnxXl3PhatJaeYOSZ/4Hz+AKdtkhI=</latexit><latexit sha1_base64="t+e/OxNG0t9W3xqbESulUac/3ho=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbSbt0swm7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE45vZ37nEbQRiXrASQpBzIZKRIIztJLvIzxhHgEMzLRfrbl1dw66SryC1EiBZr/65Q8SnsWgkEtmTM9zUwxyplFwCdOKnxlIGR+zIfQsVSwGE+Tzm6f0zCoDGiXalkI6V39P5Cw2ZhKHtjNmODLL3kz8z+tlGF0HuVBphqD4YlGUSYoJnQVAB0IDRzmxhHEt7K2Uj5hmHG1MFRuCt/zyKmlf1D237t1f1ho3RRxlckJOyTnxyBVpkDvSJC3CSUqeySt5czLnxXl3PhatJaeYOSZ/4Hz+AKdtkhI=</latexit><latexit sha1_base64="t+e/OxNG0t9W3xqbESulUac/3ho=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbSbt0swm7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE45vZ37nEbQRiXrASQpBzIZKRIIztJLvIzxhHgEMzLRfrbl1dw66SryC1EiBZr/65Q8SnsWgkEtmTM9zUwxyplFwCdOKnxlIGR+zIfQsVSwGE+Tzm6f0zCoDGiXalkI6V39P5Cw2ZhKHtjNmODLL3kz8z+tlGF0HuVBphqD4YlGUSYoJnQVAB0IDRzmxhHEt7K2Uj5hmHG1MFRuCt/zyKmlf1D237t1f1ho3RRxlckJOyTnxyBVpkDvSJC3CSUqeySt5czLnxXl3PhatJaeYOSZ/4Hz+AKdtkhI=</latexit><latexit sha1_base64="t+e/OxNG0t9W3xqbESulUac/3ho=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbSbt0swm7E7GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE45vZ37nEbQRiXrASQpBzIZKRIIztJLvIzxhHgEMzLRfrbl1dw66SryC1EiBZr/65Q8SnsWgkEtmTM9zUwxyplFwCdOKnxlIGR+zIfQsVSwGE+Tzm6f0zCoDGiXalkI6V39P5Cw2ZhKHtjNmODLL3kz8z+tlGF0HuVBphqD4YlGUSYoJnQVAB0IDRzmxhHEt7K2Uj5hmHG1MFRuCt/zyKmlf1D237t1f1ho3RRxlckJOyTnxyBVpkDvSJC3CSUqeySt5czLnxXl3PhatJaeYOSZ/4Hz+AKdtkhI=</latexit>

feeds! feeds a
<latexit sha1_base64="cg3WSmO5SMslw28RyyltiAayqj0=">AAACEHicbVA9SwNBEN3zM8avU0ubxSBahTsRtAzaWEYwH5CEsLc3lyzZ+2B3Tg1HfoKNf8XGQhFbSzv/jZvkipj4YODx3gwz87xECo2O82MtLa+srq0XNoqbW9s7u/befl3HqeJQ47GMVdNjGqSIoIYCJTQTBSz0JDS8wfXYb9yD0iKO7nCYQCdkvUgEgjM0Utc+aSM8YhYA+HpE20r0+siUih/ojEHZqGuXnLIzAV0kbk5KJEe1a3+3/ZinIUTIJdO65ToJdjKmUHAJo2I71ZAwPmA9aBkasRB0J5s8NKLHRvFpECtTEdKJOjuRsVDrYeiZzpBhX897Y/E/r5VicNnJRJSkCBGfLgpSSTGm43SoLxRwlENDGFfC3Ep5nynG0WRYNCG48y8vkvpZ2XXK7u15qXKVx1Egh+SInBKXXJAKuSFVUiOcPJEX8kberWfr1fqwPqetS1Y+c0D+wPr6BRDhndc=</latexit><latexit sha1_base64="cg3WSmO5SMslw28RyyltiAayqj0=">AAACEHicbVA9SwNBEN3zM8avU0ubxSBahTsRtAzaWEYwH5CEsLc3lyzZ+2B3Tg1HfoKNf8XGQhFbSzv/jZvkipj4YODx3gwz87xECo2O82MtLa+srq0XNoqbW9s7u/befl3HqeJQ47GMVdNjGqSIoIYCJTQTBSz0JDS8wfXYb9yD0iKO7nCYQCdkvUgEgjM0Utc+aSM8YhYA+HpE20r0+siUih/ojEHZqGuXnLIzAV0kbk5KJEe1a3+3/ZinIUTIJdO65ToJdjKmUHAJo2I71ZAwPmA9aBkasRB0J5s8NKLHRvFpECtTEdKJOjuRsVDrYeiZzpBhX897Y/E/r5VicNnJRJSkCBGfLgpSSTGm43SoLxRwlENDGFfC3Ep5nynG0WRYNCG48y8vkvpZ2XXK7u15qXKVx1Egh+SInBKXXJAKuSFVUiOcPJEX8kberWfr1fqwPqetS1Y+c0D+wPr6BRDhndc=</latexit><latexit sha1_base64="cg3WSmO5SMslw28RyyltiAayqj0=">AAACEHicbVA9SwNBEN3zM8avU0ubxSBahTsRtAzaWEYwH5CEsLc3lyzZ+2B3Tg1HfoKNf8XGQhFbSzv/jZvkipj4YODx3gwz87xECo2O82MtLa+srq0XNoqbW9s7u/befl3HqeJQ47GMVdNjGqSIoIYCJTQTBSz0JDS8wfXYb9yD0iKO7nCYQCdkvUgEgjM0Utc+aSM8YhYA+HpE20r0+siUih/ojEHZqGuXnLIzAV0kbk5KJEe1a3+3/ZinIUTIJdO65ToJdjKmUHAJo2I71ZAwPmA9aBkasRB0J5s8NKLHRvFpECtTEdKJOjuRsVDrYeiZzpBhX897Y/E/r5VicNnJRJSkCBGfLgpSSTGm43SoLxRwlENDGFfC3Ep5nynG0WRYNCG48y8vkvpZ2XXK7u15qXKVx1Egh+SInBKXXJAKuSFVUiOcPJEX8kberWfr1fqwPqetS1Y+c0D+wPr6BRDhndc=</latexit><latexit sha1_base64="cg3WSmO5SMslw28RyyltiAayqj0=">AAACEHicbVA9SwNBEN3zM8avU0ubxSBahTsRtAzaWEYwH5CEsLc3lyzZ+2B3Tg1HfoKNf8XGQhFbSzv/jZvkipj4YODx3gwz87xECo2O82MtLa+srq0XNoqbW9s7u/befl3HqeJQ47GMVdNjGqSIoIYCJTQTBSz0JDS8wfXYb9yD0iKO7nCYQCdkvUgEgjM0Utc+aSM8YhYA+HpE20r0+siUih/ojEHZqGuXnLIzAV0kbk5KJEe1a3+3/ZinIUTIJdO65ToJdjKmUHAJo2I71ZAwPmA9aBkasRB0J5s8NKLHRvFpECtTEdKJOjuRsVDrYeiZzpBhX897Y/E/r5VicNnJRJSkCBGfLgpSSTGm43SoLxRwlENDGFfC3Ep5nynG0WRYNCG48y8vkvpZ2XXK7u15qXKVx1Egh+SInBKXXJAKuSFVUiOcPJEX8kberWfr1fqwPqetS1Y+c0D+wPr6BRDhndc=</latexit>

�! a
<latexit sha1_base64="ScfNaAookKTT+ylKMeTSpNARNF0=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IRPJVEBD0WvXisYD+gCWWz3TRLN5uwO1FLKF78K148KOLVX+HNf+O2zUFbHww83pthZl6QCq7Bcb6t0tLyyupaeb2ysbm1vWPv7rV0kinKmjQRieoERDPBJWsCB8E6qWIkDgRrB8Orid++Y0rzRN7CKGV+TAaSh5wSMFLPPvDSiGNP8UEERKnkHnvAHiAn455ddWrOFHiRuAWpogKNnv3l9ROaxUwCFUTrruuk4OdEAaeCjStepllK6JAMWNdQSWKm/Xz6whgfG6WPw0SZkoCn6u+JnMRaj+LAdMYEIj3vTcT/vG4G4YWfc5lmwCSdLQozgSHBkzxwnytGQYwMIVRxcyumEVGEgkmtYkJw519eJK3TmuvU3Juzav2yiKOMDtEROkEuOkd1dI0aqIkoekTP6BW9WU/Wi/VufcxaS1Yxs4/+wPr8Abe/l6E=</latexit><latexit sha1_base64="ScfNaAookKTT+ylKMeTSpNARNF0=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IRPJVEBD0WvXisYD+gCWWz3TRLN5uwO1FLKF78K148KOLVX+HNf+O2zUFbHww83pthZl6QCq7Bcb6t0tLyyupaeb2ysbm1vWPv7rV0kinKmjQRieoERDPBJWsCB8E6qWIkDgRrB8Orid++Y0rzRN7CKGV+TAaSh5wSMFLPPvDSiGNP8UEERKnkHnvAHiAn455ddWrOFHiRuAWpogKNnv3l9ROaxUwCFUTrruuk4OdEAaeCjStepllK6JAMWNdQSWKm/Xz6whgfG6WPw0SZkoCn6u+JnMRaj+LAdMYEIj3vTcT/vG4G4YWfc5lmwCSdLQozgSHBkzxwnytGQYwMIVRxcyumEVGEgkmtYkJw519eJK3TmuvU3Juzav2yiKOMDtEROkEuOkd1dI0aqIkoekTP6BW9WU/Wi/VufcxaS1Yxs4/+wPr8Abe/l6E=</latexit><latexit sha1_base64="ScfNaAookKTT+ylKMeTSpNARNF0=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IRPJVEBD0WvXisYD+gCWWz3TRLN5uwO1FLKF78K148KOLVX+HNf+O2zUFbHww83pthZl6QCq7Bcb6t0tLyyupaeb2ysbm1vWPv7rV0kinKmjQRieoERDPBJWsCB8E6qWIkDgRrB8Orid++Y0rzRN7CKGV+TAaSh5wSMFLPPvDSiGNP8UEERKnkHnvAHiAn455ddWrOFHiRuAWpogKNnv3l9ROaxUwCFUTrruuk4OdEAaeCjStepllK6JAMWNdQSWKm/Xz6whgfG6WPw0SZkoCn6u+JnMRaj+LAdMYEIj3vTcT/vG4G4YWfc5lmwCSdLQozgSHBkzxwnytGQYwMIVRxcyumEVGEgkmtYkJw519eJK3TmuvU3Juzav2yiKOMDtEROkEuOkd1dI0aqIkoekTP6BW9WU/Wi/VufcxaS1Yxs4/+wPr8Abe/l6E=</latexit><latexit sha1_base64="ScfNaAookKTT+ylKMeTSpNARNF0=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IRPJVEBD0WvXisYD+gCWWz3TRLN5uwO1FLKF78K148KOLVX+HNf+O2zUFbHww83pthZl6QCq7Bcb6t0tLyyupaeb2ysbm1vWPv7rV0kinKmjQRieoERDPBJWsCB8E6qWIkDgRrB8Orid++Y0rzRN7CKGV+TAaSh5wSMFLPPvDSiGNP8UEERKnkHnvAHiAn455ddWrOFHiRuAWpogKNnv3l9ROaxUwCFUTrruuk4OdEAaeCjStepllK6JAMWNdQSWKm/Xz6whgfG6WPw0SZkoCn6u+JnMRaj+LAdMYEIj3vTcT/vG4G4YWfc5lmwCSdLQozgSHBkzxwnytGQYwMIVRxcyumEVGEgkmtYkJw519eJK3TmuvU3Juzav2yiKOMDtEROkEuOkd1dI0aqIkoekTP6BW9WU/Wi/VufcxaS1Yxs4/+wPr8Abe/l6E=</latexit>

word
<latexit sha1_base64="2sHH9I6rflWjcplmtXVFMxWgRjE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvNtF262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0gxZTQun7iBoQXEILOQq4TzXQJBLQiUbXU7/zANpwJe9wnEKY0IHkfc4oWinoIjxh/qh0POlVa17dm8FdJn5BaqRAs1f96saKZQlIZIIaE/heimFONXImYFLpZgZSykZ0AIGlkiZgwnx28sQ9sUrs9pW2JdGdqb8ncpoYM04i25lQHJpFbyr+5wUZ9i/DnMs0Q5BsvqifCReVO/3fjbkGhmJsCWWa21tdNqSaMrQpVWwI/uLLy6R9Vve9un97XmtcFXGUyRE5JqfEJxekQW5Ik7QII4o8k1fy5qDz4rw7H/PWklPMHJI/cD5/AAyikb0=</latexit><latexit sha1_base64="2sHH9I6rflWjcplmtXVFMxWgRjE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvNtF262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0gxZTQun7iBoQXEILOQq4TzXQJBLQiUbXU7/zANpwJe9wnEKY0IHkfc4oWinoIjxh/qh0POlVa17dm8FdJn5BaqRAs1f96saKZQlIZIIaE/heimFONXImYFLpZgZSykZ0AIGlkiZgwnx28sQ9sUrs9pW2JdGdqb8ncpoYM04i25lQHJpFbyr+5wUZ9i/DnMs0Q5BsvqifCReVO/3fjbkGhmJsCWWa21tdNqSaMrQpVWwI/uLLy6R9Vve9un97XmtcFXGUyRE5JqfEJxekQW5Ik7QII4o8k1fy5qDz4rw7H/PWklPMHJI/cD5/AAyikb0=</latexit><latexit sha1_base64="2sHH9I6rflWjcplmtXVFMxWgRjE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvNtF262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0gxZTQun7iBoQXEILOQq4TzXQJBLQiUbXU7/zANpwJe9wnEKY0IHkfc4oWinoIjxh/qh0POlVa17dm8FdJn5BaqRAs1f96saKZQlIZIIaE/heimFONXImYFLpZgZSykZ0AIGlkiZgwnx28sQ9sUrs9pW2JdGdqb8ncpoYM04i25lQHJpFbyr+5wUZ9i/DnMs0Q5BsvqifCReVO/3fjbkGhmJsCWWa21tdNqSaMrQpVWwI/uLLy6R9Vve9un97XmtcFXGUyRE5JqfEJxekQW5Ik7QII4o8k1fy5qDz4rw7H/PWklPMHJI/cD5/AAyikb0=</latexit><latexit sha1_base64="2sHH9I6rflWjcplmtXVFMxWgRjE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvNtF262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0gxZTQun7iBoQXEILOQq4TzXQJBLQiUbXU7/zANpwJe9wnEKY0IHkfc4oWinoIjxh/qh0POlVa17dm8FdJn5BaqRAs1f96saKZQlIZIIaE/heimFONXImYFLpZgZSykZ0AIGlkiZgwnx28sQ9sUrs9pW2JdGdqb8ncpoYM04i25lQHJpFbyr+5wUZ9i/DnMs0Q5BsvqifCReVO/3fjbkGhmJsCWWa21tdNqSaMrQpVWwI/uLLy6R9Vve9un97XmtcFXGUyRE5JqfEJxekQW5Ik7QII4o8k1fy5qDz4rw7H/PWklPMHJI/cD5/AAyikb0=</latexit>

word! a word
<latexit sha1_base64="Y6DKMCd/RYbUjElXwWFaKY0JMds=">AAACN3icbZDLSgMxFIYzXmu9VV26CRbBhZQZEXRZdONKKtgLdIaSSdM2NDMZkjPWMsxbufE13OnGhSJufQPTaS3aeiDw8f/nJCe/HwmuwbafrYXFpeWV1dxafn1jc2u7sLNb0zJWlFWpFFI1fKKZ4CGrAgfBGpFiJPAFq/v9y5Ffv2NKcxnewjBiXkC6Ie9wSsBIrcJ14maXNFXX9xK7ZGd1PAVnAqkL7B6SgVTtFLuKd3tAlJIDPNYJzpy0VSj+jOIpOLNQRJOqtApPblvSOGAhUEG0bjp2BF5CFHAqWJp3Y80iQvuky5oGQxIw7SXZyik+NEobd6QyJwScqb8nEhJoPQx80xkQ6OlZbyT+5zVj6Jx7CQ+jGFhIxw91YoFB4lGIuM0VoyCGBghV3OyKaY8oQsFEnTchzH15HmonJccuOTenxfLFJI4c2kcH6Ag56AyV0RWqoCqi6AG9oDf0bj1ar9aH9TluXbAmM3voT1lf31iTqfk=</latexit><latexit sha1_base64="Y6DKMCd/RYbUjElXwWFaKY0JMds=">AAACN3icbZDLSgMxFIYzXmu9VV26CRbBhZQZEXRZdONKKtgLdIaSSdM2NDMZkjPWMsxbufE13OnGhSJufQPTaS3aeiDw8f/nJCe/HwmuwbafrYXFpeWV1dxafn1jc2u7sLNb0zJWlFWpFFI1fKKZ4CGrAgfBGpFiJPAFq/v9y5Ffv2NKcxnewjBiXkC6Ie9wSsBIrcJ14maXNFXX9xK7ZGd1PAVnAqkL7B6SgVTtFLuKd3tAlJIDPNYJzpy0VSj+jOIpOLNQRJOqtApPblvSOGAhUEG0bjp2BF5CFHAqWJp3Y80iQvuky5oGQxIw7SXZyik+NEobd6QyJwScqb8nEhJoPQx80xkQ6OlZbyT+5zVj6Jx7CQ+jGFhIxw91YoFB4lGIuM0VoyCGBghV3OyKaY8oQsFEnTchzH15HmonJccuOTenxfLFJI4c2kcH6Ag56AyV0RWqoCqi6AG9oDf0bj1ar9aH9TluXbAmM3voT1lf31iTqfk=</latexit><latexit sha1_base64="Y6DKMCd/RYbUjElXwWFaKY0JMds=">AAACN3icbZDLSgMxFIYzXmu9VV26CRbBhZQZEXRZdONKKtgLdIaSSdM2NDMZkjPWMsxbufE13OnGhSJufQPTaS3aeiDw8f/nJCe/HwmuwbafrYXFpeWV1dxafn1jc2u7sLNb0zJWlFWpFFI1fKKZ4CGrAgfBGpFiJPAFq/v9y5Ffv2NKcxnewjBiXkC6Ie9wSsBIrcJ14maXNFXX9xK7ZGd1PAVnAqkL7B6SgVTtFLuKd3tAlJIDPNYJzpy0VSj+jOIpOLNQRJOqtApPblvSOGAhUEG0bjp2BF5CFHAqWJp3Y80iQvuky5oGQxIw7SXZyik+NEobd6QyJwScqb8nEhJoPQx80xkQ6OlZbyT+5zVj6Jx7CQ+jGFhIxw91YoFB4lGIuM0VoyCGBghV3OyKaY8oQsFEnTchzH15HmonJccuOTenxfLFJI4c2kcH6Ag56AyV0RWqoCqi6AG9oDf0bj1ar9aH9TluXbAmM3voT1lf31iTqfk=</latexit><latexit sha1_base64="Y6DKMCd/RYbUjElXwWFaKY0JMds=">AAACN3icbZDLSgMxFIYzXmu9VV26CRbBhZQZEXRZdONKKtgLdIaSSdM2NDMZkjPWMsxbufE13OnGhSJufQPTaS3aeiDw8f/nJCe/HwmuwbafrYXFpeWV1dxafn1jc2u7sLNb0zJWlFWpFFI1fKKZ4CGrAgfBGpFiJPAFq/v9y5Ffv2NKcxnewjBiXkC6Ie9wSsBIrcJ14maXNFXX9xK7ZGd1PAVnAqkL7B6SgVTtFLuKd3tAlJIDPNYJzpy0VSj+jOIpOLNQRJOqtApPblvSOGAhUEG0bjp2BF5CFHAqWJp3Y80iQvuky5oGQxIw7SXZyik+NEobd6QyJwScqb8nEhJoPQx80xkQ6OlZbyT+5zVj6Jx7CQ+jGFhIxw91YoFB4lGIuM0VoyCGBghV3OyKaY8oQsFEnTchzH15HmonJccuOTenxfLFJI4c2kcH6Ag56AyV0RWqoCqi6AG9oDf0bj1ar9aH9TluXbAmM3voT1lf31iTqfk=</latexit>

word! words
<latexit sha1_base64="EXGqk6bi3OX3cQbFy+AXCsQccDA=">AAACNnicbZDLSgMxFIYz9VbrrerSTbAILqTMiKDLohs3QgV7gc5QMmnahmYmQ3LGWoZ5Kjc+h7tuXCji1kcwvVi19YfAx3/OSU5+PxJcg20PrczS8srqWnY9t7G5tb2T392rahkryipUCqnqPtFM8JBVgINg9UgxEviC1fze1aheu2dKcxnewSBiXkA6IW9zSsBYzfxN4o4vaaiO7yV20R7rZAbOFFIX2AMkfalaKXYV73SBKCX7+MfXadrMF74n8QyceSigqcrN/LPbkjQOWAhUEK0bjh2BlxAFnAqW5txYs4jQHumwhsGQBEx7yXjjFB8Zp4XbUpkTAh67vycSEmg9CHzTGRDo6vnayPyv1oihfeElPIxiYCGdPNSOBQaJRxniFleMghgYIFRxsyumXaIIBZN0zoSw8OVFqJ4WHbvo3J4VSpfTOLLoAB2iY+Sgc1RC16iMKoiiRzREr+jNerJerHfrY9KasaYz++iPrM8vBfGp4Q==</latexit><latexit sha1_base64="EXGqk6bi3OX3cQbFy+AXCsQccDA=">AAACNnicbZDLSgMxFIYz9VbrrerSTbAILqTMiKDLohs3QgV7gc5QMmnahmYmQ3LGWoZ5Kjc+h7tuXCji1kcwvVi19YfAx3/OSU5+PxJcg20PrczS8srqWnY9t7G5tb2T392rahkryipUCqnqPtFM8JBVgINg9UgxEviC1fze1aheu2dKcxnewSBiXkA6IW9zSsBYzfxN4o4vaaiO7yV20R7rZAbOFFIX2AMkfalaKXYV73SBKCX7+MfXadrMF74n8QyceSigqcrN/LPbkjQOWAhUEK0bjh2BlxAFnAqW5txYs4jQHumwhsGQBEx7yXjjFB8Zp4XbUpkTAh67vycSEmg9CHzTGRDo6vnayPyv1oihfeElPIxiYCGdPNSOBQaJRxniFleMghgYIFRxsyumXaIIBZN0zoSw8OVFqJ4WHbvo3J4VSpfTOLLoAB2iY+Sgc1RC16iMKoiiRzREr+jNerJerHfrY9KasaYz++iPrM8vBfGp4Q==</latexit><latexit sha1_base64="EXGqk6bi3OX3cQbFy+AXCsQccDA=">AAACNnicbZDLSgMxFIYz9VbrrerSTbAILqTMiKDLohs3QgV7gc5QMmnahmYmQ3LGWoZ5Kjc+h7tuXCji1kcwvVi19YfAx3/OSU5+PxJcg20PrczS8srqWnY9t7G5tb2T392rahkryipUCqnqPtFM8JBVgINg9UgxEviC1fze1aheu2dKcxnewSBiXkA6IW9zSsBYzfxN4o4vaaiO7yV20R7rZAbOFFIX2AMkfalaKXYV73SBKCX7+MfXadrMF74n8QyceSigqcrN/LPbkjQOWAhUEK0bjh2BlxAFnAqW5txYs4jQHumwhsGQBEx7yXjjFB8Zp4XbUpkTAh67vycSEmg9CHzTGRDo6vnayPyv1oihfeElPIxiYCGdPNSOBQaJRxniFleMghgYIFRxsyumXaIIBZN0zoSw8OVFqJ4WHbvo3J4VSpfTOLLoAB2iY+Sgc1RC16iMKoiiRzREr+jNerJerHfrY9KasaYz++iPrM8vBfGp4Q==</latexit><latexit sha1_base64="EXGqk6bi3OX3cQbFy+AXCsQccDA=">AAACNnicbZDLSgMxFIYz9VbrrerSTbAILqTMiKDLohs3QgV7gc5QMmnahmYmQ3LGWoZ5Kjc+h7tuXCji1kcwvVi19YfAx3/OSU5+PxJcg20PrczS8srqWnY9t7G5tb2T392rahkryipUCqnqPtFM8JBVgINg9UgxEviC1fze1aheu2dKcxnewSBiXkA6IW9zSsBYzfxN4o4vaaiO7yV20R7rZAbOFFIX2AMkfalaKXYV73SBKCX7+MfXadrMF74n8QyceSigqcrN/LPbkjQOWAhUEK0bjh2BlxAFnAqW5txYs4jQHumwhsGQBEx7yXjjFB8Zp4XbUpkTAh67vycSEmg9CHzTGRDo6vnayPyv1oihfeElPIxiYCGdPNSOBQaJRxniFleMghgYIFRxsyumXaIIBZN0zoSw8OVFqJ4WHbvo3J4VSpfTOLLoAB2iY+Sgc1RC16iMKoiiRzREr+jNerJerHfrY9KasaYz++iPrM8vBfGp4Q==</latexit>

Figure 2.1: An example of the edit lattice created by token-based dynamic programming.
The blue edges correspond to the (multiple) gold edits, and the green (dotted) edges are
additional possible gold edits.

the HOO shared tasks used the F-score as the metric, in which they mainly targeted 6 types

of errors: substitutions, deletions, and insertions of prepositions and determiners (Table1.1

in Chapter 1).

Following the success of the HOO shared tasks, the GEC community has conducted

CoNLL shared tasks (Ng et al., 2013; Ng et al., 2014). With respect to the evaluation

measure of the CoNLL shared tasks, MaxMatch (M2) has been introduced (Dahlmeier and

Ng, 2012b). M2, a variant of F-score, was proposed to deal with both word- and phrase-

level edits as well as allowing multiple references. M2 can capture additional possible gold

edits as well as the original gold edits by looking at the edit-lattice; let’s take a look at the

following example.

This example shows that the hypothesis is a correct edit but it is not credited by the

mismatch with either gold edit. To address this issue, as shown in Figure 2.1, M2 initially

aligns a source and the hypothesis by token-based dynamic programming (i.e., edit-distance

15

CHAPTER 2. BACKGROUND

Source: Our baseline system feeds word into PB-SMT pipeline.
Reference 1: Our baseline system feeds a word into PB-SMT pipeline.
Reference 2: Our baseline system feeds words into PB-SMT pipeline.
Gold edit 1: word / a word
Gold edit 2: word / words
Hypothesis: φ / a

measure), and then builds an edit-lattice that contains additional possible edits. In order to

avoid unnecessarily long edits (e.g., baseline system feeds word / baseline system feeds a

word), M2 sets the maximum span as 2.) In the edit-lattice, the same edge cost is assigned

except the original gold edits where negative cost is assigned. The shortest path algorithm

is applied to extract the most reasonable set of edits between the hypothesis and reference.

M2 was used as the official metric in CoNLL shared tasks and became a de facto stan-

dard metric for GEC. However, some limitations have been pointed out. First, phrase-level

edits in M2 can be easily gamed because the lattice treats a long phrase deletion as one edit.

For example, when we put a single character ‘X’ as system output for each sentence, we

obtain P = 27.6, R = 29.5, and M2= 28.0 (Table 2.1), which would be ranked 6th out

of 13 systems in the CoNLL 2014 shared task. Another issue is that M2 does not capture

the difference between the “do nothing” baseline and “all wrong edits.” In other words,

the unchanged source sentences will get the lowest score of 0.0, and there is no penalty for

making the source sentences worse (i.e., more ungrammatical).

Considering these problems, two other metrics have been proposed. Felice and Briscoe

(2015) proposed I-Measure (IM), which computes the weighted accuracy of a token-level

alignment between the source, hypothesis, and reference sentences. Although the IM con-

16

CHAPTER 2. BACKGROUND

GLEU IM M2 [0, 100]
System [0,100] [-100,100] P R F0.5

“a” 0.2 0.0 28.4 31.3 28.9
“the” 0.2 -0.91 27.0 28.3 27.2
“.” 0.2 -0.89 28.0 29.2 28.2
“x” 0.2 -0.93 27.6 29.5 28.0
“a a” 0.6 0.0 28.7 31.8 29.3
“the the” 0.6 -0.91 26.2 26.8 26.3
“a a a” 1.6 0.0 28.7 32.0 29.4
“the the the” 1.7 -0.90 25.1 26.3 25.4
Source 57.4 0.0 100.0 0.0 0.0
CAMB14 64.3 -5.3 39.7 30.1 37.3
CUUI14 64.6 -2.2 41.8 24.9 36.8
AMU14 64.6 -2.5 41.6 21.4 35.0
Src>Game 3 7 3 7 7

Src<System 3 7 7 3 3

Table 2.1: Metric scores of three artificially contrived systems (Game), input source
sentences (Src), and top three system outputs, CAMB14 (Felice et al., 2014), CUUI14
(Rozovskaya et al., 2014), and AMU14 (Junczys-Dowmunt and Grundkiewicz, 2014) on
CoNLL 2014 data (Ng et al., 2014). The bottom two rows show whether each metric scores
the systems better than Game or worse than Source. Humans judge all systems be better
than over Source.

siders the distinction between “do-nothing (already grammatical) baseline” and systems

that only propose wrong corrections (i.e., make the source sentence worse), Grundkiewicz,

Junczys-Dowmunt, and Gillian (2015) and Napoles et al. (2015) showed the negative cor-

relation of the IM and human judgments. They also present that BLEU metric also has

negative correlations when used for evaluating GEC systems. This is replicated more re-

cently by (Choshen and Abend, 2018a). Furthermore, as Table 2.1 shows, IM is also easily

gamed by dummy systems.

To address these issues, we proposed GLEU (Napoles et al., 2015), which is a variant of

BLEU in machine translation. Based on BLEU (Papineni et al., 2002), GLEU computes n-

17

CHAPTER 2. BACKGROUND

gram precision of the system output against reference sentences and additionally penalizes

n-grams in the hypothesis that should have been corrected but failed. Formally,

GLEU = BP · exp

(
4∑

n=1

1

n
log p′n

)

p′n =
N(H,R)− [N(H,S)−N(H,S,R)]

N(H)

BP =


1 if h > r

exp(1− r/h) if h ≤ r

where N(A,B,C, ...) is the number of overlapped n-grams among the sets, and BP brevity

penalty is computed based on token length in the system hypothesis (h) and the reference

(r). Similar to BLEU, GLEU computes n-gram precision between the system hypothesis

(H) and the reference (R). In GLEU, however, n-grams in source (S) are also considered.

The precision is penalized when the n-gram in H overlaps with the source and not with

the reference. (i.e., phrases that should have been changed but weren’t. This penalizes

systems from doing nothing when they should have acted.) As Table 2.1 shows, GLEU

addressed the above concerns (i.e., distinction between “do-nothing” and “all wrong edits,”

and robustness for gaming systems).

In this section, we have looked at the recent progress and issues in evaluation metrics

for GEC. As mentioned above, evaluation metrics are important because they establish the

research direction for the community. We will come back to the investigation of best prac-

tice for GEC benchmarking with respect to the evaluation metrics and dataset in Chapter 5.

18

CHAPTER 2. BACKGROUND

2.2 Methods

In the GEC task, models are expected to detect and correct grammatical (and fluency)

errors. While the scope of GEC has extended from closed-class error correction to whole-

sentence correction, roughly four kinds of approaches have been proposed for GEC: the

heuristic rules-based approach, classification (and the cascaded variant), phrase-based ma-

chine translation (PBMT), and neural machine translation (NMT). In this section, we will

look at the pros and cons of each approach.

Rule-based approaches are effective when the errors depend on strict syntactic rules

such as subject-verb agreement and noun numbers. The rule-based models have several

advantages. First, they perform highly precisely; once the rule is detected, the correction

is automatically applied. Another advantage of this approach is that it does not require a

dataset to train the model, whereas recent statistical approaches, as we will see later on,

need a large amount of (error-annotated or parallel) corpora. The rule-based approach is

also helpful when it comes to giving feedback to the users (e.g., language learners,) by

showing the applied rule explicitly. In fact, product-level systems such as ALEK (Assess-

ing LExical Knowledge) at Educational Testing Service (Burstein and Chodorow, 1999;

Chodorow and Leacock, 2000) and ESL Assistant from Microsoft (Gamon et al., 2009)

employ rule-based approaches for specific types of errors.

One crucial drawback of the rule-based approach, however, is the coverage of error

types. When it comes to grammatical errors that require larger contexts such as word

choice, determiner, and pronoun errors, it is almost impossible to list all the heuristic rules.

19

CHAPTER 2. BACKGROUND

For example, word choice and collocation rules are difficult to establish in advance, because

learner errors are too diverse to be listed. Furthermore, the rule-based approach does not

scale, because these rules are made by humans (often experts), which costs a huge amount

of money and time.

As large numbers of text corpus have become available in the field, classification mod-

els have become very popular in the GEC community. The classification models are often

used for closed-class errors such as preposition, determiner, and verb form errors. One

unique aspect of this approach is feature designing (or feature engineering). In order to

train classifiers, we are expected to decide what features will be useful for improving the

performance. Typically, n-gram features are used as the baseline, and syntactic features

(e.g., dependency labels) are added depending on the error type. For example, Lee (2004)

proposed an article error correction system using a log-linear model (i.e., maximum entropy

classifier) with syntactic features extracted from Penn Treebank (Marcus, Marcinkiewicz,

and Santorini, 1993). Nagata et al. (2006) used a log-linear model for mass/count noun

prediction with more contextual features shared per discourse (i.e., beyond a sentence).

Izumi, Uchimoto, and Isahara (2004) and Felice and Pulman (2008) applied a maximum

entropy classifier for preposition errors. Dahlmeier and Ng (2011) proposed a joint article

and preposition error correction model using an Alternating Structure Optimization (ASO)

algorithm (Ando and Zhang, 2005). Rozovskaya and Roth (2011) applied various clas-

sification methods, such as Naı̈ve Bayes (NB), Averaged Perceptron (AP), and Language

Model (LM) score to establish out that NB performs the best for determiner and preposi-

20

CHAPTER 2. BACKGROUND

tion errors if the prior of errors (i.e., confusion matrix) is adequately given. When it comes

to correcting multiple error types, it is important to decide the order in which classifiers

should be applied. Dahlmeier and Ng (2012a) proposed a beam search model in which

multiple classifiers are iteratively ranked and selected to correct tokens one by one.

As the goal of GEC pivoted from closed-class error correction to “whole-sentence”

correction, the classifier-based approaches faced several difficulties. First, new error types

such as word choice, collocation/idiom errors, and tone (i.e., formality) errors, are not

easily defined as a classification problem, because there are a too many possible classes

(i.e., vocabulary size). In addition, L2 learners often make phrase-level errors, such as

wrong phrase orders, that require a longer context (e.g., the sentence as a whole) to correct

appropriately. The classification approach tends to use (or learn to use) the local features.

Also, classifiers are applied independently for each error type, and they do not correct errors

globally.

These issues may be addressed by the phrase-based machine translation (PBMT) tech-

nique (Koehn, 2009). In the PBMT approach, we treat the GEC task as a kind of machine

translation problem, in which the input is an ungrammatical sentence and the errors are

expected to be corrected in the output. Technically, the PBMT model defines the probabil-

ity of a target (i.e., grammatical) sentence given a source (i.e., ungrammatical) sentence as

follows:

argmax
e

p(e|f) = argmax
e

p(e)p(f |e),

21

CHAPTER 2. BACKGROUND

Figure 2.2: Illustrative example of the neural encoder-decoder model (adapted from
(Sutskever, Vinyals, and Le, 2014)). The model encodes an input sentence “ACB” and
produces “WXYZ” as the output.

where e is the grammatically correct hypotheses and f is the source (possibly ungrammati-

cal) sentence to be corrected. Since it is almost intractable to collect all the possible f (i.e.,

all the possible ungrammatical sentences), the PBMT approach decomposes the problem

into the combination of two simple problems: the English language model p(e) and con-

fusion probability p(f |e). The English language model p(e) is available from canonical

English corpora (e.g., Wikipedia, newswire texts, etc.), and the confusion probability is

obtained from existing GEC corpora.

Brockett, Dolan, and Gamon (2006) applied the PBMT approach to the GEC task for

the first time, although they evaluated the model only on mass noun errors on the web. Park

and Levy (2011) similarly developed a noisy channel approach for article, preposition, and

verb form errors.

Most recently, along with the advance of neural network technique, neural Machine

Translation (NMT) methods became popular. NMT is regarded as another whole-sentence

rewriting method. Formally, the NMT model takes (possibly ungrammatical) source sen-

tences x ∈ X as an input, and predicts grammatical and fluent output sentences y ∈ Y

according to the model parameter θ (Sutskever, Vinyals, and Le, 2014) (Figure 2.2) The

22

CHAPTER 2. BACKGROUND

model consists of two sub-modules, encoder and decoder. The encoder transforms x into a

sequence of vector representations (hidden states) using a (bi)directional Long-Short Term

Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or gated recurrent neural network

(GRU) (Chung et al., 2014). The decoder predicts a word yt at a time, using previous to-

ken yt−1. NMT is also able to handle all the error types (in principle) similarly to PBMT.

Compared with the PBMT approach, NMT has the advantage of capturing long-term de-

pendency in a sentence by the internal memory mechanism, such as the LSTM and GRU.

Yuan and Briscoe (2016) applied the NMT approach with an attention mechanism (Bah-

danau, Cho, and Bengio, 2014), but it needs pre-processing and post-processing steps for

replacing and aligning out-of-vocabulary (OOV) words, because GEC corpora contain a

number of spelling errors. Chollampatt, Taghipour, and Ng (2016) used a phrase-based

MT with two neural network features: a neural network global lexicon model (NNGLM)

and a neural network joint model (NNJM). The NNGLM (Ha, Niehues, and Waibel, 2015)

is a neural net that maps bag-of-words (in a sentence) into another bag-of-words represen-

tation, and the NNJM (Devlin et al., 2014) models the word probabilities for given source

and target words. Schmaltz et al. (2016) demonstrate an attention-based encoder-decoder

(sequence to sequence) model with convolutional neural nets (CNNs) for word represen-

tation. Although the model performs well, they tested it on a different data set from other

GEC literature.

The main issue of PBMT and NMT is the requirement of a gigantic amount of parallel

data to train. Compared to the machine translation community, parallel dataset for GEC is

23

CHAPTER 2. BACKGROUND

Corpus Size Error-tagged Public
Cambridge Learner Corpus (CLC) 200k texts 3 7

CLC-FCE (subset of CLC) 1,244 texts 3 3

Chinese Learners of English Corpus (CLEC) 1M words 3 7

Chungdahm corpus of English 131M words 3 7

English Taiwan Learner Corpus (ETLC) 5M words partially 7

HKUST corpus 30M words 3 7

International Corpus of Learner English (ICLE) 3M words partially 7

Lang-8 Learner Corpora 2.5M texts partially 3

NICT-JLE standard speaking test corpus 1.2M words 3 3

NUCLE 1M words 3 3

Table 2.2: GEC corpora and the basic information: 1. the size, 2. error-tagged (or edits by
native speakers) or not, and 3. publicly and freely available or not.

very scarce, partly because the ESL learners’ writing (e.g., essay) is often protected by the

right to privacy.

In this section, we have presented major approaches in GEC and their pros and cons:

the heuristic rules-based approach, classification (and the cascaded variants), phrase-based

machine translation (PBMT), and neural machine translation (NMT). We will further ex-

amine the improvement of the GEC model in Chapter 7.

2.3 Datasets

In this section, we will look at the resources that are used for benchmarking GEC mod-

els. Overall, there are several corpora related to language learners, as shown in Leacock

et al. (2014) and the Learner Corpora Around the World,1 but most of them are “no-error

1https://uclouvain.be/en/research-institutes/ilc/cecl/
learner-corpora-around-the-world.html

24

https://uclouvain.be/en/research-institutes/ilc/cecl/learner-corpora-around-the-world.html
https://uclouvain.be/en/research-institutes/ilc/cecl/learner-corpora-around-the-world.html

CHAPTER 2. BACKGROUND

C
or

pu
s

N
um

be
ro

fs
en

te
nc

es

N
um

be
ro

fr
ef

er
en

ce
s

M
ea

n
ch

ar
ac

te
rs

pe
rs

en
te

nc
e

M
ea

n
ed

it
di

st
an

ce

Se
nt

en
ce

ch
an

ge
d

E
rr

or
ty

pe
la

be
ld

w
ith

th
e

sp
an

D
iv

er
se

pr
ofi

ci
en

cy

D
iv

er
se

to
pi

c

D
iv

er
se

L
1

NUCLE 59k 2 115 6 38% 3 7 7 7

FCE 34k 1 74 6 62% 3 3 3 3

Lang-8 2.5M ≥1 56 4 42% 7 3 3 3

Table 2.3: GEC corpora available for free (for research purposes) and several desired prop-
erties. 3 and 7 indicate whether the corpus exhibits each property.

tagged (or no reference),” “small scale,” or publicly unavailable (Table 2.2).

Thus, in this section, we primarily focus on three publicly (and freely) available and

error-tagged (i.e., edits by native speakers) GEC corpora: NUCLE, CLC-FCE, and Lang-

8.2

The NUS Corpus of Learner English (NUCLE) is the most frequently used corpus for

GEC. The NUCLE contains 1,414 essays (more than 1 million words) written by university

students in Singapore (Dahlmeier, Ng, and Wu, 2013). Two language instructors coded

each essay with 27 error codes.3

NUCLE was the official dataset of the 2013 and 2014 CoNLL shared tasks on GEC,

and the 1,312 sentence test set from the 2014 task has become de rigueur for benchmark-

ing GEC models. Before the NUCLE became available, there was no common dataset for

2We do not include the NICT-JLE corpus because the sources are obtained from speaking instead of
writing.

3Versions 2.1 and later have 28 codes.

25

CHAPTER 2. BACKGROUND

benchmarking. For example, Felice and Pulman (2008) use Cambridge Learner Corpus

(CLC), (Gamon et al., 2008) uses Chinese Learners of English (CLEC), and (Tetreault and

Chodorow, 2008) uses TOEFL essays. Importantly, this issue was not only the inconsis-

tency of evaluation datasets; most of the GEC datasets were not publicly available.

The test set and system results from the most recent shared task were released to the

community (Ng et al., 2014). The errors are tagged by two annotators and have been

augmented with eight additional annotations from Bryant and Ng (2015). One of the draw-

backs of NUCLE is the narrow diversity of proficiency, topics, and writers’ native language

(Table 2.3). In other words, the GEC models that are trained on this corpus are not likely to

perform well on sentences in different topics, or sentences written by students with different

proficiency levels. We will discuss this issue in more detail in Chapter 6.

The Cambridge Learner Corpus First Certificate in English (FCE), a freely and publicly

available subset of the Cambridge Learner Corpus (CLC), has essays coded by one rater us-

ing about 80 error types alongside the score and demographic information (Yannakoudakis,

Briscoe, and Medlock, 2011). The FCE was used for the Helping Our Own (HOO) 2012

shared task (Dale, Anisimoff, and Narroway, 2012), and Berzak et al. (2016) added de-

pendency annotations to FCE. The FCE contains a broader representation of proficiency,

topics, and native languages than NUCLE. However, the size is small and there is only one

reference; corpus size is very important when we develop statistical models. In addition,

there is no standard train/dev/test data split. These factors have made the FCE less popular

than the NUCLE, particularly after the CoNLL shared tasks.

26

CHAPTER 2. BACKGROUND

Error Type % Example sentence
Content word choice error 19.9 We need to deliver the merchandise on a daily

*base/basis.
Preposition error 13.4 Our society is developing *in/at high speed.
Determiner error 11.7 We must try our best to avoid *the/a f fresh water.
Comma error 9.3 However, */, Ill meet you later.
Inflectional morphology 7.4 The women *weared/wore long dresses.
Wrong verb tense 6.7 I look forward to *see/seeing you.
Derivational morphology 4.9 It has already been *arrangement/arranged.
Pronoun 4.2 I want to make *me/myself fit.
Agreement error 4.0 I *were/was in my house.
Run-on sentence 4.0 The deliver documents to them they provide fast service.
Idiomatic collocation and
word order

3.9 The latest issue *the magazine of/of the magazine ...

Confused words 1.9 I want to see the *personal/personnel manager.
Conjunction error 1.7 I want to see you *and/so that you can help me.
Words split with a space or
joined

1.4 I organize sports *everyday/every day. It is also my *life
style/lifestyle.

Apostrophe error (not in-
cluding it/it’s confusions)

1.3 We are all *sports/sports lovers.

Hyphenation error 1.3 It is a nourishing *low cost/low-cost meal.
Sentence fragment or two
sentences that are joined

0.8 I’m going to get another one *. Because/because the old
one broke.

Quantifier error 0.7 It doesn’t give them too *much/many problems.
Other punctuation error 0.4 When are you leaving *./?
Negation formation 0.1 We *have not/do not have any time.

Table 2.4: Proportion of errors in Cambridge Learner Corpus (from Leacock et al. (2014)).
Note: Spelling errors are excluded from this table.

Table 2.4 and Table 2.5 show the proportion of errors in the FCE and NUCLE. The

statistics of error types are similar in both corpora. Based on the statistics, the shared

tasks such as HOO and CoNLL 2013 focused initially on the following closed-class errors:

determiner, preposition, noun number, verb form, and subject verb agreement. Also, these

two corpora have been annotated with spans of text containing errors and assigned error

codes. As we will see in Chapter 5, this style of error-coded annotation has some limitations

with respect to cost, inter-annotator agreement rate, and fluency.

27

CHAPTER 2. BACKGROUND

Error Type % Example
Article or determiner 14.6 It is obvious to see that [internet / the internet] saves people time and

also connects people globally.
Wrong collocation/idiom 12.1 Early examination is [healthy / advisable] and will cast away un-

wanted doubts.
Redundancy 9.9 It is up to the [patient’s own choice / patient] to disclose information.
Noun number 8.3 A carrier may consider not having any [child / children] after getting

married.
Spelling, punctuation, capi-
talization

7.6 This knowledge [maybe relavant / may be relevant] to them.

Verb tense 6.9 Medical technology during that time [is / was] not advanced enough
to cure him.

Preposition 6.0 This essay will [discuss about / discuss] whether a carrier should tell
his relatives or not.

Word form 4.6 The sense of [guilty / guilt] can be more than expected.
Subject-verb agreement 3.5 The benefits of disclosing genetic risk information [outweighs / out-

weigh] the costs.
Verb form 3.3 A study in 2010 [shown / showed] that patients recover faster when

surrounded by family members.
Other errors 3.1 An error that does not fit into any other category but can still be

corrected.
Linking words/phrases 3.1 It is sometimes hard to find [out / out if] one has this disease.
Unclear meaning 2.4 Genetic disease has a close relationship with the born gene. (i.e., no

correction possible without further clarification.)
Pronoun reference 2.3 It is everyones duty to ensure that [he or she / they] undergo regular

health checks.
Run-on sentences, comma
splices

1.8 The issue is highly [debatable, a / debatable. A] genetic risk could
come from either side of the family.

Incorrect word order 1.5 [Someone having what kind of disease / What kind of disease some-
one has] is a matter of their own privacy.

Citation 1.3 Poor citation practice.
Tone (formal/informal) 1.2 [Its / It is] our family and relatives that bring us up.
Parallelism 1.1 We must pay attention to this information and [assisting / assist]

those who are at risk.
Verb modal 1.0 Although the problem [would / may] not be serious, people [would

/ might] still be afraid.
Missing verb 1.0 However, there are also a great number of people [who / who are]

against this technology.
Subordinate clause 0.9 This is an issue [needs / that needs] to be addressed.
Incorrect adjective/ adverb or-
der

0.8 In conclusion, [personally I / I personally] feel that it is important to
tell ones family members.

Noun possessive 0.5 Someone should tell the [carriers / carriers] relatives about the ge-
netic problem.

Sentence fragment 0.5 However, from the ethical point of view.
Pronoun form 0.5 A couple should run a few tests to see if [their / they] have any

genetic diseases beforehand.
Dangling modifiers 0.1 [Undeniable, / It is undeniable that] it becomes addictive when we

spend more time socializing virtually.
Acronyms 0.1 After [WOWII / World War II], the population of China decreased

rapidly.

Table 2.5: Proportion of errors in the NUS Corpus of Learner English (NUCLE) (from Ng
et al. (2014)). 28

CHAPTER 2. BACKGROUND

Unlike these, the Lang-8 Learner Corpus of Learner English (Tajiri, Komachi, and

Matsumoto, 2012) is a parallel set of original and corrected sentences from lang-8.

com,4 an online community of language learners who post text to be corrected by other

users. The parallel sentences are extracted by automatic alignment between the source and

user-provided corrections. Unlike the NUCLE and FCE, Lang-8 does not require users

to annotate error labels. Instead, users simply rewrite the original sentences so that they

sound more natural to native speakers. In other words, users do not worry about detailed

annotation guidelines that would include a number of error labels. As a result, Lang-8

corpus becomes the largest publicly (and freely) available resource for GEC, with more

than 2 million English sentences (Table 2.3).5 We discuss pros and cons of the different

annotation procedures in Chapter 5.

2.4 Summary

In this chapter, we have looked at the recent progress in grammatical error correction

(GEC) in terms of the evaluation metrics, methods, and corpora for benchmarking. The

HOO and CoNLL shared tasks have introduced the importance of evaluation metrics and

benchmarking dataset to the community. As the community grows and the scope of error

types has extended from token-level to whole-sentence error correction, new datasets and

various metrics have been proposed. We will discuss more details about the best practice

4As of August 2018, new signups for Lang-8 are suspended.
5Because of noise and implementation differences in sentence extraction, the size varies from 1–2.5 mil-

lion sentences.

29

lang-8.com
lang-8.com

CHAPTER 2. BACKGROUND

(i.e., combination of metrics and dataset) for GEC evaluation framework in Chapter 5.

30

Chapter 3

Character-level Error Correction:

Robsut Wrod Reocginiton via

Semi-Character Recurrent Neural

Network
1

Before diving into whole-sentence error correction, we first look at character-level error

correction, i.e., spelling correction. In many cases, GEC systems require spelling correc-

tion as a preprocessing step,2 and GEC’s performance depends heavily on the performance

in spelling error correction. In this chapter, motivated by a psycholinguistics study, we pro-

1Much of this chapter was originally published in Sakaguchi et al. (2017). Parts of this manuscript are
intentionally jumbled to demonstrate the robust word processing ability of you, the reader.

2It is in fact controversial to say spelling errors are ungrammatical.

31

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

pose a spelling correction model that uses a semi character-level recurrent neural network.

3.1 Introduction

Despite the rapid improvement in natural language processing by computers, humans

still have advantages in situations where the text contains noise. For example, the following

sentences, introduced by a psycholinguist (Davis, 2003), provide a great demonstration of

the robust word recognition mechanism in humans.

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht

oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat

ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed

it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter

by istlef, but the wrod as a wlohe.

To show an explicit contrast, let’s take a look at the result by one of the commonly

used commercial spelling checkers, where remaining errors (i.e., tokens that are failed to

be corrected) are underlined.

::::::::::
Occurring to a

::::::::::
scholarch at Cambridge

:::::::
Inertias , it does n’t matter in what

order the letters in a word are , the only impotent thing is that the first and last

letter be at the right place . The rest can be a total mess and you can still read

it
::::::
outhit problem . This is

:::::::
bcuseae the human mind does not read every letter

by
::::
istle , but the word as a whole .

32

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

b i e

LSTM

b i e

LSTM

b i e

LSTM

b i e

LSTM ���

Aoccdrnig

Softmax Softmax Softmax Softmax ���

to a rscheearch ���

According to a research

Figure 3.1: Schematic Illustration of semi-character recurrent neural network (scRNN).

This example shows the Cmabrigde Uinervtisy (Cambridge University) effect (or ty-

poglycemia), which demonstrates that human reading is resilient to (particularly internal)

letter transposition.

Robustness is an important and useful property for various tasks in natural language

processing, and we propose a computational model which replicates this robust word recog-

nition mechanism. The model is based on a standard recurrent neural network (RNN) with

a memory cell as in long short-term memory (Hochreiter and Schmidhuber, 1997). We

use an RNN because it has shown to be state-of-the-art language modeling (Mikolov et al.,

2010) and it is also flexible to realize the findings from the Cmabrigde Uinervtisy effect.

Technically, the input layer of our model consists of three sub-vectors: beginning (b), in-

ternal (i), and ending (e) character(s) of the input word (Figure 3.1). This semi-character

level recurrent neural network is referred as scRNN.

First, we review previous work on the robust word recognition mechanism from psy-

cholinguistics literature. Next, we describe technical details of scRNN which capture the

33

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

Forward Mask
(500 milliseconds)

GARDEN

gadren

########

Prime
(60 milliseconds)

Target

Figure 3.2: Example of the masked priming procedure.

robust human mechanism using recent developments in neural networks. As closely related

work, we explain character-based convolutional neural network (CharCNN) proposed by

Kim et al. (2015). Our experiments show that the scRNN significantly outperforms com-

monly used spelling checkers and CharCNN by (at least) 42% for jumbled word correction

and 3% and 14% in other noise types (insertion and deletion). We also show that scRNN

replicates recent findings from psycholinguistics experiments on reading difficulty depend-

ing on the position of jumbled letters, which indicates that scRNN successfully mimics (at

least a part of) the robust word recognition mechanism by humans.

3.2 Raeding Wrods with Jumbled Lettres

Sentence processing with jumbled words has been a major research topic in psycholin-

guistics literature. One popular experimental paradigm is masked priming, in which a

34

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

Cond. Example # of fixations Regression(%) Avg. Fixation (ms)
N The boy could not solve the

problem so he asked for help.
10.4 15.0 236

INT The boy cuold not slove the pro-
belm so he aksed for help.

11.4∗ 17.6∗ 244∗

END The boy coudl not solev the
problme so he askde for help.

12.6† 17.5∗ 246∗

BEG The boy oculd not oslve the
rpoblem so he saked for help.

13.0‡ 21.5† 259†

Table 3.1: Example sentences and results for measures of fixation excerpt from Rayner
et al. (2006). There are 4 conditions: N = normal text; INT = internally jumbled letters;
END = letters at word endings are jumbled; BEG = letters at word beginnings are jumbled.
Entries with ∗ have statistically significant difference from the condition N (p < 0.01) and
those with † and ‡ differ from ∗ and † with p < 0.01 respectively.

(lower-cased) stimulus, called prime, is presented for a short duration (e.g., 60 millisec-

onds) followed by the (upper-cased) target word, and participants are asked to judge whether

the target word exists in English as quickly as possible (Figure 3.2).3 The prime is con-

sciously imperceptible due to the instantaneous presentation but it proceeds to visual word

recognition by participants. The masked priming paradigm allows us to investigate the

machinery of lexical processing and the effect of prime in a pure manner.

Forster et al. (1987) show that a jumbled word (e.g., gadren-GARDEN) facilitates

primes as large as identity primes (garden-GARDEN) and these results have been con-

firmed in cases where the transposed letters are not adjacent (caniso-CASINO) (Perea and

Lupker, 2004) and even more extreme cases (sdiwelak-SIDEWALK) (Guerrera and Forster,

2008).

These findings about robust word processing mechanism by humans have been further

3There is another variant for masked priming technique, where backward mask is inserted between the
prime and target in addition to the forward mask.

35

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

investigated by looking at other types of noise in addition to simple letter transpositions.

Humphreys, Evett, and Quinlan (1990) show that deleting a letter in a word still produces

significant priming effect (e.g., blck-BLACK), and similar results have been shown in other

research (Peressotti and Grainger, 1999; Grainger et al., 2006). Van Assche and Grainger

(2006) demonstrate that a priming effect remains when inserting a character into a word

(e.g., juastice-JUSTICE).

Another popular experimental paradigm in psycholinguistics is eye-movement tracking.

In comparison to the masked priming technique, eye-movement paradigm provides data

from normal reading process by participants. Regarding word recognition, the eye-tracking

method has shown the relationship between a word difficulty and the eye fixation time on

the word: when a word is difficult to process, average time to fixation becomes long. In

addition, words that are difficult to process often induce regressions to words previously

read.

With the eye-movement paradigm, Rayner et al. (2006) and Johnson, Perea, and Rayner

(2007) conduct detailed experiments on the robust word recognition mechanism with jum-

bled letters. They show that letter transposition affects fixation time measures during read-

ing depending on which part of the word is jumbled. Table 3.1 presents the result from

Rayner et al. (2006). It is obvious that people can read smoothly (i.e., smaller number

of fixations, regression, and average of fixation duration) when a given sentence has no

noise (referring to this condition as N). When the characters at the beginning of words

are jumbled (referring to this condition as BEG), participants have more difficulty (e.g.,

36

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

longer fixation time). The other two conditions, where words are internally jumbled (INT)

or letters at word endings are jumbled (END), have similar amount of effect, although the

number of fixations between them showed a statistically significant difference (p < 0.01).

In short, the reading difficulty with different jumble conditions is summarized as follows:

N < INT ≤ END < BEG.

It may be surprising that there is statistically significant difference between END and

BEG conditions despite the difference being very subtle (i.e., fixing either the first or the

last character). This result demonstrates the importance of beginning letters for human

word recognition.4

3.3 Semi-Character Recurrent Neural Network

In order to achieve the human-like robust word processing mechanism, we propose a

semi-character based recurrent neural network (scRNN). The model takes a semi-character

vector (x) for a given jumbled word, and predicts a (correctly spelled) word (y) at each

time step. The structure of scRNN is based on a standard recurrent neural network, where

current input (x) and previous information is connected through hidden states (h) by ap-

plying a certain (e.g., sigmoid) function (g) with linear transformation parameters (W) and

the bias (b) at each time step (t).

One critical issue of vanilla recurrent neural networks is that it is unable to learn long

4While there is still ongoing debate in the psycholinguistics community as to exactly how (little) the order
of internal letters matter, here we follow the formulation of Rayner et al. (2006), considering only the letter
order distinctions of BEG, INT, and END.

37

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

distance dependency in the inputs due to the vanishing gradient (Bengio, Simard, and Fras-

coni, 1994). To address the problem, Hochreiter and Schmidhuber (1997) introduced long

short-term memory (LSTM), which is able to learn long-term dependencies by adding a

memory cell (c). The memory cell has an ability to discard or keep previous information in

its state. Technically, the LSTM architecture is given by the following equations,

in = σ (Wi [hn−1, xn] + bi) (3.1)

fn = σ (Wf [hn−1, xn] + bf) (3.2)

on = σ (Wo [hn−1, xn] + bo) (3.3)

gn = σ (Wg [hn−1, xn] + bg) (3.4)

cn = fn � cn−1 + in � gn (3.5)

hn = on � tanh (cn) (3.6)

where σ is the (element-wise) sigmoid function and � is the element-wise multiplication.

While a standard input vector for RNN derives from either a word or a character, the

input vector in scRNN consists of three sub-vectors (bn, in, en) that correspond to the char-

acters’ position.

xn =


bn

in

en

 (3.7)

38

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

The first and third sub-vectors (bn, en) represent the first and last character of the n-th

word. These two sub-vectors are therefore one-hot representations. The second sub-vector

(in) represents a bag of characters of the word without the initial and final positions. For

example, the word “University” is represented as bn = {U = 1}, en = {y = 1}, and

in = {e = 1, i = 2, n = 1, s = 1, r = 1, t = 1, v = 1}, with all the other elements being

zero. The size of sub-vectors (bn, in, en) is equal to the number of characters (N) in our

language, and xn has therefore the size of 3N by concatenating the sub-vectors.

Regarding the final output (i.e., predicted word yn), the hidden state vector (hn) of the

LSTM is taken as input to the following softmax function layer with a fixed vocabulary

size (v).

yn =
exp (Wh · hn)∑
v exp (Wh · hn)

(3.8)

We use the cross-entropy training criterion applied to the output layer as in most LSTM

language modeling works; the model learns the weight matrices (W) to maximize the like-

lihood of the training data. This should approximately correlate with maximizing the num-

ber of exact word match in the predicted outputs. Figure 3.1 shows a pictorial overview of

scRNN.

In order to check if the scRNN can recognize the jumbled words correctly, we test it in

spelling correction experiments. If the hypothesis about the robust word processing mech-

anism is correct, scRNN will also be able to read sentences with jumbled words robustly.

39

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

3.4 Character-based Neural Network

Another possible approach to deal with reading jumbled words by neural networks is

(pure) character-level neural network (Sutskever, Martens, and Hinton, 2011), where both

input and output are characters instead of words. The character-based neural networks

have been investigated and used for a variety of NLP tasks such as segmentation (Chrupala,

2013), dependency parsing (Ballesteros, Dyer, and Smith, 2015), machine translation (Ling

et al., 2015), and text normalization (Chrupała, 2014).

For spelling correction, Schmaltz et al. (2016) uses character-level convolutional neural

networks (CharCNN) proposed by Kim et al. (2015), in which the input is character but the

prediction is at the word-level. More technically, according to Kim et al. (2015), CharCNN

concatenates the character embedding vectors into a matrix Pn ∈ Rd×l whose k-th column

corresponds to the k-th character embedding vector (size of d) of n-th word which contains

l characters. A narrow convolution is applied between P and filter H ∈ Rd×w of width w,

and then feature map fn ∈ Rl−w+1 is obtained by the following transformation5 with a bias

b.

fn = tanh(Tr(Pn[:, k : k + w − 1]HT) + b) (3.9)

This is interpreted as a process of capturing important feature f with filter H to maximize

5In the equation, Pn[:, k : k + w − 1] means the k-to-(k + w − 1)-th column of Pn.

40

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

the predicted word representation yn by the max-over-time:

yn = max
k
fn[k] (3.10)

Although CharCNN and scRNN have some similarity in terms of using a recurrent neu-

ral network, CharCNN is able to store richer representation than scRNN. In the following

section, we compare the performance of CharCNN and scRNN with respect to jumbled

word recognition task.

3.5 Experiments

We conducted spelling correction experiments to judge how well scRNN can recognize

noisy word sentences. In order to make the task more realistic, we tested three different

noise types: jumble, delete, and insert, where the jumble changes the internal characters

(e.g., Cambridge → Cmbarigde), delete randomly deletes one of the internal characters

(Cambridge→ Camridge), and insert randomly inserts an alphabet into an internal position

(Cambridge→ Cambpridge). None of the noise types change the first and last characters.

We used Penn Treebank for training, tuning, and testing.6

The input layer of scRNN consists of a vector with length of 76 (A-Z, a-z and 24

symbol characters). The hidden layer units had size 650, and total vocabulary size was set

6Section 2-21 for training, 22 for tuning, and 23 for test https://catalog.ldc.upenn.edu/
ldc99t42. The data includes 39,832 sentences in training set (898k/950k tokens are covered by the top 10k
vocabulary), 1,700 sentences in the tuning set (coverage 38k/40k), and 2,416 sentences in test set (coverage
54k/56k).

41

https://catalog.ldc.upenn.edu/ldc99t42
https://catalog.ldc.upenn.edu/ldc99t42

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

to 10k. We applied one type of noise to every word, but words with numbers (e.g., 1980s)

and short words (length ≤ 3) were not subjected to jumbling, and therefore these words

were excluded in evaluation. We trained the model by running 5 epochs with (mini) batch

size 20. We set the backpropagation through time (BPTT) parameter to 3: scRNN updates

weights for previous two words (xn−2, xn−1) and the current word (xn).

For comparison, we evaluated CharCNN on the same training data,7 and also compared

widely-used spelling checkers (Enchant,8 Commercial A, and Commercial B9).

3.5.1 Spelling correction results

Table 3.2 presents example outputs for the Cmabrigde Uinervtisy sentence by each

model.10 It may be surprising that CharCNN performs poorly compared with other spelling

checkers. This is probably because the CharCNN highly depends on the order of characters

in the word and the transposed characters adversely affected the recognition performance.

Enchant, Commercial A, and Commercial B tend to fail long word correction. This may

be because these models are not designed for severely jumbled input but they are likely

to depend on edit distance between the incorrect and correct words. While these exist-

ing models struggle with correcting Cmabrigde Uinervtisy sentence, we see that scRNN

7For CharCNN, we employed the codebase available at https://github.com/yoonkim/
lstm-char-cnn.git

8http://www.abisource.com/projects/enchant/
9We anonymized the name of the commercial product.

10The Cmabrigde Uinervtisy sentences contains jumbling as well as deletion, insertion, and replacement
of characters. Note that we used a single scRNN (Jumble), and didn’t train scRNN separately for each error
type in this example.

42

https://github.com/yoonkim/lstm-char-cnn.git
https://github.com/yoonkim/lstm-char-cnn.git
http://www.abisource.com/projects/enchant/

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

Original Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy , it deos n’t mttaer in waht
oredr the ltteers in a wrod are , the olny iprmoetnt tihng is taht the frist and lsat
ltteer be at the rghit pclae . The rset can be a toatl mses and you can sitll raed
it wouthit porbelm . Tihs is bcuseae the huamn mnid deos not raed ervey lteter
by istlef , but the wrod as a wlohe .

Correct According to a researcher at Cambridge University , it does n’t matter in what
order the letters in a word are , the only important thing is that the first and last
letter be at the right place . The rest can be a total mess and you can still read
it without problem . This is because the human mind does not read every letter
by itself , but the word as a whole .

CharCNN
(Kim et al.)

According to a
:::::::
research at Cambridge

::::::::
Minority , it

::::
deck nt

::::::
mother in

::::
wait or

the letters in a
:::::
wood are , the

::::
tony

:::::::
Vermont

::::::
timing is

::::
taxi the

:::::
tourist and

::
sat

letter be at the
::::
fruit

::::
pile . The

::::
reset can be a total

::::
uses and you can

::::
vital

::::
rake it

::::::
worthy

::::::
parallel .

:::::
Mips is

:::::
abuse the human

::::
trim

::::
deck not

::::
rake

:::::
survey

::::
latter by

:::::
leftist , but the

:::::
wood as a whole .

Enchant
:::::::::
Ecuadoran to a

:::::::
searcher at

::::::
Brigade

:::::::::
Nerviness , it does n’t matter in what order

the letters in a word are , the only
:::::::::::
omnipresent thing is that the

:::::
freest and

:::
slat

letter be at the right place . The rest can be a total mess and you can still read it

:::::
outhit

:::::
corbel .

::::
Tish is

:::::::::
Ceausescu , the human mind does not read

::::::
Hervey letter

by
:::::
leftist , but the word as a whole .

Commercial A
:::::::::
Occurring to a

::::::::
scholarch at Cambridge

:::::::
Inertias , it does n’t matter in what

order the letters in a word are , the only impotent thing is that the first and last
letter be at the right place . The rest can be a total mess and you can still read
it

:::::
outhit problem . This is

:::::::
bcuseae the human mind does not read every letter

by
:::
istle , but the word as a whole .

Commercial B
:::::::::
Aoccdrnig to a

::::::::::
rscheearch at

::::::::::
Cmabrigde

:::::::::
Uinervtisy , it does n’t matter in what

order the letters in a word are , the only
::::::::
iprmoetnt thing is that the first and last

letter be at the right place . The rest can be a total mess and you can still read
it

::::::
wouthit problem .

::::
Tihs is

:::::::
bcuseae the human mind does not read every letter

by itself , but the word as a whole .
scRNN (pro-
posed)

According to a
:::::::
research at Cambridge University , it does n’t matter in what

order the letters in a word are , the only important thing is that the first and last
letter be at the right place . The rest can be a total mess and you can still read
it without problem . This is because the human mind does not read every letter
by itself , but the word as a whole .

Table 3.2: Example spelling correction outputs for the Cmabrigde Uinervtisy sentences.
Words that the system failed to correct are

:::::::::::
underlined. CharCNN stands for the character-

based convolutional neural network by Kim et al. (2015).

demonstrates significantly better recognition ability. The only error in scRNN may be be-

cause the last character (rscheearch) activated the scRNN nodes strongly toward research

43

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

Jumble Delete Insert
CharCNN (Kim et al.) 17.17 21.30 35.00
Enchant 57.15 37.01 88.54
scRNN (proposed) 98.96 85.74 96.70

Table 3.3: Spelling correction accuracy (%) with different error types on the entire test set.

Jumble Delete Insert
CharCNN (Kim et al.) 16.18 19.76 35.53
Enchant 57.59 35.37 89.63
Commercial A 54.81 60.19 93.52
Commercial B 54.26 71.67 73.52
scRNN (proposed) 99.44 85.56 97.04

Table 3.4: Spelling correction accuracy (%) with different error types on the subset of test
set (50 sentences).

instead of researcher.11

Table 3.3 and 3.4 show the overall result on the test set with respect to noise type. We

also tested spelling correction on a small subset (50 sentences) because of the API limits

etc. of commercial systems. Overall, as seen in the example above, scRNN significantly

outperforms the other spelling checker models across all three noise types. Since scRNN

is especially designed for jumbled word recognition, it is not surprising that it performs

particularly well on jumble noise. However, it is striking that scRNN outperforms the other

models in deletion and insertion errors as well.12 This clearly demonstrates the robustness

of scRNN.

The relatively large drop in delete in scRNN may be because the information lost by

deleting character is significant. For example, when the word place has dropped the char-

11There is also an deletion of ’r’.
12It is important to note that some commercial systems have constraints of the model size (Church, Hart,

and Gao, 2007).

44

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Iterations

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

β= 10

β= 5

β= 3

β= 1

20000 25000 30000 35000 40000
Number of Iterations

91

92

93

94

95

96

97

98

99

100

A
cc

u
ra

cy
 (

%
)

β= 10

β= 5

β= 3

β= 1

Figure 3.3: Learning curve of training scRNN with different BPTT parameter (on dev set):
first 40k iterations (top) and its enlarged view between 20k and 40k iterations (bottom).

45

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

β Accuracy (%) SD
1 98.69 0.53
3 98.96 0.45
5 98.91 0.40

10 98.95 0.43

Table 3.5: scRNN accuracy (%) on jumbled word recognition with different BPTT param-
eters. There were no statistically significant differences among them.

Units Acc (%) SD Size (KB)
5 24.65 2.59 236

10 48.43 3.26 435
15 73.32 3.65 632
20 84.82 2.39 830
30 94.15 1.54 1,255
40 96.90 1.26 1,670
50 98.48 0.94 2,092
60 98.39 0.81 2,514

Table 3.6: scRNN accuracy (%), the standard deviation, and the size of model file (KB) on
jumbled word recognition with respect to the number of units of LSTM.

acter l, the surface form becomes pace, which is also a valid word. Also, the word mess

with e being deleted produces the form of mss, which can be recovered as mess, mass,

miss, etc. In the Cmabrigde Uinervtisy sentences, in both cases, the local context support

other phrase such as ‘at the right pace/place’ and ‘a total mass/mess’. These examples

clearly demonstrate that deleting characters harm the word recognition more significantly

than other noise types. All the models perform relatively well on insert noise, indicat-

ing that adding extraneous information by inserting a letter does not change the original

information significantly.

With respect to a learning curve on scRNN (Figure 3.3, top), we found that the model

achieves 0.9 (in accuracy) at the 15,000-th iteration of the mini batch. This can be made

46

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

Cond. Example Accuracy
INT As a relust , the lnik beewetn the fureuts and sctok mretkas rpiped arapt . 98.96
END As a rtelus , the lkni betwene the feturus and soctk msatrek rpepid atarp . 98.68∗

BEG As a lesurt , the lnik bweteen the utufers and tocsk makrtes pipred arpat . 98.12†

ALL As a strule , the lnik eewtneb the eftusur and okcst msretak ipdepr prtaa . 96.79‡

Table 3.7: Example sentences and results for spelling correction accuracy by scRNN vari-
ants depending on different jumble conditions: INT = internal letters are jumbled; END =
letters at word endings are jumbled; BEG = letters at word beginnings are jumbled; ALL
= all letters are jumbled. Entries with ∗ have a difference with marginal significance from
the condition INT (p = 0.07) and those with † and ‡ differ from ∗ and † with p < 0.01
respectively.

Cond. Examples of errors (correct/wrong)
INT Once/once, Under/under, Also/also, there/three, form/from,

fares/fears, trail/trial, Broad/Board
END being/begin, quiet/quite, bets/best, stayed/steady, heat/hate,

lost/lots + same errors in INT
BEG Several/reveal, Growth/worth, host/shot, credi-

tors/directors, views/wives + same errors in INT
ALL Under/trend, center/recent, licensed/declines, stop/tops +

same errors in INT, END, & BEG

Table 3.8: Error analysis of scRNN variants.

within a hour with a CPU machine, which demonstrates simplicity of scRNN compared

with CharCNN.

Figure 3.3 also shows the effect of BPTT size (β), and the accuracy on test set is pre-

sented in Table 3.5. As explained, β indicates the context length of updates during training.

It is surprising that the longer contexts (β = 5, 10) do not necessarily yield better perfor-

mance. This is probably because it rarely happens that the context plays an important role

on distinguishing ambiguous representation (e.g., anagrams) in scRNN. If we take closer

look at the learning curve (Table 3.3, bottom), however, there is a clear gap in learning

47

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

efficiency between with and without contexts (i.e., β=1 vs. the rest).

Finally, we reduced the number of units in the hidden layer to see the model size and

performance of scRNN. Surprisingly, as Table 3.6 presents, scRNN with 50 units already

achieves comparable results to 650 units (Table 3.3). The result suggests that 50 units (2

MB) are enough to distinguish 10k English words.

3.5.2 Corroboration with psycholinguistic experiments

As seen in the literature review in psycholinguistics, the position of jumbled characters

affects the cognitive load of human word recognition. We investigate this phenomenon

with scRNN by manipulating the structure of input vector. We replicate the experimental

paradigm in Rayner et al. (2006), but using scRNN rather than human subjects. We trained

scRNN variants depending on different jumble conditions: INT, END, BEG, and ALL. INT

is the same model as explained in the previous section (xn = [bn, in, en]T). END represents

an input word as a concatenation of the initial character vector (b) and a vector for the rest

of characters (xn = [bn, in + en]T). In other words, in END model, the internal and last

characters are subject to jumbling. BEG model combines a vector for the final character

(e) and a vector for the rest of characters (xn = [bn + in, en]T). In other words, initial

and internal characters are subject to jumbling. In ALL model, all the letters are subject to

jumble (e.g., research vs. eesrhrca) and represented as a single vector (xn = [bn+in+en]T).

This is exactly the same as bag of characters. We trained all the scRNN variants with β = 3,

the number of hidden layer units being 650, and total vocabulary size to be 10k.

48

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

Table 3.7 shows the result. While all the variants of scRNN achieve high accuracy,

the statistical test revealed that INT and END have a difference with statistically marginal

significance (p = 0.07). There are statistically significant differences (p < 0.01) both in

END&BEG and BEG&ALL. From the results, the word recognition difficulty of different

jumbled types is summarized as INT ≤ END < BEG < ALL, which is the same order as

the finding in Table 3.1. It is not surprising that INT outperform the other variants because

it has richer representation in xn (twice or three times larger than the other variants). How-

ever, it is interesting to see that END outperforms BEG both in Rayner et al. (2006) and

our experiment despite that the size of xn between END and BEG models are equal. This

suggests the scRNN replicates (at least a part of) the human word recognition mechanism,

in which the first letter is more important and informative than the last one in English.

For qualitative analysis, Table 3.8 shows some errors (correct/wrong) that each vari-

ant made. All the scRNN variants often fail to recognize capitalized first character (e.g.,

Once/once, Under/under), specifically when the word is at the beginning of the sentence.

Other than the capitalization errors, most errors come from anagrams. For example, er-

rors in INT (the original scRNN) are internally anagrammable words (e.g., there/three,

form/from). END model made errors on words that are anagrammable with the first char-

acter being fixed (e.g., being/begin, quiet/quite). BEG model, on the other hand, failed

to recognize anagrammable words with the last character being the same (e.g., creditors

vs. directors, views vs. wives). In addition, BEG model often ignores the first (upper-

cased) character of the word (e.g., Several/reveal, Growth/worth). Finally, ALL model

49

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

failed to recognize anagrammable words (e.g., center/recent, licensed vs. declines). Al-

though scRNN generally disambiguated anagrammable words successfully from context,

all these examples from the error analysis are straightforward and convincing when we

consider the characteristics of each variant of scRNN.

3.6 Summary

In this chapter, we looked at character-level error correction as the first step toward

sentence-level error correction. We have presented a semi-character recurrent neural net-

work model, scRNN, which is inspired by the robust word recognition mechanism known

in psycholinguistics literature as the Cmabrigde Uinervtisy effect (or typoglycemia). De-

spite the model’s simplicity compared to character-based convolutional neural networks

(CharCNN), it significantly outperforms widely used spelling checkers with respect to var-

ious noise types. We also have demonstrated a similarity between scRNN and human word

recognition mechanisms, by showing that scRNN replicates a psycholinguistics experiment

about word recognition difficulty in terms of the position of jumbled characters.

There are a variety of potential NLP applications for scRNN where robustness plays

an important role, such as normalizing social media text (e.g., Cooooolll → Cool), post-

processing of OCR text, and modeling morphologically rich languages, which could be

explored with this model in future work.

Of course, with respect to GEC, scRNN can be applied to it as the first preprocessing

50

CHAPTER 3. CHARACTER-LEVEL ERROR CORRECTION

step before running token-level, or phrase-level error correction algorithms.

In the next chapter, we move one step forward, i.e., token-level error correction.

51

Chapter 4

Token-level Error Correction:

Error-repair Dependency Parsing for

Ungrammatical Texts
1

In this chapter, we move one step forward from character-level error correction. Specif-

ically, this chapter is about token-level grammatical error correction. Token-level error

correction often requires the sentence’s syntactic information, but syntactic parsers fails to

parse ungrammatical sentences because they are trained on grammatical sentences. The

issue is like a chicken-and-egg problem; we want to parse ungrammatical sentences to cor-

rect the errors, but how can we parse sentences without knowing correct grammar? In

this chapter, we examine a joint model where token-level error correction and dependency

1Much of this chapter was originally published in Sakaguchi, Post, and Van Durme (2017a).

52

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

parsing are executed jointly.

4.1 Introduction

Robustness has always been a desirable property for natural language parsers: humans

generate a variety of noisy outputs, such as ungrammatical webpages, speech disfluencies,

and the text in language learner’s essays. Such non-canonical text contains grammatical

errors such as substitutions, insertions, and deletions. For example, a non-native speaker of

English might write “*I look in forward hear from you”, where in is inserted, to is deleted,

and hearing is substituted incorrectly.

We propose a novel dependency parsing scheme that jointly parses and repairs ungram-

matical sentences with these sorts of errors. The parser is based on the non-directional

easy-first (EF) parser introduced by Goldberg and Elhadad (2010) (GE hereafter), which

iteratively adds the most probable arc until the parse tree is completed. These actions are

called ATTACHLEFT and ATTACHRIGHT depending on the direction of the arc. We extend

the EF parsing scheme to be robust for ungrammatical inputs by correcting grammatical

errors with three new actions: SUBSTITUTE, INSERT, and DELETE. These new actions do

not add an arc between tokens but instead they edit a single token. As a result, the parser is

able to jointly parse and correct grammatical errors in the input sentence. We call this new

scheme Error-Repair Non-Directional Easy-First parsing (EREF). Since the new actions

may greatly increase the search space (e.g., infinite substitutions), we also introduce simple

53

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

IATTACHRIGHT look in forward hear from you

lookATTACHLEFT

I

in forward hear from you

lookSUBSTITUTE

I

in forward hear from

you

lookDELETE

I

in forward hearing from

you

lookINSERT

I

forward hearing from

you

lookATTACHLEFT

I

forward to hearing from

you

Figure 4.1: Illustrative example of partial derivation under error-repair easy-first non-
directional dependency parsing. Solid arrows represent ATTACHRIGHT and ATTACHLEFT
in Goldberg and Elhadad (2010). Dotted arcs correspond to actions for each step. Follow-
ing the notation by GE, arcs are directed from a child to its parent.

constraints to avoid such issues.

We first describe the technical details of EREF (§7.2) and then evaluate our EREF parser

with respect to dependency accuracy (robustness) and grammaticality improvements (§7.3).

Finally, we position this effort at the intersection of noisy text parsing and grammatical

error correction (§7.4).

54

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

4.2 Model

4.2.1 Non-directional Easy-first Parsing

Let us begin with a brief review of a non-directional easy-first (EF) parsing scheme

proposed by GE, which is the foundation of our proposed scheme described in the following

sections.

The EF parser has a list of partial structures p1, ..., pk (called pending) initialized with

sentence tokens w1, ..., wn, and it keeps updating pending through derivations. Unlike

left-to-right (e.g., shift-reduce) parsing algorithms (Yamada and Matsumoto, 2003; Nivre,

2004), EF iteratively selects the best pair of adjoining tokens and chooses the direction

of attachment: ATTACHLEFT or ATTACHRIGHT. Once the action is committed, the cor-

responding dependency arc is added and the child token is removed from pending. The

first two derivations in Figure 4.1 depict ATTACHRIGHT and ATTACHLEFT. Pseudocode is

shown in Algorithm 1 (lines 1, 3-12).

The parser is trained using the structured perceptron (Collins, 2002) to choose actions

to take given a set of features expanded from templates. The cost of actions is computed

at every step by checking the validity: whether a new arc is included in the gold parse and

whether the child already has all its children. See GE for further description of feature

templates and structured perceptron training. Since it is possible that there are multiple

valid sequence of actions and it is important to examine a large search space, the parser is

allowed to explore (possibly incorrect) actions with a certain probability, termed learning

55

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

with exploration by Goldberg and Nivre (2013).

4.2.2 Error-repair variant of EF

Error-repair non-directional easy-first parsing scheme (EREF) is a variant of EF. We

add three new actions: SUBSTITUTE, DELETE, INSERT as ActsER. We do not deal with a

swapping action (Nivre, 2009) to deal with word reordering errors, since these errors and

the swapping actions make the problem much harder. Thankfully, as (Leacock et al., 2014)

reports, the word order errors are even less frequent than other error types. SUBSTITUTE

replaces a token to a grammatically more probable token, DELETE removes an unnecessary

token, and INSERT inserts a new token at a designated index. These actions are shown in

Figure 4.1 and Algorithm 1 (lines 13-25). Because the length of pending decreases as an

attachment occurs, the parser also keeps the token indices in repaired (line 5), which holds

all tokens in a sentence throughout the parsing process. Furthermore, the parser updates

token indices in pending and repaired when INSERT or DELETE occurs. Technically, when a

token at i is deleted/inserted, the parser decrements/increments the indices that are k >= i

(before executing the action) in pending, repaired, and parents and children in a (partial)

dependency tree (Arcs).

To find the best candidate for SUBSTITUTE and INSERT efficiently, we restrict candidates

to the same part-of-speech or pre-defined candidate list. We select the best candidate by

comparing each n-gram language model score with the same surrounding context.

Similar to EF, while training the parser, the cost for ActsER is based on validity. The

56

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

Algorithm 1: Error-repair non-directional parsing
Input: ungrammatical sentence= w1 ... wn
Output: a set of dependency arcs (Arcs), repaired sentence (ŵ1 ... ŵm)

1 Acts = { ATTACHLEFT, ATTACHRIGHT }
2 ActsER = { DELETE, INSERT, SUBSTITUTE }
3 Arcs = { }
4 pending = p1...pn ← w1...wn
5 repaired = ŵ1...ŵn ← w1...wn
6 while len (pending) > 1 do
7 best ← argmax

act∈Acts∪ActsER

score (act (i))

8 s.t. 1 ≤ i ≤ len(pending) ∩ isLegal(act, pending)
9 if best∈ Acts then

10 (parent, child)← edgeFor(best)
11 Arcs.add((parent, child))
12 pending.remove(child)
13 else if best = SUBSTITUTE then
14 c = bestCandidate(best, repaired)
15 pending.replace(pi, c)
16 repaired.replace(ŵpi.idx, c)
17 else if best = DELETE then
18 pending.remove(pi)
19 repaired.remove(ŵpi.idx)
20 Arcs.updateIndex()
21 else if best = INSERT then
22 c = bestCandidate(best, repaired)
23 pending.insert(i, c)
24 repaired.insert(pi.idx, c)
25 Arcs.updateIndex()
26 end
27 return Arcs, repaired

validity of the new actions is computed by taking the edit distance (d) between the Gold

tokens (w∗1 ... w∗r) and the sentence state that the parser stores in repaired (ŵ1 ... ŵm). When

the edit distance after taking an action (dafter) is smaller than before (dbefore), we regard the

action as valid (Algorithm 2).

One serious concern of EREF is that the new actions may cause an infinite loop during

57

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

parsing (e.g., infinite SUBSTITUTE, or an alternative DELETE and INSERT sequence.). To

avoid this, we introduce two constraints: (1) edit flag and (2) edit limit. Edit flag is assigned

for each token as a property, and a parser is not allowed to execute ActsER on a token if its

flag is on. The flag is turned on when a parser executes ActsER on a token whose flag

is off. In INSERT action, the flag of the inserted token is activated, while the subsequent

token (which gave rise to the INSERT) is not. Edit limit is set to be the number of tokens

in a sentence, and the parser is not allowed to perform ActsER when the total number of

execution of ActsER exceeds the limit. These two constraints prevent the parser from falling

into an infinite loop as well as parsing in the same order of time complexity as GE. We

also add the following constraints to avoid unreasonable derivations: (i) a word with a

dependent cannot be deleted and (ii) any dependent (i.e., already attached) tokens cannot

be substituted. All the constraints are implemented in the isLegal() function in Algorithm

1 (line 8). The isLegal() function checks if the proposed action does not violate the new

constraints to avoid unreasonable derivations. The isValid() function checks if the proposed

action makes the current state closer to the gold (and grammatically correct) parse tree. (i.e.,

the right action). We note that these constraints not only prevent undesirable derivations

but also leads to an efficiency in exploring the search space during training.

58

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

Algorithm 2: Check validity during training
1 Function isValid(act, repaired, Gold)
2 dbefore = editDistance(repaired, Gold)
3 repaired+ = repaired.apply(act)
4 dafter = editDistance(repaired+, Gold)
5 if dbefore > dafter then return true;
6 else return false;
7 end

4.3 Experiment

4.3.1 Data and Evaluation

We evaluate EREF with respect to dependency parsing accuracy (Experiment 1) and

grammaticality improvement (Experiment 2).2

In the first experiment, as in GE, we train and evaluate our parser on the English dataset

from the Penn Treebank (Marcus, Marcinkiewicz, and Santorini, 1993) with the Penn2Malt

conversion program (Sections 2-21 for training, 22 for tuning, and 23 for test). We use the

PTB for the dependency experiment, since there are no ungrammatical text corpora that

has dependency annotation on the corrected texts by human.

We choose the following most frequent error types that are used in CoNLL 2013 shared

task (Ng et al., 2013):

1. Determiner (substitution, deletion, insertion)

2. Preposition (substitution, deletion, insertion)

2Code for the experiments is available at http://github.com/keisks/
error-repair-parsing

59

http://github.com/keisks/error-repair-parsing
http://github.com/keisks/error-repair-parsing

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

3. Noun number (singular vs. plural)

4. Verb form (tense and aspect)

5. Subject verb agreement

Regarding the candidate sets for INSERT and SUBSTITUTE actions, following Rozovskaya

and Roth (2014), we focus on the most common candidates for each error type, setting the

determiner candidates to be {a, an, the, φ (as deletion)}, preposition candidates to be {on,

about, from, for, of, to, at, in, with, by, φ}, and verb forms to be VBP, VBZ, VBG, VBD, and

VBN.3 We build a 5-gram language model on English Gigaword with the KenLM Toolkit

(Heafield, 2011) for EREF to select the best candidate.

We manually inject grammatical errors into PTB with certain error-rates similarly to the

GenERRate toolkit by Foster and Andersen (2009), which is designed to create synthetic

errors into sentences to improve grammatical error detection. More concretely, we decide

the noise injection rate e. According to the noise injection rate, the tool randomly delete,

insert, or replace tokens. For example, when the sentence has n tokens and e = 0.1 (i.e.,

10%), noise are injected to about 0.1 · n tokens. It is also possible to configure specific

noise injection rates depending on the error type. We randomly select the noise type (e.g.,

delete, insert, or replace) for all the error types except preposition errors. For preposition

errors, we use the confusion matrix extracted from Felice and Pulman (2008).

We train and tune EREF models with different token-level error injection rates from 5%

(E05) to 20% (E20), because language learner corpora have generally around 5% to 15%
3We assume that the input contains the part of speech information.

60

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

of token level errors depending on learners’ proficiency (Leacock et al., 2014). Since the

error injection is stochastic, we train each model with 10 runs and take an average of parser

performance on the test set.

As a baseline, we use the original parser as described by GE, which is equivalent to

EREF with training on an error-free corpus (E00). Since the EF baseline does not allow

error correction during parsing, we pre-process the test data with a grammatical error cor-

rection system similar to Rozovskaya and Roth (2014), where a combination of classifiers

for each error type corrects grammatical errors.

For evaluation, we jointly parse and correct grammatical errors in the test set with dif-

ferent error injection rates (from 0% to 20%). It is important to note that the number of

tokens between the parser output and the oracle may be different because of error injection

into the test set and ActsER during parsing. To handle this mismatch, we evaluate the de-

pendency accuracy with alignment (Favre, Bohnet, and Hakkani-Tür, 2010) in the spirit of

SParseval (Roark et al., 2006), where tokens between a hypothesis and oracle are aligned

prior to calculating the dependency accuracy.

In the second experiment, we use the Treebank of Learner English (TLE) (Berzak et

al., 2016) to see the grammaticality improvement in a real scenario. TLE contains 5,124

sentences and 2.69 (std 1.9) token errors per sentence. The average sentence length is 19.06

(std 9.47). TLE also provides dependency labels and POS tags on the raw (ungrammatical)

sentences. It is important to note that TLE has dependency annotation only for the original

ungrammatical sentences, and therefore we do not compute the accuracy of dependency

61

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

0 5 10 15 20
Error Rate in Test set

84
85
86
87
88
89
90
91
92

U
A

S

Pipeline
Joint(ER5%)

0 5 10 15 20
Error Rate in Test set

84
85
86
87
88
89
90
91
92

U
A

S

Pipeline
Joint(ER10%)

0 5 10 15 20
Error Rate in Test set

84
85
86
87
88
89
90
91
92

U
A

S

Pipeline
Joint(ER15%)

0 5 10 15 20
Error Rate in Test set

84
85
86
87
88
89
90
91
92

U
A

S

Pipeline
Joint(ER20%)

Figure 4.2: Unlabeled dependency accuracy results with the 5x5 models and test sets
(higher is better).

parse in this experiment. Since the corpus size is small, we train EREF (E05 to E20)

on 100k sentences from Annotated Gigaword (Napoles, Gormley, and Van Durme, 2012)

and used TLE as a test set. Spelling errors are ignored because EREF can use the POS

information. Grammaticality is evaluated by a regression model (Heilman et al., 2014),

which scores grammaticality on the ordinal scale (from 1 to 4).

62

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

(%) Baseline E05 E10 E15 E20
0 91.43 91.12 90.87 90.61 90.29
5 89.99 90.00 89.87 89.72 89.48
10 87.84 87.99 88.07 88.14 88.04
15 85.64 86.18 86.54 86.75 86.82
20 84.12 84.78 85.28 85.50 85.76
∇ -0.37 -0.32 -0.28 -0.26 -0.23

Table 4.1: Unlabeled dependency accuracy results with the 5x5 models and test sets. ∇
shows the slope of deterioration in parser performance.

E05 E10 E15 E20
edited sents (out of 5,124) 175 391 583 861
grammaticality (source) 2.92 2.95 2.95 2.89
grammaticality (this work) 2.96 2.99 3.27 2.98

Table 4.2: Grammaticality scores by 1-4 scale regression model (Heilman et al., 2014). The
first row shows the number of sentences that are made (at least one) change. Bold numbers
show statistically significant improvements.

4.3.2 Results

Figure 4.2 and Table 4.1 shows the result of unlabeled dependency accuracy (UAS).4 As

previously presented (Foster, 2007; Cahill, 2015), our experiment also shows that parser

performance deteriorated as the error rate in the test corpus increased. On the error-free

test set (0%), the baseline (EF pipeline) outperforms other EREF models; the accuracy

is lower when the parser is trained on noisier data. The difference among the models

becomes small when the test set has 10% error injection rate. As the rate increases further,

the trend of parser accuracy reverses. When the test set has 15% or higher noise, the E20

is the most accurate parser. This trend is presented by the slope of deterioration ∇ =

4Technically, it is possible to train the model with learning labels simultaneously (LAS), but there is a
trade-off between search space and training time. The primary goal of this experiment is to see if the EREF
is able to detect and correct grammatical errors.

63

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

ER5% ER10% ER15% ER20%
Error-repair models

2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5

G
ra

m
m

at
ic

al
ity

 (0
~4

) Baseline
Joint

Figure 4.3: Grammaticality scores by 1-4 scale regression model (Heilman et al., 2014).

accuracy20%−accuracy0%
20

in Table 4.1; a parser trained on noisier training data shows smaller

decline and more robustness.5 This indicates that the EREF is more robust than the vanilla

EF on ungrammatical texts by jointly parsing and correcting errors.

Figure 4.3 and Table 4.2 demonstrates the result of grammaticality improvement (1-4

scale) on the TLE corpus, and Table 4.3 shows successful and failure corrections by EREF.

Minimally trained models (E05 and E10) show little improvement in grammaticality be-

cause the models are too conservative to make edits. The models with higher error-injection

rates (E15 and E20) achieve 0.1 to 0.3 improvements that are statistically significant. There

is still room to improve regarding the amount of corrections. This is probably because TLE

5Baseline model without preprocessing always underperformed the preprocessed baseline.

64

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

Successful cases
I ’m looking forward to [-see-] {+seeing+} you next summer
I ’ve never [-approve-] {+approved+} his deal
There is not {+a+} possibility to travel

Failure cases
I ’ve [-assisted-] {+assisting+} your new musical show
I am writing to complain [-about-] {+with+} somethings
I hope you liked {+the+} everything I said

Table 4.3: Successful and failure examples by EREF. The edits are represented by [-
deletion-] and {+insertion+}. Adjacent pairs of deletion and insertion are considered as
substitution.

contains a variety of errors (e.g., collocation, punctuation) in addition to the five error types

we focus. To deal with other error types, we can extend EREF by adding more actions,

although it increases the search space.

From a practical perspective, the level of ungrammaticality should be realized ahead of

time. This is an issue to be addressed in future research.

4.4 Conclusions

In this chapter, we have presented a joint model that corrects grammatical errors with

deriving the dependency tree. The model is an error-repair variant of the non-directional

easy-first dependency parser. We have introduced three new actions, SUBSTITUTE, INSERT,

and DELETE into the parser so that it jointly parses and corrects grammatical errors in a

sentence. To address the issue of parsing incompletion due to the new actions, we have

proposed simple constraints that keep track of editing history for each token and the total

number of edits during derivation. The experimental result has demonstrated robustness of

65

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

EREF parsers against EF and grammaticality improvement. Our work is positioned at the

intersection of noisy text parsing and grammatical error correction. The EREF is a flexible

formalism not only for grammatical error correction but other tasks with jointly editing and

parsing a given sentence.

In a broader context beyond token-level grammatical error correction, this work lies at

the intersection of parsing non-canonical texts and grammatical error correction. Joint de-

pendency parsing and disfluency detection has been pursued (Rasooli and Tetreault, 2013;

Rasooli and Tetreault, 2014; Honnibal and Johnson, 2014; Wu et al., 2015; Yoshikawa,

Shindo, and Matsumoto, 2016), where a parser jointly parses and detects disfluency (e.g.,

reparandum and interregnum) for a given speech utterance. Our work could be considered

an extension via adding SUBSTITUTE and INSERT actions, although we depend on easy-

first non-directional parsing framework instead of a left-to-right strategy. Importantly, the

DELETE action is easier to handle than the SUBSTITUTE and INSERT actions, because they

bring us challenging issues about a process of candidate word generation and avoiding an

infinite loop in derivation. We have addressed these issues as explained in §4.2.2.

In terms of the literature from grammatical error correction, this work is closely related

to Dahlmeier and Ng (2012a), where they show an error correction decoder with the easy-

first strategy. The decoder iteratively corrects the most probable ungrammatical token by

applying different classifiers for each error type. The EREF parser also depends on the

easy-first strategy to find ungrammatical index to be deleted, inserted, or substituted, but it

parses and corrects errors jointly whereas the decoder is designed as a grammatical error

66

CHAPTER 4. TOKEN-LEVEL ERROR CORRECTION

correction framework rather than a parser.

There is a line of work for parsing ungrammatical sentences (e.g., web forum) by adapt-

ing an existing parsing scheme on domain specific annotations (Petrov and McDonald,

2012; Cahill, 2015; Berzak et al., 2016; Nagata and Sakaguchi, 2016). Although we share

an interest with respect to dealing with ungrammatical sentences, EREF focuses on the

parsing scheme for repairing grammatical errors instead of adapting a parser with a domain

specific annotation scheme.

More broadly, our work can also be regarded as one of the joint parsing and text nor-

malization tasks such as joint spelling correction and POS tagging (Sakaguchi et al., 2012),

word segmentation and POS tagging (Kaji and Kitsuregawa, 2014; Qian et al., 2015).

Now, we have looked at character and token-level error correction models. Before

discussing “whole-sentence” error correction models, in the next couple of chapters, we

reassess the goal of sentence-level grammatical error correction with respect to the eval-

uation metrics and benchmarking dataset. We will come back to a whole-sentence error

correction model in Chapter 7.

67

Chapter 5

Reassessing the Goals of Whole Sentence

Error Correction
1

In the previous chapters, we have looked at character-level and token-level error cor-

rections. In this chapter, we move on to sentence-level error correction. In sentence-level

error correction, the input is a sequence of tokens, and GEC systems are expected to correct

sentence-level grammatical errors in addition to those at the token level.2

Before modeling sentence-level GEC systems, in this chapter, we look at some issues

in conventional evaluation metrics and datasets, because the evaluation for sentence-level

error correction is not as straightforward as character- or token-level error correction. In

sentence-level error correction, the input and output can be totally different (e.g., paraphras-

ing and/or moving phrases); therefore, it might not be appropriate to evaluate sentence-level
1Much of this chapter was originally published in Sakaguchi et al. (2016).
2Some might wonder what the difference is between phrase- and sentence-level errors. In this thesis, they

are treated as the same concept where granularity of errors is longer than or equal to a single token.

68

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

GEC systems by accuracy or F-measure-based metrics as in character and token-level error

correction.

5.1 Introduction

What is the purpose of grammatical error correction (GEC)? One response is that GEC

aims to help people become better writers by correcting grammatical mistakes in their writ-

ing. In the NLP community, the original scope of GEC was correcting targeted error types

with the goal of providing feedback to non-native writers (Chodorow and Leacock, 2000;

Dale and Kilgarriff, 2011; Leacock et al., 2014). As systems improved and more advanced

methods were applied to the task, the definition evolved to whole-sentence correction, or

correcting all errors of every error type (Ng et al., 2014). With this pivot, we urge the

community to revisit the original question.

It is often the case that writing exhibits problems that are difficult to ascribe to specific

grammatical categories. Consider the following example, repeated from Chapter 1:

Original: From this scope , social media has shorten our distance .

Corrected: From this scope , social media has shortened our distance .

If the goal is to correct verb errors, the grammatical mistake in the original sentence

has been addressed and we can move on. However, when we aim to correct the sentence

as a whole, a more vexing problem remains. The more prominent error has to do with

how unnaturally this sentence reads. The meanings of words and phrases like scope and

69

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

the corrected shortened our distance are clear, but this is not how a native English speaker

would use them. A more fluent version of this sentence would be the following:

Fluent: From this perspective , social media has shortened the distance between us .

This issue argues for a broader definition of grammaticality that we will term native-

language fluency, or simply fluency. One can argue that traditional understanding of gram-

mar and grammar correction encompasses the idea of native-language fluency. However,

the metrics commonly used in evaluating GEC undermine these arguments. The per-

formance of GEC systems is typically evaluated using metrics that compute corrections

against error-coded corpora, which impose a taxonomy of types of grammatical errors.

Assigning these codes can be difficult, as evidenced by the low agreement found between

annotators of these corpora. It is also quite expensive. But most importantly, as we will

show in this paper, annotating for explicit error codes places a downward pressure on an-

notators to find and fix concrete, easily-identifiable grammatical errors (such as wrong verb

tense) in lieu of addressing the native fluency of the text.

A related problem is the presence of multiple evaluation metrics computed over error-

annotated corpora. Recent work has shown that metrics like M2 and I-measure, both of

which require error-coded corpora, produce dramatically different results when used to

score system output and produce a ranking of systems in conventional competitions (Felice

and Briscoe, 2015).

In light of all of this, we suggest that the GEC task has overlooked a fundamental ques-

tion: What are the best practices for corpus annotation and system evaluation? This work

70

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

attempts to answer this question. We show that native speakers prefer text that exhibits

fluent sentences over ones that have only minimal grammatical corrections. We explore

different methods for corpus annotation (with and without error codes, written by experts

and non-experts) and different evaluation metrics to determine which configuration of an-

notated corpus and metric has the strongest correlation with the human ranking. In so

doing, we establish a reliable and replicable evaluation procedure to help further the ad-

vancement of GEC methods.3 To date, this is the only work to undertake a comprehensive

empirical study of annotation and evaluation. As we will show, the two areas are intimately

related.

In essence, we reframe sentence-level error correction as one of the sentence generation

tasks such as paraphrasing and machine translation. We propose the most reliable combi-

nation of evaluation metric and benchmark dataset by looking at correlations to human

judgments. Our experimental results show that the GLEU metric (Napoles et al., 2015) and

“fluent” sentence rewrites as the oracle produce strong to very strong correlations with hu-

man judgments (Spearman’s ρ = 0.82, Pearson’s r = 0.73). We also show that the “fluent”

rewrites are simpler and more cost efficient to collect than conventional annotations.

3All the scripts and new data we collected are available at https://github.com/keisks/
reassess-gec.

71

https://github.com/keisks/reassess-gec
https://github.com/keisks/reassess-gec

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

As the development of the technology , social media becomes more and more significant role in the whole world .

With the development of technology
As the technology develops

As technology develops

plays a more and more significant role
becomes more and more significant

world

Figure 5.1: An ungrammatical sentence that can be corrected in different ways.

5.2 Current issues in GEC

In this section, we will address issues of the GEC task, reviewing previous work with

respect to error annotation and evaluation metrics.

5.2.1 Annotation methodologies

Existing corpora for GEC are annotated for errors using fine-grained coding schemes.

To create error-coded corpora, trained annotators must identify spans of text containing an

error, assign codes corresponding to the error type, and provide corrections to those spans

for each error in the sentence.

One of the main issues with coded annotation schemes is the difficulty of defining the

granularity of error types. These sets of error tags are not easily interchangeable between

different corpora. Specifically, two major GEC corpora have different taxonomies: the

Cambridge Learner Corpus (CLC) (Nicholls, 2003) has 80 tags, which generally represent

the word class of the error and the type of error (such as replace preposition, unneces-

sary pronoun, or missing determiner). In contrast, the NUS Corpus of Learner English

(NUCLE) (Dahlmeier, Ng, and Wu, 2013) has only 27 error types. A direct conversion be-

72

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

tween them, if possible, would be very complex. Additionally, it is difficult for annotators

to agree on error annotations, which complicates the annotation validity as a gold standard

(Leacock et al., 2014). This is due to the nature of grammatical error correction, where

there can be diverse correct edits for a sentence (Figure 5.1). In other words, there is no

single gold-standard correction. The variety of error types and potential correct edits result

in very low inter-annotator agreement (IAA), as reported in previous studies (Tetreault and

Chodorow, 2008; Rozovskaya and Roth, 2010; Bryant and Ng, 2015).

This leads to a more fundamental question: why do we depend so much on fine-grained,

low-consensus error-type annotations as a gold standard for evaluating GEC systems?

One answer is that error tags can be informative and useful to provide feedback to lan-

guage learners, especially for specific closed-class error types (such as determiners and

prepositions). Indeed, the CLC, the first large-scale corpus of annotated grammatical er-

rors, was coded specifically with the intent of gathering statistics about errors to inform the

development of tools to help English language learners (Nicholls, 2003). Later GEC cor-

pora adhered to the same error-coding template, if not the same error types (Rozovskaya

and Roth, 2010; Yannakoudakis, Briscoe, and Medlock, 2011; Dahlmeier, Ng, and Wu,

2013).

The first shared task in GEC aspired to the CLC’s same objective: to develop tools for

language learners (Dale and Kilgarriff, 2011). Subsequent shared tasks (Dale, Anisimoff,

and Narroway, 2012; Ng et al., 2013) followed suit, targeting specific error types. Error-

coded corpora are effective training and evaluation data for targeted error correction, and

73

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

statistical classifiers have been developed to handle errors involving closed-class words

(Rozovskaya and Roth, 2014). However, the 2014 CoNLL shared task engendered a sea

change in GEC: in this shared task, systems needed to correct all errors in a sentence, of all

error types, including ones more stylistic in nature (Ng et al., 2014). The evaluation metrics

and annotated data from the previous shared task were used; however we argue that they

do not align with the use case of this reframed task. What is the use case of whole-sentence

correction? It should not be to provide specific targeted feedback on error types, but rather

to rewrite sentences as a proofreader would.

The community has already begun to view whole-sentence correction as a task, with the

yet unstated goal of improving the overall fluency of sentences. Independent papers pub-

lished human evaluations of the shared task system output (Napoles et al., 2015; Grund-

kiewicz, Junczys-Dowmunt, and Gillian, 2015), asking judges to rank systems based on

their grammaticality. As GEC moves toward correcting an entire sentence instead of tar-

geted error types, the myriad acceptable edits will result in much lower IAA, compromising

evaluation metrics based on the precision and recall of coded errors. At this juncture, it is

crucial that we examine whether error-coded corpora and evaluation are necessary for this

new direction of GEC.

Finally, it would be remiss not to address the cost and time of corpus annotation.

Tetreault and Chodorow (2008) noted that it would take 80 hours to correct 1,000 prepo-

sition errors by one trained annotator. Bryant and Ng (2015) reported that it took about

three weeks (504 hours) to collect 7 independent annotations for 1,312 sentences, with all

74

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

28 CoNLL-2014 error types annotated. Clearly, constructing a corpus with fine-grained

error annotations is a labor-intensive process. Due to the time and cost of annotation, the

corpora currently used in the community are few and tend to be small, hampering robust

evaluations as well as limiting the power of statistical models for generating corrections. If

an effective method could be devised to decrease time or cost, larger corpora—and more

of them—could be created. There has been some work exploring this, namely Tetreault

and Chodorow (2008), which used a sampling approach that would only work for errors

involving closed-class words. Pavlick et al. (Pavlick, Yan, and Callison-Burch, 2014) also

describe preliminary work into designing an improved crowdsourcing interface to expedite

data collection of coded errors.

Section 5.3 outlines our annotation approach, which is faster and cheaper than previous

approaches because it does not make use of error coding.

5.2.2 Evaluation practices

As briefly introduced in Chapter 2, three GEC specific evaluation metrics have been

proposed for GEC in addition to F-score: MaxMatch (M2) (Dahlmeier and Ng, 2012b),

I-measure (Felice and Briscoe, 2015), and GLEU (Napoles et al., 2015). The first two

compare the changes made in the output to error-coded spans of the reference corrections.

M2 was the metric used for the 2013 and 2014 CoNLL GEC shared tasks (Ng et al., 2013;

Ng et al., 2014). It captures word- and phrase-level edits by building an edit lattice and

calculating an F-score over the lattice.

75

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

Felice and Briscoe (2015) note problems with M2: specifically, it does not distinguish

between a “do-nothing baseline” and systems that only propose wrong corrections; also,

phrase-level edits can be easily gamed because the lattice treats the deletion of a long phrase

as a single edit. To address these issues, they propose I-measure, which generates a token-

level alignment between the source sentence, system output, and gold-standard sentences,

and then computes accuracy based on the alignment.

Unlike these approaches, GLEU does not use error-coded references4 (Napoles et al.,

2015). Based on BLEU (Papineni et al., 2002), it computes n-gram precision of the system

output against reference sentences. GLEU additionally penalizes text in the output that was

unchanged from the source but changed in the reference sentences.

Recent work by Napoles et al. (Napoles et al., 2015) and Grundkiewicz et al. (Grund-

kiewicz, Junczys-Dowmunt, and Gillian, 2015) evaluated these metrics against human eval-

uations obtained using methods borrowed from the Workshop on Statistical Machine Trans-

lation (Bojar et al., 2014). Both papers found a moderate to strong correlation with human

judgments for GLEU and M2, and a slightly negative correlation for I-measure. Impor-

tantly, however, none of these metrics achieved as a high correlation with the human oracle

ranking as desired in a fully reliable metric.

In §5.4, we examine the available metrics over different types of reference sets to iden-

tify an evaluation setup nearly as reliable as human experts.

4We use the term references to refer to the corrected sentences, since the term gold standard suggests that
there is just one right correction.

76

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

Technically grammatical Not technically grammatical
Fluent In addition, it is impractical to make

such a law.
I don’t like this book, it’s really
boring.

Not fluent Firstly , someone having any kind of
disease belongs to his or her privacy .

It is unfair to release a law only
point to the genetic disorder.

Table 5.1: Examples and counterexamples of technically grammatical and fluent
sentences.

Original Genetic disorder may or may not be hirataged hereditary disease and it
is sometimes hard to find out one has these kinds of diseases .

Expert
fluency

A genetic disorder may or may not be
e

a hereditary disease , and it is
sometimes hard to find out whether one has these kinds of diseases .

Non-
expert
fluency

Genetic
e

factors can manifest overtly as disease
e

, or simply be car-
ried , making it

e
hard , sometimes , to find out if one has

e
a genetic

predisposition to disease .

Table 5.2: An example sentence with expert and non-expert fluency edits. Moved and
changed or inserted spans are underlined and

e
indicates deletions.

5.3 Creating a new, fluent GEC corpus

We hypothesize that human judges, when presented with two versions of a sentence,

will favor fluent versions over ones that exhibit only technical grammaticality.

By technical grammaticality, we mean adherence to an accepted set of grammatical

conventions. In contrast, we consider a text to be fluent when it looks and sounds natural to

a native-speaking population. Both of these terms are hard to define precisely, and fluency

especially is a nuanced concept for which there is no checklist of criteria to be met.5 To

carry the intuitions, Table 5.1 contains examples of sentences that are one, both, or neither.
5It is important to note that both grammaticality and fluency are determined with respect to a particular

speaker population and setting. In this paper, we focus on Standard Written English, which is the standard
used in education, business, and journalism. While judgments of individual sentences would differ for other
populations and settings (for example, spoken African-American Vernacular English), the distinction between
grammaticality and fluency would remain.

77

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

A text does not have to be technically grammatical to be considered fluent, although in

almost all cases, fluent texts are also technically grammatical. In the rest of this paper, we

will demonstrate how they are quantifiably different with respect to GEC.

Annotating coded errors encourages a minimal set of edits because more substantial

edits often address overlapping and interacting errors. For example, the annotators of the

NUCLE corpus, which was used for the recent shared tasks, were explicitly instructed to

select the minimal text span of possible alternatives (Dahlmeier, Ng, and Wu, 2013). There

are situations where error-coded annotations are useful to help students correct specific

grammatical errors. The ability to do this with the non-error-coded, fluent annotations we

advocate here is no longer direct, but is not lost entirely. For this purpose, some recent

studies have proposed post hoc automated error-type classification methods (Swanson and

Yamangil, 2012; Xue and Hwa, 2014), which compare the original sentence to its correc-

tion and deduce the error types.

We speculate that, by removing the error-coding restraint, we can obtain edits that sound

more fluent to native speakers while also reducing the expense of annotation, with dimin-

ished time and training requirements. Chodorow et al. (2012) and Tetreault, Chodorow,

and Madnani (2014) suggested that it is better to have a large number of annotators to re-

duce bias in automatic evaluation. Following this recommendation, we collected additional

annotations without error codes, written by both experts and non-experts.

78

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

5.3.1 Data collection

We collected a large set of additional human corrections to the NUCLE 3.2 test set6,

which was used in the 2014 CoNLL Shared Task on GEC (Ng et al., 2014) and contains

1,312 sentences error-coded by two trained annotators. Bryant and Ng (2015) collected

an additional eight annotations using the same error-coding framework, referred to here as

BN15.

We collected annotations from both experts and non-experts. The experts7 were three

native English speakers familiar with the task. To ensure that the edits were clean and

meaning-preserving, each expert’s corrections were inspected by a different expert in a

second pass. For non-experts, we used crowdsourcing, which has shown potential for an-

notating closed-class errors as effectively as experts (Tetreault, Filatova, and Chodorow,

2010; Madnani et al., 2011; Tetreault, Chodorow, and Madnani, 2014). We hired 14 partic-

ipants on Amazon Mechanical Turk (MTurk) who had a HIT approval rate of at least 95%

and were located in the United States. The non-experts went through an additional screen-

ing process: before completing the task, they wrote corrections for five sample sentences,

which were checked by the three experts.8

We collected four complete sets of annotations by both types of annotators: two sets of

minimal edits, designed to make the original sentences technically grammatical (following

the NUCLE annotation instructions but without error coding), and two sets of fluency edits,

6www.comp.nus.edu.sg/˜nlp/conll14st.html
7All of the expert annotators are authors of Sakaguchi et al. (2016).
8The experts verified that the participants were following the instructions and not gaming the HITs.

79

www.comp.nus.edu.sg/~nlp/conll14st.html

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

designed to elicit native-sounding, fluent text. The instructions were:

• Minimal edits: Make the smallest number of changes so that each sentence is gram-

matical.

• Fluency edits: Make whatever changes necessary for sentences to appear as if they

had been written by a native speaker.

In total, we collected 8 (2 × 2 × 2) annotations from each original sentence (minimal

and fluency, expert and non-expert, two corrections each). Of the original 1,312 sentences,

the experts flagged 34 sentences that needed to be merged together, so we skipped these

sentences in our analysis and experiments. In the next subsection, we show how humans

rate edits made by experts and non experts in both minimal and fluency edits.

5.3.2 Human evaluation

As an additional validation, we ran a task to establish the relative quality of the new

fluency and minimal-edit annotations using crowdsourcing via Amazon Mechanical Turk.

Participants needed to be in the United States with a HIT approval rate of at least 95% and

pass a preliminary ranking task, graded by the authors. We randomly selected 300 sen-

tences and asked participants to rank the new annotations, one randomly selected NUCLE

correction, and the original sentence in order of grammaticality and meaning preservation

(that is, a sentence that is well-formed but changes the meaning of the original source

should have a lower rank than one that is equally well-formed but maintains the original

80

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

Original Some family may feel hurt , with regards to their family pride or reputation
, on having the knowledge of such genetic disorder running in their family .

NUCLE Some family members may feel hurt
e

with regards to their family pride or
reputation

e
on having the knowledge of a genetic disorder running in their

family .
Expert
fluency

On
e

learning of such a genetic disorder running in their family , some
family members may feel hurt

e
regarding their family pride or reputation .

Non-
expert
fluency

Some relatives may
e

be concerned about the family ’s
e

reputation – not
to mention their own pride – in relation to this news of

e
familial genetic

defectiveness
e

.
Expert
minimal

Some families may feel hurt
e

with regards to their family pride or repu-
tation , on having

e
knowledge of such a genetic disorder running in their

family .
Non-
expert
minimal

Some family may feel hurt
e

with regards to their family pride or reputatione
on having the knowledge of such genetic disorder running in their family

.

Table 5.3: An example sentence with the original NUCLE correction and fluency and
minimal edits written by experts and non-experts. Moved and changed or inserted spans
are underlined and

e
indicates deletions.

meaning). Since we were comparing the minimal edits to the fluency edits, we did not

define the term grammaticality, but instead relied on the participants’ understanding of

the term. Each sentence was ranked by two different judges, for a total of 600 rankings,

yielding 7,795 pairwise comparisons.

To rank systems, we use the TrueSkill approach (Herbrich, Minka, and Graepel, 2006;

Sakaguchi, Post, and Van Durme, 2014), based on a protocol established by the Workshop

on Machine Translation (Bojar et al., 2014; Bojar et al., 2015). For each competing system,

TrueSkill infers the absolute system quality from the pairwise comparisons, representing

each as the mean of a Gaussian. These means can then be sorted to rank systems. By

running TrueSkill 1,000 times using bootstrap resampling and producing a system ranking

81

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

Score Range Annotation type
1 1.164 1–2 Expert fluency

0.976 1–2 Non-expert fluency
3 0.540 3 NUCLE
4 0.265 4 Expert minimal
5 -0.020 5 Non-expert minimal
6 -2.925 6 Original sentence

Table 5.4: Human ranking of the new annotations by grammaticality. Lines between
systems indicate clusters according to bootstrap resampling at p ≤ 0.05. Systems in the
same cluster are considered to be tied.

each time, we collect a range of ranks for each system. We can then cluster systems accord-

ing to non-overlapping rank ranges (Koehn, 2012) to produce the final ranking, allowing

ties.

Table 5.4 shows the ranking of “grammatical” judgments for the additional annotations

and the original NUCLE annotations. While the score of the expert fluency edits is higher

than the non-expert fluency, they are within the same cluster, suggesting that the judges

perceived them to be just as good. The fluency rewrites by both experts and non-experts

are clearly preferable over the minimal edit corrections, although the error-coded NUCLE

corrections are perceived as more grammatical than the minimal corrections.

82

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

5.4 What is the Best Annotation–Evaluation Com-

bination?

We have shown that humans prefer fluency edits to error-coded and minimal-edit cor-

rections, but it is not clear whether these annotations are still an effective reference for

automatic evaluation metrics. In particular, the most changes made by fluency edits can

make it more challenging for us to use the automated evaluation metrics. In this section,

we investigate the impact of the combination difference between (1) reference sets and (2)

automated evaluation metrics for sentence-level GEC. Namely, with reference sets having

such different characteristics, the natural question is: which reference and evaluation metric

pairing best reflects human judgments of grammaticality?

To answer this question, we performed an exhaustive comparisons of existing metrics

and annotation sets by evaluating the 12 system outputs made public from the 2014 CoNLL

Shared Task. To our best of knowledge, this is the first attempt that the interplay of annota-

tion scheme and evaluation metric, as well as the rater expertise, has been evaluated jointly

for GEC.9

9This section is primarily contributed by Courtney Napoles. Please refer her thesis for more details.

83

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

5.4.1 Experiments

We investigate four automated metrics: BLEU, M2, I-measure,10 and GLEU. BLEU

itself is not designed for GEC but we include it in this experiment, because evaluation

of sentence-level GEC is similar to that of machine-translation, which considers overlap

instead of absolute alignment between the output and reference sentences. As introduced

in Chapter 2 (§ 2.1), GLEU is a variant of BLEU that adds an additional penalty for tokens

that should have been edited but weren’t. For the M2 and I-measure metrics, we aligned

the source and hypothesis/reference using dynamic programming (i.e., Levenshtein edit

distance algorighm).11

With each metric, we compare the system outputs to each of the six annotation sets.

We add one more annotation set all, by combining all the six annotations. The systems are

ranked based on their scores by the cross-product of each metric–annotation-set pair, and

thus generated a total of 28 different rankings (4 metrics × 7 annotation sets).

To find out the best metric, we compared the system ranking obtained from each eval-

uation technique against the expert human ranking reported in Grundkiewicz, Junczys-

Dowmunt, and Gillian (2015) (Table 5.5).12

10I-measure is conducted with the -nomix flag, preventing the algorithm from finding the optimal align-
ment across all possible edits. Alignment was very memory-intensive and time consuming, even when skip-
ping long sentences.

11Costs for insertion, deletion, and substitution are set to 1, allowing partial match (e.g., same lemma).
Neither metric makes use of the annotation labels, so we simply assigned dummy error codes.

12We could use the expert human ranking reported in Napoles et al. (2015), but the ranking is obtained from
randomly sampled sentences in the test set, while Grundkiewicz, Junczys-Dowmunt, and Gillian (2015) use
the entire test set. In both work, the human ranking is obtained by TrueSkill algorithm (Herbrich, Minka, and
Graepel, 2006; Sakaguchi, Post, and Van Durme, 2014). The technical details are explained in Appendix A.

84

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

Rank Score Range System
1 0.273 1 AMU
2 0.182 2 CAMB
3 0.114 3-4 RAC

0.105 3-5 CUUI
0.080 4-5 POST

4 -0.001 6-7 PKU
-0.022 6-8 UMC
-0.041 7-10 UFC
-0.055 8-11 IITB
-0.062 8-11 input
-0.074 9-11 SJTU

5 -0.142 12 NTHU
6 -0.358 13 IPN

Table 5.5: System ranking obtained from human ranking (adapted from Grundkiewicz,
Junczys-Dowmunt, and Gillian (2015).

5.4.2 Results

Table 5.6 shows the correlation of the expert rankings with all of the evaluation con-

figurations. Among all the combinations, the GLEU metric with expert fluency has the

highest correlation with human judgements. In other words, this is the best configuration

for evaluating GEC systems at this moment.

M2 and GLEU, and the expert fluency annotations had stronger positive correlations

than the non-expert annotations. It is important that just two expert fluency annotations

with GLEU have the strongest correlation with the human ranking out of all other metric–

reference combinations (ρ = 0.819, r = 0.731), and it is more efficient with respect to the

annotation cost and time than the error-coded metrics such as M2 and I-measure. Expert

fluency with M2 is the third-best pairing. It is interesting to see that M2 has the strongest

correlations with Expert-minimal (ρ = 0.775) annotation on NUCLE (r = 0.677), which

85

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

M2 GLEU I-measure BLEU

NUCLE 0.725 0.626 -0.423 -0.456
0.677* 0.646 -0.313 -0.310

BN15 0.692 0.720 -0.066 -0.319*
0.641 0.697 -0.007 -0.255

Expert fluency 0.758 0.819* -0.297 -0.385
0.665 0.731* -0.256 -0.230*

Non-expert fluency 0.703 0.676 -0.451 -0.451
0.655 0.668 -0.319 -0.388

Expert minimal 0.775* 0.786 -0.467 -0.456
0.655 0.676 -0.385 -0.396

Non-expert minimal 0.769 -0.187 -0.467 -0.495
0.641 -0.110 -0.402 -0.473

All 0.692 0.725 -0.055* -0.462
0.617 0.724 0.061* -0.314

Table 5.6: Correlation between the human ranking and metric scores over different refer-
ence sets. The first line of each cell is Spearman’s ρ and the second line is Pearson’s r. The
strongest correlations for each metric are starred, and the overall strongest correlations are
in bold.

may support that M2 is designed especially for minimal edits. Furthermore, it is an impor-

tant finding that the non-expert fluency edits reasonably correlate with both M2 and GLEU,

which indicates the possibility of more cost efficient annotations by crowdsourcing.

A larger number of references could improve performance for GLEU. Because fluency

edits tend to have more variations than error-coded minimal-edit annotations, it is not ob-

vious how many fluency edits are necessary to cover the full range of possible corrections.

To address this question, we ran an additional small-scale experiment, where we collected

10 non-expert fluency edits for 20 sentences and computed the average GLEU scores of

the submitted systems against an increasing number of these fluency references. The re-

sult (Figure 5.2) shows that the GLEU score with more fluency references, but the effect

86

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

Figure 5.2: Mean GLEU scores with different numbers of fluency references. The red line
corresponds to the average GLEU score of the 12 GEC systems and the vertical bars show
the maximum and minimum GLEU scores.

starts to level off when there are at least 4 references, suggesting that 4 references cover the

majority of possible changes. A similar pattern was observed by Bryant and Ng (2015) in

error-coded annotations with the M2 metric.

As Grundkiewicz, Junczys-Dowmunt, and Gillian (2015) and Napoles et al. (2015) have

shown, I-measure and BLEU are shown to be unfavorable evaluation metrics for GEC. Al-

though BLEU and GLEU both depend on the n-gram matching overlap between the hypoth-

esis and original sentences, GLEU shows strong positive correlations with human rankings

whereas BLEU has a moderate negative correlation. As explained in Chapter 2 (§2.1), the

advantage of GLEU comes from penalizing n-gram in the hypothesis H (i.e., system out-

87

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

put) that were present in the source (S) and absent from the reference (R). Mathematically,

the difference between GLEU and BLEU is how to compute the precision p′n:

BLEU : p′n =
N(H,R)

N(H)
(5.1)

GLEU : p′n =
N(H,R)− [N(H,S)−N(H,S,R)]

N(H)
.

In short, in GLEU, a system is penalized by missing n-grams that should have been

corrected (or at least edited), whereas BLEU has no such penalty term and instead only re-

wards n-grams that occur in the references and the hypothesis. This becomes problematic

in monolingual text rewriting tasks where there is significant overlap between the refer-

ence and the original sentences, because conservative (e.g., minimal editing) models are

more benefited unfairly than radical (e.g., fluency editing) models. Let’s take a look at the

following example.

Source: *I looks forward to see you.
Reference: I look forward to seeing you.
Hypothesis 1: I looks forward to see you.
Hypothesis 2: I looked forward to meeting you.

The first hypothesis is conservative (i.e., no change), and the second one is radically

edited. In BLEU metric (in the case of n = 1), both hypotheses have the same precision

(i.e, 4 out of 6 tokens are overlapped with the reference), and there is no way to make

88

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

Friday, October 9, 15

Figure 5.3: Screenshot of the GEC grammaticality judgment task (HIT).

distinction between “do-nothing” and “aggressive edits”. GLEU addresses this issue by

discouraging the “do-nothing” strategy (i.e., two tokens, looks and see, are penalized).

5.5 GEC System Evaluation by Non-experts

Automatic metrics are only a proxy for human judgments, which are crucial to truth-

fully ascertain the quality of systems. Even the best result in §5.4.2, which is state of the art

89

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

and has very strong rank correlation (ρ = 0.819) with the expert ranking, makes dramatic

errors in the system ranking. Given the inherent imperfection of automatic evaluation (and

possible over-optimization to the NUCLE data set), we recommend that human evaluation

be produced alongside metric scores whenever possible. However, human judgments can

be expensive to obtain. Crowdsourcing may address this problem and has been shown to

yield reasonably good judgments for several error types at a relatively low cost (Tetreault,

Chodorow, and Madnani, 2014). Therefore, we apply crowdsourcing to sentence-level

grammaticality judgments, by replicating previous experiments that reported expert rank-

ings of system output (Napoles et al., 2015; Grundkiewicz, Junczys-Dowmunt, and Gillian,

2015) using non-experts on MTurk.

5.5.1 Experiments

Using the same data set as those experiments and the work described in this paper,

we asked screened participants13 on MTurk to rank five randomly selected systems and

NUCLE corrections from best to worst, with ties allowed. 294 sentences were randomly se-

lected for evaluation from the NUCLE subsection used in Grundkiewicz, Junczys-Dowmunt,

and Gillian (2015), and the output for each sentence was ranked by two different partici-

pants. The 588 system rankings yield 26,265 pairwise judgments, from which we inferred

the absolute system ranking using TrueSkill.

13Participants in the United States with a HIT approval rate ≥ 95% had to pass a sample ranking task
graded by the authors.

90

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

AMU
CAMB
CUUI
POST
RAC
UMC
IITB
PKU
input
UFC
SJTU
IPN
NTHU

AMU
CAMB
RAC
CUUI
POST
PKU
UMC
UFC
IITB
input
SJTU
NTHU
IPN

Expert Non-expert

Figure 5.4: Output of system rankings by experts and non-experts, from best to worst.
Dotted lines indicate clusters according to bootstrap resampling (p ≤ 0.05).

Judges κ κw

Non-experts 0.29 0.43
Experts 0.29 0.45
Non-experts and Experts 0.15 0.23

Table 5.7: Inter-annotator agreement of pairwise system judgments within non-experts,
experts and between them. We show Cohen’s κ and quadratic-weighted κ.15

5.5.2 Results

Figure 5.4 compares the system ranking by non-experts to the same expert ranking used

in § 5.4.1. The rankings have very strong correlation (ρ = 0.917, r = 0.876), indicating

that non-expert grammaticality judgments are comparably as reliable as those by experts.

The non-expert correlation can be seen as an upper bound for the task, which is approached

but not yet attained by automatic metrics.

91

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

Systems in the same cluster, indicated by dotted lines in Figure 5.4, can be viewed as

ties. From this perspective the expert and non-expert rankings are virtually identical. In

addition, experts and non-experts have similar inter-annotator agreement in their pairwise

system judgments (Table 5.7). The agreement between experts and non-experts is lower

than the agreement between just experts or just non-experts, which may be due to the

difference of these experimental settings for experts (Grundkiewicz, Junczys-Dowmunt,

and Gillian, 2015) and for non-experts (this work). However, this finding is not overly

concerning since the correlation between the rankings is so strong.

In all, judgments cost approximately $140 ($0.2 per sentence) and took a total of 32

hours to complete. Because the non-expert ranking very strongly correlates to the expert

ranking and non-experts have similar IAA as experts, we conclude that expensive expert

judgments can be replaced by non-experts, when those annotators have been appropriately

screened.

5.6 Conclusion

In this chapter, we attempt to determine the most reliable evaluation framework for GEC

systems with respect to the metrics and annotation methodology. What we have found is

that there is a real distinction between technical grammaticality and fluency. Fluency is

a level of mastery that goes beyond knowledge of how to follow the rules, and includes

15In addition to Cohen’s κ, we report weighted κ because A > B and A < B should have less agreement
than A > B and A = B.

92

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

knowing when they can be broken or flouted. Language learners—who are a prime con-

stituency motivating the GEC task—ultimately care about the latter. But crucially, the

current approach of collecting error-coded annotations places downward pressure on anno-

tators to minimize edits in order to neatly label them. This results in annotations that are

less fluent, and therefore less useful, than they should be. We have demonstrated this with

the collection of both minimally-edited and fluent rewrites of a common test set (§5.3.1);

the preference for fluent rewrites over minimal edits is clear (Table 5.4).

To correct this, the annotations and associated metrics used to score automated GEC

systems should be brought more in line with this broadened goal. We advocate for the

collection of fluent sentence-level rewrites of ungrammatical sentences, which is cheaper

than error-coded annotations and provides annotators with the freedom to produce fluent

edits. In the realm of automatic metrics, we found that a modified form of GLEU computed

against expert fluency rewrites correlates best with a human ranking of the systems; a close

runner-up collects the rewrites from non-experts instead of experts.

Finally, to stimulate metric development, we found that we were able to produce a new

human ranking of systems using non-expert judges. These judges produced a ranking that

was highly correlated with the expert ranking produced in earlier work (Grundkiewicz,

Junczys-Dowmunt, and Gillian, 2015). The implication is further reduced costs in produc-

ing a gold-standard ranking for new sets of system outputs against both existing and new

corpora.

As a result, we make the following recommendations:

93

CHAPTER 5. REASSESSING WHOLE SENTENCE ERROR CORRECTION

• GEC should be evaluated against 2–4 whole-sentence rewrites, which can be ob-

tained by non-experts.

• Automatic metrics that rely on error coding are not necessary, depending on the use

case. Of the automatic metrics that have been proposed, we found that a modified

form of GLEU (Napoles et al., 2015) is the best-correlated.

• The field of GEC is in danger from over-reliance on a single annotated corpus (NU-

CLE). New corpora should be produced in a regular fashion, similar to the Workshop

on Statistical Machine Translation.

Fortunately, collecting annotations in the form of unannotated sentence-level rewrites is

much cheaper than error-coding, facilitating these practices.

By framing grammatical error correction as fluency, we can reduce the cost of annota-

tion while creating a more reliable gold standard. We have clearly laid improved practices

for annotation and evaluation, demonstrating that better quality results can be achieved for

less cost using fluency edits instead of error coding. All of the source code and data, in-

cluding templates for data collection, will be publicly available, which we believe is crucial

for supporting the improvement of GEC in the long term.

Following these recommendations, in the next chapter, we develop a new corpus, JHU

FLuency-Extended GUG corpus (JFLEG). In order to avoid the over-reliance on a single

benchmarking (i.e., NUCLE), the sentences in JFLEG have more diversity than NUCLE

corpus, in terms of the topics, and writers’ proficiency and native language.

94

Chapter 6

A Fluency Corpus and Benchmark for

Grammatical Error Correction
1

In the previous chapter, we have investigated the most reliable evaluation framework

for GEC systems regarding the metrics and annotation scheme. We have found that (1)

fluency edits are more reliable than minimal edits, and (2) fluency edits can be made by

non-experts (i.e., crowdsourcing). In this chapter, we build a fluency-oriented GEC corpus

that has more diversity in terms of the learners’ proficiency and variety of error types in

token- and sentence-levels that are not easily categorized by error codes.

1Much of this chapter was originally published in Napoles, Sakaguchi, and Tetreault (2017).

95

CHAPTER 6. A FLUENCY CORPUS AND BENCHMARK FOR GEC

6.1 Introduction

As pointed out in the previous chapter, automatic grammatical error correction (GEC)

progress is limited by the corpora available for developing and evaluating systems. Fol-

lowing the release of the test set of the CoNLL–2014 Shared Task on GEC (Ng et al.,

2014), systems have been compared and new evaluation techniques proposed on this single

dataset. This corpus has enabled substantial advancement in GEC beyond the shared tasks,

but we are concerned that the field is over-developing on this dataset. This is problematic

for two reasons: 1) it represents one specific population of language learners; and 2) the

corpus only contains minimal edits, which correct the grammaticality of a sentence but do

not necessarily make it fluent or native-sounding.

To illustrate the need for fluency edits, consider the example in Table 6.1. The cor-

rection with only minimal edits is grammatical but sounds awkward (unnatural to native

speakers). The fluency correction has more extensive changes beyond addressing gram-

maticality, and the resulting sentence sounds more natural and its intended meaning is

more clear. It is not unrealistic to expect these changes from automatic GEC: the current

best systems use machine translation (MT) and are therefore capable of making broader

sentential rewrites but, until now, there has not been a gold standard against which they

could be evaluated.

Following the recommendations in the previous chapter, we release a new corpus for

GEC, the JHU FLuency-Extended GUG corpus (JFLEG), which adds a layer of annotation

to the GUG corpus (Heilman et al., 2014). GUG represents a cross-section of ungrammati-

96

CHAPTER 6. A FLUENCY CORPUS AND BENCHMARK FOR GEC

Original: they just creat impression such well that people are drag to buy it .
Minimal edit: They just create an impression so well that people are dragged to buy it .
Fluency edit: They just create such a good impression that people are compelled to buy it.

Table 6.1: A sentence corrected with just minimal edits compared to fluency edits.

cal data, containing sentences written by English language learners with different L1s and

proficiency levels. For each of 1,511 GUG sentences, we have collected four human-written

corrections which contain holistic fluency rewrites instead of just minimal edits. This cor-

pus represents the diversity of edits that GEC needs to handle and sets a gold standard to

which the field should aim. We overview the current state of GEC by evaluating the perfor-

mance of four leading systems on this new dataset. We analyze the edits made in JFLEG and

summarize which types of changes the systems successfully make, and which they need to

address. JFLEG will enable the field to move beyond minimal error corrections.

6.2 The JFLEG corpus

Our goal in this chapter is to create a new corpus of fluency edits, as shown in the

previous chapter, in which we have identified the shortfalls of minimal edits: they artifi-

cially restrict the types of changes that can be made to a sentence and do not reflect the

types of changes required for native speakers to find sentences fluent, or natural sounding.

We collected annotations on a public corpus of ungrammatical text, the GUG (Grammati-

cal/Ungrammatical) corpus (Heilman et al., 2014). GUG contains 3.1k sentences written by

English language learners for the TOEFL R© exam, covering a range of topics. The original

97

CHAPTER 6. A FLUENCY CORPUS AND BENCHMARK FOR GEC

GUG corpus is annotated with grammaticality judgments for each sentence, ranging from

1–4, where 4 is perfect or native sounding, and 1 incomprehensible. The sentences were

coded by five crowdsourced workers and one expert. We refer to the mean grammaticality

judgment of each sentence from the original corpus as the GUG score.

In our extension, JFLEG, the 1,511 sentences which comprise the GUG development

and test sets were corrected four times each on Amazon Mechanical Turk. Annotation

instructions are included in Table 6.2. 50 participants from the United States passed a

qualifying task of correcting five sentences, which was reviewed by the authors (two native

and one proficient non-native speakers of American English). Annotators also rated how

difficult it was for them to correct each sentence on a 5-level Likert scale (5 being very

easy and 1 very difficult). On average, the sentences were relatively facile to correct (mean

difficulty of 3.5 ± 1.3), which moderately correlates with the GUG score (Pearson’s r =

0.47), indicating that less grammatical sentences were generally more difficult to correct.

To create a blind test set for the community, we withhold half (747) of the sentences from

the analysis and evaluation herein.2

6.3 Evaluation

To assess the current state of GEC, we collected automated corrections of JFLEG from

four leading GEC systems with no modifications. They take different approaches but all

use some form of MT. The best system from the CoNLL-2014 Shared Task is a hybrid ap-
2For more detailed analyses, please see the Thesis by Courtney Napoles.

98

CHAPTER 6. A FLUENCY CORPUS AND BENCHMARK FOR GEC

Please correct the following sentence to make it sound natural and
fluent to a native speaker of (American) English. The sentence is
written by a second language learner of English. You should fix
grammatical mistakes, awkward phrases, spelling errors, etc. fol-
lowing standard written usage conventions, but your edits must be
conservative. Please keep the original sentence (words, phrases,
and structure) as much as possible. The ultimate goal of this task
is to make the given sentence sound natural to native speakers of
English without making unnecessary changes. Please do not split
the original sentence into two or more. Edits are not required
when the sentence is already grammatical and sounds natural.

Table 6.2: JFLEG annotation instructions.

proach, combining a rule-based system with MT and language-model reranking (CAMB14;

Felice et al., 2014). Other systems have been released since then and report improvements

on the 2014 Shared Task. They include a neural MT model (CAMB16; Yuan and Briscoe,

2016), a phrase-based MT (PBMT) with sparse features (AMU; Junczys-Dowmunt and

Grundkiewicz, 2016), and a hybrid system that incorporates a neural-net adaptation model

into PBMT (NUS; Chollampatt et al., 2016).

We evaluate system output against the four sets of JFLEG corrections with GLEU, an

automatic fluency metric specifically designed for this task (Napoles et al., 2015) and the

Max-Match metric (M2) (Dahlmeier and Ng, 2012b). GLEU is based on the MT metric

BLEU, and represents the n-gram overlap of the output with the human-corrected sentences,

penalizing n-grams that were been changed in the human corrections but left unchanged by

a system. It was developed to score fluency in addition to minimal edits since it does not

require an alignment between the original and corrected sentences. M2 was designed to

score minimal edits and was used in the CoNLL 2013 and 2014 shared tasks on GEC (Ng

99

CHAPTER 6. A FLUENCY CORPUS AND BENCHMARK FOR GEC

System TrueSkill GLEU M2 Sentence changed
Original -1.64 38.2 0.0 –
CAMB16 0.21 47.2 50.8 74%
NUS -0.20∗ 46.3 52.7 69%
AMU -0.46∗ 41.7 43.2 56%
CAMB14 -0.51∗ 42.8 46.6 58%
Human 2.60 55.3 63.2 86%

Table 6.3: Scores of system outputs. ∗ indicates no significant difference from each other.

et al., 2013; Ng et al., 2014). Its score is the F0.5 measure of word and phrase-level changes

calculated over a lattice of changes made between the aligned original and corrected sen-

tences. Since both GLEU and M2 have only been evaluated on the CoNLL-2014 test set,

we additionally collected human rankings of the outputs to determine whether human judg-

ments of relative grammaticality agree with the metric scores when the reference sentences

have fluency edits.

The two native English-speaking authors ranked six versions of each of 150 JFLEG sen-

tences: the four system outputs, one randomly selected human correction, and the original

sentence. The absolute human ranking of systems was inferred using TrueSkill, which

computes a relative score from pairwise comparisons, and we cluster systems with over-

lapping ranges into equivalence classes by bootstrap resampling (Sakaguchi, Post, and Van

Durme, 2014; Herbrich, Minka, and Graepel, 2006). The two best ranked systems judged

by humans correspond to the two best GLEU systems, but GLEU switches the order of the

bottom two. The M2 ranking does not perform as well, reversing the order of the top two

systems and the bottom two (Table 6.3).3 The upper bound is GLEU = 55.3 and M2 = 63.2,

3No conclusive recommendation about the best-suited metric for evaluating fluency corrections can be
drawn from these results. With only four systems, there is no significant difference between the metric
rankings, and even the human rank has no significant difference between three systems.

100

CHAPTER 6. A FLUENCY CORPUS AND BENCHMARK FOR GEC

the mean metric scores of each human correction compared to the other three. CAMB16

and NUS are halfway to the gold-standard performance measured by GLEU and, according

to M2, they achieve approximately 80% of the human performance. The neural methods

(CAMB16 and NUS) are substantially better than the other two according to both metrics.

This ranking is in contrast to the ranking of systems on the CoNLL-14 shared task test

against minimally edited references. On these sentences, AMU, which was tuned to M2,

achieves the highest M2 score with 49.5 and CAMB16, which was the best on the fluency

corpus, ranks third with 39.9.

6.4 Conclusions

This chapter have presented JFLEG, a new corpus for developing and evaluating GEC

systems with respect to fluency as well as grammaticality.4 Our hope is that this corpus

will serve as a starting point for advancing GEC beyond minimal error corrections. We

described qualitative and quantitative analysis of JFLEG, and benchmarked four leading

systems on this data. The relative performance of these systems varies considerably when

evaluated on a fluency corpus compared to a minimal-edit corpus, underlining the need

for a new dataset for evaluating GEC. Overall, current systems can successfully correct

closed-class targets such as number agreement and prepositions errors (with incomplete

coverage), but ignore many spelling mistakes and long-range context-dependent errors.

Neural methods are better than other systems at making fluency edits, but this may be
4https://github.com/keisks/jfleg

101

https://github.com/keisks/jfleg

CHAPTER 6. A FLUENCY CORPUS AND BENCHMARK FOR GEC

at the expense of maintaining the meaning of the input. As there is still a long way to

go in approaching the performance of a human proofreader, these results and benchmark

analyses help identify specific issues that GEC systems can improve in future research.

102

Chapter 7

Sentence-level Error Correction: Neural

Reinforcement Learning for sentence

level GEC
1

In the previous chapters (5 and 6), we have obtained the most reliable (i.e., correlating

with human judgments) evaluation framework for “whole-sentence” GEC regarding the

metric, annotation, and dataset. Finally, in this chapter, we propose a sentence-level GEC

model that is directly optimized toward the reassessed goal of GEC, namely fluency.

1Much of this chapter was originally published in Sakaguchi, Post, and Van Durme (2017b).

103

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

7.1 Introduction

Research in automated Grammatical Error Correction (GEC) has expanded from token-

level, closed class corrections (e.g., determiners, prepositions, verb forms) to phrase-level,

open class issues that consider fluency (e.g., content word choice, idiomatic collocation,

word order, etc.).

The expanded goals of GEC have led to new proposed models deriving from tech-

niques in data-driven machine translation, including phrase-based MT (PBMT) (Felice et

al., 2014; Chollampatt, Hoang, and Ng, 2016; Junczys-Dowmunt and Grundkiewicz, 2016)

and neural encoder-decoder models (Yuan and Briscoe, 2016). Napoles, Sakaguchi, and

Tetreault (2017) recently showed that a neural encoder-decoder can outperform PBMT on

a fluency-oriented GEC data and metric.

We investigate training methodologies in the neural encoder-decoder for GEC. To train

the neural encoder-decoder models, maximum likelihood estimation (MLE) has been used.

As we discuss further details in § 2.2, the objective of MLE is to maximize the (log) likeli-

hood of the parameters for a given training data.

As Ranzato et al. (2015) indicates, however, MLE has drawbacks. The MLE objective

is based on word-level accuracy against the reference, and the model is not exposed to the

predicted output during training (exposure bias). This becomes problematic, because once

the model fails to predict a correct word, it falls off the right track and does not come back

to it easily.

To address the issues, we employ a neural encoder-decoder GEC model with a rein-

104

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

Algorithm 3: Reinforcement learning for neural encoder-decoder model.
Input: Pairs of source (X) and target (Y)
Output: Model parameter θ̂

1 initialize(θ̂)
2 for (x, y) ∈ (X, Y) do
3 (ŷ1, ...ŷk), (p(ŷ1), ...p(ŷk)) = sample(x, k, θ̂)
4 p(ŷ) = normalize(p(ŷ))
5 r̄(ŷ) = 0 // expected reward

6 for ŷi ∈ ŷ do
7 r̄(ŷ)+ = p(ŷi) · score(ŷi, y)

8 backprop(θ̂, r̄) // policy gradient ∂
∂θ̂

9 return θ̂

forcement learning approach in which we directly optimize the model toward our final ob-

jective (i.e., evaluation metric). The objective of the neural reinforcement learning model

(NRL) is to maximize the expected reward on the training data. In our case, the reward

is (sentence-level) GLEU score, which captures fluency as well as error correction accu-

racy by comparing against reference. The model updates the parameters through back-

propagation according to the reward from predicted outputs. The high-level description of

the training procedure is shown in Algorithm 3, and more details are elaborated in §7.2. We

explain more details in §7.2, mentioning NRL as generalization of minimum risk training

(MRT) (Shen et al., 2016). To our knowledge, this is the first attempt to employ reinforce-

ment learning for directly optimizing the encoder-decoder model for GEC task.

We run GEC experiments on a fluency-oriented GEC corpus (§7.3), demonstrating that

NRL outperforms the MLE baseline both in human and automated evaluation metrics.

105

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

Figure 7.1: Illustrative example of the neural encoder-decoder model with attention mech-
anism (adapted from Bahdanau, Cho, and Bengio (2014)).

7.2 Model and Optimization

We use the attentional neural encoder-decoder model (Bahdanau, Cho, and Bengio,

2014) as a basis for both NRL and MLE. The model takes (possibly ungrammatical) source

sentences x ∈ X as an input, and predicts grammatical and fluent output sentences y ∈ Y

according to the model parameter θ. The model consists of two sub-modules, encoder and

decoder. The encoder transforms x into a sequence of vector representations (hidden states

h) using a bidirectional gated recurrent neural network (GRU) (Chung et al., 2014). With

the encoder representation, the decoder predicts a word yt at a time, using previous token

yt−1 and linear combination ct of encoder information as attention α.

Thus, the entire encoder-decoder model (with attention mechanism) is formalized as

106

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

Two Drawbacks in MLE 31

���

NULL

y’1 = y1

y’2

y2
y’T-1
yT-1

yT

y’T

Figure 7.2: Illustration of the exposure bias. The decoder predicts a word conditioned on
the sequence (yt−11) of the gold labels during training, whereas it does with the predicted
(argmax) word sequence (ŷt−11) at test time.

follows:

log p(y|x; θ) =
T∑
t=1

log p(yt|x, yt−11 , ct; θ) (7.1)

ct =
S∑
s=1

αsths (7.2)

αsths =
exp(est)∑
S exp(est)

, (7.3)

where est is called an alignment model which computes how well the hidden states in

source position (s) and target position (t) match with each other. (Bahdanau, Cho, and

Bengio, 2014) uses a feedforward neural network (i.e., multiple layer perceptron) for the

alignment.

107

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

7.2.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation training (MLE) is a standard optimization method for

encoder-decoder models. In MLE, the objective is to maximize the log likelihood of the

correct sequence for a given sequence for the entire training data.

L(θ) =
∑
〈X,Y 〉

T∑
t=1

log p(yt|x, yt−11 ; θ) (7.4)

The gradient of L(θ) is as follows:

∂L(θ)

∂θ
=
∑
〈X,Y 〉

T∑
t=1

∇p(yt|x, yt−11 ; θ)

p(yt|x, yt−11 ; θ)
(7.5)

One drawback of MLE is the exposure bias (Ranzato et al., 2015). The decoder pre-

dicts a word conditioned on the correct word sequence (yt−11) during training, whereas it

does with the predicted (argmax) word sequence (ŷt−11) at test time. Namely, the model

is not exposed to the predicted words in training time. This is problematic, because once

the model fails to predict a correct word at test time, it falls off the right track and does

not come back to it easily (Figure 7.2). Furthermore, in most sentence generation tasks,

the MLE objective does not necessarily correlate with our final evaluation metrics, such as

BLEU (Papineni et al., 2002) in machine translation and ROUGE (Lin, 2004) in summa-

rization. This is because MLE optimizes word level predictions at each time step instead

of evaluating sentences as a whole.

108

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

GEC is no exception. It depends on sentence-level evaluation that considers grammati-

cality and fluency. For this purpose, it is natural to use GLEU (Napoles et al., 2015), which

has been used as a fluency-oriented GEC metric. We explain more details of this metric in

§7.2.3.

7.2.2 Neural Reinforcement Learning

To address the issues in MLE, we directly optimize the neural encoder-decoder model

toward our final objective for GEC using reinforcement learning. In reinforcement learning,

agents aim to maximize expected rewards by taking actions and updating the policy under a

given state. In the neural encoder-decoder model, we treat the encoder-decoder as an agent

which predicts a word from a fixed vocabulary at each time step (the action), given the

hidden states of the neural encoder-decoder representation. The key difference from MLE

is that the reward is not restricted to token-level accuracy. Namely, any arbitrary metric is

applicable as the reward.2

Since we use GLEU as the final evaluation metric, the objective of NRL is to maximize

the expected GLEU by learning the model parameter. Formally, the objective in NRL is

defined as follows.

J(θ) = E[r(ŷ, y)]

=
∑
ŷ∈S(x)

p(ŷ|x; θ)r(ŷ, y) (7.6)

2The reward is given at the end of the decoder output (i.e., delayed reward).

109

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

where S(x) is a sampling function that produces k samples ŷ1, ...ŷk, p(ŷ|x; θ) is a proba-

bility of the output sentence, and r(ŷ, y) is the reward for ŷk given a reference set y. As

described in Algorithm 3, given a pair of source sentence and the reference (x, y), NRL

takes k sample outputs ŷ1, ... ŷk and their probabilities p(ŷ1), ... p(ŷk) (line 3).3 Then,

the expected reward is computed by multiplying the probability and metric score for each

sample ŷi (line 7).

In the encoder-decoder model, the parameters θ are updated through back-propagation

and the number of parameter updates is determined by the partial derivative of J(θ), called

the policy gradient (Williams, 1992; Sutton et al., 1999) in reinforcement learning:

∂J(θ)

∂θ
= αE [∇ log p(ŷ){r(ŷ, y)− b}] (7.7)

where α is a learning rate and b is an arbitrary baseline reward to reduce the variance. The

sample mean reward is often used for b (Williams, 1992), and we follow it in NRL.

It is reasonable to compare NRL to minimum risk training (MRT) (Shen et al., 2016).

In fact, NRL with a negative expected reward can be regarded as MRT. with mini-batch

size being 1. The gradient of MRT objective is a special case of policy gradient in NRL.

We show mathematical details about the relevance between NRL and MRT in §7.2.4.
3We sampled sentences from softmax distribution.

110

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

7.2.3 Reward in Grammatical Error Correction

To capture fluency as well as grammaticality in evaluation on such references, we use

GLEU as the reward. In Chapter 5, we have already shown GLEU to be more strongly pre-

ferred than other GEC metrics by native speakers. Similar to BLEU in machine translation,

GLEU computes n-gram precision between the system hypothesis (H) and the reference

(R). In GLEU, however, n-grams in source (S) are also considered. The precision is penal-

ized when the n-gram in H overlaps with the source and not with the reference. Formally,

GLEU = BP · exp

(
4∑

n=1

1

n
log p′n

)
(7.8)

p′n =
N(H,R)− [N(H,S)−N(H,S,R)]

N(H)
(7.9)

BP =


1 if h > r

exp(1− r/h) if h ≤ r

(7.10)

where N(A,B,C, ...) is the number of overlapped n-grams among the sets, and BP brevity

penalty is compute based on token length in the system hypothesis (h) and the reference

(r).

7.2.4 Minimum Risk Training and Policy Gradient in Re-

inforcement Learning

We explain the relevance between minimum risk training (MRT) (Shen et al., 2016)

and neural reinforcement learning (NRL) for training neural encoder-decoder models. We

111

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

describe the detailed derivation of gradient in MRT, and show that MRT is a special case

of NRL.

As explained briefly in § 7.2, the model takes ungrammatical source sentences x ∈ X

as an input, and predicts grammatical and fluent output sentences y ∈ Y . The objective

function in NRL and MRT are written as follows.

J(θ) = E[r(ŷ, y)] (7.11)

R(θ) =
∑
(X,Y)

E[∆(ŷ, y)] (7.12)

where r(ŷ, y) is the reward and ∆(ŷ, y) is the risk for an output (ŷ).

For the sake of simplicity, we consider expected loss in MRT for a single training pair:

R̃(θ) = E[∆(ŷ, y)]

=
∑
ŷ∈S(x)

q(ŷ|x; θ, α)∆(ŷ, y) (7.13)

where

q(ŷ|x; θ, α) =
p(ŷ|x; θ)α∑

ŷ′∈S(x) p(ŷ
′|x; θ)α

(7.14)

S(x) is a sampling function that produces k samples ŷ1, ...ŷk, and α is a smoothing pa-

rameter for the samples (Och, 2003). Although the direction to optimize (i.e., minimizing

or maximizing) is different, we see the similarity between J(θ) and R̃(θ) in the sense that

they both optimize models directly towards evaluation metrics.

The partial derivative of R̃(θ) with respect to the model parameter θ is derived as fol-

112

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

lows.

∂R̃(θ)

∂θ
=

∂

∂θ

∑
ŷ∈S(x)

q(ŷ|x; θ, α)∆(ŷ, y)

=
∑
ŷ∈S(x)

∆(ŷ, y)
∂

∂θ
q(ŷ|x; θ, α) (7.15)

We need ∂
∂θ
q(ŷ|x; θ, α) in (7.15). For space efficiency, we use q(ŷ) as q(ŷ|x; θ, α) and

p(ŷ) as p(ŷ|x; θ) below.

∂

∂θ
q(ŷ) =

∂q(ŷ)

∂p(ŷ)

∂p(ŷ)

∂θ
(∵ chain rule)

=
∂q(ŷ)

∂p(ŷ)
∇p(ŷ) (7.16)

For ∂q(ŷ)
∂p(ŷ)

, by applying the quotient rule to (7.14),

∂q(ŷ)

∂p(ŷ)
=
{∑ŷ′ p(ŷ

′)α} ∂
∂p(ŷ)

p(ŷ)α − p(ŷ)α ∂
∂p(ŷ)

∑
ŷ′ p(ŷ

′)α

{∑ŷ′ p(ŷ
′)α}2

=
αp(ŷ)α−1∑
ŷ′ p(ŷ

′)α
− αp(ŷ)αp(ŷ)α−1

{∑ŷ′ p(ŷ
′)α}2

= α
p(ŷ)α−1∑
ŷ′ p(ŷ

′)α

{
1− p(ŷ)α∑

ŷ′ p(ŷ
′)α

}

= α
p(ŷ)α∑
ŷ′ p(ŷ

′)α
1

p(ŷ)

{
1− p(ŷ)α∑

ŷ′ p(ŷ
′)α

}
(7.17)

113

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

mean chars # sents.
Corpus # sents. per sent. edited
NUCLE 57k 115 38%
FCE 34k 74 62%
Lang-8 1M 56 35%

Table 7.1: GEC corpora for training

Thus, from (7.16) and (7.17), (7.15) is

∂R̃(θ)

∂θ
=
∑
ŷ∈S(x)

∆(ŷ, y)∇p(ŷ)

[
α

p(ŷ)α∑
ŷ′ p(ŷ

′)α
1

p(ŷ)

{
1− p(ŷ)α∑

ŷ′ p(ŷ
′)α

}]

= αE
[
∇p(ŷ) · 1

p(ŷ)
{∆(ŷ, y)− E [∆(ŷ, y)]}

]
= αE [∇ log p(ŷ) {∆(ŷ, y)− E [∆(ŷ, y)]}] (7.18)

According to the policy gradient theorem for REINFORCE (Williams, 1992; Sutton

et al., 1999), the partial derivative of (7.11) is given as follows:

∂J(θ)

∂θ
= α̃E [∇ log p(ŷ){r(ŷ, y)− b}] (7.19)

where α̃ is a learning rate4 and b is arbitrary baseline reward to reduce the variance of

gradients. Finally, we see that the gradient of MRT (7.18) is a special case of policy gradient

in REINFORCE (7.19) with b = E [∆(ŷ, y)]. It is also interesting to see that the smoothing

parameter α works as a part of learning rate (α̃) in NRL.

114

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

7.3 Experiments

7.3.1 Data

For training the models (MLE and NRL), we use the following corpora: the NUS Cor-

pus of Learner English (NUCLE) (Dahlmeier, Ng, and Wu, 2013), the Cambridge Learner

Corpus First Certificate English (FCE) (Yannakoudakis, Briscoe, and Medlock, 2011), and

the Lang-8 Corpus of learner English (Tajiri, Komachi, and Matsumoto, 2012). As de-

scribed in Chapter 2 (Table 2.3), all these datasets are publicly and freely available, for the

purpose of reproducibility. We show the basic information of the corpora again for refer-

ence (Table 7.1). In Table 7.1, we exclude some unreasonable edits (comments by editors,

incomplete sentences such as URLs, etc.) using regular expressions and setting a maxi-

mum token edit distance within 50% of the original length. We also ignore sentences that

are longer than 50 tokens or sentences where more than 5% of tokens are out-of-vocabulary

(the vocabulary size is 35k). In total, we use 720k pairs of sentences for training (21k from

NUCLE, 32k from FCE, and 667k from Lang-8). Spelling errors are corrected in prepro-

cessing with the Enchant open-source spell checking library.5

4In this appendix, we use α̃ to distinguish it from smoothing parameter α in MRT.
5https://github.com/AbiWord/enchant

115

https://github.com/AbiWord/enchant

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

7.3.2 Hyperparameters

For both MLE and NRL, we set the vocabulary size to be 35k for both source and target.

Words are represented by a vector with 512 dimensions. Maximum output token length is

50. The size of hidden layer units is 1,000. Gradients are clipped at 1, and beam size during

decoding is 5. We regularize the GRU layer with a dropout probability of 0.2.

For MLE we use mini-batches of size 40, and the ADAM optimizer with a learning

rate of 10−4. We train the encoder-decoder with MLE for 900k updates, selecting the best

model according to the development set evaluation.

For NRL we set the sample size to be 20. We use the SGD optimizer with a learning rate

of 10−4. For the baseline reward, we use average of sampled reward following Williams

(1992). The sentence GLEU score is used as the reward r(ŷ, y). Following a similar (but

not the same) strategy of the Mixed Incremental Cross-Entropy Reinforce (MIXER) algo-

rithm (Ranzato et al., 2015), we initialize the model by MLE for 600k updates, followed by

another 600k updates using NRL, and select the best model according to the development

set evaluation. Our NRL is implemented by extending the Nematus toolkit (Sennrich et al.,

2017).6

7.3.3 Baselines

In addition to our MLE baseline, we compare four leading GEC systems. All the sys-

tems are based on SMT, but they take different approaches. The first model, proposed by

6NRL code is available at https://github.com/keisks/nematus/tree/nrl-gleu

116

https://github.com/keisks/nematus/tree/nrl-gleu

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

Models Methods # sents. (corpora)
CAMB14 Hybrid 155k

(rule + PBMT) (NUCLE, FCE, in-house)
AMU PBMT + 2.3M

GEC-feat. (NUCLE, Lang8)
NUS PBMT + 2.1M

Neural feat. (NUCLE, Lang8)
CAMB16 enc-dec (MLE) + 1.96M

unk alignment (non-public CLC)
MLE/NRL enc-dec 720k

(MLE/NRL) (NUCLE, Lang8, FCE)

Table 7.2: Summary of baselines, MLE and NRL models.

Felice et al. (2014), uses a combination of a rule-based system and PBMT with language

model reranking (referring as CAMB14). Junczys-Dowmunt and Grundkiewicz (2016)

proposed a PBMT model that incorporates linguistic and GEC-oriented sparse features

(AMU). Another PBMT model, proposed by Chollampatt, Hoang, and Ng (2016), is inte-

grated with neural contextual features (NUS). Finally, Yuan and Briscoe (2016) proposed a

neural encoder-decoder model with MLE training (CAMB16). This model is similar to our

MLE model, but CAMB16 additionally trains an unsupervised alignment model to handle

spelling errors as well as unknown words, and it uses 1.96M sentence pairs extracted from

the non-public Cambridge Learner Corpus (CLC). The summary of baselines is shown in

Table 7.2.7

7The four baselines are not tuned toward the same dev set as MLE and NRL. Also, they use different
training set (Table 7.2). We compare them just for reference.

117

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

dev set test set
Models Human GLEU Human GLEU
Original -1.072 38.21 -0.760 40.54
AMU -0.405 41.74 -0.168 44.85
CAMB14 -0.160 42.81 -0.225 46.04
NUS -0.131 46.27 -0.249 50.13
CAMB16 -0.117 47.20 -0.164 52.05
MLE -0.052 48.24 -0.110 52.75
NRL 0.169 49.82 0.111 53.98
Reference 1.769 55.26 1.565 62.37

Table 7.3: Human evaluation and GLEU evaluation of system outputs on the development
and test set. Human evaluation is obtained from TrueSkill, which computes relative skills
(performance) among the systems (higher is better).

7.3.4 Evaluation

For evaluation, we use the JFLEG corpus (Heilman et al., 2014; Napoles, Sakaguchi,

and Tetreault, 2017), which consists of 1501 sentences (754: dev, 747: test) with four

fluency-oriented references.

In addition to the automated metric (GLEU), we run a human evaluation using Amazon

Mechanical Turk (MTurk). We randomly select 200 sentences each from the dev and test

set. For each sentence, two turkers are repeatedly asked to rank five systems randomly

selected from all eight: the four baseline models, MLE, NRL, one randomly selected hu-

man correction, and the original sentence. We infer the evaluation scores by comparing

pairwise rankings with the TrueSkill algorithm (Herbrich, Minka, and Graepel, 2006; Sak-

aguchi, Post, and Van Durme, 2014).

118

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

Models Precision Recall M2 (F0.5)
AMU 69.95 18.81 45.32
CAMB14 65.09 22.84 47.51
NUS 69.59 29.19 54.50
CAMB16 64.35 32.26 53.67
MLE 66.00 34.62 55.87
NRL 65.93 37.28 57.15

Table 7.4: M2 (F0.5) scores on the dev set.

Models Precision Recall M2 (F0.5)
AMU 69.39 20.79 47.29
CAMB14 63.52 23.44 47.33
NUS 68.08 32.30 55.73
CAMB16 65.66 35.93 56.34
MLE 65.19 37.66 56.88
NRL 65.80 40.96 58.68

Table 7.5: M2 (F0.5) scores on the test set.

7.3.5 Results

Table 7.3 shows the human evaluation by TrueSkill and automated metric (GLEU). In

both dev and test set, NRL outperforms MLE and other baselines in both the human and

automatic evaluations. Human evaluation and GLEU scores correlate highly, corroborating

the reliability of GLEU. With respect to inter-annotator agreement, Spearman’s rank corre-

lation between Turkers is 55.6 for the dev set and 49.2 for the test set. The correlations are

sufficiently high to show the agreement between Turkers, considering the low chance level

(i.e., ranking five randomly selected systems consistently between two Turkers).

Table 7.4 and 7.5 show the M2 (F0.5) scores (Dahlmeier and Ng, 2012b), which compute

phrase-level edits between the system hypothesis and source and compare them with the

oracle edits. Although this metric has several drawbacks such as underestimation of system

119

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

NRL> MLE NRL= MLE NRL< MLE
Dev 33% 45% 22%
Test 30% 57% 13%

Table 7.6: Ratio of pairwise (preference) judgments between NRL and MLE. NRL>MLE:
NRL correction is preferred over MLE. NRL<MLE: MLE is preferred over NRL.
NRL=MLE: NRL and MLE are tied.

Orig. but found that successful people use the people money and use there
idea for a way to success .

Ref. But it was found that successful people use other people ’s money and
use their ideas as a way to success .

MLE But found that successful people use the people money and use it for a
way to success .

NRL But found that successful people use the people ’s money and use their
idea for a way to success .

Orig. Fish firming uses the lots of special products such as fish meal .
Ref. Fish firming uses a lot of special products such as fish meal .
MLE Fish contains a lot of special products such as fish meals .
NRL Fish shops use the lots of special products such as fish meal .

Table 7.7: Example outputs by MLE and NRL

performance and indiscrimination between “no change” and “wrong edits” (Felice et al.,

2014), we see that the correlation between the M2 scores and human evaluation is still high

in the result.

Finally, Table 7.6 shows the percentages of preference in the pairwise comparisons

between NRL and MLE. In both the dev and test sets, around 30% of NRL corrections are

preferred over MLE and approximately 50% are tied.

120

CHAPTER 7. SENTENCE-LEVEL ERROR CORRECTION

7.3.6 Analysis

Table 7.7 presents example outputs from MLE and NRL. In the first example, both

MLE and NRL successfully corrected the homophone error (there vs. their), but MLE

changed the meaning of the original sentence by replacing their idea to it. Meanwhile,

NRL made the sentence more grammatical by adding a possessive ’s. The second example

demonstrates challenging issues for future work in GEC. The correction by MLE looks

fairly fluent as well as grammatical, but it is semantically nonsense. The correction by

NRL is also fairly fluent and makes sense, but the meaning has been changed too much.

For further improvement, better GEC models that are aware of the context or possess world

knowledge are needed.

7.4 Summary

We have presented a neural encoder-decoder model with reinforcement learning for

GEC. To alleviate the MLE issues (exposure bias and token-level optimization), NRL learns

the policy (model parameters) by directly optimizing toward the final objective by treating

the final objective as the reward for the encoder-decoder agent. Using a GEC-specific met-

ric, GLEU, we have demonstrated that NRL outperforms the MLE baseline on the fluency-

oriented GEC corpus both in human and automated evaluation metrics. As a supplement,

we have explained the relevance between minimum risk training (MRT) and NRL, claiming

that MRT is a special case of NRL.

121

Chapter 8

Conclusions and Future Directions

In this thesis, I have discussed automated grammatical error correction (GEC) in terms

of the scope (i.e., error types), evaluation metrics, benchmarking datasets, and methods.

Specifically, I have:

• presented the difference between grammaticality and fluency. Both are important

for people to communicate smoothly in natural languages. While grammaticality is

derived from a set of syntactic rules, fluency is a level of mastery that goes beyond

knowledge of how to follow the rules.

• proposed a robust word recognition model for character-level errors. Motivated by

the Cmabrigde Uinervtisy (Cambridge University) effect (or typoglycemia) in psy-

cholinguistics literature, the model is built on a recurrent neural network. The model

shows the cognitive plausibility and significantly more robust performance in word

spelling correction compared to existing spell-checkers and character-based convo-

122

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTION

lutional neural networks.

• presented a parsing algorithm that can correct token-level grammatical errors and

parse dependency structure jointly. The algorithm shows dependency accuracy and

grammaticality improvements for ungrammatical sentences.

• shown the limitations in the conventional GEC annotation and evaluation scheme,

which depends on fine-grained error codes, and proposed a novel framework that

considers fluency as well as grammaticality. Compared with conventional error-

coded minimal edits, whole-sentence fluency edits have shown higher correlation

to human judgments.

• built two datasets for benchmarking fluency-oriented GEC. First, we built fluency

edits for the NUCLE corpus. Second, we created the JHU FLuency-Extended GUG

corpus (JFLEG) in order to avoid over-reliance on a single benchmark dataset.

• proposed a neural encoder-decoder model with reinforcement learning for sentence-

level GEC. The NRL model directly optimizes toward a task-specific evaluation met-

ric, avoiding the exposure bias issue. We ran GEC experiments on a fluency-oriented

GEC corpus, demonstrating that NRL outperforms the MLE baseline both in human

and automated evaluation metrics.

Although I steadily made strides forward, there are several challenging questions re-

maining in GEC. Before I conclude the thesis, I will discuss the challenges that need to be

123

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTION

C
or

pu
s

N
um

.S
en

te
nc

es

N
um

.R
ef

er
en

ce
s

Se
nt

en
ce

C
ha

ng
ed

E
rr

or
Ty

pe
la

be
ld

Fl
ue

nc
y

ed
its

D
iv

er
se

pr
ofi

ci
en

cy

D
iv

er
se

to
pi

c

D
iv

er
se

L
1

NUCLE 59k 2 38% 3 (7) 7 7 7

FCE 34k 1 62% 3 7 3 3 3

Lang-8 2.5M ≥1 42% 7 3 3 3 3

JFLEG 1.5k 4 86% 7 3 3 3 3

Table 8.1: GEC corpora available for free (for research purposes) and desired properties.
3 and 7 indicate whether the corpus exhibits each property. This is the extended version
of Table 2.3 in Chapter 2 to which the JFLEG row was added.

addressed and provide recommendations for the field to continue to make further progress.

I look at the challenges from three different perspectives: datasets, metrics, and models.1

First, as we saw in Chapter 5, the majority of the commonly used datasets are limited

to students, specifically college-level ESL writers. To date, the overwhelming majority of

publications benchmark on NUCLE, save for a few exceptions such as Cahill et al. (2013)

and Rei and Yannakoudakis (2016), which means that research efforts are becoming over-

optimized for one set. This lack of diversity means that it is not clear how systems perform

on other genres under different training conditions. In this thesis, we built a new GEC

corpus for evaluation, the JHU FLuency-Extended GUG corpus (JFLEG) to address this

issue. However, we will still suffer from the overfitting problem unless we keep building

additional GEC corpora for both training and evaluation. We should look to the parsing

community as a warning sign. For well over a decade, the field was heavily focused on

improving parsing accuracy on the Penn Treebank (Marcus, Marcinkiewicz, and Santorini,

1Some of the following contents were originally published by Sakaguchi, Napoles, and Tetreault (2017).

124

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTION

1993), but robustness was greatly improved with the advent of Ontonotes (Hovy et al.,

2006) and the Google Web Treebank (Petrov and McDonald, 2012).

Another issue in the GEC dataset is the size for training, as we saw in Chapter 2. The

sister field of machine translation (MT) usually has datasets in the orders of millions or

even tens of millions of sentence pairs. The largest GEC datasets barely approach that fig-

ure, with 2.5 million sentences at maximum, a number that includes sentences that were

not corrected. In Table 8.1, I summarize the strengths and weaknesses of the most com-

monly used GEC corpora across different properties ranging from size to diversity in native

language (L1). The most notable weakness across corpora is the lack of multiple reference

corrections. NUCLE contains two corrections per sentence, and JFLEG 4. M2 and GLEU

scores increase with more references but at a diminishing rate (Bryant and Ng, 2015; Sak-

aguchi et al., 2016). Further investigation is warranted to determine the an ideal number of

references, given the trade-off between cost and reliability. NUCLE contains little diversity

in proficiency, topic, and learners’ L1.

Looking into the future, as the world’s communication is not limited to college-level

essays, it is important that we have datasets that better represent as much breadth as possi-

ble. Ideally, datasets should span various genres (such as e-mails, blog posts, and official

documents) and include content from both native and nonnative speakers, as well as from

different proficiency levels. All of these changes will enable the field to better assess how

we are helping more of the world’s writers under different conditions, as well as enable one

to test adaptation between domains.

125

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTION

Second, as I stated in Chapter 5, I envision evaluation metrics that check that correc-

tions are not only grammatically valid but also native-sounding (i.e., fluent and preserve

the original meaning or intent of the writer). Although I have shown that two evaluation

metrics, M2 and GLEU, have a strong positive correlation with human judgments, future

metrics should be easier to compute and more interpretable. One challenging problem is

that all the current metrics highly depend on the references annotated by native speakers. In

other words, these metrics assume that the reference set covers all the possible corrections.

Of course, it is almost impossible to collect (i.e., annotate) all the possible corrections, even

though I use non-error-coded fluency edits with crowdsourcing, as shown in Chapter 5. To

address this issue, one potential research direction is to look for “reference-less” evaluation

metrics. In fact, some studies have started investigating and shown the potential of this

approach (Napoles, Sakaguchi, and Tetreault, 2016; Asano, Mizumoto, and Inui, 2017;

Choshen and Abend, 2018b), although a lot more needs to be explored, such as sensitivity

to different error types.

Another challenge is document level evaluation that considers the global context of the

document. Most evaluation schemes to date have focused on the sentence as the minimal

unit. It would be good to take the entire document into account and allow for more global

rewrites, such as consistent tense.

Ultimately, a metric should say whether or not a system has attained the same level

of performance as a human judge. One way of doing this is through a GEC Turing Test,

where system outputs are blindly judged alongside human corrections of the same sen-

126

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTION

tences. If human adjudicators think the system outputs are indistinguishable in quality

from the human corrections (for example, given a set of criteria such as being good correc-

tions, preserving meaning, and native-sounding), then that is a very strong signal that GEC

has attained human-level performance.

Third, regarding the GEC models, the community should have some consensus about

data splits (i.e., training, development, and test set). Although I have developed a new

fundamental framework for metrics and dataset for evaluation (Chapter 5), the models are

trained on different datasets. In other words, we cannot tell whether the improvement

actually comes from the model (i.e., algorithm), different training data (as well as different

size), or different preprocessing procedures. This is partly due to the lack of a large-scale

GEC corpus.2 In order to compare the models objectively, the community should share (at

least one) common data splits, which are publicly and freely available.

Finally, it is important to remember that initial approaches to GEC seemed to focus

on providing feedback to English language learners, where specific error types would be

targeted and feedback would be given in terms of detection or possible corrections. The

work was also motivated by concurrent work in using NLP for automatic essay scoring (for

example, Attali and Burstein (2006)).

Chodorow et al. (2012) noted several other applications for GEC: improving overall

writing quality for both native and nonnative writers, assistive language learning, and ap-

plications within NLP (such as post-editing in MT). More recently, the field has drifted

2Recent work by Junczys-Dowmunt et al. (2018) points out that GEC is a low-resource machine transla-
tion task.

127

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTION

to “whole-sentence GEC” using statistical or neural MT approaches. In this situation, the

writer simply gets a complete rewrite of his or her sentence, which may be useful as an

instructional tool in some circumstances, but not all.

There is no consensus on what the focus application(s) should be. The application

determines the methods and the evaluation metrics one uses. For example, if one wants

to provide feedback to language learners, then a high-precision, interpretable method is

preferred.

Conversely, if the application is simply to automatically clean up one’s writing without

any feedback, then a whole-sentence approach may be preferred. Very few papers delve

into error detection and correction for goals other than whole-sentence error correction or

targeted feedback for ESL writers. As shown in this thesis, datasets and metrics should be

created and determined with a specific goal in mind (e.g., “whole-sentence” error correction

for fluency as well as grammaticality). Thus, the field should keep reassessing the goals

and how we evaluate with respect to these goals.

128

Appendix A

Efficient Elicitation of Annotations for

Manual System
1

As explained in Chapter 5, human judgments are the ideal (reliable) metric to rank nat-

ural language generation (NLG) systems, such as machine translation, grammatical error

correction, and summarization. In addition, human judgments are useful to objectively

compare automated evaluation metrics by their correlation. For example, the better auto-

mated metric should correlate with human judgment more closely than the other metrics.

Our concern here is the cost (and time) for collecting human judgments.

In this appendix, we discuss how we can efficiently collect human judgments to rank

NLG systems. We specifically focus on ranking machine translation systems as a use case..

Of course, the method is applicable to other natural language generation tasks, such as

1Much of this appendix was originally published in Sakaguchi, Post, and Van Durme (2014).

129

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

GEC systems (Napoles et al., 2015; Grundkiewicz, Junczys-Dowmunt, and Gillian, 2015),

dialog systems (Novikova, Dušek, and Rieser, 2017), and summarization (Wolfe et al.,

2018).

A.1 Introduction

The Workshop on Statistical Machine Translation (WMT) has long been a central event

in the machine translation (MT) community for the evaluation of MT output. It hosts an

annual set of shared translation tasks focused mostly on the translation of western European

languages. One of its main functions is to publish a ranking of the systems for each task,

which are produced by aggregating a large number of human judgments of sentence-level

pairwise rankings of system outputs. While the performance on many automatic metrics

is also reported (e.g., BLEU (Papineni et al., 2002)), the human evaluation is considered

primary, and is in fact used as the gold standard for its metrics task, where evaluation

metrics are evaluated.

In machine translation, the longstanding disagreements about evaluation measures do

not go away when moving from automatic metrics to human judges. This is due in no small

part to the inherent ambiguity and subjectivity of the task, but also arises from the particu-

lar way that the WMT organizers produce the rankings. The system-level rankings are pro-

duced by collecting pairwise sentence-level comparisons between system outputs. These

are then aggregated to produce a complete ordering of all systems, or, more recently, a

130

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

score range system
1 0.638 1 UEDIN-HEAFIELD
2 0.604 2-3 UEDIN

0.591 2-3 ONLINE-B
4 0.571 4-5 LIMSI-SOUL

0.562 4-5 KIT
0.541 5-6 ONLINE-A

7 0.512 7 MES-SIMPLIFIED
8 0.486 8 DCU
9 0.439 9-10 RWTH

0.429 9-11 CMU-T2T
0.420 10-11 CU-ZEMAN

12 0.389 12 JHU
13 0.322 13 SHEF-WPROA

Table A.1: System rankings presented as clusters (WMT13 French-English competition).
The score column is the percentage of time each system was judged better across its com-
parisons (§A.2.1).

partial ordering (Koehn, 2012), with systems clustered where they cannot be distinguished

in a statistically significant way (Table A.1, taken from Bojar et al. (2013)).

A number of problems have been noted with this approach. The first has to do with

the nature of ranking itself. Over the past few years, the WMT organizers have introduced

a number of minor tweaks to the ranking algorithm (§A.2) in reaction to largely intuitive

arguments that have been raised about how the evaluation is conducted (Bojar et al., 2011;

Lopez, 2012). While these tweaks have been sensible (and later corroborated), Hopkins and

May (2013) point out that this is essentially a model selection task, and should properly

be driven by empirical performance on held-out data according to some metric. Instead

of intuition, they suggest perplexity, and show that a novel graphical model outperforms

existing approaches on that metric, with less amount of data.

A second problem is the deficiency of the models used to produce the ranking, which

131

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

work by computing simple ratios of wins (and, optionally, ties) to losses. Such approaches

do not consider the relative difficulty of system matchups, and thus leave open the possibil-

ity that a system is ranked highly from the luck of comparisons against poorer opponents.

Third, a large number of judgments need to be collected in order to separate the systems

into clusters to produce a partial ranking. The sheer size of the space of possible compar-

isons (all pairs of systems times the number of segments in the test set) requires sampling

from this space and distributing the annotations across a number of judges. Even still, the

number of judgments needed to produce statistically significant rankings like those in Ta-

ble A.1 grows quadratically in the number of participating systems (Koehn, 2012), often

forcing the use of paid, lower-quality annotators hired on Amazon’s Mechanical Turk. Part

of the problem is that the sampling strategy collects data uniformly across system pair-

ings. Intuitively, we should need many fewer annotations between systems with divergent

base performance levels, instead focusing the collection effort on system pairs whose per-

formance is more matched, in order to tease out the gaps between similarly-performing

systems. Why spend precious human time on redundantly affirming predictable outcomes?

To address these issues, we developed a variation of the TrueSkill model (Herbrich,

Minka, and Graepel, 2006), an adaptive model of competitions originally developed for the

Xbox Live online gaming community. It assumes that each player’s skill level follows a

Gaussian distributionN (µ, σ2), in which µ represents a player’s mean performance, and σ2

the system’s uncertainty about its current estimate of this mean. These values are updated

after each “game” (in our case, the value of a ternary judgment) in proportion to how

132

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

surprising the outcome is. TrueSkill has been adapted to a number of areas, including

chess, advertising, and academic conference management.

The rest of this appendix provides an empirical comparison of a number of models of

human evaluation. We evaluate on perplexity and also on accuracy, showing that the two

are not always correlated, and arguing for the primacy of the latter. We find that TrueSkill

outperforms other models. Moreover, TrueSkill also allows us to drastically reduce the

amount of data that needs to be collected by sampling non-uniformly from the space of all

competitions, which also allows for greater separation of the systems into ranked clusters.

A.2 Models

Before introducing our adaptation of the TrueSkill model for ranking translation sys-

tems with human judgments (§A.2.3), we describe two comparisons: the “Expected Wins”

model used in recent evaluations, and the Bayesian model proposed by Hopkins and May

(§A.2.2).

As we described briefly in the introduction, WMT produces system rankings by aggre-

gating sentence-level ternary judgments of the form:

(i, S1, S2, π)

where i is the source segment (id), S1 and S2 are the system pair drawn from a set of sys-

tems {S}, and π ∈ {<,>,=} denotes whether the first system was judged to be better

133

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

than, worse than, or equivalent to the second. These ternary judgments are obtained by pre-

senting judges with a randomly-selected input sentence and the reference, followed by five

randomly-selected translations of that sentence. Annotators are asked to rank these systems

from best (rank 1) to worst (rank 5), ties permitted, and with no meaning ascribed to the

absolute values or differences between ranks. This is done to accelerate data collection,

since it yields ten pairwise comparisons per ranking. Tens of thousands of judgments of

this form constitute the raw data used to compute the system-level rankings. All the work

described in this section is computed over these pairwise comparisons, which are treated

as if they were collected independently.

A.2.1 Expected Wins

The “Expected Wins” model computes the percentage of times that each system wins

in its pairwise comparisons. Let A be the complete set of annotations or judgments of the

form {i, S1, S2, πR}. We assume these judgments have been converted into a normal form

where S1 is either the winner or is tied with S2, and therefore πR ∈ {<,=}. Let δ(x, y) be

the Kronecker delta function.2 We then define the function:

wins(Si, Sj) =

|A|∑
n=1

δ(Si, S
(n)
1)δ(Sj, S

(n)
2)δ(π

(n)
R , <) (A.1)

2δ(x, y) =

{
1 if x = y
0 o.w.

134

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

which counts the number of annotations for which system Si was ranked better than system

Sj . We define a single-variable version that marginalizes over all annotations:

wins(Si) =
∑
Sj 6=Si

wins(Si, Sj) (A.2)

We also define analogous functions for loses and ties. Until the WMT11 evaluation (Callison-

Burch et al., 2011), the score for each system Si was computed as follows:

score(Si) =
wins(Si) + ties(Si)

wins(Si) + ties(Si) + loses(Si)
(A.3)

Bojar et al. (2011) suggested that the inclusion of ties biased the results, due to their large

numbers, the underlying similarity of many of the models, and the fact that they are counted

for both systems in the tie, and proposed the following modified scoring function:

score(Si) =
1

|{S}|
∑
Sj 6=Si

wins(Si, Sj)
wins(Si, Sj) + wins(Sj, Si)

(A.4)

This metric computes an average relative frequency of wins, excluding ties, and was used

in WMT12 and WMT13 (Callison-Burch et al., 2012; Bojar et al., 2013).

The decision to exclude ties isn’t without its problems; for example, an evaluation

where two systems are nearly always judged equivalent should be relevant in producing

the final ranking of systems. Furthermore, as Hopkins and May (2013) point out, throwing

out data to avoid biasing a model suggests a problem with the model. We now turn to a

135

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

description of their model, which addresses these problems.

A.2.2 The Hopkins and May (2013) model

Recent papers (Koehn, 2012; Hopkins and May, 2013) have proposed models focused

on the relative ability of the competition systems. These approaches assume that each

system has a mean quality represented by a Gaussian distribution with a fixed variance

shared across all systems. In the graphical model formulation of Hopkins and May (2013),

the pairwise judgments (i, S1, S2, π) are imagined to have been generated according to the

following process:

• Select a source sentence i

• Select two systems S1 and S2. A system Sj is associated with a Gaussian distribution

N (µSj , σ
2
a), samples from which represent the quality of translations

• Draw two “translations”, adding random Gaussian noise with variance σ2
obs to simu-

late the subjectivity of the task and the differences among annotators:

q1 ∼ N (µS1 , σ
2
a) +N (0, σ2

obs) (A.5)

q2 ∼ N (µS2 , σ
2
a) +N (0, σ2

obs) (A.6)

• Let d be a nonzero real number that defines a fixed decision radius. Produce a rating

136

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

π according to:3

π =


< q1 − q2 > d (A.7a)

> q2 − q1 > d (A.7b)

= otherwise (A.7c)

The task is to then infer the posterior parameters, given the data: the system means µSj

and, by necessity, the latent values {qi} for each of the pairwise comparison training in-

stances. Hopkins and May do not publish code or describe details of this algorithm beyond

mentioning Gibbs sampling, so we used our own implementation,4 and describe it here for

completeness.

After initialization, we have training instances of the form (i, S1, S2, πR, q1, q2), where

all but the qi are observed. At a high level, the sampler iterates over the training data,

inferring values of q1 and q2 for each annotation together in a single step of the sampler from

the current values of the systems means, {µj}.5 At the end of each iteration, these means

are then recomputed by re-averaging all values of {qi} associated with that system. After

the burn-in period, the µs are stored as samples, which are averaged when the sampling

concludes.
3Note that better systems have higher relative abilities {µSj

}. Better translations subsequently have on-
average higher values {qi}, which translate into a lower ranking π.

4github.com/keisks/wmt-trueskill
5This worked better than a version of the sampler that changed one at a time.

137

github.com/keisks/wmt-trueskill

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

During each iteration, q1 and q2 are resampled from their corresponding system means:

q1 ∼ N (µS1 , σ
2
a)

q2 ∼ N (µS2 , σ
2
a)

(A.8)

We then update these values to respect the annotation π as follows. Let t = q1 − q2 (S1 is

the winner by human judgments), and ensure that the values are outside the decision radius,

d:

q′1 =


q1 t ≥ d (A.9a)

q1 +
1

2
(d− t) otherwise (A.9b)

q′2 =


q2 t ≥ d (A.10a)

q2 −
1

2
(d− t) otherwise (A.10b)

In the case of a tie:

q′1 =



q1 +
1

2
(d− t) t ≥ d (A.11a)

q1 t < d (A.11b)

q1 +
1

2
(−d− t) t ≤ −d (A.11c)

q′2 =



q2 −
1

2
(d− t) t ≥ d (A.12a)

q2 t < d (A.12b)

q2 −
1

2
(−d− t) t ≤ −d (A.12c)

138

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

These values are stored for the current iteration and averaged at its end to produce new

estimates of the system means. The quantity d − t can be interpreted as a loss function,

returning a high value when the observed outcome is unexpected and a low value otherwise

(Figure A.1).

A.2.3 TrueSkill

Prior to 2012, the WMT organizers included reference translations among the system

comparisons. These were used as a control against which the evaluators could be mea-

sured for consistency, on the assumption that the reference was almost always best. They

were also included as data points in computing the system ranking. Another of Bojar et

al. (2011)’s suggestions was to exclude this data, because systems compared more often

against the references suffered unfairly. This can be further generalized to the observation

that not all competitions are equal, and a good model should incorporate some notion of

“match difficulty” when evaluating system’s abilities. The inference procedure above in-

corporates this notion implicitly in the inference procedure, but the model itself does not

include a notion of match difficulty or outcome surprisal.

A model that does is TrueSkill6 (Herbrich, Minka, and Graepel, 2006). TrueSkill is an

adaptive, online system that also assumes that each system’s skill level follows a Gaussian

distribution, maintaining a mean µSj for each system Sj representing its current estimate of

6The goal of this section is to provide an intuitive description of TrueSkill as adapted for WMT manual
evaluations, with enough detail to carry the main ideas. For more details, please see Herbrich, Minka, and
Graepel (2006).

139

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

that system’s native ability. However, it also maintains a per-system variance, σ2
Sj

, which

represents TrueSkill’s uncertainty about its estimate of each mean. After an outcome is

observed (a game in which the result is a win, loss, or draw), the size of the updates is pro-

portional to how surprising the outcome was, which is computed from the current system

means and variances. If a translation from a system with a high mean is judged better than

a system with a greatly lower mean, the result is not surprising, and the update size for the

corresponding system means will be small. On the other hand, when an upset occurs in a

competition, the means will receive larger updates.

Before defining the update equations, we need to be more concrete about how this

notion of surprisal is incorporated. Let t = µS1 − µS2 , the difference in system relative

abilities, and let ε be a fixed hyper-parameter corresponding to the earlier decision radius.

We then define two loss functions of this difference for wins and for ties:

vwin(t, ε) =
N (−ε+ t)

Φ(−ε+ t)

vtie(t, ε) =
N (−ε− t)−N (ε− t)
Φ(ε− t)− Φ(−ε− t)

(A.13)

where Φ(x) is the cumulative distribution function and the N s are Gaussians. Figures A.1

and A.2 display plots of these two functions compared to the Hopkins and May model. Note

how vwin (Figure A.1) increases exponentially as µS2 becomes greater than the (purportedly)

better system, µS1 .

As noted above, TrueSkill maintains not only estimates {µSj} of system abilities, but

140

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

−1.0 −0.5 0.0 0.5 1.0
t = µS1

− µS2

0.0

0.5

1.0

1.5

v
(t
,ε

)

TrueSkill

HM

Figure A.1: TrueSkill’s vwin and the corresponding loss function in the Hopkins and May
model as a function of the difference t of system means (ε = 0.5, c = 0.8 for TrueSkill,
and d = 0.5 for Hopkins and May model).

also system-specific confidences about those estimates {σSj}. These confidences also fac-

tor into the updates: while surprising outcomes result in larger updates to system means,

higher confidences (represented by smaller variances) result in smaller updates. TrueSkill

defines the following value:

c2 = 2β2 + σ2
S1

+ σ2
S2

(A.14)

which accumulates the variances along β, another free parameter. We can now define the

141

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
t = µS1

− µS2

−1.0

−0.5

0.0

0.5

1.0

v
(t
,ε

)

TrueSkill

HM

Figure A.2: TrueSkills vtie and the corresponding loss function in the Hopkins and May
model as a function of the difference t of system means (ε = 0.5, c = 0.3, and d = 0.5).

update equations for the system means:

µS1 = µS1 +
σ2
S1

c
· v
(
t

c
,
ε

c

)
(A.15)

µS2 = µS2 −
σ2
S2

c
· v
(
t

c
,
ε

c

)
(A.16)

The second term in these equations captures the idea about balancing surprisal with confi-

dence, described above.

In order to update the system-level confidences, TrueSkill defines another set of func-

tions, w, for the cases of wins and ties. These functions are multiplicative factors that affect

the amount of change in σ2:

142

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

wwin(t, ε) = vwin · (vwin + t− ε) (A.17)

wtie(t, ε) = vtie +
(ε− t) · N (ε− t) + (ε+ t) · N (ε+ t)

Φ(ε− t)− Φ(−ε− t) (A.18)

The underlying idea is that these functions capture the outcome surprisal via v. This up-

date always decreases the size of the variances σ2, which means uncertainty of µ decreases

as comparisons go on. With these defined, we can conclude by defining the updates for σ2
S1

and σ2
S2

:

σ2
S1

= σ2
S1
·
[
1− σ2

S1

c2
· w
(
t

c
,
ε

c

)]
(A.19)

σ2
S2

= σ2
S2
·
[
1− σ2

S2

c2
· w
(
t

c
,
ε

c

)]
(A.20)

One final complication not presented here but relevant to adapting TrueSkill to the WMT

setting: the parameter β and another parameter (not discussed) τ are incorporated into the

update equations to give more weight to recent matches. This “latest-oriented” property

is useful in the gaming setting for which TrueSkill was built, where players improve over

time, but is not applicable in the WMT competition setting. To cancel this property in

TrueSkill, we set τ = 0 and β = 0.025 · |A| · σ2 in order to lessen the impact of the order

in which annotations are presented to the system.

143

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

A.2.4 Data selection with TrueSkill

A drawback of the standard WMT data collection method is that it samples uniformly

from the space of pairwise system combinations. This is undesirable: systems with vastly

divergent relative ability need not be compared as often as systems that are more evenly

matched. Unfortunately, one cannot sample non-uniformly without knowing ahead of time

which systems are better. TrueSkill provides a solution to this dilemma with its match-

selection ability: systems with similar means and low variances can be confidently con-

sidered to be close matches. This presents a strong possibility of reducing the amount of

data that needs to be collected in the WMT competitions. In fact, the TrueSkill formulation

provides a way to compute the probability of a draw between two systems, which can be

used to compute for a system Si a conditional distribution over matches with other systems

{Sj 6=i}.

Formally, in the TrueSkill model, the match-selection (chance to draw) between two

players (systems in WMT) is computed as follows:

pdraw =

√
2β2

c2
· exp(−(µa − µb)2

2c2
) (A.21)

However, our setting for canceling the “latest-oriented” property affects this matching qual-

ity equation, where most systems are almost equally competitive (≈ 1). Therefore, we

144

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

modify the equation in the following manner which simply depends on the difference of µ.

p̂draw =
1

exp(|µa − µb|)
(A.22)

TrueSkill selects the matches it would like to create, according to this selection criteria.

We do this according to the following process:

1. Select a system S1 (e.g., the one with the highest variance)

2. Compute a normalized distribution over matches with other systems pairs p̂draw

3. Draw a system S2 from this distribution

4. Draw a source sentence, and present to the judge for annotation

A.3 Experimental setup

A.3.1 Datasets

We used the evaluation data released by WMT13.7 The data contains (1) five-way

system rankings made by either researchers or Turkers and (2) translation data consisting

of source sentences, human reference translations, and submitted translations. Data exists

for 10 language pairs. More details about the dataset can be found in the WMT 2013

overview paper (Bojar et al., 2013).

7statmt.org/wmt13/results.html

145

statmt.org/wmt13/results.html

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

Each five-way system ranking was converted into ten pairwise judgments (§A.2). We

trained the models using randomly selected sets of 400, 800, 1,600, 3,200, and 6,400 pair-

wise comparisons, each produced in two ways: selecting from all researchers, or split

between researchers and Turkers. An important note is that the training data differs accord-

ing to the model. For the Expected Wins and Hopkins and May model, we simply sample

uniformly at random. The TrueSkill model, however, selects its own training data (with

replacement) according to the description in Section A.2.4.8

For tuning hyperparameters and reporting test results, we used development and test

sets of 2,000 comparisons drawn entirely from the researcher judgments, and fixed across

all experiments.

A.3.2 Perplexity

We first compare the Hopkins and May model and TrueSkill using perplexity on the

test data T , computed as follows:

ppl(p|T) = 2−
∑

(i,S1,S2,π)∈T
log2 p(π|S1,S2) (A.23)

where p is the model under consideration. The probability of each observed outcome π

between two systems S1 and S2 is computed by taking a difference of the Gaussian distri-

8We use a Python implementation of TrueSkill (github.com/sublee/trueskill).

146

github.com/sublee/trueskill

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

butions associated with those systems:

N (µδ, σ
2
δ) = N (µS1 , σ

2
S1

)−N (µS2 , σ
2
S2

)

= N (µS1 − µS2 , σ
2
S1

+ σ2
S2

) (A.24)

This Gaussian can then be carved into three pieces: the area where S1 loses, the middle

area representing ties (defined by a decision radius, r, whose value is fit using development

data), and a third area representing where S1 wins. By integrating over each of these

regions, we have a probability distribution over these outcomes:

p(π | S1, S2) =



∫ 0

−∞
N (µδ, σ

2
δ) if π is >∫ r

0

N (µδ, σ
2
δ) if π is =∫ ∞

r

N (µδ, σ
2
δ) if π is <

(A.25)

We do not compute perplexity for the Expected Wins model, which does not put any

probability mass on ties.

A.3.3 Accuracy

Perplexity is often viewed as a neutral metric, but without access to unbounded train-

ing data or the true model parameters, it can only be approximated. Furthermore, it does

not always correlate perfectly with evaluation metrics. As such, we also present accuracy

147

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

results, measuring each model’s ability to predict the values of the ternary pairwise judg-

ments made by the annotators. These are computed using the above equation, picking the

highest value of p(π) for all annotations between each system pair (Si, Sj). As with per-

plexity, we emphasize that these predictions are functions of the system pair only, and not

the individual sentences under consideration, so the same outcome is always predicted for

all sentences between a system pair.

A.3.4 Parameter Tuning

We follow the settings described in Hopkins and May (2013) for their model: σa =

0.5, σobs = 1.0, and d = 0.5. In TrueSkill, in accordance with the Hopkins and May model,

we set the initial µ and σ values for each system to 0 and 0.5 respectively, and ε to 0.25.

For test data, we tuned the “decision radius” parameter r by doing grid search over

{0.001, 0.01, 0.1, 0.3, 0.5}, searching for the value which minimized perplexity and max-

imized accuracy on the development set. We do this for each model and language pair.

When tuned by perplexity, r is typically either 0.3 or 0.5 for both models and language

pairs, whereas, for accuracy, the best r is either 0.001, 0.01, or 0.1.

148

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure A.3: Heat map for the ratio of pairwise judgments across the full cross-product of
systems in the WMT13 French-English translation task.

A.4 Reduced Data Collection with Non-uniform

Match Selection

As mentioned earlier, a drawback of the selection of training data for annotation is that

it is sampled uniformly from the space of system pair competitions, and an advantage of

TrueSkill is its ability to instead compute a distribution over pairings and thereby focus

annotation efforts on competitive matches. In this section, we report results in the form of

heat maps indicating the percentage of pairwise judgments requested by TrueSkill across

the full cross-product of system pairs, using the WMT13 French-English translation task.

Figure A.3 depicts a system-versus-system heat map for all judgments in the dataset.

Across this figure and the next two, systems are sorted along each axis by the final values

of µ inferred by TrueSkill during training, and the heat of each square is proportional to

the percentage of judgments obtained between those two systems. The diagonal reflects

149

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure A.4: Heat map for the ratio of pairwise judgments across the full cross-product of
systems used in the first 20% of TrueSkill model.

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure A.5: Heat map for the ratio of pairwise judgments across the full cross-product of
systems used in the last 20% of TrueSkill model.

the fact that systems do not compete against themselves, and the stripe at row and column

5 reflects a system that was entered late into the WMT13 competition and thus had many

fewer judgments. It is clear that these values are roughly uniformly distributed. This figure

serves as a sort of baseline, demonstrating the lack of patterns in the data-selection process.

The next two figures focus on the data that TrueSkill itself selected for its use from

among all of the available data. Figure A.4 is a second heat map presenting the set of

150

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

system pairs selected by TrueSkill for the first 20% of its matches chosen during training,

while Figure A.5 presents a heat map of the last 20%. The contrast is striking: whereas the

judgments are roughly uniformly distributed at the beginning, the bulk of the judgments ob-

tained for the last set are clustered along the diagonal, where the most competitive matches

lie.

Together with the higher accuracy of TrueSkill, this suggests that it could be used to

decrease the amount of data that needs to be collected in future WMT human evaluations

by focusing the annotation effort on more closely-matched systems.

A.5 Clustering

As pointed out by Koehn (2012), a ranking presented as a total ordering among sys-

tems conceals the closeness of comparable systems. In the WMT13 competition, systems

are grouped into clusters, which is equivalent to presenting only a partial ordering among

the systems. Clusters are constructed using bootstrap resampling to infer many system

rankings. From these rankings, rank ranges are then collected, which can be used to con-

struct 95% confidence intervals, and, in turn, to cluster systems whose ranges overlap. We

use a similar approach for clustering in the TrueSkill model. We obtain rank ranges for

each system by running the TrueSkill model 100 times,9 throwing out the top and bottom

2 rankings for each system, and clustering where rank ranges overlap. For comparison, we

also do this for the other two models, altering the amount of training data from 1k to 25k
9We also tried the sampling 1,000 times and the clustering granularities were the same.

151

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

in increments of 1,000, and plotting the number of clusters that can be obtained from each

technique on each amount of training data.

Figure A.6 show the number of clusters according to the increase of training data for

three models. TrueSkill efficiently split the systems into clusters compared to other two

methods. Figure A.7 and A.8 present the result of clustering two different size of training

data (1K and 25K pairwise comparisons) on the TrueSkill model, which indicates that the

rank ranges become narrow and generate clusters reasonably as the number of training

samples increases. The ranking and clusters are slightly different from the official result

(Table A.1) mainly because the official result is based on Expected Wins.

One noteworthy observation is that the ranking of systems between Figure A.7 and Fig-

ure A.8 is the same, further corroborating the stability and accuracy of the TrueSkill model

even with a small amount of data. Furthermore, while the need to cluster systems forces

the collection of significantly more data than if we wanted only to report a total ordering,

TrueSkill here produces nicely-sized clusters with only 25K pairwise comparisons, which

is nearly one-third large of that used in the WMT13 campaign (80K for French-English,

yielding 8 clusters).

A.6 Conclusion

Models of “relative ability” (Koehn, 2012; Hopkins and May, 2013) are a welcome

addition to methods for inferring system rankings from human judgments. The TrueSkill

152

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

5000 10000 15000 20000 25000
Pairwise Comparisons

0

1

2

3

4

5

6

7

N
um

. o
f C

lu
st

er
s

ExpWin
HM
TS

Figure A.6: The number of clusters according to the increase of training data for WMT13
French-English (13 systems in total).

variant presented in this paper is a promising further development, both in its ability to

achieve higher accuracy levels than alternatives, and in its ability to sample non-uniformly

from the space of system pair matchings. It’s possible that future WMT evaluations could

significantly reduce the amount of data they need to collect, also potentially allowing them

to draw from expert annotators alone (the developers of the participating systems), without

the need to hire non-experts on Mechanical Turk.

One piece missing from the methods explored and proposed in this paper is models of

the actual translations being compared by judges. Clearly, it is properties of the sentences

themselves that judges use to make their judgments, a fact which is captured only indirectly

by modeling translation qualities sampled from system abilities. This observation has been

153

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

uedin-h
on.B

uedin-w
LIM

SI
KIT on.A

MES-S
DCU

CMU
RW

TH
cu-z

JHU
Shef

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure A.7: The result of clustering by TrueSkill model with 1K training data from
WMT13 French-English. The boxes range from the lower to upper quartile values, with
means in the middle. The whiskers show the full range of each system’s rank after the
bootstrap resampling.

used in the development of automatic evaluation metrics (Song and Cohn, 2011), and is

something we hope to explore in future work for system ranking.

154

APPENDIX A. EFFICIENT ELICITATION OF ANNOTATIONS FOR MANUAL
SYSTEM EVALUATION

uedin-h
on.B

uedin-w
LIM

SI
KIT on.A

MES-S
DCU

CMU
RW

TH
cu-z

JHU
Shef

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure A.8: The result of clustering by TrueSkill model with 25K training data. Dashed
lines separate systems with non-overlapping rank ranges, splitting the data into clusters.

155

Bibliography

Ando, Rie Kubota and Tong Zhang (2005). “A framework for learning predictive structures

from multiple tasks and unlabeled data”. In: Journal of Machine Learning Research

6.Nov, pp. 1817–1853.

Asano, Hiroki, Tomoya Mizumoto, and Kentaro Inui (2017). “Reference-based Metrics can

be Replaced with Reference-less Metrics in Evaluating Grammatical Error Correction

Systems”. In: Proceedings of the Eighth International Joint Conference on Natural

Language Processing (Volume 2: Short Papers). Taipei, Taiwan: Asian Federation of

Natural Language Processing, pp. 343–348.

Attali, Yigal and Jill Burstein (2006). “Automated essay scoring with e-rater R© V. 2”. In:

The Journal of Technology, Learning and Assessment 4.3.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural machine trans-

lation by jointly learning to align and translate”. In: arXiv:1409.0473.

Ballesteros, Miguel, Chris Dyer, and Noah A. Smith (2015). “Improved transition-based

parsing by modeling characters instead of words with LSTMs”. In: Proceedings of the

156

BIBLIOGRAPHY

2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Por-

tugal: Association for Computational Linguistics, pp. 349–359.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning long-term depen-

dencies with gradient descent is difficult”. In: IEEE transactions on neural networks

5.2, pp. 157–166.

Berzak, Yevgeni, Jessica Kenney, Carolyn Spadine, Jing Xian Wang, Lucia Lam, Keiko

Sophie Mori, Sebastian Garza, and Boris Katz (2016). “Universal Dependencies for

Learner English”. In: Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Association for Computational

Linguistics, pp. 737–746.

Bojar, Ondrej, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Jo-

hannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu

Soricut, Lucia Specia, and Aleš Tamchyna (2014). “Findings of the 2014 Workshop

on Statistical Machine Translation”. In: Proceedings of the Ninth Workshop on Statis-

tical Machine Translation. Baltimore, Maryland, USA: Association for Computational

Linguistics, pp. 12–58.

Bojar, Ondřej, Miloš Ercegovčević, Martin Popel, and Omar Zaidan (2011). “A Grain of

Salt for the WMT Manual Evaluation”. In: Proceedings of the Sixth Workshop on Sta-

tistical Machine Translation. Edinburgh, Scotland: Association for Computational Lin-

guistics, pp. 1–11.

157

BIBLIOGRAPHY

Bojar, Ondřej, Christian Buck, Chris Callison-Burch, Christian Federmann, Barry Had-

dow, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Specia (2013).

“Findings of the 2013 Workshop on Statistical Machine Translation”. In: Proceedings

of the Eighth Workshop on Statistical Machine Translation. Sofia, Bulgaria: Association

for Computational Linguistics, pp. 1–44.

Bojar, Ondřej, Rajen Chatterjee, Christian Federmann, Barry Haddow, Matthias Huck,

Chris Hokamp, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Matt

Post, Carolina Scarton, Lucia Specia, and Marco Turchi (2015). “Findings of the 2015

Workshop on Statistical Machine Translation”. In: Proceedings of the Tenth Workshop

on Statistical Machine Translation. Lisbon, Portugal: Association for Computational

Linguistics, pp. 1–46.

Brockett, Chris, William B Dolan, and Michael Gamon (2006). “Correcting ESL errors us-

ing phrasal SMT techniques”. In: Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting of the Association for Compu-

tational Linguistics. Association for Computational Linguistics, pp. 249–256.

Bryant, Christopher and Hwee Tou Ng (2015). “How Far are We from Fully Automatic

High Quality Grammatical Error Correction?” In: Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Volume 1: Long Papers). Beijing,

China: Association for Computational Linguistics, pp. 697–707.

158

BIBLIOGRAPHY

Burstein, Jill and Martin Chodorow (1999). “Automated essay scoring for nonnative En-

glish speakers”. In: Proceedings of a Symposium on Computer Mediated Language

Assessment and Evaluation in Natural Language Processing. Association for Compu-

tational Linguistics, pp. 68–75.

Cahill, Aoife (2015). “Parsing Learner Text: to Shoehorn or not to Shoehorn”. In: Proceed-

ings of The 9th Linguistic Annotation Workshop. Denver, Colorado, USA: Association

for Computational Linguistics, pp. 144–147.

Cahill, Aoife, Nitin Madnani, Joel Tetreault, and Diane Napolitano (2013). “Robust Sys-

tems for Preposition Error Correction Using Wikipedia Revisions”. In: Proceedings of

the 2013 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies. Atlanta, Georgia: Association for

Computational Linguistics, pp. 507–517.

Callison-Burch, Chris, Philipp Koehn, Christof Monz, and Omar Zaidan (2011). “Find-

ings of the 2011 Workshop on Statistical Machine Translation”. In: Proceedings of the

Sixth Workshop on Statistical Machine Translation. Edinburgh, Scotland: Association

for Computational Linguistics, pp. 22–64.

Callison-Burch, Chris, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia

Specia (2012). “Findings of the 2012 Workshop on Statistical Machine Translation”.

In: Proceedings of the Seventh Workshop on Statistical Machine Translation. Montréal,

Canada: Association for Computational Linguistics, pp. 10–51.

159

BIBLIOGRAPHY

Chodorow, Martin and Claudia Leacock (2000). “An Unsupervised Method for Detecting

Grammatical Errors”. In: Proceedings of the Conference of the North American Chapter

of the Association of Computational Linguistics (NAACL), pp. 140–147.

Chodorow, Martin, Markus Dickinson, Ross Israel, and Joel Tetreault (2012). “Problems in

Evaluating Grammatical Error Detection Systems”. In: Proceedings of COLING 2012.

Mumbai, India: The COLING 2012 Organizing Committee, pp. 611–628.

Chollampatt, Shamil, Duc Tam Hoang, and Hwee Tou Ng (2016). “Adapting Grammati-

cal Error Correction Based on the Native Language of Writers with Neural Network

Joint Models”. In: Proceedings of the 2016 Conference on Empirical Methods in Nat-

ural Language Processing. Austin, Texas: Association for Computational Linguistics,

pp. 1901–1911.

Chollampatt, Shamil, Kaveh Taghipour, and Hwee Tou Ng (2016). “Neural network trans-

lation models for grammatical error correction”. In: Proceedings of the Twenty-Fifth

International Joint Conference on Artificial Intelligence. AAAI Press, pp. 2768–2774.

Chomsky, Noam (1957). Syntactic structure. Mouton.

Choshen, Leshem and Omri Abend (2018a). “Automatic Metric Validation for Grammat-

ical Error Correction”. In: Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Asso-

ciation for Computational Linguistics, pp. 1372–1382.

Choshen, Leshem and Omri Abend (2018b). “Reference-less Measure of Faithfulness for

Grammatical Error Correction”. In: Proceedings of the 2018 Conference of the North

160

BIBLIOGRAPHY

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 2 (Short Papers). New Orleans, Louisiana: Association for Com-

putational Linguistics, pp. 124–129.

Chrupala, Grzegorz (2013). “Text segmentation with character-level text embeddings”. In:

arXiv preprint arXiv:1309.4628.

Chrupała, Grzegorz (2014). “Normalizing tweets with edit scripts and recurrent neural em-

beddings”. In: Proceedings of the 52nd Annual Meeting of the Association for Com-

putational Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Association for

Computational Linguistics, pp. 680–686.

Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio (2014). “Empiri-

cal evaluation of gated recurrent neural networks on sequence modeling”. In: arXiv:1412.3555.

Church, Kenneth, Ted Hart, and Jianfeng Gao (2007). “Compressing Trigram Language

Models With Golomb Coding”. In: Proceedings of the 2007 Joint Conference on Empir-

ical Methods in Natural Language Processing and Computational Natural Language

Learning (EMNLP-CoNLL). Prague, Czech Republic: Association for Computational

Linguistics, pp. 199–207.

Collins, Michael (2002). “Discriminative Training Methods for Hidden Markov Models:

Theory and Experiments with Perceptron Algorithms”. In: Proceedings of the 2002

Conference on Empirical Methods in Natural Language Processing. Association for

Computational Linguistics, pp. 1–8.

161

BIBLIOGRAPHY

Dahlmeier, Daniel and Hwee Tou Ng (2011). “Grammatical Error Correction with Alternat-

ing Structure Optimization”. In: Proceedings of the 49th Annual Meeting of the Associa-

tion for Computational Linguistics: Human Language Technologies. Portland, Oregon,

USA: Association for Computational Linguistics, pp. 915–923.

Dahlmeier, Daniel and Hwee Tou Ng (2012a). “A Beam-Search Decoder for Grammatical

Error Correction”. In: Proceedings of the 2012 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language Learning. Jeju

Island, Korea: Association for Computational Linguistics, pp. 568–578.

Dahlmeier, Daniel and Hwee Tou Ng (2012b). “Better Evaluation for Grammatical Error

Correction”. In: Proceedings of the 2012 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Technologies.

Montréal, Canada: Association for Computational Linguistics, pp. 568–572.

Dahlmeier, Daniel, Hwee Tou Ng, and Siew Mei Wu (2013). “Building a Large Annotated

Corpus of Learner English: The NUS Corpus of Learner English”. In: Proceedings of

the Eighth Workshop on Innovative Use of NLP for Building Educational Applications.

Atlanta, Georgia: Association for Computational Linguistics, pp. 22–31.

Dale, Robert, Ilya Anisimoff, and George Narroway (2012). “HOO 2012: A Report on the

Preposition and Determiner Error Correction Shared Task”. In: Proceedings of the Sev-

enth Workshop on Building Educational Applications Using NLP. Montréal, Canada:

Association for Computational Linguistics, pp. 54–62.

162

BIBLIOGRAPHY

Dale, Robert and Adam Kilgarriff (2011). “Helping Our Own: The HOO 2011 Pilot Shared

Task”. In: Proceedings of the Generation Challenges Session at the 13th European

Workshop on Natural Language Generation. Nancy, France: Association for Computa-

tional Linguistics, pp. 242–249.

Davis, Matt (2003). “Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy”. In: http://www.mrc-

cbu.cam.ac.uk/people/matt.davis/cmabridge/.

Devlin, Jacob, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and

John Makhoul (2014). “Fast and Robust Neural Network Joint Models for Statistical

Machine Translation”. In: Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Baltimore, Maryland: Associ-

ation for Computational Linguistics, pp. 1370–1380.

Favre, Benoit, Bernd Bohnet, and Dilek Hakkani-Tür (2010). “Evaluation of semantic role

labeling and dependency parsing of automatic speech recognition output”. In: 2010

IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5342–

5345.

Felice, Mariano and Ted Briscoe (2015). “Towards a standard evaluation method for gram-

matical error detection and correction”. In: Proceedings of the 2015 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies. Denver, Colorado: Association for Computational Linguistics,

pp. 578–587.

163

BIBLIOGRAPHY

Felice, Mariano, Zheng Yuan, Øistein E. Andersen, Helen Yannakoudakis, and Ekaterina

Kochmar (2014). “Grammatical error correction using hybrid systems and type filter-

ing”. In: Proceedings of the Eighteenth Conference on Computational Natural Lan-

guage Learning: Shared Task. Baltimore, Maryland: Association for Computational

Linguistics, pp. 15–24.

Felice, Rachele De and Stephen G. Pulman (2008). “A classifier-based approach to prepo-

sition and determiner error correction in L2 English”. In: Proceedings of COLING.

Manchester, UK.

Forster, Kenneth I, C Davis, C Schoknecht, and R Carter (1987). “Masked priming with

graphemically related forms: Repetition or partial activation?” In: The Quarterly Jour-

nal of Experimental Psychology 39.2, pp. 211–251.

Foster, Jennifer (2007). “Treebanks gone bad”. In: International Journal of Document

Analysis and Recognition (IJDAR) 10.3, pp. 129–145.

Foster, Jennifer and Oistein Andersen (2009). “GenERRate: Generating Errors for Use in

Grammatical Error Detection”. In: Proceedings of the Fourth Workshop on Innovative

Use of NLP for Building Educational Applications. Boulder, Colorado: Association for

Computational Linguistics, pp. 82–90.

Gamon, Michael, Jianfeng Gao, Chris Brockett, Alexandre Klementiev, William B Dolan,

Dmitriy Belenko, and Lucy Vanderwende (2008). “Using contextual speller techniques

and language modeling for ESL error correction”. In: Proceedings of the Third Inter-

national Joint Conference on Natural Language Processing: Volume-I.

164

BIBLIOGRAPHY

Gamon, Michael, Claudia Leacock, Chris Brockett, William B Dolan, Jianfeng Gao, Dmitriy

Belenko, and Alexandre Klementiev (2009). “Using statistical techniques and web

search to correct ESL errors”. In: Calico Journal 26.3, pp. 491–511.

Goldberg, Yoav and Michael Elhadad (2010). “An Efficient Algorithm for Easy-First Non-

Directional Dependency Parsing”. In: Human Language Technologies: The 2010 An-

nual Conference of the North American Chapter of the Association for Computational

Linguistics. Los Angeles, California: Association for Computational Linguistics, pp. 742–

750.

Goldberg, Yoav and Joakim Nivre (2013). “Training Deterministic Parsers with Non-Deterministic

Oracles”. In: Transactions of the Association for Computational Linguistics 1, pp. 403–

414.

Grainger, Jonathan, Jean-Pierre Granier, Fernand Farioli, Eva Van Assche, and Walter

JB van Heuven (2006). “Letter position information and printed word perception: the

relative-position priming constraint.” In: Journal of Experimental Psychology: Human

Perception and Performance 32.4, p. 865.

Grundkiewicz, Roman, Marcin Junczys-Dowmunt, and Edward Gillian (2015). “Human

Evaluation of Grammatical Error Correction Systems”. In: Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal:

Association for Computational Linguistics, pp. 461–470.

Guerrera, Christine and Kenneth Forster (2008). “Masked form priming with extreme trans-

position”. In: Language and Cognitive Processes 23.1, pp. 117–142.

165

BIBLIOGRAPHY

Guo, Yan and Gulbahar H Beckett (2007). “The hegemony of English as a global language:

Reclaiming local knowledge and culture in China”. In: Convergence 40.1/2, p. 117.

Ha, T.-L., J. Niehues, and A. Waibel (2015). “Lexical Translation Model Using a Deep

Neural Network Architecture”. In: ArXiv e-prints.

Heafield, Kenneth (2011). “KenLM: Faster and Smaller Language Model Queries”. In:

Proceedings of the EMNLP 2011 Sixth Workshop on Statistical Machine Translation.

Edinburgh, Scotland, United Kingdom, pp. 187–197.

Heilman, Michael, Aoife Cahill, Nitin Madnani, Melissa Lopez, Matthew Mulholland, and

Joel Tetreault (2014). “Predicting Grammaticality on an Ordinal Scale”. In: Proceed-

ings of the 52nd Annual Meeting of the Association for Computational Linguistics (Vol-

ume 2: Short Papers). Baltimore, Maryland: Association for Computational Linguistics,

pp. 174–180.

Herbrich, Ralf, Tom Minka, and Thore Graepel (2006). “TrueSkillTM: A Bayesian Skill

Rating System”. In: Proceedings of the Twentieth Annual Conference on Neural Infor-

mation Processing Systems. Vancouver, British Columbia, Canada: MIT Press, pp. 569–

576.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural

computation 9.8, pp. 1735–1780.

Honnibal, Matthew and Mark Johnson (2014). “Joint Incremental Disfluency Detection and

Dependency Parsing”. In: Transactions of the Association for Computational Linguis-

tics 2, pp. 131–142.

166

BIBLIOGRAPHY

Hopkins, Mark and Jonathan May (2013). “Models of Translation Competitions”. In: Pro-

ceedings of the 51st Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers). Sofia, Bulgaria: Association for Computational Linguistics,

pp. 1416–1424.

Hovy, Eduard, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph Weischedel

(2006). “OntoNotes: the 90% solution”. In: Proceedings of the human language tech-

nology conference of the NAACL, Companion Volume: Short Papers. Association for

Computational Linguistics, pp. 57–60.

Humphreys, Glyn W, Lindsay J Evett, and Philip T Quinlan (1990). “Orthographic pro-

cessing in visual word identification”. In: Cognitive Psychology 22.4, pp. 517 –560.

Izumi, Emi, Kiyotaka Uchimoto, and Hitoshi Isahara (2004). “The Overview of the SST

Speech Corpus of Japanese Learner English and Evaluation Through the Experiment on

Automatic Detection of Learners’ Errors”. In: Proceedings of the Fourth International

Conference on Language Resources and Evaluation (LREC’04).

Johnson, Rebecca L, Manuel Perea, and Keith Rayner (2007). “Transposed-letter effects in

reading: Evidence from eye movements and parafoveal preview.” In: Journal of Exper-

imental Psychology: Human Perception and Performance 33.1, p. 209.

Junczys-Dowmunt, Marcin and Roman Grundkiewicz (2014). “The AMU System in the

CoNLL-2014 Shared Task: Grammatical Error Correction by Data-Intensive and Feature-

Rich Statistical Machine Translation”. In: Proceedings of the Eighteenth Conference on

167

BIBLIOGRAPHY

Computational Natural Language Learning: Shared Task. Baltimore, Maryland: Asso-

ciation for Computational Linguistics, pp. 25–33.

Junczys-Dowmunt, Marcin and Roman Grundkiewicz (2016). “Phrase-based Machine Trans-

lation is State-of-the-Art for Automatic Grammatical Error Correction”. In: Proceed-

ings of the 2016 Conference on Empirical Methods in Natural Language Processing.

Austin, Texas: Association for Computational Linguistics, pp. 1546–1556.

Junczys-Dowmunt, Marcin, Roman Grundkiewicz, Shubha Guha, and Kenneth Heafield

(2018). “Approaching Neural Grammatical Error Correction as a Low-Resource Ma-

chine Translation Task”. In: Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long Papers). New Orleans, Louisiana: Association for Computational

Linguistics, pp. 595–606.

Kaji, Nobuhiro and Masaru Kitsuregawa (2014). “Accurate Word Segmentation and POS

Tagging for Japanese Microblogs: Corpus Annotation and Joint Modeling with Lexi-

cal Normalization”. In: Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational

Linguistics, pp. 99–109.

Kim, Yoon, Yacine Jernite, David Sontag, and Alexander M. Rush (2015). “Character-

aware neural language models”. In: arXiv preprint arXiv:1508.06615.

Koehn, Philipp (2009). Statistical machine translation. Cambridge University Press.

168

BIBLIOGRAPHY

Koehn, Philipp (2012). “Simulating Human Judgment in Machine Translation Evaluation

Campaigns”. In: Proceedings of the 9th International Workshop on Spoken Language

Translation (IWSLT). Hong Kong, China: International Speech Communication Asso-

ciation, pp. 179–184.

Leacock, Claudia, Martin Chodorow, Michael Gamon, and Joel Tetreault (2014). “Au-

tomated grammatical error detection for language learners”. In: Synthesis lectures on

human language technologies 7.1, pp. 1–170.

Lee, John (2004). “Automatic Article Restoration”. In: HLT-NAACL 2004: Student Re-

search Workshop. Ed. by Daniel Marcu Susan Dumais and Salim Roukos. Boston,

Massachusetts, USA: Association for Computational Linguistics, pp. 31–36.

Lin, Chin-Yew (2004). “ROUGE: A Package for Automatic Evaluation of Summaries”. In:

Text Summarization Branches Out: Proceedings of the ACL-04 Workshop. Ed. by Stan

Szpakowicz Marie-Francine Moens. Barcelona, Spain: Association for Computational

Linguistics, pp. 74–81.

Ling, Wang, Isabel Trancoso, Chris Dyer, and Alan W. Black (2015). “Character-based

neural machine translation”. In: arXiv preprint arXiv:1511.04586.

Lopez, Adam (2012). “Putting Human Assessments of Machine Translation Systems in

Order”. In: Proceedings of the Seventh Workshop on Statistical Machine Translation.

Montréal, Canada: Association for Computational Linguistics, pp. 1–9.

Lyons, John (1968). Introduction to theoretical linguistics. Cambridge university press.

169

BIBLIOGRAPHY

Madnani, Nitin, Martin Chodorow, Joel Tetreault, and Alla Rozovskaya (2011). “They Can

Help: Using Crowdsourcing to Improve the Evaluation of Grammatical Error Detection

Systems”. In: Proceedings of the 49th Annual Meeting of the Association for Compu-

tational Linguistics: Human Language Technologies. Portland, Oregon, USA: Associ-

ation for Computational Linguistics, pp. 508–513.

Marcus, Mitchell, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies,

Mark Ferguson, Karen Katz, and Britta Schasberger (1994). “The Penn Treebank: an-

notating predicate argument structure”. In: Proceedings of the workshop on Human

Language Technology. Association for Computational Linguistics, pp. 114–119.

Marcus, Mitchell P, Mary Ann Marcinkiewicz, and Beatrice Santorini (1993). “Building a

large annotated corpus of English: The Penn Treebank”. In: Computational linguistics

19.2, pp. 313–330.

Mikolov, Tomas, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur

(2010). “Recurrent neural network based language model”. In: INTERSPEECH 2010,

11th Annual Conference of the International Speech Communication Association, Makuhari,

Chiba, Japan, September 26-30, 2010, pp. 1045–1048.

Nagata, Ryo and Keisuke Sakaguchi (2016). “Phrase Structure Annotation and Parsing for

Learner English”. In: Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for

Computational Linguistics, pp. 1837–1847.

170

BIBLIOGRAPHY

Nagata, Ryo, Atsuo Kawai, Koichiro Morihiro, and Naoki Isu (2006). “Reinforcing English

Countability Prediction with One Countability per Discourse Property”. In: Proceed-

ings of the COLING/ACL 2006 Main Conference Poster Sessions. Sydney, Australia:

Association for Computational Linguistics, pp. 595–602.

Napoles, Courtney, Matthew Gormley, and Benjamin Van Durme (2012). “Annotated giga-

word”. In: Proceedings of the Joint Workshop on Automatic Knowledge Base Construc-

tion and Web-scale Knowledge Extraction. Association for Computational Linguistics,

pp. 95–100.

Napoles, Courtney, Keisuke Sakaguchi, and Joel Tetreault (2016). “There’s No Compari-

son: Reference-less Evaluation Metrics in Grammatical Error Correction”. In: Proceed-

ings of the 2016 Conference on Empirical Methods in Natural Language Processing.

Austin, Texas: Association for Computational Linguistics, pp. 2109–2115.

Napoles, Courtney, Keisuke Sakaguchi, and Joel Tetreault (2017). “JFLEG: A Fluency

Corpus and Benchmark for Grammatical Error Correction”. In: Proceedings of the 15th

Conference of the European Chapter of the Association for Computational Linguistics.

Valencia, Spain: Association for Computational Linguistics, pp. 229–234.

Napoles, Courtney, Keisuke Sakaguchi, Matt Post, and Joel Tetreault (2015). “Ground

Truth for Grammatical Error Correction Metrics”. In: Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Volume 2: Short Papers). Beijing,

China: Association for Computational Linguistics, pp. 588–593.

171

BIBLIOGRAPHY

Ng, Hwee Tou, Siew Mei Wu, Yuanbin Wu, Christian Hadiwinoto, and Joel Tetreault

(2013). “The CoNLL-2013 Shared Task on Grammatical Error Correction”. In: Pro-

ceedings of the Seventeenth Conference on Computational Natural Language Learn-

ing: Shared Task. Sofia, Bulgaria: Association for Computational Linguistics, pp. 1–

12.

Ng, Hwee Tou, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy Su-

santo, and Christopher Bryant (2014). “The CoNLL-2014 Shared Task on Grammati-

cal Error Correction”. In: Proceedings of the Eighteenth Conference on Computational

Natural Language Learning: Shared Task. Baltimore, Maryland: Association for Com-

putational Linguistics, pp. 1–14.

Nicholls, Diane (2003). “The Cambridge Learner Corpus: Error coding and analysis for

lexicography and ELT”. In: Proceedings of the Corpus Linguistics 2003 conference,

pp. 572–581.

Nivre, Joakim (2004). “Incrementality in Deterministic Dependency Parsing”. In: Proceed-

ings of the Workshop on Incremental Parsing: Bringing Engineering and Cognition

Together. IncrementParsing ’04. Barcelona, Spain: Association for Computational Lin-

guistics, pp. 50–57.

Nivre, Joakim (2009). “Non-Projective Dependency Parsing in Expected Linear Time”. In:

Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language Processing of the AFNLP. Suntec,

Singapore: Association for Computational Linguistics, pp. 351–359.

172

BIBLIOGRAPHY

Novikova, Jekaterina, Ondrej Dušek, and Verena Rieser (2017). “The E2E Dataset: New

Challenges for End-to-End Generation”. In: Proceedings of the 18th Annual Meeting of

the Special Interest Group on Discourse and Dialogue. arXiv:1706.09254. Saarbrücken,

Germany.

Och, Franz Josef (2003). “Minimum Error Rate Training in Statistical Machine Transla-

tion”. In: Proceedings of the 41st Annual Meeting of the Association for Computational

Linguistics. Sapporo, Japan: Association for Computational Linguistics, pp. 160–167.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu (2002). “BLEU: a Method

for Automatic Evaluation of Machine Translation”. In: Proceedings of 40th Annual

Meeting of the Association for Computational Linguistics. Philadelphia, Pennsylvania:

Association for Computational Linguistics, pp. 311–318.

Park, Y. Albert and Roger Levy (2011). “Automated Whole Sentence Grammar Correction

Using a Noisy Channel Model”. In: Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies. Portland,

Oregon, USA: Association for Computational Linguistics, pp. 934–944.

Pavlick, Ellie, Rui Yan, and Chris Callison-Burch (2014). “Crowdsourcing for grammatical

error correction”. In: Proceedings of the companion publication of the 17th ACM con-

ference on Computer supported cooperative work & social computing. ACM, pp. 209–

212.

173

BIBLIOGRAPHY

Perea, Manuel and Stephen J Lupker (2004). “Can CANISO activate CASINO? Transposed-

letter similarity effects with nonadjacent letter positions”. In: Journal of Memory and

Language 51.2, pp. 231 –246.

Peressotti, Francesca and Jonathan Grainger (1999). “The role of letter identity and letter

position in orthographic priming”. In: Perception & Psychophysics 61.4, pp. 691–706.

Petrov, Slav and Ryan McDonald (2012). “Overview of the 2012 Shared Task on Parsing

the Web”. In: Notes of the First Workshop on Syntactic Analysis of Non-Canonical

Language (SANCL).

Qian, Tao, Yue Zhang, Meishan Zhang, Yafeng Ren, and Donghong Ji (2015). “A Transition-

based Model for Joint Segmentation, POS-tagging and Normalization”. In: Proceedings

of the 2015 Conference on Empirical Methods in Natural Language Processing. Lis-

bon, Portugal: Association for Computational Linguistics, pp. 1837–1846.

Ranzato, Marc’Aurelio, Sumit Chopra, Michael Auli, and Wojciech Zaremba (2015). “Se-

quence level training with recurrent neural networks”. In: arXiv:1511.06732.

Rasooli, Mohammad Sadegh and Joel Tetreault (2013). “Joint Parsing and Disfluency De-

tection in Linear Time”. In: Proceedings of the 2013 Conference on Empirical Methods

in Natural Language Processing. Seattle, Washington, USA: Association for Compu-

tational Linguistics, pp. 124–129.

Rasooli, Mohammad Sadegh and Joel Tetreault (2014). “Non-Monotonic Parsing of Flu-

ent Umm I mean Disfluent Sentences”. In: Proceedings of the 14th Conference of the

174

BIBLIOGRAPHY

European Chapter of the Association for Computational Linguistics, volume 2: Short

Papers. Gothenburg, Sweden: Association for Computational Linguistics, pp. 48–53.

Rayner, Keith, Sarah J. White, Rebecca L. Johnson, and Simon P. Liversedge (2006).

“Raeding Wrods With Jubmled Lettres: There Is a Cost”. In: Psychological Science

17.3, pp. 192–193.

Rei, Marek and Helen Yannakoudakis (2016). “Compositional Sequence Labeling Models

for Error Detection in Learner Writing”. In: Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Ger-

many: Association for Computational Linguistics, pp. 1181–1191.

Roark, Brian, Mary Harper, Eugene Charniak, Bonnie Dorr, Mark Johnson, Jeremy Kahn,

Yang Liu, Mari Ostendorf, John Hale, Anna Krasnyanskaya, Matthew Lease, Izhak

Shafran, Matthew Snover, Robin Stewart, and Lisa Yung (2006). “SParseval: Evalua-

tion Metrics for Parsing Speech”. In: Proceedings of the Fifth International Conference

on Language Resources and Evaluation (LREC’06). Genoa, Italy: European Language

Resources Association (ELRA).

Rozovskaya, Alla and Dan Roth (2010). “Annotating ESL Errors: Challenges and Re-

wards”. In: Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use

of NLP for Building Educational Applications. Los Angeles, California: Association

for Computational Linguistics, pp. 28–36.

Rozovskaya, Alla and Dan Roth (2011). “Algorithm Selection and Model Adaptation for

ESL Correction Tasks”. In: Proceedings of the 49th Annual Meeting of the Associa-

175

BIBLIOGRAPHY

tion for Computational Linguistics: Human Language Technologies. Portland, Oregon,

USA: Association for Computational Linguistics, pp. 924–933.

Rozovskaya, Alla and Dan Roth (2014). “Building a State-of-the-Art Grammatical Error

Correction System”. In: Transactions of the Association for Computational Linguistics

2, pp. 414–434.

Rozovskaya, Alla, Kai-Wei Chang, Mark Sammons, Dan Roth, and Nizar Habash (2014).

“The Illinois-Columbia System in the CoNLL-2014 Shared Task”. In: Proceedings

of the Eighteenth Conference on Computational Natural Language Learning: Shared

Task. Baltimore, Maryland: Association for Computational Linguistics, pp. 34–42.

Sakaguchi, Keisuke, Courtney Napoles, and Joel Tetreault (2017). “GEC into the future:

Where are we going and how do we get there?” In: Proceedings of the 12th Workshop on

Innovative Use of NLP for Building Educational Applications. Copenhagen, Denmark:

Association for Computational Linguistics, pp. 180–187.

Sakaguchi, Keisuke, Matt Post, and Benjamin Van Durme (2014). “Efficient Elicitation

of Annotations for Human Evaluation of Machine Translation”. In: Proceedings of the

Ninth Workshop on Statistical Machine Translation. Baltimore, Maryland, USA: Asso-

ciation for Computational Linguistics, pp. 1–11.

Sakaguchi, Keisuke, Matt Post, and Benjamin Van Durme (2017a). “Error-repair Depen-

dency Parsing for Ungrammatical Texts”. In: Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics (Volume 2: Short Papers). Vancouver,

Canada: Association for Computational Linguistics, pp. 189–195.

176

BIBLIOGRAPHY

Sakaguchi, Keisuke, Matt Post, and Benjamin Van Durme (2017b). “Grammatical Error

Correction with Neural Reinforcement Learning”. In: Proceedings of the Eighth Inter-

national Joint Conference on Natural Language Processing (Volume 2: Short Papers).

Taipei, Taiwan: Asian Federation of Natural Language Processing, pp. 366–372.

Sakaguchi, Keisuke, Tomoya Mizumoto, Mamoru Komachi, and Yuji Matsumoto (2012).

“Joint English Spelling Error Correction and POS Tagging for Language Learners Writ-

ing”. In: Proceedings of COLING 2012. Mumbai, India: The COLING 2012 Organizing

Committee, pp. 2357–2374.

Sakaguchi, Keisuke, Courtney Napoles, Matt Post, and Joel Tetreault (2016). “Reassessing

the Goals of Grammatical Error Correction: Fluency Instead of Grammaticality”. In:

Transactions of the Association for Computational Linguistics 4, pp. 169–182.

Sakaguchi, Keisuke, Kevin Duh, Matt Post, and Benjamin Van Durme (2017). “Robsut

Wrod Reocginiton via Semi-Character Recurrent Neural Network”. In: Proceedings of

the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San

Francisco, California, USA. Pp. 3281–3287.

Schmaltz, Allen, Yoon Kim, Alexander M. Rush, and Stuart Shieber (2016). “Sentence-

level grammatical error identification as sequence-to-sequence correction”. In: Pro-

ceedings of the 11th Workshop on Innovative Use of NLP for Building Educational

Applications. San Diego, CA: Association for Computational Linguistics, pp. 242–251.

Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian

Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio Miceli Barone,

177

BIBLIOGRAPHY

Jozef Mokry, and Maria Nadejde (2017). “Nematus: a Toolkit for Neural Machine

Translation”. In: Proceedings of the Software Demonstrations of the 15th Conference

of the European Chapter of the Association for Computational Linguistics. Valencia,

Spain: Association for Computational Linguistics, pp. 65–68.

Shen, Shiqi, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu

(2016). “Minimum Risk Training for Neural Machine Translation”. In: Proceedings

of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin,

Germany: Association for Computational Linguistics, pp. 1683–1692.

Song, Xingyi and Trevor Cohn (2011). “Regression and Ranking based Optimisation for

Sentence Level MT Evaluation”. In: Proceedings of the Sixth Workshop on Statistical

Machine Translation. Edinburgh, Scotland: Association for Computational Linguistics,

pp. 123–129.

Sutskever, Ilya, James Martens, and Geoffrey E Hinton (2011). “Generating text with re-

current neural networks”. In: Proceedings of the 28th International Conference on Ma-

chine Learning (ICML-11), pp. 1017–1024.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to sequence learning with

neural networks”. In: Advances in neural information processing systems, pp. 3104–

3112.

Sutton, Richard S, David A McAllester, Satinder P Singh, Yishay Mansour, et al. (1999).

“Policy gradient methods for reinforcement learning with function approximation.” In:

NIPS. Vol. 99, pp. 1057–1063.

178

BIBLIOGRAPHY

Swanson, Ben and Elif Yamangil (2012). “Correction Detection and Error Type Selection

as an ESL Educational Aid”. In: Proceedings of the 2012 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies. Montréal, Canada: Association for Computational Linguistics, pp. 357–

361.

Tajiri, Toshikazu, Mamoru Komachi, and Yuji Matsumoto (2012). “Tense and Aspect Er-

ror Correction for ESL Learners Using Global Context”. In: Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics. Jeju Island, Korea:

Association for Computational Linguistics, pp. 198–202.

Tetreault, Joel and Martin Chodorow (2008). “Native Judgments of Non-Native Usage: Ex-

periments in Preposition Error Detection”. In: Coling 2008: Proceedings of the work-

shop on Human Judgements in Computational Linguistics. Manchester, UK: Coling

2008 Organizing Committee, pp. 24–32.

Tetreault, Joel, Martin Chodorow, and Nitin Madnani (2014). “Bucking the trend: Improved

evaluation and annotation practices for ESL error detection systems”. In: Language

Resources and Evaluation 48.1, pp. 5–31.

Tetreault, Joel, Elena Filatova, and Martin Chodorow (2010). “Rethinking Grammatical

Error Annotation and Evaluation with the Amazon Mechanical Turk”. In: Proceedings

of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for Building Educa-

tional Applications. Los Angeles, California: Association for Computational Linguis-

tics, pp. 45–48.

179

BIBLIOGRAPHY

Van Assche, Eva and Jonathan Grainger (2006). “A study of relative-position priming

with superset primes.” In: Journal of Experimental Psychology: Learning, Memory,

and Cognition 32.2, p. 399.

Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning”. In: Machine learning 8.3-4, pp. 229–256.

Wolfe, Travis, Annabelle Carrell, Mark Dredze, and Benjamin Van Durme (2018). “Sum-

marizing Entities using Distantly Supervised Information Extractors.” In: ProfS/KG4IR/Data:

Search@ SIGIR, pp. 51–58.

Wu, Shuangzhi, Dongdong Zhang, Ming Zhou, and Tiejun Zhao (2015). “Efficient Dis-

fluency Detection with Transition-based Parsing”. In: Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Volume 1: Long Papers). Beijing,

China: Association for Computational Linguistics, pp. 495–503.

Xue, Huichao and Rebecca Hwa (2014). “Improved Correction Detection in Revised ESL

Sentences”. In: Proceedings of the 52nd Annual Meeting of the Association for Com-

putational Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Association for

Computational Linguistics, pp. 599–604.

Yamada, Hiroyasu and Yuji Matsumoto (2003). “Statistical Dependency Analysis with

Support Vector Machines”. In: In Proceedings of IWPT, pp. 195–206.

Yannakoudakis, Helen, Ted Briscoe, and Ben Medlock (2011). “A New Dataset and Method

for Automatically Grading ESOL Texts”. In: Proceedings of the 49th Annual Meeting of

180

BIBLIOGRAPHY

the Association for Computational Linguistics: Human Language Technologies. Port-

land, Oregon: Association for Computational Linguistics, pp. 180–189.

Yoshikawa, Masashi, Hiroyuki Shindo, and Yuji Matsumoto (2016). “Joint Transition-

based Dependency Parsing and Disfluency Detection for Automatic Speech Recogni-

tion Texts”. In: Proceedings of the 2016 Conference on Empirical Methods in Natu-

ral Language Processing. Austin, Texas: Association for Computational Linguistics,

pp. 1036–1041.

Yuan, Zheng and Ted Briscoe (2016). “Grammatical error correction using neural machine

translation”. In: Proceedings of the 2016 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies. San

Diego, California: Association for Computational Linguistics, pp. 380–386.

181

Vita

Keisuke Sakaguchi was born in Tokyo, Japan, and graduated Waseda University, re-

ceiving a BA in Literature (major in Philosophy) in 2005. He graduated with MA in

Psycholinguistics and Neurolinguistics from University of Essex in 2006. After several

years of working at RIKEN Brain Science Institute and IBM Systems Engineering Japan,

he started his research on Natural Language Processing at Nara Institute of Science and

Technology, receiving ME in Information Science in 2011. In 2013, he entered the Ph.D.

program in computer science at Johns Hopkins University, where he studied under Ben-

jamin Van Durme and Matt Post. He interned at Educational Testing Service (ETS) in

2014, and at IBM T.J. Watson Research Center in 2017. He received an Outstanding Paper

Award at ACL 2017.

182

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Brief History of Automated Grammatical Error Correction
	Grammaticality and Fluency
	An Overview of This Thesis

	Background
	Evaluation Metrics
	Methods
	Datasets
	Summary

	Character-level Error Correction: Robsut Wrod Reocginiton via Semi-Character Recurrent Neural Network
	Introduction
	Raeding Wrods with Jumbled Lettres
	Semi-Character Recurrent Neural Network
	Character-based Neural Network
	Experiments
	Spelling correction results
	Corroboration with psycholinguistic experiments

	Summary

	Token-level Error Correction: Error-repair Dependency Parsing for Ungrammatical Texts
	Introduction
	Model
	Non-directional Easy-first Parsing
	Error-repair variant of EF

	Experiment
	Data and Evaluation
	Results

	Conclusions

	Reassessing the Goals of Whole Sentence Error Correction
	Introduction
	Current issues in GEC
	Annotation methodologies
	Evaluation practices

	Creating a new, fluent GEC corpus
	Data collection
	Human evaluation

	What is the Best Annotation–Evaluation Combination?
	Experiments
	Results

	GEC System Evaluation by Non-experts
	Experiments
	Results

	Conclusion

	A Fluency Corpus and Benchmark for Grammatical Error Correction
	Introduction
	The JFLEG corpus
	Evaluation
	Conclusions

	Sentence-level Error Correction: Neural Reinforcement Learning for sentence level GEC
	Introduction
	Model and Optimization
	Maximum Likelihood Estimation
	Neural Reinforcement Learning
	Reward in Grammatical Error Correction
	Minimum Risk Training and Policy Gradient in Reinforcement Learning

	Experiments
	Data
	Hyperparameters
	Baselines
	Evaluation
	Results
	Analysis

	Summary

	Conclusions and Future Directions
	Efficient Elicitation of Annotations for Manual System Evaluation
	Introduction
	Models
	Expected Wins
	The Hopkins and May (2013) model
	TrueSkill
	Data selection with TrueSkill

	Experimental setup
	Datasets
	Perplexity
	Accuracy
	Parameter Tuning

	Reduced Data Collection with Non-uniform Match Selection
	Clustering
	Conclusion

	Vita

