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Abstract 

 

Are structure and function inextricably linked in the brain? In the early 19th century, 

phrenologists endeavored to localize cognition to areas of the brain. Though neuroscientists 

have updated the methodology and the notion of what constitutes a mental process, the goal 

remains the same: to map functions to locations. But how flexible are these structure-to-

function mappings? Studying adaptations of the “visual” cortex to blindness offers insight 

on the extent to which brain structures can carry out functions for which they did not 

evolve. 

In this dissertation, I ask how flexible visual cortices are in the absence of expected 

visual information. I examine the ability of blind individuals’ occipital cortices to take on 

functions that are higher cognitive and, therefore, radically different from vision. First, 

Chapter 2 explores the extent of higher cognitive takeover of “visual” cortices in blindness. 

Using naturalistic stimuli, I find that “visual” cortices of blind individuals synchronize to 

a shared interpretive, rather than a shared perceptual, experience. This suggests systematic 

and widespread repurposing of “visual” cortices for higher-cognitive functions. Next, 

Chapter 3 asks whether “visual” cortices of blind individuals are repurposed for higher 

cognitive functions other than language, and executive functions in particular. I find 

evidence for executive functions in primarily right-lateralized “visual” cortices using both 

a non-verbal response-inhibition task and by examining functional connectivity at rest. 

Finally, Chapter 4 examines the functional relevance of previously observed language and 

executive function responses in the “visual” cortices of blind individuals. I find that blind 
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individuals are better than matched sighted controls at comprehending syntactically 

complex sentences and at inhibiting prepotent button pressing. This suggests that 

repurposed “visual” cortices may confer a behavioral advantage. 

Taken together, this dissertation demonstrates that “visual” cortices of blind 

individuals are meaningfully repurposed for higher cognitive functions. Though brain 

structures may seem particularly suited to implement a particular function, such structure-

to-function mappings are not evidence of functional rigidity. In contrast, evidence from 

blindness suggests that human cortex is highly flexible at birth. 

 

Committee Members: Marina Bedny (Advisor); Lisa Feigenson; Susan Courtney (Second 

Reader); Steven Gross (Chair); Brenda Rapp. 
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Chapter 1 

Introduction 

 

1.1 Blindness as a model for understanding cortical flexibility 

The brain appears to be governed by a tight mapping between its structures and the 

functions that they implement. Across individuals, specific cognitive functions are 

implemented in consistent cortical locations. At the macroscopic level, for example, 

language processing is supported by a left-lateralized fronto-temporal network, and visual 

information is processed in the posterior cortex along the calcarine fissure. At the 

microscopic level, neurons in the calcarine fissure are organized according to a retinotopic 

map such that adjacent cortical regions represent adjacent regions in the visual field. These 

structure-to-function mappings are believed to arise because the intrinsic anatomy of each 

network in the brain determines its cognitive role. Each cortical location has a distinctive 

cyto-architecture and profile of inter-regional connectivity. Such a systematic relationship 

between structure and function seems to suggest that intrinsic physiology tightly constrains 

each cortical region to implement particular cognitive operations. 

Since individuals each have unique experiences, the brain needs some functional 

flexibility. For example, symbolic math is specific to a subset of cultures. The Piraha are 
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an Amazonian tribe whose language has no words for representing exact quantities (e.g. 

“seven” fish; Gordon 2004; Frank et al. 2008). Similarly, not all people learn to read. The 

relatively recent emergence, and rapid proliferation, of reading suggests that brain 

structures that support reading have not evolved specifically for such functionality. In both 

of these cases, brain regions exhibit adaptations for the unexpected experiences. Symbolic 

math comes to be represented in brain regions that support approximate number 

representations (Dehaene et al. 2004; Cantlon et al. 2006; Nieder and Dehaene 2009; 

Piazza:2007il Prado et al. 2011). Orthography takes over a portion of the left fusiform 

gyrus that previously supported visual discrimination of faces (Dehaene et al. 2015). These 

brain regions are said to be “recycled” to support the functions required as a result of 

cultural learning (Dehaene and Cohen 2007). For example, in the fusiform gyrus, cortical 

tissue that supports facial feature recognition becomes repurposed for grapheme 

recognition. These examples demonstrate that brain structures allow for some leniency in 

the environmental input that drives functional specialization. However, in both of these 

cases, the evolutionarily predisposed operation of the brain region (i.e. visual contour 

discrimination in the fusiform gyrus) are plausibly at least partially preserved (Dehaene 

and Cohen 2011).  

How does the brain reorganize when the changes to experience are more 

substantial? Though individuals encounter different types of visual information throughout 

their lifetimes, exposure to visual information is a ubiquitous experience. However, not in 

cases of congenital blindness. Studies of sensory loss, such as in blindness and in deafness, 

provide a rare opportunity to test just how tightly brain structures constrain cognitive 
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functions. These studies suggest that more dramatic changes in experience lead to 

correspondingly more dramatic functional reorganization of the brain. 

Across most people, neurons posterior to the lateral occipital gyrus process visual 

information and neurons in the transverse gyrus process auditory information. Across 

mammals, homologous brain regions perform auditory and visual functions similar to those 

performed in humans and thus suggestive of an evolved structure-to-function mapping. In 

fact, the occipital cortices and the transverse temporal gyrus are so functionally invariant 

that they are colloquially referred to by their function—i.e., as the visual and auditory 

cortices, respectively. Notably, “visual” cortices of blind individuals and “auditory” 

cortices of deaf individuals change their response properties. In blindness, retinotopic 

“visual” cortices respond to auditory and tactile stimuli (Wanet-Defalque et al. 1988; Uhl 

et al. 1991; Sadato et al. 1996). In deafness, “auditory” cortices respond to visual and tactile 

stimuli (Levänen et al. 1998; Finney et al. 2001). These brain structures can, therefore, 

effectively adapt to the absence of expected sensory experience. 

A key outstanding question is, what functions do these repurposed areas perform 

and how similar are they to the typical sensory function? The goal of this dissertation is to 

investigate the mechanism of occipital cortex reorganization in blindness as a window into 

how human cortical areas acquire their functions. 

 In the rest of this chapter (Chapter 1), I review previous evidence for “visual” cortex 

plasticity in blindness. This evidence raises questions about the mechanisms of functional 

reorganization of visual cortex in blindness and the extent to which deafferented sensory 

cortices truly change their function even in cases of sensory loss (Bavelier and Neville 
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2002; Amedi et al. 2017; Bedny 2017). A prominent hypothesis is that “visual” cortices 

continue to perform vision-like functions, even in cases of cross-modal plasticity, but 

instead over input from audition and touch. Alternatively, functional repurposing of 

“visual” cortices may be much more extreme. This dissertation will test the hypothesis that 

“visual” cortices of blind individuals are repurposed for higher-cognitive functions. In 

Chapter 2 I use naturalistic stimuli to determine the extent to which “visual” cortices of 

blind individuals exhibit systematic repurposing. Because naturalistic stimuli contain both 

sensory and higher cognitive information, they also allow one to broadly distinguish 

sensory and higher cognitive functions in the “visual” cortices. In Chapter 3, I test for the 

presence of a non-verbal higher cognitive function, specifically executive functions, in 

“visual” cortices. Finally, in Chapter 4, I ask whether the extra “visual” cortex 

representation of higher cognitive functions confers a behavioral benefit to blind 

individuals. I compare performance of blind and age- and education matched sighted 

controls on sentence comprehension, working memory, and an executive function task.  

 

1.2 Meta-modal brain structures: sensory functions in “visual” 

cortices 

Early studies in sensory deprivation suggested takeover of available cortices by 

remaining sensory modalities. “Visual” cortices of visually deprived animals come to 

respond to auditory information, while “auditory” cortices of auditory deprived animals 

come to respond to visual and somatosensory information (Rebillard et al. 1977; Heil et al. 
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1991; Yaka et al. 2000; Meredith and Lomber 2011). With the advent of neuroimaging, 

researchers could examine such “cross-modal” plasticity in humans. Similar to non-human 

animals, “visual” cortices of blind individuals are active during tactile and auditory tasks, 

while “auditory” cortices of deaf individuals were observed active during visual and tactile 

tasks (Wanet-Defalque et al. 1988; Uhl et al. 1991; Sadato et al. 1996). In blindness, 

“visual” cortices respond during echolocation (Thaler et al. 2011), tactile vibrations 

(Burton et al. 2004; 2010), tactile space discrimination (Sadato et al. 1996; Merabet et al. 

2004; Amedi et al. 2007; Stilla et al. 2008),  auditory localization (Wanet-Defalque et al. 

1988; Kujala et al. 1992; Weeks et al. 2000; Collignon et al. 2011), and both auditory and 

tactile motion perception (Poirier et al. 2006; Ricciardi et al. 2007; Wolbers et al. 2011). 

For example, “the “visual” cortices of blind individuals are active when they are asked to 

touch a raised dot display with their index finger and determine whether the central dot is 

right or left offset (Stilla et al. 2008). 

One interpretation of these findings is that, in instances of plasticity, sensory 

cortices preserve their underlying cognitive operation but change the sensory modality over 

which they operate. For example, in blind individuals, retinotopic areas typically involved 

in fine-grained spatial discriminations for visual information respond to fine-grained 

spatial discriminations for tactile information (Sadato et al. 1996; Merabet et al. 2004; 

Sathian and Stilla 2010). Analogously, in deaf individuals, auditory areas that typically 

discern auditory rhythm become responsive to rhythmic sequences of light (Bola et al. 

2017). Cortical structures are, therefore, “meta-modal” (Pascual-Leone and Hamilton 

2001). Though this hypothesis suggested greater functional pliancy to brain structures than 
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had previously been considered, it preserved the notion that each brain region is 

constrained to implement a specific cognitive function. 

Support for the meta-modal hypothesis came from numerous studies in blindness 

demonstrating cross-modal responses in “visual” cortices. Because visual cortices of 

sighted individuals contain distinct sub-regions of functional specialization, the meta-

modal hypothesis predicted that these loci of functional specialization  would be 

maintained in in blindness. In sighted individuals, the middle temporal area (MT) processes 

visual motion. In blind individuals, MT is active when participants are asked to discern the 

direction of a moving sound or a moving tactile dot pattern (Poirier et al. 2006; Ricciardi 

et al. 2007). Similarly, in blind individuals, dorsal occipital areas that typically localize 

visual information respond to tasks of auditory localization (Wanet-Defalque et al. 1988; 

Kujala et al. 1992; Weeks et al. 2000), and more so than they respond to non-spatial 

auditory tasks such as pitch discrimination (Collignon et al. 2011).  

While motion and location representations in “visual” cortices suggest preservation 

of the dorsal “where” pathway in blindness, representations of identity in “visual” cortices 

suggest a preserved ventral "what” pathway (Mishkin et al. 1983). In blind individuals, 

“visual” cortices activate for both tactile and auditory-encoded letters, peaking precisely in 

the area that shows sensitivity for visual word forms in sighted individuals (i.e., the VWFA) 

(Uhl et al. 1991; Sadato et al. 1996; Reich et al. 2011; Striem-Amit et al. 2012). Similarly, 

an area that typically processes visual number form in sighted individuals (i.e., the VNFA) 

is preferentially active when blind individuals are asked to discern a sound-encoded roman 

numeral (i.e. V = 5), rather than when they are asked to discern the sound-encoded letter 
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(i.e. “v”) or sound-encoded color of the exact same stimulus. In blind individuals, ventro-

temporal regions that are selective for either visual faces, body parts, scenes, or objects in 

sighted individuals (Kanwisher 2010) show preserved selectivity for such category 

knowledge conveyed through audition or touch (Pietrini et al. 2004; Mahon et al. 2009; He 

et al. 2013; van den Hurk et al. 2017). For example, in blindness, the fusiform face area 

(FFA), a region typically sensitive to visual facial features, is more active to sounds of a 

person laughing or whistling (face) than to sounds of crashing waves (scenes), fans 

(objects), or footsteps (body parts) (van den Hurk et al. 2017).  

Consistent with the meta-modal hypothesis, these findings suggest that “visual” 

cortices of blind individuals continue to perform vision-like functions, but over input from 

audition and touch. Brain structures are, therefore, built for particular cognitive functions 

but adaptive for the modality of information. Accordingly, repurposed cortices preserve  

intra- regional connectivity patterns (Striem-Amit et al. 2015; 2016), but inter-regional 

connections must change to route auditory and tactile information to “visual” cortices. This 

can occur via increased afferent connections to “visual” cortices from the thalamus, from 

poly-modal association cortices, or directly from other primary sensory cortices (i.e. A1) 

(Bavelier and Neville 2002). In blind mole rats, the inferior colliculus, a midbrain structure 

that primarily relays auditory information to auditory cortices, increases its projections to 

the visual system (Doron and Wollberg 1994). However, in blind humans there is no 

evidence of additional anatomical tracts to “visual” cortices and thalamic tracts to “visual” 

cortices are, if anything, atrophied (Shimony et al. 2005; Shu, Li, et al. 2009; Shu, Liu, et 

al. 2009). 
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1.3 Pluripotent brain structures: higher cognitive functions in 

“visual” cortices 

A growing body of evidence suggests that some of the functional repurposing of 

visual cortex is far more extreme. In blindness, retinotopic regions of “visual” cortex come 

to respond to language (Burton et al. 2002; Bedny et al. 2011). In blind, but not sighted, 

participants “visual” areas show sensitivity to semantic and syntactic information, respond 

more to words than meaningless sounds, more to sentences than unconnected lists of words, 

and more to grammatically complex than grammatically simple sentences (Röder et al. 

2002; Burton et al. 2003; Bedny et al. 2011; Lane et al. 2015). Repurposing from vision to 

language is striking in light of the cognitive differences between these domains. Since 

language and vision are cognitively and evolutionarily distinct, these observations 

challenge the idea that cortical areas have fixed functions, even meta-modal ones.  

Further evidence comes from higher cognitive domains other than language. Dorsal 

retinotopic “visual” areas are active when congenitally blind individuals solve spoken math 

equations (e.g. 17-4=X), more so than when blind participants listen to non-mathematical 

sentences, and the amount of activity scales with equation difficulty (Kanjlia et al. 2016). 

These math-responsive “visual” regions are differentially localized from sentence-

responsive regions within occipital cortices. “Visual” cortices of blind individuals are also 

active during verbal memory tasks, such as retrieving previously encoded words from long-

term memory or retrieving an associated verb from an auditory presented noun (Amedi et 
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al. 2003; Raz et al. 2005). Importantly, one such verbal memory task elicited “visual” 

cortex activity in the absence of any auditory or tactile stimuli, as participants were asked 

to covertly recall previously learned words (Amedi et al. 2003). Analogously, in deaf 

individuals, “auditory” cortices respond to visuo-spatial working memory demands (Ding 

et al. 2015) 

Evidence from functional connectivity analyses also suggests higher cognitive 

takeover of “visual” cortices. In the absence of an explicit task, synchrony between 

occipital cortices and frontal-parietal cortices is increased in blindness (Liu et al. 2007; 

Bedny et al. 2010; 2011; Wang et al. 2013; Burton et al. 2014; Deen et al. 2015; Liu et al. 

2017). Moreover, resting-state synchrony between occipital cortices and primary sensory 

and motor cortices (i.e. A1, S1, and M1) is reduced in blind, relative to sighted, individuals 

(Liu et al. 2007; Yu et al. 2008; Wang et al. 2013; Burton et al. 2014).  

These findings suggest that rather than being “meta-modal” the human cortex is 

pluripotent— i.e. capable of taking on a wide range of functions (Bedny 2017). According 

to the pluripotency hypothesis, the microcircuitry of a given cortical area does not limit it 

to performing a particular cognitive operation. Rather, a brain area’s cognitive function is 

heavily influenced by the information that it receives during development. This 

information, in turn, is jointly determined by long-range anatomical connectivity and 

experience. 

In the case of the “visual” cortex of blind individuals, the top two sources of 

anatomical projection come from the visual (lateral geniculate) nucleus of the thalamus and 

from top-down higher cognitive systems (Tong 2003). Tracer studies in non-human 
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primates provide evidence for frontal, parietal, and temporal afferents to visual cortices 

(Maunsell and Van Essen 1983; Selemon and Goldman-Rakic 1988; Felleman and Van 

Essen 1991; Ungerleider et al. 1998; Falchier et al. 2002; Rockland and Ojima 2003; Beer 

et al. 2011; Ungerleider et al. 2008; Martino et al. 2010; Anderson et al. 2011; Yeterian et 

al. 2012). The visual cortices receive comparatively fewer projections from non-visual 

thalamic nuclei or from other primary sensory systems— e.g. auditory and somatosensory 

(Falchier et al. 2002). As a result, when input from the lateral geniculate nucleus is removed 

in blindness, “visual” cortices are colonized by higher cognitive rather than lower-level 

sensory areas.  

In summary, the pluripotency hypothesis suggests that early in development, 

cortical areas are capable of differentiating into structures that support diverse types of 

functional specialization. In particular, it predicts that “visual” cortices of blind individuals, 

will perform higher cognitive functions as a result of colonization by extensive fronto-

parietal anatomical projections.  

 

1.4 Overview of Chapter 2: Widespread systematic repurposing of 

“visual” cortices for higher cognitive functions 

 Despite, or perhaps because of, the plethora of evidence for visual cortex plasticity, 

central questions remain. While it seems clear that “visual” cortices of blind individuals do 

not lay fallow, the functions for which they are colonized remain disputed. One possibility 

is that the diverse functional findings represent variability in repurposing of “visual” 



CHAPTER 1. INTRODUCTION 
 

 11 

cortices across unique cases of blindness. Alternatively, “visual” cortices may be 

systematically repurposed for similar functions across individuals. Evidence for different 

functional signatures may exist because unique sub-regions of “visual” cortices are 

repurposed for different functions. If so, can these functions be broadly characterized 

according to either the meta-modal or pluripotency hypotheses? 

These questions are difficult to answer with a typical fMRI design which tests for 

the presence of one or two specific cognitive processes. Therefore, Chapter 2 takes a 

different tack to studying functional plasticity in blindness. Blind and sighted participants 

listened to auditory movies and a comedy routine while undergoing fMRI. Naturalistic 

stimuli are a model-free method to assess the functional profile of cortical areas. Richly 

engaging stimuli allow brain responses to fluctuate according to many simultaneous, but 

independently, varying features. Rather than correlate brains to a model of a particular 

cognitive process, brain responses were assessed by correlating the timecourse of each 

brain area in one individual to the timecourse of the same brain area in all other individuals. 

This allowed me to determine the extent of systematic repurposing of “visual” cortices 

across unique cases of blindness. Moreover, because synchronization across individuals 

only occurs if the stimulus contains content that is meaningful to that brain area, I varied 

the level of higher cognitive content to determine the extent to which higher-cognitive, as 

opposed to sensory auditory, functions are present in the blind “visual” cortices. I find that 

“visual” cortices of blind individuals synchronize for higher, but not lower, cognitive 

content. This suggests systematic repurposing of “visual” cortices for higher cognitive 

functions.  
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1.5 Overview of Chapter 3: Executive function responses in “visual” 

cortices 

 An interesting finding from Chapter 2 is extensive bilateral synchronization of 

“visual” cortices for higher cognitive functions. Thus far, language, which is 

predominantly left-lateralized in both fronto-temporal and “visual” cortices, is the most 

reliably found higher cognitive function in “visual” cortices. An open question is, therefore, 

whether there exist cognitive functions in “visual” cortices that are not verbally mediated.  

In Chapter 2, the bilateral synchronization of “visual” cortices is mirrored by 

bilateral synchronization of fronto-temporal cortices. This synchronization symmetry 

provides a possible hint. If left “visual” cortices are colonized by left fronto-temporal 

cortices, the same may be true of right “visual” cortices. This suggestion is consistent with 

the pluripotency hypothesis that “visual” cortices take on higher-cognitive functions 

because of intrinsic functional flexibility of local visual cortex circuits and top-down 

fronto-parietal afferents. If the pluripotency hypothesis is correct, I would expect that aside 

from language, other non-verbal higher-cognitive functions that typically depend on 

fronto-parietal networks also invade the “visual” cortices in blindness. Moreover, because 

anatomical connectivity is stronger within a hemisphere than across hemispheres, I would 

expect higher cognitive takeover in “visual” cortices to occur from the fronto-parietal 

network specific to each hemisphere—i.e. such that left hemisphere fronto-parietal 
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networks colonize left “visual” cortices and right hemisphere fronto-parietal networks 

colonize right “visual” cortices.  

 Chapter Two tests the hypothesis that non-verbal higher-cognitive functions invade 

the visual system. Congenitally blind and sighted participants performed an auditory go/no-

go task, with non-verbal sounds, while undergoing fMRI. I also collected resting state data. 

In the go/no-go task, participants either made a quick button press (for “go” sounds, 75%) 

or withheld a button press (for “no-go” sounds, 25%). Go trials included two sub-types: 

frequent (50%) and infrequent (25%). Right-hemisphere fronto-parietal cortices of both 

groups responded most to no-go trials, followed by infrequent-go, and finally by frequent-

go. Sensorimotor cortices of both groups responded most to go trials.  

Crucially, I find that right-lateralized occipital cortices of blind, but not sighted, 

individuals mirror the executive-function pattern observed in fronto-parietal systems. In 

resting state data, these executive function-responsive occipital cortices also increase in 

functional connectivity to prefrontal executive function areas and decrease in functional 

connectivity to sensorimotor areas in blind, relative to sighted, individuals.  

These data provide evidence that language is not the only higher-cognitive function 

assumed by “visual” cortices in blindness and, therefore, cannot be a special case of meta-

modality. Executive function responses in “visual” cortices of blind individuals support the 

fronto-parietal takeover hypothesis of plasticity in blindness. 
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1.6 Overview of Chapter 4: Behavioral relevance of higher cognitive 

functions in “visual” cortices 

If human cortices are highly adaptable to experience, one would predict that 

repurposed cortices are functionally relevant to behavior. However, up until now, no 

studies have tested the impact of “visual” cortex plasticity on high-level linguistic 

performance (e.g. sentence processing) or response-inhibition. It is an open question 

whether responses to language processing and response-inhibition in the “visual” cortices 

are functionally relevant and, if so, whether they confer any behavioral benefit.  

In Chapter 4, I test the hypothesis that “visual” cortex plasticity for language and 

executive function improves sentence comprehension and response-inhibition, 

respectively, in blindness. Age and education-matched blind and sighted participants 

answered yes/no comprehension questions on spoken sentences that varied in syntactic 

complexity. Syntactic complexity was manipulated in two independent ways, by 

introducing syntactic movement and creating garden paths. Congenitally blind individuals 

are more accurate and faster than the sighted controls. This advantage is more pronounced 

for syntactically complex garden-path sentences. Using the same go/no-go task from 

Chapter 3, I also find evidence that blind individuals outperform sighted individuals on 

measures of response-inhibition. 

Additionally, I assessed the relationship between each of the higher cognitive tasks. 

Sentence comprehension ability was not predicted by individual differences in working 
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memory or response-inhibition. Verbal working memory span was weakly predictive of 

response inhibition in the blind group only.  

These data provide evidence that congenital blindness confers a specific advantage 

to sentence processing and response-inhibition, and that these advantages are distinct. 

Though these findings cannot directly attribute “visual” cortex repurposing to the observed 

behavioral advantage, they suggest that “visual” cortices of blind individuals may be deftly 

integrated into pre-existing brain networks to provide extra processing power to the 

individual.  

 

1.7 Summary 

Blindness is a model for understanding functional specialization within the human 

brain. The dramatically different experience of blind individuals provide insight into the 

malleability of normally observed structure-to-function mappings in the brain. This 

dissertation tests for maximal pliancy, i.e. higher cognitive functions in the “visual” 

cortices of blind individuals. In Chapter 2, I ask whether “visual” cortices of blind 

individuals are extensively and systematically repurposed for higher cognitive functions. 

In Chapter 3, I ask whether “visual” cortices are also repurposed for non-verbal higher 

cognitive functions, specifically executive function. In Chapter 4, I ask whether observed 

higher cognitive responses in “visual” cortices confer a behavioral advantage to blind 

individuals. In the work presented here, I find evidence for large-scale verbal and non-

verbal higher cognitive repurposing of “visual” cortices in blindness. Blind individuals also 

outperform sighted individuals at the higher cognitive tasks for which “visual” cortices are 
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repurposed. This dissertation shows that the intrinsic physiology of brain structures does 

not result in functional rigidity. Rather, intrinsic physiology provides an advantageous 

mechanism whereby brain structures are radically flexible to take on novel functions as 

needed by the individual.     
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Chapter 2 

Widespread systematic repurposing of “visual” 

cortices for higher cognitive functions 

 

2.1 Introduction 

Can brain structures meaningfully adapt to carry out functions for which they did not 

evolve? Studying the “visual” cortices in cases of congenital blindness offers unique 

insight into this question. In blindness, typically “visual” cortices activate in response to 

non-visual stimuli (Wanet-Defalque et al. 1988; Sadato et al. 1996; Bavelier and Neville 

2002). “Visual” cortices of blind individuals respond during auditory and tactile tasks such 

as motion detection, shape discrimination, sound localization, and echolocation (Uhl et al. 

1991; Weeks et al. 2000; Merabet et al. 2004; Gougoux et al. 2005; Poirier et al. 2006; 

Stilla et al. 2008; Collignon et al. 2011; Thaler et al. 2011; Wolbers et al. 2011). “Visual” 

cortices are also active during higher cognitive tasks with auditory and tactile stimuli, 

including Braille reading, auditory sentence comprehension, and solving auditorily 

presented equations (Sadato et al. 1996; Bedny et al. 2011; Kanjlia et al. 2016). Non-visual 

responses in “visual” cortices demonstrate that a sensory brain region can adapt the 

modality over which it operates.  



CHAPTER 2. HIGHER COGNITION IN “VISUAL” CORTICES 
 

 18 

Important questions remain, however, regarding the mechanism and extent of 

functional repurposing in “visual” cortices of blind individuals. First, what should one 

make of the extensive range of cognitive tasks that have been associated with “visual” 

cortex responses in blindness? One possibility is that, when a cortical area is not able to 

perform its evolutionarily predisposed function, cognitive specialization is haphazard 

across individuals. As such, the cognitive function assumed by a given part of “visual” 

cortices will vary widely across blind individuals. Alternatively, a given “visual” cortical 

area may assume a similar function across blind individuals but different parts of the visual 

system assume different functions. Second, how topographically extensive is “visual” 

cortex repurposing in blindness? Because reported activation is typically circumscribed to 

particular sub-regions within the “visual” cortices, the spatial extent of the repurposing is 

unknown. Third, are “visual” cortices of blind individuals deployed during everyday 

cognitive operations in naturalistic contexts? Experimental paradigms use stimuli that are 

unlike what is encountered in daily life. Often they are more cognitively taxing. For 

example, a study that found language responses in “visual” cortices used sentences with 

syntactic movement over long dependencies—e.g. “The actress that the creator of the gritty 

HBO crime series admires often improvises her lines” (Lane et al. 2015). Such complex 

sentences are rarely encountered in conversation and are made even more difficult to parse 

due to removal of prosodic cues. Indeed, there is evidence that natural language tends to 

minimize dependency length (Gildea and Temperley 2010). Therefore, “visual” cortices 

may come online only during unusually demanding cognitive tasks, i.e. as an “overflow” 

processor.  
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The goal of the current study was to use naturalistic stimuli to inform these questions, 

as they overcome some of the limitations of traditional experimental designs. Movies and 

narrated stories offer a kind of “kitchen sink” of cognitive processes that vary 

simultaneously, and to some extent independently, from one another. Rather than 

correlating a participant’s voxel timecourse to a hypothesized model of every possible 

cognitive process, functional activity is assessed by comparing timecourses across 

participants. The participant’s voxel timecourse is correlated to that same voxel timecourse 

in other individuals (Hasson, Nir et al., 2004). Therefore, inter-subject correlations driven 

by rich stimuli allow one to test broadly, and without pre-specification, for shared 

functionality across individuals. We can assess how much of the “visual” cortices respond 

similarly across blind individuals. Moreover, because this functionality is observed under 

naturalistic conditions, it can inform the extent to which neural circuits are recruited during 

everyday tasks. In prior work, naturalistic stimuli have been used to show shared brain 

responses across people (Hasson, Nir et al., 2004; Hasson et al. 2010).  

Inter-subject synchronization also provides a different angle on an important puzzle 

within the plasticity literature: what types of cognitive functions are assumed by the 

“visual” cortices? While high inter-subject synchronization suggests shared functionality, 

the level of content required to drive such synchronization can give some clue as to which 

function is shared. Synchronization of a particular brain area across individuals occurs only 

if the stimulus contains content that is meaningful to that area (Hasson, Nir et al., 2004; 

Hasson et al. 2008). For example, pre-frontal language areas synchronize to naturalistic 

speech and movies but not to meaningless sounds (e.g. backward speech) or distorted 
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versions of the same naturalistic speech (Lerner et al. 2011; Naci et al. 2016). In contrast, 

primary auditory cortices synchronize comparably to all auditory stimuli (Lerner et al. 

2011; Naci et al. 2016). Analogously, for visually presented stimuli in sighted individuals, 

V1 and other low-level visual areas synchronize equally well by intact movies and movies 

that have been cut into short segments and scrambled in time (Hasson et al. 2008; Naci et 

al. 2016). Based on this observation, it has been proposed that cortical areas can be 

described as having a particular place within a hierarchy based on the temporal structure 

of the stimuli by which they are synchronized. Higher-order cognitive, but not low-level 

sensory areas, require structure over long segments of time to be synchronized (Hasson et 

al. 2008).  

It is an open question whether the place of “visual” cortex within this temporal 

hierarchy is related to its genetically prespecified cytoarchitecture or whether it is instead 

malleable by experience. Do “visual” cortices preserve their place in the cortical hierarchy 

across blind and sighted individuals? Alternatively, do “visual” cortices move up in the 

cortical hierarchy, behaving more like amodal higher-cognitive areas? 

To shed light on these questions, the current study presented naturalistic auditory 

stimuli to congenitally blind participants and sighted controls while undergoing fMRI. 

Congenitally blind and blindfolded sighted individuals listened to four intact naturalistic 

stimuli: three movies (visuals removed) and one stand-up comedy routine. Participants also 

listened to two stimuli non-intact stimuli: the same comedic routine played backward, i.e., 

with no discernible language, and a shuffled version of the comedic routine that preserved 

sentences but lacked a coherent plotline. This designed enabled me to determine the degree 
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and spatial extent to which “visual” cortices assume a similar temporal profile across 

different blind individuals, whether “visual” cortices are deployed under naturalistic 

conditions, and how such synchronization compares to synchrony during auditory stimuli 

that are meaningless or have reduced or absent structure over long timescales (e.g. shuffled 

lists of sentences or backwards speech).  

 

2.2 Materials and Methods 

Participants.  

18 congenitally blind (6 male; 13 right-handed, 2 ambidextrous; age: mean=41.87 

SD=16.41; years of education: mean =16.72, SD=2.52) and 18 sighted controls (3 male; 

16 right-handed; age: mean=41.23, SD=13.19; years of education: mean =18.39, SD=4.26) 

contributed data to the current experiment. Blind and sighted participants were matched on 

average age and education level (age: t(34)=0.13, p>0.5; education: t(34)=1.43, p=0.16). 

All blind participants self-reported minimal-to-no light perception since birth, i.e. never 

able to distinguish colors, shapes, or motion. Participants had no known neurological 

disorders, head injuries, or brain damage. For all blind participants, the causes of blindness 

excluded pathology posterior to the optic chiasm (see Table 1 for details). All participants 

gave written consent under a protocol approved by the Institutional Review Board of Johns 

Hopkins University. 5 additional sighted and 3 additional blind individuals participated in 

the experiment but were dropped from analyses due to performance (see below). 1 

additional blind participant was dropped from analyses because of subsequently reported 
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temporary vision during childhood. Reported statistics refer only to participants included 

in analyses. 

 

Blindness Etiology N N LP 
Leber Congenital Amaurosis 7 6 
Retinopathy of Prematurity 5 2 
Optic Nerve Hypoplasia 3 1 
Retinitis Pigmentosa 1 1 
Unknown 2 1 

 

Table 1. Blindness Etiology for Chapter 2 Participants 

Per cause of blindness, total N(umber) of participants and N(umber) with light perception (LP). 

 

Stimuli and procedure.  

Participants listened to 4 intact and 2 scrambled entertainment clips while 

blindfolded and undergoing functional magnetic resonance imaging. Intact stimuli were 

excerpted from movies (Brian De Palma’s Blow Out, Pierre Morel’s Taken, and James 

Wan’s The Conjuring) and a comedic narration (Jim O’Grady’s Pie-Man). To enable a 

shared interpretive experience across participants, I chose intact clips to be suspenseful, 

entertaining, and easy to follow. Non-intact stimuli were generated from the intact Pie-Man 

stimulus. Backward was time-reversed to lack intelligible speech; sentence-shuffle was 

spliced from intact, permuted sentences to lack a coherent plotline. To construct the 

sentence-shuffle stimulus, individual sentences were clipped to make the shortest possible 

stand-alone sentence. Compound sentences were divided into each of its standalone 

components, sometimes beginning with the word “and.” This resulted in 96 sentences 
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(length: mean= 4.37 s, SD=3.43 s) that were randomly reordered such that newly adjoining 

sentences had an original distance of at least 4 sentences between them. I also collected a 

rest run in which no stimulus was presented and participants were told to relax but not to 

fall asleep. 

Before each auditory clip (and scan), participants were read a 2-3 sentence 

contextualizing prologue to facilitate interpretation of the clip. After the entire scan-

session, participants were given an expected multiple-choice comprehension test for each 

intact clip. There were five questions per clip and the questions probed detailed 

information, e.g. names of characters, locations of events, and critical plot points. All 

stimulus data was excluded from participants who did not correctly answer at least 3 out 

of 5 questions for at least 3 (out of 4) intact runs. Additionally, for each intact clip, 

participant data was excluded if the participant failed the comprehension assessment for 

that particular clip or if the participant reported having previously seen the movie from 

which that particular clip was taken. Analyses thus included 15-18 participants per 

stimulus, per vision group. (See Supplementary Table 1 for total number of participants, 

age, and education information for each stimulus.) For each stimulus, blind and sighted 

participants were statistically equivalent with respect to age and years of education. 

Each auditory clip was preceded by 5 s of rest and followed by 20-22 seconds of 

rest. I subsequently discarded the first 20 seconds and last 18 seconds of each functional 

scan to remove scans with rest and the auditory stimulus onset (accounting for the 

hemodynamic lag). The duration of each stimulus, not counting the rest periods before and 

after the clip, were as follows: Rest (7.4 min.), Backward, Sentence-Shuffle, and Pie-Man 
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(6.8 min.), The Conjuring (5.1 min), Taken (5 min.), and Blow Out (6.5 min.). Presentation 

order of the six stimuli were counterbalanced across participants, with blind and sighted 

participants yoked to receive the same orderings. In addition to the comprehension 

questions, I also asked 3 questions to probe participants’ subjective experience. Each 

participant rated each intact clip on suspense, entertainment, and following ease according 

to a 5-point Likert scale. (Mean rating for each movie, by vision group, is also available in 

Supplementary Table 2.)  

Auditory stimuli were presented over Sensimetrics MRI-compatible earphones at 

the maximum comfortable volume for each participant. To ensure that participants could 

hear the lower sounds in the auditory clips over the scanner noise, a relatively low sound 

was played to participants during acquisition of the anatomical image; all participants 

indicated hearing the sound via button press.  

 

MRI data acquisition and cortical surface analysis.  

MRI structural and functional data of the whole brain were collected on a 3 Tesla 

Phillips scanner. T1-weighted structural images were collected in 150 axial slices with 1 

mm isotropic voxels using a magnetisation-prepared rapid gradient-echo (MP RAGE). 

T2*-weighted functional images were collected in 36 axial slices with 2.4 x 2.4 x 3 mm 

voxels and 2 s TR. Data analyses were performed using FSL, Freesurfer, the HCP 

workbench, and custom software (Dale et al., 1999; Smith et al., 2004; Glasser et al., 2013).  
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Preprocessing.  

Functional data were motion corrected, slice-time corrected, and registered to the 

participant’s anatomical image using FSL’s FEAT. Nuisance covariates were regressed out 

of the timeseries of all gray matter voxels. For ISC analysis, this consisted of a linear trend 

and any motion spikes (i.e., timepoints with a root mean squared framewise-displacement 

greater than 1.75 mm). As a result, motion spikes were set to the run-mean (number per 

run: sighted: mean=0.23, SD=0.58; blind: mean=0.64, SD=0.88; t(34)=1.65, p=0.11). 

Resulting time-series residuals were high pass filtered with a 128 s cutoff, resampled to a 

common cortical surface (discarding subcortical structures and the cerebellum), and dilated 

and eroded by 2.5 mm to fill small holes. Data was smoothed with a 12 mm FWHM 

Gaussian kernel for whole-brain analyses. Analysis used a mix of HCP Workbench and 

Freesurfer tools. For auditory stimuli, timepoints before and after stimulus presentation 

were trimmed (as explained above). Finally, timecourse values were divided by the global 

grey-matter mean and multiplied by 10,000. 

 

Inter-subject whole-cortex correlation (ISC).  

I first asked whether comparable anatomical locations perform a consistent function 

across different individuals. For each vertex in the brain, I assessed the extent of stimulus-

driven synchronization (i.e. correlation) to that same vertex in other people’s brains. 

Synchrony of brain activity was determined within and across vision groups— i.e., each 

congenitally blinds individual’s brains to the mean of all other congenitally blind 

individuals, each sighted individual to the mean of all other sighted individuals, 
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congenitally blind individuals to the sighted mean, and sighted individuals to the 

congenitally blind mean. For each run, I calculated vertex-wise synchrony as the average 

pearson product-moment correlation coefficient (r) between each subject’s timecourse and 

the average of the reference group (Hasson, Nir et al., 2004; Lerner et al. 2011). For 

example, the blind group’s ISC value at vertex 99 was calculated by correlating the 

timecourse of blind participant 1’s vertex 99 to the mean timecourse in the blind group 

(without participant 1) of vertex 99, repeating for all blind participants, and then averaging 

ISC values across blind participants. For the “across vision group” ISC, I correlated each 

blind subject to the average of all sighted subjects and each sighted subject to the average 

of all blind subjects, and then averaged all the individual subject maps. For all three groups 

comparisons (i.e. blind to blind, sighted to sighted, across vision group), averaged r-value 

ISC maps were transformed to Fisher’s z-values (i.e. arctanh(r)) to enable comparisons of 

correlations across different stimuli/groups. Differences in synchronization between 

stimuli and/or between groups were compared by subtracting the relevant z-maps (i.e. blind 

> sighted = blind – sighted). A mean “movie” synchronization map was created by 

averaging z-maps of the 3 intact movie stimuli—i.e., conjuring, taken, blow out. Resulting 

z-maps were subsequently back-transformed to r-maps (i.e. tanhz(r)).  

Because ISC maps violate several assumptions of parametric hypothesis testing, I 

performed a non-parametric, permutation analysis to assess the statistical significance of 

the inter-subject correlations. First, within group ISC maps (i.e. blind-to-blind) are not 

independent because each participants is present in all other participant’s correlation 

maps—i.e., in a hypothetical 2 participant blind group, participant 1 is correlated to the 
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leave-one-out blind group (i.e. participant 2) and participant 2 is correlated to the leave-

one-out blind group (i.e. participant 1), resulting in the same ISC value for both 

participants. Therefore, the sample standard deviation is uninformative and all ISC results 

do not make use of standard error calculations. Secondly, timecourse datapoints are not 

independent from each other (usually dealt with by pre-whitening in a standard fMRI GLM 

analysis). 

Therefore, to assess statistical significance of the ISC maps, I generated a null 

distribution via permutation of the original data. Preprocessed timecourse-values were 

phase-randomized to generate null correlations amongst participants. Timecourses were 

shuffled independently for all participants. Importantly, each timecourse preserved its 

original power spectrum in order to mirror empirical dependence between timepoints 

(Lerner et al. 2011; Regev et al. 2013). ISC values, for all stimuli and comparisons, were 

calculated on these permuted timecourses, as in the regular analysis. A null distribution, 

for each stimulus and comparison, was obtained by repeating the procedure 1000 times.  

To correct for multiple comparisons across the cortex, only the largest ISC value 

across all brain vertices, in each of the 1000 permutations, contributed to the null 

distribution. I rejected the null hypothesis for a particular comparison if the real data’s ISC 

value was in the upper 5% of all 1,000 values in each null distribution. The statistical test 

is, therefore, one tailed. R-value criteria for examined contrasts varied from 0.10 – 0.20. 

Differences in criteria reflect different variances for each of the null sampling distributions, 

likely due to differences in degrees of freedom amongst the stimuli (e.g., number of 

timepoints) and between groups (e.g., number of participants), as well as the computation 
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performed (e.g. the “movies > backward” comparison subtracts movie ISC values from 

backward ISC values and, therefore, sums the variances of both the movies and backward 

distributions). Since the sighted group’s ISC criteria were a bit higher than the blind 

group’s ISC criteria, I thresholded all sighted ISC figures with the blind group’s criteria to 

more conservatively test our hypothesis that the sighted group’s visual cortices will not 

synchronize for any stimuli. Results were qualitatively the same as those obtained by using 

the sighted group’s own criteria.  

The correction for multiple comparisons was very conservative, as there is a 5% 

probability of rejecting one or more true nulls in each 64,000 vertex family of statistical 

tests. Therefore, for contrasts between groups (i.e. blind ISC > sighted ISC for the 

backward stimulus) and for contrasts between conditions that are likely to be more similar 

(i.e. pie-man > sentence-shuffle), I used a cluster correction. Rather than form a null-

distribution from the highest vertex-wise ISC value in each permutation, I first generated 

an uncorrected criterion (of p < 0.001) by taking the r-value higher than 99.9% of all the 

vertices and averaging this value across all permutations. Phase-randomized ISC maps 

were thresholded at this criterion, and assessed for maximum cluster size. For each of the 

1000 permutations, a maximum whole-cortex cluster was obtained (for each stimulus and 

comparison). The size of the maximum ISC clusters thus from a null distribution of cluster 

size. Cluster-correction criteria at p < 0.001 were, likewise, set as the cluster-size larger 

than 99.9% of all other clusters. Real-data ISC maps were cluster-corrected by first 

thresholding each vertex at the uncorrected p < 0.001 criterion and then thresholding 
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clusters at the cluster threshold of p < 0.001. Criteria for reported contrasts ranged from 

9.92 -16.64 mm.  

 

Inter-subject correlation (ISC) ROI analysis. 

I interrogated inter-subject correlation (ISC) values in select ROIs of interest. I used 

a primary visual cortex (V1) ROI from a previously published anatomical surface-based 

atlas (PALS-B12 visuotopic; (Van Essen 2005)). I defined an early auditory cortex ROI as 

the transverse temporal portion of a gyral based atlas (Morosan et al. 2001; Desikan et al. 

2006). For brevity, the early auditory cortex ROI will be abbreviated to A1, although it 

may not be strictly limited to primary auditory cortices. A higher-cognitive bilateral 

superior temporal gyrus (STG) ROI was taken from parcels that have previously been 

observed to be responsive to high-level linguistic content in sighted subjects (Fedorenko et 

al. 2010).  

ROI analyses were performed on unsmoothed functional data. For each participant, 

a timecourse was obtained for each ROI by averaging across all vertices present in the 

bilateral ROI. From here, ISC analysis proceeded as in the whole brain analysis. For each 

ROI, each participant’s ROI timecourse was correlated to the average ROI timecourse of 

all participants in the leave-one-out group (for within vision group analysis) or to the whole 

group (for across vision group analysis). 

All statistics for factor comparisons (i.e. ROI, group, and/or conditions) were 

obtained by subtraction of the relevant z-transform-r ISC values. For example, within A1 

sighted group: backward ISC vs. rest ISC = A1 sighted backward z-transformed-r ISC - 
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A1 sighted rest z-transformed-r ISC. Fisher’s z-transformed-r ISC values were 

subsequently transformed back to r (correlation coefficient) values. 

Statistical significance of ROIs was assessed as in the whole-brain analysis. 

Timecourse data was permuted 1,000 times to generate a null distribution. Critically, for 

ROI analysis, I permuted the ROI timecourse after aggregating across vertices. This 

generates a realistic timecourse signal that accounts for the lack of independence amongst 

spatially proximal vertices. Using these null ROI timecourses, analysis proceeded as in the 

empirical ROI ISC analysis. As in the empirical ROI analysis, statistics for all factor 

comparisons were generated by subtracting the relevant ISC-ROI values from the permuted 

timecourse. Doing so over all permutations resulted in a null distribution for each statistic. 

Reported probabilities were calculated relative to that statistic’s null distribution (formed 

by performing the relevant subtractions over null distribution values for each component). 

Probabilities reflect the proportion of null values whose magnitude is greater than, or equal 

to, the empirically observed value. ROI tests for statistical significance are thus two-tailed. 

Empirical values are considered significantly different from the null hypothesis if p < 0.05. 

 

2.3 Results 

High inter-subject correlation in the “visual” cortices of blind individuals for 

cognitively complex stimuli 

 I first used whole-cortex inter-subject correlation analysis to compare synchrony 

across blind and sighted groups, and across intact and shuffled stimuli. Among both sighted 

and blind groups, significant inter-subject synchronizations for the auditory backward 
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stimulus were observed only in the transverse temporal gyrus (Figure 1, p < 0.05 vertex-

wise corrected). By contrast, auditory movies evoked significant additional inter-subject 

synchronization across the superior temporal gyrus/sulcus, angular gyrus, precuneus, 

inferior frontal gyrus/sulcus, and the middle frontal junction (Figure 1, p < 0.05 vertex-

wise corrected). For both blind and sighted groups, a direct comparison of the movies and 

backward stimuli revealed significantly more synchronization for movies along the 

superior temporal gyrus/sulcus and precuneus (Figure 1, p < 0.05, vertex-wise corrected). 

Similar but weaker results were obtained for pie-man compared to backwards 

(Supplementary Figure 2, p < 0.001, cluster-corrected). The sentence-shuffle condition 

produced an intermediate pattern between movies/pie-man and backwards speech 

(Supplementary Figure 2). 

Within the blind, but not the sighted group, there was significant inter-subject 

synchronization in the occipital cortices for the movie stimuli, bilaterally on medial, lateral, 

and ventral occipital cortices and absent only on the posterior occipital cortices (Figure 1, 

p < 0.05 vertex-wise corrected). By contrast, the backwards stimulus did not significantly 

drive synchronization within the occipital cortices of blind individuals (Figure 1, p < 0.05 

vertex-wise corrected). A direct comparison revealed higher inter-subject synchronization 

for movies than for the backward stimulus within the primary visual cortices of the blind 

group (Figure 1, p < 0.05 vertex-wise corrected). Overall, 65.04% of occipital cortices 

(PALS-B12 Lobes parcel; Van Essen 2005) were significantly synchronized across blind 

participants during movie listening. Across each of the 4 intact stimuli, blind participants 
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reliably synchronized the same sub-regions of their “visual” cortices (see Supplementary 

Figure 1). 

Directly comparing synchronization within the blind group to synchronization 

within the sighted group, I observed a small cluster within the right lateral occipital surface 

to the backward stimulus (Figure 1, p < 0.001 cluster-corrected). By comparison, the movie 

stimuli drove higher synchronization in the blind group, than in the sighted group, 

extensively across the occipital cortices (Figure 1; p < 0.001 cluster-corrected). An 

interaction contrast (blind > sighted x movies > backward) revealed areas along the lateral, 

medial, and ventral occipital cortices in which a greater increase in synchronization for 

movies, compared to the backward stimulus, was observed within the blind group, than 

within the sighted group (Figure 1, p < 0.001 cluster-corrected; for pie-man and sentence-

shuffle results see Supplementary Figure 2.) 

For completeness, I also correlated brain activity between blind and sighted groups 

directly. Non-occipital cortices were synchronized similarly across groups as they were 

within groups (Supplementary Figure 3; p < 0.05 vertex-wise corrected). Additionally, I 

observed synchronization across vision groups bilaterally along the calcarine sulcus. The 

degree of synchrony in V1 was lower across vision groups than within the blind group.  
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Figure 1. Inter-Subject Correlations 

Inter-subject correlations (ISC) for the backward stimulus, all movie stimuli, and for the comparison of movie 

greater than backward (MV > BW). Synchronization is shown within the sighted group and within the blind 

group, vertex-wise corrected for multiple comparison. A comparison of blind group synchronization greater 

than sighted group synchronization (Blind > Sighted) is also shown, cluster-corrected for multiple 

comparison (at p < 0.001). 
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Across stimulus types, the inter-subject correlation profile of V1 in blindness 

resembles that of higher-cognitive but not early auditory networks.  

 

I conducted a region of interest analysis to more closely compare the inter-subject 

synchronization profile of primary visual cortex (V1) to that of a low-level auditory area, 

early auditory cortex (A1), and to a higher-cognitive area, the superior temporal gyrus 

(STG). I compared synchronization of these ROIs across stimulus types and vision groups 

(Figure 2).  

In early auditory cortex of the sighted group, all stimuli—including movies, pie-

man, sentence-shuffle, and backwards speech—drove high inter-subject synchronization 

Figure 2. Inter-Subject Correlations within Regions of Interest 

Inter-subject correlations (ISCs) of the sighted group, blind group, and across vision groups. ISCs are 

shown for select conditions within early auditory cortices, primary visual cortices, and the superior 

temporal gyrus. ROIs are displayed in the left hemisphere, but inter-subject correlations are assessed 

bilaterally.  
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(Figure 2 and Supplementary Figure 4; sighted A1: backward vs. rest, r=0.35, p<0.001; 

sentence-shuffle vs. rest, r=0.31, p<0.001; pie-man vs. rest, r=0.39, p<0.001, movies vs. 

rest, r=0.47, p<0.001). By contrast, the STG of the sighted showed high levels of synchrony 

only for the cognitively complex stimuli, and not for backwards speech (Figure 2, sighted 

STG: backward vs. rest, r=0.01, p>0.5; pie-man + blow vs. rest, r=0.22, p<0.001; pie-man 

+ blow out vs. backward, r=0.23, p<0.001). 

A similar pattern was observed in A1 and STG of the blind group. First, I asked 

whether A1 of the blind group, like A1 of the sighted group, showed levels of synchrony 

for backwards speech comparable to that of the cognitively complex stimuli—i.e., pie-man 

and blow out. This was indeed the case (Figure 2, blind A1: pie-man + blow out vs. 

backward, r=0.03, p=0.36). The STG of the blind group did synchronize to the backward 

stimulus, but, consistent with the STG of the sighted group, synchronized most for the 

cognitively complex stimuli (Figure 2, blind STG: backward vs. rest, r=0.16, p=0.001; pie-

man + blow out vs. rest, r=0.29, p<0.001; pie-man + blow out vs. backward, r=0.14, 

p<0.001; group (sighted vs. blind) x condition (pie-man + blow out vs. backward) 

interaction, r=0.09, p=0.09). 

Notably, among the movie stimuli, two (i.e., taken and conjuring) were observed to 

have higher inter-subject correlations than backwards speech even in A1. This difference 

in A1 synchronization between the stimuli is possibly due to greater variation in low level 

auditory features such as frequency and amplitude (Supplementary Figure 4; sighted A1: 

taken vs. backwards, r=0.18, p<0.001; conjuring vs. backwards, r=0.31, p<0.001). In STG, 

these two movies also had higher inter-subject correlations than the other two intact stimuli 
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(pie-man and conjuring), suggesting that they may have also contained greater variation in 

cognitively complex features (Supplementary Figure 4; sighted STG: taken vs. pie-man, 

r=0.30, p<0.001; taken vs. blow out, r=0.13, p=0.03; conjuring vs. pie-man, r=0.30, 

p<0.001; conjuring vs. blow out, r=0.13, p=0.02). However, in order to ensure that 

differences across stimuli (movies vs. scrambled and backwards) were driven by higher-

cognitive rather than low-level auditory differences, I focused analyses of V1 on the 

cognitively complex stimuli that showed comparable levels of synchrony to backward 

speech in early auditory cortex (A1) of sighted individuals, i.e. the pie-man and blowout 

movie (Figure 2; sighted A1: pie-man vs. backward, r=0.05, p=0.2; blow out vs. backward, 

r=0.07, p>0.5; pie-man + blow out vs backward, r=0.01, p>0.5). ROI ISC data for all of 

the stimuli are presented in Supplementary Figure 4).  

Within the sighted group, V1 failed to synchronize for both backward or intact 

stimuli (Figure 2, sighted V1: backward vs. rest, r=0.05, p=0.31; pie-man + blow out vs. 

rest, r=0.07, p=0.1; pie-man + blow out vs. backward, r=0.02, p>0.5). By contrast, within 

the blind group, V1 synchronized for intact stimuli (blind V1: pie-man + blow out vs. rest, 

r=0.20, p<0.001;). V1 of the blind group did not synchronize for the backward speech 

stimulus, and direct comparison of the two types of stimuli showed significantly higher 

synchronization for the intact stimuli than for the backward stimulus (Figure 2, blind V1: 

backward vs. rest, r=0.02, p>0.5; pie-man + blow out vs. backward, r=0.22, p<0.001). 

Comparing synchrony of V1 to the other ROIs across stimuli in the blind group, I found 

that the inter-subject synchronization profile of V1 was similar to STG and different from 

A1 (blind: condition (pie-man + blow out vs. backward) x ROI (V1 vs. STG) interaction, 
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r=0.08, p=0.17; condition (pie-man + blow out vs backward) x ROI (V1 vs. A1) interaction: 

r=0.25, p<0.001).  

Next I directly compared V1 synchrony within the blind group to V1 synchrony 

within the sighted group. V1 of the blind group demonstrated significantly higher 

synchronization than V1 of the sighted group, but only for the intact stimuli (Figure 2, V1 

blind vs. sighted: backward, r = 0.00, p>0.5; pie-man + blow out, r = 0.23, p<0.001). 

Moreover, the blind, but not the sighted, group showed a significant effect of cognitive 

complexity on synchronization (Figure 2, V1: group (blind vs. sighted) x condition (pie-

man + blow out vs. backward) interaction r=0.24, p<0.001).  

Finally, as in the whole brain analysis, I assessed common functionality across 

vision groups by directly correlated sighted individuals to the blind groups, and vice-versa. 

I found similar levels of synchrony in A1 and STG across, as within, groups (Figure 2 and 

Supplementary Figure 4; across group A1: backward vs. rest, r=0.36, p<0.001; sentence-

shuffle vs. rest, r=0.36, p<0.001; pie-man vs. rest, r=0.35, p<0.001, movies vs. rest, r=0.47, 

p<0.001; STG: backward vs. rest, r=0.07, p=0.02; sentence-shuffle vs. rest, r=0.19, 

p<0.001; pie-man vs. rest, r=0.20, p<0.001, movies vs. rest, r=0.41, p<0.001; A1 movies: 

across group vs. blind group, r =0.03, p=0.19; across group vs. sighted group: r=0.04, 

p=0.13; STG movies: across group vs. blind group, r =0.004, p>0.5; across group vs. 

sighted group: r=0.002, p>0.5). In V1 I observed low but significant levels of correlation 

between the blind and sighted subjects for the 3 movies, but not for the other intact 

stimulus, pie-man (Figure 2 and Supplementary Figure 4; across group V1: backward vs. 

rest, r=0.04, p=0.27; sentence-shuffle vs. rest, r=0.06, p=0.07; pie-man vs. rest, r=0.03, 
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p=0.4, movies > rest, r=0.17, p<0.001). Overall, synchrony in V1 for the movie stimuli 

was lower across vision groups than within the blind group (Supplementary Figure 4, 

across group vs. blind group: movies, r =0.16, p <0.001) and higher than within the sighted 

group (Supplementary Figure 4, across group vs. sighted group: movies, r =0.06, p =0.03). 

Unlike V1 synchronization within the blind group, V1 synchronization across vision 

groups did not systematically increase with increasing cognitive complexity of the stimuli 

(Figure 2; across group V1: pie-man + blow-out vs. backward, r=0.05, p=0.10). The effect 

of cognitive complexity on V1 synchronization was significantly smaller in the across 

group correlation than in the blind group and no different from that within the sighted group 

(V1: group (blind vs. across group) x condition (pie-man + blow out vs. backward) 

interaction r=0.17, p=0.001; group (sighted vs. across group) x condition (pie-man + blow 

out vs. backward) interaction r=0.07, p=0.2).  

 

2.4 Discussion 

“Visual” cortices of blind individuals synchronize to each other during naturalistic 

listening to movies and a comedic routine. Auditory movies drove collective responding in 

65% of the “visual” cortices, by surface area. This was in contrast to the lack of synchrony 

observed in the visual cortices of the sighted group. In the blind group, synchronization of 

“visual” cortices was observed bilaterally, and spanned both retinotopic and higher order 

areas on the lateral, medial, and ventral surfaces of the occipital lobe. This is a lower, rather 

than an upper, bound to the topographical extent of “visual” cortex repurposing since 

failure to synchronize could occur because the naturalistic stimuli used in the current study 
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did not contain relevant cognitive content for some subset of “visual” cortices. The current 

findings are consistent with the idea that in blindness, most of the available cortical tissue 

undergoes systematic adaptation and appears to be used during everyday tasks.  

A key observation is that naturalistic stimuli (with a temporally extended plot) 

synchronize “visual” cortices of blind individuals more than stimuli that lack a plot. Like 

fronto-temporal cortices, but unlike early auditory cortices, synchronization of “visual” 

cortices increased parametrically with the cognitive complexity of the driving audio clip. 

In other words, like fronto-temporal cortices and unlike early auditory cortices, “visual” 

cortices did not synchronize while blind individuals listened to a nonsense backward 

auditory stream. For shuffled sentences, I observed an intermediate, but much lower, level 

of synchronization than for movies. This was similar to the intermediate, but much lower, 

level of synchrony for scrambled sentences in fronto-temporal cortices of both blind and 

sighted groups. In contrast, synchronization of early auditory cortices was similar for 

higher cognitive and low level auditory content. In sum, “visual” cortices of blind 

individuals, like fronto-temporal cortices of both groups, synchronized to a shared higher 

cognitive experience, rather than to a shared sensory experience.  

Previous work has used the observations of varying levels of synchrony across 

stimuli of different cognitive complexity to characterize the “temporal response window” 

of different cortical networks (Hasson et al. 2008; Lerner et al. 2011). According to this 

framework, cortical networks differ according to the length of the temporal window over 

which the integrate information. Higher cognitive areas integrate information over longer 

time windows and therefore synchronize only for stimuli that have structure at this long 
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timescale. By contrast, low-level sensory areas, including early visual cortices, integrate 

information only over short time windows. As a result, structure at longer time scales has 

no effect on the levels of synchrony in these early sensory areas (Hasson et al. 2008). Here 

I find that, in blind individuals, “visual” cortices exhibit a long temporal response window 

that is comparable to that of higher-order cognitive areas; longer even than a single 

sentence. These results demonstrate that the temporal response window of a cortical area 

is not related to its intrinsic physiology, but rather to the type of information over which it 

operates.  

This observation that repurposed “visual” cortices assume a role that is higher in 

the cognitive hierarchy is consistent with the pluripotency hypothesis (Bedny 2017). 

Previous studies have found that “visual” cortices of blind individuals activate in response 

to language (Bedny, Pascual-Leone et al., 2011; Lane, Kanjlia, et al., 2015; Röder, Stock, 

et al., 2002) and to memory recall (Amedi et al. 2003; Raz et al. 2005). For example, the 

“visual” cortices of blind individuals respond more to sentences than to lists of unrelated 

words and more to sentences with complex syntax than sentences with simple syntax 

(Röder et al. 2002; Bedny et al. 2011; Lane et al. 2015). “Visual” cortices are also active 

when blind individuals are asked to generate an associated verb to a presented noun, when 

naming words from a previously memorized list, and when manipulating items in short 

term memory (Amedi et al. 2003; Park et al. 2011). I hypothesize that the present 

naturalistic stimuli engaged some of these cognitive processes. Following a plot-line 

engages such cognitive processes as language comprehension, recall of past information, 

and selective attention and inhibition. The “visual” cortices of blind individuals may, 
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similarly, participate in such processes. The present results add to the existing literature of 

higher cognitive processes in “visual” cortices of blind individuals. They suggest that take-

over by higher-cognitive fronto-parietal networks is extensive and robust. 

I also observed some hints of non-visual information reaching visual cortices even 

in the sighted group. When blind and sighted data were directly correlated with each other, 

I observed synchrony between foveal V1 of the sighted group and foveal V1 of the blind 

group. The degree of this synchrony was low, relative to what was observed among 

individuals who are blind and the levels of synchronization did not vary across stimuli 

according to any discernible type of content. For example, across-group synchronization 

was highest for conjuring and taken, but very low for pie-man.  

What drove such synchrony among the sighted and blind in the current study? One 

possibility is that the sighted group shows a smaller version of the pattern observed in the 

blind group. In other words, foveal V1 of sighted individuals may also receive strong top-

down input from higher-cognitive systems, but to a lesser and more restricted extent than 

in the blind group. However, as noted above, synchrony among blind and sighted 

individuals was not consistent across stimulus types. Previous findings of non-visual 

responses in the “visual” cortices of sighted individuals also suggest that they occur under 

partially different conditions than those observed in people who are blind (e.g. only for 

some tactile tasks or only after short periods of blindfolding; Sathian et al. 1997; 

Zangaladze et al. 1999; Facchini and Aglioti 2003; Sathian 2005; Merabet et al. 2008; Voss 

et al. 2016).  
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An alternative possibility is that V1 synchrony across groups is driven by different 

features of the stimuli in the sighted and the blind. This could occur because low-level and 

higher-cognitive content is partially confounded in naturalistic stimuli. For example, 

suspenseful and important plot points are often cued by loud noises. It is therefore possible 

that V1 of the sighted group has marginal synchronization for low-level auditory content, 

and synchronization between groups is a consequence of confounded auditory and higher 

cognitive content in the driving stimuli. In future studies it will be important to understand 

what type of non-visual information reaches visual cortices in the sighted and in what ways 

it is similar to what occurs in people who are blind.  

Irrespective of the source of such between-group synchrony, its existence 

nevertheless suggests that non-visual information is reaching occipital cortices even in the 

sighted, albeit to a lesser degree. This observation is consistent with a number of previous 

findings showing activity in visual cortex of sighted subjects during non-visual tasks. For 

example, visual cortex activity has been observed in sighted subjects during vivid visual 

imagery (Sathian et al. 1997; Zangaladze et al. 1999; James et al. 2002; Merabet et al. 2004; 

2008). These results support the idea that there are pathways for non-visual information to 

reach occipital cortices in both sighted and blind individuals. However, blindness modifies 

the function of these pathways and what “visual” cortex does with this incoming 

information. 

A key open question to be resolved concerns the behavioral relevance of “visual” 

cortices to cognition in blindness. Prior studies show that transiently disrupting “visual” 

cortex function with transcranial magnetic stimulation (TMS) can disrupt performance. For 
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example, TMS to the occipital pole causes subjects to make semantic errors when 

generating verbs nouns heard nouns and to misread Braille letters (Cohen et al. 1997; 

Amedi et al. 2004). Such evidence suggests that activity in the “visual” cortices of blind 

individuals is relevant to behavior. However, the behavioral relevance of “visual” cortices 

to other higher-cognitive functions (e.g. sentence comprehension) and to everyday 

naturalistic tasks remains an open question. 

 

2.5 Summary 

In Chapter 2, I used naturalistic stimuli to ask whether the “visual” cortices are 

repurposed systematically across congenitally blind individuals and, if so, for what kinds 

of functions. Richly engaging stimuli allow brain responses to fluctuate according to many 

simultaneous, but independently, varying features. Here, I harnessed this free-form 

complexity to test broadly for both higher cognitive and lower sensory responses. I found 

that, across blind individuals, naturalistic movie listening drove similar activity in "visual" 

cortices. Because synchronization of "visual" cortices varied according to stimulus 

complexity, "visual" cortices behaved more like higher-cognitive, rather than primary 

sensory, areas. Overall, Chapter 2 finds evidence that “visual” cortices undergo widespread 

and systematic repurposing for higher cognitive functions. In congenital blindness, 

repurposed “visual” cortices do not just come “online” during unusually demanding tasks, 

but are engaged on an everyday basis. These data suggest that a major mechanism of 

plasticity in blindness is take-over of “visual” cortices by higher-cognitive fronto-parietal 

networks. Human cortex is thus highly functionally flexible early in life. 
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2.6 Supplementary Materials 

 

Supplementary Table 1. Demographic Information for Chapter 2 Participants 

Participant demographic information—i.e., N(umber) and N(umber) of males, age, and years of education— 

by stimulus and vision group –i.e., S(ighted) and B(lind). Age and Education report mean and standard 

deviation, as well as a test statistic of the difference between sighted and blind groups. 

 N  
(N 
Male) 

Age Education 

Rest  S: 17 (3) S: �̅� = 42.1, 𝑆𝐷 = 13.1 S:	�̅� = 18.5, 𝑆𝐷 = 4.4 
B: 18 (6) B: �̅� = 41.9, 𝑆𝐷 = 16.4 B: �̅� = 16.7, 𝑆𝐷 = 2.5 
 t(33) = 0.04, p > 0.5 t(33) = 1.52, p = 0.14 

Backward / 
Sentence-
Shuffle 
(all participants) 

S: 18 (3) S: �̅� = 41.2, 𝑆𝐷 = 13.2 S:	�̅� = 18.4, 𝑆𝐷 = 4.3 
B: 18 (6) B: �̅� = 41.9, 𝑆𝐷 = 16.4 B: �̅� = 16.7, 𝑆𝐷 = 2.5 
 t(34) = 0.13, p > 0.5 t(34) = 1.43, p = 0.16 

Pie-Man 
 

S: 17 (3) S: �̅� = 40.9, 𝑆𝐷 = 13.5 S:	�̅� = 18.3, 𝑆𝐷 = 4.4 
B: 17 (5) B: �̅� = 41.6, 𝑆𝐷 = 16.9 B: �̅� = 16.7, 𝑆𝐷 = 2.6 
 t(32) = 0.12, p > 0.5 t(32) = 1.29, p = 0.21 

The Conjuring 
 

S: 18 (3) S: �̅� = 41.2, 𝑆𝐷 = 13.2 S:	�̅� = 18.4, 𝑆𝐷 = 4.3 
B: 15 (5) B: �̅� = 40.7, 𝑆𝐷 = 16.7 B: �̅� = 16.9, 𝑆𝐷 = 2.7 
 t(31) = 0.11, p > 0.5 t(31) = 1.19, p = 0.24 

Taken  S: 16 (3) S: �̅� = 41.4; 	𝑆𝐷 = 12.8 S:	�̅� = 18.8, 𝑆𝐷 = 4.3 
B: 17 (6) B: �̅� = 40.0; 	𝑆𝐷 = 14.9 B: �̅� = 16.9, 𝑆𝐷 = 2.4 
 t(31) = 0.28; p > 0.5 t(31) = 1.5, p = 0.14 

Blow Out S: 17 (2) S:	�̅� = 41.4, 𝑆𝐷 = 13.6 S:	�̅� = 18.4, 𝑆𝐷 = 4.4 
B: 17 (5) B: �̅� = 43.2, 𝑆𝐷 = 15.8 B: �̅� = 16.9, 𝑆𝐷 = 2.4 
 t(32) = 0.37, p > 0.5 t(32) = 1.21, p = 0.23 
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Supplementary Table 2. Subjective Ratings of Naturalistic Stimuli 

Average Likert Scale Rating (1=Not at all, 5=Extremely) for entertainment, suspense, and following ease. 

 Entertaining Suspenseful Easy to Follow 
Pie-Man 
 

S: �̅� = 3.24, 
𝑆𝐷 = 1.15 

S: �̅� = 2.06, 
𝑆𝐷 = 0.97 

S: �̅� = 4.65, 
𝑆𝐷 = 0.86 

B: �̅� = 3.29, 
	𝑆𝐷 = 1.31 

B: �̅� = 1.94, 
	𝑆𝐷 = 1.14 

B: �̅� = 4.53, 
	𝑆𝐷 = 0.72 

t(32) = 0.14,  
p > 0.5 

t(32) = 0.32,  
p > 0.5 

t(32) = 0.43,  
p > 0.5 

The 
Conjuring 
 

S: �̅� = 3.00, 
𝑆𝐷 = 1.33 

S: �̅� = 3.89, 
𝑆𝐷 = 0.96 

S: �̅� = 3.67, 
𝑆𝐷 = 0.91 

B: �̅� = 3.27, 
	𝑆𝐷 = 1.53 

B: �̅� = 4.07, 
	𝑆𝐷 = 1.03 

B: �̅� = 3.33, 
	𝑆𝐷 = 0.98 

t(31) = 0.54,  
p > 0.5 

t(31) = 0.51,  
p > 0.5 

t(31) = 1.0.2,  
p = 0.32 

Taken  S: �̅� = 3.84, 
𝑆𝐷 = 0.93 

S: �̅� = 3.88, 
𝑆𝐷 = 1.02 

S: �̅� = 4.00, 
𝑆𝐷 = 0.97 

B: �̅� = 3.88, 
	𝑆𝐷 = 1.36 

B: �̅� = 4.41, 
	𝑆𝐷 = 0.71 

B: �̅� = 4.18, 
	𝑆𝐷 = 1.01 

t(31) = 0.09,  
p > 0.5 

t(31) = 1.76,  
p = 0.09 

t(31) = 0.51,  
p > 0.5 

Blow Out S: �̅� = 3.18, 
𝑆𝐷 = 1.01 

S: �̅� = 2.94, 
𝑆𝐷 = 1.20 

S: �̅� = 3.35, 
𝑆𝐷 = 1.11 

B: �̅� = 3.41, 
	𝑆𝐷 = 1.12 

B: �̅� = 4.00, 
	𝑆𝐷 = 0.94 

B: �̅� = 3.47, 
	𝑆𝐷 = 1.28 

t(32) = 0.64,  
p > 0.5 

t(32) = 2.87,  
p = 0.01 

t(32) = 0.29,  
p > 0.5 
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Supplementary Figure 1. Inter-Subject Correlations in the Blind Group for All 

Stimuli 

Inter-subject correlations (ISC) for each stimulus within the blind group, vertex-wise corrected for 

multiple comparison.  
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Supplementary Figure 2. Inter-Subject Correlations, Comparisons of Cognitive 

Complexity 

Comparisons of inter-subject correlations (ISC) for sentence-shuffle > backward, pie-man > sentence-shuffle, 

and pie-man > backward. Synchronization is shown within the sighted group and within the blind group. A 

comparison of blind group synchronization greater than sighted group synchronization (Blind > Sighted) is 

also shown. All figures are cluster-corrected for multiple comparison (at p < 0.001). 
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Supplementary Figure 3. Inter-Subject Correlations Across Vision Groups 

Inter-subject correlations between vision groups (i.e. sighted to blind and blind to sighted), shown for the 

backward stimulus, the movie stimuli, and for movie > backward (i.e. MV > BW).  
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Supplementary Figure 4. Region of Interest Inter-Subject Correlations for all Movies 

Inter-subject correlations (ISC) by stimulus, within bilateral early auditory (A1), primary visual cortices (V1), 

the superior temporal gyrus (STG), and the prefrontal cortex (PFC). ISCs are shown within the sighted group, 

within the blind group, and across vision groups (i.e. blind to sighted and vice-versa). Movies appear in the 

order listed. 
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Chapter 3 

Executive function responses in “visual” cortices 

 

3.1 Introduction 

In Chapter 2, I found evidence of widespread takeover for higher cognitive 

functions in “visual” cortices of blind individuals. This is consistent with the pluripotency 

hypothesis of “visual” cortex takeover by higher cognitive functions. The naturalistic 

experimental design used in Chapter 2, however, could not provide insight into which 

specific higher cognitive functions are implemented in “visual” cortices of blind 

individuals. Therefore, this next chapter will delve more deeply into assessing whether a 

specific higher cognitive process, executive  function, is present in “visual” cortices.  

A reliable body of literature suggests that “visual” cortices become responsive to 

language. In blindness, retinotopic “visual” areas, including V1, become sensitive to 

meaning and grammar. In blind, but not sighted, individuals, occipital cortices respond 

more to words than meaningless sounds, more to sentences than unconnected lists of words, 

and more to grammatically complex than grammatically simple sentences (Röder et al. 

2002; Bedny et al. 2011; Lane et al. 2015). Furthermore, language-responsive “visual” 

cortices become correlated at rest with prefrontal language regions (Bedny et al. 2011). 
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Since language and vision are cognitively and evolutionarily distinct, these observations 

challenge the idea that cortical areas have fixed functions, even meta-modal ones.  

There are, however, ways to reconcile findings of language repurposing in “visual” 

cortices of blind individuals with the idea that cortical areas have fixed functions. One 

possibility is that the occipital cortices are specifically predisposed for both vision and 

language. For example, visual scene perception and sentence processing could share an 

underlying cognitive operation, such as hierarchical structure building. Another possibility 

is that Braille bootstraps the “visual” cortices into language processing (Bavelier and 

Neville 2002). Braille recognition is similar to vision in that both involve fine-grained 

spatial discrimination; language processing could invade the visual cortices as a secondary 

consequence of Braille learning. Therefore, findings from language could be reconciled 

with the idea that visual areas preserve their underlying functions in blindness. 

A key open question, therefore, is whether language is the only higher-cognitive 

function assumed by “visual” cortices in blindness. If so, language encroachment into the 

“visual” system may be a special case of meta-modality. If not, language encroachment 

into the visual system is part of a broader phenomenon of pluripotency, whereby the 

functional specialization of deafferented “visual” cortices is driven by top-down 

anatomical inputs from prefrontal, parietal, and temporal networks (Bedny 2017).  

Preliminary evidence for the higher-cognitive takeover hypothesis comes from a 

recent study of mathematical processing in blindness. Dorsal retinotopic “visual” areas are 

active when congenitally blind individuals solve spoken math equations (e.g. 17-4=X), 

more so than when blind participants listen to non-mathematical sentences, and the amount 
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of activity scales with equation difficulty (Kanjlia et al. 2016). These math-responsive 

“visual” regions are differentially localized within occipital cortices from sentence-

responsive regions and show a distinctive functional connectivity profile with the fronto-

parietal number network (Kanjlia et al. 2016). Furthermore, even at rest, their activity is 

correlated with fronto-parietal regions in blind individuals (Kanjlia et al. 2016). 

These results provide tentative support for the idea that language is not the only 

higher-cognitive function found in deafferented visual cortices. However, spoken math 

equations arguably share important properties with language: they include spoken words, 

they are symbolic, they involve hierarchical structure, and they can also be written in 

Braille. Additionally, all intact naturalistic stimuli used in Chapter 2 contained language. 

An outstanding question is whether “visual” cortices of blind individuals are also involved 

in entirely non-verbal higher-cognitive functions.  

Findings from Chapter 2 suggest that higher cognitive functions in “visual” cortices 

of blind individuals may not be limited to language (or math). Language responses in 

“visual,” as well as fronto-temporal, cortices are predominantly left-lateralized. Math 

responses have been observed bilaterally along the posterior cortex. In contrast, 

synchronization of “visual” cortices to rich auditory vignettes was observed bilaterally 

along the ventral, lateral, and medial surfaces. Findings from Chapter 2, therefore, raise the 

possibility that the non-posterior, right “visual” cortices are repurposed for higher cognitive 

functions other than language or math.  

Fronto-parietal executive functions offer a natural test case for answering this 

question. Executive functions regulate behavior towards task-relevant goals through 
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processes such as selective attention and response selection (Miyake 2000; Banich 2009; 

Diamond 2013). In sighted individuals, fronto-parietal executive systems modulate activity 

in visual cortices during visual perception tasks (Moran and Desimone 1985; Desimone 

and Duncan 1995; Miller and Cohen 2001). This is accomplished via known anatomical 

projections (in primates) to the visual system from polymodal parietal and, to a lesser 

degree, frontal cortices (Maunsell and Van Essen 1983; Selemon and Goldman-Rakic 

1988; Ungerleider et al. 1998; Rockland and Ojima 2003; Ungerleider et al. 2008; Martino 

et al. 2010; Anderson et al. 2011; Yeterian et al. 2012). Executive systems are, therefore, 

likely to constitute a robust input to deafferented “visual” cortices in blindness. The higher-

cognitive takeover hypothesis predicts that “visual” cortices of blind individuals take on 

domain-general executive operations, apart from language processes.  

A handful of previous studies are broadly consistent with the idea that “visual” 

cortices take on non-verbal executive functions in blindness. For example, Park et al. (Park 

et al. 2011) reported greater “visual” cortex activity during a 2-back than a 0-back control 

task with tones. Electrophysiological and fMRI studies find that “visual” cortices of blind 

individuals respond to deviant presentations of tones and tactile stimuli. These responses 

are thought to reflect attentional, rather than automatic sensory, processes because they 

occur later and only for attended stimuli (Kujala, Alho, et al. 1995; Kujala, Huotilainen, et 

al. 1995; Kujala et al. 1997; Liotti et al. 1998; Kujala et al. 2005; Weaver and Stevens 

2007). Another study observed elevated responses in “visual” cortices of blind individuals 

during the response portion of working memory task, when participants were making a 

button press (Bedny et al. 2012). These studies provide some evidence that “visual” 
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cortices are sensitive to the higher-cognitive demands of non-verbal tasks. However, the 

precise cognitive processes performed by “visual” cortices during these tasks remain 

uncertain and alternative explanations in terms of sensory stimulation have not been ruled 

out (e.g. (Burton et al. 2004; 2010)). 

Therefore, the goal of the current study was to test the prediction that regions within 

the “visual” cortices of blind individuals are incorporated into non-verbal executive 

function networks. Specifically, I predicted that in blindness a subset of visual cortex would 

be sensitive to response selection demands in a non-verbal go/no-go task when other 

factors, such as somatosensory stimulation, are controlled. To test these predictions, 

congenitally blind and sighted-blindfolded participants performed an auditory go/no-go 

task with complex non-verbal sounds.  

During the go-no/go task, participants made button-presses to some sounds (go 

trials) and withheld responses to other sounds (no-go trials). Go trials were much more 

frequent than no-go trials (25% vs. 75%) and participants had to respond quickly (within 

900 MS). As a result, the button press becomes pre-potent and must inhibited on no-go 

trials (Garavan et al. 1999; Aron et al. 2014). The increased executive demands of no-go 

relative to go trials are evidenced both behaviorally and neurally. Participants make more 

errors of commission (going on no-go trials) than errors of omission (not going on go-

trials). Neurally, no-go trials produce elevated activity in right-lateralized fronto-parietal 

executive function networks among sighted individuals (Konishi et al. 1998; Garavan et 

al. 1999; Liddle et al. 2001; Menon et al. 2001; Garavan et al. 2002; Mostofsky et al. 2003; 

Chikazoe et al. 2008; Barber et al. 2013). I predicted that “visual” cortices of blind 
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individuals would respond more to no-go than to go trials, indicating recruitment for non-

verbal executive functions and in particular of response selection demands.  

Importantly, the current design enables one to distinguish “visual” cortex responses 

to executive demands from other potentially confounded processes. First, since the current 

task does not involve language stimuli, “visual” cortex responses are unlikely to be related 

to language processing. I further predicted that unlike previously observed responses to 

language in the “visual” cortices, responses to domain-general executive demands would 

be right-lateralized, similar to responses to executive demands in the fronto-parietal 

cortices (Aron et al. 2004; Wager et al. 2005; Aron 2006). Second, the current task was not 

spatial; therefore, observed effects are unlikely to reflect vision-like processing. Finally, 

the design pitted executive demands against low-level sensorimotor demands. If “visual” 

cortices of blind individuals respond to executive demands, they should be more active 

during no-go trials. By contrast, if the “visual” cortices respond to sensorimotor demands, 

they should be more active during go trials, since only the go trials contain a button press 

and associated tactile feedback. Indeed, previous studies have shown that unlike executive 

function networks, sensorimotor cortices respond more to go trials than no-go trials 

(Garavan et al. 1999; Liddle et al. 2001; Mostofsky et al. 2003). Thus, in the current 

experiment I predicted a double dissociation between activity in sensorimotor cortices and 

activity in the “visual” cortices of blind individuals.  

In the current version of the go/no-go task I also included an intermediate executive 

demand condition, the infrequent-go. The infrequent-go condition was associated with a 

distinct sound; it occurred only 25% of the time (like the no-go condition) and required a 
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button press response (unlike the no-go condition). All together there were thus three types 

of trials: frequent-go (50%), infrequent-go (25%), and no-go (25%). A previous study using 

a similar design observed an intermediate level of activity for the infrequent-go condition 

(less activity than no-go but more activity than frequent-go) in prefrontal executive 

function areas of sighted individuals (Chikazoe et al. 2008). We, therefore, predicted that 

“visual” cortices of blind individuals would respond most to no-go trials, followed by 

infrequent-go trials, and least to frequent-go trials. 

A second prediction of the current study was that executive-load responsive 

“visual” areas would become functionally connected at rest with fronto-parietal executive 

function systems in blindness. To test this prediction, I collected resting state data from a 

large sample of congenitally blind (n=25) and sighted (n=25) participants. I then asked 

whether the connectivity of executive-function responsive “visual” cortex is stronger with 

fronto-parietal executive function networks than with either non-visual sensory-motor 

areas (early auditory and somatosensory cortices) or language responsive prefrontal 

cortices. Such a result would support the hypothesis that these “visual” cortex regions are 

incorporated into the executive system. 

In sum, I make four predictions: (1) that the occipital cortices of the blind, but not 

sighted, group will respond to executive function demands, i.e. most to no-go trials and 

least to frequent-go trials; (2) that the sensorimotor cortices will display the opposite 

ordering of responses to the conditions, i.e. most activity for go and least activity for no-

go trials, thereby diverging from the executive function profile observed in the blind 

group’s “visual” cortices; (3) that “visual” cortex responses to executive function demands 
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will be right-lateralized and, thereby, both neuroanatomically dissociable from “visual” 

cortex responses to language and co-lateralized with fronto-parietal responses to executive 

function; and (4) that, at rest, executive-function responsive “visual” cortices of blind 

individuals will show increased functional connectivity to fronto-parietal executive 

function regions, specifically.  

 

3.2 Materials and Methods 

Participants. 

19 congenitally blind and 19 sighted controls (blind: 13 females; 12 right-handed, 

3 ambidextrous; age: mean=45.3, SD=17.43; years of education: mean=17.00, SD=2.73; 

sighted: 14 females; 18 right-handed; age: mean=41.71, SD=14.74; years of education: 

mean=17.97, SD=3.68) contributed task-based data. Blind and sighted participants were 

matched on average age (t(36)=0.50, p=0.69) and education level (t(36)=0.36, p=0.93).  

All but one sighted participant from the task-based go/no-go experiment 

contributed resting state data. Resting state data from an additional 6 blind and 7 sighted 

participants were included, resulting in the following group-wise demographics (blind: 

N=25; 18 females; age: mean = 46.63, SD=16.9; sighted: N=25; 15 females; age: mean = 

43.16, SD=12.26; blind vs. sighted age, t(48)=0.83, p=0.41). During the resting state scan, 

participants were instructed to relax but remain awake. 

All blind participants self-reported minimal-to-no light perception since birth, i.e. 

having never been able to distinguish colors, shapes, or motion. (One blind participant was 
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born with no light perception, but reported some functional vision in one eye between 5 

and 11 years of age, following several corrective surgeries. This participant’s data was no 

different from the remaining blind group and is included in the sample.) Blind and sighted 

participants had no known neurological disorders, head injuries, or brain damage. For all 

blind participants, the causes of blindness excluded pathology posterior to the optic chiasm 

(see Table 2 for details). All participants gave written consent under a protocol approved 

by the Institutional Review Board of Johns Hopkins University. All participants wore light 

exclusion blindfolds for the duration of the scan to equate light conditions across 

participants. 

 

Blindness Etiology No. LP No. 

Leber Congenital Amaurosis 5 (+2) 4 (+2) 
Retinopathy of Prematurity 8 (+4) 4 
Optic Nerve Hypoplasia 2 0 
Retinitis Pigmentosa 1 1 
Glaucoma 1 0 
Unknown 2 1 

Table 2. Blindness Etiology for Chapter 3 Participants 

Per cause of blindness, total number of participants (No.) and number with light perception (LP No.). 

Amounts outside of parentheses are for participants in task-based go/no-go experiment. Amounts within 

parentheses are for additional participants included in resting-state analyses. 

 

fMRI data acquisition.  

MRI structural and functional data of the whole brain were collected on a 3 Tesla 

Phillips scanner. T1-weighted structural images were collected in 150 axial slices with 1 
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mm isotropic voxels using a magnetisation-prepared rapid gradient-echo (MP-RAGE). 

T2*-weighted functional images were collected in 36 axial slices with 2.4 x 2.4 x 3 mm 

voxels and a 2 second TR. I acquired 3 runs of task-based fMRI data per subject and 

between 1 and 4 runs of resting state data (mean number of runs: sighted = 1.28, blind 

=2.08; t(48) = 3.78, p < 0.001). Acquisition parameters were identical for resting and task-

based data.   

 

Behavioral task.  

Participants heard complex non-verbal sounds (450 MS with 450 MS ISI), each 

representing 1 of 3 conditions: frequent-go (50% trials), no-go (25%), and infrequent-go 

(25%) and were asked to make speeded button presses in response to the go sounds and to 

withhold responding to the no-go sounds. Each run was comprised of 400 trials and 4 20-

second rest periods, spaced equidistantly, for a total time of 7.67 minutes per run. The full 

experiment consisted of three runs. Presentation order was constrained so that each 

infrequent condition – i.e. infrequent-go and frequent-go – could not occur on more than 3 

consecutive trials. Feedback on performance accuracy was given after every run. To avoid 

making participants explicitly aware of the frequency manipulation, the frequent-go and 

infrequent-go conditions were referred to as “go 1” and “go 2,” respectively. Prior to taking 

part in the main experiment, participants performed 400 practice trials (100 inside the 

scanner) with auditory feedback after each trial.  

The 3 stimulus sounds were chosen to be easily and immediately discerned from 

each other. All 3 sounds differed from each other at the sound onset and remained relatively 
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homogenous throughout the sound duration. To discourage chunking of sounds across 

conditions, sounds were selected to be equally dissimilar (Amazon Mechanical Turk pre-

experiment pilot testing revealed no one sound as the “odd one out”; chi-sqd(2)=1.66, 

N=49; p > 0.5). Assignment of sounds to conditions was counterbalanced across 

participants and matched across blind and sighted groups.  

Auditory stimuli were presented over Sensimetrics MRI-compatible earphones 

(http://www.sens.com/products/model-s14/) at the maximum comfortable volume for each 

participant. The volume was adjusted for all stimuli or selectively for a specific stimulus 

(2 sighted, 2 blind) according to participant’s request. Adjustments did not affect the 

analyzed data, as they were implemented prior to the first functional run. Participants were 

free to make responses with their preferred hand (right hand for all but 1 sighted and 4 

blind participants). 

 

fMRI task-based data analysis. 

 Data analyses were performed using FSL, Freesurfer, the HCP workbench, and 

custom software (Dale et al. 1999; Smith et al. 2004; Glasser et al. 2013). Functional data 

were motion corrected, slice-time corrected, high pass filtered with a 128 s cutoff, pre-

whitened, and resampled to the cortical surface (discarding subcortical structures and the 

cerebellum). The data were smoothed with a 12 mm FWHM Gaussian kernel on the 

surface, which affords better spatial accuracy than comparable smoothing in the volume 

(Hagler et al. 2006; Jo et al. 2007; Anticevic et al. 2008; Tucholka et al. 2012). 
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For each subject, I defined a GLM to predict BOLD activity according to the 

following event types, each convolved with the hemodynamic response function: 

successful frequent-go, successful infrequent-go, successful no-go, failed frequent-go, 

failed infrequent-go, failed no-go, false starts, and extra button presses. Results report only 

successful trials. All trial events began at the onset of the auditory stimulus and ended at 

the offset of the auditory stimulus or the participant’s button press (whichever sensory 

event ended last).  

A covariate of no interest was included to account for motion. Timepoints with 

framewise-displacement (relative movement) greater than 1.5 mm were excluded by 

modeling each timepoint as an individual regressor with a value of 1 at the time point and 

0 everywhere else (drops per run: blind mean=0.30, SD=0.80; sighted mean=0.12, 

SD=0.25; difference between groups t(36)=0.91, p=0.37).  

Fixed-effects analyses were used to combine runs within each subject, which were 

then submitted to a group analyses with subject represented as a random-effect. To control 

for vertex-wise multiple comparisons, I performed a cluster-wise permutation analysis 

(Nichols and Hayasaka 2003; Hagler et al. 2006). Whole-brain maps are first thresholded, 

and resulting cluster-sizes are then tested against a cluster-size null distribution generated 

from 5,000 permutations. This approach corrects for multiple comparisons because the 

each permutation’s null value is determined by the highest cluster size, across the whole 

brain. Reported whole-brain contrasts were run as one-sided tests, thresholded at p < 0.01 

vertexwise, and p < 0.05 cluster-corrected. Because this can eliminate small clusters, I also 

performed a multiple comparison correction using a false discovery rate (FDR) of 5%, per 
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hemisphere, on one-tailed p-values (Genovese et al. 2002). 

fMRI task-based ROI analysis. 

I performed individual-subject functional regions of interest (ROIs) by defining 

three (ROIs) in each participant: 1) a prefrontal (PFC) executive function ROI, 2) a 

sensory-motor (SMC) ROI and 3) a medial visual cortex (VC). ROIs were defined by 

selecting responsive vertices for each participant within a group-wise search space using a 

leave-one run out procedure.  

Search spaces were defined as follows. For the executive function PFC ROI and 

the sensorimotor cortex (SMC) ROI I defined a search based on previous studies that 

observed response-inhibition and hand-movement activity, respectively, using 

neurosynth.org (Yarkoni et al. 2011). Both volumetric search-spaces were projected to the 

surface, thresholded at z > 1.65, dilated and eroded at 12 mm (to fill small holes), and 

restricted to the anatomical area of interest. For the PFC, I confined the functionally derived 

search space to right lateral prefrontal lobe, anterior to the pre-central gyrus. For the SMC, 

I confined the functionally derived search space to the left central sulcus and pre- and post- 

central gyri, as defined by a surface-based atlas (Destrieux et al. 2010). The visual cortex 

(VC) search space was defined by combining V1, V2, dorsal V3, and ventral V3 (VP) 

parcels from the PALS-B12 visuotopic surface-based atlas (Van Essen 2005). All search 

spaces were created in the right hemisphere and mirrored to the left hemisphere.  

Within each search space, I used a leave-one-run out procedure to define and test 

subject-specific functional ROIs. The PFC ROI was defined based on the no-go > frequent-
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go contrast. In the SMC ROI, I selected hypothesized somatosensory and motor responsive 

vertices using the frequent-go + infrequent-go > no-go contrast. I searched for both PFC-

type and SMC-type responses in the VC by defining ROIs based on both contrasts. For all 

ROIs, I selected the top 20% of vertices that most strongly responded to the contrast of 

interest in all but one run and extracted signal from the left-out run. Beta-values, for each 

condition, were obtained by averaging whole-brain GLM Betas across the selected ROI 

vertices. This procedure was repeated iteratively, leaving out one run at a time, and the 

resulting Betas were averaged across run iterations, for each subject. ROIs vertices were 

defined according to a subset of runs and those vertices were assessed on non-overlapping 

subset of runs. Because ROIs were selected and tested orthogonally for the contrast of 

interest, participant’s ROIs will only show the contrast of interest if preferential activity 

replicates across runs (i.e., if not driven by noise).  

 

Resting state functional connectivity analysis. 

 I used the CONN Toolbox (Whitfield-Gabrieli and Nieto-Castanon 2012) to 

compare visual cortex functional connectivity during rest. BOLD data were first smoothed 

23 diffusion steps on the surface and registered to MNI-152 standard space. To control for 

temporal confounds, white matter and cerebrospinal fluid BOLD signals were regressed 

out and the residual was bandpass filtered (0.008-0.1). Time-courses were first averaged 

within ROIs and then either correlated to each other (ROI-to-ROI) or to the time-course of 

each and every vertex (ROI-to-whole-brain).  
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 I defined 1 visual and 4 non-visual cortex group-wise regions of interest. An OC-

EF ROI was defined as the largest cluster within the entire occipital cortex that responded 

more to go than no-go in blind, relative to sighted, participants in the cluster-corrected map. 

A prefrontal executive-function (PFC-EF) ROI was defined as the area with the largest 

contiguous all-subject activation for no-go > frequent-go (p < 0.05 FDR-corrected), 

constrained to the PFC search space. Similarly, a sensorimotor (S1/M1) ROI was selected 

as the largest contiguous all-subject activation for go > no-go (p < 0.05 FDR-corrected), 

constrained to the SMC search space. A prefrontal language (PFC-LG) ROI was taken from 

parcels that have previously been observed to be responsive to linguistic content in sighted 

subjects (Fedorenko et al. 2010). Finally, I selected a primary auditory cortex (A1) ROI as 

the transverse temporal portion of a gyral based atlas (Morosan et al. 2001; Desikan et al. 

2006). All ROI analyses were conducted in the right hemisphere so as to match the 

hemisphere of the visual cortex OC-EF region. Two ROIs that were originally defined in 

the left hemisphere (i.e. S1/M1 and PFC-LG) were mirrored to the right-hemisphere. This 

procedure ensures that any functional connectivity differences amongst ROIs are not driven 

by differences in connectivity across hemispheres.  
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3.3 Results 

Behavioral performance. 

In both go conditions, participants responded quickly (Figure 3, RT: sighted 

frequent-go mean=366.77 MS, SD=52.80 MS; sighted infrequent-go mean=407.87 MS, 

SD=51.94 MS; blind frequent-go mean=345.70 MS, SD=67.92 MS; blind infrequent-go 

mean=378.26 MS, SD=60.74 MS) and made few errors of omission (Figure 3, % correct: 

sighted frequent-go mean=96.88, SD=4.35; sighted infrequent-go mean=95.47, SD=4.49; 

blind frequent-go mean=95.61, SD=8.14; blind infrequent-go mean=95.30, SD=9.22). 

Figure 3. Behavioral Performance on Go/No-Go Task 

Behavioral performance. Percent correct and response times for sighted (S) and blind (B) 

participants. Error bars indicate the within-subjects standard error of the mean. 
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Both blind and sighted participants made some errors of commission on no-go trials (Figure 

3, % correct: sighted mean=83.28, SD=11.17; blind mean=86.88, SD=11.82).  

Participants in both groups made more errors on no-go than frequent-go or 

infrequent-go trials (frequent-go vs. no-go sighted t(18)=5.54, p<0.001, blind t(18)=3.40, 

p=0.003; infrequent-go vs. no-go: sighted t(18)=5.00, p<0.001, blind t(18)=3.16, p=0.005), 

with no difference between groups (group x condition ANOVA: main effect of condition: 

F(2,72)=35.08, p<0.001; main effect of group: F(1,36)=0.10, p>0.05, group x condition 

interaction: F(2,72)=1.48, p=0.235). Frequent and infrequent-go accuracy were different 

in the sighted, but not the blind, group (sighted t(18)=2.10, p=0.05, blind t(18)=0.63, 

p>0.5). Differences between the two go conditions were evidenced in response times for 

both groups: blind and sighted groups were slower to respond on infrequent-go than 

frequent-go trials (sighted t(18)=7.67, p<0.001, blind t(18)=6.19, p<0.001; group x 

condition ANOVA: main effect of condition F(1,36)=96.27, p<0.001, main effect of group 

F(1,36)=1.84, p=0.18, group-by-condition interaction F(1,36)=1.30, p=0.26). 
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fMRI Results. 

 

Right-lateralized “visual” cortices of blind individuals responds to executive 

function, similar to right-lateralized prefrontal cortices (individual subject 

functional ROI analysis) 

In both the sighted and the blind groups, areas of the right prefrontal cortex (PFC) 

responded more to the no-go than the infrequent- or frequent- go conditions (Figure 4; 

Figure 4. Region of Interest Analysis for Go/No-Go Task 

Beta values for task conditions within sighted (S) and congenitally blind (B) participants’ prefrontal 

cortex (PFC), medial visual cortex (VC), and sensorimotor cortex (SMC). Error bars indicate the 

within-subjects SEM. 
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sighted: no-go vs. frequent-go t(18)=5.58, p<0.001; no-go vs infrequent-go t(18)=3.15, 

p=0.006; blind: no-go vs. frequent-go t(18)=4.28, p<0.001; no-go vs infrequent-go 

t(18)=3.44, p=0.003). I also observed higher responses to the infrequent-go than the 

frequent-go condition in the rPFC (sighted: t(18)=5.82, p<0.001; blind t(18)=2.15, 

p=0.045). Responses in the rPFC did not differ between groups (group x condition 

ANOVA: main effect of condition F(2,72)=33.91, p<0.001; main effect of group 

F(1,36)=0.01, p>0.5; group x condition interaction F(2,72)=0.39, p>0.5).  

In blind individuals, the right retinotopic visual cortex (VC; i.e. V1-V3) showed a 

functional profile consistent with the executive function pattern observed in the right PFC: 

greater response to no-go than frequent-go, a greater response to the infrequent-go than the 

frequent-go, and a (trending) greater response to no-go than infrequent-go (Figure 4; no-

go vs frequent-go t(18)=4.33, p<0.001; infrequent-go vs. frequent-go t(18)=3.75, p=0.001; 

no-go vs infrequent-go t(18)=1.99, p=0.06). By contrast, I did not observe this profile of 

response in the visual cortices of sighted blindfolded controls (Figure 4; no-go vs frequent-

go t(18)=0.96, p = 0.35; no-go vs infrequent-go t(18)=0.24, p>0.5; infrequent-go vs. 

frequent-go t(18)=1.77, p=0.09; condition x group ANOVA: main effect of condition 

F(2,72)=12.30, p < 0.001, main effect of group F(1,36)=7.01, p=0.01, group x condition 

interaction F(2,72)=7.31, p=0.001).  

Within the congenitally blind group’s “visual” cortices, the executive function 

profile was more pronounced in the right hemisphere than left hemisphere (hemi x 

condition ANOVA: main effect of condition, F(2,36)=9.37, p = 0.001; main effect of hemi 

F(1,18)=2.34, p=0.14, hemi x condition interaction F(2,36)=3.59, p = 0.04). Likewise, a 
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hemispheric difference with respect to condition was also present in the PFC (blind group 

only, hemi x condition ANOVA: main effect of condition, F(2,36)=12.57, p<0.001; main 

effect of hemi F(1,18)=4.97, p = 0.04, hemi x condition interaction F(2,36)=4.75, p=0.015). 

Within the blind group, prefrontal and “visual” cortices behaved similarly. There was no 

difference between the PFC and the VC with respect to condition and/or hemisphere (ROI 

x hemi x condition ANOVA: main effect of ROI F(1,18)=2.66, p=0.12; ROI x condition 

interaction F(2,36)=2.53, p=0.09; ROI x hemi interaction F(1,18)=0.50, p=0.49; ROI x 

hemi x condition F(2,36)=0.09, p>0.5). 

 

Primary sensory-motor, but not “visual” cortices, of blind individuals respond 

to sensorimotor demands (individual-subject functional ROI analysis) 

In the bilateral sensory-motor cortices (SMC), I observed higher activity for both 

of the go conditions than the no-go in both the sighted (Figure 4; frequent-go vs no-go 

t(18)=6.20, p<0.001; infrequent-go vs no-go t(18)=7.47, p<0.001; frequent-go vs. 

infrequent-go t(18)=0.42, p=0.68) and the blind group (frequent-go vs no-go t(18)=6.61, p 

< 0.001; infrequent-go vs. no-go t(18)=8.29, p<0.001; frequent-go vs. infrequent-go 

t(18)=0.68, p=0.51). This response profile is consistent with SMC involvement in 

execution of the button press and associated tactile feedback. There was no difference 

between go conditions in the SMC for either group (sighted: t(18)= 0.42, p > 0.5; blind 

t(18)=0.68, p>0.5). The SMC profile was similar in blind and sighted individuals (group x 

condition ANOVA: main effect of condition F(2,72)=73.64, p<0.001; main effect of group 

F(1,36)=0.05, p>0.5; group x condition interaction F(2,72)=0.87, p=0.42). 
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In contrast to the SMC, I failed to observe a sensorimotor related effect in the right 

visual cortices of blind individuals even when I searched specifically for vertices that 

preferred trials with a button press (frequent and infrequent go) to no-go trials 

(Supplementary Figure 5, frequent-go vs no-go t(18)=-0.96, p=0.35; infrequent-go vs no-

go t(18)=1.40, p=0.18; frequent-go vs. infrequent-go t(18)=2.33 p=0.03). Interestingly, in 

the sighted group there was a trend towards higher responses to the two button press 

conditions (Supplementary Figure 5, frequent-go vs no-go t(18)=2.07, p=0.053; 

infrequent-go vs no-go t(18)=2.03, p=0.057; frequent-go vs. infrequent-go t(18)=0.13 

p>0.5). 
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Whole-brain analysis.  

Figure 5. Go/No-Go Activations 

Whole brain contrasts for sighted (S), blind (B), and blind > sighted (B > S). Areas shown are p < 0.05 

cluster-corrected p-values, with intensity representing uncorrected vertex-wise probability. 
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Consistent with the ROI analysis and with previous findings, the no-go > frequent-

go contrast revealed robust responses in right-lateralized, prefrontal and parietal executive 

function networks of both blind and sighted groups (Figure 5A). Greater activity for no-go 

than frequent-go was observed along the precentral sulcus, inferior frontal sulcus, inferior 

frontal junction (IFJ), and intraparietal sulcus (IPS), as well as the superior temporal sulcus 

and gyrus (STG/STS; Figure 5A & Supplementary Table 3). Additionally, I observed 

greater activity for the no-go condition in the supplementary motor area/anterior cingulate 

cortex (SMA/ACC) of the blind group and in the posterior precuneus of the sighted group. 

In the blind and sighted groups, responses to no-go > frequent-go, were observed bilaterally 

but were stronger on the right (Figure S2). 

Similar to no-go, infrequent-go also elicited greater activity in executive function 

regions, relative to frequent-go in both the sighted and blind groups (Figure 5B & 

Supplementary Table 3). In the sighted group, the same fronto-parietal and temporal areas 

that responded more to no-go than frequent-go also responded more to infrequent-go than 

frequent-go. Notably, fronto-parietal networks were recruited more bilaterally for 

infrequent-go than for no-go. In the blind group, infrequent-go > frequent-go activity was 

observed in parts of the IPS, STS, and posterior precuneus. Fronto-parietal responses to 

executive demands were somewhat less extensive in the blind relative to the sighted group.  

In the blind but not sighted group, retinotopic “visual” cortices responded more to 

the no-go than to the frequent-go condition (Figure 5A & Supplementary Table 3). Activity 

in the occipital cortices of the blind group mirrored that of fronto-parietal cortices in right-
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hemisphere dominance. Occipital cortex activity, in the blind group, peaked in the cuneus 

and the lateral middle occipital gyrus. Comparing blind and sighted groups directly, I 

observed greater activity in the congenitally blind group, for no-go relative to frequent-go, 

on the lateral and medial surface of the right occipital cortex (Figure 5A & Supplementary 

Table 3).  

The infrequent > frequent go contrast also revealed activity in occipital cortices, 

but this time in both the blind and sighted groups. In the blind group, the anatomical 

distribution of the infrequent > frequent go response overlapped with the “no-go” response 

in the cuneus and lateral medial occipital gyrus but also extended into the right fusiform 

gyrus and the calcarine sulcus bilaterally. As in prefrontal cortices, occipital cortices 

exhibited reduced right-lateralization for the infrequent-go > frequent-go contrast, relative 

to the no-go > frequent-go contrast. In the sighted group, infrequent > frequent go activity 

was anatomically constrained to the posterior calcarine sulcus—i.e. the functional location 

of foveal V1—and bilateral (Figure S2). When blind and sighted groups were compared to 

each other directly, there was greater activity in the blind group in lateral occipital cortices 

as well as the medial fusiform (Figure 5B, Supplementary Table 3).  

Primary sensory and motor cortices, but not occipital cortices, responded to 

sensorimotor demands of frequent-go and infrequent-go. For both blind and sighted groups, 

left-hemisphere primary sensory and primary motor cortices were more active for both go 

conditions than for the no-go condition (Figure 5C & Supplementary Table 3). For the 

blind group, greater activity for the go conditions was also observed in the right primary 

sensory and primary motor cortices, consistent with fact that more blind individuals using 
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their left hand to respond (see Methods). Consistent with the ROI analysis, no “visual” 

cortex activity was observed in the blind group for frequent- and infrequent-go conditions 

relative to the no-go condition. Moreover, a direct comparison between blind and sighted 

groups revealed no interaction of group by condition. 
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Resting state functional connectivity 

Figure 6. Resting-State Functional Connectivity with Go/No-Go Responsive Seed 

Functional connectivity of executive-function responsive occipital cortex (OC-EF) to sensory/motor and 

prefrontal regions in sighted and blind.  

A. Regions of interest for resting state analyses: OC-EF, primary auditory cortex (A1), primary 

sensorimotor cortices (S1/M1), executive-function responsive (PFC-EF), and language responsive 

(PFC-LG). 

B. Fisher-transformed correlation coefficients between OC-EF and non-visual ROIs. Error bars indicate 

the within-subjects SEM. 

C. Between-group differences in connectivity to executive-function responsive occipital cortex (OC-EF, 

in white). FDR-corrected contrasts for blind > sighted (in red) and sighted > blind (in blue). 
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I used resting state data to examine functional connectivity of executive-load 

responsive “visual” cortex among blind individuals. An executive-function responsive 

visual ROI (OC-EF) was defined based on the blind > sighted x no-go > frequent-go 

contrast (see Methods for details). For both blind and sighted participants, I assessed OC-

EF connectivity to two primary sensory regions—A1 and S1/M1— and to two prefrontal 

regions—one responsive to executive-function, PFC-EF, and one responsive to language, 

PFC-LG (Figure 6A).  

 An ANOVA comparing the connectivity of executive-function responsive visual 

cortex (OC-EF) to executive-function responsive prefrontal, language-responsive 

prefrontal, sensory-motor and primary auditory ROIs across groups revealed a significant 

group by ROI interaction (ROI (PFC-EF, PFC-LG, A1, S1/M1) x group ANOVA: main 

effect of ROI  F(3,144)=1.48, p=0.22; main effect of group F(1,48)=0.01, p>0.5; group x 

ROI interaction F(3,144)=41.63, p<0.001). An ANOVA within sighted individuals 

revealed that the executive function responsive visual cortex (OC-EF) was more correlated 

to non-visual primary sensory areas (A1 and M1/S1) than to either of the executive function 

or language-responsive prefrontal ROIs (mean of PC-EF and PC-LG < mean of A1 and 

M1/S1: F(1,24)=42.98, p<0.001). Conversely, in blind individuals, OC-EF was more 

correlated to prefrontal than to primary sensory regions (mean of PC-EF and PC-LG > 

mean of A1 and M1/S1: F(1,24)=21.99, p<0.001). Finally, among the prefrontal cortex 

ROIs, OC-EF of blind but not sighted individuals was preferentially correlated to executive 

function-responsive prefrontal cortex than language-responsive prefrontal cortex (blind 
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PC-EF vs. PC-LG t(24)=3.47, p=0.002, sighted PC-EF vs. PC-LG t(24)=-1.17, p=0.25; 

group x ROI (PFC-EF vs. PFC-LG) interaction F(1,48)=10.86, p=0.002).  

Next, I compared OC-EF functional connectivity between groups throughout the 

whole-brain. Relative to sighted individuals, blind individuals had increased OC-EF 

connectivity to fronto-parietal regions and decreased OC-EF connectivity to primary 

sensory areas (Figure 6C). Moreover, for blind individuals, the set of regions that 

preferentially increased their correlation to OC-EF at rest was equivalent to the set of 

regions that exhibited an executive-function response profile during the go/no-go task. 

Areas that were more functionally connected to the OC-EF for blind individuals included 

the precentral sulcus, superior and inferior frontal sulcus, inferior frontal junction (IFJ), 

intraparietal sulcus (IPS), middle temporal gyrus (MTG), precuneus, and the anterior and 

posterior cingulate cortex (ACC and PCC). In contrast, the pre-to-post central gyrus, 

transverse temporal gyrus, and ventral superior temporal gyrus (STG) were more 

functionally connected to the OC-EF in sighted, than in blind, individuals. 

 

3.4 Discussion 

Two key findings support the hypothesis that a right-lateralized subset of “visual” 

cortex is incorporated into a right-lateralized fronto-parietal non-verbal executive function 

network in congenital blindness. First, in blind individuals, a right-lateralized sub-network 

within “visual” cortices is sensitive to executive demands during a non-verbal, non-spatial, 

go/no-go task. The occipital cortices of congenitally blind (but not sighted) adults were 

most active during no-go trials, i.e. when withholding a button press. Amongst the go trials, 
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responses in the “visual” cortices of the blind group were larger for the infrequent-go 

condition than for the frequent-go condition. This response-profile (no-go > infrequent-go 

> frequent-go) mirrored that observed in the fronto-parietal executive function network of 

both blind and sighted groups. Second, in blindness executive-function responsive “visual” 

cortex becomes functionally coupled with prefrontal executive function areas, even at rest. 

 

Visual cortices of congenitally blind individuals are sensitive to executive 

demands in a non-verbal and non-spatial task 

I find that in blindness, regions of the “visual” cortices are sensitive to non-verbal 

executive demands. These responses are functionally and anatomically distinct from 

several previously documented cross-modal effects. As noted in the introduction, “visual” 

cortices of blind individuals show sensitivity to linguistic information and to mathematical 

difficulty (Röder et al. 2002; Bedny et al. 2011; Lane et al. 2015; Kanjlia et al. 2016). 

However, the present stimuli were not linguistic or mathematical. Furthermore, previously 

observed “visual” cortex responses to language are on-average left-lateralized and 

responses to math were observed bilaterally (Bedny et al. 2011; Lane et al. 2015; Kanjlia 

et al. 2016). In contrast, executive-function responses observed in the current study are 

lateralized to the right-hemisphere. Furthermore, while mathematical responses were 

limited to the posterior “visual” cortices, executive function responses were observed 

laterally and medially, as well as posteriorly. Different cortical locations for executive 

function responses, compared to language or math responses, suggests functionally distinct 
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repurposing in the “visual” cortices. Future work should test for functionally-selective sub-

regions within the “visual” cortices of blind individuals, rather than at the group level. 

Low-level sensorimotor demands are also unlikely to explain executive function 

responses in the “visual” cortices observed in the current study. First, the condition that 

elicited the most activity (i.e. no-go) had the highest executive demand but the lowest 

tactile feedback and motor planning demand. Second, I failed to find a response profile 

within the “visual” cortices of blind individuals akin to the response of sensorimotor 

cortices. Previous studies with blind participants have also failed to find “visual” cortex 

activity during low-level sensorimotor tasks, such as passive vibro-tactile stimulation, 

tactile sweeping of non-sense Braille without discrimination, and finger tapping, despite 

task recruitment of sensorimotor cortices (Sadato et al. 1996; Gizewski et al. 2003). 

Similarly, passively presented visual and tactile stimuli failed to elicit “auditory” cortex 

activity in a congenitally deaf participant, despite recruitment of primary visual and 

sensorimotor cortices, respectively (Hickok et al. 1997). Together with these prior results, 

our findings suggest that “visual” cortices are not likely to be repurposed for primary 

sensory-motor functions in blindness.  

Finally, responses to executive demands observed in the current study are unlikely 

to be related to spatial processing. As noted in the introduction, previous studies have 

observed “visual” cortex responses during tasks that require localization— e.g. localization 

of sounds in space and discrimination of tactile patterns (Wanet-Defalque et al. 1988; 

Sadato et al. 1996; Merabet et al. 2004; Gougoux et al. 2005; Sathian and Stilla 2010; 

Collignon et al. 2011). By contrast, in the current experiment, auditory stimuli were not 



CHAPTER 3. EXECUTIVE FUNCTIONS IN “VISUAL” CORTICES 
 

 80 

situated in space and the task did not require localization nor did the task involve fine-

grained tactile discrimination. The present findings thus demonstrate that executive-

demands influence visual cortex activity independent of spatial processing. I hypothesize 

that, in blindness, spatial processing engages different subsets of “visual” cortices as 

compared to executive, linguistic, and numerical processes. 

In future work, it will be important to determine the precise nature of the executive 

operations that drive activity in deafferented “visual” cortices. Executive processes include 

a diverse set of operations, such as response selection, response inhibition, shifting 

attention, and saliency orienting. According to some views, these subtypes of executive 

control are dissociable within fronto-parietal cortices (Nagahama et al. 2001; Corbetta and 

Shulman 2002; Mostofsky et al. 2003; Rubia et al. 2003; Aron et al. 2004; Brass et al. 

2005; Nee et al. 2007; Chikazoe et al. 2008; Goghari and MacDonald 2009; Chikazoe 

2010; Levy and Wagner 2011; Xu et al. 2017). In the current study, “visual” cortices 

responded to both stimulus infrequency (infrequent-go and no-go) and response 

infrequency/inhibition (no-go). One possibility is that “visual” cortices are specifically 

sensitive to response inhibition, and that intermediate activity for the infrequent-go is 

reflective of participants “tapping the brakes” on their go response (as in a “continue” trial; 

(Aron et al. 2014)). Alternatively, the observed executive functions responses may reflect 

a response selection process that scales according to novelty of the stimulus-response 

mapping (i.e. frequent-go has both a habitual stimulus and a habitual response, infrequent-

go has a novel stimulus but a habitual response, and no-go has both a novel stimulus and a 

novel response; (Chikazoe et al. 2008)). Whether the “visual” cortex contain dissociable 
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response selection and response inhibition processes and whether it is sensitive to other 

types of executive processes are interesting avenues for future research.  

Interestingly, in the current study I also observed responses to non-visual stimuli in 

the visual cortices of blindfolded, sighted adults. Importantly, these responses were 

functionally and anatomically distinct from those observed in the “visual” cortices of blind 

individuals. While the “visual” cortices of the blind group showed a graded executive 

demand response (with the highest response to no-go and the lowest response to frequent-

go), the visual cortices of the sighted group showed selective high responses to the 

infrequent-go condition. Moreover, while “visual” cortex responses in the blind group were 

predominantly right-lateralized and extended along the medial, lateral, and ventral surface, 

visual cortex responses in the sighted group were bilateral and strictly localized to the 

calcarine sulcus (V1).  

The cognitive role of visual cortex responses to non-visual stimuli in sighted 

individuals is not known. Some prior studies have also observed responses to non-visual 

stimuli in visual cortex of sighted subjects, for example, in participants who are trained to 

associate a visual flash with an auditory noise, visual cortex activity is observed during 

subsequent presentation of the noise alone (Sathian et al. 1997; Zangaladze et al. 1999; 

Macaluso et al. 2000; James et al. 2002; Merabet et al. 2004; Driver and Noesselt 2008; 

Merabet et al. 2008; Zangenehpour and Zatorre 2010). One possibility is that the visual 

cortex responses in sighted subjects observed in the current study reflect automatic 

orienting. It has been hypothesized that unexpected auditory stimuli elicit a “reflexive overt 

orienting response” towards the location of visual space where the stimulus is most likely 
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to occur (Azevedo et al. 2015). According to this account, in the absence of further spatial 

information, there is automatic orienting to the center of the visual field and pre-activation 

of foveal V1 specifically in cases of planning a motor action and when the stimulus 

response mapping is not highly overlearned (i.e., as in infrequent-go). At present these 

interpretations are speculative and will require testing in future research. However, such 

effects are consistent with the idea that there are routes for non-visual information to reach 

“visual” cortex in blind and sighted alike and these routes are modified by absence or lack 

of visual experience.  

 

Insights into the relationship of connectivity and function from “visual” cortex 

plasticity in blindness 

Further support for the idea that, in blindness, parts of right “visual” cortices are 

incorporated into fronto-parietal executive function networks comes from resting state 

data. The executive-function responsive “visual” cortex of blind individuals was coupled 

with executive-load responsive prefrontal cortices. Specifically, blind and sighted groups 

displayed different profiles of functional connectivity for the occipital cortex area in which 

executive-function responses were observed in blindness. In the sighted group, executive-

function responsive visual cortex was more correlated with non-visual sensory-motor areas 

(A1 and M1/S1) than with prefrontal cortices. Conversely, in the blind group, executive-

function responsive “visual” cortex was more correlated with prefrontal cortices than with 

non-visual sensory-motor areas. This change in connectivity was driven both by a reduction 

in resting state correlations with A1 and S1/M1 as well as an increase in correlations with 
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prefrontal cortices in blindness. This result is consistent with prior studies, which have also 

found reduced connectivity of “visual” cortices, in blindness, to A1 and to sensory-motor 

cortices (Liu et al. 2007; Yu et al. 2008; Wang et al. 2013; Burton et al. 2014; Bedny et al. 

2011). By contrast, resting-state synchrony between “visual” cortices and frontal-parietal 

cortices is increased in blindness (Liu et al. 2007; Bedny et al. 2010; 2011; Wang et al. 

2013; Burton et al. 2014; Deen et al. 2015; Liu et al. 2017).  

Importantly, among prefrontal regions, executive-load responsive “visual” cortex 

was more correlated with executive-function responsive prefrontal cortex, than with 

language responsive prefrontal cortex, and this effect was specific to the blind group. This 

result supports the hypothesis that the executive load responsive “visual” areas identified 

in the present study are functionally distinct from previously identified language-

responsive visual areas. Analogously, previous studies have found that prefrontal language 

areas are more synchronized to the parts of “visual” cortices that respond to language than 

to the parts of “visual” cortices that respond to math (Kanjlia et al. 2016). These results 

demonstrate that resting-state connectivity and functional specialization within “visual” 

cortex go hand in hand in blindness.  

 

3.5 Summary 

In Chapter 3, I used a non-verbal auditory go/no-go task to ask whether visual 

cortices of congenitally blind individuals are recruited for higher-cognitive executive 

functions in the absence of language. In congenitally blind individuals, right-lateralized 

“visual” cortices responded to executive-function demands. These right-lateralized 
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occipital cortices of blind, but not sighted, individuals mirrored the executive-function 

pattern observed in fronto-parietal systems. In blindness, the same “visual” cortex area, at 

rest, also increased its synchronization with prefrontal executive control regions and 

decreased its synchronization with auditory and sensorimotor cortices. Executive function 

represents a previously undiscovered higher cognitive function in “visual” cortices of blind 

individuals. Together with Chapter 2, Chapter 3 supports the pluripotency hypothesis of 

top-down fronto-parietal takeover of “visual” cortices, and suggests that human cortex is 

highly flexible at birth. 
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3.6 Supplementary Materials 

Supplementary Results. 

I also looked for a sensorimotor response in the bilateral medial visual cortex (in 

case effects were lateralized, as in the sensorimotor cortices). Results were similar to those 

obtained in the right visual cortex. No sensorimotor effect was found in the bilateral 

“visual” cortices of blind participants (Supplementary Figure 5; frequent-go vs no-go 

t(18)=0.36, p>0.5; infrequent-go vs no-go t(18)=2.09, p=0.051; frequent-go vs. infrequent-

go t(18)=2.26 p=0.03). In the sighted group, the visual cortices responded more to the two 

button press conditions (Supplementary Figure 5, frequent-go vs no-go t(18)=2.20, p=0.04; 

infrequent-go vs no-go t(18)=2.27, p=0.04; frequent-go vs. infrequent-go t(18)=0.06 

p>0.5). 

In bilateral V1 (across all vertices), I observed preferential activity for the 

infrequent-go condition within the sighted group (Supplementary Figure 5; infrequent-go 

vs frequent-go t(18)=2.45, p=0.03; infrequent-go vs no-go t(18)=1.73, p=0.10; no-go vs. 

frequent-go t(18)=0.08 p>0.5). In contrast, bilateral V1 of the blind group responded 

preferentially to both infrequent conditions (Supplementary Figure 5; infrequent-go vs 

frequent-go t(18)=3.42, p=0.003; no-go vs. frequent-go t(18)=2.89 p=0.01; infrequent-go 

vs no-go t(18)=0.26, p>0.5). 
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Supplementary Table 3. Cortical Locations of Activation for Go/No Task 

Brain regions differentially active across conditions, from cluster-corrected whole-brain analysis. Rows 

represent extrema, each characterized by a Destrieux Atlas gyral/sulcal name, an X- Y- and Z- MNI 

coordinate, and a t-stat(istic). Extrema are part of clusters, each of a mm2 size and a cluster-wise 

permutation probability. Extrema without listed cluster information are part of the preceding characterized 

cluster. 

Brain region X  Y  Z t-stat mm2 cwp 

no-go > frequent-go       
Sighted       
L. Inferior frontal sulcus -39 9 24 5.26 1569 0.017 
L. Superior precentral sulcus -27 -4 46 4.44   
L. Superior temporal gyrus -64 -41 7 7.93 1195 0.036 
R. Superior precentral sulcus 40 -2 45 6.39 2807 0.003 
R. Inferior precentral sulcus 40 4 27 5.86   
R. Middle frontal gyrus 48 29 25 5.08   
R. Sulcus intermedius primus (of Jensen) 44 -45 37 6.20 2459 0.004 
R. Superior parietal lobule 34 -52 62 5.46   
R. Precuneus 5 -51 54 4.37   
R. Postcentral gyrus 47 -27 53 3.89   
R. Superior temporal sulcus 58 -41 13 5.68 2414 0.004 
R. Lateral superior temporal gyrus 56 -1 -14 4.97   
Blind       
R. Superior temporal sulcus 56 -39 9 5.24 1975 0.010 
R. Middle temporal gyrus 51 -61 3 4.82   
R. Supramarginal gyrus 52 -41 44 4.41   
R. Middle occipital sulcus 33 -81 9 4.12   
R. Superior precentral sulcus 41 -1 47 4.26 1539 0.013 
R. Inferior precentral sulcus 49 6 25 3.63   
R. Superior frontal sulcus 24 1 58 3.48   
R. Middle-anterior cingulate gyrus/sulcus  10 15 42 4.80 1164 0.030 
R. Cuneus 4 -75 12 4.07 1135 0.030 
Blind > Sighted       
R. Inferior temporal sulcus 49 -61 3 5.19 2630 0.006 
R. Middle occipital sulcus 33 -81 9 4.81   
R. Superior occipital sulcus 21 -91 20 4.25   
R. Cuneus 6 -82 16 3.81   
infrequent-go > frequent-go       
Sighted       
L. Inferior precentral sulcus -47 -1 34 8.29 4691 < 0.001 
L. Middle-anterior cingulate gyrus/sulcus -9 15 50 8.16   
L. Inferior frontal sulcus -38 22 22 7.22   
L. Superior frontal gyrus -17 3 69 6.55   
L. Intraparietal sulcus -35 -49 49 6.96 3088 0.002 
L. Supramarginal gyrus -58 -24 27 6.44   
L. Intraparietal sulcus -27 -66 39 6.41   
L. Precuneus -10 -58 55 4.52   
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L. Planum temporale  -64 -36 13 8.22 2182 0.007 
R. Superior frontal sulcus 25 1 48 7.16 2756 < 0.001 
R. Inferior precentral sulcus 41 3 41 6.92   
R. Inferior frontal sulcus 40 21 27 6.49   
R. Precuneus 5 -62 40 5.85 2578 0.001 
R. Superior occipital sulcus  28 -66 28 5.80   
R. Superior parietal lobule 33 -53 61 4.59   
R. Supramarginal gyrus 57 -39 45 4.01   
R. Superior temporal sulcus 54 -44 4 8.23 2254 0.003 
R. Planum temporale 63 -31 12 6.82   
R. Cuneus 7 -88 6 4.83 1036 0.036 
Blind       
L. Cuneus -7 -98 11 5.37 2438 0.004 
L. Superior occipital gyrus -20 -85 37 3.54   
L. Superior temporal gyrus -65 -39 7 3.96 1254 0.026 
L. Supramarginal gyrus -58 -27 31 3.83   
L. Intraparietal sulcus -23 -64 50 4.19 977  0.044 
L. Precuneus -8 -51 45 3.77   
R. Inferior temporal gyrus 57 -58 -14 5.32 8336 < 0.001 
R. Calcarine sulcus 15 -78 10 5.13   
R. Superior parietal lobule 15 -69 55 4.98   
R. Superior occipital gyrus (O1) 17 -88 25 4.38   
R. Precuneus 8 -57 43 4.34   
R. Lateral fusiform gyrus  29 -61 -15 3.73   
Blind > Sighted       
L. Middle occipital gyrus -27 -96 12 4.07 1377 0.024 
L. Superior occipital gyrus -20 -87 36 3.85   
R. Middle occipital gyrus 48 -78 9 4.69 2483 0.004 
R. Middle temporal gyrus 52 -58 1 4.46   
R. Superior occipital sulcus 34 -80 18 4.24   
R. Parieto-occipital sulcus 19 -73 23 3.98   
R. Superior occipital sulcus 19 -87 24 3.95   
R. Medial collateral and lingual sulcus 34 -25 -22 5.95 1423 0.017 
R. Lateral fusiform gyrus 28 -63 -14 3.95   
frequent-go + infrequent-go > no-go       
Sighted       

L. Postcentral gyrus -53 -17 52 9.78 2136 0.004 
Blind       
L. Postcentral gyrus -38 -33 66 11.81 3063 0.004 
R. Postcentral gyrus 27 -32 71 6.12 1537 0.014 
R. Central sulcus 34 -21 43 5.14   
R. Precentral gyrus 26 -19 71 3.89   
Blind > Sighted       
N/A       
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Supplementary Figure 5. Region of Interest Analysis for Go/No-Go Task, Additional 

Contrasts 

Beta values for task conditions within sighted (S) and congenitally blind (B) participants’ medial visual 

cortex (VC) and primary visual cortex (V1). Error bars indicate the within-subjects SEM. Right and 

bilateral VC values are reported from a leave-one out analysis where vertices were chosen based on the 

contrast frequent-go + infrequent-go > no-go (similar to those reported in the bilateral SMC). Bilateral 

V1 values were chosen from the entire V1 search-space.  
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Supplementary Figure 6. Go/No-Go Activations II 

FDR-corrected whole brain contrasts for sighted (S), blind (B), and blind > sighted (B > S). p-values are 

FDR-adjusted.  
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Chapter 4 

Behavioral relevance of higher cognitive responses in 

“visual” cortices 

 

4.1 Introduction 

In Chapter 2, I find evidence of widespread higher cognitive functions across 

“visual” cortices of blind individuals. In Chapter 3, I find evidence that, in addition to math 

and language, “visual” cortices are recruited for executive-function. A key open question, 

therefore, is whether this extra “visual” cortex territory confers a behavioral advantage to 

the higher-order cognitive functions that it implements.  

A large body of evidence suggests sensory behavioral advantages associated with 

blindness. For example, blind individuals are more accurate than sighted controls at 

judging whether an auditory pitch is falling or rising, and blind individuals outperform 

sighted individuals at detecting orientations of tactually-presented gratings (Van Boven et 

al. 2000; Goldreich and Kanics 2003; Gougoux et al. 2004; Rokem and Ahissar 2009; Wan 

et al. 2010; Wong et al. 2011). These improvements are not ubiquitous, but specific to a 

subset of perceptual tasks (Lewald 2002; Alary et al. 2009). For instance, blind individuals 

are more accurate than sighted individuals at localizing sounds in peripheral, but not 
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central, space. Blind individuals also have improved tactile acuity on the Braille-reading 

finger, but not on the lips (Roder et al. 1999; Wong et al. 2011). Critically, some of the 

tasks on which blind individuals outperform the sighted – e.g. auditory localization and 

fine-grained tactile discrimination – are also associated with “visual” cortex plasticity 

(Kujala et al. 1992; Roder et al. 1999; Weeks et al. 2000; Gougoux et al. 2005; Collignon 

et al. 2008; Voss et al. 2008; Collignon et al. 2011). One possibility, therefore, is that 

recruitment of “visual” cortices for non-visual tasks enhances performance. If so, the same 

might be true of observed higher cognitive function in “visual” cortices of blind 

individuals. However, it is also possible that sensory loss in one modality selectively 

improves abilities to extract information from other modalities on account of practice 

induced changes to non-visual sensory cortices.   

Nevertheless, temporary-lesion studies of “visual” cortices suggest that “visual” 

cortices are functionally relevant. Transiently disrupting “visual” cortex function with 

transcranial magnetic stimulation (TMS) can impair performance. For example, TMS to 

the occipital pole causes subjects to make semantic errors when generating verbs nouns 

heard nouns (i.e. “kick” for “ball”) and to misread Braille letters (Cohen et al. 1997; Amedi 

et al. 2004). Deaf cats perform better than normal cats at localization of peripheral visual 

stimuli, and there is some evidence that this benefit is mediated by repurposing of 

“auditory” cortices (Lomber et al. 2010; Meredith et al. 2011). However, the functional 

relevance of such cortical tissue for higher cognitive functions has yet to be determined. 

Moreover, even if “visual” cortices are meaningfully incorporated into behavior, the extra 
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cortical tissues need not confer any advantage. For higher cognitive functions, specifically, 

amount of cortical tissue may not meaningfully impact processing competence. 

Notably, evidence from another higher cognitive domain – memory – suggests that 

extra “visual” cortex tissue may indeed improve performance. Blind individuals activate 

“visual” cortex during higher cognitive verbal memory tasks, such as retrieving previously 

encoded words from long-term memory, and the amount of visual cortex activity predicts 

memory performance (Amedi et al. 2003; Raz et al. 2005). Importantly, blind children and 

adults outperform sighted individuals on memory tasks, recalling larger numbers of words, 

letters and digits over both short and long delays and more accurately reproducing the serial 

order of encoded words (Tillman and Bashaw 1968; Hull and Mason 1995; Roder et al. 

2001; Amedi et al. 2003; Raz et al. 2007; Rokem and Ahissar 2009; Swanson and 

Luxenberg 2009; Pasqualotto et al. 2013; Withagen et al. 2013; Dormal et al. 2016). 

Moreover, there is some evidence to suggest that, amongst blind individuals, greater 

“visual” cortex activity during recall is associated with better performance on memory 

tasks (Amedi et al. 2003; Raz et al. 2005). 

“Visual” cortex plasticity data suggests that blind individuals may also show 

superior high-level linguistic abilities that are critical for computing complex syntactic 

structures (Lane et al. 2015), as well as improved response inhibition (Chapter 3). “Visual” 

cortices are active during spoken sentence processing tasks and the amount of activity 

varies as a function of meaning and syntactic structure: “visual” cortices respond more to 

sentences than lists of unconnected words, more to sentences than Jabberwocky, and more 

to Jabberwocky than to lists of non-words (e.g., glorf, blig, marp, …) (Röder et al. 2002; 
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Burton et al. 2003; Bedny et al. 2011). Furthermore, larger “visual” cortex responses are 

observed for grammatically complex sentences with a syntactic long-distance dependency 

(e.g., “The girl, that the boy admires, is vacationing in Spain”) (Röder et al. 2002; Lane et 

al. 2015). Finally, blind participants who show larger “visual” cortex responses to 

sentences also show superior performance at answering comprehension questions about 

complex sentences (Lane et al. 2015). Analogously, Chapter 3 finds evidence of executive 

function responses in the “visual” cortices of blind individuals. 

Critically, language and executive function responses in “visual” cortices appear to 

be integrated into pre-existing language and executive-function networks, respectively. 

Language-responsive parts of “visual” cortex show synchronized activity with fronto-

temporal language areas, even in the absence of a task (Bedny et al. 2011; Deen et al. 2015). 

Additionally, “visual” cortex responses to language are co-lateralized with fronto-temporal 

language areas, suggesting incorporation of “visual” cortices into language networks (Lane 

et al. 2017). Similarly, executive-function responsive parts of “visual” cortex show 

synchronized activity with fronto-parietal executive-function networks, and executive 

function responses in “visual” cortices are also co-lateralized with executive-function 

responses in fronto-parietal cortices (Chapter 3). This suggests that executive-function 

responsive “visual” cortices may also be incorporated into executive-function networks. 

More broadly, integration into pre-existing brain networks suggests that visual cortex 

plasticity may be relevant to behavior. 

It is currently unknown whether language responses in “visual” cortices of blind 

individuals improve linguistic processing. Previous studies of blind people’s linguistic 
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behavior have focused on whether blind individuals have superior speech perception and 

word recognition abilities but have not examined higher-order aspects of language (i.e. 

syntax and semantics). Indeed, blind adults are better than the sighted at identifying 

syllables in a task of dichotic listening (Hugdahl et al. 2004) and at identifying words under 

high-noise conditions (Muchnik et al. 1991). Two studies also suggest faster lexical access 

among individuals who are blind. One study found faster lexical decision times for spoken 

words and non-words among blind individuals (Röder et al. 2003). Blind individuals also 

show a faster onset of the N400 event-related potential component upon encountering an 

incongruent word at the termination of a sentence—e.g. “Tomorrow Bobby will be ten 

years hill” (Roder et al. 2000). All of these results have been interpreted as evidence for 

more efficient perceptual speech processing.  

Similarly, it is currently unknown whether visual cortex plasticity confers a benefit 

to response inhibition. In the go/no-go task tested, the blind group were faster and more 

accurate, on average, than the sighted group, but this difference did not reach significance. 

One possibility is that blind participants failed to outperform sighted participants because 

vision groups were not accurately matched on age. Although average ages of blind and 

sighted groups were equivalent, the blind group had more older participants. Because 

response-inhibition performance declines with age (Sebastian et al. 2013), the larger age 

variability of the blind group may have masked any possible “visual” cortex benefit. 

Another possibility is that blind individuals need a more demanding version of the 

response-inhibition task to demonstrate performance improvements.  
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Although no one has of yet found response inhibition improvements in blindness, 

there is some evidence that blind individuals outperform sighted individuals in a related 

task of bi-modal divided attention (Collignon et al. 2006). Blind participants are faster than 

sighted participants when asked to selectively detect the combination of a right-sided sound 

and a left-sided pulse. However, evidence for such attentional benefits is scarce and the 

neural mechanisms for response inhibition may be distinct from those for other cognitive 

control processes such as divided attention (Aron et al. 2004; 2015). Therefore, it is 

currently unknown whether any benefit is conferred from recruitment of “visual” cortices 

during tasks of response inhibition.  

The goal of the current study was to directly test the hypothesis that blind 

individuals develop superior abilities in two higher-cognitive domains that are known to 

recruit the “visual” cortices: sentence processing and response inhibition. I measured 

accuracy and reaction time while blind individuals answered yes/no comprehension 

questions based on spoken sentences that varied in syntactic complexity. Syntactic 

complexity was manipulated in two independent ways, by introducing syntactic movement 

and creating garden paths. Sentences with syntactic movement displace referents from 

related information—e.g. “The actress that the creator of the gritty HBO crime series 

admires often improvises her lines.” Garden path sentences exploit semantic associations 

and ambiguous verb phrases to mislead the listener to form an erroneous syntactic parse. 

For example, in the garden-path sentence “While the little girl dressed the doll that she was 

playing with sat on the floor of her bedroom,” the little girl is dressing herself, rather than 

the doll. Performance on syntactically complex sentences was compared to matched 



CHAPTER 4. BEHAVIORAL RELEVANCE OF “VISUAL” CORTICES 
 

 96 

control sentences. I hypothesized that blind individuals would show superior sentence-

comprehension ability relative to the sighted and that this advantage would be most 

pronounced for syntactically complex sentences.  

I measured executive function via a non-verbal go/no-go task. Participants heard 

non-verbal complex sounds that required either a quick button press (“go” response, within 

900 MS) or no button press (“no go” response). Go trials were much more frequent (75%) 

than no-go trials (25%). Since go trials are more frequent and fast, go-ing becomes pre-

potent and no-go trials require inhibition. Previous studies have shown that on no-go trials 

participants make errors of commission, erroneously going, and activate executive control 

networks during (Garavan et al. 1999; Aron et al. 2014). The task was intentionally 

designed to tap into non-language related aspects of executive function, unlike language-

related executive tasks such as the STROOP or ambiguous word comprehension (Bedny et 

al. 2008; January et al. 2009). The goal was to determine whether, blind individuals show 

independent enhancements on non-verbal executive function and language. 

Finally, I measured short term memory for spoken letters, in blind and sighted 

participants. The goal was to replicate the previous finding that blind participants show 

enhancements in verbal working memory and to determine whether these enhancements 

are related to improvements in language or non-verbal executive control (Hull and Mason 

1995; Amedi et al. 2003).  

Importantly, different higher-cognitive functions, such as language, math, and 

response inhibition activate different parts of the “visual” cortex (Lane et al. 2015; Kanjlia 

et al. 2016), and Chapter 3). Furthermore, these different “visual” areas show enhanced 



CHAPTER 4. BEHAVIORAL RELEVANCE OF “VISUAL” CORTICES 
 

 97 

functional connectivity to the specific fronto-parietal network with which they share 

functionality (Kanjlia et al. 2016 and Chapter 3). Therefore, in addition to testing for 

improvements in language and response inhibition, I was also interested in assessing the 

behavioral relationship between these cognitive functions. Distinct neural responses for 

language and executive function within the “visual” cortices of blind individuals suggest 

that any behavioral improvements conferred by this extra cortical tissue will be unrelated. 

Blind and sighted participants were also tested on a series of control tasks, including 

a symbolic math task and verbal portions of the Woodcock-Johnson III, which test skills 

such as vocabulary and reading ability. These tasks enabled me to test the specificity of 

higher-cognitive enhancements. I predicted that sentence-processing advantages and 

working memory advantages in blind individuals would persist, even when blind and 

sighted groups are matched on other cognitive abilities. 

 

4.2 Materials and Methods 

Participants.  

 25 congenitally blind individuals (15 female) and 52 sighted age and educated 

matched controls (36 female) contributed data on the sentence processing tasks (age: blind 

mean=32.64, SD=9.86; sighted mean=33.31, SD=11.51; blind vs. sighted t(75)=-0.25, 

p=0.80; years of education: blind mean=16.68, SD=2.61, sighted mean=16.59, SD=2.20; 

blind vs. sighted t(75)=0.15, p=0.88). Almost all of these participants also contributed 

working memory, arithmetic, and WJIII data (missing data are marked on Table 3). Only 
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10 blind (7 female) and 19 (14 female) sighted participants took part in the go/no-go task 

(age: blind mean=28.90, SD=8.96; sighted mean=34.37, SD=10.75; blind vs. sighted 

t(27)=1.37, p=0.18; years of education: blind mean=16.10, SD=3.31, sighted mean=16.89, 

SD=2.71, blind vs. sighted t(27)=0.70, p=0.49).  

 

Task Category Task CB (N) S (N) 
WJ-III Word Letter ID 25 52 

Word Attack 25 52 
Synonyms 25 52 
Antonyms 25 52 
Analogies 24 52 

Arithmetic Subtraction 25 52 
Division 24 52 

Working Memory Forward Span 25 51 
Backward Span 25 51 

Language Sentences 25 52 
Executive Function Go/No-Go 10 19 

Table 3. Number of Participants per Behavioral Task for Chapter 4 

N(umber) of Congenitally Blind (CB) and Sighted (S) participants per task 

  

2 blind and 2 sighted participants were excluded for poor performance on the 

Woodcock-Johnson III (outliers on any individual measure, defined according to Rosner’s 

extreme studentized deviate test for multiple outliers, two-sided, p < 0.05, maximal 10 

(Rosner 1975)). Reported numbers of blind and sighted participants do not include these 

excluded participants. 

All participants were native or near-native English speakers, with 1 (of 25) blind 

and 3 (of 52) sighted having learned English between 3 and 4 years of age. Data was 

collected from blind participants at two separate conventions of the National Federation 



CHAPTER 4. BEHAVIORAL RELEVANCE OF “VISUAL” CORTICES 
 

 99 

for the Blind (2014 and 2016). Sighted participants were tested at Johns Hopkins 

University. Blind participants had minimal-to-no light perception since birth, due to 

pathologies in or anterior to the optic chiasm (see Table 4). All participants reported no 

cognitive or neurological disabilities. Since premature birth is sometimes associated with 

cognitive disabilities (Dann et al. 1964), participants who were blind due to retinopathy of 

prematurity (ROP) were not included in the study.  

All participants were native or near-native English speakers, with 1 (of 25) blind 

and 3 (of 52) sighted having learned English between 3 and 4 years of age, which is 

considered to be well within the critical period for language acquisition (Johnson and 

Newport 1989).  

To match visual conditions across groups, sighted participants were blindfolded for 

all tasks except for the participant-read portions of the Woodcock Johnson-III (WJ-III). 

Participants listened to all auditory tasks via headphones. Volume was adjusted for each 

participant, according to their own comfortable listening volume. All experiments were run 

using either PsychoPy or Matlab’s Psychtoolbox (Brainard 1997; Peirce 2007). 

 

Blindness Etiology N N LP 

Leber Congenital Amaurosis 9 5 
Glaucoma 3 1 
Optic Nerve Hypoplasia 6 1 
Anopthalmia 3 0 
Micropthalmia 2 0 
Retinal Blastoma 1 1 
Septo-optic dysplasia 1 0 

Table 4. Blindness Etiology for Chapter 4 Participants 

Per cause of blindness, total N(umber) of participants and N(umber) with light perception (LP). 
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Sentence processing task: materials and procedure. 

Participants listened to sentences (n=180) and answered a yes/no comprehension 

question for each sentence (see Table 5). Participants had 6 seconds from the onset of the 

question to make a button press. I removed all trials in which a participant either failed to 

respond or false started (i.e. responded in < 150 MS). On average, blind and sighted 

participants missed fewer than 1 question per each condition (overall misses: mean blind 

1.48 items; mean sighted 1.92 items; n.s. difference between groups t(75)=0.92, p =0.36). 

Sighted participants had more missed responses than blind participants, but this difference 

was not significant (move: t(75)=0.66, p>0.5; non-move: t(75)=1.25, p=0.21; garden-path: 

t(75)=1.75, p=0.08; non-garden path: t(75)=0.61, p>0.5). 

The dependent measure was accuracy (binary success or failure on each trial) and 

speed (reaction-time, from question onset, for correct trials only). The syntactic complexity 

of sentences was manipulated in two ways: by introducing a long-distance dependency or 

a garden path syntactic ambiguity. Each of these two conditions was paired to a matched, 

control condition that lacked the critical syntactic manipulation—i.e. no-move and non-

garden path sentences (see Table 5). In addition to the critical sentences, I included filler 

sentences. In order to avoid syntactic priming, fillers varied in their grammatical 

constructions and did not contain either long-distance dependencies or garden paths. 

Overall there were: 60 move, 60 no-move, 10 garden path, 10 non-garden path, and 40 

filler trials. A subset of initial participants (5 blind and 13 sighted; proportion of total 

approximately matched across groups) received a longer version of the paradigm with 248 
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total questions, consisting of 84 move, 84 no-move, 10 garden path, 10 non-garden path, 

and 60 filler trials. The experiment was subsequently shortened to reduce testing time. To 

control for item effects, only the items that appeared in the short-form were analyzed— 

i.e., 60 of 84 move and 60 of 84 non-move— for the participants who received the longer 

version of the paradigm.  

 

Move The actress that the creator of the gritty HBO crime series admires 
often improvises her lines. 

No-Move The creator of the gritty HBO crime series admires that the actress 
often improvises her lines. 

Garden-Path While the little girl dressed the doll that she was playing with sat on 
the floor of her bedroom. 

No Garden-Path While the nanny dressed the baby that was small and cute the baby's 
mother was in the kitchen preparing dinner. 

Filler The precocious child thought that that the rude waitress's purple 
cotton dress and orange shoes clashed horribly. 

Table 5. Sample Sentence Comprehension Items 

 

 Sentences with syntactic movement contain words or phrases that are displaced, or 

“moved,” with respect to their modifying phrases. Syntactic movement was achieved via 

object-extracted relative clauses, where the “actress,” as the object of the verb “admires,” 

is extracted from its normal position after the transitive verb and moved to the head of the 

relative clause. The non-movement counterpart used a sentential complement clause 

structure, which was similar in meaning to the relative clause version and contained nearly 

identical words but did not include a long-distance movement dependency. Matched 

movement and non-movement sentences were counterbalanced across two lists, such that 

each participant heard only one version of the sentence. Comprehension questions required 
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participants to attend to thematic relations of words in the sentence (i.e., who did what to 

whom), and could not be answered based on recognition of individual words. Half of the 

move and half of the non-move stimuli had comprehension questions in which “yes” was 

the correct response. The stimuli were a subset of those used in a previously published 

study in our lab (Lane et al. 2015).  

The second type of syntactic complexity manipulation was garden path sentences 

with temporary syntactic ambiguities. The listener is led down a “garden-path” in which 

an initially favored sentence parse turns out to be irreconcilable with subsequent words in 

the sentence. “Dressed” can be transitive with “the doll” as the direct object (i.e. the little 

girl dressed the doll) or reflexive (i.e. the little girl dressed herself). While the former 

interpretation is usually favored due to its higher subcategorization frequency, the 

subsequent verb “sat” requires “the doll” to be its subject, and hence disambiguates the two 

alternatives in favor of the reflexive form. I added a relative clause modifier to the critical, 

ambiguous noun phrase in order to amplify the garden-path effect (Ferreira and Henderson 

1991; Christianson et al. 2001). All garden path sentences were of the following form: 

While [Noun Phrase 1] [Reflexive Verb] [Noun Phrase 2] [Verb Phrase]. Non-garden path 

control sentences were formatted as follows:  While [Noun Phrase 1] [Transitive Verb] 

[Noun Phrase 2] [Noun Phrase 3] [Verb Phrase]. The additional [Noun Phrase 3] requires 

the ambiguous verb to be transitive, consistent with the listener’s initial parse. Unlike the 

control sentences for the movement manipulation, the non-garden path sentences were not 

lexically matched across individual garden path conditions. Sentences across the 2 

conditions contained different words and had distinct meanings, but followed the same 
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structure templates, with the exception of the additional Noun Phrase in non-garden path 

sentences. All questions tested correct comprehension of the verb, in the format: Did [Noun 

Phrase 1] [Reflexive/Transitive Verb] [Noun Phrase 2]?  For example, “Did the little 

girl/nanny dress the doll/baby?” Therefore, the correct response for garden path and non-

garden path control questions was always “no” and “yes,” respectively. Sentences were 

adapted from a published set of stimuli (Christianson et al. 2001).  

Condition ordering, across trials, was pseudo-randomized such that each condition 

could not appear in more than 2 contiguous trials, and the conditions were evenly dispersed 

across each 1/8th block of the experiment. For half of the trials the correct response was 

“yes.” Before starting, all participants performed a set of 10 practice trials with feedback. 

Sentences were pre-recorded and spoken by a male voice in a flat intonation, in order to 

minimize cues to correct syntactic parsing.  

 

Working-memory tasks. 

 Forward and Backward Letter Span tasks were adapted from the Forward and 

Backward Digit Span components of the Wechsler Adult Intelligence Scale (WAIS) by 

mapping the digits 1-9 to the letters A-I. For both letter span tasks, participants listened to 

a recording of a female speaking a series of letters. After the last presented letter, 

participants were asked to repeat all letters back to the experimenter in either the exact 

order (Forward) or the exact opposite order (Backward). Trials were presented according 

to span-length, starting with a length of 2 and going up to 9 (for Forward) and 8 (for 

Backward), with 2 trials for each span length. Failure to get both trials of a given span 
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length correct terminated the task. Accuracy was calculated as a percentage correct out of 

all possible trials, with incorrect recall assumed for un-tested spans. All participants did 

the Forward Letter Span followed immediately by the Backward Letter Span.  

 

Executive-function task. 

Participants heard complex non-verbal sounds (450 MS with 450 MS ISI; 400 

trials), each representing 1 of 3 conditions: frequent-go (50% trials), no-go (25%), and 

infrequent-go (25%). Participants were instructed to make speeded button presses in 

response to go sounds and to withhold responses to no-go sounds. The high proportion of 

go sounds and fast pace induced a pre-potent button-press response that had to be inhibited 

during the no-go condition. Prior to the task, participants received 7.5 minutes of practice 

with auditory feedback on accuracy. Assignment of sounds to conditions was 

counterbalanced across blind participants. The majority of sighted participants received 1 

sound ordering.  

In keeping with Woodard et al. (2016), I used “no-go cost” as our measure of 

executive function. No-Go cost was calculated as the difference between omissions on 

frequent-go trials and successful inhibition on no-go trials. Therefore, a low “no-go cost” 

(i.e. better performance) is associated with smaller numbers (i.e. higher magnitude negative 

values). Because infrequent-go may be intermediate in executive demands, I chose to 

exclude infrequent-go performance in our baseline measure of “going” performance.  

I also computed d’ as a composite measure of going discrimination defined—i.e., 

the difference between the standard score for the proportion of going on frequent-go sounds 
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and the standard score for the proportion of going on no-go sounds (Green and Swets 1966). 

  

Woodcock-Johnson III (control). 

 I collected control measures to ensure that blind and sighted groups did not differ 

on general cognitive abilities. Participants were tested on 5 sections of the Woodcock-

Johnson III (WJ-III). Blind participants completed the WJIII in printed Braille. The 

following sections were tested: Letter-Word Identification in which the participant are 

asked to read and correctly pronounce 60 English words (e.g. “bouquet”); Word Attack in 

which the participant read and correctly pronounce 33 nonsense words (e.g. 

“paraphonity”); Oral Vocabulary-Synonyms in which the participant read each of 12 words 

and generate a synonym (e.g. “wild” à “untamed”); Oral Vocabulary-Antonym in which 

the participant read each of 13 words and generate an antonym (e.g. “authentic” à “fake”); 

and Oral Vocabulary-Analogies in which participants read each of 12 incomplete analogies 

and generate a word analogous to the unpaired word according to the relationship 

established by the first word pair (e.g. “Wrist is to shoulder, as ankle is to …” à “hip”). 

Participants were allowed to skip any items they could not complete but were not allowed 

to go back. Responses were considered correct if they matched one of the words designated 

by the WJ-III. Accuracy for each section was scored as percentage correct of all trials. All 

participants performed the WJ-III sections in the order listed above. 

 

Arithmetic (control). 

 Participants were tested on speeded arithmetic calculations in 2 separate tasks: 
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subtraction and division. All problems contained 2 operands, with the following digit 

lengths: minuends and subtrahends (2), divisors (1), and dividends (2-3). For each task, 

participants were given 4 minutes to accurately complete as many problems as possible. 

(Participants were allowed to complete any problems begun before the 4 minutes had 

expired.) Problems were pre-recorded to minimize differences in presentation between 

participants. Participants pressed a button to initiate auditory presentation of each problem 

and had to state their answer to the researcher. Participants could choose to skip problems 

and to repeat auditory presentation of the current problem but were not allowed to go back 

to skipped problems. Participants were not allowed to use writing devices to solve the 

problems. The subtraction and division sections contained 30 and 33 problems, 

respectively. Accuracy was scored as percentage correct of all trials, regardless of whether 

they were attempted. All participants performed the subtraction task immediately before 

the division task. Problems were taken from the Kit of Factor-Referenced Cognitive Tests 

(Ekstrom et al. 1976). 
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4.3 Results 

WJ-III and arithmetic (control). 

 

 

Blind and sighted participants performed equivalently on the WJ-III subsections 

(Figure 7, group x WJ-III measure ANOVA, main effect of group not significant, 

F(1,74)=0.05, p>0.5; group x measure interaction not significant, F(4,296)=0.49, p>0.5). 

For the math tasks, a group by operation (division vs. subtraction) ANOVA revealed a 

Figure 7. Performance on Woodcock-Johnson III, Arithmetic, and Working-Memory 

Tasks 

Mean accuracy for the sentence comprehension subset of sighted and blind participants in Woodcock-

Johnson III measures—Word Letter Identification (WD-ID), Word Attack (WD-ATTCK), Synonyms 

(SYN), Antonyms (ANT), and Analogies (ANT), arithmetic—subtraction (SUB) and division (DIV), and 

working memory span—forward (FWD) and backward (BWD). Error bars reflect SEM.  
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main effect of math operation with division more difficult than subtraction (Figure 7, 

F(1,74)=185.81, p < 0.001). Overall, blind and sighted participants did not differ in their 

math performance (Figure 7, main effect of group not significant, F(1,74)=1.29, p=0.26). 

However, there was a significant interaction between group and math-operation with blind 

participants differentially worse at division (F(1,74)=7.05, p=0.01).  

The subset of blind and sighted participants who performed the executive function 

task also performed equivalently on the WJ-III subsections (Figure 7, group x WJ-III 

measure ANOVA, main effect of group n.s., F(1,27)=0.30, p>0.5; group x measure 

interaction n.s., F(4,108)=1.15, p=0.34). For the math tasks, a group by operation (division 

vs. subtraction) ANOVA revealed a main effect of math operation with division more 

difficult than subtraction, F(1,26)=92.12, p<0.001). Overall, blind and sighted participants 

did not differ in their math performance (n.s. main effect of group, F(1,26)=0.12, p>0.5; 

n.s. group x operation interaction, F(1,26)=2.24, p=0.15). 

 

Sentence comprehension. 

I compared performance across groups for the movement and garden path 

manipulations. For all accuracy analyses, I used a mixed-effect generalized-linear (logit) 

model with participant and item included as random effects (Clark 1973; Baayen et al. 

2008; Jaeger 2008). For all reaction time analyses, I used a mixed-effect general linear 

model with participant and item included as random effects. I analyzed responses to 

movement and garden-path sentences separately.  
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Blind participants were overall more accurate for both move and non-move control 

sentence types (Figure 8, sighted non-move mean=86.61%, SD=8.74%; sighted move 

mean=74.53%, SD=11.63%; blind non-move mean=90.16%, SD=6.69%; blind move 

mean=80.91%, SD=8.91%; group x complexity ANOVA, main effect of group, log-odds 

coefficient B=0.39 (SE=0.16), p=0.014; corresponding odds coefficient eB=1.48). For both 

blind and sighted participants, accuracy was worse for move sentences than for non-move 

sentences (Figure 8, main effect of complexity, log-odds coefficient B=0.90 (SE=0.12), 

p<0.001; corresponding odds coefficient eB=2.46, n.s. group x complexity interaction, log-

Figure 8. Sentence Comprehension Performance 

Mean accuracy and response times for sighted and blind participants in syntactic movement (Move), matched 

non-movement (No-Move), garden path (GP) and matched non-garden path (No-GP) sentences. Error bars 

reflect SEM. 
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odds coefficient B=-0.06 (SE=0.13), p>0.5; corresponding odds coefficient eB=0.94). 

Better accuracy of the blind group for move and non-move sentences was not driven 

by a speed-accuracy tradeoff. On the contrary, blind participants were slightly, but not 

significantly, faster at responding than sighted participants (Figure 8, sighted non-move 

mean=3.37 s, SD=0.27 s; sighted move mean=3.48 s, SD=0.26 s; blind non-move 

mean=3.29 s, SD=0.26 s; blind move mean=3.42 s, SD=0.30 s; group x complexity 

ANOVA: n.s. main effect of group, B=-0.07 (SE=0.06), p=0.28, n.s. group x complexity 

interaction, B=0.1 (SE=0.03), p>0.5). Both groups responded to move sentences more 

slowly than to non-move sentences (main effect of sentence-type, B=-0.12 (SE=0.03), 

p=0.001). 

Blind participants were overall more accurate across garden-path (Figure 8, blind 

mean=76.00%, SD=27.08%; sighted mean=56.99%, SD=30.18%) and control sentences 

(blind mean=96.00%, SD=7.07%; sighted mean=91.80%, SD=8.43%; group x complexity 

ANOVA: main effect of group, log-odds coefficient B=1.03 (SE=0.39), p=0.008, 

corresponding odds coefficient eB=2.79). Although the group difference was numerically 

more pronounced for the garden-path sentences, the group-by-sentence type interaction did 

not reach significance (group x complexity interaction, log-odds coefficient B=-0.28 

(SE=0.43), p>0.5; corresponding odds coefficient eB=0.75). Accuracy was worse for 

garden path than non-garden path control sentences for both groups (main effect of 

complexity, log-odds coefficient B=2.74 (SE=0.47), p<0.001; corresponding odds 

coefficient eB=15.49).  

A group-by-condition interaction was observed in the reaction time data for the 
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garden path and garden-path control sentences. While sighted participants were slower to 

respond to garden-path than non-garden path sentences, blind participants responded with 

equal speed to both sentence types (Figure 8, sighted non-garden path mean=2.87 s, 

SD=0.22 s; sighted garden path mean=3.09 s, SD=0.42 s; blind non-garden path 

mean=2.84 s, SD=0.20 s; blind garden path mean=2.84 s, SD=0.44 s; group x complexity 

ANOVA, main effect of group, B=-0.14 (SE=0.06), p=0.03, group x complexity 

interaction, B=0.22 (SE=0.06), p=0.001; n.s. main effect of sentence-type, B=-0.07 

(SE=0.14), p> 0.5). The lack of a slowdown for more complex sentences was not due to 

overall slower performance of the blind group. In contrast, blind participants were overall 

faster to respond to the complex garden-path sentences than sighted participants were to 

respond to the simple non-garden path sentences, though this difference was not significant 

(t(75)=0.36, p>0.5). 

Since all garden-path sentences required a “no” response, I checked if group 

differences in response-bias might have driven the observed difference in performance. I 

measured bias to respond “no” for difficult questions as the percentage of “no” responses 

on incorrect move, non-move, and filler items. Blind participants were not more biased to 

respond “no” (n.s. difference between groups: t(75)=1.01, p=0.31)  

 

Working-memory span. 

 A group x direction (forward vs. backward) ANOVA, revealed a main effect of 

span direction, with forward span significantly easier than backward span (Figure 8, 

F(1,74)=13.70, p<0.001). Overall, blind participants had better working memory than 
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sighted participants (Figure 8, main effect of group, F(1,74)=33.21, p<0.001; n.s. group x 

direction interaction, F(1,74)=0.94, p=0.34). 

 

Relationship between working memory span and sentence comprehension. 

Working memory span did not significantly predict sentence comprehension 

performance in either the blind or the sighted groups for any sentence types (Figure 9, 

correlation with average forward & backward span: blind accuracy: move: r=0.31, p=0.13, 

non-move: r=0.31, p=0.12, garden path: r=0.28, p=0.17, non-garden path: r=0.33, p=0.10; 

sighted accuracy: move: r=0.17, p=0.23, non-move: r=0.17, p=0.23, garden path: r=0.17, 

Figure 9. Relationship between Working Memory Span and Sentence Comprehension 

Participants’ mean forward and backward letter span accuracy correlated with their accuracy in each sentence 

condition (move, no move, garden path, no garden path). Top row is within the sighted group, and bottom 

row is within the blind group.  
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p=0.24, non-garden path: r=0.16, p=0.28). 

Working memory span also did not significantly predict sentence comprehension 

response times in either the blind or the sighted group for any sentence types (Figure 9, 

correlation with average forward & backward span: blind RT: move: r=-0.23, p=0.27, non-

move: r=-0.20, p=0.35, garden path: r=-0.18, p=0.38, non-garden path: r=-0.04, p>0.5; 

sighted RT: move: r=-0.09, p>0.5, non-move: r=-0.26, p=0.07, garden path: r=0.11, 

p=0.45, non-garden path: r=0.02, p>0.5).  
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Executive function. 

 

Blind participants made fewer errors of omission to frequent-go sounds than sighted 

participants (frequent-go % correct: blind mean=99.55%, SD=0.50%; sighted 

mean=96.79%, SD=4.09%; blind vs. sighted, t(27)=2.90, p=0.01). Blind participants also 

made fewer errors of commission to no-go sounds, but this difference was not significant 

(no-go % correct: blind mean=89.30%, SD=5.21%; sighted mean=83.37%, SD=10.42%; 

blind vs. sighted, t(27)=1.68, p=0.10). The composite measures, which simultaneously 

Figure 10. Go/No-Go Performance for Chapter 4 Participants 

Sighted and blind participants’ mean accuracy and RT on the executive function task. Error 

bars reflect SEM.  

 



CHAPTER 4. BEHAVIORAL RELEVANCE OF “VISUAL” CORTICES 
 

 115 

accounted for going and withholding accuracy, were both significantly better in the blind 

group (d’: blind mean=3.9, SD=0.37; sighted mean=3.17, SD=0.89; blind vs. sighted, 

t(27)=3.10, p=0.005; no-go cost: blind mean=-0.89, SD=0.05 MS; sighted mean=-0.81, 

SD=0.13; blind vs. sighted, t(27)=-2.57, p=0.02). Composite measures were, expectedly, 

highly correlated (blind r=-0.79, p=0.006; sighted r=-0.91, p<0.001).  

 Blind participants also responded faster than sighted participants to the go sounds 

(frequent-go RT: blind mean=293.8 MS, SD=60.13 MS; sighted mean=376.3 MS, 

SD=66.00 MS; blind vs. sighted, t(27)=-3.29, p=0.003).  

 

Relationship between executive function and sentence comprehension. 

No-go cost did not significantly predict sentence comprehension performance in 

either the blind or the sighted groups for any sentence types (correlation with no-go cost: 

blind accuracy: move: r=0.12, p>0.5, non-move: r=-0.28, p=0.44, garden path: r=0.09, 

p>0.5, non-garden path: r=-0.23, p>0.5; sighted accuracy: move: r=-0.41, p=0.09, non-

move: r=-0.32, p=0.18, garden path: r=-0.10, p>0.5, non-garden path: r=0.13, p>0.5). 

Similarly, going discrimination d’ did not significantly predict sentence comprehension 

performance in either group for any sentence type (correlation with going d’: blind 

accuracy: move: r=-0.01, p>0.5, non-move: r=0.49, p=0.15, garden path: r=0.16, p>0.5, 

non-garden path: r=0.17, p>0.5; sighted accuracy: move: r=0.41, p=0.08, non-move: 

r=0.28, p=0.25, garden path: r=0.14, p>0.5, non-garden path: r=0.01, p>0.5). 

Similarly, no-go cost did not significantly predict sentence comprehension response 

times in either the blind or the sighted groups for any sentence types (correlation with no-
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go cost: blind RT: move: r=-0.15, p>0.5, non-move: r=-0.09, p>0.5, garden path: r=0.07, 

p>0.5, non-garden path: r=-0.07, p>0.5; sighted RT: move: r=-0.13, p>0.5, non-move: r=-

0.11, p>0.5, garden path: r=0.14, p>0.5, non-garden path: r=-0.29, p=0.24). Similarly, 

going discrimination d’ did not significantly predict sentence comprehension performance 

in either group for any sentence type (correlation with going d’: blind RT: move: r=-0.06, 

p>0.5, non-move: r=-0.15, p>0.5, garden path: r=-0.33, p=0.36, non-garden path: r=-0.15, 

p>0.5; sighted RT: move: r=0.13, p>0.5, non-move: r=0.05, p>0.5, garden path: r=-0.06, 

p>0.5, non-garden path: r=0.23, p=0.35). 

 

Relationship between executive function and working memory. 

Examining the relationship between verbal working memory and non-verbal 

response inhibition revealed a significant correlation, only in the blind group, between 

average letter span and go/no-go d’ (but not no-go cost) (correlation with average forward 

& backward span: blind no-go cost: r=-0.38, p=0.28; sighted no-go cost: r=-0.21, p=0.40; 

blind going d’: r=0.67, p=0.03; sighted going d’: r=0.23, p=0.34). 

 

4.4 Discussion 

I find that early and total blindness improves performance on working memory 

maintenance, response-inhibition in a non-verbal go/no-go task, and grammatically 

complex sentence comprehension. These improvements were observed among blind 

individuals who were matched to sighted participants on age, education and crucially 
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performance on a range of cognitive measures such as vocabulary, reading ability, and 

basic algebra proficiency. Although previous studies have identified improved 

performance among blind individuals on some auditory perception tasks, I think such 

improvements are unlikely to account for the effects of the current study since blind 

individuals typically outperform the sighted only under demanding (i.e. noisy or 

ambiguous) conditions (Niemeyer and Starlinger 1981; Muchnik et al. 1991; Hugdahl et 

al. 2004; Stevens and Weaver 2005). In contrast, the current experiment took place in a 

noise-controlled setting, utilized pre-recorded audio played through noise-blocking 

headphones, and allowed the participants to adjust volume. The present findings thus 

suggest that blindness confers benefits on higher-cognitive functions that are analogous but 

different from benefits to sensory processes in preserved modalities.  

Furthermore, although blind individuals showed improvements in three different 

higher-cognitive tasks, individual differences in response inhibition and working memory 

did not predict individual differences on the sentence comprehension performance, either 

in the sighted or in the blind. These results suggest that congenital blindness confers 

independent advantages to different higher cognitive systems. This finding is consistent 

with evidence that, in blindness, different sub-networks within “visual” cortices are 

recruited for different higher-cognitive domains, including response inhibition, memory 

and sentence comprehension. Behavioral compensation may be partially enabled by such 

“visual” cortex plasticity. However, the behavioral enhancements are also likely related to 

the compensatory use of alternative cognitive mechanisms to solve everyday tasks for 

which the sighted (visually encumbered) use vision. Thus, improvement in higher-order 
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cognitive domains may be a pervasive compensation mechanism in sensory loss, parallel 

to the enhanced use of other sensory modalities. 

 

Blindness confers an advantage to sentence processing, how and why?  

I find that congenitally blind individuals are more accurate than matched, sighted 

controls at answering who-did-what-to-whom questions about sentences. This advantage 

is particularly pronounced for sentences that are syntactically complex. Unlike sighted 

adults, blind individuals respond as quickly to questions about garden-path sentences as 

they do to matched, non-garden-path control sentences, showing no garden path cost in 

reaction time. This advantage in sentence processing cannot be explained by differences in 

general cognitive abilities across groups: blind participants performed no better than 

sighted participants on control tasks assessing reading and phonetics, vocabulary, 

analogies, and arithmetic. Furthermore, though blind participants outperformed sighted 

participants on forward and backward letter span tasks, as well as on a non-verbal go/no-

go task, these improvements did not predict sentence comprehension performance. 

As noted in the introduction, unlike sighted adults, blind individuals recruit “visual” 

cortices during sentence processing tasks and more so for syntactically complex sentences 

(Röder et al. 2002; Bedny et al. 2011; Lane et al. 2015). Furthermore, blind individuals 

with larger “visual” cortex responses to grammatically complex sentences also tend to 

show better performance when answering sentence-comprehension questions about those 

sentences (Lane et al. 2015). More direct evidence for the idea that “visual” cortices are 

behaviorally relevant to verbal tasks comes from studies using transcranial magnetic 
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stimulation. Transcranial magnetic stimulation to the occipital pole caused blind 

individuals to make semantic errors during a verb-generation task and induced Braille 

reading errors (Amedi et al. 2004; Cohen et al., 1997). The available evidence is thus 

consistent with the hypothesis that extra “visual” cortex plasticity confers a behavioral 

advantage to blind individuals in language processing and in sentence processing in 

particular. However, it is worth noting that whether “visual” cortex is functionally relevant 

to sentence-processing remains to be directly tested using techniques such as TMS.  

The availability of “visual” cortex territory is only one of several non-mutually 

exclusive reasons for why blindness might improve sentence processing ability. Vision and 

language often provide analogous information about our environment. For the sighted, 

vision provides high fidelity information about the identity of objects and agents and about 

who did what to whom, precisely the type of information that language refers to. There is 

extensive evidence that sighted individuals rapidly integrate linguistic and visual 

information during online comprehension to build situation models. According to 

constraint-based theories of sentence processing, comprehension occurs by integrating 

various sources of information, including not only syntactic and lexical information, but 

also extra-linguistic cues such as what objects are present in the environment (Tyler and 

Marslen-Wilson 1977; MacDonald et al. 1994; Nagel et al. 1994; Trueswell et al. 1994; 

Tanenhaus et al. 1995; Bader 1998; McRae et al. 1998; Tanenhaus et al. 2000; Chambers 

et al. 2002; Bailey and Ferreira 2003; Trueswell and Gleitman 2004). Sighted listeners use 

visual cues to disambiguate garden-path sentences similar to those used in the current 

study. When participants hear “put the frog on the towel in the box” they are more likely 
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to quickly arrive at the correct parse (i.e. put the frog into the box, not onto the towel) if 

they see two frogs, one on a towel and one not on a napkin (Tanenhaus et al. 1995; Spivey 

et al. 2002; Chambers et al. 2004; Farmer et al. 2007). Studies of online eye- and hand-

tracking behavior among sighted participants suggest that visual cues are integrated rapidly 

with lexical and syntactic information during comprehension (Huettig et al. 2011).  

Unlike such vision-supported comprehension, in the current experiment, 

participants heard sentences in the absence of visual cues. In this respect, the task may 

more closely resemble the language comprehension environment encountered by blind 

than sighted individuals in their everyday lives. Although audition and touch also contain 

relevant contextual information, there are reasons to believe that vision is a particularly 

efficient source of information about the types of things that language refers to: object and 

agent identity, their location, and the events in which they participate. Since blind 

individuals have no access to such visual cues, they may develop better abilities to use 

language-internal information during sentence parsing. Such an improvement in sentence-

processing abilities would be analogous to improved auditory and tactile perception among 

blind individuals, where absence of visual cues leads to better attention to, and extraction 

of, information from non-visual cues.  

This construal of the findings relates studies of blindness to research on cue 

combination. Humans efficiently combine sensory information from different modalities 

during perception. For example, when judging the height of a raised edge visual and tactile 

information is combined optimally and even brief experiences can change how different 

cues are weighed (Atkins et al. 2001; Ernst and Banks 2002). Analogously, combination 
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of cues has been suggested to play a role during sentence processing (Martin 2016). In 

blindness, habitual reliance on language alone may change cue weighting and optimize the 

system to function in the absence of language external visual constraints.  

It is worth noting that the practice-based argument articulated above is not 

inconsistent with the hypothesis that “visual” cortex plasticity enables behavioral 

improvements. The availability of extra language wetware in the “visual” cortex could 

make behavioral improvements possible in the presence of pressure from the environment 

to acquire them. Conversely, reliance on language as a source of information could increase 

pressure for language (as opposed to other cognitive functions) to colonize available 

territory in the “visual” cortex. 

An interesting question is whether other types of experiential change, apart from 

blindness, could put similar pressure on the language processing system to improve its 

function and, if so, whether behavioral improvements would result even in the absence of 

extra available “wetware.”  For example, would training sighted speakers to parse 

sentences in the absence of visual cues improve sentence comprehension performance? 

Naturalistic experiences that might deliver such “training” could include extensive reading 

or listening to books on tape. Efforts to train sighted speaker to become better at parsing 

complex sentences in the laboratory have met with mixed success. Though one study 

reported that successful training on a demanding N-back task improved performance on 

syntactically ambiguous sentences, the longevity of such effects is not known (Novick et 

al. 2012). Some studies suggest that experience with particular types of grammatical 

constructions enhances performance with those constructions (Roth 1984; Long and Prat 
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2008; Wells et al. 2009; Fine et al. 2013). However, even those studies that do observe 

benefits, find relatively subtle and narrow effects, i.e. specific to trained sentence 

constructions. The effects manifest themselves in faster reaction times and are not long 

lasting (Roth 1984; Long and Prat 2008; Wells et al. 2009). Blindness-related 

improvements in sentence-processing may be more robust, either because blindness causes 

more extensive and varied “training” or perhaps because of the availability of a distinct 

neural mechanisms in blind as opposed to sighted speakers.  

 

Improvement in executive function and working memory and their 

relationship to improvements in sentence processing. 

As noted above, apart from improvements on sentence processing I also find that 

blind participants perform better than the sighted on working memory tasks (Tillman and 

Bashaw 1968; Hull and Mason 1995; Amedi et al., 2003; Raz et al. 2007; Rokem and 

Ahissar 2009; Withagen et al. 2013) and on a non-verbal, go/no-go task of response 

inhibition. Like language, these tasks also activate the “visual” cortices of blind 

individuals. However, non-verbal executive control activates distinct “visual” regions from 

language (Chapter 3). Although I did observe a correlation between go/no go and working 

memory performance among individuals who are blind, enhancements on sentence 

processing appear to be independent from enhancements on go/no-go and working memory 

tasks. Blind individuals that show improved sentence processing abilities are not the same 

as those that show maximal improvements in working memory or executive function. This 

observation is consistent with evidence that language and non-verbal response inhibition 
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recruit different parts of “visual” cortices, as well as fronto-parietal and fronto-temporal 

cortices, in blind individuals (Chapter 3).  

Although improvements in sentence comprehension are independent from 

improvements in memory and executive function, improvements may occur for similar 

reasons. One possibility is that sentence processing improves because blind individuals 

become better at maintaining linguistic information in working memory during sentence 

parsing. It has been suggested that sentence parsing relies on a dedicated working memory 

system that is separate but analogous to the verbal working memory system that maintains 

arbitrary verbal lists (Caplan and Waters 1999). As a sentence unfolds in time, listeners 

keep previously heard information active in working memory and blind listeners may 

maintain more of this information, with higher fidelity and perhaps for a longer amount of 

time. In the case of garden path sentences, blind individuals may maintain the initially dis-

preferred sentence parse in working memory (Just and Carpenter 1992; Hickok 1993; 

MacDonald et al. 1994; Gibson 1998; McRae et al. 1998; Stevenson 1998) to a greater 

extent than sighted participants. When this dis-preferred parse turns out to be the correct 

one, blind individuals show a reduced performance cost. Analogously, for sentences with 

a movement dependency, blind individuals may be better able to maintain information 

before it can be integrated into the sentence structure. For example, maintaining the matrix 

subject in memory across the intervening clause until the associated relative clause verb is 

encountered. One prediction of this account is that blind individuals will perform better on 

those language tasks for which it would be advantageous to keep linguistically relevant 

information active in working memory. 
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An alternative possibility, is that blindness improves executive function 

mechanisms that are involved in selection of the preferred sentence interpretation in the 

context of syntactic ambiguity (Novick et al. 2005; 2012; Woodard et al. 2016). This would 

be consistent with the fact that in the current study, blindness-related improvements were 

most pronounced for garden-path sentences. Again, as in the case of verbal working 

memory for lists, I find that there is no relationship between go/no go performance and 

sentence processing performance among blind (or sighted) participants. Therefore, blind 

individuals appear to independently improve their sentence-processing and non-verbal 

executive control performance. However, improvements in sentence processing could 

occur by an analogous mechanism to the improvements observed in non-verbal executive 

function. Ambiguity resolution is a key need within language processing and there is some 

evidence for language-specific ambiguity resolution mechanisms (Thompson-Schill et al. 

2005; January et al. 2009; Novick et al. 2010). One hypothesis is that, in blindness, working 

memory and ambiguity resolution mechanisms both within and outside of language 

improve for related reasons: the need to maintain and select information more efficiently 

in the absence of visual cues. 

In future work it will be important to test blind participants on a larger battery of 

linguistic and higher-cognitive tasks to delineate the precise mechanism of blindness-

mediated improvements in language processing, working memory, and non-verbal 

executive control. For example, if blindness enhances selection mechanisms that are 

involved in sentence comprehension, I would predict that blind individuals would show 

superior performance at other tasks involving ambiguity resolution (e.g. tasks with 
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homonymous words). In contrast, if the enhancements are mediated by sentence-specific 

working memory mechanisms I would not expect advantages in lexical tasks, whether they 

involve ambiguity or not. It would also be interesting to ask whether blindness enhances 

other aspects of linguistic processing, apart from those involved in sentence structure 

building (e.g. morphological processes).  

 

4.5 Summary 

In Chapter 4 I asked whether the higher cognitive functions observed in Chapters 2 

and 3, as well as in previous work, confer any behavioral advantage. Most of the findings 

of performance improvements in blindness have focused on the idea that in the absence of 

one sense, there are improvements in the other senses—i.e. better visual localization in 

deafness (Neville and Lawson 1987) and better sound localization in blindness (Lessard et 

al. 1998; Roder et al. 1999; Voss et al. 2004; Fieger et al. 2006; Rice 2017). In this chapter, 

I find evidence that sensory loss also leads to behavioral adaptation in higher-cognitive 

domains. Blind individuals are better at recalling information from long term memory (Raz 

et al. 2007), maintaining information in working memory, inhibiting a prepotent motor 

response on a go/no go task, and comprehending syntactically complex sentences. These 

results illustrate how changes in one dimension of early experience reverberate to affect 

cognitive abilities that are unrelated but can nevertheless be used to achieve similar 

behavioral goals. Moreover, they suggest that, in blindness, “visual” cortices are deftly 

repurposed for meaningful impact on cognitive domains that differ radically from vision.    
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Chapter 5 

General conclusions 

 

Are brain structures and functions inextricably linked? Across individuals, different 

cognitive functions are implemented in consistent cortical locations, each of which has a 

distinctive cyto-architecture and inter-regional connectivity profile. This systematic 

relationship between structure and function suggests that intrinsic physiology tightly 

constrains each cortical region to implement particular cognitive operations. Contrary to 

this idea, studies of sensory loss, such as in blindness and deafness, demonstrate that 

experience can modify this structure to function mapping. In blind individuals, retinotopic 

“visual” cortices respond to auditory and tactile stimuli (Wanet-Defalque et al. 1988; 

Sadato et al. 1996), and in deaf individuals, auditory cortices respond to visual and tactile 

stimuli (Levänen et al. 1998; Finney et al. 2001).  

One view is that sensory cortices preserve their original cognitive operation, even 

in cases of cross-modal plasticity (Pascual-Leone and Hamilton 2001; Renier et al. 2010; 

Meredith et al. 2011; Striem-Amit et al. 2011; Renier et al. 2014; Cecchetti et al. 2016; 

Amedi et al. 2017). According to the meta-modal hypothesis, in blindness, “visual” cortices 

continue to perform vision-like functions, but over input from audition and touch. 

Consistent with this idea, dorsal occipital areas that are part of the visual “where” pathway 
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in sighted individuals become active during sound localization in blind individuals (Wanet-

Defalque et al. 1988; Gougoux et al. 2005; Collignon et al. 2011). Analogously, it has been 

suggested that retinotopic areas typically involved in fine-grained visuospatial 

discrimination become involved in fine-grained somatosensory discriminations, such as 

texture perception, in blindness (Sadato et al. 1996; Merabet et al. 2004; Sathian and Stilla 

2010). In these instances of cross-modal plasticity, sensory cortices appear to preserve their 

underlying cognitive operation, even when the sensory modality to which they respond 

changes. One interpretation of these findings is that while the preferred sensory modality 

is malleable, the cognitive operation itself (e.g. spatial localization) is specified by intrinsic 

physiology (Pascual-Leone and Hamilton 2001). 

An alternative possibility is that cortices are capable of drastically altering their 

function based on early experience (Bedny 2017). Evidence for this idea comes from 

studies of blindness which demonstrate that “visual” cortices become responsive to 

language. In blindness, retinotopic “visual” areas, including V1, become sensitive to 

meaning and grammar. In blind, but not sighted, individuals, occipital cortices respond 

more to words than meaningless sounds, more to sentences than unconnected lists of words, 

and more to grammatically complex than grammatically simple sentences (Röder et al. 

2002; Bedny et al. 2011; Lane et al. 2015). Furthermore, language-responsive “visual” 

cortices become correlated at rest with prefrontal language regions (Bedny et al. 2011). 

Since language and vision are cognitively and evolutionarily distinct, these observations 

challenge the idea that cortical areas have fixed functions, even meta-modal ones.  
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This dissertation assesses the extent to which cortical regions truly change their 

function in cross-modal plasticity. I find that, consistent with the pluripotency hypothesis, 

human cortical areas can take on a dramatically different cognitive functions depending on 

early experience, and that this plasticity likely influences behavior. 

First, Chapter 2 shows that repurposing of “visual” cortices is systematic across 

individual cases of blindness. “Visual” cortices synchronize to each other when blind 

individuals listen to rich, entertaining vignettes. This synchronization of “visual” cortices 

occurs during naturalistic listening conditions, suggesting that “visual” cortices are not just 

recruited as an “overflow” processor for uncommon psychological tasks, but are utilized 

during everyday life. Moreover, Chapter 2 provides a broad brush answer to the debate 

over which kinds of functions take over “visual” cortices—i.e., lower sensory or higher 

cognitive. I find that “visual” cortex synchronization varies parametrically with the amount 

of higher cognitive content in the stimulus to which participants are exposed. This pattern 

of synchronization mirrors that of fronto-temporal cortices and breaks from that of non-

visual sensory cortices. Chapter 2 cannot inform which higher cognitive content drives 

synchronization between “visual” cortices of blind individuals. However, it does provide a 

lower bound (of 65%) on the topographic extent to which higher cognitive functions take 

over “visual” cortices. Moreover, because synchronization to higher cognitive content was 

observed bilaterally in “visual” cortices, and language responses are typically lateralized, 

findings from Chapter 2 provide a hint that higher cognitive functions in “visual” cortices 

are not limited to language. 
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Chapter 3, therefore, directly tests for the presence of a non-verbal higher-cognitive 

function in “visual” cortices of blind individuals. Using a go/no-go task of response 

inhibition, I find evidence for executive function in right-lateralized “visual” cortices. Like 

fronto-parietal cortices, and unlike sensory-motor cortices, of both blind and sighted 

groups, “visual” cortices of blind individuals respond to executive load. Moreover, a 

functional connectivity analysis of brain activity at rest provides independent evidence that 

regions of “visual” cortices are incorporated into fronto-parietal executive-function 

networks in blindness. Executive-function responsive “visual” cortices increase their 

synchronization with prefrontal executive control regions and decrease their 

synchronization with auditory and sensory-motor areas. Executive function responses in 

“visual” cortices represent, possibly, the first finding of non-verbal higher cognitive 

function in “visual” cortices of blind individuals. Importantly, executive-function 

responsive “visual” cortices demonstrate that language functions in “visual” cortices are 

not a solitary anomaly to the hypothesis of meta-modality. Thus, Chapter 3 compliments 

Chapter 2 in providing strong evidence for fronto-parietal higher cognitive takeover of 

“visual” cortices in blindness.   

Finally, in Chapter 4, I find evidence for a behavioral benefit in the very higher 

cognitive functions for which “visual” cortices are repurposed. Blind individuals 

outperform sighted individuals in tests of sentence comprehension and in a task of response 

inhibition. Importantly, in blind and in sighted groups, individual differences in response 

inhibition and working memory do not predict individual differences on sentence 

comprehension performance. This suggests distinct neural mechanisms mediating sentence 
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comprehension and executive function. This finding is consistent with the observation that 

observed responses for language and executive function are spatially distinct within 

“visual” cortices of blind individuals. Findings from Chapter 4 cannot rule out the 

possibility that non-“visual” cortices are responsible for the behavioral advantage. 

However, Chapter 4 suggests that, if such “visual” cortex responses are functionally 

relevant, they may mediate the behavioral benefit observed.  

 Together with prior findings of language and math responses in “visual” cortices 

of blind individuals (Bedny et al. 2011; Kanjlia et al. 2016), this dissertation provides 

evidence that typically sensory visual cortices undergo extensive repurposing for higher 

cognitive functions in cases of blindness. In three independent instances— 2 stimulus 

driven and 1 in the absence of a stimulus— I observed that “visual” cortices of blind 

individuals concord with higher cognitive fronto-tempero-parietal cortices and dissociate 

from primary auditory, somatosensory, and motor cortices (Chapter 2 & Chapter 3). More 

broadly, the work presented here suggests that human cortices are radically amenable to 

fulfilling functional roles for which they did not evolve. Adapted cortical tissues may be 

deftly incorporated into pre-existing networks to provide a behavioral benefit.  

An open question is whether different functions take up larger or smaller amounts 

of cortical real estate in different cases of blindness. Evidence of behavioral benefits from 

“visual” cortex plasticity suggest an intriguing possibility that behavioral necessity may 

mediate the extensiveness of “visual” cortex takeover by each fronto-parietal network. 

According to this hypothesis, “visual” cortices of each blind individual would show distinct 

sub-regions for language, math, and executive function, but the relative amount of each 
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area of functional specialization would reflect which higher cognitive functions are of most 

benefit to that particular individual.  

Interestingly, in the work presented here, I also observed two independent instances 

of responses to non-visual stimuli in the visual cortices of blindfolded, sighted adults 

(Chapter 2 & Chapter 3). The cognitive role of visual cortex responses to non-visual stimuli 

in sighted individuals is not known. In both cases, however, visual cortex responses in the 

sighted group differed qualitatively from “visual” cortex responses in the blind group. One 

possibility is that, under conditions of visual deprivation, visual cortices of sighted 

individuals receive the same input as “visual” cortices of blind individuals but responses 

are dissimilar because the occipital cortices have not undergone the same developmental 

changes to local circuitry. Another possibility is that visual cortices of blindfolded sighted 

individuals receive predominantly different input. This latter possibility is consistent with 

my finding that, in blindfolded sighted individuals, functional connectivity is stronger 

between visual cortices and sensory/motor cortices than between visual cortices and fronto-

parietal cortices (Chapter 3). The occipital cortices of sighted, but not blind, individuals 

may thus show hints of meta-modality. 

Together, the available resting-state and task-based findings from blindness support 

the hypothesis that anatomical connectivity plays a major role in driving cortical function. 

The finding that occipital cortices of blind individuals take on fronto-parietal functions is 

consistent with the observation that, in sighted and blind individuals alike, fronto-parietal 

networks constitute a main source of anatomical afferent connections to the visual system 

(Bressler et al. 2008; Gilbert and Li 2013). Since there is no evidence of large-scale 
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additional anatomical tracts in blind relative to sighted individuals, these functional 

changes are likely to result from long-range connectivity between fronto-parietal networks 

and visual cortices that are present in both blind and sighted groups (Shimony et al. 2005; 

Shu, Li, et al. 2009; Shu, Liu, et al. 2009). I hypothesize that the functional reorganization 

observed in blindness is mediated by local synaptic changes that alter the efficacy of top-

down anatomical inputs from higher-cognitive regions. 

Further support for the idea that long-range anatomical connectivity directs the 

function of cortex comes from the localization of different functions within the “visual” 

cortices of blind individuals. Across multiple examples of plasticity, “visual” cortex 

functions in blind individuals are co-lateralized with the non-visual cortices that classically 

implement such functions. Executive function activity is right lateralized in both fronto-

parietal and “visual” cortices (Chapter 3). By contrast, language responses in the “visual” 

cortices are on average more pronounced in the left hemisphere, in keeping with left 

lateralization of language in frontotemporal cortices (Röder et al. 2002; Bedny et al. 2011; 

Lane et al. 2015). Moreover, in blind individuals with right-lateralized language processing 

in fronto-temporal cortices, language responses in “visual” cortices are also right-

lateralized (Lane et al. 2017). Because anatomical connectivity is stronger within, than 

across, hemispheres, co-lateralization of blind “visual” cortices is consistent with the 

hypothesis that plasticity is constrained by pre-existing anatomical connections to the 

occipital cortices. 

Support for anatomical connectivity-based directives to functional specialization 

also comes from studies outside of blindness (O'Leary 1989; Johnson 2000; Dehaene and 
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Cohen 2007; Mahon and Caramazza 2011). For example, anatomical connectivity predicts 

which region of the ventral object-recognition stream will become the “visual word form 

area” (VWFA) (Saygin et al. 2016). Relative to other parts of the ventral stream, this 

cortical location has strong reciprocal anatomical connectivity with fronto-temporal 

language networks, even prior to onset of literacy (Dehaene et al. 2015). Such results are 

consistent with findings from studies of blindness. Together, these studies support the view 

that anatomical connectivity plays a major role in shaping cortical function. However, the 

functional repurposing that occurs in blindness is far more extensive than in the case of 

reading. In cases of neuronal recycling, cortical tissues undergo slight adaptations to 

accommodate cultural inventions—e.g., reading and math. Importantly, the new functions 

assumed share something with the original functions putatively prescribed by evolution. In 

cases of blindness, input from fronto-parietal cortices dramatically changes the functional 

profile of “visual” cortices. Studies of blindness, therefore, uniquely inform the extent to 

which cortical structures can flexibly take on novel functions. Studies of congenital 

blindness also tease apart the contribution of intrinsic constraints and experience. In 

contrast, cultural domains, such as reading and number, build on the effects of previous 

experiences that occurred early in life.  

In this dissertation, I observed large-scale functional flexibility of “visual” cortices 

in blindness. The same anatomical connectivity pattern that mediates communication 

between vision and higher-order cognition in those who are sighted enables the 

incorporation of occipital cortices into higher cognitive networks in blindness. Individual 

experiences drastically alter biases in anatomical connectivity. Anatomical afferents, in 
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turn, differentiate cortical areas by regulating a cortical area’s input. Differences in 

functional specialization thus result from differences in anatomical connectivity directives. 

At birth, human cortices are radically flexible to take on area-novel functional roles. 

 

 

Summary 

Blindness is a window into understanding cortical specialization. This dissertation 

provides evidence that the human brain is much more pliant than previously thought. 

Though blind and sighted occipital cortices contain similar long-range connectivity, 

different connections become primary as a result of experience. In blindness top-down 

input from fronto-parietal and temporal networks comes to dominate the “visual” system. 

In this way, studies in blindness inform not just the functional plasticity of the brain but 

also uncover how anatomy directs functional specialization. Rather than having 

predetermined functions, brain structures appear to functionally differentiate in accord with 

each individual’s unique experience and intrinsic anatomical connectivity biases. 

Therefore, radical plasticity does not implicate a complete break between structure and 

function, but rather a break between structure and anatomical location. A brain structure’s 

function is determined not by its location but by what it is connected to. This extreme 

flexibility of the human brain suggests that evolution doesn’t just provide for what is 

expected. Rather, it goes so far as to provide a safeguard for the unexpected. 
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