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Abstract 

 The human oncogene PIK3CA is frequently mutated in human cancers. Two 

hotspot mutations in PIK3CA, E545K and H1047R, have been shown to regulate 

widespread signaling events downstream of AKT, leading to increased cell proliferation, 

growth, survival, and motility. Although many studies have associated PIK3CA 

mutations with features of transformation, a global and quantitative study of how mutant 

PIK3CA impacts the signaling networks and consequently transforms epithelial cells has 

not yet been described. 

 The goal for this thesis project was to systematically dissect the signaling 

pathways that are activated due to these PIK3CA mutations in a global manner utilizing 

the power of phosphoproteomics and mass spectrometry. To this end, we employed stable 

isotope labeling of amino acids in cell culture (SILAC) to precisely identify and quantify 

the phosphorylation changes that occur in an isogenic series of immortalized non-

tumorigenic breast epithelial cell lines containing E545K and H1047R mutations. We 

performed two phosphopeptide enrichment methods, namely titanium dioxide (TiO2) 

beads to enrich for mainly serine/threonine phosphorylated peptides and anti-

phosphotyrosine antibody to enrich for tyrosine phosphorylated peptides followed by 

high resolution LC-MS/MS analysis.  

From ~9000 unique phosphopeptides identified, we found that aberrant activation 

of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of 

kinases and downstream signaling networks. By integrating the phosphoproteomic data 
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with human microarray-based AKT1 kinase assays, we discovered and validated six 

novel AKT1 substrates. One of these substrates, cortactin, was found to be important in 

conferring the cells with invasion/migration advantage. Through mutagenesis studies, we 

demonstrated that phosphorylation of cortactin by AKT1 is important for mutant PI3K-

enhanced cell migration and invasion. Although it is well understood that these mutations 

in PIK3CA result in hyperactivation of the serine/threonine kinase AKT, we also 

observed an unexpected widespread modulation of tyrosine phosphorylation levels of 

proteins in the mutant cells. In the tyrosine kinome alone, 29 tyrosine kinases were 

altered in their phosphorylation status. Many of the regulated phosphosites that we 

identified were located in the kinase domain or the canonical activation sites, indicating 

that these kinases and their downstream signaling pathways were activated. Our study 

demonstrates the utility of a quantitative and global approach to identify mutation-

specific signaling events and to discover novel signaling molecules as readouts of 

pathway activation or potential therapeutic targets.  

 

Advisor: Akhilesh Pandey, M.D., Ph.D. 

Reader: Edward Gabrielson, M.D. 
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Chapter 1: Introduction 

The phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that regulate 

a number of important biological processes including cell growth, survival, proliferation, 

and differentiation (Vivanco and Sawyers, 2002). In mammals, there are three classes of 

PI3K that are distinct in their mechanisms of regulation, substrate specificity and 

structure. Class I PI3Ks are heterodimers composed of a regulatory subunit (p85) and a 

catalytic subunit (p110) that transduce signals from receptors such as G-protein-coupled 

receptors and receptor tyrosine kinases. Upon growth factor stimulation, the Src 

Homology 2 (SH2) domains of the p85 subunit bind to the phosphorylated tyrosine 

residue of the receptors, recruiting PI3K to the membrane. This binding results in the 

release of inhibition of p85 on the lipid kinase activity of p110, which is then free to 

phosphorylate the phosphatidylinositol (4,5)-bisphosphate (PIP2) phospholipid to 

generate phosphatidylinositol (3,4,5)-trisphosphate (PIP3) (Yu et al., 1998). The 

accumulation of PIP3 results in membrane recruitment and activation of PH-domain 

containing proteins such as PDK1 and AKT. The activation of AKT initiates a slew of 

signaling events that ultimately result in cell proliferation, survival, growth, and motility. 

The mitogenic effects from the activation of this pathway are the reason why PIK3CA, 

the gene that encodes p110α, has been found to be frequently mutated in human cancers. 

Many of the mutations in this gene result in the gain of function of PI3K to confer cells 

with oncogenic advantage.  

Recent studies have shown that three activating mutations, E542K and E545K in 

the helical domain and H1047R in the kinase domain, can lead to downstream activation 
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of PDK1 and/or AKT to promote carcinogenesis and metastasis (Samuels et al., 2004; 

Sarbassov et al., 2005; Vasudevan et al., 2009). Studies have also suggested that 

mutations in the kinase or helical domains have distinct effects on PI3K downstream 

signaling events. Zhao and Vogt showed that binding to p85, the regulatory subunit of 

PI3K, is essential for transformation induced by the kinase domain PIK3CA mutant 

(H1047R) but not for transformation induced by mutations in the helical domain (E542K 

and E545K) (Zhao and Vogt, 2008). A more recent study further demonstrated that the 

helical domain mutant, but not the kinase domain mutant, could directly associate with 

insulin receptor substrate 1 without the mediation of p85, which is required for activation 

of wild-type PIK3CA or PIK3CA with kinase domain mutations (Hao et al., 2013). 

Clinical studies have shown that tumors with H1047R mutation exhibit a better response 

to PI3K/mammalian target of rapamycin (mTOR) inhibitors compared to those carrying 

helical domain mutations (Janku et al., 2013).  

To dissect the signaling mechanisms underlying the mutant PIK3CA-induced 

transformation, through genetic engineering, we utilized a series of human cell lines that 

differ only in their PIK3CA allele status, containing either wild-type (wt) or mutant forms 

of PIK3CA at codon 545 or 1,047 (Gustin et al., 2009; Samuels et al., 2005). Both of 

these PIK3CA mutations can activate multiple downstream pathways, which confer the 

ability for growth factor-independent proliferation in vitro and metastatic capability in 

vivo (Gustin et al., 2009; Samuels et al., 2005). We also utilized a previously developed 

inhibitor, J124, a novel and specific inhibitor of PIK3CA activity (Schmidt-Kittler et al., 

2010). Treatment with this inhibitor can dramatically reduce AKT activity and inhibit 

metastasis of cancer cells bearing PIK3CA mutations. In this study, we performed a mass 
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spectrometry-based phosphoproteomic analysis of a spontaneously immortalized non-

tumorigenic breast epithelial cell line MCF10A along with two isogenic derivatives 

generated by knock-in of mutant alleles—one bearing the E545K mutation located in the 

helical domain in exon 9 and the other bearing the H1047R mutation located in the kinase 

domain in exon 20 of the PIK3CA gene (hereafter referred to as Ex9-KI and Ex20-KI) 

(Gustin et al., 2009).  

Mass spectrometry-based phosphoproteomics has become a powerful tool for 

studying signaling networks in a global manner, especially in conjunction with stable 

isotope labelling by amino acids in cell culture (SILAC) for a precise quantitative readout 

(Harsha et al., 2008; Olsen et al., 2006; Ong et al., 2002). Using TiO2-based 

phosphopeptide enrichement, we identified and quantified 8,075 unique phosphopeptides, 

of which 1,142 are more phosphorylated in PIK3CA mutant cells and undergo a decrease 

in their phosphorylation status when treated with J124, a specific inhibitor of PIK3CA 

gene product. We used protein microarrays as a complementary platform to validate 

direct AKT1 substrates in vitro. Integration of the data from phosphoproteomic analysis 

with that from protein microarrays led to identification of a number of previously 

uncharacterized signaling molecules that appear to be involved in oncogenic signaling 

mediated through mutation of PIK3CA. Most notably, our studies identified cortactin as a 

novel AKT1 substrate whose phosphorylation enhances migration and invasion, key 

downstream events of the PIK3CA and AKT1 activation (Wu et al., 2014). We also 

enriched for tyrosine phosphorylated peptides using anti-phosphotyrosine antibody prior 

to LC-MS/MS analysis and we observed a widespread modulation of the tyrosine 

kinome, signifying that there are unexpected crosstalks that occur between the primarily 
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serine-threonine kinase signaling through the PI3K-AKT pathway with tyrosine signaling 

pathways (Zahari et al., 2015). Our profiling study should serve as a useful resource for 

research as well as clinical studies involving development of novel therapeutic targets. 
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Chapter 2: Phosphoproteomic analysis of isogenic mutant 

PIK3CA knock-in cell lines 

Introduction 

Although many studies have associated PIK3CA mutations with features of 

transformation, a global and quantitative study of how mutant PIK3CA impacts the 

signaling networks and consequently transforms epithelial cells has not been previously 

described. Here, we have utilized stable isotope labeling of amino acids in cell culture 

(SILAC) in conjunction with high-resolution mass spectrometry to analyze the 

phosphoproteome alterations that occur due to the two hotspot, activating mutations in 

PIK3CA, E545K and H1047R. An isogenic knockin system along with a novel PIK3CA-

specific inhibitor and high-resolution mass spectrometry-based quantitative 

phosphoproteomics provided tools for us to map the signal transduction pathways that are 

specifically modulated by PIK3CA mutations in a comprehensive manner. With this 

approach, we identified >8,000 unique phosphopeptides, and observed global elevation of 

phosphorylation levels that impacted many kinases in the human kinome as a result of 

mutant PIK3CA. We found activation of diverse signaling pathways that were both 

previously known and unknown to be activated downstream of PI3K signaling. Our data 

provide a foundation for delineating the transformational effects of PIK3CA in cancer and 

other physiological processes. 

Experimental Procedures  
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Cell culture and reagents 

Cell lines were grown in 5% CO2 at 37 °C. The breast epithelial cell line MCF-

10A and its PIK3CA mutant knockin cell lines, Ex9-KI and Ex20-KI were cultured in 

DMEM/F12 (1:1) supplemented with 5% horse serum, 20 ng/ml EGF for MCF10A 

parental cells and 0.2 ng/ml EGF for knockin cells. Also, 10 μg/ml insulin (Roche), 0.5 

μg/ml hydrocortisone (Sigma), and 100 ng/ml cholera toxin (Sigma) were supplemented 

for all cells. In order to label cells with stable isotopic amino acids, MCF10A and 

PIK3CA mutation knock in cells were propagated in DMEM/F12 SILAC media with 

corresponding complete supplements but deficient in both L-lysine and L-arginine 

(Thermo Fisher Scientific) and supplemented with light lysine (K) and arginine (R) for 

light, 2H4-K and 13C6-R for medium state and 13C6
15N2-K and 13C6

15N4-R for heavy state 

labeling (Cambridge Isotope Laboratories). Cells were seeded at 80% confluence in 5% 

horse serum DMEM/F12 basal media overnight. Cells were pretreated for 3 hours with 

0.2 ng/ml EGF that is close to the physiological concentration of EGF in serum 54 and 

followed by 30 minutes treatment of 500 ng/ml J124 or 0.05% DMSO as vehicle control 

before harvesting. Before harvesting, cells were checked under microscope to ensure the 

proper confluence and healthy status. The phase contrast images of cells before 

harvesting are shown in Figure 1A.  

Immunoblotting and siRNA knockdown 

Cells were harvested and lysed in modified RIPA buffer (50 mM Tris-HCl, pH 

7.4, 150 mM NaCl, 1 mm EDTA, 1% Nonidet P-40, 0.25% sodium deoxycholate, and 1 
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mM sodium orthovanadate in the presence of protease inhibitors). Whole cell protein 

extracts were denatured and separated in NuPAGE gels (Invitrogen), transferred to 

nitrocellulose membranes, and probed with primary and horseradish peroxidase-

conjugated secondary antibodies. The primary antibodies used are anti-p44/p42 MAPK 

(9102; Cell Signaling Technology), anti-phospho-p44/p42 MAPK-Thr202/Tyr204 (9106; 

Cell Signaling Technology), anti-AKT (9272; Cell Signaling Technology), anti-pAKT-

Ser473/Thr308 (9271, 2965; Cell Signaling Technology), anti-ACLY (4332; Cell 

Signaling Technology), pACLY-Ser544 (4331; Cell Signaling Technology), pGSK3β-

Ser9 (5538; Cell Signaling Technology) GSK3β Cell Signaling Technology (9832, Cell 

Signaling Technology), EPHA2 (3625; Epitomics), pEPHA2-Ser897 (6347; Cell 

Signaling Technology), β-ACTIN (A5316, Sigma) and 4G10 (17132; Millipore). 50 nM 

siRNA (CACCAGGAGCAUAUCAACAUA) targeting cortactin (Qiagen) was used for 

transfections with RNAiMax (Invitrogen). Cells were harvested 48 hours post 

transfection for assessing knockdown efficiency or other follow-up experiments. 

Trypsin digestion 

Cell lysates were prepared in urea lysis buffer containing 20 mM HEPES pH 8.0, 

9 M urea, 1 mM sodium orthovanadate, 2.5 mM sodium pyrophosphate, 1 mM β-

glycerophosphate and 5mM sodium fluoride. The lysates were sonicated and cleared by 

centrifugation at 3,000 × g at 4ºC for 10 min. Protein estimation was carried out using 

BCA protein assays. Equal amounts of protein from three SILAC labeled states were 

mixed, reduced with 5 mM dithiothreitol and alkylated with 10 mM iodoacetamide. 

Lysates were diluted to less than 2 M urea final concentration in 20 mM HEPES (pH 8.0) 
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and incubated with TPCK-treated trypsin at 25ºC overnight. The reaction was quenched 

using 1% trifluoroacetic acid. The protein digest was desalted using C18 reverse phase 

column (Waters, UK) and eluted peptides were lyophilized and subjected to 

phosphopeptide enrichment. 

TiO2-based phosphopeptide enrichment 

Peptides were fractionated by strong cation exchange (SCX) chromatography as 

described earlier (Beausoleil et al., 2004). Briefly, 10 mg of lyophilized peptides mixture 

was resuspended in 1 ml of SCX solvent A (5 mM KH2PO4 pH 2.7, 30% ACN) and were 

separated on a PolySULPHOETHYL A column (5 µm, 200 Å, 200 × 9.4 mm; PolyLC 

Inc., Columbia, MD) with an increasing gradient of SCX solvent B (5 mM KH2PO4 pH 

2.7, 30% ACN, 350 mM KCl) on an Agilent 1100 HPLC system. In total, 15 fractions 

were collected. Each fraction was subjected to TiO2-based phosphopeptide enrichment as 

described earlier (Larsen et al., 2005). Briefly, TiO2 beads were incubated with DHB 

solution (80% ACN, 1% TFA, 3% 2,5-dihydroxybenzoic acid (DHB)) for 4 hours at 

room temperature. Each fraction was resuspended in DHB solution and incubated with 

pretreated TiO2 beads (5 mg). Phosphopeptide-bound TiO2 beads were washed three 

times with DHB solution and twice with 40% ACN. Peptides were eluted three times 

with 40 µl of 2% ammonia into 10 µl of 20% TFA.  

Liquid chromatography tandem mass spectrometry 
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LC-MS/MS analysis of enriched phosphopeptides was carried out using a reverse-

phase liquid chromatography system interfaced with an LTQ-Orbitrap Velos mass 

spectrometer (Thermo Fisher Scientific). The peptides were loaded onto an analytical 

column (10 cm × 75 µm, Magic C18 AQ 5 µm, 120 Å) in 0.1% formic acid and eluted 

with a linear gradient from 5 to 60% ACN in 90 minutes. Precursor scans (FTMS) were 

acquired in the range of 350-1,700 m/z at 60,000 resolution at 400 m/z on an Orbitrap 

analyzer. Ten most abundant precursor ions from a survey scan were selected for HCD 

fragmentation (isolation width of 1.90 m/z; 35% normalized collision energy and 

activation time of 0.1 ms were allowed) and MS2 spectra were acquired at 15,000 

resolution at 400 m/z on the Orbitrap analyzer.  

Mass spectrometry data analysis 

Proteome Discoverer (v 1.3; Thermo Fisher Scientific) suite was used for 

quantitation and database searches. The tandem mass spectrometry data were searched 

using Mascot (Version 2.2.0) and SEQUEST search algorithms against a Human RefSeq 

database (v 46 containing 33,249 entries) supplemented with frequently observed 

contaminants. For both algorithms, the search parameters included a maximum of one 

missed cleavage; carbamidomethylation of cysteine as a fixed modification; N-terminal 

acetylation, oxidation at methionine, phosphorylation at serine, threonine and tyrosine 

and SILAC labeling 13C6,15N2-lysine; 2H4-lysine; 13C6-arginine and 13C6,15N2-arginine as 

variable modifications. The MS tolerance was set at 10 ppm and MS/MS tolerance to 0.1 

Da. Score cut off was set to 0.01 false discovery rate at the peptide level. The probability 

of phosphorylation for each Ser/Thr/Tyr site on each peptide was calculated by the 
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PhosphoRS algorithm (Taus et al., 2011). We averaged the intensities of phosphopeptides 

identified from the forward and reverse experimental groups. We chose a 1.5 fold cut off 

to consider peptides as phosphorylation increased and a 0.67 fold for peptides to be 

considered as phosphorylation decreased. This threshold was chosen because we 

observed that AKT phosphorylation increased by 1.53 fold in PIK3CA mutant knockin 

cells. Many of the known phosphorylation sites of AKT substrates were found to range 

between 1.5 and 2-fold in the knock-in cell lines compared to the parental cells. Among 

these were BAD S75 (1.82), CTNNB1 S552 (1.62), HSPB1 S82 (1.81), PDCD4 S457 

(1.50), PEA15 S116 (1.60), RANBP3 S126 (1.96) and YAP1 S127 (1.65). To identify 

and plot the differentially regulated phosphopeptides, we averaged the intensity of each 

phosphopeptide detected from MCF10A, PIK3CA mutant knockin cells and knockin cells 

treated with PIK3CA inhibitor, J124. The relative ratio was calculated by dividing the 

intensity of each phosphorylated peptide over the average intensity of the corresponding 

peptide and used for plot. The mass spectrometry proteomics data have been deposited to 

the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the 

PRIDE partner repository with the dataset identifier PXD000599. 

Motif analysis 

The surrounding sequence (7 amino acid residues on either side) for each 

identified phosphorylation site was extracted from the RefSeq database. For 

phosphorylation sites that were localized at the region of the N-or C-termini, the 

surrounding sequence could not be extended in this fashion were excluded from further 

motif analysis. The motif-x algorithm (http://motifx.med.harvard.edu) was used to extract 
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motifs. The significance threshold was set to P<1e-3. The minimum occurrence of motif 

was set to 20 for pSer peptides against an IPI Human proteome background. The 

NetworKIN (http://networkin.info) tool was used to identify predicted protein kinases for 

all phosphosites as substrates. These were further classified based on motifs identified by 

motif-X. 

Kinase-substrate and protein interaction network analysis 

Three major kinase substrate databases, HPRD (www.hprd.org), PhosphositePlus 

(www.phosphosite.org) and Phospho.ELM (www.phospho.elm.eu.org) and one 

comprehensive protein-protein interaction database MIMI (www.mimi.ncibi.org) were 

merged based on kinase-substrate and protein-protein interaction pairs. If the protein 

pairs had both kinase-substrate in interaction partnerships, only kinase-substrate 

relationship was retained. We mapped 474 proteins whose phosphorylation levels were 

directly correlated with PI3K activity, with the merged database. Only kinase-substrate 

and protein interactions between the proteins belonging to the searched data set were 

selected, thereby excluding external candidates. The resulting interactome contained 208 

phospho-regulated proteins forming 144 kinase-substrate and 274 protein-protein 

interaction relationships. The network was visualized by Cytoscape in the mode of force-

directed layout. A graph theoretical clustering algorithm, molecular complex detection 

(MCODE) (Bader and Hogue, 2003) was used to identify densely connected clusters.  

Results 
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Phosphoproteomic analysis of mutant PIK3CA knock-in cells 

To validate the system employed in this study, we first examined the 

phosphorylation levels of AKT1 and mitogen-activated protein kinase (MAPK) in the 

mutant cells, where we found phospho-AKT and phospho-MAPK levels to be 

dramatically elevated in both cells and substantially suppressed by J124 treatment (Figure 

1B). To interrogate the aberrant signaling triggered by the mutations in PIK3CA, we 

combined SILAC and TiO2-based phosphopeptide enrichment followed by liquid 

chromatography tandem mass spectrometry (LC-MS/MS) analysis. Lysates of MCF10A 

parental cells were mixed with Ex9-KI cells that were treated with vehicle or J124 in a 3-

plex SILAC experiment (Figure 2A). The same experimental strategy was employed for 

the analysis of Ex20-KI cells in a separate 3-plex SILAC experiment (Figure 2B). After 

enrichment of phosphopeptides with TiO2 beads, the samples were desalted and analyzed 

on a high-resolution Fourier transform mass spectrometer. We also carried out replicate 

experiments in which the SILAC labels were swapped. In all, we identified 8,075 unique 

phosphopeptides derived from 2,016 proteins. Of these, 7,199 phosphopeptides harbored 

serine phosphorylation, 1,631 phosphopeptides contained threonine phosphorylation and 

168 phosphopeptides harbored tyrosine phosphorylation, and most of the 

phosphopeptides were singly or doubly phosphorylated (Figures 3A,B). 

The SILAC ratios (KI cells versus MCF10A) of phosphopeptides obtained from 

the two replicate experiments of both PIK3CA knockin cells showed a strong positive 

correlation (the correlation coefficient R=0.86 for Ex9-KI group and R=0.87 for the 

Ex20-KI group) for two independent biological replicates (Fig. 3C,D). There were 2,469 
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phosphopeptides that were detected in common in the Ex9-KI and Ex20-KI experimental 

groups, and the SILAC ratios (Ex9-KI or Ex20-KI cells versus MCF10A) of these 

phosphopeptides in the two cells with PIK3CA mutations were also quite correlated 

(R=0.70) (Figure 3E). Of the 2,469 phosphopeptides detected in common, 826 peptides 

derived from 338 proteins demonstrated the same increased or decreased phosphorylation 

pattern (>1.5-fold change in phosphopeptide intensity for both Ex9-KI and Ex20-KI 

cells) when compared with MCF10A cells. However, we also found that 417 peptides 

from 243 proteins were highly phosphorylated (>1.5-fold change) only in Ex9-KI or 

Ex20-KI cells compared with MCF10A cells, but not in both. These changes in 

phosphorylation patterns suggest that although downstream signaling effects are largely 

similar for these two particular mutant forms of PIK3CA, there are also some that are 

unique to the individual PIK3CA mutations. For instance, we found three kinases, PAK2, 

PAK4 and SLK, that were highly phosphorylated only in Ex9-KI cells and have been 

reported to be activated by PI3K-AKT pathway to promote cell migration/ invasion 

(Roovers et al., 2009; Wells et al., 2002; Wilkes et al., 2005). It has been shown that 

breast cancer cells expressing PIK3CA with helical domain (Ex9) mutation are more 

invasive than the cells expressing PIK3CA with kinase domain (Ex20) mutations (Pang et 

al., 2009), which is consistent with the data from this isogenic knockin system. The 

evidence of increased phosphorylation of these kinases specific to each knockin mutant 

cell could shed new light on some of the mechanisms underlying the phenotypic 

differences induced by PIK3CA Ex9 or Ex20 mutants. 

Global elevation of protein phosphorylation by mutant PIK3CA 
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Overall, we observed that introduction of a single oncogenic amino acid change 

(E545K or H1047R) in PIK3CA can substantially elevate protein phosphorylation levels. 

In both Ex9-KI and Ex20-KI experimental groups, four major regulation patterns were 

observed. The first pattern included phosphopeptides identified in the Ex9-KI and Ex20-

KI experimental groups whose phosphorylation levels were 1.5-fold higher in mutant 

cells than parental cells and exhibited at least a 33% reduction in Ex9-KI/Ex20-KI cells 

on treatment with J124 (Figure 4A). A second pattern included peptides that were highly 

phosphorylated in Ex9-KI/Ex20-KI but were not substantially altered on treatment with 

J124 (Figure 4B). A third pattern was of peptides that were less phosphorylated in Ex9-

KI/Ex20-KI but were not substantially altered on treatment with J124 (Figure 4C). The 

fourth pattern included a set of phosphopeptides whose phosphorylation levels were 

unaltered in knockin cells but underwent suppression on J124 treatment (Figure 4D). 

Overall, as compared with MCF10A cells, we observed increased phosphorylation of 

about 47% and 33% of peptides in Ex9-KI and Ex20-KI cells, respectively. To examine 

the effects of J124 on global protein phosphorylation, we generated an intensity plot 

depicting the distribution of log2-transformed intensity ratios of highly phosphorylated 

peptides in Ex9-KI cells versus MCF10A cells, or J124-treated Ex9-KI cells versus 

MCF10A cells (Figure 5A). We observed that J124 treatment resulted in a significantly 

global shift of phosphorylation pattern in Ex9-KI cells and significantly reduced the 

phosphorylation levels of highly phosphorylated peptides identified in this study. A 

similar trend was observed in the case of Ex20-KI cells. This global trend was confirmed 

by western blot analysis using phospho-specific antibodies targeting some of the well-

known key molecules downstream of the PI3K signaling pathway, including AKT1 and 
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GSK3β and recently identified AKT1 substrates, ATP citrate lyase (ACLY) (Bauer et al., 

2005; Berwick et al., 2002) and EPHA2 (Miao et al., 2009), which were elevated in 

knockin cells and were efficiently suppressed by J124 treatment (Figure 5B). These 

results clearly demonstrate that activation of mutated PIK3CA leads to a global increase 

in protein phosphorylation and profoundly affects signaling networks.  

Activation of multiple signaling pathways by mutant PIK3CA 

To better understand the global phosphorylation alterations induced by oncogenic 

PIK3CA mutations, we performed a Kyoto Encyclopedia of Genes and Genomes pathway 

analysis using an integrated online functional annotation tool, DAVID (Huang et al., 

2009), for the proteins with increased phosphorylation in Ex9-KI and Ex20-KI cells. 

Representative signaling pathways that were significantly enriched (P=0.05) in PIK3CA 

mutant knockin cells and involved in the biological processes, including cytoskeleton and 

migration, kinase-regulated signaling and cell cycle regulation are shown in Figure 5C. In 

agreement with previously reported observations (Gustin et al., 2009), our global 

phosphoproteomic study revealed that multiple oncogenic kinase-regulated signaling 

pathways such as MAPK, mTOR and ErbB were highly phosphorylated and enriched in 

PIK3CA mutant knockin cells. We also observed that multiple cell cycle-related 

pathways were enriched in mutant knockin cells, which has been previously suggested to 

provide a proliferative advantage in basal cell culture medium (Gustin et al., 2009). 

Notably, one of the pathways among the cell cycle- and cell proliferation-related 

pathways pertains to pyrimidine metabolism. The link between activation of PI3K-AKT 

pathway and regulation of pyrimidine metabolism has been described in two recent 
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studies (Ben-Sahra et al., 2013; Robitaille et al., 2013). These studies demonstrated that 

mTOR signaling downstream of PI3K-AKT module could enhance the de novo 

pyrimidine synthesis through phosphorylation of Ser1859 on CAD (carbamoylphosphate 

synthetase 2, aspartate transcarbamylase and dihydroorotase), a site that was also 

detected as highly phosphorylated in our experiments. We also observed increased 

phosphorylation of four other key enzymes (CTPS, RRM2, TK1 and DUT), which are 

involved in pyrimidine metabolism (Figure 6A). Finally, pathways regulating cell 

migration and invasion, such as those mediating actin rearrangements, cell adhesion and 

tight junction networks, were also found to be enriched (Figure 5C and 6B).  

Widespread modulation of phosphorylation of the kinome 

Of the 972 proteins that were found to be highly phosphorylated by one or both 

PIK3CA mutants, 46 were protein kinases. Of these protein kinases, 39 and 30 kinases 

were highly phosphorylated at serine/threonine residues in Ex9-KI or Ex20-KI cells, 

respectively (22 in common), suggesting that PI3K has a broad role in regulating cellular 

protein kinase activity. To obtain a systematic view of these differentially phosphorylated 

kinases, we mapped them and the corresponding phosphorylation sites onto a 

phylogenetic tree of the human kinome (Figures 7 and 8). Many of these modulated 

kinases have been shown to be associated with oncogenic transformation or metastasis in 

diverse cancers. Of the 39 highly phosphorylated kinases detected in Ex9-KI cells, 

elevation in the phosphorylation level of 25 kinases could be reversed by a short 

treatment with J124, suggesting that these kinases are likely to be directly regulated by 

AKT and/or PDK. Consistent with this suggestion, increased phosphorylation of S21 on 
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GSK3A, S9 on GSK3B and S897 on EPHA2 is already known to be directly 

phosphorylated by AKT (Cross et al., 1995; Miao et al., 2009; Srivastava and Pandey, 

1998) and phosphorylation of these sites is critical in regulation of their kinase activities 

(Huang et al., 2009; Miao et al., 2009; Pang et al., 2009). For instance, AKT has been 

recently shown to phosphorylate EPHA2 to induce ligand-independent activation of 

EPHA2 and to promote cell migration and invasion (Miao et al., 2009). In addition to 

increased phosphorylation of receptor tyrosine kinases, such as EGFR (T693) and 

EPHA2 (S897), we also observed increased phosphorylation on of a non-receptor 

tyrosine kinase, PTK2 (S932) also known as FAK1. 

Phosphorylation motifs enriched in mutant PIK3CA cells 

 The preference of amino acid motifs surrounding the phosphorylation sites is one 

of the major mechanisms that contribute to kinase specificity (Ubersax and Ferrell, 2007). 

Identification of overrepresented motifs could help pinpoint upstream kinases activated 

by mutant PIK3CA. To determine which linear motifs were overrepresented in our data 

set, we used the motif-X algorithm (Figure 9A,B). The peptides whose phosphorylation 

was increased in Ex9-KI and Ex20-KI cells and reduced on treatment with J124 were 

selected for this analysis. We identified 15 significantly enriched pS motifs (Figure 9A) 

and the sequence logos of top four enriched motifs are depicted in Figure 9B. Among 

these enriched motifs, eight were basic-rich motifs while three resembled the minimal 

AKT substrate motifs (RxRxxpS or RxxpS), which were ranked as the top two enriched 

phosphorylation motifs by motif-X analysis and Figure 9C. Prediction of the kinases 

upstream of these regulated phosphopeptides using the NetworKIN algorithm led to 
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identification of 34 kinases. The fraction of phosphopeptides corresponding to substrate 

motifs of each kinase was calculated and plotted in a heat map (Figure 9B). In agreement 

with the results of analysis with motif-X, the AKT kinase family was predicted to target 

the basic-rich motifs that were enriched in our data set (Figure 9B). In the integrated heat 

map combining motif-X and NetworKIN analysis, we observed that a large number of 

phosphopeptides contained sequence motifs that could be phosphorylated by RPS6K, a 

kinase downstream of mTOR, indicating activation of the canonical pathway from PI3K 

to AKT-mTOR-RPS6K. The activation of RPS6K is also supported by the fact that 

several phosphorylation-regulated sites known to be specifically phosphorylated by 

RPS6K were identified to be highly phosphorylated in PIK3CA mutant knockin cells. 

They are RPS6 S235/S240, EIF4B S442, HSPB1 S78/S82 and NCBP1 S22/T21. We also 

observed that CDK and MAPK kinases were predicted as the activated upstream kinases 

phosphorylating the peptides with the PxpSP substrate motif, (Figure 9B,C), consistent 

with our previous report (Gustin et al., 2009) that MAPK1 and MAPK3 were highly 

phosphorylated and activated in mutant PIK3CA knockin cells (Figure 1B). More 

importantly, of these upstream kinases, 11 (MAP4K4, MAPK1, PAK2, PAK4, PRKAA1, 

PRKCD, RPS6KA1, CDK2, CDK3, CSNK1A1 and AKT1) were indeed found to be 

more phosphorylated in PIK3CA mutant cells and were downregulated upon J124 

treatment. In addition to the activation of canonical kinases (such as AKT1, RPS6K1 and 

MAPK1) by oncogenic PIK3CA mutations, identification of a broader spectrum of PI3K-

modulated kinases, including PAK2/4, CASNK1A1, MAP4K4 and PRKCD, could bring 

new insights into the understanding of the mechanisms of oncogenic transformation 

induced by mutant PIK3CA. 
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Interactome analysis to identify activated kinase pathways  

Our motif analysis indicated that kinases, including AKT, MAPKs and CDKs, 

were activated in PIK3CA mutant knock-in cells. To understand the signaling networks 

more fully, we decided to study the kinase–substrate relationships and protein–protein 

interactions among the identified phosphoproteins. To do so, we first generated a 

database by integrating three kinase–substrate databases, HPRD (Keshava Prasad et al., 

2009), PhosphoSitePlus (Hornbeck et al., 2012) and Phospho.ELM (Dinkel et al., 2011), 

with a protein–protein interaction database (Jayapandian et al., 2007), which merges 

protein–protein interaction information obtained from well-known interaction databases, 

including HPRD (Keshava Prasad et al., 2009), BIND (Bader et al., 2003) and IntAct 

(Kerrien et al., 2012). After removing redundant entries, the final integrated database had 

7,047 kinase–substrate pairs with 77,176 protein–protein interaction pairs. Next, we 

mapped 474 proteins whose phosphorylations were increased in PIK3CA mutant knockin 

cells and decreased on the treatment of J124, to our integrated protein–protein interaction 

networks. We identified 108 kinase–substrate and 310 protein–protein interaction pairs 

composed of 208 differentially phosphorylated proteins. There were 11 kinases that were 

regulated by PI3K but not mapped in the network. The main interaction networks were 

visualized using Cytoscape (Figure 10A). We then used a graph theoretic algorithm, 

molecular complex detection, to discover highly connected interaction clusters (Bader 

and Hogue, 2003). In Figure 10B-E, four of the top ranked interaction clusters are shown. 

Of note, in agreement with our phosphomotif enrichment analysis, phosphorylated 

MAPK1 and AKT1 (Figure 10B,C) form the central hubs of the two top-ranked 

networks. This suggests not only that AKT1 and MAPK1 kinases were activated by 
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oncogenic PIK3CA mutations, but also that their downstream proteins/targets were 

consequently modulated by increased phosphorylation. 

In addition to these canonical pathways, there were two other clusters in the 

regulated phosphoprotein network. One cluster is centered around PRKCD, also known 

as protein kinase C-δ a ubiquitously expressed isoform of the novel protein kinase C 

family (Figure 10D). This kinase can regulate apoptosis in a cell type and stimulus-

dependent manner (Zhao et al., 2012). The stability and activity of PRKCD has been 

shown to be increased by PDK1, a key kinase in the PI3K pathway (Le Good et al., 

1998). The activity of PRKCD is regulated by phosphorylation on several sites—in this 

study, we identified two PRKCD phosphorylation sites, S202 and S204, which were 

tightly correlated with PI3K activity but not well characterized previously. Of note, the 

amino acid sequence adjacent to Ser204 phosphorylation site matches the minimal AKT 

substrate motif (RxxpS), suggesting that AKT1 could potentially directly regulate 

PRKCD through phosphorylation.  

The other cluster in the regulated phosphoprotein network comprises ten nuclear 

proteins, of which six are either known components of the nuclear pore complex (NPC) 

or proteins associated with the complex (Figure 10E). In addition, we also detected ten 

other NPC or NPC-associated proteins, eight of which were highly phosphorylated in 

Ex9-KI and/or Ex20-KI cells (Figure 11). Of these PI3K-regulated phosphoproteins, 

multiple phosphosites identified in this study have also been identified in other contexts. 

For instance, phosphorylation of NUP98 S591, S595 and S606 by CDK1 or NEK6 is 

crucial for disassembly of the NPC during mitosis (Laurell et al., 2011). Although its 
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phosphorylation is not directly involved in NPC disassembly, RanGAP1 S428/442 is also 

a substrate for CDK1 (Swaminathan et al., 2004). Nup153 S516, which we identified to 

be regulated by PI3K, was one of multiple ERK1 phosphorylation sites identified in this 

protein (Kosako et al., 2009). ERK1 phosphorylation of Nup153 decreased recognition of 

a nuclear transport receptor. We also identified phosphorylation of RanBP3 S126 by 

AKT1; this modification was previously shown to regulate the Ran gradient and nuclear 

transport (Yoon et al., 2008). Aside from these previously characterized NPC protein 

phosphosites, the specific functional effects of increased phosphorylation on the majority 

of NPC and associated proteins regulated by PI3K (10 out of 14) remain elusive. 

Nonetheless, our findings strongly suggest the likelihood of important roles for PI3K 

pathway activation in regulating mitotic NPC disassembly and nucleocytoplasmic 

transport. 

We were able to identify both classic and less-characterized networks that were 

regulated by the activation of PI3K pathway. Notably, in our global phosphoproteomic 

study, almost two-thirds of the regulated phosphoproteins whose phosphorylation 

patterns are correlated with PI3K/AKT activities could still not be mapped onto known 

kinase–substrate relationships or protein–protein interaction networks. It is worth noting 

that in addition to the well-known kinases such as AKTs and PDK1 involved in the 

canonical PI3K signaling, there are six different kinases also containing the pleckstrin 

homology domain that can bind to phosphatidylinositol 3,4,5-trisphosphate (PIP3). 

Among these kinases, four are non-receptor tyrosine kinases belonging to TEC tyrosine 

kinase family, namely TEC, TIK, BMX and BTK. Recent studies demonstrated that 

mutant PIK3CA could indeed activate BMX and directly phosphorylate STAT3 on Y705 
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(Guryanova et al., 2011; Hart et al., 2011). In our study, we observed increased 

phosphorylation on S727 of STAT3 in our mutant Ex9-KI cells and treatment with J124 

could reduce this phosphorylation. Besides these four tyrosine kinases, there are two 

serine/threonine kinases, TRIO and KALRN, which can also bind PIP3 through pleckstrin 

homology domains. However, exactly how these two kinases are regulated by and 

involved in PI3K signaling remains unknown. In this regard, it is important to note that 

we found that TRIO phosphorylation on S2455, S2476 and S2477 was closely associated 

with the activity of PI3K in mutant PIK3CA Ex9-KI cells. Further studies on these non-

canonical PIP3-regulated kinases are necessary to interpret the profound alterations 

induced by mutant PIK3CA. The abundance of these novel PI3K-modulated 

phosphorylation events also indicates that our knowledge of this serine/threonine kinase-

centered signaling cascade is still far from complete. 

Discussion 

Oncogenic mutations in PIK3CA gene have been reported in many human cancer 

types. Using a gene targeting approach to knockout either wt or mutant PIK3CA alleles 

in colorectal cancer cell lines, Samuels et al. (2005) have previously demonstrated that 

mutant PIK3CA selectively regulated the phosphorylation level of AKT and its 

downstream transcription factors FKHR and FKHRL1. However, a comprehensive and 

quantitative analysis of how PIK3CA mutants globally impact signaling networks and 

consequently transform epithelial cells has not yet been reported. In this study, we 

employed an isogenic model system to characterize the signaling alterations induced by 

the knockin of two hotspot oncogenic PIK3CA mutations (E545K or H1047R) in a 
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spontaneously immortalized non-tumorigenic breast epithelial cell line, MCF10A. This 

system can model breast epithelial cell malignancy induced by PIK3CA mutations. Using 

this unique model system, we applied a comprehensive phosphoproteomic analysis to 

discern and quantify global activation of phosphorylation-mediated signaling networks 

caused by these two PIK3CA mutations. Based on our phosphoproteomic analysis, it is 

possible that the elevation of the phosphorylation of some proteins resulted from the 

increased protein expression or the accumulation of both increased protein abundance 

and phosphorylation level. More importantly, we also observed phosphorylation of more 

than a thousand peptides from 474 proteins to be increased in PIK3CA mutant knockin 

cells and reduced on the short-term treatment with the PIK3CA inhibitor, J124. These 

changes are probably regulated by phosphorylation induced by mutant PIK3CA and not 

through the increase of protein abundance. Among these phosphorylation-increased 

proteins, only a fraction (208/474) has been reported to be involved in signaling networks 

related to the canonical PI3K-AKT signaling pathway. To our knowledge, this study 

provides the most comprehensive survey of quantified signaling perturbations in 

phosphorylation resulting from oncogenic activation of mutant PIK3CA. These newly 

identified signaling events should increase our understanding of the oncogenic effects 

resulting from mutations in PIK3CA gene, especially for development of novel 

therapeutic strategies for cancers with PIK3CA mutations. 

From this data set, we were able to demonstrate increased phosphorylation of 

many key enzymes involved in important signaling networks and cellular processes in 

this predominantly serine/threonine kinase-driven signaling network. For instance, we 

have demonstrated increased phosphorylation of several key tyrosine kinases (Fig. 3a). In 
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addition, we identified modulation of phosphorylation of an AKT substrate, ACLY, 

which is the primary enzyme synthesizing cytosolic acetyl CoA. Acetyl CoA is the 

essential precursor for fatty acids, mevalonate synthesis (Watson et al., 1969) and a major 

source for protein acetylation reactions, including histone acetylation (Wellen et al., 

2009). Phosphorylation-induced activation of ACLY by oncogenic mutation of PIK3CA 

could have the potential to enhance de novo fatty acid synthesis and also to globally 

regulate chromatin architecture and gene transcription. We also observed increased 

phosphorylation of ubiquitin protein E3 ligase (UBR4, ubiquitin protein ligase E3 

component n-recognin 4) and several ubiquitin-specific peptidases (USP10, USP24 and 

USP43) in mutant PIK3CA knockin cells and the increase phosphorylation was 

diminished on J124 treatment. Some of these (UBR4, USP10 and USP24) were reported 

to be involved in oncogenic transformation of epithelial cells (Nakatani et al., 2005; Yuan 

et al., 2010; Zhang et al., 2012). These data suggest that PIK3CA oncogenic mutations 

not only globally modulate protein phosphorylation but can also potentially regulate 

multiple other post-translational modifications via the cross-talk between kinases and 

other enzymes. 
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Figure legends 

Figure 1. Analysis of isogenic MCF10A cell lines with mutant PIK3CA knockin. (A) 

Phase-contrast photomicrographs of MCF10A, Ex9-KI and Ex20-KI cells seeded in 

DMEM-F12 with 5% horse serum overnight and treated with 0.2 ng/ml EGF for 3 hours 

and followed by 30 minutes treatment of 500 ng/ml J124. Scale bar: 50 μm (B) Western 

blot analysis of phosphorylated AKT (pT308), total AKT, phosphorylated p42/44 MAPK 

(pThr202/Tyr204) and total p42/44 MAPK in MCF10A parental cells, Ex9-KI and Ex20-

KI cells with or without J124 treatment.  

Figure 2. Phosphoproteomic analysis of MCF10A cells with PIK3CA mutations. (A) 

A schematic depicting the strategy used for quantitative phosphoproteomic profiling of 

PIK3CA Ex9 knockin mutant cells. (B) A schematic depicting the strategy used for 

quantitative phosphoproteomic profiling of PIK3CA EX20 knockin mutant cells.  

Figure 3. Results of phosphoproteomic profiling of MCF10A cells with PIK3CA 

mutations. (A) Number of phosphoserine (pSer), phosphothreonine (pThr) and 

phosphotyrosine (pTyr) sites identified in the study. (B) Distribution of single, double, 

triple and quadruply phosphorylated peptides identified is indicated. (C,D) Density 

scatter plot of log2-transformed phosphopeptide ratios (Ex9-KI or Ex20-KI versus 

MCF10A) from two SILAC reverse-labeled biological replicates. (E) Density scatter plot 

of log2-transformed phosphopeptide ratios (x axis: Ex9-KI versus MCF10A and y axis: 

Ex20-KI versus MCF10A). Pearson coefficient correlation (R) is indicated. 



 26 

Figure 4. Phosphorylation regulation patterns in MCF10A, Ex9-KI/Ex20-KI and 

J124-treated Ex9-KI/Ex20-KI cells. (A-D) Representative MS spectra of modulated 

phosphopeptides corresponding to each regulation pattern type are shown along with the 

phosphopeptide sequences. (Left panel) Phosphorylation patterns in MCF10A, Ex9-KI 

and J124-treated Ex9-KI cells. (Right panel) Phosphorylation patterns in MCF10A, 

Ex20-KI and J124-treated Ex20-KI cells. Phosphopeptides with similar phosphorylation 

profiles were grouped into four major clusters.  

Figure 5. Modulation of phosphorylation of proteins by PIK3CA mutations. (A) 

Distribution of log2-transformed intensity ratios of phosphorylation increased peptides 

(Ex9-KI versus MCF10A, fold change >1.5). The x axis shows log2-transformed 

phosphopeptide intensity ratios and the y axis shows the density. Blue represents the 

ratios of Ex9-KI to MCF10A cells, while red represents the ratio of J124-treated Ex9-KI 

to MCF10A cells. The P-value was calculated using a paired Student’s t-test comparing 

the two distributions was 2.2E-16. (B)Western blottings to confirm the phosphorylation 

status of a subset of phosphoproteins using phospho-specific antibodies, along with 

western blottings using antibodies against total proteins. β-Actin served as loading 

control. (C) The number of regulated proteins found in enriched signaling pathways 

(Modified Fisher’s exact P-value<0.05) are shown for three biological processes—

cytoskeleton and migration, kinase-regulated signaling and cell cycle. 

Figure 6. Phosphorylation modulated proteins involved in pyrimidine metabolism 

and cellular migration/invasion. (A) Phosphorylation-regulated key enzymes in 

pyrimidine metabolism pathway modified from KEGG. (B) The model highlights the 
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literature-curated interaction network of proteins identified in the current study involved 

in the regulation and assembly of tight junction, adherens junction and focal adhesion 

represented using PathVisio (http://www.pathvisio.org/). The protein-protein interaction 

and the catalysis information for these molecules are extracted from Human Protein 

Reference Database and Ingenuity pathway database. The phosphosites of proteins that 

are differentially regulated by the PIK3CA mutants and/or the PIK3CA inhibitor are 

distinguished. These phosphoproteins include tight junction assembly proteins such as 

TJP1, TJP2, and cortactin; proteins in focal adhesion complexes such as ITGB4, PTK2, 

TLN1, TIAM1, and filamins; adherens junction proteins such as CTNNB1, and LMO7. 

The map also represents the proteins identified to be involved in the assembly and 

regulation of the actin cytoskeleton such as myelin light chains, RhoGEFs, PAKs, SSH2, 

PRKCD, and the components of the RAS/RAF signaling pathway. The details of e nodes 

and edges specified are indicated in the figure. 

Figure 7. Widespread modulation of the kinome observed in PIK3CA Ex9-KI cells. 

A phylogenetic tree (modified from Human Kinome Tree (Manning et al., 2002)) of 

protein kinases identified in Ex9-KI cells. Phosphorylation increased kinases are in 

orange and kinases identified but did not change in phosphorylation levels are in light 

green. A colour-coded site regulation pattern is shown in the form of a circle divided into 

two parts. The top half represents the fold change of phosphorylation sites identified in 

Ex9-KI cells compared with MCF10A, whereas the bottom half represents the fold 

change ratio between J124-treated Ex9-KI cells compared with untreated cells. Regulated 

kinases that are known to be AKT substrates are underlined.  
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Figure 8. Widespread modulation of the kinome observed in PIK3CA Ex20-KI cells. 

A phylogenetic tree (modified from Human Kinome Tree (Manning et al., 2002)) of 

protein kinases identified in Ex20-KI cells. Hyperphosphorylated kinases are in orange 

and kinases identified, but not changed in phosphorylation, are in light green. A color-

coded site regulation pattern is shown in the form of a circle divided into two parts. Top 

half represents the fold-change of phosphorylation sites identified in Ex20-KI cells 

compared to MCF10A, whereas the bottom half represents the fold change ratio between 

J124-treated Ex20-KI cells compared to untreated ones. 

Figure 9. Phosphorylation motifs regulated by PIK3CA mutations. (A) Significantly 

overrepresented linear phosphorylation motifs identified using Motif X program were 

indicated on the left of the panel. Phosphopeptides matching the motifs were used for 

prediction of their upstream kinases by NetworKIN program. Based on the total number 

of phospho-modulated peptides, percentage of the number of phosphopeptides as 

substrates of predicted kinases were calculated and demonstrated in the heatmap (right 

panel). (B) Sequence logos of overrepresented phosphoserine linear motifs enriched 

among the peptides whose phosphorylation levels were increased in Ex9-KI and/or Ex20-

KI cells as compared with MCF10A cells. 

Figure 10. Kinase–substrate and protein–protein interaction networks. (A) A 

network of kinase-substrate and protein-protein interactions within stringently regulated 

phosphoproteins was generated using Cytoscape. The proteins are color-coded based on 

the relative abundance of phosphopeptides (Ex9-KI vs. MCF10A cells outer circle and 

Ex20-KI vs. MCF10A inner circle). The top four highly connected clusters that are 
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highlighted on the main network map with dark green circles: (B) MAPK, (C) AKT and 

(D) PRKCD centered kinase–substrate and protein–protein interaction clusters. (E) The 

cluster enriched with NPC proteins. The network of kinase–substrate and protein–protein 

interaction within stringently regulated phosphoproteins was generated using Cytoscape. 

Proteins are color-coded based on their ratios (Ex9-KI versus MCF10A cells outer circle 

and Ex20-KI versus MCF10A inner circle) of phosphosites. 

Figure 11. Phosphorylation-regulated proteins involved in nuclear pore complex. 

Figure depicts the components of the nuclear pore complex and the proteins in each of 

the components that were identified through the phosphoproteomic profiling with the 

annotated phosphorylation site ratios. 
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Chapter 3: Identification of cortactin as a novel AKT substrate 

and its importance in mutant PI3K-enhanced cell migration 

and invasion 

Introduction 

The major effector downstream of the activation of PI3K is the serine/threonine 

kinase AKT. Upon accumulation of PIP3 in the inner plasma membrane generated by 

activated PI3K, AKT docks to PIP3 via its pleckstrin homology (PH) domain. This 

position at the membrane primes AKT for phosphorylation by its activating kinases 

including PDK1 (which phosphorylates AKT at T308) and mTORC2 (which 

phosphorylates AKT at S473). The phosphorylation of these two activating sites leads to 

maximal activation of AKT which is then free to phosphorylate many downstream 

effector proteins. Over a hundred AKT substrates have been described, where the 

phosphorylation and activation of these proteins by AKT primarily result in cell growth, 

proliferation, survival and motility. Using the phosphoproteomics data that we generated 

in Chapter 2, we aimed to extend the list of AKT substrates to comprehensively 

understand the contribution of PIK3CA mutations in cancer. We also employed an in 

vitro kinase array using AKT1 in order to determine the bona fide AKT substrates. 

Overlay of both the phosphoproteomics and microarray data revealed six novel AKT 

substrates that have not been previously reported.  
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It was demonstrated that PIK3CA mutations can enhance cell migration and 

invasion of cancer cells (Samuels et al., 2005). AKT specifically has been shown to 

regulate motility, and hence the invasion/migration processes involved in cancer 

metastasis (Xue and Hemmings, 2013). Here, we showed that Ex9-KI and Ex20-KI cells 

are significantly more invasive than the wild type parental MCF10A cells, indicating that 

PIK3CA mutations cause increased invasive/migratory ability, consistent with previous 

reports. Analysis of the phosphoproteomics data generated in Chapter 2 revealed 

enrichment of signaling pathways regulating cell migration and cytoskeletal 

rearrangement in PIK3CA mutant knockin cells (Chapter 2, Figures 5C and 6B). Of the 

six confirmed novel direct substrates of AKT substrates, cortactin (CTTN) was of special 

interest because it is a component of the enriched pathways related to cell motility and 

cytoskeleton. Cortactin is a key branched actin regulator that regulates cell motility and 

transduces signals from the cell membrane to cytoskeletal proteins. Using mutagenesis 

and biochemical approaches, we demonstrated that phosphorylation of cortactin by AKT 

downstream of activated PI3K is essential in conferring cells with the enhanced invasion 

and migration ability. 

Experimental procedures 

Plasmids, site-directed mutagenesis and stable overexpression 

Full-length cortactin CDS plasmids for isoform A and B were purchased from 

DNA Resource Core (Harvard) and subcloned into pBABE-puro vector. Site-directed 

mutagenesis for cortactin mutants was performed with QuikChange Site-Directed 
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Mutagenesis Kit (Agilent). HEK293T cells were used for retroviral package. Briefly, 

pBABE-cortactin wild type, mutant expression plasmids or control empty vector 

plasmids were co-transfected with pCL-Ampho (Imagenex) packing plasmid. Virus 

supernatants were collected and used for infection of MCF10A and knockin cells. 

Infected cells were then selected by 0.5ug/ml puromycin to obtain cells stably expressing 

cortactin proteins. 

In vitro kinase assays 

GST fusion proteins were generated in yeast or bacterial systems and purified with 

Glutathione-Sepharose beads. The GST-fusion proteins were pretreated with lambda 

phosphatase (NEB) at 30ºC for 30 minutes and incubated at 60ºC for another 30 minutes 

to inactivate any phosphatase activity. Pretreated GST-fusion proteins were mixed with 

32P-ATP (250 μCi) and with or without 100 ng AKT1 for 30 minutes at 30ºC. The 

samples were resolved by SDS-PAGE and the proteins transferred onto nitrocellulose 

membranes. Phosphorylated and total proteins were visualized by autoradiography or 

MemCode staining (Thermo), respectively. To examine AKT1-induced phosphorylation 

sites, cortactin-GST fusion proteins were incubated with 1 mM ATP in the presence of 

absence of AKT1 at 30ºC for 30 minutes. The samples were then resolved by SDS-PAGE 

and visualized by coomassie blue staining. Gel bands were excised and digested with 

tryspin. Tryptic peptides were extracted and analyzed on an LTQ-Orbitrap Elite mass 

spectrometer. Mass spectrometry data were searched against Human RefSeq with Sequest 

and Mascot algorithms. 
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Matrigel invasion assays 

Cells were trypsinized and 5x104 cells seeded onto Biocoat matrigel invasion 

chambers (BD Biosciences) in 1% horse serum in DMEM/F12 medium for MCF10A 

cells, and serum-free media for DLD1 and BT20 cells. Complete medium was added in 

the lower chamber as chemoattractant. After 24 hours, the filter membranes were stained 

with DAPI (Invitrogen) and the number of cells that penetrated through the matrigel and 

membrane was counted in 10 randomly selected view fields at 20× magnification. 

Immunofluorescence analysis 

Cells were seeded in 5% DMEM-F12 medium with 5% horse serum overnight 

and treated with 0.2 ng/ml EGF for three hours prior to fixation with 4% 

paraformaldehyde. Fixed cells were permeabilized with 0.05% Triton X-100 and blocked 

with 3% bovine serum albumin in phosphate-buffered saline. Cortactin was visualized 

with by immunofluorescence (IF) with anti-cortactin mAb 4F11 (Millipore) and Alexa 

Fluor 568 labeled goat anti-mouse IgG secondary antibody (Invitrogen). IF assays were 

also performed with rabbit monoclonal anti phosphorylated AKT (pS473) (4058, Cell 

Signaling Technology) antibody and rabbit polyclonal antibodies against WASP (SC-

8350, Santa Cruz), NCK1 (ab23120, Abcam) and cofilin (SC-33779, Santa Cruz) 

followed Alexa fluor 488-labeled goat anti rabbit IgG secondary antibody (Invitrogen). 

The nucleus was stained with 4′,6-diamidino-2-phenylindole (DAPI). 

Immunofluorescence analysis was carried out using a LSM710 confocal laser scanning 

microscope (Carl Zeiss). 
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Results 

Identification of novel AKT substrates 

Using the mass spectrometry-based phosphoproteomic approach, we identified 

1,142 phosphopeptides (derived from 474 proteins) that were stringently correlated with 

PIK3CA and AKT activities (that is, more phosphorylated in knockin cells and less 

phosphorylated on J124 treatment). Of these, 358 phosphopeptides were derived from 

204 proteins matching a minimal AKT substrate motif, R/KxxpS/T. When compared with 

the kinase substrate databases described above, 16 proteins were known AKT substrates, 

including well-studied molecules in AKT signaling such as GSK3A, GSK3B, AKT1S1, 

EPHA2 and PFKFB2. However, ~92% (188 of the 204 proteins) were not previously 

reported as AKT substrates. It is indeed possible that although they contain the AKT 

substrate motif, other kinases in addition to AKT may also be able to phosphorylate these 

proteins on the same residues in vivo. A definitive way to assess this possibility is to use 

in vitro phosphorylation reactions to capture the direct phosphorylation targets of AKT. 

We employed a human protein microarray with 4,191 unique, full-length human proteins 

belonging to 12 major protein families to perform phosphorylation reactions with 

recombinant human AKT1 proteins in the presence of [γ-32P]-ATP (Newman et al., 

2013). In comparison with a negative control reaction in which AKT1 was omitted, we 

identified 316 proteins that could be directly phosphorylated by AKT1 in vitro. To 

maximize the advantages of the two high-throughput proteomic approaches and to 

increase the confidence of identification of novel AKT substrates, we overlaid our mass 

spectrometry-based phosphoproteomic data with protein microarray-based data set and 
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found six novel substrates that were regulated by PI3K in our PIK3CA mutation knockin 

cell line model and could also be directly phosphorylated in vitro by AKT1 in the protein 

microarray experiment (Figure 1A). To test whether these proteins were direct substrates 

of AKT1, we performed in vitro kinase reactions by mixing recombinant AKT1 with 

each of these six proteins (cortactin, TRIP10, PRKCD, PPP1R13L, EIF4B and 

C19ORF21) purified as glutathione S-transferase (GST) fusion proteins. All six proteins 

were phosphorylated by AKT1 (Figure 1B), which provides solid evidence that these six 

proteins are bona fide AKT substrates. Interestingly, we identified a highly 

interconnected cluster containing PRKCD as a hub in our kinase–substrate and protein–

protein interaction network analysis (Chapter 2, Figure 10D). This integrative analysis 

allowed us to confirm that the enrichment of PRKCD-centred network is probably the 

result of elevated phosphorylation of PRKCD by AKT1.  

It has previously been demonstrated that PIK3CA mutations can enhance cell 

migration and invasion of cancer cells (Samuels et al., 2005). Analysis of the 

phosphorylation data revealed enrichment of signaling pathways regulating cell migration 

and cytoskeletal rearrangement in PIK3CA mutant knockin cells (Chapter 2, Figures 5C 

and 6B). To investigate the effects of these phosphorylation-increased pathways in non-

tumorigenic breast epithelial cells containing mutant alleles of PIK3CA, we employed 

matrigel-coated Boyden chamber assays to evaluate their invasive abilities. The results 

revealed that Ex9-KI and Ex20-KI cells could indeed penetrate matrigel to a much 

greater extent than the parental MCF10A cells. Moreover, the invasive ability enhanced 

by activation of PIK3CA could be dramatically attenuated by treatment with the PIK3CA 

inhibitor, J124, as well as by the AKT inhibitor IV (Figure 1C). Of the six confirmed 
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novel direct substrates of AKT substrates, cortactin (CTTN) was of special interest 

because it is a component of the enriched pathways related to cell motility and 

cytoskeleton (Chapter 2, Figures 5C and 6B). Cortactin is a key branched actin regulator 

that regulates cell motility and transduces signals from the cell membrane to cytoskeletal 

proteins. It is frequently overexpressed in advanced cancers and enhances cancer cell 

migration and invasion (MacGrath and Koleske, 2012), and ectopic overexpression of 

cortactin in head and neck squamous cell carcinoma cell lines has been reported to 

increase AKT activity (Timpson et al., 2007). As a key regulator of actin branching, the 

activity of cortactin activity is modulated by multiple kinases, including tyrosine kinases 

SRC and FYN, and serine/threonine kinases ERK1/2 and PAK1 (MacGrath and Koleske, 

2012). Our phosphoproteomic studies revealed that phosphorylation of cortactin at 

S405/T401 and S417/S418 was regulated by the PI3K-AKT pathway (Figure 2A). These 

four phosphorylation sites are located within or close to the proline-rich domain of 

cortactin (Figure 2B), which contains many sites of tyrosine and serine phosphorylation 

regulated by different kinases45. For instance, ERK kinase has been shown to 

phosphorylate cortactin on S405 and S418 (Martinez-Quiles et al., 2004). To confirm that 

AKT1 can also directly phosphorylate cortactin, we performed LC-MS/MS analysis of 

purified cortactin incubated in vitro with AKT1. This experiment confirmed that AKT is 

able to directly phosphorylate all four sites (S405/T401 and S417/S418) of cortactin 

(Figure 2C). To investigate whether cortactin and AKT interact in vivo, we performed 

immunofluorescence staining to examine the localization patterns of cortactin and 

phosphorylated AKT (pS473). As demonstrated in Figure 3A, we could clearly observe 

the co-localization of cortactin and phosphorylated AKT in Ex9-KI and Ex20-KI cells. It 
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is worth noting that the co-localization pattern was concentrated at the peripheral region 

of lamellipodia in Ex9-KI and Ex20-KI cells. We also performed immunofluorescence 

staining to examine the interaction between cortactin and its known partners in MCF10A, 

Ex9-KI and Ex20-KI cells. Cortactin largely co-localized with its interaction partners 

WASP, NCK1 and cofilin in all tested cell lines (Figure 3B-D). The co-localization 

patterns of cortactin and cofilin, NCK1 and WASP in peripheral membrane structures 

were only detected in Ex9-KI and Ex20-KI cells with PIK3CA mutations (Figure 3B-D). 

To test whether phosphorylation of cortactin could also be regulated by AKT1 in 

other cells with alterations in the PI3K signaling pathway, we used another isogenic cell 

line pair derived from the colorectal cancer cell line DLD1 (Samuels et al., 2005). The 

parental line contained one wt PIK3CA allele and one mutant allele (E545K), and the two 

derivatives were created by homologous recombination so that one contained only the wt 

PIK3CA allele (DLD1-wt), while the other contained only the mutant allele (DLD1-mt). 

LC-MS/MS analysis was performed on anti-cortactin immunoprecipitates from cell 

lysates extracted from SILAC-labelled DLD1-wt (light) and DLD1-mt (heavy) cells 

(Figure 4A,B). This experiment showed that DLD1-mt cells had higher levels of 

phosphorylation of cortactin than DLD1-wt cells (Figure 4C). We also investigated a 

breast cancer cell line, BT20, harboring mutant PIK3CA alleles (Wu et al., 2005). Cell 

lysates from SILAC heavy-labelled BT20 cells treated with J124 or AKT inhibitor IV 

(AKT-IV) were mixed with untreated cells, then subjected to immunoprecipitation with 

anticortactin antibody (Figure 4A). LC-MS/MS analysis of immunoprecipitated cortactin 

again revealed that phosphorylation levels of cortactin were substantially reduced in 

BT20 cells treated with either J124 or AKT inhibitor IV (Figure 4D). 
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To further characterize the role of cortactin in promoting migration/invasion of 

PIK3CA mutant cells, we first employed small interfering RNA (siRNA) to knockdown 

cortactin expression in MCF10A, Ex9-KI and Ex20-KI cells (Figure 5A top panel). We 

found that knockdown of cortactin significantly reduced the invasive ability of PIK3CA 

mutant knockin cells (Figure 5A). A similar suppression of invasion was observed in 

DLD1-mt and BT20 cells after knockdown of cortactin expression (Figure 5B,C). We 

next wanted to determine the phosphorylation effect of cortactin on its function. Cortactin 

has been shown to possess three alternatively spliced isoforms encoding three different 

proteins that are 550, 513 or 634 amino acids long. To identify the predominant 

isoform(s) expressed in MCF10A cells, we conducted a database search against transcript 

databases in addition to carrying out reverse transcriptase–PCR using primers that could 

distinguish specific isoforms (Figure 6A). We found that transcripts of isoforms A and B, 

but not C, were detectable in MCF10A and mutant PIK3CA knockin cells. Thus, we 

cloned both of these isoforms into a retroviral expression vector and carried out site-

directed mutagenesis to alter all four detected AKT1 phosphorylation sites (S405A, 

T401A, S417A and S418A). Wild-type and mutant versions of both cortactin isoforms (A 

and B) were stably expressed in parental MCF10A, Ex9-KI and Ex20-KI cells, as 

confirmed by western blot analysis (Figure 6B). Boyden chamber assays were employed 

to examine the effects of cortactin phosphorylation on cell migration and invasion where 

we found that overexpression of wt isoforms A and B promoted cell migration and 

invasion (Figure 6B), and this enhanced invasive capacity could be reduced by the 

treatment of AKT inhibitor (Figure 6D), suggesting that AKT-mediated phosphorylation 

of cortactin contributes to the invasive ability induced by overexpression of cortactin. In 
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contrast, overexpression of the mutant isoforms that could not be phosphorylated by 

AKT1 did not enhance, and perhaps even suppressed the migration and invasive ability of 

the cells (Figure 6B). Similar effects were observed in BT20 cells bearing PIK3CA 

mutations (Figure 6C). These studies, in aggregate, provide strong evidence that 

mutations of PIK3CA enhance the migration and invasiveness of cells through the 

activation of AKT and the subsequent phosphorylation of cortactin (Figure 7). 

Discussion 

Our integrated approach to identify kinase substrates by combining two high-

throughput proteomic platforms—mass spectrometry-based phosphoproteomics and 

protein microarray-based kinase assays—enabled us to identify six novel AKT substrates. 

Functional studies confirmed that phosphorylation of one novel substrate, cortactin, is 

critical for migration/invasion induced by oncogenic activation of PI3K. Similar 

approaches employing high-throughput proteomic technology-based strategies can be 

applied to understand other cancer signaling pathways in a systematic manner. In 

summary, mutant PI3K-induced signaling events uncovered by our phosphoproteomic 

approaches along with the newly identified AKT1 substrates should be invaluable for 

research as well as clinical studies involving development of novel targeted therapies. 
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FIGURE LEGENDS 

Figure 1. Integrative analysis for identification of novel AKT substrates. (A) 

Autoradiograph of novel AKT1 substrates identified from protein microarray-based 

AKT1 substrate assays. Left panel: autoradiographs of the reactions without AKT1; Right 

panel: autoradiograph of the reactions incubated with AKT1. (B) In vitro AKT1 kinase 

assays with indicated GST fusion proteins. Right panels: autoradiograph of 32P-

phosphorylated AKT1 substrates; left panels: Memcode staining of GST fusion proteins. 

(C) Matrigel migration/invasion assays for MCF10A, Ex9-KI and Ex20-KI cells treated 

with J124, AKT inhibitor IV or DMSO. Data are shown as mean±s.e.m. Mann–Whitney 

test was carried out to determine the statistical significance. The experiments were 

repeated twice.  

Figure 2. Cortactin is a novel substrate of AKT. (A) Relative phosphorylation levels of 

cortactin phosphosites identified in SILAC-based phosphoproteomic analysis of Ex9-KI 

or Ex20-KI cells treated with or without J124 and parental MCF10A cells. (B) Domain 

structure of cortactin with phosphosites identified in this study. (C) Representative 

MS/MS spectra confirming phosphorylation of cortactin at T401, S405, S417 and S418 in 

in vitro AKT kinase–substrate assays followed by LC-MS/MS analysis.  

Figure 3. Co-localization of cortactin with its interacting partner and AKT in 

PIK3CA cells. (A) Confocal immunofluorescence images of subcellular localization of 

cortactin (red) and pAKT (green) in MCF10A, Ex9-KI and Ex20-KI cells. Nuclei stained 

with DAPI. White arrows indicate the co-localization of cortactin and pAKT at peripheral 
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region of lamellipodia. Scale bar, 20 µm. Confocal immunofluorescence images of 

localization pattern of cortactin in red and cofilin (B), NCK1 (C) and WASP (D) in green 

in MCF10A, Ex9-KI and Ex20-KI cells. Nuclei were stained with 4,6-diamidino-2-

phenylindole (DAPI). Scale bar = 20 μm. 

Figure 4. Phosphorylation of cortactin in cancer cell lines with PIK3CA mutations. 

(A) Phosphoproteomic strategy to validate cortactin phosphorylation sites in DLD1-wt, 

DLD1-mt and BT20 cells. (B) The panel shows a representative Coomassie blue stained 

gel from cortactin IP from BT20 cells. (C) Relative phosphorylation levels of cortactin in 

DLD1-wt and DLD1-mt cells, and (D) in BT20 cells treated with or without J124 or AKT 

inhibitor IV. 

Figure 5. Cortactin is important in conferring migration/invasion ability in cells 

with PIK3CA mutations. (A) Top panel: western blotting with cortactin antibody to 

assess the knockdown efficiency of siRNA targeting cortactin in MCF10A, Ex9-KI and 

Ex20-KI cells. β-Actin serves as loading control. Bottom panel: matrigel-coated Boyden 

chamber assays for the assessment of the migration/invasion ability of cells with 

indicated siRNA knockdown. (B,C) siRNA knockdown of cortactin in DLD1-mt (B) and 

BT20 cells (C). Top panels: western blotting of cortactin and b-actin; bottom panels: 

Boyden chamber assays of indicated cell lines.  

Figure 6. AKT1-mediated phosphorylation on cortactin is important for 

migration/invasion induced by activation of PI3K. (A) Top panel: Alignment of 

mRNA sequences of three cortactin isoforms. Red bar: mRNA segments, thin black line: 
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gaps, yellow arrow bars: CDS and short green arrows RT-PCR primers. Middle panel: 

Number of ESTs specifically matched to the alternative splicing sties. Bottom panel: RT-

PCR results from MCF10A and Ex9-KI cells. Top panel: RT-PCR results from the 

upstream pair of primers differentiating isoform A and isoform B and/or C; middle panel: 

the downstream pair of primers differentiating isoform A and/or B and isoform C. 

Bottom panel: GAPDH as internal control. (B) Migration/invasion assays for MCF10A, 

Ex9-KI, Ex20-KI and (C) BT20 cells overexpressing wild-type cortactin isoform A and B 

(cortactin-wt) and phosphosite-mutated cortactin isoform A and B (cortactin-mut). Top 

panels: western blottings of overexpressed cortactin; bottom panels: migration/invasion 

assays of indicated cells. (D) Migration/invasion assays for MCF10A, Ex9-KI and Ex20-

KI cells overexpressing wild type cortactin (cortactin-wt) treated with vehicle or AKT 

inhibitor (AKTi). The empty vector retrovirus infected cells served as controls. (B-D) 

Data are shown as mean±s.e.m. Mann–Whitney test was carried out to determine the 

statistical significance. These experiments were repeated at least twice. 

Figure 7. A proposed model of enhancing invasiveness by oncogenic activation of 

PI3K-AKT signaling cascades and phosphorylation of cortactin. Cartoon depicts the 

proposed model of PI3K-AKT activation and phosphorylation of cortactin at four 

phosphorylation sites that leads to migration and invasion of cells. 

 

  



 54 

Figure 1 

 



 55 

Figure 2 

   



 56 

Figure 3 

 

  



 57 

Figure 4 

 

  



 58 

Figure 5 

 



 59 

Figure 6 
 

   



 60 

 
Figure 7 

   



 61 

Chapter 4: Widespread modulation of the tyrosine 

phosphoproteome by PIK3CA mutations 

Introduction 

A majority of phosphorylation events in cells occur on serine and threonine 

residues of proteins with a very small fraction occurring on tyrosine residues. Even 

though tyrosine phosphorylation accounts for a minority of total phosphorylation, 

tyrosine kinases play a disproportionately large role in diseases especially in cancer. 

More than half of the 90 tyrosine kinases identified in the human proteome have been 

implicated in cancer through gain-of-function mutations, gene amplification, or 

overexpression, and have become attractive therapeutic targets. We have previously 

profiled the serine/threonine phosphoproteome of cells containing two hotspot mutations 

in PIK3CA, E545K and H1047R (Wu et al., 2014). In the current study, we sought to 

profile the tyrosine phosphoproteome changes that result from these activating mutations 

in PIK3CA. We performed phosphotyrosine profiling of these isogenic cell lines, where 

we identified 824 phosphopeptides derived from 343 proteins. We observed modulation 

of important biological processes that include cytoskeletal migration pathways and kinase 

regulated signaling. 127 of the identified phosphopeptides belong to 34 tyrosine kinases 

with 29 of these showing upregulation or downregulation of phosphorylation levels in the 

mutant knockin cell lines. This widespread modulation of tyrosine kinome indicates that 

there is a high degree of cross-talk between tyrosine kinase and serine/threonine kinase 

signaling pathways resulting from activation of the PI3K-AKT pathway. 
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Experimental procedures 

Reagents 

Anti-phosphotyrosine mouse mAb (pTyr-1000) beads were purchased from Cell 

Signaling Technology (Danvers, MA). TPCK-treated trypsin was obtained from 

Worthington Biochemical Corp. (Lakewood, NJ). DMEM/F12 with and without Lysine 

and Arginine, fetal bovine serum (FBS), L-glutamine, and antibiotics were purchased 

from Invitrogen (Carlsbad, CA). SILAC amino acids, 13C6-lysine, 13C6-arginine, 2H4-

lysine, 13C6-arginine, 13C6
15N2-lysine and 13C6

15N4-arginine were purchased from 

Cambridge Isotope Laboratories (Andover, MA). All other reagents used in this study 

were from Fisher Scientific (Pittsburgh, PA). 

Cell culture  

PIK3CA mutant knock-in breast epithelial cell lines MCF10A (hereafter referred 

to as Ex9-KI and Ex20-KI) were established as previously described (Gustin et al., 2009). 

For experiments here, Ex9-KI cells, Ex20-KI cells, and MCF10A parental breast 

epithelial cells were cultured following a protocol similar to that previously described 

(Wu et al., 2014). All three cell lines (Ex9-KI, Ex20-KI and MCF10A) were grown in 5% 

CO2 at 37 °C. Cell culture media consisted of DMEM/F12 (1:1) supplemented with 5% 

horse serum, 10 μg/ml insulin (Roche), 0.5 μg/ml hydrocortisone (Sigma), and 100 ng/ml 

cholera toxin (Sigma), and either 20 ng/ml EGF (for MCF10A parental cells) or 0.2 

ng/ml EGF (for Ex9-KI and Ex20-KI cells).  
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Cell line labeling 

Three-state stable isotopic labeling by amino acids in cell culture (SILAC) of 

MCF10A parental cells, Ex9-KI and Ex20-KI cells was performed. Briefly, cells were 

cultured in DMEM/F12 (1:1) SILAC media deficient in both L-lysine and L-arginine 

(Thermo Fisher Scientific). Ex20-KI cell culture media was supplemented with light 

lysine (K) and light arginine (R) to facilitate incorporation of the “light” labels. Ex9-KI 

cell culture media was supplemented with 2H4-K and 13C6-R to facilitate incorporation of 

the “medium” labels. Parental MCF10A cell culture media was supplemented with 

13C6
15N2-K and 13C6

15N4-R to facilitate “heavy” state labeling. Prior to harvest, all cell 

lines were trypisinized, washed and seeded at 80% confluency in DMEM/F12 basal 

media containing only 5% horse serum and grown overnight. Two sets of three-state 

SILAC labeled cells were prepared as replicates for downstream mass spectrometry 

analysis. 

In-solution trypsin digestion 

Following cell culture, peptides were prepared in an in-solution tryptic digestion 

protocol with slight modifications (Rush et al., 2005). Briefly, cells were lysed in urea 

lysis buffer (20 mM HEPES pH 8.0, 9 M urea, 1 mM sodium orthovanadate, 2.5 mM 

sodium pyrophosphate, 1 mM β-glycerophosphate and 5mM sodium fluoride), sonicated 

and then cleared by centrifugation at 15,000 × g at 4ºC for 20 minutes. As determined by 

BCA assay, 20 mg protein from each SILAC-labeled cell lysate was mixed. The resultant 

mixture was then reduced with 5 mM dithiothreitol and alkylated with 10 mM 
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iodoacetamide. For in-solution tryptic digestion, the resulting protein extracts were 

diluted in 20 mM HEPES pH 8.0 to a final concentration lower than 2 M urea incubated 

with 1 mg/mL TPCK-treated trypsin on an orbital shaker at 25ºC overnight. Protein 

digests were acidified with 1% trifluoroacetic acid (TFA) to quench the digestion reaction 

and then subjected to centrifugation at 2,000 x g at room temperature for 5 min. The 

resulting supernatants were desalted using SepPak C18 cartridge. Eluted peptides were 

lyophilized to dryness prior to phosphotyrosine peptide enrichment. 

Basic reversed-phase liquid chromatography (RPLC) 

For the total proteome analysis, basic RPLC was carried out as previously 

described (Wang et al., 2011). Agilent 1100 offline LC system was used for bRPLC 

fractionation which includes a binary pump, VWD detector and an automatic fraction 

collector. Briefly, lyophilized samples were reconstituted in solvent A (10 mM 

triethylammonium bicarbonate, pH 8.5) and loaded onto XBridge C18, 5 µm 250 × 4.6 

mm column (Waters Corporation, Milford, MA, USA). Peptides were resolved using a 

gradient of 3 to 50 % solvent B (10 mM triethylammonium bicarbonate in acetonitrile, 

pH 8.5) over 50 min and then kept at 90% for another 10 minutes. A total of 96 fractions 

were collected and these were concatenated into 12 fractions. Samples were then dried in 

vacuum and stored in -80°C freezer prior to LC-MS/MS analysis. 

Immunoaffinity purification of phosphotyrosine peptides 
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Immunoaffinity purification (IAP) of phophotyrosine peptides was performed as 

previously described (Rush et al., 2005). Briefly, following lyophilization, desalted 

lyophilized tryptic peptide were reconstituted in 1.4 mL of IAP buffer (50mM MOPS pH 

7.2, 10mM sodium phosphate, 50mM NaCl) and subjected to centrifugation at 2,000 x g 

at room temperature for 5 min. Prior to IAP, anti-phosphotyrosine antibody beads 

(pY1000, Cell Signaling Technology) were washed with IAP buffer once. The 

reconstituted peptide mixtures were then incubated with anti-phosphotyrosine antibody 

beads on a rotator at 4ºC for 30 minutes. Samples were then centrifuged at 1,500 x g for 1 

minute and supernatant was removed. The beads were washed twice with IAP buffer and 

then twice with water. Residual water was removed. Phosphopeptides were eluted from 

the antibody beads by acidifying the bead mixture at room temperature with 0.1% TFA. 

Phosphopeptides eluents were desalted with C18 STAGE tips, vacuum dried and stored 

at -80ºC prior to LC-MS/MS analysis. 

Liquid chromatography tandem mass spectrometry 

Data dependent LC-MS/MS analysis of phosphopeptides enriched by IAP was performed 

with an LTQ-Orbitrap Elite mass spectrometer (Thermo Fisher Scientific) coupled to a 

nano-liquid chromatography system (Proxeon, Easy Nano-LC). During each LC-MS/MS 

run, 10 uL of reconstituted peptide solution were injected onto a nano-c18 reversed phase 

column (10 cm × 75 µm, Magic C18 AQ 5 µm, 120 Å). Peptides were than fractionated 

across a 90-minute linear reversed phase HPLC gradient (from 5 to 60% Acetonitrile). 

High-resolution precursor scans (FTMS) were acquired within the Orbitrap analyzer 

across a mass range of 350-1,700 Daltons (with 120,000 resolution at 400 m/z). The 
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fifteen most abundant precursor ions from each precursor scan were selected for High 

Collision Dissociation (HCD) fragmentation (isolation width of 1.90 m/z; 32% 

normalized collision energy and activation time of 0.1ms). High-resolution MS/MS 

spectra were acquired (at 30,000 resolution at 400 m/z) on the Orbitrap analyzer 

following fragmentation.  

Mass spectrometry data analysis 

The Proteome Discoverer (v 1.4; Thermo Fisher Scientific) software package was 

used to facilitate downstream protein identification and quantitation. All acquired mass 

spectrometric data were searched within the Proteome Discoverer interface using both 

Mascot (Version 2.2.0) and SEQUEST search algorithms against Human RefSeq 

database v 50 (containing 35,478 entries). For both algorithms, search parameters were as 

follows: a maximum of two missed cleavages; a fixed modification of 

carbamidomethylation; variable modifications of N-terminal acetylation, oxidation at 

methionine, phosphorylation at serine, threonine and tyrosine and SILAC labeling 

13C6,15N2-lysine; 2H4-lysine; 13C6-arginine and 13C6,
15N2-arginine; MS tolerance of +/-10 

ppm; MS/MS tolerance of +/-0.1 Da. The Mascot and SEQUEST score cut-offs were set 

to a false discovery rate of 1% at the peptide level. The q values for the peptides were 

calculated using the Percolator algorithm within the Proteoeme Discover suite. The 

peptide quantification was performed using the algorithms available within the precursor 

ion quantifier node. Quantitation was determined based on area under the curve 

measurements from the extracted ion chromatograms for each precursor ion. The 

probability that an identified phosphorylation was modifying each specific Ser/Thr/Tyr 
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residue on each identified phosphopeptide was determined from the PhosphoRS 

algorithm (Taus et al., 2011). We averaged and normalized the intensities of the 

phosphopeptides identified in the two replicate experiments that were carried out. Total 

sum intensities of all phosphopeptides for each SILAC label were used to normalize the 

phosphopeptide abundance. 1.5-fold cut-off was selected for hyperphosphorylation and a 

0.67-fold cut-off was selected to denote hypophosphorylation. All mass spectrometry 

proteomics data associated with this project have been deposited to the ProteomeXchange 

Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner 

repository with the dataset identifier PXD001460. 

Western blot analysis 

All cell lines used for western blot analyses were cultured in regular medium with 

light amino acids. Prior to harvest, cells were seeded overnight in medium containing 

only 5% horse serum. Cells were harvested and lysed in modified RIPA buffer (50 mM 

Tris-HCl, pH 7.4, 150 mM NaCl, 1 mm EDTA, 1% Nonidet P-40, 0.25% sodium 

deoxycholate, and 1 mM sodium orthovanadate in the presence of protease inhibitors). 

Whole cell protein extracts were denatured and separated in NuPAGE gels (Invitrogen), 

transferred to nitrocellulose membranes, and probed with primary and horseradish 

peroxidase-conjugated secondary antibodies. The primary antibodies used were anti-

phospho-EGFR Y1173 (4407; Cell Signaling Technology), anti-EGFR (2232; Cell 

Signaling Technology), anti-phospho-EPHA2 Y588 (12677; Cell Signaling Technology), 

anti-EPHA2 (6997; Cell Signaling Technology), anti-phospho-MET Y1003 (3135; Cell 

Signaling Technology), anti-MET (3148; Cell Signaling Technology), anti-phospho-
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EFNB1 Y324 (OAAF00520; Aviva Systems Biology), anti-EFNB1 (ARP46450_P050; 

Aviva Systems Biology) phospho-HER2 Y877 (2265-1; Epitomics), anti-HER2 (2165; 

Cell Signaling Technology), and anti-β-ACTIN (A5316, Sigma).  

Results 

Phosphotyrosine profiling of mutant PIK3CA knockin cells reveals widespread 

modulation of the tyrosine phosphoproteome 

The p110α subunit of PI3K is composed of an N-terminal p85 binding domain, a 

Ras binding domain, a C2 domain, a helical domain and a kinase domain (Figure 1A) 

(Amzel et al., 2008). The gene encoding p110α, PIK3CA, has been shown to be 

frequently mutated in human cancers (Samuels et al., 2004). The cBioPortal for Cancer 

Genomics online tool (www.cbioportal.org), which compiles sequencing data from large 

scale sequencing studies of human cancers, revealed three hotspot mutations in this gene 

(Figure 1a) (Cerami et al., 2012; Gao et al., 2013). Two of these mutations occur in exon 

9 of the gene (E542K and E545K), which codes for the helical domain, and another 

mutation occurs in exon 20 of the gene (H1047R), which codes for the kinase domain. 

These single amino acid mutations result in a gain of function of PI3K, which ultimately 

leads to activation of AKT signaling and inducing growth-factor and anchorage-

independent growth, cell motility and tumor formation in vivo (Ikenoue et al., 2005; Kang 

et al., 2005; Zhao et al., 2005). We previously established cell lines that contain the 

E545K and H1047R mutations (hereafter referred to as Ex9-KI and Ex20-KI, 

respectively) using gene targeting to knock in these mutations into the spontaneously 

http://www.cbioportal.org/
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immortalized, non-tumorigenic breast epithelial cell line MCF10A (Gustin et al., 2009). 

A breast epithelial cell line model is especially relevant as PIK3CA has been shown to be 

the most frequently mutated gene across all subtypes of breast tumors (Bachman et al., 

2004; Network, 2012). In a previous study, we have carried out phosphoserine/threonine 

profiling of these isogenic cell lines using TiO2 phosphopeptide enrichment (Wu et al., 

2014). We found multiple receptor and non-receptor tyrosine kinases including EGFR, 

EPHA2 and PTK2 to be hyperphosphorylated in the mutant cells, which led us to 

hypothesize that tyrosine kinases, and subsequently their downstream signaling 

pathways, are activated in PIK3CA mutant cells. In the current study, we aimed to 

perform an in-depth analysis of tyrosine kinase signaling pathways by specifically 

enriching for tyrosine phosphorylated peptides. To this end, we performed SILAC (stable 

isotope labeling by amino acids in cell culture) labeling on the mutant knock-in cell lines 

along with the parental MCF10A to allow for accurate quantitation of phosphorylation 

levels. The three state-SILAC experiment was carried out by mixing equal amounts of 

protein lysates from Ex20-KI cells labeled with light SILAC medium, Ex9-KI (medium) 

and parental MCF10A (heavy). The mixture was digested with trypsin and the tryptic 

peptides were then desalted using the C18 cartridge. Phosphotyrosine enrichment of the 

phosphopeptides was carried out using the anti-phosphotyrosine antibody pulldown prior 

to LC-MS/MS analysis (Figure 1B).  

From this profiling, we identified 824 phosphopeptides from 343 proteins. A 

majority of these phosphopeptides (651) are phosphorylated on tyrosine residues, and a 

smaller fraction on serine/threonine residues (173). Most of these phosphopeptides 

showed similar phosphorylation pattern in both Exon 9 and Exon 20 (Figure 2A). We 
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observed a global elevation of protein phosphorylation level in the mutant knock-in 

compared to the parental cells, where more peptides showed upregulation in 

phosphorylation levels compared to downregulation (Figure 2B). This indicates that 

PIK3CA mutations lead to a global increase in protein phosphorylation levels and hence 

profoundly impact the tyrosine signaling pathways. In order to investigate the 

stoichiometry of the observed phosphorylation-site changes, we performed a global 

proteome analysis of the same cell lines. We observed that most of the proteome did not 

change in the knock-in cell lines, indicating that tyrosine phosphoproteome modulation is 

mostly due to the activation of tyrosine kinases (Figure 2D). In our previous work4, we 

identified 166 phosphotyrosine-containing peptides out of 8,075 phosphopeptides 

identified. In the current study, we identified 651 phosphotyrosine-containing peptides 

out of 824 phosphopeptides identified, a number four times larger than our previous 

study. More importantly, none of the phosphotyrosine-containing peptides identified in 

our previous study belong to any of the tyrosine kinases in the human proteome (11 

tyrosine kinases were identified from phosphoserine/threonine-containing peptides), 

whereas our current study identified 34 tyrosine kinases with 29 of these showing 

alterations in their phosphorylation status. This indicates the necessity of phosphotyrosine 

peptide-specific enrichment in order to study the tyrosine phosphoproteome modulation 

in the cells. 

Analysis using KEGG pathway database showed that many of these 

hyperphosphorylated proteins are involved in important biological processes such as cell 

motility, which includes pathways in regulation of actin cytoskeleton, focal adhesion, 

tight and adherens junctions, as well as kinase regulated pathways such as ErbB, insulin 
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and VEGF signaling pathways (Figure 2C). Of particular note, many of these pathways 

were also found to be regulated through our phosphoserine/threonine profiling in our 

previous study, supporting the robustness of our mass spectrometry analysis (Wu et al., 

2014). Activation of these pathways in the PIK3CA mutant cells could potentially explain 

why these cells are able to proliferate in the absence of growth factors and are 

significantly more invasive than the wild type cells. 

Activating PIK3CA mutations modulate the tyrosine kinome 

Of the 343 proteins that we identified from our profiling, 63 are protein kinases. 

34 of these belong to the tyrosine kinase family where 16 are receptor tyrosine kinases 

and 18 are non-receptor tyrosine kinases. We mapped the identified kinases onto the 

phylogenetic tree of the human kinome (Figure 3). A majority of the phosphopeptides 

from these kinases showed either an increase or decrease in phosphorylation levels, 

suggesting that the activity of these kinases is regulated. This regulation signifies that the 

signaling pathways downstream of these kinases, for example the focal adhesion pathway 

and ErbB signaling pathway (Figure 2C), are also modulated. More kinases were found 

to have increased levels of phosphorylation compared to decreased levels of 

phosphorylation. Figure 4 shows representative spectra of phosphopeptides belonging to 

these kinases. As shown in this figure, Ex9-KI and Ex20-KI cells have increased 

phosphorylation compared to the parental MCF10A cells. Many of the identified sites on 

these hyperphosphorylated kinases have been implicated in oncogenic transformation or 

metastasis. For instance, phosphorylation of EGFR at Y1110 has been reported to 

stimulate cancer cell invasion, motility and migration (Cardoso et al., 2014). 
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Phosphorylation of Y588 of EPHA2 has been reported to be critical for vascular 

assembly and tumor angiogenesis (Fang et al., 2008). Thus the phosphorylation of these 

kinases could contribute to the oncogenic effects that are observed in cells with PIK3CA 

mutation. 

One possible mechanism of how these kinases were activated is through direct 

phosphorylation by AKT. Both EGFR and EPHA2 have been demonstrated to be 

substrates of AKT. EGFR S229 phosphorylation by AKT was shown to contribute to 

drug resistance and EPHA2 S897 phosphorylation by AKT was found to stimulate cell 

migration (Huang et al., 2011; Miao et al., 2009). AKT phosphorylation on these sites 

could lead to phosphorylation of other tyrosine residues on EGFR and EPHA2 through 

autophosphorylation and dimerization. The activated EGFR and EPHA2 could 

heterodimerize with other family members such as ERBB2 (Goldman et al., 1990; Wada 

et al., 1990), leading to the hyperphosphorylation of many members of epidermal growth 

factor receptor family and ephrin receptor family, which was observed in the PIK3CA 

mutant cells. Another possible mechanism of tyrosine kinase activation in the mutant cell 

is through direct activation by PIP3. There are four tyrosine kinases which contain the 

pleckstrin homology domain that can bind to PIP3, namely BMX, BTK, TEC and TIK. 

Studies have demonstrated that mutant PIK3CA could activate BMX, which could in turn 

directly phosphorylate STAT3 on Y705 (Guryanova et al., 2011; Hart et al., 2011). In our 

profiling, we found STAT3 Y705 to be hyperphosphorylated 2.3-fold in Ex9-KI and 1.6-

fold in Ex20-KI cells, suggesting that this mechanism is also active in the mutant cells. 

However, the hyperphosphorylation of many of the tyrosine kinases we identified could 

not be explained simply by activation through PIP3 or AKT pathway. Thus this indicates 
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that there are activations of various tyrosine kinase signaling through cross-talks and 

other mechanisms that are still not well-elucidated. 

Site-specific analysis of tyrosine kinase phosphorylation regulated by PIK3CA mutations 

To understand the effects of regulation of phosphorylation of the tyrosine kinases, 

we mapped the phosphorylation sites we identified in our profiling onto the protein 

structure. The receptor tyrosine kinases that exhibit regulation of phosphorylation levels 

are shown in Figure 5a and the non-receptor tyrosine kinases are depicted in Figure 5b. 

Receptor tyrosine kinases are composed of a large extracellular domain which binds to 

ligands, a transmembrane domain and a cytoplasmic tail which contains the tyrosine 

kinase domain. All of the phosphorylation sites we identified were localized on the 

cytoplasmic tail, indicating that regulation of activity occurs intracellularly. Non-receptor 

tyrosine kinases typically contain a tyrosine kinase domain along with other domains 

such as SH2 and SH3 which allow interaction and binding to other proteins. In both 

receptor and non-receptor tyrosine kinases, we observed that many of the regulated 

phosphorylation sites lie within the tyrosine kinase domain. The phosphorylation of many 

of the sites in this domain has been shown to be important for activity of the 

corresponding kinases. This includes Y877 of ERBB2, better known as HER2 (Adams, 

2003; Bose et al., 2006; Huse and Kuriyan, 2002), Y869 of EGFR (Biscardi et al., 1999; 

Tice et al., 1999), Y772 of EPHA2 (Fang et al., 2008), Y1189 and Y1190 of INSR (Jacob 

et al., 2002), Y714 of FER (Hikri et al., 2009) and Y347 of TNK2 (Yokoyama and 

Miller, 2003, 2006), all of which were found to be hyperphosphorylated in the mutant 

cells. We also observed many known regulatory sites outside of the tyrosine kinase 
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domain to be hyperphosphorylated in the mutant cells. These include the C-terminal 

Y1197 autophosphorylation site of EGFR which has been reported to be important for its 

enzymatic activity in addition to serving as a docking site for substrates such as PLC-γ 

and Shc (Jorissen et al., 2003; Sorkin et al., 1991, 1992). Phosphorylation of the 

juxtamembrane region of EPHB2 has been demonstrated to stimulate its catalytic activity 

by removing the inhibitory conformation of this region and serving as recruitment sites 

for proteins containing SH2 domains such as Ras-GAP (Holland et al., 1997; Wybenga-

Groot et al., 2001). Similarly, phosphorylation of Y323 of SYK has been reported to be 

required for the interaction with its substrate Cbl and the maximal tyrosine 

phosphorylation of Cbl (Deckert et al., 1998). Taken together, the preponderance of 

regulated sites identified in the kinase domain and regulatory regions signifies that these 

kinases and their downstream signaling pathways are activated. In addition to these well-

studied sites, there are other sites which were found to be regulated in the mutant cells 

whose functions are still unknown. Determining the significance of these phosphorylation 

sites in inducing oncogenic effects downstream of PI3K will require additional studies. 

Validation of the phosphoproteomic screen by western blot analysis 

To validate our phosphoproteomic screen, we performed western blot analysis 

using antibodies against phosphorylated sites of proteins identified in our global 

profiling, namely EGFR, EPHA2, MET, EFNB1 and ERBB2. For each of these 

antibodies, we showed through western blot that the levels of phosphorylation are 

consistent with our mass spectrometry results (Figure 6). For example, we found EGFR 

Y1197 and EPHA2 Y588 to be hyperphosphorylated at about 2-fold in Ex9-KI and Ex20-
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KI cells, and we observed a consistent increase in signal in our western blot. ERBB2 

Y877 on the other hand only showed elevation in Ex20-KI (2-fold) but not in Ex9-KI 

(1.1-fold) and we confirmed this data with our western blot. MET Y1021 did not show 

marked elevation of phosphorylation in our profiling data in Ex9-KI (1.3-fold) and Ex20-

KI (1.1-fold), which was supported by the western blot analysis. We also performed 

western blot of total protein for each of these proteins and we observed similar levels of 

protein expression in each of MCF10A parental, Ex9-KI and Ex20-KI cells (except for 

HER2 where we observed a slight decrease of protein levels in mutant cells even though 

the phosphorylation levels increased). This indicates that these proteins are 

hyperphosphorylated through activation of kinases and not as a result of 

transcriptional/translational regulation. Thus we have demonstrated through an 

orthogonal method that our mass spectrometry profiling data are accurate. 

Discussion 

Through phosphoproteomic profiling of cells with a single amino acid change in 

the PIK3CA gene, we demonstrate that there is a widespread modulation of the tyrosine 

phoshoproteome due to these activating mutations. Even though these mutations have 

been shown to result primarily in the hyperactivation of pathways downstream of the 

serine/threonine kinase AKT, our results clearly indicate that tyrosine signaling pathways 

are also widely affected. The activation of a few tyrosine kinases in the mutant PIK3CA 

cells could be the result of direct binding to PIP3 or direct phosphorylation by AKT. 

However many others could not be explained through these mechanisms as 

phosphotyrosine signaling is generally not studied in the context of serine/threonine 



 76 

kinases. This suggests that there are hitherto unknown mechanisms of crosstalk that occur 

between these pathways. Our profiling study should serve as a potentially useful resource 

for research as well as clinical studies involving development of novel therapeutic 

targets. 
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FIGURE LEGENDS 

Figure 1. Phosphoproteomic analysis of MCF10A cells with PIK3CA mutations. (A) 

Diagram of the p110α subunit encoded by the PIK3CA gene with the frequency of 

mutations found in large scale human sequencing studies. p85: p85 binding domain; 

RBD: Ras binding domain. Modified from www.cbioportal.org. (B) A schematic 

depicting the strategy used for quantitative phosphoproteomic profiling of PIK3CA Ex9 

and Ex20 knockin mutant cells.  

Figure 2. Phosphotyrosine profiling results of MCF10A with PIK3CA mutations. (A) 

Density scatter plot of log2-transformed phosphopeptide ratios (Ex9-KI/MCF10A vs 

Ex20-KI/MCF10A). Pearson correlation coefficient (R) is indicated. (B) Distribution of 

log2-transformed phosphopeptide ratios (Ex9-KI/MCF10A vs Ex20-KI/MCF10A). (C) 

The number of regulated proteins found in enriched signaling pathways (Modified 

Fisher’s exact P-value <0.05). 

Figure 3. Widespread modulation of the kinome by PIK3CA mutants. Phylogenetic 

tree of protein kinases is denoted with kinases identified in phosphoproteomic profiling. 

A color-coded site regulation pattern is shown in the form of a circle divided into two 

parts. The top half represents the fold change of phosphorylation sites identified in Ex-9-

KI cells and the bottom half represents Ex20-KI cells compared with MCF10A.  

Figure 4. Hyperphosphorylation of tyrosine kinases in the PIK3CA mutant cells. 

Representative MS spectra of tyrosine phosphopeptides belonging to EPHB4, EGFR, 
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ABL1 and EPHA2 tyrosine kinases showing higher levels in the Ex9-KI and Ex20-KI 

cells compared to the parental MCF10A cells.  

Figure 5. Site-specific regulation of tyrosine kinases by PIK3CA mutations. Diagram 

representations of receptor tyrosine kinases (A) and non-receptor tyrosine kinase (B) 

denoted with phosphorylation sites found to be regulated in either Ex9-KI (top half of 

circle) or Ex20-KI (bottom half of circle).  

Figure 6. Validation of phosphoproteomic results. Western blot analysis using 

phospho-specific antibodies against EGFR, EPHA2, MET, EFNB1, and ERBB2 and the 

corresponding total protein antibodies. β-actin serves as a loading control. 
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