
 

 

 

 

THE EPIDEMIOLOGY OF GLOMERULAR HYPERFILTRATION 

AMONG MEN WITH HIV IN THE ERA OF HIGHLY ACTIVE 

ANTIRETROVIRAL THERAPY 

 

 

by 

 

 

Derek Kai Sing Ng, ScM 

 

 

A dissertation submitted to the Johns Hopkins University in conformity with the 

requirements for the degree of Doctor of Philosophy 

 

 

Baltimore, Maryland 

October, 2014 

 

 

© 2014  Derek KS Ng 

All Rights Reserved 



ii 

 

II. Dissertation abstract 

 

Background Men infected with HIV and receiving highly active antiretroviral therapy 

are at higher risk of metabolic and cardiovascular abnormalities as well as accelerated 

renal function decline and chronic kidney disease (CKD). Glomerular hyperfiltration, 

defined as elevated glomerular filtration rate (GFR) to pathologically high levels, is 

associated with diabetes and hypertension and is a treatable risk factor for CKD. The 

epidemiology of hyperfiltration has not been described in an HIV population. The 

purposes of this dissertation is to a) describe the prevalence of elevated GFR using 

directly measured iohexol GFR, a gold standard; b) describe the incidence of 

hyperfiltration using the serum creatinine-based CKD-EPI estimated GFR equation, a 

clinical standard; and c) investigate the effect of hyperfiltration on accelerated GFR 

decline in the Multicenter AIDS Cohort Study. 

Methods Data consisted of a nested cross-sectional study within the MACS comprising 

241 HIV-uninfected and 367 HIV-infected men with iohexol GFR, and all MACS data in 

the era of HAART comprising approximately 1373 HIV-uninfected and 1255 HIV-

infected men. Hyperfiltration was classified using adapted definitions, including 

estimating the 90
th

 percentiles among HIV-uninfected men. Competing risks analyses, 

with age (after 30 years) as the time scale, were used to assess the effect of HIV-infection 

on incident hyperfiltration. To determine the effect of hyperfiltration on GFR decline, 

downward inflection points were identified.  

Results There was a higher prevalence of elevated GFR among HIV-infected men 

compared to HIV-uninfected men (25% vs. 17%; adjusted odds ratio: 1.70, 95%CI: 1.11, 
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2.61) based on directly measured GFR. Using estimated CKD-EPI GFR, HIV infection 

was associated with increased risk of incident hyperfiltration among non-blacks at 

younger ages that diminished over time. A higher non-significant risk was observed 

among blacks. Hyperfiltration was not associated with accelerated 5-year GFR decline. 

Compared to uninfected men, men treated for HIV-infection had a faster 5-year GFR 

decline. 

Conclusions Treated HIV infection was associated with an increased independent risk of 

prevalent and incident hyperfiltration, and varied by race. HIV infection, but not 

hyperfiltration, was associated with accelerated short term GFR decline. Therapies for 

metabolic, cardiovascular and renal abnormalities, including hyperfiltration, remain 

important considerations for HIV management. 
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1. Introduction 

 HIV treatment in the era of HAART and comorbidities  1.1

With the advent of highly active antiretroviral therapy (HAART), life expectancy 

with HIV infection has increased and AIDS mortality has decreased [1]. However, 

accelerated aging and the frailty phenotype are more common among those with HIV and 

receiving therapy [2]. Indeed, in the HAART era, those with HIV infection are at higher 

risk of non-AIDS comorbidities such as cardiovascular, metabolic and renal disorders 

more typically associated with age [3–6]. For example, HAART-treated people with HIV 

are known to live longer but also exhibit accelerated kidney function decline and higher 

incidence of chronic kidney disease (CKD) [6,7]. Importantly, this population also has a 

higher incidence of disorders such as hypertension and diabetes that have renal, 

cardiovascular and metabolic etiologies. Therefore, identifying precursors and modifiable 

risk factors for cardiovascular and metabolic comorbidities are essential for current HIV 

treatment and preventive care. 

 Glomerular hyperfiltration 1.2

One such risk factor identified in HIV-uninfected populations is glomerular 

hyperfiltration, which refers to elevated glomerular filtration rate (GFR) to pathologically 

high levels. Hyperfiltration is considered an early marker of kidney damage in the context 

of pre-diabetes and pre-hypertension leading to subsequent accelerated GFR decline [8]. 

Hyperfiltration can occur naturally without lasting kidney damage (for example, during 

pregnancy [9]).  However, it is generally accepted that hyperfiltration is also an initiator 

and accelerator of kidney disease [10] and a risk factor for proteinuria [8], in the presence 
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of other metabolic and cardiovascular comorbidities. Several studies have described 

increased prevalence of hyperfiltration among people with metabolic and cardiovascular 

abnormalities [11–15], as well as increased risk of accelerated GFR decline [10].  

Hyperfiltration is hypothesized to be an adaptive response to a reduction in 

functional nephron number. Pressure within the glomerulus can increase to high levels 

due to decreased volume flow from the efferent arteriole relative to the afferent arteriole. 

Figure 1.1 presents a schematic of blood flow within a nephron depicting this process. 

This difference in flow may be due to substances or hormones (such as insulin), as well 

as increased systemic blood pressure (as measured by systolic and diastolic blood 

pressure).  It is hypothesized that abnormal hormonal levels due to glucose intolerance 

and abnormal tubular resorption of glucose and sodium contribute to the development of 

hyperfiltration. This mechanism, largely derived from animal studies [9,16–18], is 

hypothesized to be responsible for the increased prevalence of hyperfiltration among 

diabetics, although this has not been directly confirmed in humans.  

The chronic increased pressure that defines hyperfiltration is thought to directly 

cause pathologic damage to the glomerulus. Increased hemodynamic pressures of the 

filtering units are markers of kidney dysfunction and precede microalbuminuria 

(proteinuria), GFR decline, further insulin resistance and hypertension [10,13,19]. In 

particular, in the absence of treatment, there is a progressive decline in GFR with a 

commensurate increase in proteinuria.  

Figure 1.2, described by Palatini [8] and reproduced here, presents the theoretical 

model of hyperfiltration proposed by Brenner and colleagues [20]. This model describes 

a period of increasing GFR (“Normal Filtration Phase 1”) followed by a period of 
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hyperfiltration. The third period is characterized by a sharp decline in GFR (“Normal 

Filtration Phase 2”), accompanied by an increasing level of proteinuria.  It should be 

noted that any single observation within a normal GFR period (i.e., Phase 1 or Phase 2) is 

not sufficient to categorize an individual, in the absence of proteinuria data. Additionally, 

it should be noted that normal renal function is expected to decrease over time. However, 

in this model, the decline described in Normal Filtration Phase 2 is faster relative to an 

expected age-related decrease. 

Importantly, hyperfiltration is considered a treatable and modifiable risk factor. 

Mild intervention includes dietary changes such as lower protein and sodium intake [9]. 

More intensive treatment might involve aggressive antihypertensive therapy including a 

regimen of angiotensin-converting-enzyme inhibitors (ACEi) and/or angiotensin II 

receptor blockers (ARBs), which preferentially dilate the efferent arteriole of the 

glomerulus, reducing pressure as well as pathologically high GFR.  

 Metabolic, cardiovascular and renal health related to hyperfiltration in HIV-1.3

infected populations 

Many of the identified risk factors of hyperfiltration are also more common 

among HIV-infected populations. Specifically, HIV-populations treated with 

antiretroviral therapy are at increased risk for diabetes [4,5] and hypertension [3]. 

Additionally, outcomes associated with hyperfiltration, such as accelerated GFR decline 

and incidence of CKD are also more common among those with HIV infection [6,21]. 

Several studies have also demonstrated much higher incidence of proteinuria (i.e., urine 

protein:creatinine ratio > 200 mg/g) among those with HIV infection compared to an 

uninfected population [22,23]. However, causes of higher proteinuria among those with 
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HIV are largely unknown [23] and investigation into early markers of kidney damage are 

warranted, particularly in a high risk HIV population.  

There are several potential mechanisms by which HIV infection and HAART may 

lead to hyperfiltration and CKD. Firstly, HIV directly infects kidney epithelial cells and 

the kidney is a reservoir of HIV infection [24–26]. It is possible that HIV infection in the 

kidney may alter renal functioning. Indeed, HIV-associated nephropathy is a common 

clinical concern [27,28]. It is possible that early stages of HIV-associated nephropathy 

may be characterized by the presence of hyperfiltration. Secondly, certain HAART drugs 

(e.g., thymidine analogs) are metabolized and excreted renally, which can lead functional 

changes and damage to the kidney. Indeed, tenofovir, indinavir and atazanavir are known 

to be nephrotoxic and chronic use may lead to acute kidney injury, a precursor to CKD 

[29–31]. In addition to these direct effects of HIV infection and HAART on the kidney, 

there may also be indirect effects, such as the development of dyslipidemia and insulin 

resistance leading to diabetes and other metabolic and CVD risk factors [32,33].  

 Measuring GFR  1.4

As a brief summary of measuring renal function clinically and for research 

purposes, GFR can be measured directly or estimated based on biomarkers correlated 

with renal function. Plasma disappearance of iohexol is a direct measure of GFR and is 

considered the gold standard for renal function [34,35]. In short, a known amount of 

contrast medium, such as iohexol, is injected intravenously as a single bolus. Iohexol is a 

non-radioactive contrast medium that is not secreted, metabolized or reabsorbed by the 

kidney, with exclusive elimination by the kidneys and an established safety profile [34]. 

Plasma concentrations of iohexol obtained at specific times (up to 5 or 6 hours) after 
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injection are measured to describe a disappearance curve. Quantifying the diminishing 

concentrations of iohexol as a rate summarizes the filtration rate of the kidneys over this 

time period with units milliliters per minute cleared (ml/min).  GFR is also standardized 

to body surface area of 1.73m
2
, which corresponds to an average adult male. The final 

units are ml/min per 1.7m
2
.  While the plasma disappearance of iohexol offers a precise 

and reliable measurement of GFR, it is not practical in routine clinical care since the 

protocol is long and can be burdensome. Its use in research settings is more limited as 

well given the complexity of data collection and measurement, as well as study 

participant burden. 

In contrast, estimated GFR (eGFR) is determined from easily measured 

biomarkers as a function of sex, race and age in a simple equation [36]. The most 

clinically used biomarker to estimate GFR is serum creatinine, although equations have 

been developed to include other markers such as serum cystatin C [37]. Measurement of 

serum biomarkers is common in clinical care and offers a fast assessment of renal 

function. Examples of these equations are the Modification of Diet in Renal Disease 

(MDRD) Study equation [38] and the CKD-EPI equation [36] whose units are also 

ml/min|1.73m
2
. Since equations have been mostly developed in populations with or at 

high risk of CKD, they perform better at lower levels of GFR. At high levels of GFR, 

these equations may be biased or unstable, but the CKD-EPI equation is the least biased 

of available options [39].  Despite the overall good performance of the CKD-EPI 

equation at all levels of GFR, there is still significant error and misclassification 

compared to directly measured GFR. Indeed, 15.9% of CKD-EPI eGFR measurements 

were not within 30% of the measured GFR values in a validation analysis of the equation 
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[36], indicating substantial misclassification. Nonetheless, given the ease of use of eGFR 

and its pervasive clinical presence, it is a valuable tool for clinical decision making, and 

by extension, in applied research settings. 

 Defining hyperfiltration 1.5

Despite hyperfiltration being a putative antecedent of GFR decline, cardiovascular 

and metabolic comorbidities, there is no single functional clinical definition of the 

condition. One problematic aspect of defining hyperfiltration is due to age-related GFR 

decline and other health factors associated with GFR. The presence of declining GFR as a 

part of normal aging has been acknowledged, yet it is not clear what constitutes normal 

decline [40,41].  There are several examples of hyperfiltration definitions proposed in 

published research, which have used directly measured GFR and estimated GFR. While 

some studies do not use an age-varying threshold, we restrict our current discussion to 

studies that allow thresholds for hyperfiltration to vary by age.  

Hyperfiltration definitions may be divided into two categories: conceptually 

derived definitions and population-based definitions. A conceptually derived definition 

uses a known level of high GFR and decreases that value commensurately by age, to 

account for normal age-related decreases in renal function. For example, Premaratne et 

al. [12] define hyperfiltration by a GFR threshold of 130 ml/min|1.73m
2
 with a 1 ml/min 

decrease per year in this threshold after age 40 to account for age-related decline. This 

age-specific threshold is simple, clinically relevant and the initial level of high GFR has a 

physiological basis. However, this threshold approach is not based on data, and does not 

account for sub-groups that may have different thresholds.  
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Population-based definitions of GFR are based on data from a normal population. 

While there is a need for defining normal reference ranges by age [40], several studies 

have sought to define a normal population and derive a threshold for elevated GFR 

[15,42]. Examples of these include elevated GFR defined as being greater than the 90
th

 

percentile of eGFR adjusted for age, sex, weight, height and use of antihypertensive 

therapy [42]; or simply higher than the 95
th

 percentile of 10-year age bins [15]. Okada et 

al [15] report age- and sex-specific 95
th

 percentiles of 99,140 men and women between 

the ages of 20 and 89 from 4 health check sites in Japan, representing one region. The 

normal population in this case is the study population which is representative of the target 

population.  The benefit to this approach is that the comparison group is well-defined, 

directly applicable to the study population and is free of physiological assumptions, in 

contrast to the conceptually derived definitions. However, this approach relies mainly on 

the statistical properties of the data and may not be physiologically tenable from a clinical 

perspective. Furthermore, defining a normal population can be problematic since some 

argue that the population should be completely free of comorbidities (similar to the 

definition presented by Melsom et al. [42]), while others may argue that the prevalence of 

comorbidities should be consistent between the source population and target population 

(similar to Okada et al. [15]).  

 Overall goals of the dissertation 1.6

Since hyperfiltration is a treatable and modifiable risk factor, it should warrant 

special clinical consideration in HIV management and monitoring. This importance is 

underscored by the renal excretion of some forms HAART: if GFR is too high, it is 

possible that medications may be excreted too quickly resulting in subtherapeutic 
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exposures. Additionally, preventing or treating hyperfiltration may reduce the risk of 

accelerated GFR decline and incidence of CKD, as well as potentially improve 

management of HIV and reduce adverse infection-related outcomes. 

However, a full characterization of hyperfiltration has not yet been accomplished 

in an HIV-infected population. It is therefore unclear the extent to which hyperfiltration is 

associated with HIV infection and whether hyperfiltration leads to adverse outcomes in 

this population. The goal of this dissertation is to describe the epidemiology of 

hyperfiltration among men with and without HIV, using data from the Multicenter AIDS 

Cohort Study (MACS). The MACS includes directly measured GFR on a subset of 

participants as well as serum creatinine-based eGFR on the full cohort in the era of 

HAART. This is an ideal setting to investigate hyperfiltration, as the data include the gold 

standard (measured GFR) and clinical standard (eGFR) of renal function. The specific 

aims of this dissertation are the following: 

1.6.1 Specific Aim 1 

A. To define hyperfiltration from directly measured GFR and describe the prevalence 

of hyperfiltration in a cross-sectional MACS subsample of men with and without 

HIV.  

B. To identify metabolic, cardiovascular and behavioral variables associated with 

hyperfiltration.  

C. To identify HIV- and therapy-related variables associated with hyperfiltration. 

1.6.2  Specific Aim 2 

A. To derive a population-based definition of hyperfiltration using CKD-EPI 

estimated GFR among HIV-uninfected men. 
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B. To describe the incidence of hyperfiltration using this definition among MACS 

men in the HAART era, by HIV infection status. 

C. To describe the risk of hyperfiltration associated with HIV infection in a 

competing risks setting. 

1.6.3 Specific Aim 3 

A. To describe trajectories of CKD-EPI eGFR decline after a hyperfiltration event 

and compare with the trajectories from an age- and HIV infection matched sample 

free of hyperfiltration. 

B. To apply a generalized method to identify an inflection point in GFR trajectories, 

that is, a point at which eGFR declines rapidly. 

C. To determine if treated HIV infection modifies the effect of hyperfiltration on 

eGFR decline. 

 Study population and Data 1.7

This dissertation uses data from the Multicenter AIDS Cohort Study (MACS), an 

ongoing prospective cohort study which has investigated the natural and treated history of 

HIV infection among high-risk homosexual and bisexual men in 4 sites: Baltimore 

MD/Washington DC, Chicago IL, Los Angeles CA, and Pittsburgh PA. The study was 

initiated in 1984 with 4 enrollment periods between 1984 and 2013 (and currently 

ongoing). Enrollment criteria were being at risk of HIV infection by sexual activity, 

infected with HIV, 18 years of age or older, no active malignancy or opportunistic 

infection that was AIDS-defining, and providing informed consent. AIDS and other 

clinical diagnoses were confirmed by medical record reviews in the recruitment process. 
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Datasets in these analyses were restricted to those subjects contributing data in the era of 

HAART (after June 1996). 

The study design of the MACS is based on structured semi-annual visits with a 

standardized physical exam, subject-reported behavioral and clinical information and 

specimen collection (for immediate laboratory analysis as well as repository storage). 

Biomarkers were collected using structured protocols. CD4+ cell counts and HIV RNA 

(Roche) were measured at each local site, lipids were measured at Heinz Research 

Laboratory (Pittsburgh) and blood and urine chemistry markers (including serum 

creatinine) were measured at a local biochemistry laboratory (Quest) with results sent to 

the Center for Analysis and Management of Multicenter AIDS Cohort Study 

(CAMACS). A detailed description of the MACS study design has been previously 

presented [43].  This dissertation presents MACS data collected through September 30, 

2013 (inclusive). 

Within the MACS cohort, a nested representative sample comprising about 250 

seronegative and 500 seropositive MACS subjects underwent a direct measure of GFR by 

a protocol of plasma clearance of iohexol between May 2008 and December 2010. All 

serum samples were measured at a central biochemistry laboratory (University of 

Rochester) with results sent to CAMACS.  

 Structure and organization of dissertation 1.8

The dissertation is organized into six chapters. The first presents introductory 

material describing hyperfiltration and the rationale for investigating this condition in an 

HIV-infected population, as well as the specific aims. The second chapter presents 

Specific Aim 1 in an analysis of a substudy nested within the MACS in which 
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approximately 500 HIV-infected men and 250 HIV-uninfected men underwent a directly 

measured GFR by an iohexol plasma disappearance protocol. This cross-sectional 

analysis of hyperfiltration was recently published in the journal AIDS, accepted 

September 2013 and appeared in print January 2014 [44]. The original publication is 

reproduced for Chapter 2 per copyright permissions granted by the publisher. The third 

chapter presents Specific Aim 2 utilizing serum creatinine-based CKD-EPI eGFR data in 

the MACS during the era of HAART, and is restricted to HIV-uninfected men and HIV-

infected men receiving HAART. The fourth chapter presents Specific Aim 3 using a 

matched study design and the same data source as in the analyses presented in Chapter 3. 

Chapters 3 and 4 are written as stand-alone manuscripts and therefore these chapters 

present the same methods for defining elevated eGFR in an HIV-uninfected normal 

population, albeit in different contexts, in order to ensure clarity of methods. Chapter 5 

presents a discussion and concluding remarks, including a summary of the findings, 

strengths, limitations and opportunities for further work. Chapter 6 presents figures and 

tables associated with the preceding chapters. 
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2 HIV therapy, metabolic and cardiovascular health are associated with 

glomerular hyperfiltration among men with and without HIV infection 
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3 HIV infection and therapy are associated with higher incidence of 

hyperfiltration using creatinine-based CKD-EPI estimated glomerular filtration 

rate data in the Multicenter AIDS Cohort Study 

 Abstract 3.1

Objective Elevated glomerular filtration rate (GFR) has recently been shown to be 

associated with HIV infection using a directly measured iohexol protocol in a cross-

sectional analysis using data from the Multicenter AIDS Cohort Study (MACS). As a 

putative risk factor for CKD and related to indicators of metabolic and cardiovascular 

abnormalities, it is important for clinical care since it is treatable with dietary 

interventions or aggressive antihypertensive therapy. The aims of this study were to a) 

define a threshold for elevated GFR appropriate for the MACS using the creatinine-based 

CKD-EPI estimated GFR (eGFR) equation; b) determine the incidence of chronic 

hyperfiltration; and c) estimate the risk of hyperfiltration associated with treated HIV 

infection in a competing risks setting.  

Design Prospective study design comprising MACS participants free of low eGFR (> 90 

ml/min|1.73m
2
) and elevated eGFR. Elevated eGFR was defined by the CKD-EPI eGFR 

age- and race-specific 90
th

 percentile among the HIV-uninfected men. At baseline, the 

study population at risk of incident hyperfiltration comprised 546 HIV-uninfected men 

and 574 HIV-infected men receiving HAART. Endpoints included chronic hyperfiltration 

(first of two eGFR > 90
th

 percentile within 1 year), low eGFR (first of two eGFR< 90 

ml/min|1.73m
2 

within 1 year, or first eGFR < 70 ml/min|1.73m
2
), or last observed visit as 

of September 30, 2013. 
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Methods Quantile regression for all HIV-uninfected men was used to determine age- and 

race-specific 90
th

 percentiles of eGFR, and was bootstrapped to obtain 95% confidence 

intervals for the estimates. For incidence and survival analyses, the time scale was age, 

specifically years from age 30.  Age-specific incidence rates and incidence rate ratios 

were based on Poisson regression, and non-parametric Kaplan-Meier estimates 

incorporating late entries were used to account for study entry after age 30. Competing 

risks proportional hazards regression was used to estimate the relative subhazard 

associated with treated HIV infection, accommodating the competing risk event of low 

eGFR. Sensitivity analyses investigated the impact of differing thresholds to define eGFR 

on the incidence of hyperfiltration and inferences. 

Results The equation for the estimated 90
th

 percentile of eGFR was 118.951 ml/min – 

0.726 × years after age 30 for non-blacks and 130.39 ml/min – 0.653 × years after age 30 

for blacks, based on HIV-uninfected men. The median ages for each race and HIV 

infection category was between 41 and 46, with a median follow-up time between 2.5 and 

3.5 years. The cumulative incidence rates of hyperfiltration for non-blacks were 5.3 and 

4.8 per 100 person-years for HIV-uninfected men and HIV-infected men, respectively. 

Among blacks, the cumulative incidence rates were 3.5 for HIV-uninfected and 5.7 per 

100 person years for HIV-infected men. However, in age-adjusted analyses, non-black 

men with HIV were more likely to develop hyperfiltration prior to age 35 than uninfected 

non-black men (IRR= 3.41, 95%CI: 1.22, 9.56); black men with HIV were more likely to 

develop hyperfiltration after age 45 than uninfected black men (IRR for ages 45 to 50= 

2.79, 95%CI: 1.12, 6.95). This was confirmed graphically with Kaplan-Meier survival 

plots and in a competing risk analyses accounting for late entries and low eGFR as a 
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competing event. The subhazard ratio (SHR) for HIV infection at age 30 among non-

blacks was 3.7 (95%CI: 1.6, 8.4) and this SHR declined 7% each year (SHR= 0.93, 

95%CI: 0.89, 0.96). For blacks, the subhazard ratio comparing HIV-infected to HIV-

uninfected did not vary by age and showed an increased, but non-significant estimated 

risk of hyperfiltration (SHR= 1.6, 95%CI: 0.96, 2.7), regardless of age. Sensitivity 

analyses suggested that the estimates of incidence rates were highly sensitive, yet overall 

inferences about risk of hyperfiltration associated with HIV infection did not change. 

Conclusions Men treated with HAART for HIV infection are at higher risk for incident 

hyperfiltration after age 30, particularly at ages younger than 45 among non-blacks; there 

was a higher but non-significant risk of hyperfiltration among blacks. Clinical monitoring 

of eGFR should include consideration of persistently elevated levels, as well as low 

levels, in this high risk population.   
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 Introduction 3.2

Glomerular hyperfiltration is defined as elevated glomerular filtration rate (GFR) 

to pathologically high levels, potentially leading to accelerated renal function decline and 

chronic kidney disease (CKD) [1]. Elevated GFR has recently been shown to have a 

higher prevalence among HIV-infected men compared to uninfected men in the 

Multicenter AIDS Cohort Study (MACS) in a cross-sectional analysis using directly 

measured GFR by plasma disappearance of iohexol [2].  Metabolic and cardiovascular 

abnormalities, including elevated fasting blood glucose [3,4], and the presence of Type 2 

diabetes [5–7] and hypertension [8,9] have been shown to be associated with elevated 

GFR primarily in non-HIV populations, but also in the MACS [2]. Indeed, many of these 

metabolic and cardiovascular risk factors associated with hyperfiltration are also related 

to HIV infection and highly active antiretroviral therapy (HAART) [10,11]. Furthermore, 

HIV infection and HAART are considered causes of CKD through numerous pathways 

[12–18]. 

Hyperfiltration is considered a modifiable risk factor of CKD, treatable by a low-

protein diet or antihypertensive therapy, using ACEi or ARBs, which preferentially dilate 

the efferent arterioles [19]. Since hyperfiltration is a precursor of CKD and its risk may 

be mitigated or eliminated with intervention, its early detection may be an important 

clinical tool to improve outcomes, particularly in HIV populations receiving HAART that 

are at high risk of CKD and poor outcomes.   

Initial evidence of increased risk of hyperfiltration associated with HIV was a 

higher prevalence of elevated GFR in the MACS, with 17% among HIV-uninfected men 

compared to 25% among HIV-infected men receiving HAART [2]. However, there are 
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few studies investigating the incidence of hyperfiltration in general, and none that 

characterize incidence in an HIV population. Few studies also describe hyperfiltration 

from a widely-used clinical measure of GFR: the CKD-EPI serum creatinine-based 

estimated GFR (eGFR) equation [20]. Therefore, the purposes of this study using MACS 

data were to a) present a threshold of elevated GFR using the CKD-EPI eGFR equation, 

based on HIV-uninfected men who are comparable to the HIV-infected men receiving 

HAART, and b) describe the incidence of chronic hyperfiltration in both groups, and c) 

determine the risk of hyperfiltration associated with HIV infection treated with HAART.   

 Methods 3.3

3.3.1 Study population 

The Multicenter AIDS Cohort Study is a longitudinal observational study of the 

natural and treated history of HIV among homosexual and bisexual men with infected 

with HIV or at risk of acquiring HIV. Initiated in 1984, the study comprises 7087 men 

from 1984 through 2012 in four recruitment waves (1984; 1987 to 1991; 2001 to 2003; 

2012 to September 30, 2013), at the time of the current analyses. Details of the MACS 

have been previously described [21]. Since untreated HIV infection is strongly associated 

with CKD [22] and GFR decline [14], and the administration of HAART is the standard 

of HIV care, these analyses restrict to HIV-infected men who have initiated HAART. 

Collection of serum creatinine data from HIV-uninfected men began in 2002, well into 

the era of widespread use of HAART (available starting in 1996) and was therefore 

comparable to data from HIV-infected men of the same era.  

Standardized protocols collected height, weight, fasting blood samples, blood 

pressure and behavioral variables, as previously described [2]. Metabolic variables in this 
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analysis included body mass index (BMI); obesity (defined as BMI ≥ 30 kg/m
2
); fasting 

glucose level; serum high-density lipoprotein (HDL); low-density lipoprotein (LDL); 

diabetes (defined as fasting glucose > 126 mg/dl, or diagnosis of diabetes with use of 

medications); dyslipidemia (defined as fasting total cholesterol ≥ 200 mg/dl, LDL ≥ 130 

mg/dl, HDL < 40 mg/dl, triglycerides ≥ 150 mg/dl, or use of lipid lowering medications 

with self-reported/clinical diagnosis of dyslipidemia); and metabolic syndrome [23]. 

Cardiovascular variables included systolic blood pressure (SBP; mmHg); diastolic blood 

pressure (DBP; mmHg); uncontrolled hypertension (SBP ≥ 140 mmHg or DBP ≥ 90 

mmHg); and use of antihypertensive medications. Behavioral variables included smoking 

status (current or non-current) and stimulant use (defined as cocaine, amphetamine or 

methamphetamine use in the preceding 6 months).  Serum creatinine was measured from 

blood samples at laboratories local to the site as part of standardized blood work up to 

calculate eGFR using the CKD-EPI eGFR equation [20].   

3.3.2 Estimating 90
th

 percentile threshold for defining elevated eGFR 

To establish a threshold of elevated eGFR, HIV-uninfected men older than 30 

years were used as a reference population for HIV-infected men. Our conceptual 

framework assumes that had the HIV-infected men never been infected, their eGFR 

distribution would be identical to the HIV-uninfected men. Since this uninfected 

population shares many of the same health and risk behaviors as the HIV-infected men in 

the MACS, they serve as an appropriate counterfactual group.  

Quantile regression was used to estimate the 90
th

 percentile of eGFR (dependent 

variable) as a function of age after 30 years (independent variable), since there is a 

normal age-related renal function decline [24–26]. Black race is associated with an 
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overestimation bias using the CKD-EPI equation [27]; therefore, models were stratified 

by race (non-black and black). From these models, a 90
th

 percentile level of eGFR could 

be determined that is dependent on the age and race of a given subject, and this level 

served as a threshold of elevated eGFR. This approach was adapted from previous studies 

that used a normal population to derive a threshold of elevated eGFR [3,9]. 

Since subjects contributed multiple eGFR observations, 95% confidence intervals 

were estimated by bootstrapping to account for correlated within-subject observations. A 

total of 2000 datasets were created for each race group with subjects randomly selected 

(with replacement) comprising the same number of observed individuals (1083 non-black 

and 290 for black men) in the original dataset. All eGFR observations from each selected 

subject were used in each bootstrapped set. The 95% confidence intervals were defined as 

the 2.5
th

 and 97.5
th

 percentiles from the distribution of intercepts and slopes from the 

2000 quantile regression models.  

The empirical 90
th

 percentile for each 5-year age bin was used to assess model fit. 

As a sensitivity analysis, log-transformed eGFR was assessed as an alternative to a linear 

model, but this transformation did not improve the fit to the data.  

3.3.3 Data structure and outcomes for time to event analyses 

In order to determine the incidence of chronic hyperfiltration, the analytic dataset 

was restricted to subjects with normal renal function at baseline, as defined as first 

observed visit where age ≥ 30 years.  Specifically, the data comprise men who were free 

of elevated eGFR (i.e., eGFR ≥ age- and race-specific 90
th

 percentile) and were free of 

evidence of CKD (i.e., eGFR < 90 ml/min|1.73m
2
). For the purposes of these analyses, 
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we assumed men were free of hyperfiltration prior to study entry. The time scale was age 

after 30 years; therefore, all inferences are conditional on being event-free up to age 30.  

Chronic hyperfiltration, the outcome of interest, was defined as having at least 

two occurrences of elevated eGFR (i.e., ≥ age and race-specific 90
th

 percentiles) within 

one year (i.e., out of 3 consecutive semi-annual visits). Requiring persistently high eGFR 

levels to defined chronic hyperfiltration minimized the potential misclassification due to 

transient elevated eGFR.  Subjects could exit the study at the occurrence of low eGFR, 

defined as the first of two eGFR observations less than 90 ml/min|1.73m
2
 within 1 year, 

or a single observation where eGFR < 70 ml/min|1.73m
2
), or at the last observed visit.  

3.3.4 Statistical analysis 

There were four components to the analyses describing the incidence of 

hyperfiltration among HIV-infected and uninfected men in the MACS. First, we present 

incidence rates and incidence rate ratios to characterize the occurrence of hyperfiltration, 

by infection status and race. Second, we present non-parametric Kaplan-Meier estimates 

of survival to describe the time to hyperfiltration with age as the time scale. In these first 

two analyses, subjects were censored at the occurrence of low GFR or last observed visit. 

However, low GFR is a competing risk event for hyperfiltration, such that once a person 

declines to low renal functioning, they are no longer at risk of hyperfiltration. Censoring 

these events can be appropriate in order to describe the unconditional risk of 

hyperfiltration [28] and is reasonable to use for describing general incidence rates and 

Kaplan-Meier estimates. Nonetheless, since low eGFR is a true competing risk event, the 

third component assessed hyperfiltration in a competing risk setting, using the subhazard 

ratio to describe the effect of HIV infection on hyperfiltration. Lastly, the fourth 
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component of the analyses explored the sensitivity of these findings using different 

thresholds to define elevated eGFR, and by extension, chronic hyperfiltration.  Data 

management was conducted in SAS 9.2 (SAS Institute, Cary, North Carolina, USA), 

survival analyses were performed in STATA version 11 (STATACorp, College Station, 

Texas), and graphics were produced in SPLUS 8.2 (TIBCO Software). 

3.3.5 Incidence rates and incidence rate ratios 

Incidence rates (IRs) and incidence rate ratios (IRRs) were calculated by a 

Poisson linear model for count data by five-year age bins and HIV infection status, with 

separate models for each race group (non-black and black). Subjects were censored at 

low eGFR or the last observed visit.  

3.3.6 Kaplan-Meier estimation of incidence by survival step functions 

Non-parametric Kaplan-Meier estimates accounting for late entries provided 

graphical depictions of the incidence of hyperfiltration and estimated times, with 95% 

confidence intervals, for the pth percentiles free of hyperfiltration. Censoring likewise 

was based on low eGFR or the last observed visit.  The survival function was 

summarized by the estimated times of events for the 10
th

, 25
th

, 50
th

 and 75
th

 percentiles by 

HIV infection status and race groups. The log-rank test compared the equality of survival 

function.  

3.3.7 Competing risks regression 

To account for the competing risk event of low eGFR, we used the approach 

proposed by Fine and Grey to estimate the subhazard ratio (SHR), in the context of a 

proportional hazard model using the subdistribution of a competing event [29]. In short, 
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this method appropriately differentiates between individuals who remain at risk of having 

the event after they exit the study because they were no longer followed (i.e., are truly 

censored) and those who exit the study because they are no longer at risk of the event 

occurring (i.e., have low eGFR), by estimating the cumulative incidence function using 

two cause-specific hazards (the event of interest and the competing risk event). This is in 

contrast to the Kaplan-Meier estimator which estimates the cumulative incidence function 

from the hazard function of the event of interest only. The primary independent variable 

was HIV infection. In the presence of non-proportional hazards, we also explored 

allowing the SHR for HIV infection to vary as a linear function of time.  Since we were 

interested in the population-level risk, the primary model did not adjust for confounders.  

However, as a secondary analysis, we included known risk factors at baseline (obesity, 

fasting blood glucose > 100 g/dL and uncontrolled hypertension) as covariates in the 

model as a comparison, especially since these variables are putative mediators of incident 

hyperfiltration.  Death was not included as a competing event since only one subject 

death was observed.   

3.3.8 Sensitivity analyses 

To investigate the effect of threshold changes on the inferences from the main 

analyses, a sensitivity analysis was conducted using different age- and race-specific 

thresholds to define elevated eGFR (and subsequently chronic hyperfiltration). The 

Kaplan-Meier analyses were replicated using three different thresholds based on a) 

previously published findings of the normal age-related decline in GFR, and b) the 

confidence limits of the bootstrapped quantile regression estimates. Race-specific 

intercepts from the equation were rounded to the nearest 1 ml/min|1.73m
2
 and the slopes 
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were varied to obtain three different race-specific thresholds. From previously published 

literature, Delayne et al. [25] report the best study estimate of age-related decline in 

healthy men is –8 ml/min|1.73m
2
 per 10 years [30], which we express as –0.8 

ml/min|1.73m
2
 per year. The race-specific lower 95% confidence limit and upper 95% 

confidence limits were used for the other two analyses.  

 Results 3.4

3.4.1 Determination of elevated eGFR 

To establish a threshold of elevated eGFR, estimates of age- and race-specific 90
th

 

percentiles were derived from 1373 men free of HIV infection in the MACS. Since there 

is a known overestimation bias among blacks using the CKD-EPI eGFR equation, the 

models were stratified by race. A total of 1083 uninfected non-black subjects contributed 

15456 eGFR observations; 290 uninfected black subjects contributed 3482 observations. 

The equation for the estimated 90
th

 percentile eGFR level as a function of age was (95% 

confidence intervals in subscript): 

(1)    Non-black 90
th

 percentile eGFR=  

118.563118.951119.531 + (-0.747 -0.726 -0.712)× years after age 30 

The equation for blacks was:  

(2)    Black 90
th

 percentile eGFR=  

129.184130.390134.914 + (-0.833 -0.653 -0.608) × years after age 30 
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Figure 1 graphically depicts these equations along with the empirical 90
th

 

percentiles by five year age bins, indicating good model fit.  

3.4.2 Baseline clinical and demographic characteristics 

Figure 2 presents the study flow, by HIV infection status for inclusion in this 

analysis. At first visit after age 30, 39.7% (546/1373) of HIV-uninfected men were free 

of low or elevated eGFR (i.e., eGFR ≥ 90 ml/min|1.73m
2
 and less than the age- and race-

specific 90
th

 percentiles) while 45.7% (574/1255) of HIV-infected men receiving 

HAART were in the same category. About 14.5% (182/1255) of the HIV-infected group 

had prevalent elevated eGFR compared to 8.6% (118/1373) of the HIV-uninfected men. 

The HIV-infected men also had a lower proportion with eGFR < 90 ml/min|1.73m
2
 

compared to the HIV-uninfected men (39.8% vs. 51.6%, respectively). These prevalent 

differences by eGFR category were significant (chi-square p< 0.001). For the analytic 

sample used to describe the incidence of hyperfiltration, the HIV-uninfected group 

comprised 546 men (386 non-blacks and 160 blacks) and the HIV-infected group 

comprised 574 men (377 non-black subjects and 197 black subjects).  

Table 1 presents the demographic and clinical characteristics of the analytic 

sample, specifically subjects with normal eGFR at baseline. Among non-blacks, the 

median age at entry into this sample was 47 years [IQR= 41, 53] for HIV-uninfected men 

(n= 386) and 43 years [IQR= 38, 48] for HIV-infected men (n= 377) and this difference 

was significant (p< 0.001). CKD-EPI eGFR did not differ by infection status at study 

entry: the median level for HIV-uninfected men was 100 ml/min|1.73m
2
 [IQR= 96, 104] 

and was 101 [IQR= 96, 106] among HIV-infected men. HIV infection was associated 

with lower weight and body mass index and a lower prevalence of obesity (7% vs. 19%, 
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p< 0.001), but a poorer lipid profile: 84% of HIV-infected men had dyslipidemia, 

compared to 72% of HIV-uninfected men (p< 0.001). There was no difference in 

hypertension status (prevalence of uncontrolled hypertension was 16% for both groups), 

but HIV-infected men were slightly less likely to receive antihypertensive therapy (10% 

vs. 14%, p= 0.072). HIV-infected men were more likely to be current smokers (32% vs. 

25%, p= 0.03) and have used illegal stimulants, specifically cocaine or uppers, in the 

previous year (21% vs. 12%, p< 0.001). 

Among black subjects, the HIV-uninfected men (n= 160) and HIV-infected men 

(n= 197) did not differ by age at study entry (42 and 41 years, respectively; p= 0.796). 

Black HIV-infected men had higher eGFR at entry than the HIV-uninfected men (108 vs. 

103 ml/min|1.73m
2
, p < 0.01); these levels were also higher than the non-black group. 

HIV infection was also associated with lower body mass and prevalence of obesity. 

Although not statistically significant, the HIV-infected men had a higher prevalence of 

dyslipidemia (69% vs. 60%, p= 0.156). There were no differences by hypertensive status, 

antihypertensive therapy, current smoking status or use of stimulants in the past year. 

Table 1 also presents a description of the longitudinal data and observed follow-

up time.  For non-black men, the overall median follow-up time was about 3 years for 

HIV-uninfected men (1496.2 total person-years) and 2.5 years for HIV-infected men 

(1367.8 total person years). In this group of 386 HIV-uninfected men, 21% had a 

hyperfiltration event; 42% had a low eGFR event and exited the study; and 38% had 

neither event and exited the study at their last observed visit with a median follow-up 

time of 5.2 years. Among the non-black HIV-infected group, 12 men became infected 

and initiated treatment while under study observation for a total of 389 men. Of these, 
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17% had a hyperfiltration event; 51% exited with low eGFR; and 32% exited with no 

event and a median follow-up time of 3.9 years. The distribution of these three events 

was significant by HIV infection status (p= 0.026) and was largely driven by a high 

incidence of low eGFR events among the HIV-infected men (51% vs. 42%). Among 

black men, the overall median follow-up time was similar between HIV-uninfected and 

HIV-infected men: 3.4 years and 3.5 years, respectively; and the total observed follow-up 

time was 664.2 person years and 791.7 person years, respectively. A total of 5 black men 

became infected and initiated therapy contributing to both groups until their infection 

status changed; thus, the denominator for HIV-infected black group comprised 202 men. 

The distributions of events were borderline significant by HIV infection status:  14% of 

HIV-uninfected men had incident hyperfiltration, 31% had low eGFR and 55% for 

neither hyperfiltration nor low eGFR events at study exit, and in this group with no 

events, the median follow-up time was 5.3 years. For HIV-infected black men, 22% had a 

hyperfiltration event; 33% had a low eGFR event and 45% exited the study with neither 

event, and in this group with no event, the median follow-up time was 4.0 years. 

Table 2 describes disease and therapy-related characteristics among those with 

HIV infection and receiving therapy, stratified by race to provide context for this HIV-

infected population. At study entry, the median CD4+ cell counts were 477 [IQR: 301, 

667] for non-blacks and was 415 [IQR: 266, 554] for blacks. About 33% of non-blacks 

and 38% of blacks had CD4+ cell counts less than 350 at baseline; and 44% of non-

blacks and 58% of blacks had a detectable HIV RNA load, despite having initiated 

HAART. For non-black men and black men, 56% and 43% received any ART prior to 

HAART initiation, respectively. The time since HAART initiation was 6.2 years for non-



41 

 

blacks and 7.1 years for blacks.  Overall, the characteristics of HIV infection and therapy 

use were similar by race. 

3.4.3 Incidence rates 

Tables 3a and 3b presents the age-specific incidence rates and incidence rate 

ratios associated with HIV infection, by race. It is important to note that men who 

progressed to low eGFR (at least two occurrences of eGFR less than 90 ml/min|1.73m
2
 

within 1 year, or one occurrence of eGFR < 70 ml/min|1.73m
2
) were censored in these 

analyses. Among non-black men, the cumulative incidence among HIV-uninfected men 

was 5.28 per 100 person-years (95%CI: 4.24, 6.58) and among HIV-infected men was 

4.83 per 100 person-years (95%CI: 3.79, 6.14).  The IRR, comparing the IR among HIV-

infected men to HIV-uninfected men, was 0.91 (95%CI: 0.66, 1.27), a non-significant 

difference but this effect was heavily confounded and modified by age.  Indeed, there was 

substantial variability by age group: hyperfiltration was more common among younger 

HIV-infected men, while incident hyperfiltration was more frequent among older HIV-

uninfected men. The IR in the youngest age group (30 to 35 years) was 13.65 per 100 

person years (95%CI: 7.92, 23.5) but was only 4.00 per 100 person years (95%CI: 1.67, 

9.62) among HIV-uninfected men; the IRR was 3.41 (95%CI: 1.22, 9.56), a significant 

difference. This effect diminished with increasing age, when hyperfiltration was more 

common among HIV-uninfected men at older age groups. In the age group 60 to 65 

years, the HIV-uninfected incidence was 22.21 per 100 person years (95%CI: 14.89, 

33.13), in contrast to the HIV-infected group in which the IR was 13.13 (95%CI: 5.9, 

29.23), although this effect was not statistically significant (IRR: 0.59; 95%CI: 0.24, 

1.45).   



42 

 

The cumulative incidence of hyperfiltration among black men was 3.46 per 100 

person years among HIV-uninfected men (95%CI: 2.30, 5.21) and 5.68 per 100 person-

years among HIV-infected men (95%CI: 4.24, 7.61). The IRR was borderline significant 

(IRR: 1.64, 95%CI: 0.99, 2.71; p= 0.053), although this estimate does not take into 

account age.  The HIV-uninfected black men had the lowest cumulative incidence out of 

the four groups, while the other three groups had similar rates.  A comparison of the age-

based IRs among black men revealed an opposite trend compared to the non-black: at 

younger ages (i.e., 30 to 45 years), there was no difference in incidence of hyperfiltration 

by HIV infection status (IRRs between 0.87 and 1.20, all non-significant).  However, 

there was a higher incidence between ages 45 and 60 years for those with HIV infection: 

the IRR was 2.79 (95%CI: 1.12, 6.95) for the ages between 45 and 50, but was not 

statistically significant for ages 50 to 55, and 55 to 60 (IRRs were 2.26 and 2.18, 

respectively).  This heterogeneity in IRs by age between non-black and black subjects 

justified race stratification for the subsequent analyses. 

3.4.4 Kaplan-Meier estimates with late entry 

Figure 3 presents the non-parametric Kaplan-Meier step functions of the 

incidence of hyperfiltration accounting for late entry after age 30.  The results reflect the 

inferences derived from the IR and IRR analyses: among non-blacks, HIV-infected men 

had a higher incidence at younger ages (prior to age 40), but the HIV-uninfected men had 

the same or higher incidence at older ages (after age 50). There were no differences by 

infection status for non-blacks (log-rank p= 0.495), but the difference was significant 

among black subjects (p= 0.045). The age at which 25% of HIV-infected men had 

hyperfiltration was 32.5 (95%CI: 30.6, 34.1); for HIV-uninfected men, that age was 37.8 
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(95%CI: 30.8, 44.0). The median age at hyperfiltration among HIV-infected men was 

35.2 (95%CI: 31.5, 39.2), but was 49.5 among HIV-uninfected men (95%CI: 37.8, 56.5). 

These results should be interpreted cautiously since there were several age-years in which 

no events occurred (about 41 to 48 years for HIV-infected men, and 39 to 43 years for 

HIV-uninfected men). This stability was likely an artifact of the data and may not be 

clinically meaningful. Among black subjects, the incidence was similar until about age 47 

at which point the incidence of hyperfiltration among HIV-infected subjects increased. 

The ages at which 25% of black men had hyperfiltration for the HIV-infected and 

uninfected groups were 41.4 years (95%CI: 30.9, 46.8) and 37.3 years (95%CI: 33.0, 

48.6), respectively; the median ages were 48.2 years (95%CI: 0.86, 54.3) and 51.8 year 

(95%CI: 33.0, 64.2), respectively. These large confidence intervals indicate relatively 

few events and shorter duration of follow-up time.  

3.4.5 Competing risks  

In the previous analyses of incidence rates and survival step function, those who 

had low eGFR were censored. However, low eGFR was also a competing risk event for 

hyperfiltration. A substantial proportion of men had low eGFR relative to the 

hyperfiltration event.  Among non-black men, 49.1% exited the study with low eGFR 

(170 HIV-uninfected and 209 HIV-infected men); among black men, 35.2% had this 

competing risk (52 HIV-uninfected men and 75 HIV-infected men).  Since a very high 

proportion experienced low eGFR, methods were applied to take into account this 

competing risk in determining the effect of HIV on the incidence of hyperfiltration.  The 

subhazard ratio [29], similar to the hazard ratio presented in a Cox proportional hazard 

model, describes the subdistribution of hyperfiltration in the presence of competing risks 
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and semiparametrically estimates the proportional hazard of the effect of HIV on 

hyperfiltration.  However, it is clear from the Kaplan-Meier estimates that the hazards 

were non-proportional between HIV-infected and HIV-uninfected (i.e., the survival step 

functions cross at age 55) among non-blacks.  Therefore, the analysis included exploring 

a time and HIV infection interaction, which can be interpreted as how age modifies the 

effect of HIV infection on hyperfiltration as a linear function. This interaction was 

significant among non-blacks, but was not significant among blacks.   

Figure 4 presents the proportional subhazard ratios of the univariate effect of HIV 

infection on hyperfiltration, by race. Among non-blacks, there was a strong HIV effect at 

younger ages, but this effect diminished over time. At age 30, the subhazard ratio of 

hyperfiltration was 3.69 (95%CI: 1.63, 8.36), yet this subhazard ratio decreased by 7% 

for each year after age 30 (SHR= 0.93, 95%CI: 0.89, 0.96). The confidence intervals 

indicate that shortly after age 40, the SHR estimate was no longer significant; by age 47, 

the SHR point estimate was very close to null (reference line at 1). Among blacks, there 

was no significant effect of time and, as depicted in Figure 4, the constant SHR showed 

that black men with HIV infection had a 1.6 times higher subhazard of hyperfiltration 

compared to HIV-uninfected black men (SHR= 1.60, 95%CI: 0.96, 2.67) and this was 

borderline significant (p= 0.07).   

To investigate the potential role of mediation, a secondary competing risks 

analysis adjusted for variables associated with HIV infection at baseline (described in 

Table 1) and potentially on the causal pathway between HIV infection and 

hyperfiltration. Specifically, these variables included obesity, dyslipidemia, uncontrolled 

hypertension and use of antihypertension medications, and were included as covariates in 
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the regression model. There were no inferential differences between the unadjusted and 

adjusted models: the effect modification related to age among non-blacks remained 

significant and was of similar magnitude (SHR at age 30= 3.56, 95%CI: 1.51, 8.28; SHR 

of HIV infection with a 1-year increase in age= 0.93, 95%CI: 0.89, 0.96); and the 

borderline significant subhazard ratio that did not vary by age among black men was 

essentially the same (SHR= 1.51 95%CI: 0.89, 2.58). 

3.4.6 Sensitivity analyses results 

To investigate how different thresholds affect the estimates of incident 

hyperfiltration, different slopes were used to define elevated eGFR. Specifically, the 

estimated 90
th

 percentile at age 30 (i.e., the intercept) was rounded to 119 and 130 

ml/min|1.73m
2
 for non-black and black populations, respectively, and the change per 

each year after age 30 was varied according to previously published literature and the 

95% confidence limits based on the bootstrapped quantile regression models from the 

HIV-uninfected men in the MACS. The expected decline among normal, healthy 

individuals reported by Poggio et al. was -0.8 ml/min per year, and this did not differ by 

race [30]. The empirical lower 95% confidence interval was -0.747 ml/min per year for 

non-black men and was -0.833 ml/min per year for black men. The upper 95% 

confidence interval was -0.712 ml/min per year for non-black men, and was -0.608 

ml/min per year for black men. The lowest threshold for elevated eGFR is based on the 

published source of renal function decline, while the highest threshold is based on the 

upper 95% confidence interval. Figure 5 presents the Kaplan-Meier survival curves using 

the three cutoffs for each race category, stratifying by HIV infection (in the same format 

as Figure 3).  Table 4 summarizes the cumulative incidence rates and the results from the 



46 

 

competing risks analyses for the main analyses and when using the three different 

thresholds for elevated eGFR cutoffs. For non-black individuals, varying the threshold 

for elevated eGFR to define hyperfiltration did not alter the inferences derived from the 

main analyses: HIV infection was associated with increased incidence of hyperfiltration 

at younger ages, but not at older ages. The lack of events between ages 40 and 45 

presented in Figure 3 of the main analysis did not persist in the sensitivity analyses using 

lower thresholds (Figure 5a and 5b), indicating a higher sensitivity in detecting events in 

this age range.  

Among black men, when the two lower thresholds were used, more 

hyperfiltration events were captured and the survival functions more closely resembled 

those of the non-blacks, however, there was no substantial change in the inferences from 

the competing risks analyses.  There was a higher incidence of hyperfiltration among 

HIV-infected compared to uninfected men, and the difference occurred earlier than that 

observed in the main analysis, although the effect of HIV infection was non-significant 

and not as large as among non-blacks. When the upper 95
th 

confidence interval bound 

was used, the results were essentially identical to the main analysis in which there was no 

difference in survival functions by infection status until about age 47, at which point men 

with HIV infection had an accelerated incidence rate.  This difference was not 

statistically significant, as described in the competing risks analyses.  Overall, the 

determination of elevated eGFR for defining a hyperfiltration event had a larger impact 

on the characteristics of the survival curves and cumulative incidence rates, but varying 

this definition did not change the overall inferences from the main analyses.   
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 Discussion 3.5

The primary purpose of this study was to investigate and describe the incidence of 

chronic glomerular hyperfiltration in the MACS, and characterize the effect of HIV 

infection as a putative risk factor for increased incidence. Since hyperfiltration is 

considered a modifiable risk factor of accelerated GFR decline leading to CKD, its 

incidence in the HIV-infected population is clinically important, since this population is 

at high risk for CKD [22]. These analyses suggest that treated HIV infection is associated 

with increased incidence of hyperfiltration, particularly at younger ages (ages 30-45) 

among non-black men, in this population of homosexual and bisexual men ranging in age 

from 30 to 65 years. The cumulative incidence rates were similar regardless of HIV 

infection status among non-black men, yet there were significant age-based differences. 

Among black men, there was an increased, but non-significant, risk of incident 

hyperfiltration in HIV-infected men.  The directionality and effect size in this group was 

similar to that of non-blacks, and the non-significance may have been due to a smaller 

sample size: the number of black men in this study was less than half that of the non-

black men (357 black men compared to 763 non-black men).  

The estimated incidence rate among non-black men aged 30 to 35 was about 14 

per 100 person years, although this rate declined dramatically with age, largely due to the 

increased incidence of low eGFR. We considered low eGFR a competing risk event to 

hyperfiltration: for example, it was unlikely a 40 year old non-black subject with eGFR 

equal to 67 ml/min|1.73m
2
 would be at risk of exceeding the elevated eGFR threshold of 

111.7 ml/min|1.73m
2 

(a difference of about 45 ml/min|1.73m
2
). Since HIV infection and 

HAART treatment are known risk factors for accelerated eGFR decline [14], the excess 
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of HIV-infected men relative to uninfected men exiting the study due to low eGFR, 

particularly at older ages was expected. This was borne out when accounting for low 

eGFR as a competing risk. The subhazard ratio among HIV-infected men was high at 

younger ages (at 30 years, the estimated SHR was 3.69) but declined thereafter, and was 

null by age 47 which was close to the median age at entry of the study population. This 

decreasing SHR was likely due to men with HIV declining to low GFR and exiting the 

study and who were no longer at risk for hyperfiltration. The corresponding median years 

since any antiretroviral therapy initiation and HAART initiation were 9.2 years and 6.2 

years, respectively indicating a substantial portion of life with HIV infection and 

treatment. It is therefore not unexpected that a high proportion of non-black men 

experienced low eGFR (51% in HIV-infected men compared to 41% among HIV-

uninfected non-black men) prior to any observed hyperfiltration in this time period.  

The incidence rate was higher at later ages among black men, between 7 and 9 per 

100 person years among those between the ages of 45 and 60, than at younger ages 

(between 3 and 4 per 100 person-years for ages 30 to 45). The incidence of low eGFR 

was not different between HIV-infected and HIV-uninfected men (33% vs. 31%), in 

contrast to the non-black sample, indicating that there are likely important clinical 

differences between non-black and black men in the present analysis. One possible 

explanation is due to the higher 90
th

 percentile threshold for elevated eGFR among 

blacks, which potentially allowed more black men with higher eGFR levels to enter the 

study, relative to the non-black men. Given the documented systematic bias in the CKD-

EPI eGFR equation among blacks [27], and the consistently high eGFR levels observed 
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in Figure 1, there is a strong basis for stratifying by race and presenting race-specific 

results.   

Overall, these results were congruent with the cross-sectional analysis of directly 

measured GFR in which 25% of HIV-infected men and 17% of HIV-uninfected men had 

prevalent hyperfiltration [2]. In that analysis, the adjusted prevalence odds ratio was 1.70 

(95%CI: 1.11, 2.61). While prevalence odds ratios and subhazard ratios are not directly 

comparable, both underscore an association between treated HIV infection and 

hyperfiltration. A major strength of the current study was maximizing the availability of 

longitudinal data to determine incident hyperfiltration by restricting study entry to those 

with eGFR levels in the normal range (eGFR between 90 ml/min|1.73m
2
 and less than the 

age- and race-specific 90
th

 percentile). 

Another important contribution of this study included describing the 90
th

 

percentiles by age, stratified by race, since it has been reported that the CKD-EPI eGFR 

equation overestimates GFR at high levels among blacks [27].  Quantile regression was 

used to estimate the 90
th

 percentiles starting at age 30, and the model was bootstrapped to 

estimate the 95% confidence intervals to account for the within-person repeated 

measurements. A simple linear model fit the data well and the intercept (at age 30) was 

about 119 ml/min|1.73m
2
 for non-blacks and 130 ml/min|1.73m

2
 for blacks, which is 

consistent with normal-high levels. Additionally, the estimated decline after age 30 for 

the 90
th

 percentile was -0.726 ml/min per year (95%CI: -0.747, -0.712) and -0.653 

ml/min per year (95%CI: -0.833, -0.608) for the non-black and black men, respectively. 

These results compare favorably with previously published estimates of elevated eGFR 

levels. In a Japanese population, Okada et al. reported that the 95
th

 percentile of serum 
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creatinine-based eGFR for men aged 20 to 29 was 117 ml/min|1.73m
2
 (n= 2189) and for 

men aged 30 to 39, the 95
th

 percentile was 108 ml/min|1.73m
2
 (n= 3866) [9]. The authors 

used the 95
th

 percentiles within 10-year age bins to define elevated eGFR, in contrast to 

our study which used a parametric model to allow the threshold to be dependent on age as 

a continuous variable. In another methodologically strong study, Poggio et al. [30] 

presented an age-related decline among healthy individuals as -0.8 ml/min|1.73m
2
 per 

year, which is slightly less than the KDOQI general guideline describing a loss of -1 

ml/min per year [31]. The strength of the Poggio et al. [30] study was the use of directly 

measured GFR and a population of confirmed healthy individuals. The estimates of GFR 

decline by age at the 90
th

 percentile using quantile regression were very close to the -0.8 

ml/min per year; indeed, among non-blacks, the 95% confidence interval contained this 

value. Furthermore, Lindeman et al. [32] presented the mean creatinine clearance decline 

among healthy men as 0.75 ml/min per year, which is also very close to our estimates. A 

summary of age-related GFR decline in the most recent KDIGO guidelines [33] present 6 

studies of healthy men, with estimates ranging from -1.2 ml/min per year to -0.36 ml/min 

per year (with only one study estimating a steeper decline of less than -1 ml/min per 

year).   

In the sensitivity analyses, we explored how different thresholds to define 

elevated eGFR (and subsequently hyperfiltration) affected the incidence characteristics 

and risks associated with HIV infection. The different thresholds were based on 

published research on expected decline among healthy individuals [30], and the bounds 

of the 95% confidence intervals of the slope, based on bootstrapped quantile regression. 

It should be noted that the differences in slope were clinically insignificant: for example, 
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among non-blacks the slopes used were -0.726 (main), -0.8 (published [30]), -0.747 

(lower 95% confidence interval bound) and -0.712 (upper 95% confidence interval 

bound). However, these small differences had important differences in defining 

hyperfiltration: for HIV-uninfected non-blacks, the cumulative incidence rates ranged 

from 4.48 to 9.67 per 100 person-years; for HIV-infected non-blacks, these rates ranged 

from 3.8 to 8.2 per 100 person-years. This heterogeneity was reflected in the Kaplan-

Meier estimates in which lower thresholds for elevated eGFR were related to smoother 

step-functions.  Nonetheless, in the competing risks analyses, the effect sizes were 

comparable and the inferences remained unchanged, indicating robustness in the 

estimates of risk associated with HIV. These analyses highlight a need to improve eGFR 

estimation at high levels, particularly to understand clinically meaningful differences at 

elevated renal function as well as the development of an acceptable and valid clinical 

definition of hyperfiltration using estimating equations is needed. 

 There were several strengths to this analysis. The use of serum creatinine-based 

eGFR as the primary measurement of renal function to defined hyperfiltration provides a 

clinically meaningful context to these findings since this tool is widely used and easily 

calculated in a clinical setting. Furthermore, the consistency with the previous findings of 

the association between treated HIV infection and hyperfiltration which used directly 

measured iohexol GFR (which is less common in clinical use), is encouraging. This study 

also used three different methods to describe the epidemiology of incident hyperfiltration, 

including basic age-adjusted incidence rates, non-parametric Kaplan-Meier estimates 

incorporating late entries and a competing risk analysis, all of which provided similar 

inferences. A methodologic strength to this study was using age as the time scale and 
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accounting for late entries. This method accommodates the survivorship for subjects that 

are observed after age 30 (i.e., for an individual entering after age 30, they were not at 

risk for hyperfiltration prior to entry into the study). This survivorship induces a deficit of 

fast progressors (i.e., men who developed hyperfiltration prior to observation), who were 

not observed. This study design assumes the subjects observed were free of 

hyperfiltration prior to study entry, and therefore all interpretations are based on 

conditional survivorship at age 30 years. Another methodologic strength was the use of 

competing risk proportional hazards analysis, which described an age-dependent effect of 

HIV infection on the risk of hyperfiltration among non-blacks. Indeed, in the original 

paper describing this method [29], the authors specifically commented on including time 

and covariate interactions, which was directly applicable in our dataset, quantifying an 

important aspect of the association between incident hyperfiltration and HIV infection. 

When excluding the time by HIV infection interaction among non-blacks, the SHR was 

non-significant and in the opposite direction (SHR: 0.81; 95%CI: 0.57, 1.13), 

underscoring the perils of assuming proportional hazards in the presence of non-

proportionality by time in a competing risks setting. 

There were several limitations in this analysis. Firstly, although eGFR is widely 

used clinically, it is not a direct measure of renal function, such as plasma disappearance 

of iohexol, a gold standard. It is known that eGFR does not perform as well at high levels 

of renal function (compared to low levels) since the equations were developed in mainly 

CKD populations. However, despite this, the CKD-EPI equation has been shown to 

perform better at high levels than alternative equations [27].  Another limitation was the 

high incidence of low GFR, particularly among HIV-infected individuals. It is unclear 
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how an overwhelming presence of this competing risk event influenced the estimates of 

risk; however, the inferences are consistent with the incidence rates and Kaplan-Meier 

step functions. These findings are only applicable to men, and not women, and in this age 

range, in particular. Studies have shown differences by sex in terms of normal GFR levels 

[25,33], as well as high levels [9]. Another major limitation was a lack of proteinuria or 

albuminuria data, which are indicators of kidney damage and strong predictors of future 

CKD [33].  GFR is still the most important predictor of CKD staging and is widely used 

clinically [34], however, our ability to correctly classify men as being completely free of 

CKD was limited without albuminuria data.  Lastly, the assumption of being 

hyperfiltration free prior to study entry may be too strong. It has been reported that GFR 

can fluctuate widely within individuals, with periods of increasing, stable and declining 

renal function [35]. In our analyses, subjects entered the study at the first available eGFR 

observation after age 30 that was at least 90 ml/min|1.73m
2
 and less than the age- and 

race-specific 90
th

 percentile; data regarding previous hyperfiltration or low eGFR were 

not available.  

In conclusion, based on data from healthy, HIV-uninfected men, age- and race-

specific 90
th

 percentile levels were estimated using simple equations. These equations 

provided a threshold to define elevated eGFR among both HIV-uninfected men and HIV-

infected men, who were receiving HAART. This analysis presented data demonstrating 

an increased risk of incident chronic hyperfiltration associated with HAART-treated HIV 

infection, using the CKD-EPI eGFR equation.  Since hyperfiltration is a putative 

accelerator of GFR decline and a precursor to CKD, which are more common among 

those with HIV infection, patients presenting with chronically high eGFR along with 
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indicators of metabolic and cardiovascular derangements, should receive clinical 

consideration for dietary modifications and/or ACE inhibitor or ARB use to lower GFR 

levels.  

  



55 

 

 References 3.6

1.  Palatini P. Glomerular hyperfiltration: a marker of early renal damage in pre-

diabetes and pre-hypertension. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. 

Assoc. - Eur. Ren. Assoc. 2012; 27:1708–1714.  

2.  Ng DK, Jacobson LP, Brown TT, et al. HIV therapy, metabolic and 

cardiovascular health are associated with glomerular hyperfiltration among men with and 

without HIV infection. AIDS Lond. Engl. 2014; 28:377–386.  

3.  Melsom T, Mathisen UD, Ingebretsen OC, et al. Impaired fasting glucose is 

associated with renal hyperfiltration in the general population. Diabetes Care 2011; 

34:1546–1551.  

4.  Okada R, Wakai K, Naito M, et al. Renal hyperfiltration in prediabetes confirmed 

by fasting plasma glucose and hemoglobin A1c. Ren. Fail. 2012; 34:1084–1090.  

5.  Bank N. Mechanisms of diabetic hyperfiltration. Kidney Int. 1991; 40:792–807.  

6.  Chaiken RL, Eckert-Norton M, Bard M, et al. Hyperfiltration in African-

American patients with type 2 diabetes. Cross-sectional and longitudinal data. Diabetes 

Care 1998; 21:2129–2134.  

7.  Jerums G, Premaratne E, Panagiotopoulos S, MacIsaac RJ. The clinical 

significance of hyperfiltration in diabetes. Diabetologia 2010; 53:2093–2104.  

8.  Kotchen TA, Piering AW, Cowley AW, et al. Glomerular hyperfiltration in 

hypertensive African Americans. Hypertension 2000; 35:822–826.  

9.  Okada R, Yasuda Y, Tsushita K, Wakai K, Hamajima N, Matsuo S. Glomerular 

hyperfiltration in prediabetes and prehypertension. Nephrol. Dial. Transplant. Off. Publ. 

Eur. Dial. Transpl. Assoc. - Eur. Ren. Assoc. 2012; 27:1821–1825.  

10.  Brown TT, Cole SR, Li X, et al. Antiretroviral therapy and the prevalence and 

incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch. Intern. Med. 

2005; 165:1179–1184.  

11.  Seaberg EC, Muñoz A, Lu M, et al. Association between highly active 

antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to 

2003. AIDS Lond. Engl. 2005; 19:953–960.  

12.  Bruggeman LA, Ross MD, Tanji N, et al. Renal Epithelium Is a Previously 

Unrecognized Site of HIV-1 Infection. J. Am. Soc. Nephrol. 2000; 11:2079–2087.  

13.  Campbell LJ, Ibrahim F, Fisher M, Holt SG, Hendry BM, Post FA. Spectrum of 

chronic kidney disease in HIV-infected patients. HIV Med. 2009; 10:329–336.  



56 

 

14.  Choi AI, Shlipak MG, Hunt PW, Martin JN, Deeks SG. HIV-infected persons 

continue to lose kidney function despite successful antiretroviral therapy. AIDS Lond. 

Engl. 2009; 23:2143–2149.  

15.  George E, Lucas GM, Nadkarni GN, Fine DM, Moore R, Atta MG. Kidney 

function and the risk of cardiovascular events in HIV-1-infected patients. AIDS Lond. 

Engl. 2010; 24:387–394.  

16.  Calza L. Renal toxicity associated with antiretroviral therapy. HIV Clin. Trials 

2012; 13:189–211.  

17.  Chandel N, Sharma B, Husain M, et al. HIV Compromises Integrity of Podocyte 

Actin Cytoskeleton through down regulation of Vitamin D receptor. Am. J. Physiol. 

Renal Physiol. 2013;  

18.  Buchacz K, Baker RK, Palella FJ Jr, et al. Disparities in prevalence of key chronic 

diseases by gender and race/ethnicity among antiretroviral-treated HIV-infected adults in 

the US. Antivir. Ther. 2013; 18:65–75.  

19.  Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular 

hyperfiltration: definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 

2012; 8:293–300.  

20.  Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular 

filtration rate. Ann. Intern. Med. 2009; 150:604–612.  

21.  Kaslow RA, Ostrow DG, Detels R, Phair JP, Polk BF, Rinaldo CR Jr. The 

Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of 

the participants. Am. J. Epidemiol. 1987; 126:310–318.  

22.  Winston JA. HIV and CKD Epidemiology. Adv. Chronic Kidney Dis. 2010; 

17:19–25.  

23.  Mondy K, Overton ET, Grubb J, et al. Metabolic Syndrome in HIV-Infected 

Patients from an Urban, Midwestern US Outpatient Population. Clin. Infect. Dis. Off. 

Publ. Infect. Dis. Soc. Am. 2007; 44:726–734.  

24.  Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG. The aging kidney. 

Kidney Int. 2008; 74:710–720.  

25.  Delanaye P, Schaeffner E, Ebert N, et al. Normal reference values for glomerular 

filtration rate: what do we really know? Nephrol. Dial. Transplant. 2012; 27:2664–2672.  

26.  Nitta K, Okada K, Yanai M, Takahashi S. Aging and chronic kidney disease. 

Kidney Blood Press. Res. 2013; 38:109–120.  



57 

 

27.  Stevens LA, Schmid CH, Greene T, et al. Comparative performance of the CKD 

Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease 

(MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am. J. 

Kidney Dis. Off. J. Natl. Kidney Found. 2010; 56:486–495.  

28.  Rothman KJ, Greenland S, Lash TL. Modern Epidemiology, 3rd Edition. 2008; 

Available at: http://www.rti.org/publications/abstract.cfm?pubid=11453. Accessed 15 

August 2014. 

29.  Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a 

Competing Risk. J. Am. Stat. Assoc. 1999; 94:496.  

30.  Poggio ED, Rule AD, Tanchanco R, et al. Demographic and clinical 

characteristics associated with glomerular filtration rates in living kidney donors. Kidney 

Int. 2009; 75:1079–1087.  

31.  National Kidney Foundation. K/DOQI clinical practice guidelines for chronic 

kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. Off. J. 

Natl. Kidney Found. 2002; 39:S1–266.  

32.  Lindeman RD, Tobin JD, Shock NW. Association between blood pressure and the 

rate of decline in renal function with age. Kidney Int. 1984; 26:861–868.  

33.  Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work 

Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and 

treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney 

Int. Suppl. 2009; :S1–130.  

34.  Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice 

guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. 

Intern. Med. 2003; 139:137–147.  

35.  Li L, Astor BC, Lewis J, et al. Longitudinal progression trajectory of GFR among 

patients with CKD. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2012; 59:504–512.  

 

 

  



58 

 

4 Estimated GFR decline after chronic hyperfiltration among men with and 

without HIV in the Multicenter AIDS Cohort Study 

 Abstract 4.1

Objective Glomerular hyperfiltration by direct measures of glomerular filtration rate 

(GFR) is more common among men infected with HIV, likely due to metabolic and 

cardiovascular effects of infection and antiretroviral therapy. Hyperfiltration is also a 

putative risk factor of accelerated GFR decline, yet its effect in the context of treated HIV 

infection is unknown. The purpose of this study was to describe 5 year trajectories of 

eGFR after the occurrence of hyperfiltration. 

Design Prospective longitudinal cohort study of creatinine-based CKD-EPI eGFR with 

up to 5 years of follow-up after hyperfiltration event in the Multicenter AIDS Cohort 

Study comprising men over 30 years of age. Control men (i.e., no history of CKD or 

hyperfiltration) were matched to the men with hyperfiltration (ratio of 4:1) by age within 

0.5 years, race, HIV infection status and hypertensive status. Data were restricted to HIV-

uninfected men and HIV-infected men who had initiated highly active antiretroviral 

therapy (HAART). 

Methods Quantile regression of data comprising multiple observations from  1373 HIV-

uninfected men was used to determine age- and race-specific 90
th

 percentile thresholds to 

define elevated eGFR. Hyperfiltration was defined as at least two occurrences of elevated 

eGFR within 1 year. Longitudinal data up to 5 years after index visit (hyperfiltration or 

match) using a previously validated general method to identify downward inflection 

points (IP). This method used a segmented regression model with eGFR as the outcome 
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and time as the independent variable to describe individual eGFR trajectories before and 

after an IP. In cases in which an IP was not identified, a slope-intercept model was used. 

The distributions of eGFR decline after the IP or from the slope-intercept model were 

compared by filtration status (normofiltration vs. hyperfiltration), stratified by HIV 

infection status.  

Results The age- and race-specific 90
th

 percentiles were described by the equations 119.0 

– 0.726 × years after age 30 for non-black men and 130.4 – 0.653 × years after age 30 for 

black men. A total of 90 HIV-infected and 87 HIV-uninfected men were classified as 

having hyperfiltration with at least 6 subsequent eGFR observations to describe 

trajectories; 321 and 337 normofiltering controls were matched to these groups, 

respectively. Among HIV-infected men, those with hyperfiltration were more likely to 

have started any antiretroviral therapy (ART), and HAART earlier. About 68% of those 

with hyperfiltration had a downward IP compared to only 35% of the normofiltering 

controls (p < 0.001). The median eGFR change per year among HIV-infected men was -

2.3 and -3.8 ml/min|1.73m
2
 per year for hyperfilterers and normofilterers, respectively; 

and for HIV-uninfected men the median change was -1.8 and -2.0 ml/min|1.73m
2
 per 

year, respectively. There were no differences by filtration status in adjusted analyses. 

While there was no significant effect of hyperfiltration on the rate of eGFR decline, those 

with treated HIV infection were more likely to have a faster decline than HIV-uninfected 

men. 

Conclusions Hyperfiltration was not associated with accelerated GFR decline in the 

subsequent five years in this population, although this may be due to measurement error 

issues related to eGFR data. Identifying inflection points may be a meaningful way to 
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model longitudinal GFR data in epidemiologic studies of hyperfiltration. This study 

replicates the effect of accelerated GFR decline associated with treated HIV infection 

among men with prevalent normal and high eGFR, but hyperfiltration does not appear to 

be a significant contributor to this effect. 
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 Introduction   4.2

Elevated glomerular filtration rate (GFR) is associated with metabolic and 

cardiovascular derangements [1–4], such as diabetes, high fasting blood glucose and 

hypertension. In a recent cross-sectional study using directly measured iohexol-based 

GFR, HIV-infected men had a higher prevalence of elevated iGFR than HIV-uninfected 

men [5]. The increased prevalence of elevated GFR was associated with increased 

exposure to antiretroviral therapy (ART), notably zidovudine (ZDV), a thymidine analog. 

Elevated GFR has been associated with accelerated renal function decline over four years 

using a directly measured GFR among Type 2 diabetics [1,6].  A model for 

hyperfiltration posits that after a period of increasing GFR leading to a phase of chronic 

hyperfiltration, there is a rapid decline in GFR [2]. However, the duration of chronic 

hyperfiltration prior to declining GFR is not well defined or understood. Additionally, it 

is unclear how hyperfiltration is related to GFR decline among patients with HIV 

infection, who are also at higher risk of chronic kidney disease (CKD) [7].  

Published research is limited in describing the effect of hyperfiltration on renal 

function decline using the CKD-EPI estimated GFR (eGFR) equation, a widely used 

clinical and epidemiologic tool [8]. One reason for this deficiency may be the 

demonstrated lack of precision of eGFR at high levels of renal function [9] and an 

absence of clinical criteria for elevated eGFR. As an example of this lack of precision, 

Melsom [10] reported an association of impaired fasting blood glucose with increased 

measured GFR, but not estimated GFR. Nonetheless, physicians must use eGFR for 

assessments and decision making, in the absence of directly measured GFR, for routine 

clinical care.  



62 

 

An additional challenge in identifying elevated eGFR and accelerated GFR 

decline is the presence of age-related decline, which is considered a normal process 

[11,12]. The physiologic age-related GFR decline has been identified as early as 1950 

[13] and has two implications for identifying elevated GFR and describing GFR decline. 

First, a threshold for classifying elevated GFR must respect that normal GFR declines 

over time. This has been accomplished by a theory-based method that sets a threshold 

and subtracts 1 ml/min per year after age 40 [14] to account for an age-related decline. 

An alternative method empirically derived the threshold as a percentile based on age- and 

sex-specific distributions of a normal population [3]. Both approaches account for the 

known age-related decline in eGFR. The second implication is that normal age-related 

decline must be considered when making inferences about accelerated GFR decline, for 

which hyperfiltration is hypothesized to be a risk factor. Given that GFR is expected to 

decline with age, even among normal, healthy individuals, it is necessary to present 

accelerated GFR decline in this context. Specifically, to investigate the effect of 

hyperfiltration, it is important to compare those with the condition to those with 

normofiltration of similar ages.  

The purposes of this study were to a) describe a definition of elevated eGFR and 

chronic hyperfiltration using empirically-based percentile thresholds among HIV-

uninfected men; b) describe the trajectories of eGFR after chronic hyperfiltration using a 

matched study design; and, c) determine the effect of hyperfiltration on eGFR decline in 

HIV-infected men using data from the Multicenter AIDS Cohort Study (MACS). The 

ideal comparison group to determine the effect of hyperfiltration as a putative accelerator 



63 

 

of GFR decline comprise men with the same age-distribution and HIV infection status, 

and free of chronic kidney disease (CKD). 

 Methods 4.3

4.3.1 Study population 

The MACS is a longitudinal epidemiologic study of the natural and treated history 

of HIV infection.  The recruitment and follow-up study design has been previously 

described [15]. There were a total of 7087 men recruited at the time of analysis (data 

collected through September 30, 2013), and these data were restricted to subjects 

contributing serum creatinine data in the era of highly active antiretroviral therapy 

(HAART), as defined by time since June 15, 1996 (n= 2628), and, if infected with HIV, 

receiving HAART . Semi-annual study visits included structured interviews, physical 

examinations and collections of biological specimens.  Serum creatinine measurements 

from a local site laboratory (Quest Laboratories) were obtained as part of standard renal 

work-up beginning in 2006; retrospective measurement of stored serum samples were 

obtained for all treated HIV-infected subjects prior to this time point who had available 

serum before and after the initiation of antiretroviral therapy. Of the 2628 men, 12 

contributed as both HIV-uninfected and HIV-infected subjects as they acquired infection 

while under study observation. In total, there were 1373 HIV-uninfected subjects and 

1255 HIV-infected subjects. Baseline was defined as the first visit with measured serum 

creatinine in the HAART era. 
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4.3.2 Defining elevated eGFR and chronic hyperfiltration 

Estimated GFR was determined from the serum creatinine-based CKD-EPI 

equation for men [8]. To establish a working definition of hyperfiltration based on 

longitudinal eGFR data, we characterized the eGFR distributions by age and race among 

HIV-uninfected participants. The HIV-uninfected participants comprise an appropriate 

comparison group to the HIV-infected men, since they share many of the same behavioral 

and lifestyle characteristics, based on study entry criteria. As the nearest counterfactual, 

the HIV-uninfected men provide a reference for the HIV-infected participants' eGFR 

levels, had they not been infected.  

Defining elevated eGFR as a single threshold is not appropriate since GFR 

decreases with age [11,12]. Also, an overestimation bias among black people for high 

levels of GFR using the CKD-EPI equation has been presented [9]. Therefore, defining 

pathologically high eGFR should take into account age and race.  The age- and race-

adjusted 90
th

 percentile serve as the threshold to determine a high eGFR level ("elevated 

eGFR") in an approach modified from Okada et al [3] and Melsom et al [10].  Quantile 

regression, stratifying by race (non-black and black), was used to determine the 90
th

 

percentiles of eGFR for a given age. Model fit was assessed by the empirical median and 

90
th

 percentile levels by 5-year age bins. The 50
th

 percentiles were also derived from the 

same quantile regression model to investigate a potential bias by race at lower (normal) 

eGFR levels.  

Hyperfiltration was defined as the occurrence of at least two observations above 

this threshold (with elevated eGFR) within 1.1 years. Since chronic hyperfiltration causes 

pathologic changes to the kidneys, this definition sought to identify those with 



65 

 

consistently elevated eGFR, minimizing misclassification from transiently high eGFR 

and regression to the mean after a single occurrence. The analytic dataset was restricted 

to subjects free of CKD (eGFR > 90 ml/min|1.73m
2
) and below the age- and race-specific 

90
th

 percentile at baseline in order to determine incident hyperfiltration. 

4.3.3 Longitudinal assessment of eGFR and matched study design 

In order to determine the effect of hyperfiltration on eGFR decline, we used a 

matched study design in which control, or comparison, subjects were matched to each 

case of chronic hyperfiltration. The controls comprised men with no history of observed 

hyperfiltration or CKD (since CKD is a predictor of accelerated GFR decline).  

Cases were defined at the age of the first occurrence of elevated eGFR. Potential 

controls were matched to each case by the following criteria: within 1 year of age (i.e., 

+/- 0.5 years), same race, HIV status and recruitment wave (pre- or post-2001 

recruitment; the later recruitment targeted minorities and men of lower socioeconomic 

status). After a first round of matches, there was an excess of uncontrolled hypertension 

among controls relative to cases. Since hypertension among cases is a putative 

confounder (related to unexposed and the outcome of GFR decline), we additionally 

matched on this variable. Subjects could serve as controls for multiple cases at different 

ages, but not multiple times for the same case. Additionally, controls matched multiple 

times at the same age were excluded such that there were no identical repeated controls. 

Cases did not serve as controls prior to their hyperfiltration event occurring since 

trajectories of controls should not include potential hyperfiltration. Up to 4 controls for 

each case were randomly selected, or all controls were selected when there were less than 

4 controls available.  
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Descriptive statistics by demographic and clinical characteristics of cases and 

controls are presented at the time of hyperfiltration or match, hereafter referred to as the 

index visits, as well as up to 5 years prior to and after the index date for select variables. 

Clinical characteristics were based on four domains: metabolic, cardiovascular and 

behavioral domains for all subjects and HIV health indicators for HIV-infected men. 

Metabolic variables included body mass index (kg/m
2
), treated as continuous and 

categorized (obese), high density lipoprotein (HDL) and low density lipoprotein (LDL), 

dyslipidemia (defined as fasting total cholesterol ≥ 200 mg/dl, LDL ≥ 130 mg/dl, HDL < 

40 mg/dl, triglycerides ≥ 150 mg/dl, or use of lipid lowering medications with self-

reported/clinical diagnosis of dyslipidemia), fasting glucose, treated as continuous and 

categorized (impaired is equal to fasting glucose > 100 mg/dL), and a diagnosis of 

diabetes (defined as fasting glucose > 126 mg/dl, or diagnosis of diabetes with use of 

medications). Cardiovascular variables included systolic blood pressure (SBP), diastolic 

BP (DBP), uncontrolled hypertension (SBP > 140 mmHg or DBP > 90 mmHg). 

Behavioral variables included current and ever cigarette use and current use of stimulants 

(cocaine, amphetamine or methamphetamine in the past year). Indicators of HIV 

management and disease severity included current and nadir CD4+ cell count (per μl), as 

continuous and categorized (< 350 per μl),  detectable viral load, history of an AIDS-

defining illness, initiated ART, years since ART initiation, initiated HAART, and years 

since HAART initiation, including parameters for medication adherence.  

For the 5 years preceding and after the index date, the mean of continuous 

variables for each time period was calculated for each individual. The medians and 

interquartile ranges of these subject-specific means are presented. The presence of any 
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detectable viral load in these two periods summarized this variable among HIV-infected 

men.  

Conditional logistic regression accounting for matched risk sets was used to 

determine univariate differences at baseline, and prior to and after the index visit, as 

presented in Table 1. The dependent variable was hyperfiltration status and risk sets were 

based on the ratio of hyperfilterers to controls (1:m, where m is between 1 and 4). Similar 

results were obtained when using Fisher’s exact test and Wilcoxon rank sum test to detect 

differences without accounting for risk sets (results not shown). Statistical significance 

was assessed at the p< 0.05 level. 

4.3.4 Characterizing eGFR decline by downward inflection points  

Since an accelerated decline is expected after a period of chronic hyperfiltration, 

occurring at an inflection point (IP) [2], we sought a more flexible model than individual 

linear trajectories or a random effects mixed model which estimates a mean overall 

change. A regression model with polynomial terms was not used since it is unclear 

whether all people with hyperfiltration have an accelerated decline that can be adequately 

summarized in a three- or four-term model. In an approach previously presented for 

describing changes in T-cell counts among HIV-infected individuals [16], an IP was 

identified for each subject to characterize eGFR changes before and after this time point. 

In this analysis, for subjects with hyperfiltration, we included data from the year 

preceding the second occurrence of elevated eGFR (to denote a period of increasing or 

stable elevated eGFR levels) and data for up to 5 years following this second elevated 

eGFR. Study entry for this analysis among normofiltration subjects was the first 

preceding eGFR within one year of the index visit. In order to appropriately characterize 
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eGFR trajectories before and after the IP with several data points, this analysis was 

restricted to subjects with a minimum of 6 eGFR measurements (at least 3 prior to and 

including the second elevated eGFR and at least 3 after the second elevated eGFR).   

Using the same notation presented by Gange et al. [16],  identification of the IP 

was defined by the following equation: 

(1)    eGFRij = Bi0
(k)

 + Bi1
(k)

(tij – ti
(k)

)
-
 + Bi2

(k)
(tij – ti

(k)
)

+
 + eij

(k)
 

where eGFRij is the jth eGFR measurement for the ith subject, at time tij.  ti
(k)

 is 

the time of the kth eligible time, that is, the midpoint between tij and tij+1, in order to 

identify the IP. The kth eligible time was further restricted to having at least 3 data points 

prior to and 3 data points after the identified IP. The model parameters may be interpreted 

as follows: the estimated eGFR level at the IP is Bi0, Bi1 is the slope prior to the IP, and 

Bi2 is the slope after the IP. Models were fit for each kth eligible time for each subject 

(i.e., three parameters were obtained for each kth time). The model which minimized the 

residual variance of the data (i.e., the sum of the [eij
(k)

]
2
) was selected as the final IP 

model for the subject. Figure 1a presents an example of this approach, displaying eligible 

IP times, the final selected IP, and the corresponding parameters from the model 

described above. 

Since the conceptual model of hyperfiltration conforms to a downward inflection 

point (i.e., Bi1
(k)

 > Bi2
(k)

 indicating an accelerated decline), for subjects in which Bi1
(k)

 ≤ 

Bi2
(k)

, a slope-intercept linear model was fit to the data of the form: 

(2)    eGFRij = αi0 + αi1
 
× tij + eij 
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where αi0 is the estimated eGFR level for the ith individual at time (tij = 0; i.e., the first 

observation) and αi1 is the slope for the ith individual over the observed study time in 

ml/min per year (i.e., the change in eGFR per year). The error term eij is assumed to be 

normally distributed with mean equal to 0 and variance σ as in a standard linear 

regression. 

Figure 1b presents the case in which there is no downward IP as indicated by the 

discontinuous line (i.e., Bi1
(k)

 ≤ Bi2
(k)

) and the two parameter model presented in equation 

(2) is fit to the data as the final model for that individual (solid line).   

The distributions of Bi2
(k) 

among subjects with an identified IP, and αi1 among 

subjects without an identified IP were compared by filtration and infection status by box-

percentile plots [17] and non-parametrically compared using the Wilcoxon rank sum test. 

In adjusted analyses, separate linear regression models by HIV infection status 

were conducted with the best slope for each subject as the dependent variable, defined as 

either Bi2
(k) 

(subjects with an identified IP) or αi1 (subjects without an identified IP). 

Covariates included for adjustment were glucose, SBP and DBP (in the log scale) since 

these have been consistently reported in the literature as risk factors for hyperfiltration. 

All continuous variables were centered at the population medians. For HIV-infected men, 

time since ART initiation was also included as a covariate. The estimated adjusted mean 

GFR change per year was reported for a reference subject within each group of interest 

(normofiltration and hyperfiltration, by HIV infection status) whose covariates 

corresponded to the group mean. Analyses were conducted with incremental additions of 

covariates to present how estimates change with their inclusions in the model. Among the 

control groups, there were instances in which multiple slopes were contributed by the 
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same subject, but at different ages. To account for the potential correlation of slopes 

among repeated subjects and obtain valid standard error estimates, generalized estimating 

equations (GEE) were used. 

As a sensitivity analysis, data from the 4:1 matching design were restricted to 1:1 

matching with unique subjects to create equally balanced number of hyperfilterers and 

matched normofilterers. Hyperfilterers without matched normofilterers were excluded 

from the analyses. The distribution of slopes were described and adjusted analyses used 

GEE to account for potential correlation within each matched pair.  

Matching, identification of inflection points and graphics were performed in 

RStudio (0.96.316). All other analyses were performed in SAS 9.2 (SAS Institute, Cary, 

North Carolina, USA).  

 Results 4.4

4.4.1 Estimation of 50
th

 and 90
th

 percentile level of eGFR based on HIV-uninfected 

men, by race 

In order to determine a threshold for elevated eGFR, the 90
th

 percentile by age 

was estimated by quantile regression separately for black and non-black races, since there 

is a known overestimation bias among blacks at high levels of GFR, using all data from 

HIV-uninfected men older than 30 years. A total of 3482 observations were contributed 

by 290 black men and 15457 observations from 1083 non-black men. We also 

investigated whether lower levels of eGFR differed by race, by estimating the median 

eGFR levels in the same stratified approach. The estimated median and 90
th

 percentiles of 

eGFR as a function of age among HIV-uninfected black and non-black men from these 

regression models are depicted as lines in Figure 2 (solid lines for non-black and 
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discontinuous lines for black sub-groups). The points represent these percentiles from 5 

year age bins from age 30 and indicate appropriate fit of the model to the data (solid dots 

for non-black and open dots for black sub-groups). The median eGFR levels by age were 

very similar between races, but the 90
th

 percentiles were systematically and consistently 

higher among black men. Indeed, the estimate of the 90
th

 percentiles for black men was 

130.4 – 0.65 × years after age 30; for non-black men, the equation was 119 – 0.73 × years 

after age 30. The GFR decline associated with age was about the same by race. Previous 

literature has documented an overestimation bias of eGFR among black subjects relative 

to measured GFR that is not present among non-black subjects [9], which likely accounts 

for this difference. Indeed, at median (i.e., normal) levels the difference by race was not 

nearly as extreme. Given the previous report of eGFR overestimation among black 

people, and the large difference at high levels of eGFR by race in our study population 

(despite sharing similar health and risk profiles and very similar median levels), there was 

justification to use race-specific age-based threshold to identify elevated eGFR and 

hyperfiltration.  

4.4.2 Identification of subjects with hyperfiltration and matching for comparison group 

with normofiltration 

Of the 574 HIV-infected men with available eGFR data and who did not have low 

or elevated eGFR at study entry, a total of 111 were identified with incident 

hyperfiltration, based on eGFR exceeding age- and race-specific thresholds at least twice 

in a calendar year. Among HIV-uninfected men (n= 546) with the same prevalent eGFR 

restrictions, a total of 102 were identified with chronic hyperfiltration. Subjects were 

excluded if they had less than 6 observations from the study time spanning 1 year prior to 
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the second elevated eGFR and 5 years after the second elevated eGFR. For this analysis 

investigating the effect of chronic hyperfiltration on eGFR decline, a total of 90 (81.1%) 

HIV-infected men and 87 (85.3%) HIV-uninfected men were included who met the 

criteria for hyperfiltration and with sufficient data to characterize GFR decline.   

To provide an appropriate comparison group for the sets of HIV-uninfected and 

HIV-infected men with hyperfiltration, we selected controls who were defined as men 

free of CKD (i.e., eGFR > 90 ml/min|1.73m
2
) and elevated eGFR (i.e., eGFR < 90

th
 age- 

and race-specific percentile) in a matching approach. For each subject with 

hyperfiltration, we randomly selected controls who were within 1 year of age at the time 

of the second occurrence of elevated eGFR, of the same race (black or non-black), 

recruitment wave (pre- or post-2001 cohort), hypertensive status (uncontrolled or 

controlled at time of hyperfiltration or match), and HIV infection status. Subjects with 

hyperfiltration were eligible for selection prior to the event of hyperfiltration occurring 

and a maximum of 4 control men were selected per each case. A total of 230 HIV-

uninfected men were selected as controls for the 87 HIV-uninfected men with 

hyperfiltration, and 274 HIV-infected men were matched as controls for the 90 HIV-

infected men with hyperfiltration.  

4.4.3 Characteristics of men with hyperfiltration and matched controls 

Table 1 presents the characteristics of normofiltration controls and hyperfiltration 

cases. Per the matching protocol, the distributions of age, race, cohort enrollment and 

uncontrolled hypertension status were the same between normofilterers and hyperfilterers 

within HIV infection status. HIV-infected men were younger than HIV-uninfected men, 

more likely to be black and recruited after 2001. The median eGFR at the time of second 
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elevated eGFR was 107.6 for HIV-uninfected men and 116.7 ml/min|1.73m
2
 for HIV-

infected men; for the matched normofiltration controls, the median levels were 95.0 and 

98.0 ml/min|1.73m
2
, respectively.  Regardless of HIV infection status, those with 

hyperfiltration had a longer observed time prior to hyperfiltration and slightly shorter 

observed time after the hyperfiltration event. HIV-uninfected subjects with 

normofiltration had a shorter time prior to matching since prospective measurement of 

serum creatinine was initiated in 2005. In contrast, HIV-infected subjects who had started 

HAART had serum creatinine measured retrospectively from available repository-stored 

blood samples and therefore contributed more data.  

Among the HIV-uninfected group, the hyperfilterers were similar to the 

normofilterers based on characteristics at the time of identified hyperfiltration, with the 

exception of stimulant use. Stimulant use was higher among the normofilterers compared 

to the hyperfilterers (18% vs. 7%; p= 0.037). For the observed time prior to index visit, 

the hyperfilterers had a higher subject-specific mean eGFR (median mean level was 

102.7 vs 96.3 ml/min|1.73m
2
; p< 0.001), but similar mean fasting glucose and mean DBP 

levels. After the index visit in this group of HIV-uninfected men, the hyperfiltering group 

still had a higher 5-year mean eGFR (102.2 vs 97.1 ml/min|1.73m
2
; p< 0.001) and a 

slightly shorter follow-up time (median years were 4.5 vs. 4.6; p< 0.001).  There was no 

statistical difference between hyperfilterers and normofilterers for fasting glucose, SBP 

or DBP in the years after the index visit.   

Among the HIV-infected group, at the time of index visit, men with 

hyperfiltration were more likely to have lower DBP (medians= 74 mmHg vs. 78 mmHg, 

p= 0.004). Additionally, they were slightly less likely to have used stimulants in the 
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preceding year compared to the matched normofiltering controls (18% vs. 27%, p= 

0.208), but this difference was not significant. Both prior to and after the hyperfiltration 

event, GFR was higher and SBP and DBP lower among the hyperfilterers compared to 

the normofilterers. Similar differences in follow-up time prior to and after the event that 

were observed among HIV-uninfected men were also observed among the HIV-infected 

men.   

Previously identified comorbidities and clinical indicators associated with 

hyperfiltration, such as diabetes, high fasting glucose and elevated BP [5], were not 

associated in this selected population based on a matched study design.  

Table 2 presents the clinical characteristics of HIV-infected men and statistical 

differences (i.e., p-values) based on conditional logistic regression, by hyperfiltration 

status. At the time of index visit, the proportion of men with CD4+ cell count < 350 was 

higher among hyperfilterers compared to normofilterers (30.2% vs. 21.4%, respectively; 

p= 0.028). However, detectable viral load was similar by hyperfiltration status (37.9% vs. 

33.3%; p= 0.376), as was having a previous AIDS diagnosis (10.0% vs. 11.3%, p= 

0.776). Hyperfilterers had a longer time since ART initiation (median years= 9.4 vs. 7.1; 

p= 0.014), as well as longer time since HAART initiation (median years= 6.5 vs. 5.6; p= 

0.011). HIV disease severity, as measured within 5 years preceding the index visit, was 

similar between the two groups: the proportion with mean CD4+ cell count < 350 was 

22.2% for hyperfilterers and 21.7% for normofilterers (p= 0.456); the proportion with any 

detectable viral load occurrences was 61.1% for hyperfilterers and 55.2% for 

normofilterers (p= 0.056). Within 5 years of follow-up after the index visit, 21.8% of 

hyperfilterers had a mean CD4+ cell count < 350, while 17.1% of normofilterers did (p= 
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0.130). There was also no difference in having any detectable viral load in this time 

frame between hyperfilterers and normofilterers (47.1% vs. 52.8%, respectively; p= 

0.518). There were no differences by mean CD4+ cell count or having a first AIDS 

diagnosis in this time frame after hyperfiltration. 

4.4.4 Effect of hyperfiltration on longitudinal GFR decline 

From the 681 total subjects (hyperfilterers and matched normofilterers controls), 

individual changes were described by identifying an IP or using a slope-intercept model. 

For hyperfilterers, 71.3% of HIV-uninfected men (n= 62 of 87) and 64.4% HIV-infected 

men (n= 58 of 90) had an identified downward IP. In contrast, among normofilterers, 

33.5% of HIV-uninfected men (n= 77 of 230) and 42.0% of HIV-infected men (n= 115 of 

274) had a downward IP. Regardless of HIV infection status, hyperfilterers were much 

more likely to have a downward IP compared to normofilterers (67.8% compared to 

38.1%; χ
2 

p< 0.001). Among hyperfilterers with a downward inflection point, the median 

time of inflection point (starting from 1 year prior to second elevated eGFR) was 1.33 

years [IQR: 1.21, 1.81 years] for HIV-uninfected men, and 1.56 years [IQR: 1.26, 2.52 

years] for HIV-infected men.  

Figure 3 presents the distributions of slopes of the downward IPs or, in the 

absence of a downward IP, overall changes in GFR. The median GFR change among 

HIV-uninfected normofilterers was -2.0 ml/min|1.73m
2
 per year and was -1.7 

ml/min|1.73m
2 

per year for hyperfilterers, and this difference was not significant (p = 

0.901). For HIV-infected subjects, the median change among normofilterers was -3.8 

ml/min|1.73m
2
 per year, and was -2.3 ml/min|1.73m

2
 for hyperfilterers, and this was 

borderline significant (p= 0.054).  When pooling HIV-infected subjects (i.e., 
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normofiltration and hyperfiltration groups combined), the HIV-infected subjects had a 

faster decline than the pooled uninfected subjects (p< 0.001).  

To control for potential confounding, previously published literature indicate that 

fasting glucose, SBP and DBP are particularly important risk factors for hyperfiltration 

[2,4,10] and the levels in the 5 years preceding the index visit were included in adjusted 

analyses. Table 3 presents the unadjusted and adjusted mean GFR changes based on the 

IP analysis using linear regression models. The unadjusted analyses present means that 

are lower than the median levels described in Figure 3 due to the left-skewing of the 

distributions, but overall the inferences remain consistent. In all adjusted analyses, there 

was no significant difference in decline between normofilterers and hyperfilterers, 

regardless of HIV infection status. The estimated GFR decline was faster for those with 

HIV infection regardless of filtration status, compared to HIV-uninfected men. In 

adjusted analyses for mean glucose, SBP and DBP prior to index visit, the estimated GFR 

decline for a reference subject was -2.82 ml/min per year (95%CI: -3.72, -1.91) among 

HIV-uninfected normofilterers and was -2.16 ml/min per year (95%CI: -3.59, -0.74) for 

HIV-uninfected hyperfilterers (p= 0.396); in contrast, among HIV-infected men, the 

estimated decline for the same reference individual was -6.07 ml/min per year (95%CI: -

7.46, -4.69) for men with normofiltration and -4.69 ml/min per year (95%CI: -6.52, -

3.29) for those with hyperfiltration (p= 0.215). When adjusting for ART initiation in 

addition to glucose and BP variables, the inferences remained unchanged: among 

normofilterers, the mean decline was -5.89 ml/min per year (95%CI: -7.13, -4.63); for 

hyperfilterers, the mean decline was -4.60 ml/min per year (95%CI: -6.19, -3.01). 
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4.4.5 Sensitivity analysis restricting to 1:1 matching 

As a sensitivity analysis, data from the results described above were restricted to 

men with normofiltration individually paired to those with hyperfiltration. Those with 

hyperfiltration and no matched controls (i.e., non-repeated matched normofilterers) were 

excluded. There were 61 pairs (hyperfilterers and normofilterers) of HIV-uninfected men 

and 59 pairs of HIV-infected men. Figure 4.4 presents the distributions of slopes which 

quantitatively were very similar to the main analyses presented in Figure 4.3, and 

identical inferentially: there were no differences between normofilterers and 

hyperfilterers, by HIV infection status. The proportions of hyperfilterers with an 

identified IP were 72% (44/61) and 61% (36/59) for HIV-uninfected and infected men, 

respectively.  This was much higher than those with normofiltration: 31% (19/61) and 

35% (21/59) had an identified IP among HIV-uninfected and infected men, respectively. 

Table 4.4 presents the adjusted estimated means and confidence intervals accounting for 

the possible correlation within pairs using GEE. These results were very close to the 

estimated means using the 4:1 matching presented in Table 4.3 and indicate robustness of 

these results using different matching methods. 

 Discussion 4.5

This study describes the eGFR decline after a period of chronic hyperfiltration 

among men with and without HIV compared to matched men with similar characteristics 

who were free of hyperfiltration and markedly low eGFR. Men with hyperfiltration did 

not have an accelerated eGFR decline compared to their matched controls. The 

proportion with a downward inflection point which indicates persistently high eGFR, 

followed by a relatively faster decline, was much more common among those with 
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hyperfiltration (68% vs. 38%). For hyperfilterers with an IP, an accelerated decline was 

observed after about 1.3 to 1.6 years of follow-up, shortly after the second occurrence of 

elevated eGFR. Nonetheless, in terms of identifying an individual’s fastest rate of decline 

using a reasonable amount of data (at least 3 eGFR measurements), there was no 

difference by filtration status. These results persisted in the sensitivity analyses restricted 

to single matches of unique normofilterers paired with each hyperfiltration case (i.e., 1:1 

matching). 

There was, however, a significantly faster eGFR decline among HIV-infected 

men receiving treatment compared to HIV-uninfected men in the MACS. Despite the 

HIV-uninfected men being older than the HIV-infected men in this cohort (median age 

difference was about 4 years), the HIV-infected men still had a faster eGFR decline. This 

effect of HIV is consistent with published findings of persons with HIV infection. Choi et 

al. [18] reported an adjusted mean GFR decline of -4.7 to -1.9 ml/min|1.73m
2
 for the 

periods prior to and after ART use, respectively. A large portion of all men in this study 

population were within this range, yet HIV-infected men had a higher proportion of 

eGFR decline less than -5 ml/min|1.73m
2
 per year compared to HIV-uninfected men 

(37.9% vs. 19.9%, χ
2
 p<0.001), which would be classified as fast progressors to CKD 

according to current practice guidelines [19]. Importantly, this study included men with 

normal to high-normal levels of eGFR (i.e., free of CKD) at baseline and provides a 

further characterization of a faster rate of GFR decline among HIV-infected men. 

There were few differences by indicators of HIV severity among the HIV-infected 

subjects. Notably, hyperfilterers had a longer time since ART initiation (an indicator of 

pre-HAART therapy initiation) at the time of their hyperfiltration event (approximately 
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9.5 years compared to 7 years among HIV-infected normofilterers). This is consistent 

with our previous findings using directly measured iohexol GFR: those with elevated 

GFR had a longer cumulative time since ART initiation, and more specifically longer 

AZT use, a first-generation thymidine analog antiretroviral medication [5].  

Indicators of HIV severity within 5 years prior to the index visit did not differ by 

filtration status. Curiously, the proportion with low CD4 at the index visit was higher 

among hyperfilterers compared to normofilterers (30% vs. 21%, p= 0.028), but this did 

not correspond to a substantially higher proportion with detectable viral load (38% vs. 

33%, p= 0.376). It should be noted that these differences were minimal but a similar, and 

also non-significant, pattern was observed in our cross-sectional study using directly 

measured GFR [5]: those with elevated eGFR had a 48% higher odds of having CD4+ 

cell count < 350 (OR: 1.48; 95%CI: 0.79, 2.78), but a 9% lower odds of having a 

detectable viral load (OR: 0.91; 95%CI: 0.45, 1.86). A biological explanation of why 

lower CD4+ might be related elevated GFR in the absence of increased HIV replication is 

unclear, but it is worth noting the directionality is similar in these two different studies, 

albeit with non-significant effects. It is also possible that this observed phenomenon is 

simply a statistical artifact.  

This analysis also characterized eGFR decline among relatively healthy (i.e., 

HIV-uninfected) men. The results indicated a substantial heterogeneity in renal function 

change among this group with normal ranges at study entry. These data are informative 

since there is a paucity of data describing normal age-related GFR decline. Delanaye and 

colleagues [11] have shown a dearth of research investigating GFR decline due to kidney 

senescence, in what would be considered normal aging and present a range of GFR 
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decline of 6 to 12 ml/min per 10 years. This is problematic since normal reference ranges 

for elderly individuals do not take this known phenomenon into account: CKD stages are 

based on absolute threshold that are not age dependent. For example, the authors argue 

that populations older than 70 years with a GFR less than 60 ml/min|1.73m
2
 could still be 

considered normal, given other clinical characteristics. This has important implications in 

the epidemiology of HIV and renal function in which persons infected with HIV are 

living longer due to effect therapy and disease management: the disease burden of CKD 

may be overestimated, if the threshold for CKD is not constant across all age ranges. In 

these analyses, classifications of CKD staging adhered to the KDIGO definitions, in the 

absence of proteinuria data (i.e., GFR < 90 ml/min|1.73m
2
 was classified as CKD Stage 

II).   

This analysis used a previously described generalized method to identify an 

inflection point [16] in the context of GFR decline. This method was attractive for this 

particular research question since our conceptual model of hyperfiltration was based on 

an increasing or stable GFR at an elevated level followed by a rapid decline. We allowed 

the matched controls (i.e., those with normofiltration) to also follow this model (i.e., 

identify a possible inflection point) since many events could cause a rapid renal function 

decline, such as hypertension, diabetes, ART use or a nonspecific acute kidney injury. 

Such cases were still frequent among normofilterers (33% and 42% for HIV-uninfected 

and HIV-infected men, respectively) indicating that a non-trivial portion of people 

without hyperfiltration have GFR trajectories that are well-described by this inflection 

point method. To our knowledge, applying this method to longitudinal GFR data is novel, 

yet previous literature has documented the heterogeneity of GFR trajectories within-
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individuals [20]. Indeed, Li et al. [20] have noted that individuals may have mixed 

periods of rapid decline, increasing levels, or even stable trajectories. While there was 

evidence of this in exploratory data analysis scrutinizing each individual trajectory, our 

research question was focused on characterizing GFR changes up to 5 years after 

identifying chronic hyperfiltration.  It is possible to extend this method to identify 

multiple inflection points, but this would require more data over a longer period of time. 

Exploring new methods, perhaps extending the technique used in this analysis, would be 

helpful to empirically describe GFR changes over long periods of time that are not simply 

summarized by a linear decline. The main benefits of using a linear GFR decline are 

simplicity and utility when few data points are used. However, it is not an ideal tool for 

long-term GFR trajectories, particularly in the presence of CKD and incident end stage 

renal disease, in which non-linear patterns predominate [20–22]. 

There were several limitations to this study. Firstly, measurement of GFR by 

serum creatinine is an estimate of renal function, and has identified biases and potential 

limitations at high levels, largely due to the development of the CKD-EPI equation 

among subjects with lower renal function [8].  Indeed, current guidelines recommend 

censoring such GFR measurements at > 60 ml/min|1.73m
2
. Stevens et al. [9] reported an 

overestimation bias at high levels of eGFR among blacks. Creating race-specific 

thresholds for elevated eGFR in this analysis attempted to account for this bias. However, 

it remains a significant limitation in describing GFR trajectories: as a normal age-related 

decline occurs, the eGFR may decline to normal-low levels in which the measurement is 

unbiased. Since the initial starting level (at identified hyperfiltration) had an 

overestimation bias, the decline may appear steeper among blacks than non-blacks as 
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their values decline to unbiased levels. This information bias would potentially lead to a 

higher proportion of black men with hyperfiltration having steeper eGFR decline, but this 

was not observed. Nonetheless, the CKD-EPI eGFR equation has a lower bias among 

blacks (and other subgroups) at high renal function (GFR > 90 ml/min|1.73m
2
) than other 

estimating equations and is recommended for clinical use. Therefore, the data presented 

in this analysis do reflect patterns of clinical information, albeit with these limitations. 

Directly measured longitudinal GFR data would more directly address this problem, but 

the data were not available in this study.  

The analyses were also limited by the lack of association between hyperfiltration 

and traditional risk factors such as blood pressure, hypertension, high fasting blood 

glucose, and diabetes. Previous studies have reported the presence of these associations 

using directly measured GFR that is not observed in the same dataset using 

corresponding eGFR [1]. This may be a significant limitation of the CKD-EPI eGFR 

instrument. For example, blood pressures were better among hyperfilterers compared to 

normofilterers, a directionality we did not expect. This may indicate that most 

hyperfilterers are healthier, which would explain the lack of association with GFR 

decline. Describing this limitation of estimated GFR in measuring pathologically high 

renal function may compel further work improving these equations. 

Another limitation is the lack of proteinuria data in these analyses. High 

proteinuria is a strong predictor of CKD-related complications [19,23,24]. While these 

data were not available since the MACS only began collecting proteinuria in 2010, these 

data would have allowed for further stratification of CKD stage based on KDIGO 

guidelines [19]. Since HIV-infected persons are at high risk for pathologic proteinuria 
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[25] adjusting for baseline renal function with proteinuria or eliminating men with 

evidence of CKD based on proteinuria alone would bolster the quality of the analyses.  

An additional limitation of this study is that the trajectories by exposure status are 

presented as a continuous distribution, yet it is likely that each group is made up of a 

mixture of people with different trajectories. For example, each group may contain 

people who have no progression (stable), slow decline (slow progressors), fast decline 

(fast progressors) or increasing renal function (increasers). Since about 68% of those with 

hyperfiltration had an identified inflection point (in contrast to 38% of those without 

hyperfiltration), there is some support to this hypothesis [23,25]. Future directions in this 

research may make use of latent class models, such as growth mixture modeling, to 

identify different trajectories and the probabilities of membership in each latent class. 

In summary, we found that among HIV-infected and HIV-uninfected middle-aged 

men, those with glomerular hyperfiltration based on chronically elevated eGFR, were 

more likely to have a downward inflection point of accelerated eGFR decline within 5 

years of follow-up. However, the eGFR decline after this inflection point was not 

significantly different than the decline associated among those without hyperfiltration in 

an age- and race-matched control group, when stratifying by HIV infection status. Those 

with HIV infection were more likely to have accelerated eGFR decline compared to the 

older HIV-uninfected group. Given the limitations of eGFR at high levels of renal 

function, these results should be interpreted cautiously. Patients suspected of chronic 

hyperfiltration may not exhibit accelerated eGFR decline within 5 years, but should be 

monitored for other risk factors of incident CKD such as proteinuria, hypertension and 

diabetes. Refinement of estimating GFR equations to include high levels of renal function 
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would be helpful for clinical use, investigating the epidemiology of hyperfiltration and to 

impart confidence in describing longitudinal trajectories of eGFR in elevated ranges.  

  



85 

 

 References 4.6
1.  Ruggenenti P, Porrini EL, Gaspari F, et al. Glomerular hyperfiltration and renal 

disease progression in type 2 diabetes. Diabetes Care 2012; 35:2061–2068.  

2.  Palatini P. Glomerular hyperfiltration: a marker of early renal damage in pre-

diabetes and pre-hypertension. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. 

Assoc. - Eur. Ren. Assoc. 2012; 27:1708–1714.  

3.  Okada R, Wakai K, Naito M, et al. Renal hyperfiltration in prediabetes confirmed 

by fasting plasma glucose and hemoglobin A1c. Ren. Fail. 2012; 34:1084–1090.  

4.  Okada R, Yasuda Y, Tsushita K, Wakai K, Hamajima N, Matsuo S. Glomerular 

hyperfiltration in prediabetes and prehypertension. Nephrol. Dial. Transplant. Off. Publ. 

Eur. Dial. Transpl. Assoc. - Eur. Ren. Assoc. 2012; 27:1821–1825.  

5.  Ng DK, Jacobson LP, Brown TT, et al. HIV therapy, metabolic and 

cardiovascular health are associated with glomerular hyperfiltration among men with and 

without HIV infection. AIDS Lond. Engl. 2014; 28:377–386.  

6.  Nelson RG, Bennett PH, Beck GJ, et al. Development and progression of renal 

disease in Pima Indians with non-insulin-dependent diabetes mellitus. Diabetic Renal 

Disease Study Group. N. Engl. J. Med. 1996; 335:1636–1642.  

7.  Estrella MM, Fine DM. Screening for chronic kidney disease in HIV-infected 

patients. Adv. Chronic Kidney Dis. 2010; 17:26–35.  

8.  Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular 

filtration rate. Ann. Intern. Med. 2009; 150:604–612.  

9.  Stevens LA, Schmid CH, Greene T, et al. Comparative performance of the CKD 

Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease 

(MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am. J. 

Kidney Dis. Off. J. Natl. Kidney Found. 2010; 56:486–495.  

10.  Melsom T, Mathisen UD, Ingebretsen OC, et al. Impaired fasting glucose is 

associated with renal hyperfiltration in the general population. Diabetes Care 2011; 

34:1546–1551.  

11.  Delanaye P, Schaeffner E, Ebert N, et al. Normal reference values for glomerular 

filtration rate: what do we really know? Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. 

Transpl. Assoc. - Eur. Ren. Assoc. 2012; 27:2664–2672.  

12.  Lindeman RD. Overview: renal physiology and pathophysiology of aging. Am. J. 

Kidney Dis. Off. J. Natl. Kidney Found. 1990; 16:275–282.  



86 

 

13.  Davies DF, Shock NW. Age changes in glomerular filtration rate, effective renal 

plasma flow, and tubular excretory capacity in adult males. J. Clin. Invest. 1950; 29:496–

507.  

14.  Premaratne E, Macisaac RJ, Tsalamandris C, Panagiotopoulos S, Smith T, Jerums 

G. Renal hyperfiltration in type 2 diabetes: effect of age-related decline in glomerular 

filtration rate. Diabetologia 2005; 48:2486–2493.  

15.  Kaslow RA, Ostrow DG, Detels R, Phair JP, Polk BF, Rinaldo CR Jr. The 

Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of 

the participants. Am. J. Epidemiol. 1987; 126:310–318.  

16.  Gange SJ, Muñoz A, Chmiel JS, et al. Identification of inflections in T-cell counts 

among HIV-1-infected individuals and relationship with progression to clinical AIDS. 

Proc. Natl. Acad. Sci. U. S. A. 1998; 95:10848–10853.  

17.  Esty W, Banfield J. The Box-Percentile Plot. J. Stat. Softw. 2003; 8.  

18.  Choi AI, Shlipak MG, Hunt PW, Martin JN, Deeks SG. HIV-infected persons 

continue to lose kidney function despite successful antiretroviral therapy. AIDS Lond. 

Engl. 2009; 23:2143–2149.  

19.  Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work 

Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and 

treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney 

Int. Suppl. 2009; :S1–130.  

20.  Li L, Chang A, Rostand SG, et al. A within-patient analysis for time-varying risk 

factors of CKD progression. J. Am. Soc. Nephrol. JASN 2014; 25:606–613.  

21.  Li L, Astor BC, Lewis J, et al. Longitudinal progression trajectory of GFR among 

patients with CKD. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2012; 59:504–512.  

22.  Zhong Y, Muñoz A, Schwartz GJ, Warady BA, Furth SL, Abraham AG. 

Nonlinear Trajectory of GFR in Children before RRT. J. Am. Soc. Nephrol. JASN 2014; 

25:913–917.  

23.  Nitta K, Okada K, Yanai M, Takahashi S. Aging and chronic kidney disease. 

Kidney Blood Press. Res. 2013; 38:109–120.  

24.  Palatini P, Mos L, Ballerini P, et al. Relationship between GFR and albuminuria 

in stage 1 hypertension. Clin. J. Am. Soc. Nephrol. CJASN 2013; 8:59–66.  



87 

 

25.  Estrella MM, Parekh RS, Astor BC, et al. Chronic kidney disease and estimates of 

kidney function in HIV infection: a cross-sectional study in the multicenter AIDS cohort 

study. J. Acquir. Immune Defic. Syndr. 1999 2011; 57:380–386.  

 

  



88 

 

5 Discussion and conclusion 

The purpose of this dissertation was to describe the epidemiology of 

hyperfiltration among men with HIV infection using data from the MACS. The three 

analyses present results describing the prevalence of hyperfiltration using a gold standard 

measurement of GFR (Specific Aim 1); the incidence of hyperfiltration based on 

estimated GFR, the clinical standard for renal function (Specific Aim 2); and the 

associated estimated GFR decline after hyperfiltration over a 5 year period (Specific Aim 

3).  

 Summary of results 5.1

5.1.1 Summary of Chapter 2: Prevalence of hyperfiltration in nested iohexol GFR 

substudy of the MACS 

Chapter 2 presented results from a cross-sectional nested subsample of the MACS 

comprising 608 subjects with no evidence chronic kidney disease (CKD) who underwent 

a directly measured iohexol GFR protocol. Hyperfiltration was conceptually defined as a 

GFR greater than 140 ml/min|1.73m
2
 – 1 ml/min|1.73m

2
 per year over age 40. Using this 

definition, men with treated HIV infection had an increased prevalence of hyperfiltration 

compared to HIV-uninfected men (unadjusted prevalence was 25% vs. 17%, p= 0.01). In 

adjusted analyses, HIV infection was associated with 70% higher odds of hyperfiltration 

compared to men who were HIV-uninfected (prevalence odds ratio= 1.70, 95%CI: 1.11, 

2.61). Previously identified risk factors for hyperfiltration, such as elevated blood glucose 

[1,2], diabetes [3–5], and hypertension [6] were also associated with hyperfiltration in 

this population. Importantly, this analysis presented an association of stimulant drug use 

(such as cocaine, amphetamines or methamphetamines) with hyperfiltration, a 
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relationship that had not been previously described in the literature. This is perhaps not 

surprising since stimulant drug use has been linked to metabolic abnormalities [7,8] and 

also modifies sympathetic nervous system functioning. This analysis also described a 

negative interaction associated with diabetes and HIV infection, such that among HIV-

uninfected men, diabetes was associated with an increased prevalence of hyperfiltration 

(which is consistent with previously published literature [4,5]); however, a novel 

contribution of this study showed that there was no additive effect of diabetes among 

HIV-infected men, who overall had an increased prevalence of hyperfiltration compared 

to HIV-uninfected men. Lastly, this analysis described an association between 

hyperfiltration and increased ART exposure, particularly first-generation thymidine 

analogs (zidovudine). It is unclear whether this association was due to a longer duration 

of HIV infection or increased exposure to zidovudine, it is nonetheless clinically 

meaningful as a potential surrogate for CKD risk.   

5.1.2 Summary of Chapter 3: Incidence of chronic hyperfiltration and risk associated 

with HIV infection in the MACS during the era of HAART using estimated GFR  

Chapter 3 presented the incidence of hyperfiltration among men free of low eGFR 

and elevated eGFR at baseline in the era of HAART using data from the MACS. The 

chapter also presented the results from quantile regression models deriving estimated 

age- and race-specific 90
th

 percentile equations for use as a threshold for elevated eGFR, 

and provided 95% confidence intervals for the estimated parameters by bootstrapping. 

Using this population-based threshold, chronic hyperfiltration was defined as at least two 

eGFR observations above the age- and race-specific 90
th

 percentiles within 1 year.  

Incidence rates, non-parametric Kaplan-Meier survival functions and subhazard ratios 
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(accounting for competing risk events) were used to describe the relationship between 

treated HIV infection and hyperfiltration, stratified by race. Importantly, study entry was 

conditional on being event-free up to age 30 (a strong assumption), and the time scale 

was age after 30 years, which provided a meaningful context for interpretation, in 

contrast to simply using the first observed study visit. Late entry methods were used in 

these three analyses. The results from these analyses indicated an increased 

hyperfiltration incidence rate among younger non-black, HIV-infected men, compared to 

non-black, HIV-uninfected men. Among black men, HIV infection was associated with 

increased hyperfiltration incidence rates after age 45. The median ages of hyperfiltration 

among HIV-infected men was 35.2 years for non-blacks and 48.2 years for blacks; for 

HIV-uninfected men, the median ages at hyperfiltration were 49.5 years for non-blacks 

and 52.8 years for blacks. However, it should be noted that the sensitivity analyses 

showed a wide variability of median ages, depending on minor variations in the threshold 

used to define hyperfiltration.  

Since men who experienced low eGFR were no longer at risk of hyperfiltration in 

our conceptual framework, low eGFR was considered a competing risk. Using competing 

risk proportional hazards regression, and allowing the effect of HIV infection to vary by 

age, among non-blacks, HIV infection was associated with increased hazard of 

hyperfiltration at age 30 (SHR: 3.69, 95%CI: 1.63, 8.36), and this subhazard ratio 

declined by 7% per year (SHR: 0.97, 95%CI: 0.89, 0.96). The estimated subhazard ratio 

was null at about 47 years. Among blacks, the effect of HIV on the subhazard of 

hyperfiltration did not vary by age, and HIV infection was associated with an increased 

risk of hyperfiltration (SHR: 1.60), and this effect was borderline non-significant 
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(95%CI: 0.96, 2.67).  In a sensitivity analyses investigating the impact of modifying the 

threshold for elevated eGFR according to a) previous literature [9] and b) the 95% 

confidence intervals from the bootstrapped quantile regression, we noted that estimates of 

incidence were fairly sensitive, and this was most clear in the Kaplan-Meier survival 

functions. However, varying the threshold did not have any impact on the overall 

inferences, that HIV infection is associated with increased risk of incident eGFR 

hyperfiltration at younger ages among non-black men (i.e., between 30 and about 45 

years of age), but at older ages in a population of black men (i.e., after 45 years of age).  

5.1.3 Summary of Chapter 4: GFR decline after hyperfiltration 

Chapter 4 presented results describing 5-year eGFR decline after hyperfiltration 

and in a matched comparison group, stratified by HIV infection. This chapter presented 

the derivation of the 90
th

 percentile threshold described in Chapter 3, as well as the 50
th

 

percentile in the same population stratified by race, and showed the overestimation bias 

associated with eGFR at high levels among blacks, compared to non-blacks [10]. Using a 

matching algorithm, men free of hyperfiltration and CKD (i.e., normofiltration) were 

matched to each hyperfiltration case by age, race, HIV infection and hypertensive status 

at a ratio of up to 4:1. To identify and characterize accelerated GFR decline after a period 

of hyperfiltration, as described by Palatini [11] (Chapter 1, Figure 1), we applied a 

previously described generalized method to identify an inflection point [12], or a point at 

which GFR descends more rapidly. Subject-specific slopes after an inflection point, or 

over the observed 5-year time period in the absence of an inflection point, were 

calculated. In unadjusted and adjusted analyses, those with hyperfiltration did not have a 

significantly faster eGFR decline compared to the matched dataset without 
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hyperfiltration. Among HIV-infected men, there was a higher proportion with large GFR 

decline (more than -20 ml/min per year) among the hyperfilterers, but overall, there was 

no difference in GFR decline.  Despite the null finding of the effect of hyperfiltration on 

GFR decline, this study did show that treated HIV infection, in a population with normal 

and elevated eGFR, was associated with a faster eGFR decline compared to those without 

HIV infection.   

 Strengths 5.2

5.2.1 Quality of data and two important instruments for measuring GFR 

One of the strengths of the data in this study was the use of two important 

instruments to measure GFR. Chapter 2 used iohexol GFR in a small, nested subsample 

of the MACS, and this directly measured GFR is the gold standard for quantifying renal 

function. The results from these data give confidence in estimates of the prevalence of 

elevated eGFR, since the quality of measurement was high. However, iohexol GFR is not 

widely used clinically, and therefore it is unclear how the results from this study may be 

applied in real-world setting.  To that end, Chapters 3 and 4 used the serum creatinine-

based CKD-EPI eGFR, an instrument that is widely used clinically and is considered the 

standard in clinical care. Importantly, the increased incidence of eGFR-defined 

hyperfiltration associated with HIV infection was entirely consistent with the increased 

prevalence of elevated iohexol GFR. Of note, the higher prevalence of elevated eGFR 

among HIV-infected men presented in the subject flow figure of Chapter 3 (Figure 2) was 

also fairly congruent with the cross-sectional iohexol GFR analysis: 14.5% of HIV-

infected men had prevalent elevated eGFR (182/1255) compared to 8.6% of HIV-

uninfected men at baseline (118/1373). 
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5.2.2 Application of biostatistical methods  

There were also several methodological strengths of these studies. In describing 

the incidence of hyperfiltration (Chapter 3), the time scale was age after 30 years. This 

provides a relevant and meaningful context for the research question, in contrast to 

observed study time as the time scale. The cumulative incidence rates for hyperfiltration 

indicated no difference by HIV infection status among non-black men, yet there were 

large differences by age, which is important epidemiologically. However, most men did 

not enter the study at age 30. We therefore used late entry methods to account for the 

deficit of men who developed hyperfiltration closer to age 30 but were not observed (i.e., 

survivorship bias).  

Competing risks were also applied in this setting (Chapter 3) given the importance 

of differentiating subjects who were truly censored (i.e., assumed to have the event at an 

unobserved time that is after the last observed visit) and those who were no longer at risk 

for hyperfiltration (i.e., persons whose GFR is too low to reasonably increase to 

hyperfiltration levels). Using methods described by Fine and Gray [13], the subhazard 

ratio for HIV infection was estimated accounting for the competing risk event (i.e., low 

eGFR).   

Lastly, the analyses in Chapter 4 applied a generalized method for identifying an 

inflection point using longitudinal GFR data. This method was originally designed for 

longitudinal T-cell trajectories in an HIV [12], but had not been used in describing 

changes in renal function. This methodologic approach precisely fit our conceptual 

framework of hyperfiltration and GFR decline [11] and was an appropriate tool for this 

analysis. Several studies have highlighted the epidemiologic and clinical importance of 
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non-linear GFR trajectories in the context of CKD [14,15], and this simple and easily 

accessible method should be a consideration for these types of research questions.  

5.2.3 Describing age-related decline in renal function 

Another strength of the study was a description of age-related GFR decline among 

healthy HIV-uninfected men, which was estimated to be between -0.8 and -0.6 ml/min 

per year at 90
th

 percentile levels of GFR (presented in 3.1), and was similar at median 

levels of GFR (presented Figure 4.2). These estimates compare favorably with previously 

published research [9,16,17] in non-CKD populations. This consistency was encouraging 

and is an important contribution to the literature since our data comprised creatinine-

based CKD-EPI eGFR, in contrast to others studies that have used directly measured 

GFR data to characterize GFR decline. It should be noted that these were population-

based estimates of eGFR decline, and did not explicitly model within-person trajectories, 

as in a random effects linear mixed model. In Chapter 3, bootstrapping was used to 

account for within-person correlation and estimate the variability in the dataset. The point 

estimate of intercept and slope was derived from treating each eGFR observation as 

independent. This is one methodologic difference between describing decline while 

estimating the age- and race-specific 90
th

 percentile (as in Chapter 3) and characterizing 

decline after hyperfiltration as empirical subject-specific changes in GFR (as in Chapter 

4). 
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 Limitations and future directions 5.3

5.3.1 Establishing a threshold for hyperfiltration 

There were several limitations in these analyses. As briefly mentioned in Chapter 

1, there are several assumptions and limitations associated with different methods to 

define elevated eGFR. For Chapter 2, elevated eGFR was defined as a threshold of 140 

ml/min|1.7m
2
 minus 1 ml/min per year over age 40. While this level would be considered 

extremely high, it is somewhat arbitrary given the continuous distribution of GFR. For 

example, it is not clear that a 45 year old man who has a GFR of 132ml/min|1.73m
2
 is 

pathologically different than if he had a GFR of 136: the former would be classified as 

having normal GFR, while the latter would exceed the threshold of 135 ml/min|1.73m
2
. 

This inherent limitation in dichotomizing a continuous outcome also applies to the 

population-based threshold described in Chapters 3 and 4. This is potentially problematic 

since the sensitivity analysis in Chapter 3 (Figure 3.5) revealed remarkable differences in 

characterizing incidence when the threshold changed very slightly (less than 0.1 ml/min 

per year in some case, which is clinically insignificant). Additionally, it is possible that a 

single threshold for defining elevated GFR across all ages (i.e., one threshold level that 

does not address potential age related decline) is more appropriate for this condition. This 

approach would be similar to establishing a single threshold of GFR for defining CKD 

(i.e., < 60 ml/min regardless of age). Given the sensitivity of results using different 

thresholds incorporating an age-related decline (Chapter 3), the inferences using a single 

threshold for elevated GFR would indeed be different as fewer hyperfiltration events 

would occur. 
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Future work might investigate hyperfiltration as a continuous variable, and use 

different criteria for defining hyperfiltration. Such an approach may include prediction 

models for hyperfiltration-related outcomes, such as proteinuria, or even physiological 

outcomes based on kidney biopsies.   

5.3.2 Improving equations at high levels of renal function 

Another limitation in Chapters 3 and 4 is the use of the CKD-EPI estimating 

equation at high levels of GFR. It is clear that this equation performs better at lower 

levels of renal function primarily because it was mainly developed in populations at risk 

for or with CKD [18]. While the CKD-EPI equation was not designed for use at high 

GFR levels, an evaluation of performance at elevated renal functioning indicated it was 

the least biased option in general.  While this equation was biased among blacks at high 

levels, this bias has been identified and defined [10]. Interestingly, this bias was 

identified and presented in Chapter 4 by comparing black HIV-uninfected men with non-

black HIV-uninfected men, with both groups sharing similar health and risk profiles, 

using quantile regression in the absence of a gold standard GFR measurement. Since 

there is relatively poorer performance of eGFR at high levels, future work should be 

dedicated towards refining and improving the equations in measuring elevated GFR. This 

would be helpful for clinicians in decision making and profiling risk, but also for research 

purposes, especially given the pervasiveness of serum creatinine measurements, which is 

now commonly measured in routine blood tests.   

5.3.3 Quantifying error associated with GFR 

Yet another limitation in measurement of GFR from estimating equations is a lack 

of quantified error associated with each measurement. The data that are used to define an 
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eGFR for a given person is age, sex, race and serum creatinine level. Since there is no 

information bias associated with sex and race, and arguably age as well, these variables 

are not sources of error. The remaining sources of error are serum creatinine and the 

directly measured GFR by which the estimated GFR is derived. The within-individual 

variability of serum creatinine and directly measured GFR (within days or weeks of first 

measurement) has not been adequately described. Lab-based variability is another source 

of error that is also not well characterized, but recent standardization of serum creatinine 

measurements have allowed for comparisons across labs. This is another limitation 

applicable to Chapters 3 and 4, yet it should be noted that for the purposes of these 

research questions clinical eGFR was most relevant, and the data for these specific aims 

were reflective of real-world settings. Formal studies investigating different sources of 

error in estimating GFR equations would be of great benefit in order to quantify the 

expected variability for a given eGFR value. 

5.3.4 Error associated with individual slopes 

The inflection point analysis presented in Chapter 4 ascribed individual empirical 

slopes to each subject. This method was limited since these empirical slopes were 

subject-specific estimates that summarized the overall trend of longitudinal eGFR, and 

did not define or account for error associated with this estimate. While these slopes were 

valid estimates of eGFR changes over time, future methods might refine this approach by 

incorporating an estimate of variability associated with the data. Similar approaches have 

been used previously to describe longitudinal changes in GFR [19,20], and have shown to 

be especially effective at characterizing heterogeneity of GFR decline in subpopulations 

[21]. There was a slight indication of this among HIV-infected men with hyperfiltration 
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(Figure 4.3) who had a higher proportion with extremely fast GFR decline, however, this 

interpretation is cautiously made since this effect was represented by very few subjects. 

5.3.5 Defining normal age-related decline 

A common issue related to all the analyses is that of normal age-related decline. 

There was a consistently strong association between age and declining GFR (Figure 4.2) 

and this relationship was an assumption embedded in many aspects of the analyses. In 

particular, age-related decline was assumed in the two methods of defining the threshold 

of elevated eGFR. This assumption was well-founded and based on evidence both in 

previously published literature and in the MACS data.  However, the question of what 

constitutes normal age-related decline remains open and contentious.  Levey and 

colleagues have noted that even within older age groups, lower GFR was predictive of 

adverse outcomes and mortality, thus justifying a single threshold for classifying CKD 

[22]. However, others believe age-related decline is non-pathological and better attempts 

can be made to incorporate what is known about normal age-related decline into clinical 

definitions [17]. Future work in defining hyperfiltration should take this into account as 

well. For the purposes of this dissertation, the HIV-uninfected men served as the 

counterfactual for the HIV-infected men. The underlying assumption of this comparison 

is that had the HIV-infected men never acquired the virus, their levels would be identical 

to the observed HIV-uninfected men. This assumption freed us from external criteria for 

defining hyperfiltration, but it was encouraging that the results were consistent with 

previous findings. The attempts in this dissertation to define hyperfiltration based on 

adapting previously published criteria, as well as strong theoretical underpinnings (i.e., 
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the counterfactual), in the absence of an established clinical definition, may provide a 

framework for future studies to investigate the epidemiology of hyperfiltration.  

 Concluding remarks  5.4

These results provide evidence that treated HIV infection is indeed a risk factor 

for hyperfiltration, at least among men between the ages of 30 and 60 years. However, 

the results from Chapter 4 indicate that accelerated eGFR decline may not be an 

inevitable outcome of hyperfiltration. Indeed, changes in GFR after hyperfiltration were 

not significantly different from changes in the matched comparison group. A major 

limitation of this study is that those in the matched comparison group (i.e., those with 

normofiltration), may have had hyperfiltration prior to study entry that was never 

observed. Alternatively, these men may already have decreasing GFR at the time of 

match due to other pathologies, and this may explain the comparable distributions of 

GFR decline by filtration status.  Nonetheless, the distributions of slopes also reveal a 

modest excess of fast decliners among HIV-infected hyperfilterers. As described in the 

discussion of Chapter 4, it is possible that those with identified hyperfiltration are a 

mixture of people with varying pathologies of GFR function (including no pathology). 

Identifying and classifying people with high GFR into hyperfiltering groups of differing 

risks should be a goal for epidemiologic and clinical research going forward. Such a 

definition might include criteria based on glucose levels, blood pressure, previous 

metabolic history, or simply body mass index.  

Since the analyses presented in Chapter 2 [23] and previous research indicate a 

strong association of metabolic and cardiovascular abnormalities with hyperfiltration 

[1,2,5,6], increased clinical attention to these factors might mitigate any adverse effects 
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of hyperfiltration. For example, a patient presenting with hyperglycemia and 

hypertension is already indicated for therapies to manage blood sugar levels and blood 

pressure. In this scenario, identification of hyperfiltration may provide further 

justification for urgency of therapy and goals to improve adherence, but would likely not 

change the treatment course for this patient. On the other hand, monitoring GFR in 

conjunction with hyperglycemia and blood pressure may improve indicators of therapy 

effectiveness.  

Given the lack of evidence for accelerated GFR decline associated with 

hyperfiltration (Chapter 4), CKD should remain the primary focus of clinicians treating 

an HIV-infected population [24], until evidence is presented that hyperfiltration is a 

reliable predictor of CKD and/or adverse outcomes. Studies have described numerous 

causes of CKD, especially in the context of HIV infection [25–27], and it is likely that 

hyperfiltration is one of these causes [5,11,28]. In light of this, further research should 

investigate the proportion of CKD risk attributable to hyperfiltration among persons 

infected with HIV in the context of carefully conducted, standardized cohort studies.  

In conclusion, this dissertation provides evidence that HIV infection is a risk 

factor of incident hyperfiltration and that traditional metabolic and cardiovascular risk 

factors associated with HAART appear to play a role in the prevalence of hyperfiltration. 

This is clinically important since hyperfiltration is a modifiable and treatable condition. 

While hyperfiltration was not significantly associated with accelerated GFR decline, 

treated HIV infection was a risk factor for faster GFR decline in a population with normal 

and elevated eGFR. Indicators of metabolic, cardiovascular and renal health, including 

hyperfiltration, as well as duration of infection and therapy should remain important 
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clinical considerations in the management of HIV infection and overall health in this high 

risk population. 
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6 Figures and Tables 

 Figures for Chapter 1 6.1

6.1.1 Figure 1.1. Schematic of blood flow and filtration mechanisms in a nephron. 

 

 

Source: "Physiology of Nephron" by Madhero88. Licensed under Creative Commons 

Attribution 3.0 via Wikimedia Commons - 

https://commons.wikimedia.org/wiki/File:Physiology_of_Nephron.png#mediaviewer/File

:Physiology_of_Nephron.png  Retrieved 8/26/2014. 
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6.1.2 Figure 1.2 Conceptual framework of time course of GFR and albumin excretion 

rate (AER, mg/24 hrs) based on the theory of hyperfiltration proposed by Brenner 

et al. (1996).   

Conceptual framework of time course of GFR and albumin excretion rate (AER, mg/24 

hrs) based on the theory of hyperfiltration proposed by Brenner et al. (1996). The 

threshold of 150 ml/min/1.73m
2
 is arbitrary in this model.  

 

 

Source: Palatini P. Glomerular hyperfiltration: a marker of early renal damage in pre-

diabetes and pre-hypertension. Nephrol Dial Transplant, 2012, 0:1-7. 
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 Figures and Tables for Chapter 3 6.3

6.3.1 Figure 3.1. Estimated 90th percentiles based on quantile regression models, 

stratified by race (non-black and black).  

Data points are 90
th

 percentile values by 5 year age bins to assess model fit. 
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6.3.2 Figure 3.2. Diagram of subject flow for study selection of study population.  

The study population comprised men free of evidence of CKD (CKD-EPI eGFR < 90
 
ml/min|1.72m

2
) or elevated eGFR (CKD-EPI 

eGFR > 90
th

 percentiles specific to age and race), stratified by HIV infection status. 
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6.3.3 Figures 3.3a and 3.3b. Kaplan-Meier incidence of chronic hyperfiltration by race and infection status using age (after 30 

years) as the time scale.  

Panel A presents non-black subjects (n= 763; HIV-uninfected n= 386; HIV-infected men n= 377) and Panel B describes black subjects 

(n= 357; HIV-uninfected n= 160; HIV-infected n= 197).  
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6.3.4 Figure 3.4. Subhazard ratios of the effect of HIV infection on hyperfiltration, by non-black race and black race. 
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6.3.5 Figures 3.5a-3.5c. Sensitivity analyses presenting Kaplan-Meier survival step functions based on different thresholds to define 

hyperfiltration, stratified by race.  

These thresholds correspond to previously published expected decline of -0.8 ml/min|1.73m
2
 among healthy individuals (Figure 3.5a; 

[30]); the lower (Figure 3.5b) and upper (Figure 3.5c) 95% confidence limit of the slope of 90
th

 percentiles based on bootstrapped 

quantile regression.  

Figure 3.5a. Elevated eGFR threshold based on an expected decline of -0.8 ml/min per year.   
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Figure 3.5b. Elevated eGFR threshold based on a decline of -0.747 ml/min per year for non-black men, and -0.833 for black men, 

which corresponds to the lower 95% confidence intervals from the bootstrapped quantile regression.  

 

Age (years)

P
e
rc

e
nt

 f
re

e
 o

f 
h
y
p
e
rfi

lt
ra

ti
o
n

30 40 50 60 70

0

25

50

75

100

Non-black, HIV-uninfected men

Non-black, HIV-infected men

At least 2 eGFR within one year >=
 119 - 0.747 x years after age 30

 

Age (years)

P
e
rc

e
nt

 f
re

e
 o

f 
h
y
p
e
rfi

lt
ra

ti
o
n

30 40 50 60 70

0

25

50

75

100

Black, HIV-uninfected men

Black, HIV-infected men

At least 2 eGFR within one year >=
 130 - 0.833 x years after age 30



113 

 

Figure 3.5c. Elevated eGFR threshold based on a decline of -0.712 ml/min per year for non-black men, and -0.608 for black men, 

which corresponds to the upper 95% confidence intervals from the bootstrapped quantile regression. 
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6.3.6 Table 3.1. Clinical characteristics and descriptive statistics of subjects at study entry, by race and HIV infection status. 

 Non-black men  Black men 

Variable 

HIV-uninfected 

n= 386 

HIV-infected 

n= 377 P-value 

 HIV-uninfected 

n= 160 

HIV-infected men 

n= 197 P-value 

Year of study entry 2003.97 [2003.74, 

2004.53] 

2003.87 [1999.56, 

2004.79] 

0.001  2004.07 [2003.87, 

2004.53] 

2004.33 [2003.88, 

2005.70] 

0.006 

Age, years 46.6 [41.3, 52.5] 43.4 [38.4, 48.4] <.001  42.3 [37.7, 45.7] 41.4 [38.1, 46.4] 0.796 

Post-2001 recruitment 29.8% (115) 38.2% (144) 0.015  82.5% (132) 78.7% (155) 0.422 

CKD-EPI eGFR, ml/min|1.73m
2 

100 [95.8, 104.3] 101.4 [95.8, 106.1] 0.100  103.2 [96.5, 109.4] 107.6 [97.8, 115.3] 0.003 

Height, m 1.8 [1.7, 1.8] 1.8 [1.7, 1.8] 0.621  1.8 [1.7, 1.8] 1.8 [1.7, 1.8] 0.380 

Weight, kg 78.9 [70.7, 91.6] 77.1 [69.5, 84.2] 0.002  81.2 [73.8, 95.7] 76.9 [69.9, 86.4] 0.002 

Body mass index, kg/m
2 

25.9 [23.1, 30.7] 24.8 [23, 27.9] 0.003  26.7 [24.1, 32.5] 24.9 [22.7, 28] <.001 

Obese (BMI > 30 kg/m
2
) 18.6% (65) 7.1% (24) <.001  25.2% (37) 12.1% (22) 0.002 

Fasting blood glucose, mg/dL 94 [88, 102] 95 [87, 102] 0.905  94 [88, 104] 95 [88, 106] 0.758 

Fasting glucose > 100 mg/dL 27.1% (82) 28.6% (60) 0.763  35.1% (39) 37.7% (49) 0.690 

Diabetes 4.6% (15) 5.3% (12) 0.842  9.9% (12) 9.1% (13) 0.836 

High density lipoproteins, mg/dL 48.6 [41, 57] 41.8 [35.5, 49.2] <.001  51 [43.8, 60.9] 46.4 [38.7, 54.5] <.001 

Low density lipoproteins, mg/dL 122 [100, 144.5] 110 [88, 139] 0.001  114 [88, 138] 101 [84, 131] 0.060 

Dyslipidemia 72.8% (243) 83.9% (256) <.001  59.8% (70) 68.7% (103) 0.156 

Metabolic syndrome 19.5% (70) 23% (60) 0.318  16.1% (24) 12.6% (22) 0.425 

Systolic blood pressure, mmHg 120 [112, 130] 120 [112, 130] 0.877  123 [115, 132] 120 [112, 130] 0.088 

Diastolic blood pressure, mmHg 78 [70, 82] 79 [70, 84] 0.850  79 [70, 86] 76 [69, 84] 0.049 

Uncontrolled hypertension 16% (56) 16.3% (56) 1.000  23.8% (35) 20% (37) 0.423 
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 Non-black men  Black men 

Variable 

HIV-uninfected 

n= 386 

HIV-infected 

n= 377 P-value 

 HIV-uninfected 

n= 160 

HIV-infected men 

n= 197 P-value 

Taking antihypertensive 

medications 

13.9% (53) 9.7% (36) 0.072  12.5% (20) 10.2% (20) 0.505 

Current smoker 25.2% (95) 32.4% (120) 0.029  60.9% (95) 55.2% (107) 0.327 

Current stimulant use 11.7% (44) 20.9% (77) <.001  26.9% (42) 30.2% (58) 0.552 

Longitudinal data        

Observed follow-up time  2.95 [1.05, 6.36] 2.51 [0.96, 5.12] 0.101  3.43 [1.00, 6.63] 3.45 [1.00, 6.30] 0.577 

Total observed follow-up time 1496.2 1367.8   664.2 791.7  

 

a
 There were 12 non-black men and 5 black men who became infected while under study observation. They contributed person-time to 

the HIV-uninfected group and the HIV-infected with antiretroviral therapy group.  
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6.3.7 Table 3.2.  Descriptive statistics of indicators of HIV-disease severity and 

antiretroviral therapy at baseline and study exit, by race. 

  

 

HIV-infected men receiving 

antiretroviral therapy 

Variable 

Non-black 

n= 377 

Black 

n= 197 

Baseline CD4+ cell count 477 [301, 667] 415 [266, 554] 

Baseline CD4+ cell count < 350 32.7% (118) 37.6% (71) 

Nadir CD4+ cell count 272 [169, 394] 260 [144, 372] 

Nadir CD4+ cell count < 350 67.0% (244) 69.7% (129) 

Baseline detectable HIV RNA 43.7% (157) 58.0% (109) 

Previous AIDS diagnosis 15.4% (58) 11.2% (22) 

Received any ART prior to HAART 56.2% (212) 43.2% (85) 

Years since ART initiation at study exit 9.23 [5.00, 15.21] 9.75 [5.29, 17.79] 

Years since HAART initiation at study exit 6.22 [2.88, 9.74] 7.11 [3.99, 10.43] 
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6.3.8 Table 3.3a. Incidence rates per 100 person years and incidence rate ratios comparing HIV-infected non-black men with HIV-

uninfected non-black men (reference). 
 Non-black race 

 HIV-uninfected men HIV-infected men  

Age category Events Person years Incidence rate per 

100 person years 

Events Person years Incidence rate per 100 

person years rate 

Incidence rate ratio  

[30 to 35) 5 124.91 4.00 (1.67, 9.62) 13 95.27 13.65 (7.92, 23.5) 3.41 (1.22, 9.56) 

[35 to 40) 4 93.47 4.28 (1.61, 11.4) 15 169.36 8.86 (5.34, 14.69) 2.07 (0.69, 6.24) 

[40 to 45) 4 193.92 2.06 (0.77, 5.50) 2 341.81 0.59 (0.15, 2.34) 0.28 (0.05, 1.55) 

[45 to 50) 7 328.44 2.13 (1.02, 4.47) 12 377.65 3.18 (1.80, 5.60) 1.49 (0.59, 3.79) 

[50 to 55) 17 348.69 4.88 (3.03, 7.84) 11 228.90 4.81 (2.66, 8.68) 0.99 (0.46, 2.1) 

[55 to 60) 18 298.76 6.02 (3.80, 9.56) 6 108.69 5.52 (2.48, 12.29) 0.92 (0.36, 2.31) 

[60 to 65) 24 108.06 22.21 (14.89, 33.14) 6 45.69 13.13 (5.9, 29.23) 0.59 (0.24, 1.45) 

Total 79 1496.24 5.28 (4.24, 6.58) 66 1367.75 4.83 (3.79, 6.14) 0.91 (0.66, 1.27) 
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6.3.9 Table 3.3b. Incidence rates per 100 person years and incidence rate ratios comparing HIV-infected black men with HIV-

uninfected black men (reference). 
 Black race 

 HIV-uninfected men HIV-infected men  

Age category Events Person years Incidence rate per 

100 person years 

Events Person years Incidence rate per 100 

person years 

Incidence rate ratio  

[30 to 35) 2 46.63 4.29 (1.07, 17.15) 2 53.46 3.74 (0.94, 14.96) 0.87 (0.12, 6.19) 

[35 to 40) 3 103.85 2.89 (0.93, 8.96) 3 109.34 2.74 (0.88, 8.51) 0.95 (0.19, 4.71) 

[40 to 45) 6 187.30 3.20 (1.44, 7.13) 10 260.63 3.84 (2.06, 7.13) 1.20 (0.44, 3.30) 

[45 to 50) 6 198.59 3.02 (1.36, 6.72) 20 237.19 8.43 (5.44, 13.07) 2.79 (1.12, 6.95) 

[50 to 55) 3 92.52 3.24 (1.05, 10.05) 7 95.38 7.34 (3.5, 15.39) 2.26 (0.59, 8.75) 

[55 to 60) 1 24.46 4.09 (0.58, 29.03) 2 22.42 8.92 (2.23, 35.66) 2.18 (0.20, 24.06) 

[60 to 65) 1 7.72 12.95 (1.82, 91.96) 1 7.23 13.83 (1.95, 98.15) 1.07 (0.07, 17.06) 

Total 23 664.17 3.46 (2.30, 5.21) 45 791.74 5.68 (4.24, 7.61) 1.64 (0.99, 2.71) 
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6.3.10 Table 3.4. Sensitivity analyses based on different thresholds to define elevated eGFR describing number of events, cumulative 

incidence rate and subhazard ratios from competing risks proportional hazards models.   

 

 HIV-uninfected HIV-infected   

Elevated eGFR equation Hyperfiltration  

events 

Cumulative 

incidence rate 

 per 100 py 

(95%CI) 

Hyperfiltration  

events 

Cumulative incidence  

rate per 100 py 

(95%CI) 

 HIV-infected vs. 

HIV-uninfected 

subhazard ratio  

at age 30 

(95%CI) 

HIV-infected vs. 

HIV-uninfected 

subhazard ratio  

per 1 year increase 

(95%CI) 

Non-black men        

  Main model 

118.95 – 0.726 × years after age 30 

79 5.28 

(4.24, 6.58) 

66 4.83 

(3.79, 6.14) 

 3.69 

(1.63, 8.36) 

0.93 

(0.89, 0.96) 

  Adapted from Poggio et al. (2009) 

119 – 0.8 × years after age 30 

81 9.67 

(7.78, 12.03) 

74 8.22 

(6.55, 10.33) 

 3.10 

(1.45, 6.65) 

0.92 

(0.88, 0.96) 

  Main model lower 95%CI slope 

119 – 0.747 × years after age 30 

78 9.25 

(7.41, 11.55) 

73 8.05 

(6.40, 10.13) 

 3.18 

(1.44, 6.98) 

0.92 

(0.88, 0.96) 

  Main model upper 95%CI slope 

119 – 0.712 × years after age 30 

73 4.48 

(3.56, 5.63) 

58 3.80 

(2.94, 4.92) 

 3.66 

(1.59, 8.40) 

0.92 

(0.89, 0.96) 

        

Black men        

  Main model 

130.39 – 0.726 × years after age 30 

23 3.46 

(2.30, 5.21) 

45 5.68 

(4.24, 7.61) 

 1.60 

(0.96, 2.67) 

1 

  Adapted from Poggio et al. (2009) 

130 – 0.8 × years after age 30 

37 8.28 

(6.00, 11.43) 

53 12.44 

(9.50, 16.30) 

 1.44 

(0.90, 2.29) 

1 

  Main model lower 95%CI slope 

130 – 0.833 × years after age 30 

37 8.29 

(6.01, 11.45) 

52 12.26 

(9.34, 16.09) 

 1.41 

(0.88, 2.26) 

1 

  Main model upper 95%CI slope 

130 – 0.608 × years after age 30 

22 3.25 

(2.14, 4.93) 

44 5.54 

(4.12, 7.44) 

 1.64 

(0.97, 2.76) 

1 
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 Figures and Tables for Chapter 4 6.4

6.4.1 Figure 4.1. Graphical depiction of method to define individual slope in the 

presence of a downward inflection point (Figure 4.1a) and in the absence of a 

downward inflection point (Figure 4.1b).  

Figure 4.1a. Graphical depiction of approach to identify downward inflection points with 

corresponding parameters from model. Figure 1b. Graphical depiction of simple linear 

(slope-intercept) decline since the identified inflection point was not downward, as 

indicated by thick discontinuous line. Open circles (○) represent observed eGFR, open 

diamonds (◊) represent eligible IP, solid diamonds (♦) represent identified IP from the 

model minimizing residual variance, solid lines represent final model. 
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6.4.2 Figure 4.2. Estimation of 50
th

 and 90
th

 percentiles of eGFR among HIV-

uninfected men, stratified by race.  

Distributions (50
th

 and 90
th 

percentiles) of eGFR among HIV-uninfected black (n= 3482 

observations contributed by 290 men) and non-black men (n= 15457 observations 

contributed by 1083 men). Lines are based on quantile regression estimating the 50
th

 and 

90
th

 percentiles of eGFR on age after 30 years; dots depict medians and 90
th

 percentiles 

for 5 year age bins.  
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6.4.3 Figure 4.3. Distributions of changes in eGFR based on identified IP or single 

slope models, by HIV-infection and filtration status.  
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6.4.4 Figure 4.4. Distributions of changes in eGFR based on identified IP or single 

slope models, by HIV-infection and filtration status based on a one-to-one 

matching design as a sensitivity analysis.  

The normofilterers comprise unique subjects, individually matched to the hyperfilterers 

by age, race, infection status, cohort enrollment and hypertensive status. 
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6.4.5 Table 4.1. Descriptive statistics of demographic, clinical and longitudinal data of MACS men, stratified by HIV and filtration 

status, based on matching study design. Median [IQR] and % (n). 

Variable 

HIV-uninfected, 

normofilterers 

n= 230 

HIV-uninfected, 

hyperfilterers 

n= 87 P-value 

 HIV-infected, 

normofilterers 

n= 274 

HIV-infected, 

hyperfilterers 

n= 90 P-value 

At time of index (hyperfiltration or match)         

Age, years 52 [44.6, 57.9] 54.8 [44.6, 61.9] 0.377  46.7 [40, 50.9] 46.8 [38.8, 51.1] 0.709 

Black race 21.3% (49) 24.1% (21) NA  39.1% (107) 42.2% (38) NA 

Post-2001 cohort  34.3% (79) 29.9% (26) NA  60.6% (166) 60% (54) NA 

eGFR, ml/min|1.73m
2 

95.0 [91.0, 99.8] 107.6 [100.9, 118.7] 0.101  98.0 [91.2, 104.6] 116.7 [111.6, 123] 0.002 

Body mass index, kg/m
2 

25.1 [22.9, 29] 26.8 [23.9, 30.4] 0.313  24.8 [23, 27.2] 24.3 [21.9, 27] 0.902 

Obese 19.1% (41) 26.3% (21) 0.197  9.1% (23) 8% (6) 0.828 

HDL, mg/dL 48.8 [40, 57.2] 50.6 [40.5, 58.7] 0.353  43.7 [38, 50] 47.3 [39.7, 53.5] 0.157 

LDL, mg/dL 117.5 [97, 139] 112.5 [96, 135] 0.913  109 [86, 132] 100 [83, 122.5] 0.180 

Dyslipidemia 72% (144) 74.4% (58) 0.468  79.3% (180) 75% (54) 0.645 

Fasting glucose, mg/dL 95 [89, 106] 98 [92, 104] 0.835  96 [89, 105] 97 [87, 104] 0.728 

Fasting glucose > 100 mg/dL 35.7% (65) 39.2% (29) 0.642  38.4% (71) 39.4% (26) 0.326 

Diagnosed diabetes 12.1% (24) 10.1% (8) 0.816  11.6% (24) 11.8% (8) 0.591 

Metabolic syndrome 23.6% (50) 27.2% (22) 0.626  24.1% (55) 22.9% (16) 0.648 

SBP, mmHg 123 [115, 131] 126 [116, 132] 0.552  124 [114, 132] 120 [113, 130.5] 0.477 

DBP, mmHg 77 [72, 84] 76 [71, 80] 0.062  78 [71, 84] 74 [68, 80] 0.004 

Uncontrolled hypertension 14.9% (32) 13.9% (11) NA  14.6% (38) 11.8% (9) NA 
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Variable 

HIV-uninfected, 

normofilterers 

n= 230 

HIV-uninfected, 

hyperfilterers 

n= 87 P-value 

 HIV-infected, 

normofilterers 

n= 274 

HIV-infected, 

hyperfilterers 

n= 90 P-value 

Current smoker 22.6% (51) 27.6% (24) 0.299  37% (101) 43.2% (38) 0.333 

Stimulant use (cocaine, methamphetamines) 17.9% (40) 7.3% (6) 0.037  26.9% (73) 18.4% (16) 0.208 

Up to 5 years prior to index (hyperfiltration 

or match) 

       

Number of observations  3 [2, 7] 7 [4, 9] <.001  4 [2, 7] 6 [3, 8] 0.013 

Time observed, years 2 [1, 3.8] 4 [2.6, 4.6] <.001  2.5 [1.3, 4.3] 3.4 [1.5, 4.5] 0.004 

Mean GFR  96.3 [93.7, 99.6] 102.7 [96.8, 109.6] <.001  101.4 [96.7, 105.6] 110.1 [105.6, 116.1] <.001 

Mean fasting glucose  96 [90, 104] 95 [90, 102] 0.734  95 [88, 103] 96 [91, 104] 0.796 

Mean SBP  123 [118, 132] 126 [117, 131] 0.619  125 [117, 132] 120 [113, 129] 0.057 

Mean DBP  80 [74, 84] 77 [71, 82] 0.190  80 [75, 83] 75 [69, 80] 0.002 

Up to 5 years after index (hyperfiltration or 

match) 

       

Number of observations 9 [7, 9] 8 [5, 9] 0.001  9 [8, 10] 8 [6, 9] <.001 

Time observed, years 4.6 [4.4, 4.9] 4.5 [3, 4.8] <.001  4.6 [4.4, 4.8] 4.5 [3.9, 4.8] 0.001 

Mean GFR  91.1 [86.9, 93.7] 102.2 [96.2, 109.5] <.001  91.0 [85.2, 96.1] 108.4 [102.1, 114.7] <.001 

Mean fasting glucose  97 [89, 107] 95 [89, 100] 0.644  97 [91, 104] 97 [91, 105] 0.957 

Mean SBP  126 [119, 134] 127 [118, 134] 0.292  127 [119, 134] 124 [115, 131] 0.019 

Mean DBP  78 [72, 83] 76 [72, 82] 0.342  79 [74, 84] 76 [70, 80] <.001 
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6.4.6 Table 4.2. HIV- and therapy related characteristics among HIV-infected subjects 

with normofiltration and hyperfiltration. 

 

Variable 

 HIV-infected, 

Normofilterers 

n= 274 

HIV-infected, 

Hyperfilterers 

n= 90 P-value 

At time of index (hyperfiltration or match)     

CD4+ cell count  532 [383, 753] 504 [324, 685] 0.184 

CD4+ cell count < 350   21.4% (57) 30.2% (26) 0.028 

Nadir CD4+ cell count  292 [219, 392] 294 [170, 410] 0.140 

Detectable viral load  33.3% (90) 37.9% (33) 0.376 

Previous AIDS diagnosis  11.3% (31) 10.0% (9) 0.776 

Any ART prior to HAART  47.8% (131) 51.1% (46) 0.602 

Time since ART initiation  7.1 [3.9, 13.9] 9.4 [5.8, 18.1] 0.014 

Time since HAART initiation  5.6 [2.1, 8.0] 6.5 [3.9, 9.3] 0.011 

Up to 5 years prior to index     

Mean CD4+ cell count  533 [384, 731] 485 [370, 703] 0.158 

Mean CD4+ cell count < 350  21.7% (48) 22.2% (20) 0.456 

Any detectable viral load  55.2% (122) 61.1% (55) 0.056 

Up to 5 years after index     

Mean CD4+ cell count  564 [431, 738] 598 [360, 749] 0.526 

Mean CD4+ cell count < 350  17.1% (46) 21.8% (19) 0.130 

Any detectable viral load  52.8% (142) 47.1% (41) 0.518 

First AIDS diagnosis  6.2% (17) 2.2% (2) 0.409 



 

127 

 

 

6.4.7 Table 4.3. Unadjusted and adjusted mean GFR change (ml/min|1.73m
2
 per year) by HIV-infection and filtration status from 

linear regression using subject-specific slopes as the outcome.  

Covariates included for adjustment were based on the mean levels 5 years prior to the hyperfiltration event or match (fasting glucose, 

systolic blood pressure, and diastolic blood pressure); and time since antiretroviral therapy initiation was at the time of index visit 

(hyperfiltration event or match). Estimated adjusted means from linear regression models accounting for repeated subjects using 

generalized estimating equations (GEE) are presented for a reference subject described in footnote.  

Mean GFR (ml/min|1.73m
2
) change per year 

HIV-uninfected,  

normofiltration 

n= 230 

HIV-uninfected,  

hyperfiltration 

n= 87 

 HIV-infected,  

normofiltration 

n= 274 

HIV-infected,  

hyperfiltration 

n= 90 
Unadjusted 

(95%CI) 

p-value 

-3.01 

(-3.82, -2.19) 

Reference 

-2.81 

(-3.69, -1.93) 

0.749 

 -5.33 

(-6.33, -4.33) 

Reference 

-4.60 

(-6.01, -3.20) 

0.410 
Adjusted for glucose levels 5 years prior to index

a 

(95%CI) 

p-value 

-3.26 

(-4.23, -2.28) 

Reference 

-2.84 

(-3.70, -1.97) 

0.526 

 -5.89 

(-7.08, -4.70) 

Reference 

-4.84 

(-6.24, -3.43) 

0.243 
Adjusted for glucose levels, SBP, DBP 5 years prior to index

b 

(95%CI) 

p-value 

-2.82 

(-3.72, -1.91) 

Reference 

-2.16 

(-3.59, -0.74) 

0.396 

 -6.07 

(-7.46, -4.69) 

Reference 

-4.91 

(-6.52, -3.29) 

0.215 
Adjusted for glucose levels, SBP, DBP and time since ART initiation 

c
 

(95%CI) 

p-value 

NA NA  -5.89 

(-7.13, -4.65) 

Reference 

-4.60 

(-6.19, -3.01) 

0.178 
a 
For reference individual with mean fasting blood glucose equal to 100 mg/dL over 5 years prior to index. 

b 
For reference individual with mean fasting blood glucose equal to 100 mg/dL, SBP equal to 120 mmHg and DBP equal to 80 mmHg over 5 years 

prior to index. 

c
 For reference individual with mean fasting blood glucose equal to 100 mg/dL, SBP equal to 120 mmHg, DBP equal to 80 mmHg over 5 years 

prior to index, and 7 years since ART initiation at index. 
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6.4.8 Table 4.4. Unadjusted and adjusted mean GFR change (ml/min|1.73m
2
 per year) by HIV-infection and filtration status from 

linear regression using subject-specific slopes as the outcome based on a one-to-one matched design as a sensitivity analysis.  

Covariates included for adjustment were based on the mean levels 5 years prior to the hyperfiltration event or match (fasting glucose, 

systolic blood pressure, and diastolic blood pressure); and time since antiretroviral therapy initiation was at the time of index visit 

(hyperfiltration event or match). Estimated adjusted means from linear regression models using generalized estimating equations 

(GEE) are presented for a reference subject described in footnote. GEE was used to account for within-pair correlations.  

Mean GFR (ml/min|1.73m
2
) change per year 

HIV-uninfected,  

normofiltration 

n= 61 

HIV-uninfected,  

hyperfiltration 

n= 61 

 HIV-infected,  

normofiltration 

n= 59 

HIV-infected,  

hyperfiltration 

n= 59 
Unadjusted 

(95%CI) 

p-value 

-3.25 

(-4.38, -2.12) 

Reference 

-3.11 

(-4.29, -1.93) 

0.863 

 -5.02 

(-6.86, -3.17) 

Reference 

-4.58 

(-6.13, -3.04) 

0.668 
Adjusted for glucose levels 5 years prior to index

a 

(95%CI) 

p-value 

-3.62 

(-5.17, -2.06) 

Reference 

-3.11 

(-4.27, -1.94) 

0.593 

 -6.02 

(-8.40, -3.65) 

Reference 

-4.70 

(-6.26, -3.15) 

0.234 
Adjusted for glucose levels, SBP, DBP 5 years prior to index

b 

(95%CI) 

p-value 

-3.35 

(-4.90, -1.80) 

Reference 

-2.76 

(-4.07, -1.45) 

0.552 

 -5.85 

(-8.47, -3.23) 

Reference 

-4.32 

(-6.05, -2.58) 

0.299 
Adjusted for glucose levels, SBP, DBP and time since ART initiation 

c
 

(95%CI) 

p-value 

NA NA  -5.91 

(-8.65, -3.18) 

Reference 

-4.40 

(-5.96, -2.83) 

0.233 
a 
For reference individual with mean fasting blood glucose equal to 100 mg/dL over 5 years prior to index. 

b 
For reference individual with mean fasting blood glucose equal to 100 mg/dL, SBP equal to 120 mmHg and DBP equal to 80 mmHg over 5 years 

prior to index. 

c
 For reference individual with mean fasting blood glucose equal to 100 mg/dL, SBP equal to 120 mmHg, DBP equal to 80 mmHg over 5 years 

prior to index, and 7 years since ART initiation at index. 
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