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Summary13

1. Heterozygosity fitness correlations (HFCs) have been used extensively to explore the impact of inbreeding on14

individual fitness. Initially, most studies used small panels of microsatellites, but more recently with the advent15

of next generation sequencing, large SNP datasets are becoming increasingly available and these provide greater16

power and precision to quantify the impact of inbreeding on fitness.17

2. Despite the popularity of HFC studies, effect sizes tend to be rather small. One reason for this may be a18

low variation in inbreeding level across individuals. Using genetic markers, it is possible to measure variance in19

inbreeding through the strength of correlation in heterozygosity across marker loci, termed identity disequilibrium20

(ID).21

3. ID can be quantified using the measure g2 which is also a central parameter in HFC theory that can be used22

within a wider framework to estimate the direct impact of inbreeding on both marker heterozygosity and fitness.23

However, no software exists to calculate g2 for large SNP datasets nor to implement this framework.24

4. inbreedR is an R package that provides functions to calculate g2 based on microsatellite and SNP markers with25

associated p-values and confidence intervals. Within the framework of HFC theory, inbreedR also estimates the26

impact of inbreeding on marker heterozygosity and fitness. Moreover, we implemented easy-to-use simulations to27

explore the precision and magnitude of estimates based on different numbers of genetic markers. We hope this28

package will facilitate good practice in the analysis of HFCs and help to deepen our understanding of inbreeding29

effects in natural populations.30
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Introduction32

Offspring of close relatives often show reduced fitness, a phenomenon referred to as inbreeding depression33

(Charlesworth & Charlesworth 1987; Charlesworth & Willis 2009). This decline in fitness among inbred34

individuals is a result of the increased proportion of loci in the genome that are identical by descent (IBD).35

A homozygous locus is IBD or autozygous when it carries two alleles that both originate from a single copy36

in a common ancestor. An increased proportion of loci in the genome that are identical by descent (IBDG)37

may lead to the unmasking of deleterious recessive alleles and a reduction in heterozygote advantage38

by decreasing genome-wide heterozygosity (Charlesworth & Charlesworth 1987; Charlesworth & Willis39

2009). In populations with unknown pedigrees, many studies have used genetic marker heterozygosity40

as a measure of IBDG. The result is a large and expanding literature describing heterozygosity-fitness41

correlations (HFCs) across a range of species and traits (Coltman & Slate 2003; Chapman et al. 2009;42

Szulkin et al. 2010).43

Despite the large and growing number of HFC studies, effect sizes are usually small (Chapman et al. 2009)44

and there has been debate over their mechanistic basis (Balloux et al. 2004; Hansson & Westerberg 2007;45

Slate et al. 2004; Szulkin et al. 2010). This reflects the fact that under many circumstances multilocus46

heterozygosity based on the 10-20 microsatellite markers employed by most studies provides little power47

to estimate IBDG (Hansson & Westerberg 2002; Balloux et al. 2004; Szulkin et al. 2010; Hoffman et al.48

2014). This is why the pedigree derived inbreeding coefficient (FP) has long been the gold standard49

for estimating IBDG (Pemberton 2004; 2008). FP is defined as the probability of a given locus in an50

individual’s genome being autozygous based on its pedigree. However, an individual’s FP will differ from51

its IBDG as FP can be imprecise due to linkage among loci and downwardly biased due to incomplete52

pedigree information (Hill & Weir 2011a; Keller et al. 2011; Kardos et al. 2015). Consequently, IBDG53

can vary substantially among individuals with the same FP (Franklin 1977; Hill & Weir 2011b; Forstmeier54

et al. 2012). In other words, even FP derived from a perfect pedigree cannot fully capture the variance in55

genomic autozygosity (σ2(IBDG)) among individuals, as it does not incorporate variation due to linkage.56

Recent advances in next generation sequencing technology (e.g. Baird et al. 2008; Peterson et al. 2012)57

now allow many tens or even hundreds of thousands of single nucleotide polymorphisms (SNPs) to be58

genotyped in virtually any organism. Applied to HFCs, these dense marker panels provide much greater59

power then a small panel of microsatellites to quantify the impact of inbreeding on fitness (Hoffman60

et al. 2014). Recent simulation and empirical studies also show that inbreeding coefficients based on61

genome-wide SNP data provide more precise measures of IBDG and inbreeding depression than FP62

(Keller et al. 2011; Pryce et al. 2014; Kardos et al. 2015; Huisman et al. 2016).63



inbreedR 3

HFC theory64

For marker loci to indicate inbreeding depression, their heterozygosity must be correlated with the65

heterozygosity of functional loci in the genome (Szulkin et al. 2010). Such correlations between marker66

loci and functional loci have been proposed to occur through two possible mechanisms: The ’general67

effect hypothesis’ on the one hand assumes that multilocus heterozygosity (MLH) reflects genome-wide68

heterozygosity. This association emerges because variation in inbreeding causes heterozygosity to be69

correlated across loci, a phenomenon termed identity disequilibrium (ID, Weir & Cockerham 1973).70

Alternatively, the ’local effect hypothesis’ states that one or a few of the markers are in linkage disequilibrium71

(LD) with a trait locus under balancing selection, which creates a pattern whereby heterozygosity at the72

gene and marker are correlated. However, ID and LD do not necessarily have to be considered as73

competing hypotheses to explain HFCs as ID is a consequence and LD is a cause of variation in IBDG74

(Bierne et al. 2000; Szulkin et al. 2010). Both mechanisms can therefore be united under an inbreeding75

or general effect model (Bierne et al. 2000). Variance in individual inbreeding levels can be caused by a76

variety of scenarios other than systematic consanguineous matings (Szulkin et al. 2010). For example,77

in small or bottlenecked populations, variance in σ2(IBDG) and therefore ID occurs as a consequence of78

variation in the relatedness of mating partners. Similarly, immigration and admixture can result in the79

offspring of parents from different populations being relatively outbred, leading to an increased σ2(IBDG)80

within a population (Tsitrone et al. 2001; Szulkin et al. 2010). In addition, in small randomly mating81

populations, both genetic drift and immigration generate LD (Hill & Robertson 1968; Sved 1968; Bierne82

et al. 2000), which in turn leads to ID (Szulkin et al. 2010). All of these scenarios ultimately increase83

σ2(IBDG) and lead to ID, which is the fundamental cause of HFCs according to the general effect model.84

The general effect model assumes that HFCs arise due to the simultaneous effects of inbreeding on85

variation among individuals in marker heterozygosity and fitness (David et al. 1995; David 1998; Bierne86

et al. 2000; Hansson & Westerberg 2002). Specifically, inbreeding affects the genome including the panel87

of genetic markers by increasing the proportion of loci that are IBD and by causing ID. When the aim of a88

study is to infer the effects of inbreeding on fitness from a panel of genetic markers, two related questions89

arise: (1) How well does MLH at genetic markers reflect IBDG? and (2) How large is the inbreeding load,90

i.e. the correlation between inbreeding and fitness? These questions led to the development of a model91

to estimate these relationships based on the inbreeding coefficient f defined as individual IBDG (Bierne92

et al. 2000). This model was developed further to estimate how well marker heterozygosity reflects FP,93

which itself is an imprecise measure of IBDG, but the best that existed in pre-genomic times (Slate et al.94

2004). Within this framework, Szulkin et al. (2010) used g2 (David et al. 2007), a point estimate of95

ID, to measure σ2(IBDG). This allows the derivation of formulas to estimate the correlations between96
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inbreeding, MLH and fitness purely from a set of genetic markers.97

Quantifying effects of inbreeding on heterozygosity and fitness98

The general effect model assumes that heterozygosity at genetic markers (h, here defined as standardised99

MLH, Coltman et al. 1999) is correlated with genomic heterozygosity through variation in individual100

inbreeding levels (f ) and that individual fitness (W ) declines as a linear function of f which is expected101

if deleterious mutations have non-epistatic effects (Bierne et al. 2000). In other words, the correlation102

between W and h arises through the simultaneous effects of inbreeding level on fitness (r(W, f)) and103

marker heterozygosity (r(h, f)) (Bierne et al. 2000; Slate et al. 2004; Szulkin et al. 2010).104

r(W,h) = r(h, f) r(W, f) (eqn 1)

105

Although FP has been used as a measure of f in the above formula (Slate et al. 2004; Szulkin et al.106

2010), here we define the inbreeding coefficient f as a variable that explains all of the variance in genomic107

heterozygosity (σ2(IBDG)) and therefore includes both variance depending on an individual’s pedigree108

and the degree of linkage among loci (Bierne et al. 2000). When it is not possible to directly measure an109

individual’s inbreeding level f , we can use ID to characterize the distribution of f in a population. A110

measure of ID that can be related to HFC theory is g2 (David et al. 2007), which quantifies the extent111

to which heterozygosities are correlated across pairs of loci (see Appendix S1 for details). Based on g2112

as an estimate of ID, it is then possible to calculate the expected correlation between h and inbreeding113

level f as follows (Szulkin et al. 2010):114

r2(h, f) =
g2

σ2(h)
(eqn 2)

Finally, the expected squared correlation between a fitness trait W and inbreeding level f can be derived115

by rearranging eqn 1 (Szulkin et al. 2010):116

r2(W, f) =
r2(W,h)

r2(h, f)
(eqn 3)

117

Software is already available for calculating g2 from microsatellite datasets (David et al. 2007). However,118

for larger (e.g. SNP) datasets, the original formula is not computationally practical, as it requires a119

double summation over all pairs of loci. For example, with 15,000 loci, the double summations take of120

the order of 0.2 × 109 computation steps. For this reason, it is necessary to implement a computationally121

more feasible formula to calculate g2, which assumes that the distribution of true heterozygosity is the122
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same in missing data as in non-missing data, i.e. that the frequency of missing values does not vary123

much between pairs of loci (Hoffman et al. 2014). In turn, the g2 parameter builds the foundation for124

the implementation of the above framework to analyse HFCs, which is recommended to be routinely125

computed in future HFC studies (Szulkin et al. 2010; Kardos et al. 2014).126

The package127

inbreedR is an R package (R Core Team 2015) that provides functions for analysing inbreeding and128

HFCs based on microsatellite and SNP data. The main aims of the package are to (i) calculate g2129

and its confidence interval and p-value for both microsatellites and large SNP datasets; (ii) estimate130

the influence of inbreeding on marker heterozygosity and fitness through the derivation of r2(h, f) and131

r2(W, f); and (iii) explore the sensitivity of g2 and r2(h, f) to marker number through user friendly132

simulations. The overall workflow is shown in Figure 1 and described below. For a more detailed133

description of the package and the functions, we have supplied a vignette for the package than can be134

accessed via browseVignettes("inbreedR") once the package is installed.135

Example datasets136

The functionality of inbreedR is illustrated using genetic and phenotypic data from an inbred captive137

population of oldfield mice (Peromyscus polionotus) (Hoffman et al. 2014). These mice were paired over138

six laboratory generations to produce offspring with FP ranging from 0 to 0.453. Example files are139

provided containing the genotypes of 36 P. polionotus individuals at 12 microsatellites and 13,198 SNPs140

respectively. Data on body mass at weaning, a fitness proxy, are also available for the same individuals.141

library(inbreedR)
data("mouse_msats") # microsatellite data, data.frame or matrix
data("mouse_snps") # snp data, data.frame or matrix
data("bodyweight") # fitness data, numeric vector

Data conversion and checking142

The working format of inbreedR is an individual x loci matrix or data.frame in which rows represent143

individuals and each column represents a locus. If an individual is heterozygous at a given locus, it144

is coded as 1, whereas a homozygote is coded as 0, and missing data are coded as NA. We provide a145

converter function from a common two-column-per-locus (allelic) format to the working format, as well146

as a function to check for common formatting errors within the input matrix. Guidelines for extracting147

genotype data from VCF files are given in the vignette.148
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# transforms microsatellite data into (0/1)
mouse_microsats <- convert_raw(mouse_msats)
# checks the data
check_data(mouse_microsats, num_ind = 36, num_loci = 12)
#> [1] TRUE
check_data(mouse_snps, num_ind = 36, num_loci = 13198)
#> [1] TRUE

Identity disequilibrium149

The package provides functions to calculate g2 for both microsatellites and SNPs. The g2_microsats()150

function implements the formula given in David et al. (2007). For large datasets (e.g. SNPs) the151

g2_snps() function implements a computationally feasible formula described in Appendix S1. For both152

microsatellites and SNPs, inbreedR also calculates confidence intervals by bootstrapping over individuals153

(Table 1). It also permutes the genetic data to generate a p-value for the null hypothesis of no variance154

in inbreeding in the sample (i.e. g2 = 0). The g2_snps() function provides an additional argument for155

parallelization which distributes bootstrapping and permutation across cores.156

g2_mouse_microsats <- g2_microsats(mouse_microsats, nperm = 1000, nboot = 1000, CI = 0.95)
g2_mouse_snps<- g2_snps(mouse_snps, nperm = 100, nboot = 100, CI = 0.95, parallel = FALSE, ncores = NULL)

The results of both functions can be plotted as histograms with CIs (Figure 2).157

par(mfrow=c(1,2))
plot(g2_mouse_microsats, main = "Microsatellites", col = "cornflowerblue", cex.axis=0.85)
plot(g2_mouse_snps, main = "SNPs", col = "darkgoldenrod1", cex.axis=0.85)

Another approach for estimating ID is to divide the marker panel into two random subsets, compute the158

correlation in heterozygosity between the two, and repeat this hundreds or thousands of times in order to159

obtain a distribution of heterozygosity-heterozygosity correlation coefficients (Balloux et al. 2004). This160

approach is intuitive and has been shown to be equivalent to g2 in its power to detect non-zero variance in161

inbreeding (Kardos et al. 2014) although it can be criticised on the grounds that samples within the HHC162

distribution are non-independent. Moreover, g2 is preferable because it directly relates to HFC theory163

(eqn 2). The HHC() function in inbreedR calculates HHCs together with confidence intervals, specifying164

how often the dataset is randomly split into two halves with the reps argument.165

HHC_mouse_microsats <- HHC(mouse_microsats, reps = 1000)
HHC_mouse_snps <- HHC(mouse_snps, reps = 100)

The results can be outputted as text (Table 2) or plotted as histograms with CIs (Figure 3).166
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par(mfrow=c(1,2))
plot(HHC_mouse_microsats, main = "Microsatellites", col = "cornflowerblue", cex.axis=0.85)
plot(HHC_mouse_snps, main = "SNPs", col = "darkgoldenrod1", cex.axis=0.85)

HFC parameters167

Assuming that HFCs are due to inbreeding depression, it is possible to calculate both the expected168

correlation between heterozygosity and inbreeding level (r2(h, f)) and the expected correlation between169

a fitness trait and inbreeding (r2(W, f)) as described in eqn 1. These calculations are implemented in170

inbreedR using the functions r2_hf() and r2_Wf(). Both functions include an nboot argument to run171

bootstrapping over individuals and estimate confidence intervals. Similar to the base R glm() function,172

the distribution of the fitness trait can be specified using the family argument, as shown below:173

# r^2 between inbreeding and heterozygosity
hf <- r2_hf(genotypes = mouse_microsats, nboot = 100, type = "msats")
# r^2 between inbreeding and fitness
Wf <- r2_Wf(genotypes = mouse_microsats, trait = bodyweight, family = gaussian, type = "msats", nboot = 100)

Workflow for estimating the impact of inbreeding on fitness using HFC174

Szulkin et al. (2010) in their online Appendix 1 provide a worked example of how to estimate the impact175

of inbreeding on fitness within an HFC framework. Below, we show how the required calculations can be176

implemented in inbreedR. We start with the estimation of identity disequilibrium (g2) and calculation177

of the variance of standardized multilocus heterozygosity (σ2(h)), followed by the estimation of the three178

correlations from eqn 1. Example code for the microsatellite dataset is shown below and the results for179

both microsatellites and SNPs are given in Table 3.180

# g2 and bootstraps to estimate CI
g2 <- g2_microsats(mouse_microsats, nboot = 1000)
# calculate sMLH
het <- sMLH(mouse_microsats)
# variance in sMLH
het_var <- var(het)
# Linear model
mod <- lm(bodyweight ~ het)
# regression slope
beta <- coef(mod)[2]
# r^2 between fitness and heterozygosity
Wh <- cor(bodyweight,predict(mod))^2
# r^2 between inbreeding and sMLH including bootstraps to estimate CI
hf <- r2_hf(genotypes = mouse_microsats, type = "msats", nboot = 1000)
# r^2 between inbreeding and fitness including bootstraps to estimate CI
Wf <- r2_Wf(genotypes = mouse_microsats, trait = bodyweight,

family = gaussian, type = "msats", nboot = 1000)
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Sensitivity to the number of markers181

Sampling subsets of loci from an empirical genetic dataset and estimation of a statistic of interest based182

on these subsets can give insights into the power provided by a given marker panel (Miller et al. 2013;183

Hoffman et al. 2014; Stoffel et al. 2015). However, although subsampling markers (with replacement)184

from an empirical dataset allows exploration of trends in the magnitude of a statistic, the precision185

(variation) of the same statistic is necessarily biased. This is due to the increasing non-independence of186

resampled marker sets as they approach the total number of markers. For example, given a dataset of 20187

genetic markers, repeatedly subsampling 18 markers and calculating g2 will always lead to lower variation188

in the estimates than subsampling sets of 5 markers. To circumvent this problem, the simulate_g2()189

function simulates genotypes from which subsets of loci can be sampled independently. The simulations190

can be used to evaluate the effects of the number of individuals and loci on the precision and magnitude191

of g2. The user specifies the number of simulated individuals (n_ind), the subsets of loci (subsets)192

to be drawn, the heterozygosity of non-inbred individuals (H_nonInb, i.e. expected heterozygosity in193

the base population) and the distribution of f among the simulated individuals. The f values of the194

simulated individuals are sampled randomly from a beta distribution with mean (meanF) and variance195

(varF) specified by the user (e.g. as in Wang 2011). This enables the simulation to mimic populations196

with known inbreeding characteristics or to simulate hypothetical scenarios of interest. For computational197

simplicity, allele frequencies are assumed to be constant across all loci and the simulated loci are unlinked.198

Genotypes (i.e. heterozygosity/homozygosity at each locus) are assigned stochastically based on the f199

values of the simulated individuals. Specifically, the probability of an individual being heterozygous at200

any given locus (H) is expressed as H = H0(1 − f) , where H0 is the user-specified heterozygosity of a201

non-inbred individual and f is an individual’s inbreeding coefficient drawn from the beta distribution.202

sim_g2_mouse_microsats <- simulate_g2(n_ind = 50, H_nonInb = 0.5, meanF = 0.2, varF = 0.03,
subsets = c(5, 10, 15, 20, 25, 30, 35, 40, 45, 50),
reps = 100, type ="msats")

sim_g2_mouse_snps <- simulate_g2(n_ind = 50, H_nonInb = 0.5, meanF = 0.2, varF = 0.03,
subsets = seq(from = 1000, to = 10000, by = 1000),
reps = 100, type = "snps")

The results can be visualized by showing the mean and CI of g2 plotted against the number of loci used203

(Figure 4). Bear in mind that g2 values calculated from the simulated data may over-estimate precision204

due to the assumption of unlinked loci. However, in practice, the number of linked SNPs in most real205
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datasets will be small compared to the number of unlinked SNPs (Szulkin et al. 2010) and hence g2 should206

not be substantially affected.207

par(mfrow = c(1, 2), mar=c(5,5.15,3,1.2))
plot(sim_g2_mouse_microsats, main = "Microsatellites",

cex.axis=1.5, cex.main = 1.5, cex.lab = 1.5)
plot(sim_g2_mouse_snps, main = "SNPs",

cex.axis=1.5, cex.main = 1.5, cex.lab = 1.5)

Finally, it is of interest to infer how well genetic marker heterozygosity reflects the inbreeding level f and208

whether this correlation could be increased by genotyping individuals at a larger set of markers. The209

simulate_r2_hf() function can be used to compare the precision and magnitude of the expected210

squared correlation between heterozygosity and inbreeding (r2(h, f)) for a given number of genetic211

markers.212

sim_r2_mouse_microsats <- simulate_r2_hf(n_ind = 50, H_nonInb = 0.5, meanF = 0.2, varF = 0.03,
subsets = c(5, 10, 15, 20, 25, 30, 35, 40, 45, 50),
reps = 100, type ="msats")

sim_r2_mouse_snps <- simulate_r2_hf(n_ind = 50, H_nonInb = 0.5, meanF = 0.2, varF = 0.03,
subsets = seq(from = 1000, to = 10000, by = 1000),
reps = 100, type = "snps")

The results can again be plotted as a series of r2(h, f) estimates together with their means and CIs213

(Figure 5).214

par(mfrow = c(1, 2), mar=c(5,5.15,3,1.2))
plot(sim_r2_mouse_microsats , main = "Microsatellites",

cex.axis=1.5, cex.main = 1.5, cex.lab = 1.5)
plot(sim_r2_mouse_snps, main = "SNPs", cex.axis=1.5,

cex.main = 1.5, cex.lab = 1.5)

Effects of LD under the general effect model215

LD may affect the strength of an HFC because it increases σ2(IBDG) (Bierne et al. 2000). This is216

because the variance in individual IBDG is explained by (i) a component that reflects the different217

pedigrees of individuals, and (ii) a component that reflects variation among individuals with the same218

pedigree (Bierne et al. 2000). In the absence of linkage (i.e. if there were infinitely many unlinked loci),219

an individual’s IBDG would solely depend on the pedigree. However, loci do not segregate independently220

and LD and especially physical linkage will therefore cause variation in IBDG among individuals with the221

same pedigree. Calculating g2 and derived HFC statistics based on large SNP datasets, which are likely222

to include linked markers, is therefore not a problem per se. As g2 does not incorporate any pedigree223
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information but purely quantifies correlated heterozygosity among genetic marker pairs, it is a direct224

measure of σ2(IBDG). The only assumption needed is that IBD is equally frequent among marker loci225

and fitness loci that are responsible for inbreeding depression. Put another way, the fitness loci should226

have an equivalent genomic distribution to the genetic markers.227

Increasing the total number of genetic markers should not affect the proportion of linked markers228

and should thus not affect g2. To test this, we evaluated the sensitivity of g2 to marker number by229

repeatedly sampling random subsets of between 100 and 13,000 SNPs from the full mouse dataset and230

calculating the respective g2 values. For each subset, markers were sampled without replacement to avoid231

non-independence, which is why the number of repetitions decreases with increasing marker number. The232

mean g2 was found to be stable across all subset sizes, suggesting that, for our dataset, the expected g2233

does not vary appreciably with marker density (Figure 6).234

In general, the number of locus pairs in strong linkage is expected to be very low compared to the number235

of non-linked pairs (Szulkin et al. 2010). As g2 averages over all pairs of loci, this point estimate should236

therefore be relatively insensitive to the inclusion of linked markers as long as all markers are broadly237

distributed across the genome. To test this, we conducted LD pruning of our SNP dataset at various238

stringency thresholds to determine how linkage among SNPs affects g2 estimates and their confidence239

intervals. We used the indep-pairphase function in PLINK version 1.09 (Purcell et al. 2007) to remove240

one SNP from each pair with an r2 above thresholds ranging from 0.5 – 0.99 with increments of 0.05241

and a last increment of 0.04. In order to account for our SNPs being on unplaced contigs, we assumed242

that all SNPs were on the same ’chromosome’ and used a sliding window spanning the full dataset. The243

magnitude and precision of g2 estimates was found to be stable across all LD pruned datasets (Figure 7),244

suggesting that, for our dataset, g2 is relatively insensitive to the inclusion of strongly linked SNPs.245

Final remarks246

The inbreedR package implements a framework to estimate the impact of variation in inbreeding on247

marker heterozygosity and fitness, which has been suggested to be routinely reported in HFC studies248

(Szulkin et al. 2010; Kardos et al. 2014). A good example is a recent study of red deer, in which Huisman249

et al. (2016) quantify identity disequilibria through g2 in several datasets to estimate the power of a250

genomic inbreeding measure to detect inbreeding depression. In addition to the quantification of ID and251

HFCs for empirical data, straightforward simulations within inbreedR provide a way to explore the effect252

of the number of genetic markers on g2 and the expected correlation between marker heterozygosity and253

inbreeding. This is important for evaluating the power of a given dataset to measure inbreeding depression,254

and could also facilitate the planning of future projects by exploring the effects of sample size and marker255

number on the power to detect ID and HFCs.256
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Although g2 and related parameters can provide insights into whether an HFC is due to inbreeding or257

not, the user should be aware that spurious HFCs can occur due to population structure (Slate et al.258

2004), which has to be appropriately dealt with beforehand. For instance, genetically distinct populations259

could be analysed separately. Also, it is worthwhile considering whether SNPs should be filtered based260

on their minor allele frequencies (MAF) prior to analysis. One the one hand, genotyping by sequencing261

approaches rely on sufficient depth of coverage to call SNPs with reasonable confidence. Thus, low MAF262

SNPs may be disproportionately error prone when the depth of sequence coverage is not high enough to263

capture multiple copies of the minor allele. On the other hand, filtering out low MAF SNPs may distort264

the allele frequency spectrum and lead to the loss of valuable information (Hoffman et al. 2014).265

Finally, LD and ID have been seen as alternative hypotheses to explain HFCs (Hansson & Westerberg266

2008). However, LD often goes hand in hand with ID and is therefore a relevant variance component267

when the aim is to estimate σ2(IBDG) (Bierne et al. 2000; Szulkin et al. 2010). As most HFC studies268

should be interested in estimating σ2(IBDG) through g2, linked markers need not be pruned as long as269

the genomic distributions of the marker and trait loci are comparable. However, if the goal of a study270

is to infer characteristics of a pedigree from g2 (such as self-fertilization rates), it might be useful to271

reduce physical linkage among markers using PLINK (Purcell et al. 2007) or other methods to ensure272

their independence (David et al. 2007). Further investigation would be needed to evaluate the impact of273

pruning linked markers on selfing or inbreeding rates estimated through g2.274

Computation times275

Computation times will be negligible for most microsatellite datasets but somewhat longer for very large276

SNP datasets. On a standard Laptop (Intel Core I5 2.60GHz, 8 GB RAM) running the g2_snps()277

function for our example SNP dataset (36 individuals genotyped at 13,198 loci) with 1000 bootstraps278

takes 1 min 12 secs without parallelisation and 38 secs with parallelisation on 3 cores. For comparison,279

we also simulated a large SNP dataset with 3500 individuals at 37,000 loci (similar to Huisman et al.280

(2016)) and ran this on a 40 core server with 1000 bootstraps, which took 73 hours.281

Availability282

The current stable version of the package requires R 3.2.1 and can be downloaded from CRAN as follows:283

install.packages("inbreedR")

In the future, we will aim to extend the functionality of inbreedR and the latest development version284

can be downloaded from GitHub.285
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install.packages("devtools")
devtools::install_github("mastoffel/inbreedR")

Data accessibility286

Both example datasets are included in the R package.287
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Table 1. Output of the g2 functions showing g2 values and their 95% confidence intervals, standard errors and p-values
for 36 mice genotyped at 12 microsatellites and 13,198 SNPs

ĝ2 CI lower CI upper SE p-value

Microsats 0.022 -0.008 0.065 0.019 0.076
SNPs 0.035 0.022 0.050 0.008 0.010
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Table 2. Output of the HHC function, showing mean HHCs with 95% confidence intervals and standard deviations for
36 mice genotyped at 12 microsatellites and 13,198 SNPs.

Mean CI lower CI higher SD

Microsats 0.194 -0.062 0.453 0.128
SNPs 0.976 0.961 0.987 0.007
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Table 3. Parameters central to interpreting HFCs for the microsatellite and SNP datasets. ĝ2 is the empirical point
estimate of g2, σ̂2(h) is the variance in sMLH, β̂Wh is the regression slope of sMLH in a linear model of the fitness trait, r̂2Wh
is the squared correlation of the fitness trait and sMLH, r̂2hf is the expected squared correlation of sMLH and inbreeding
and r̂2Wf is the expected squared correlation between sMLH and fitness. 95% confidence intervals are shown in squared
brackets for the estimates from the package. Note that r̂2hf is an expected correlation derived from the ratio of ĝ2/σ̂2(h)
and may slightly exceed one due to missing values; we therefore bound the estimate between 0 and 1.

ĝ2 σ̂2(h) β̂Wh r̂2Wh r̂2hf r̂2Wf

Microsats 0.022 [-0.01, 0.06] 0.078 1.601 0.121 0.280 [0, 0.52] 0.434 [0, 88]
SNPs 0.035 [0.02, 0.05] 0.033 2.634 0.139 1 [0.89, 1] 0.132 [0, 0.14]
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Fig 1. inbreedR workflow.
For both microsatellite and SNP
datasets, the program provides
utilities for data conversion and
checking, estimation of identity
disequilibrium, derivation of
key parameters relating to
HFC theory, and exploration of
sensitivity to the number of loci
deployed. Further details are
provided in the main text.
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Fig 2. Output of the g2 functions for the microsatellite and SNP datasets showing the distribution of g2 estimates from
bootstrap samples over individuals together with their 95% CIs. The empirical g2 estimate is marked as a black dot along
the CI.
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Fig 3. Output of the HHC function showing the distribution of heterozygosity-heterozygosity correlation coefficients for
the microsatellite and SNP datasets. Also shown are the mean HHCs as black dots and their 95% CIs. The two distributions
are very different, microsatellites being positive but with the 95% CI overlapping zero, and SNPs being well in excess of 0.9
with a much greater precision. This reflects the enhanced power of the larger SNP dataset to capture variance in f among
individuals.
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Fig 4. Output of the simulate_g2() function. Different sets of microsatellites and SNPs were simulated and stochastically
drawn from distributions based on a mean(sd) inbreeding level f of 0.2(0.03) assuming that a non-inbred individual has a
heterozygosity of 0.5. The two plots show the g2 statistics from all samples including their means and 95% CIs.
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Fig 5. Output of the simulate_r2_hf() function. Different sets of microsatellites and SNPs were simulated and
stochastically drawn from distributions based on a mean(sd) inbreeding level f of 0.2(0.03) assuming that a non-inbred
individual has a heterozygosity of 0.5. The two plots show the r2(W, f) values for an increasing number of markers
including their means and 95% CIs. The expected correlation between inbreeding and marker heterozygosity increases and
is estimated with higher precision when the number of markers is increased.
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Fig 6. Mean and standard deviation of g2 derived from an increasing number of SNPs drawn at random from the empirical
mouse dataset (13,198 SNPs). The distribution of data points for each subset size is based on sampling without replacement
to obtain non-overlapping marker sets. For this reason, the number of datapoints decreases from 131 for 100 markers to 1
for subsets larger than 6599 SNPs . The mean g2 is stable across all subset sizes, which suggests that estimating g2 from
larger numbers of markers does not introduce bias for our dataset.
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Fig 7. Estimates of g2 with confidence intervals for subsets of SNPs pruned based on different LD thresholds. We used
PLINK to remove one SNP from each marker pair with an r2 above the respective threshold. As we used a sliding window
spanning the full dataset instead of local regions on a chromosome, the retained datasets contained a maximum of 4363
(r2 > 0.99) and a minimum of 1095 (r2 > 0.5) SNPs. The magnitude and precision of g2 does not vary noticeably for our
dataset when pruning strongly linked SNPs.


