

1	
2	Quiet eye training improves surgical knot tying more than traditional technical
3	training. A randomized, controlled study
4	
5	Joe Causer PhD ¹ , Adrian Harvey MD, FRCS ² , Ryan Snelgrove MD ² , Gina
6	Arsenault ³ , and Joan N. Vickers PhD ³
7	
8	¹ Brain and Behaviour Laboratory, Liverpool John Moores University
9	² Faculty of Medicine, University of Calgary
10	³ Faculty of Kinesiology, University of Calgary
11	
12	RUNNING HEAD: Knot tying training
13	
14	Conflicts of interest and sources of funding
15	There are no conflicts of interest for any author. Funding was provided by the
16	Royal College of Physician and Surgeons, Canada, and the University of Calgary
17	Program for Undergraduate Research Experience.
18	
19	Please address correspondence to:
20	Dr. Joe Causer
21	Brain and Behaviour Laboratory
22	Faculty of Science,
23	Tom Reilly Building
24	Byrom Street
25	Liverpool
26	L3 3AF
27	Tel - +44 (0) 151 9046242
28	Email – <u>j.causer@ljmu.ac.uk</u>

1 Experts consistently exhibit more efficient and effective gaze behaviors, 2 comprised of fewer fixations of longer duration, compared to less expert and novice 3 groups (1, 2). The number of fixations is thought to reflect the information-processing 4 demands placed on the individual, whereas the fixation location reflects the important 5 cues used guiding action. Of particular interest to researchers is the final fixation 6 before the initiation of a critical phase of the movement, termed the quiet eve period 7 (QE) (3). The QE period appears to functionally represent the time needed to 8 organize the neural networks and visual parameters responsible for the precise 9 control of movements (4). The onset of the QE occurs before the critical movement. 10 and the offset when gaze deviates off the location. Both an earlier onset and longer 11 QE duration have been consistently reported to be associated with higher levels of 12 expertise and performance.

13 Examining gaze and movement-based indices enable us to capture the 14 perceptual and motor mechanisms that underlie efficient action. Gaze and hand 15 movement behavior have previously been examined during several surgical 16 procedures and skills. For example, in a computer-based laparoscopic surgery task, 17 which involved reaching for and touching a small target, expert surgeons reported 18 faster movement times, fewer errors, and longer final fixation on the target location, 19 compared to novices, who fixated the tool and target intermittently (5, 6). 20 Researchers have also examined QE and hand movement times of surgeons with 21 high and low levels of experience during identification and preservation of the 22 recurrent laryngeal nerve during a thyroid lobectomy on a cadaver model (7). Highly 23 experienced surgeons had a longer duration QE on the nerve prior to performing 24 blunt and sharp dissections, providing evidence of greater focus and concentration at 25 critical moments during the operation.

Researchers have also reported differences in QE and hand movement
behavior between expert and novice surgeons (8). Expert surgeons not only possess
superior knot tying performance and faster movement times, but have a longer QE

on the knot prior to the placement phase, compared to novices, who had a higher
 percentage of fixations on their hands (8).

3 QE training programs involving the use of video-based expert QE models, 4 video feedback of individual QE characteristics, have been shown to increase QE 5 duration, motor performance and efficiency in a number of tasks (9-14). In addition, 6 virtual laparoscopic trainees in a gaze training group reported higher performance 7 score, faster movement times and longer fixations on the target location, compared 8 to movement training and discovery learning groups (15).

9 The aim of the study was to examine whether a QE or technical (TT) training 10 program would be lead to increased knot tying performance in one-handed square 11 knots in first year surgical residents. Gaze and hand movement data were recorded 12 during pretest, retention and transfer conditions. It was hypothesized that the QE and 13 TT groups would increase their knot tying performance from pretest to retention and 14 transfer. It was predicted that the QE group would demonstrate a longer QE duration, 15 fewer fixations, and faster hand movement times compared to the TT group in the 16 retention and transfer tests compared to the pretest.

17 Methods

18 Participants

Twenty first year surgical residents (age: 26 ± 1.6 years) volunteered for the study. All participants had previously received a half-day of basic knot tying training using the Ethicon knot tying board and manual as part of their surgical skills module. Participants were randomly assigned to either a QE or TT group. All had normal, or corrected to normal vision. Ethics approval was obtained through the University of Calgary Conjoint Health Ethics Research Board.

25 Equipment

A SensoMotoric Instruments (SMI) ETG eye-tracking system was used to collect gaze and hand movement data. The SMI-ETG is a lightweight (76 g), glasses mounted binocular system that uses dark pupil tracking to measure point of gaze

1	with a spatial resolution of 0.1 degree and temporal resolution of 30 Hz (33.3ms per
2	frame), with a built-in high-definition scene camera. A Simulab Boss knot tying board
3	was used for the pretest and retention, with red markers indicating desired knot
4	placement location placed on the parallel tubing at a separation width of 2 cm (see
5	Figure 1a). An Ethicon knot tying cylinder was used for the transfer test, with a red
6	marker indicating desired knot placement location placed at the center of the hook
7	(see Figure 1b). Both boards were covered with surgical drapes and Ethicon 2-0
8	Perma-hand silk sutures were used throughout the testing sessions.
9	
10	Insert Figure 1 here
11	
12	Procedure
13	All participants completed a pretest and a training phase, followed by
14	retention and transfer conditions. In all conditions participants were required to tie
15	one-handed square knots with three throws. Before the testing session participants
16	were fitted with the SMI-ETG system and calibrated. The experimental procedure is
17	outlined in Table 1.
18	
19	Insert Table 1 here
20	
21	Data management
22	For each participant the second knot of each condition was coded and
23	analyzed, creating a total of 60 knots per resident. Each knot consisted of three
24	throws and three movement phases (cross, pass, placement). The data were coded
25	using the Quiet Eye Solutions software, which coupled (frame by frame) the
26	surgeon's fixations and hand movement phases. The dependent variables were: knot
27	tying performance (%), percentage QE duration (%), number of fixations, total
28	movement time (s), and movement phase time (s). Knot tying performance was

1 assessed by a blinded expert surgeon using the Tytherleigh instrument(16), which 2 allows a maximum score was 13 per knot, which was converted to a percentage 3 score. Total movement time was defined as the start of the first cross phase until the 4 end of the final placement phase. QE duration was converted to relative time based 5 on percentage of total movement time. The QE was defined as the final fixation on 6 the knot placement location within 1 degree of visual angle for a minimum of 100 ms 7 prior to each placement phase. Two independent coders carried out coding, with the 8 objectivity of the data being established using intra-observer (99.1%) and inter-9 observer (97.7%) agreement methods.

10 Statistical analysis

11 Knot tying performance, percentage QE duration, number of fixations and 12 total movement time were analyzed using separate 2 x 3 mixed design ANOVAs, 13 with group (QE, TT) as the between-subjects factor and condition (pretest, retention, 14 transfer) as the within-groups factor. Movement phase time was analyzed using a 2 x 15 3 x 3 mixed design ANOVA, with group (QE, TT) as the between-subjects factor and 16 condition (pretest, retention, transfer) and movement phase (cross, pass, placement) 17 as the within-groups factors. Effect sizes were calculated using partial eta squared 18 values (η_p^2) . Greenhouse-Geisser epsilon was used to control for violations of 19 sphericity and the alpha level for significance was set at 0.05 with Bonferroni 20 adjustment to control for Type 1 errors. 21 Results 22 Group and condition main effects for all ANOVAs are reported in Tables 2 23 and 3, respectively. 24 25 Insert Tables 2 and 3 here 26 27 Knot tying performance (%) 28 There was a significant group x condition interaction, $F_{2,36}$, = 11.70, p < 0.001,

1	η_{P}^{2} = 0.39 (see Figure 2). Both the QE and TT groups significantly increased their
2	knot tying performance from pretest to retention, demonstrating that both training
3	methods are effective in improving knot tying performance. However, whilst the QE
4	group maintained a higher knot tying performance in the transfer, the TT group
5	significantly decreased performance from retention to the transfer, although the
6	performance remained significantly higher than the pretest. These results show that
7	the QE training enabled participants to maintain a more effective knot tying
8	performance even in the more complex transfer condition.
9	
10	Insert Figure 2 here
11	
12	Quiet eye duration (%)
13	There was a significant group x condition interaction, $F_{2,36}$, = 15.73, p < 0.001,
14	η_{P}^{2} = 0.46 (see Figure 3). Participants in the QE group significantly increased their
15	percentage QE duration from pretest to retention and transfer, whereas the TT group
16	demonstrated no significant differences between conditions (see supplementary
17	videos). These data demonstrate that the gaze behavior of the technical training
18	group remained unchanged, whereas the QE group increased their QE duration in
19	line with the training, and importantly were able to maintain this behavior in the
20	complex transfer condition.
21	
22	Insert Figure 3 here
23	
24	Number of fixations
25	There was also a significant group x condition interaction, $F_{2,36}$, = 12.54, p <
26	0.001, η_{P}^{2} = 0.41. There were no significant differences for the TT group from pretest
27	to retention, however the number of fixations increased in the transfer compared to
28	pretest and retention conditions. The QE group demonstrated a greater number of

fixations in the pretest compared to retention and transfer. These data demonstrate that the QE training group managed to reduce the amount of fixations, which is indicative of a more efficient visual strategy, and maintain a lower number of fixations in the transfer test. Conversely, the TT group maintained a high number of fixations in the retention, and then increased their fixations in the transfer test. This suggests a more inefficient strategy, which is likely to be a result of an increase in attentional demand.

8 Total movement time (s)

9 There was no significant group x condition interaction, $F_{2,36}$, = 1.95, p = 0.157, 10 η_{P}^{2} = 0.10. No significant differences in total movement times were reported for either 11 group from pretest to retention. However, both groups total movement times 12 increased in the transfer test. It is likely that the more complex nature of the transfer 13 task led to the increase in movement time.

14 Movement phase time (s)

15 There was a significant main effect for movement phase, $F_{2,36}$, = 64.93, p < 16 0.001, $\eta_P^2 = 0.78$. Movement time was significantly faster in the cross phase 17 compared to the pass and placement phases. Movement time was also significantly 18 faster in the pass compared to the placement phase. As the placement phase is the 19 most important phase of the movement, critical for accuracy and tension of the knot, 20 longer movement time in the placement phase would be expected. There was a 21 significant condition x phase interaction, $F_{4,72}$, = 16.15, p < 0.001, η_P^2 = 0.47 (see 22 Figure 4). Movement time was significantly faster in the pass phase during retention 23 compared to pretest and transfer. Movement time was slower in the placement 24 phase during the transfer compared to pretest and retention phases. Due to the 25 spatial constraints of the transfer task it is unsurprising that longer placements times 26 are reported by both groups.

- 27
- 28

Insert Figure 4 here

1

2 Discussion

The aim of the current study was to examine whether a QE or TT training program would be lead to increased knot tying performance in one-handed square knots. It was hypothesized that after training both the QE and TT groups would increase their knot tying performance and record faster total movement and movement phase times. Additionally, the QE group was expected to demonstrate higher percentage QE duration post training, and compared to the TT group.

9 Both the TT and QE group significantly improved their knot tying performance 10 from pretest, retention and transfer as a result of the training. However the QE group 11 performed significantly better at the knot tying task compared to the TT group who 12 followed a traditional technical program as determined by independent blinded 13 review of the video tapes. Both total knot tying time and hand movement phases 14 were faster in the QE group compared to TT group. The QE group had a longer QE 15 duration, which was more precisely located on each placement location than the TT. 16 These data suggest that training new surgeons to orientate their QE and focus of 17 attention in a manner similar to expert surgeons not only significantly improves the 18 efficiency and effectiveness of tying knots, but potentially leads to more precise knot 19 placement and lower rates of error. During knot tying, incorrectly placed sutures may 20 result in a knot slippage, unintentional shear force or undue ischemia of tissue, which 21 can lead to knot failure and postoperative hemorrhaging (17, 18). QE training 22 resulted not only in an increase in the technical performance of the knots being tied, 23 but also enhanced focus of attention on anatomical locations critical to operative 24 success.

In line with previous research we found that longer QE durations were
associated with more successful performance (19, 20). It is thought that a longer QE
duration enables the surgeon more time to accurately organize the movement
parameters of the task, which allows a more effective action to be executed (4). It

also facilitates an external focus of attention that enables distractions and irrelevant
environmental stimuli to be ignored, allowing full attention to the task (21). A longer
duration QE also enhances cognitive "slowing down" which Moulton and colleagues
found to be characteristic of expert surgeons (7, 22). The expert surgeon cognitively
re-focuses and brings an increased level of attention to bear during critical times
during an operation. It is important to note that this 'slowing down' is a cognitive
process, and is not indicative of slower hand movements.

8 The QE group also reported fewer fixations than the TT group post-training. 9 When the eyes move from one fixation location to another, using rapid eye 10 movements called saccades, visual information is suppressed. Therefore, a larger 11 number of short duration fixations in visual search patterns will decrease the amount 12 of information that is processed. Fixating more areas is a characteristic of novice eye 13 movements. Usually, novices do not know where the relevant cues are in a task 14 environment and therefore use a large number of fixations to scan the whole 15 environment (1). This strategy reduces the amount of information they are accruing 16 from the critical areas of the task, leading to poorer action execution. In the current 17 study, the QE group used few fixations to the final placement location of the knot, 18 which is critical in surgery.

19 In the transfer test, which involved tying a knot in a more complex location, 20 the QE group demonstrated longer QE duration and fewer fixations compared to the 21 TT group. Researchers have demonstrated that QE duration increases with task 22 difficulty, as more complex actions usually require increased information processing 23 (23). Participants in the QE group maintained a longer QE in the transfer compared 24 to pretest, which enabled them to maintain performance in the more complex 25 condition. In comparison, the TT group was unable to maintain their performance 26 gains during transfer. With increased task requirements, requiring longer movement 27 programming times (24), the TT group employed a less efficient search pattern 28 involving more fixations on their hands, as well as on the sutures. This strategy

meant the TT group was unable to accurately execute the movement patterns trained
 during the study and used in the simpler retention test to maintain performance.

3 We also found significant group differences in hand movement times. Total 4 movement time was significantly faster for the QE compared to the TT group. 5 Training individuals to use longer QE durations has been reported to enable 6 individuals to organize the movement patterns and allow a more efficient, less 7 conscious movement (12, 14). We corroborate these results by showing that using a 8 QE focus not only improved the effectiveness of the movement (i.e. performance 9 outcome) but also the efficiency (i.e. movement time). We also found differences in 10 movement time among the individual phases (cross, pass, placement). In line with 11 previous research, the participants took longer in the placement, compared to pass, 12 and pass compared to cross phase (8). The TT group spent longer on the placement 13 phase post-training, which has been identified as the critical movement phase, which 14 may have enabled them to improve performance in the retention. Similarly, in the 15 transfer task, the QE group increased their movement time on the placement phase, 16 which may have provided a similar advantage, enabling them to maintain the high 17 performance scores, despite the more complex task. It might also be that knowing a 18 knot is positioned correctly increases confidence and leads to faster movements 19 times. Furthermore, movement time for all hand phases in the retention and transfer 20 test were also longer for the TT compared to the QE group. These data suggest that 21 the improvements in hand movement efficiency are not limited to certain phases, but 22 are evidence of a more global action strategy that results in faster movement 23 throughout the task.

This study has demonstrated the potential use of QE training to improve learning, retention and transfer of surgical skills. Future research should examine the long-term effectiveness of QE training, as well as transfer to the live surgical setting. QE training programs in other areas of medicine and health care could also be explored, especially with the prevalence of simulation training and the need for

1 medical trainees to acquire high levels of skill even as current work restrictions may

2 limit access to adequate volume of training (25).

3		In summary, we have demonstrated that QE training improved performance
4	at a hiç	pher rate and maintained performance effectiveness and movement efficiency
5	in a tra	nsfer task, compared to the TT group. To our knowledge, this is the first study
6	to iden	tify the effectiveness of QE training in surgical knot tying. The procedures
7	outline	d in the current study could be applied to other skills in surgery thereby
8	potenti	ally leading to a range of performance metrics and expeditions of learning of
9	simple	and/or complex surgical skills. These results can be used to integrate QE data
10	into fut	ure surgical skills training, and be used as a tool to create more effective
11	training	programs in the future.
12		References
14 15 16	1.	Mann DTY, Williams AM, Ward P, Janelle CM. Perceptual-cognitive expertise in sport: A Meta-Analysis. Journal of Sport & Exercise Psychology, 2007;29:457-78.
17 18	2.	Hikosaka O, Yamamoto S, Yasuda M, Kim HF. Why skill matters. TRENDS in Cognitive Sciences, 2013;17(9):434-41
19 20 21	3.	Vickers JN. Visual control while aiming at a far target. Journal of Experimental Psychology: Human Perception & Performance.
22 23 24 25	4.	Causer J, Janelle CM, Vickers JN, Williams AM. Perceptual training: What can be trained? In: Hodges NJ, Williams AM, eds. Skill Acquisition in Sport: Research, Theory and Practice. London: Routledge: 2012;306-24.
26 27 28 29 30	5.	Law B, Atkins MS, Kirkpatrick AE, Lomax AJ, Mackenzie CL. Eye gaze patterns differentiate novice and experts in a virtual laparoscopic surgery training environment. Eye tracking research & applications symposium on eye tracking research & applications NY: ACM Press; 2004:41-8.
31 32 33 34	6.	Wilson M, McGrath J, Vine SJ, Brewer J, Defriend D, Masters R. Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts. Surgical Endoscopy. 2010;24:2458-64.
35 36 37 38	7.	Harvey A, Vickers JN, Snelgrove R, Scott M, Morriso S. Expertise differences in performance and quiet eye duration during identification and dissection of the recurrent laryngeal nerve. The American Journal of Surgery. in press.
39 40 41	8.	Vickers JN, Harvey A, Snelgrove R, Stewart A, MacKenzie C, Arsenault G. Expertise differences in quiet eye duration during surgical knot tying. International Journal of Sport Psychology. in press.

1	9.	Harle SK, Vickers JN. Training quiet eye improves accuracy in the
2		basketball free throw. The Sport Psychologist. 2001;15:289-305.
3	10.	Moore LJ, Vine SJ, Cooke A, Ring C, Wilson MR. Quiet eye training
4		expedites motor learning and aids performance under heightened
5		anxiety: The roles of response programming and external attention.
6		Psychophysiology. 2012;49(7):1005-15.
7	11.	Vickers JN. Advances in coupling perception and action: the quiet eye
8		as a bidirectional link between gaze, attention, and action. Progress in
9		Brain Research. 2009;174:279-88.
10	12.	Adolphe RM, Vickers JN, LaPlante G. The effects of training visual
11		attention on gaze behaviour and accuracy: A pilot study. International
12		Journal of Sports Vision. 1997;4(1):28-33.
13	13.	Vine SJ, Moore LJ, Wilson M. Quiet eye training facilitates competitive
14		putting performance in elite golfers. Frontiers in Psychology. 2011;2:1-
15		9.
16	14.	Causer J, Holmes PS, Williams AM. Quiet eve training in a visuomotor
17		control task. Medicine & Science in Sports & Exercise.
18		2011:43(6):1042-9.
19	15.	Wilson MR. Vine SJ. Bright E. Masters RS. Defriend D. McGrath JS.
20		Gaze training enhances laparoscopic technical skill acquisition and
21		multi-tasking performance: a randomized, controlled study. Surgical
22		Endoscopy, 2011:25(12):3731-9.
23	16.	Tytherleigh MG. Bhatti TS. Watkins RM. Wilkins DC. The assessment
24	-	of surgical skills and a simple knot-tving exercise. Annals of the Roval
25		College of Surgeons of England, 2001:83:69-73.
26	17.	Sosa JA, Bowman HM, Tielsch JM, Powe NR, Gordon TA, Udelsman
27		R. The importance of surgeon experience for clinical and economic
28		outcomes from thyroidectomy, Annals of Surgery, 1998:228(3):320.
29	18.	Scott DJ. Goova MT. Tesfav ST. A cost-effective proficiency-based
30		knot-tying and suturing curriculum for residency programs. Journal of
31		Surgical Research, 2007:141(1):7-15.
32	19.	Causer J. Bennett SJ. Holmes PS. Janelle CM. Williams AM. Quiet eve
33		duration and aun motion in elite shotaun shooting. Medicine & Science
34		in Sports & Exercise 2010:42(8):1599-608
35	20	Vickers $JN_{\rm c}$ Location of fixation landing position of the ball and
36	20.	accuracy during the free throw International Journal of Sports Vision
37		1996:3(1):54-60
38	21	Vickers IN Perception Cognition and Decision Training: The Quiet
39		Eve in Action Champaign II · Human Kinetics: 2007
40	22	Moulton CA Regehr G Lingard L Merritt C MacRae H. Slowing down
41	<i></i> .	to stay out of trouble in the operating room: remaining attentive in
42		automaticity Academic Medicine 2010:85(10):1571-7
43	23	Williams AM Singer RN Frehlich SG Quiet eve duration expertise
44	20.	and task complexity in near and far aiming tasks Journal of Motor
45		Behavior 2002:34(2):197-207
46	24	Henry FM Use of simple reaction time in motor programming studies
47	<u> </u>	a reply to Klapp Wyatt and Lingo Journal of Motor Rehavior
48		1980·12:163-8.

- 1 Causer J, Barach P, Williams AM. Simulation and its role in capturing, assessing and sustaining expertise in medicine. Medical Education. in 25. 2 3 4 press.

1	Table Captions
2	Table 1. Experimental procedure for the quiet eye and technical training
3	groups.
4 5	Table 2. Group main effects from the ANOVAs for all dependent variables.
6	* significantly different to quiet eye training group
7	
8	Table 3. Condition main effects from the ANOVAs for all dependent variables.
9	* significantly different to pretest
10	† significantly different to retention
11	

1	Figure Captions
2	Figure 1. a) Simulab Boss knot tying board, used for the pretest and retention, with
3	markers indicating desired knot placement location at a separation; b) Ethicon knot
4	tying cylinder, used for the transfer test, with marker indicating desired knot
5	placement location placed at the center of the hook.
6 7	Figure 2. Knot tying performance (%; SE) for the quiet eye and technical training
8	groups in the pretest, retention and transfer conditions.
9	
10	Figure 3. Quiet eye duration (%; SE) for the quiet eye and technical training groups in
11	the pretest, retention and transfer conditions.
12 13	Figure 4. Movement phase time (s; SE) for the quiet eye and technical training
14	groups for each of the movement phases in the pretest, retention and transfer
15	conditions.