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ABSTRACT 30 

Ageing is characterised by progressive deterioration of physiological systems and the loss of 31 

skeletal muscle mass is one of the most recognisable, leading to muscle weakness and mobility 32 

impairments. This review highlights interactions between the immune system and skeletal 33 

muscle precursor cells (widely termed satellite cells or myoblasts) to influence satellite cell 34 

behaviour during muscle regeneration after injury, and outlines deficits associated with ageing. 35 

Resident neutrophils and macrophages in skeletal muscle become activated when muscle fibres 36 

are damaged via stimuli (e.g. contusions, strains, avulsions, hyperextensions, ruptures) and 37 

release high concentrations of cytokines, chemokines and growth factors into the 38 

microenvironment. These localised responses serve to attract additional immune cells which can 39 

reach in excess of 1x105 immune cell/mm3 of skeletal muscle in order to orchestrate the repair 40 

process. T-cells have a delayed response, reaching peak activation roughly 4 days after the initial 41 

damage. The cytokines and growth factors released by activated T-cells play a key role in muscle 42 

satellite cell proliferation and migration, although the precise mechanisms of these interactions 43 

remain unclear. T-cells in older people display limited ability to activate satellite cell proliferation 44 

and migration which is likely to contribute to insufficient muscle repair and, consequently, muscle 45 

wasting and weakness. If the factors released by T-cells to activate satellite cells can be identified, 46 

it may be possible to develop therapeutic agents to enhance muscle regeneration and reduce the 47 

impact of muscle wasting during ageing and disease. 48 

  49 
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Highlights: 50 

 Immune cells infiltrate damaged skeletal muscles to release cytokines, chemokines and 51 

growth factors into the localised area that alter the micro-environment to clear cellular 52 

debris and activate muscle satellite cells. 53 

 In young adults, the factors released by T-cells, in particular the regulatory T-cells, can 54 

extend the period of satellite cell proliferation to enhance muscle repair.  55 

 In old adults, the T-cells do not release appropriate factors into the micro-environment 56 

and this may contribute to inadequate muscle recovery and consequently, to age-related 57 

deficits in muscle size and function. 58 

 Identification of the factors released by young immune cells to regulate muscle 59 

regeneration could lead to the development of novel therapeutic agents to treat muscle 60 

wasting disorders and ageing.  61 

 62 
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1. INTRODUCTION 104 

In older age, skeletal muscle atrophies considerably (Maden-Wilkinson et al., 2014; Lexell et al., 105 

1988; Janssen et al., 2002; Lexell, 1995; Morley et al., 2001), which contributes to weakness and 106 

mobility impairments inherent to sarcopenia (Janssen, 2011; Cruz-Jentoft et al., 2010) and frailty 107 

(Fried et al., 2001). Loss of skeletal muscle mass and function with ageing are associated with 108 

altered immune, hormonal and metabolic factors directly impacting on muscle (Narici & Maffulli, 109 

2010) and resulting in motor unit remodelling (Piasecki, Ireland, Jones, et al., 2015; Piasecki, 110 

Ireland, Stashuk, et al., 2015). This review will first outline the role of the immune system in 111 

myogenesis that occurs after injury and then discuss how changes in immune cells may 112 

contribute to ageing-related muscle impairments. Identification of the signalling molecules 113 

exchanged between immune and satellite cells may lead to novel therapeutic strategies to 114 

preserve muscle with advancing old age and muscle wasting conditions.   115 

 116 

1.1 Myogenesis and satellite cell activation 117 

Skeletal muscle is the most abundant tissue type in healthy humans (Yin et al., 2013). It powers 118 

movements and contributes to metabolism by storing amino acids, glucose and fatty acids as well 119 

as oxidising substrates to replenish adenosine triphosphate stores (Leto & Saltiel, 2012). Muscles 120 

also release cytokines and growth factors into the extra-cellular compartments to act locally or 121 

systemically (Pedersen, 2011). The production of skeletal muscle cells occurs during embryonic 122 

myogenesis and thereafter myofibres themselves are incapable of proliferation (Bentzinger et 123 

al., 2012). Hence, the number of skeletal muscle fibres is largely determined before birth. 124 

Postnatal muscle growth arises by adapting and remodelling pre-existing fibres and through 125 

recruitment of resident, non-fused, self-renewing satellite cells (Tedesco et al., 2010). Satellite 126 

cells reside beneath the basal lamina of mature fibres in a quiescent state, they neither undergo 127 

cell division nor differentiation unless they are specifically activated to do so (Kuang et al., 2007). 128 

Damage to the muscle through injury or very intense prolonged unaccustomed exercise training 129 

are examples of principal activators of quiescent satellite cells. 130 

 131 

 132 
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1.2 Young myogenesis 133 

Increases in muscle mass (hypertrophy) and adapted metabolism after exercise training in adults 134 

improves athletic performance and health (Egan & Zierath, 2013). The training-induced 135 

hypertrophy can depend on satellite cell proliferation and differentiation (Joanisse et al., 2013; 136 

Yin et al., 2013). However, hypertrophy may not necessarily require activation of satellite cells, 137 

since a satellite cell deficient mouse model showed normal training-induced hypertrophy 138 

(McCarthy et al., 2011; D. J. Glass, 2003). Satellite cells are, however, centrally involved in muscle 139 

regeneration after damage (Lepper et al., 2011; Yin et al., 2013). Some minor muscle damage can 140 

be a feature of everyday living that goes largely unnoticed by the individual due to minimal 141 

muscle tenderness and no apparent effect on function. More painful and functionally impairing 142 

damage can occur after repeated intense or rapid muscular activations, especially following 143 

unaccustomed high-load eccentric contractions (lengthening under strain) performed across a 144 

large range of motion (Paulsen et al., 2012) or electrical stimulation protocols (Crameri et al., 145 

2007; Mackey et al., 2008; Nosaka et al., 2011). External stressors such as heavy impact causing 146 

contusion, traumatic puncture wounds or pathogen invasion can also damage otherwise healthy 147 

muscle, and in animal models, damage can be induced through injection of substances such as 148 

cardiotoxin (Ctx) (Sousa-Victor et al., 2014). Once activated, satellite cells migrate to the 149 

damaged site and re-enter into the cell cycle (Tedesco et al., 2010; Siegel et al., 2009) to generate 150 

the required concentration of myoblasts through several cycles of proliferation to regenerate 151 

damaged fibres. Although the majority of activated satellite cells differentiate into myotubes, a 152 

population of satellite cells return to a quiescent state (self-renewal) to maintain their numbers 153 

for the next incidence of muscle injury (Relaix & Zammit, 2012; Yin et al., 2013). The 154 

differentiated myotubes either fuse with pre-existing damaged myofibers to provide additional 155 

myonuclei during muscle regeneration, or fuse with each other forming de novo myofibers to 156 

replace the damaged myofibres during muscle regeneration (Adams, 2006; Siegel et al., 2011).  157 

 158 

Satellite cells do not function in an isolated environment, a number of non-myogenic cells also 159 

populate muscle and influence the regenerative actions of satellite cells (Cerletti et al., 2008). For 160 

example, mesenchymal interstitial cells (Farup et al., 2015; Uezumi et al., 2014) and infiltrating 161 
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immune cells secrete numerous cytokines and growth factors into the localised 162 

microenvironment that orchestrate muscle regenerative mechanisms by clearing cellular debris 163 

and facilitating repair (Tedesco et al., 2010). These cytokines are not necessarily released into the 164 

general circulation to act systemically (Steensberg et al., 2002). Thus, effective muscle repair and 165 

regeneration relies not only on muscle satellite cells (known as the intrinsic niche) but also on 166 

other distinct cell types and their locally secreted cytokines (termed the extrinsic niche).  167 

 168 

1.3 Aged Myogenesis 169 

Muscle from aged mice was estimated to contain around 65% fewer functioning satellite cells 170 

than muscle from young mice (Cosgrove et al., 2014) and the overall number of satellite cells was 171 

also lower in aged mouse muscle (Chakkalakal et al., 2012). However, this was not the main cause 172 

of sarcopenia, at least not in mice, where induced depletion of satellite cells in young adults had 173 

little impact on the rate of muscle ageing (Fry et al., 2015). It is interesting to note that healthy 174 

older people do maintain the ability to activate satellite cells after intense exercise (Verdijk et al., 175 

2009). However, if the activation of satellite cells cannot keep pace with damage, then muscle 176 

wasting or atrophy will inevitably occur. The loss of muscle mass with ageing has been linked to 177 

the reduced regenerative actions of older satellite cells and altered immune response to damage 178 

(Peake et al., 2010; Degens, 2010). There are reports of intrinsic deficiencies within satellite cells 179 

that reduce their activity. For instance, two-thirds of satellite cells in older mice showed reduced 180 

capacity for muscle regeneration due to elevated activity of p38α and p38β mitogen-activated 181 

kinase signalling which was not overcome by transplantation into a young recipient (Cosgrove et 182 

al., 2014). However, the debate continues as to whether or not satellite cell intrinsic deficits can 183 

be overcome by exposure to a ‘young’ microenvironment (reviewed elsewhere: (Brack & Munoz-184 

Canoves, 2015)). There is strong evidence implicating the aged microenvironment with reduced 185 

satellite cell responses (Chakkalakal et al., 2012; Barberi et al., 2013). Transplanted muscle from 186 

young into old mice fails to regenerate, but transplanted muscle from old into young regenerate 187 

(B. M. Carlson & Faulkner, 1989), but might have a delayed regenerative response (Smythe et al., 188 

2008). Moreover, ‘rejuvenating’ the microenvironment in older mice enhanced activation of 189 
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satellite cells through increased Notch signalling, as shown in heterochronic parabiosis models 190 

(Conboy et al., 2005; Morgan E. Carlson et al., 2008).  191 

 192 

Lower satellite cell function with ageing was linked to increased activity of the transforming 193 

growth factor beta (TGF-β) family of molecules within satellite cells that are negative regulators 194 

of growth and restrict the proliferative responses (M. E. Carlson et al., 2009; Sousa-Victor et al., 195 

2014; Yousef et al., 2015). Elevated fibroblast growth factor (FGF) signalling from the aged 196 

microenvironment was associated with depletion of the stem cell population and impaired 197 

regenerative capacity, but was countered in the aged satellite cells that had higher levels of 198 

Sprouty1 (Spry1) to inhibit FGF signalling (Chakkalakal et al., 2012). By altering satellite cell 199 

signalling through Notch, Wnt and receptor tyrosine kinases/extracellular signal-regulated kinase 200 

(RTK/ERK) it has been possible to overcome deficits in aged satellite cell function (Brack & Rando, 201 

2007; Morgan E. Carlson et al., 2008; Naito et al., 2012). Circulating soluble factors, such as 202 

hormones, or other molecules released locally into the microenvironment may influence the 203 

intracellular satellite cell signalling to regulate proliferative and differentiation responses. For 204 

example, elevating the circulating oxytocin had rejuvenating effects for satellite cells (Elabd et 205 

al., 2014); increasing circulating levels of growth differentiation factor 11 (GDF-11) also 206 

rejuvenated satellite cells (Sinha et al., 2014). However, alternative research investigating the 207 

effect of GDF-11 on myogenesis observed a significant inhibition of skeletal muscle regeneration 208 

(Brun & Rudnicki, 2015). Additionally, elevated levels of osteopontin in aged mice was associated 209 

with impaired satellite cell responses to damage and this was overcome by reducing osteopontin 210 

in vitro and in vivo (Paliwal et al., 2012). Thus, a key detail, which has not yet been fully 211 

understood, is how the satellite cells respond to the rapidly changing microenvironment 212 

occurring soon after muscle damage, which is heavily influenced by the infiltrating immune cells. 213 

 214 

2. INNATE IMMUNITY & MUSCLE REGENERATION 215 

Changes in immune cells with ageing have been well characterised and the observations of 216 

elevated systemic inflammation led to the term ‘inflamm-ageing’ (Franceschi et al., 2000). 217 

Human immunity is subdivided into two main areas, often described as innate and adaptive 218 
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immunity. Innate immunity describes the primary capacity of the immune system to respond to 219 

pathophysiological triggers such as injury or pathogens and is mediated mainly through the 220 

myeloid progenitor cells (e.g. neutrophils, macrophages, dendritic cells, natural killer cells, mast 221 

cells, eosinophils, basophils) (Plackett et al., 2004). During normal physiological conditions, 222 

immune cells circulate within the blood and the lymphatic system, with considerable 223 

accumulations in lymphoid organs and most tissues of the body. Peripheral tissues also contain 224 

a population of resident immune cells, primarily consisting of macrophages and dendritic cells. 225 

However, during pathophysiological conditions supplementary leukocytes rapidly permeate 226 

tissues. During muscle regeneration, there can be in excess of 1x105 immune cell/mm3 of skeletal 227 

muscle (Wehling et al., 2001). When activated, these immune cells secrete cytokines and growth 228 

factors which regulate the damaged muscle microenvironment (Merly et al., 1999; Warren et al., 229 

2004; Smith et al., 2008).  230 

 231 

2.1 Innate Immune response to acute damage and repair 232 

The regulation of infiltrating inflammatory cells is a dynamic process which varies depending on 233 

the extent of muscle damage and the time required to repair (Paulsen et al., 2012). Minor muscle 234 

damage, such as that which occurs after exercise, causes only a modest inflammatory response 235 

and may not cause substantial leukocyte cell infiltration, while more severe muscle damage 236 

occurring after very intense, unaccustomed exercise with high eccentric loads causes a 237 

considerably greater muscle tenderness, immune cell (e.g. neutrophil, macrophage and muscle 238 

T reg) infiltration (Fig. 1) of the damaged area and inflammatory responses consistent with 239 

rhabdomyolysis (reviewed in (Paulsen et al., 2012)).  240 

 241 

The innate immune response to damage involves infiltration of inflammatory cells, but studies in 242 

aged mice have revealed a delayed inflammatory response (Shavlakadze et al., 2010). In healthy 243 

muscle, neutrophils show a transient response, infiltrating the extracellular space around the 244 

damaged fibres within 2 hours before concentrations decline to negligible levels within 3 or 4 245 

days. The mechanisms of neutrophil infiltration remain unclear, but the resulting perpetuation 246 

of inflammatory damage is believed to be important for initiating the reparative process (Dumont 247 
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et al., 2008). Neutrophils release interleukin 1 (IL-1) and interleukin 8 (IL-8) which act as 248 

chemoattractants for macrophages, inducing the initial macrophage infiltration to the injury site 249 

(Fujishima et al., 1993; Cassatella, 1999). Resident macrophages within the endomysium and 250 

perimysium are also involved in phagocytosis and secrete enzymes, growth factors and 251 

cytokines/chemokines aiding the recruitment of additional immune cells (Wang et al., 2014).  252 

 253 

Macrophages go through various stages of activation. Classic activation of macrophages is 254 

denoted as the M1 phenotype, where the increase in numbers and expression of 255 

proinflammatory mediators, cytokines and chemokines are observed from 24 hrs and reach peak 256 

activation around 2 or 3 days after damage (Rodriguez-Prados et al., 2010; Saclier et al., 2013) 257 

(Villalta et al., 2009). The M1 phenotype macrophages originating from the blood as monocytes 258 

are distinguishable by their expression of the glycoprotein lymphocyte antigen 6C (Ly6C) as well 259 

as receptors for the CX3C chemokine receptor 1 (CX3CR1) and C-C chemokine receptor type 2 260 

(CCR2) (Geissmann et al., 2003). The chemokine CCR2 and its ligand CCL2 (or MCP-1) which are 261 

mainly produced by monocytes/macrophages coordinate the recruitment of macrophage Ly6C+ 262 

to the site of injury supporting the proinflammatory response. Ly6C+ monocytes differentiate into 263 

M1 macrophages in tissue and produce proinflammatory cytokines (Jetten et al., 2014). Ly6C- 264 

cells are recruited to the area by CX3CR1 and CCR2 chemokine receptor signalling and 265 

differentiate into M2 macrophages to perform anti-inflammatory and pro-myogenic functions 266 

that contribute to the later stages of regeneration (Forbes & Rosenthal, 2014). The M2 267 

phenotype is known as alternative activation and peaks between 4 and 6 days (see Fig. 1) during 268 

the reparative process, where expression of anti-inflammatory mediators, cytokines and 269 

chemokines supports the regeneration through satellite cell activation (J. G. Tidball, 2005; Arnold 270 

et al., 2007). In cases of severe muscle damage causing fibre necrosis, macrophages can be found 271 

infiltrating the intracellular areas of fibres several days post-injury, and elevated macrophage 272 

concentrations are evident in muscle tissue up to 3 weeks later (Paulsen et al., 2010).  273 

 274 

Fig. 1: Timeline of inflammatory responses and immune cells during regeneration.  275 

 276 
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CCR2-/- mice show impaired monocyte recruitment to the site of injury, while neutrophil and 277 

other T-cells remain unaffected (Abbadie et al., 2003). The CCR2-/- mice also show impaired 278 

muscle regeneration, arrested angiogenesis along with increased fibrosis and excess adipocyte 279 

accumulation at the injury site (Martinez et al., 2010). Bone marrow transplants from wild-type 280 

mice into CCR2-/- mice recovered the regenerative capacity of skeletal muscle of the CCR2-/- mice. 281 

These results show that CCR2, released by proliferating myocytes and resident immune cells, 282 

recruits bone marrow derived monocytes (Sun et al., 2009). However, the same results are not 283 

observed in studies involving CCL2-/- mice. The CCL2-/- mice have only a mild deficiency in 284 

regeneration, which may indicate that alternative chemokine (C-C motif) ligands can bind with 285 

the CCR2 receptor and support the recruitment of monocytes and ultimately improve 286 

regenerative capacity (Lu, Huang, Ransohoff, et al., 2011).  287 

 288 

2.2 Regulation of skeletal muscle regeneration via innate immune cell signalling 289 

In response to muscle injury, the innate immune system is activated, to enhance repair damaged 290 

tissue by secreting several cytokines (summarised in Fig. 2) (Madaro & Bouche, 2014). The 291 

cytokine interleukin 6 (IL-6) is involved in the initial infiltration of monocytes and macrophages 292 

during the inflammatory response shortly after muscle damage. Studies involving IL-6-/- mice 293 

revealed a significant decrease in the early infiltration of monocytes and macrophages to the 294 

injury site, resulting in diminished myofibre mass and more fibrosis of the muscle (Zhang et al., 295 

2013). In the wild-type mice, much of the IL-6 produced soon after injury comes from the early 296 

monocyte and macrophage infiltration (Zhang et al., 2013). IL-6 also stimulates macrophage 297 

expression of another important molecule, granulocyte colony-stimulating factor (G-CSF), which 298 

is involved in normal myoblast proliferation and myofibre differentiation throughout the muscle 299 

regeneration process (Zhang et al., 2013; Wright et al., 2015). IL-6-/- mice show slower rates of 300 

hypertrophic muscle growth than wild-type animals (Serrano et al., 2008). This study also found 301 

that IL-6-/- animals have considerably lower levels of myogenin expression, but MyoD expression 302 

was unaffected, which helps to explain why myofibre differentiation was lower in IL-6-/- animals 303 

compared with wild-type.  304 

 305 
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Supplementary to IL-6 a rapid expression of tumour necrosis factor alpha (TNFα) after injury 306 

serves to intensify inflammation in the early stages following muscle damage and is linked to the 307 

innate immune response (Warren et al., 2002). TNFα is released by the resident neutrophils, 308 

along with interferon gamma (IFNγ) and Interleukin-1 beta (IL-1β), which can promote monocyte 309 

differentiation to M1 phenotype macrophages (Arango Duque & Descoteaux, 2014). 310 

Interestingly, as neutrophils and TNFα concentrations peak after 2 days post-injury, the quick 311 

tapering of neutrophils (3-4 days) is not paralleled by reductions in TNFα levels, which remain 312 

elevated for approximately 14 days after injury (Novak et al., 2014). This indicates that TNFα is 313 

not only involved with the early inflammatory process, but potentially has functions throughout 314 

muscle regeneration. Together, IL-6 and TNFα can enhance the proliferation of myoblasts, 315 

function as chemo-attractants aimed at myoblasts and immune cells, hinder the fusion of 316 

myocytes and affect development of stimulated satellite cells to the early phases of 317 

differentiation. 318 

 319 

As mentioned earlier macrophages undergo various phases of activation. Specific cytokines such 320 

as the ones described (i.e. CCL2, IL- 6, and TNFα) are observed to be critically linked with 321 

classically activated M1 macrophage infiltration to the site of muscle damage through the initial 322 

inflammatory response. However, the differentiation of M2 phenotype macrophages is more 323 

complex than that of M1 (Mantovani et al., 2004). The Sub-phenotype M2a macrophages emerge 324 

from the exposure to cytokines secreted by adaptive immune responses, including interleukin 4 325 

(IL-4) and interleukin 13 (IL-13), which stimulate the complex phases of tissue restoration and 326 

injury healing. The arrival of M2b macrophage are believed to begin with the provocation of Toll-327 

like receptor immune complexes, leading to the release of anti-inflammatory chemokines such 328 

as IL-10 and the inflammatory cytokines TNFα and IFNγ (J. G. Tidball et al., 2014). TNFα can 329 

activate NF-κB within macrophages, which then induce the production and upregulation of 330 

additional proinflammatory mediators, including TNFα, which are then subsequently secreted by 331 

the macrophages into the microenvironment of the regenerating muscle.  Research using TNFα-332 

/- mouse models showed a reduction in myogenic differentiation when compared to wild-type 333 

mice, this suggests that TNFα signalling within the immuno-muscular microenvironment 334 
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performs a regulatory role in muscle regeneration. (Chen et al., 2005). Alternatively, in vitro 335 

models using C2C12 murine myoblasts indicated that elevated TNFα hindered the myoblast 336 

capability to exit the cell cycle, indicating that TNFα prolonged myoblast proliferation while 337 

inhibiting myogenic differentiation.  338 

 339 

TNFα can also activate NF-κB within myoblasts, resulting in myoblast proliferation through the 340 

up-regulation of cyclin D1 while suppressing differentiation, as well as inhibiting MyoD 341 

expression, further suppressing differentiation (Langen et al., 2004). Along with TNFα increasing 342 

proliferation and inhibiting differentiation through the NF-κB signalling pathway, NF-κB 343 

activation in myoblasts promotes the activation of p38 kinase. Animal studies have demonstrated 344 

that suppressing p38 leads to reductions in myotube formation along with lower levels of 345 

myogenin (Liu et al., 2012). When NF-κB signalling is activated within myoblasts via stimulation 346 

from TNFα secreted within the immuno-muscular microenvironment, an increase of IL-6 is also 347 

observed, delivering a supplementary route to enhancing the effects that NF-κB has on 348 

proliferation and increasing its suppression of differentiation. In vitro cell culture experiments 349 

where mouse myoblasts were treated with IL-6 displayed increases in myoblast proliferation, but 350 

not cell fusion (Pelosi et al., 2014). Likewise, In vitro cell culture experiments have shown that 351 

TNFα increase the migration capacity of myoblasts, demonstrating its role as a chemoattractant 352 

(Torrente et al., 2003). Providing further evidence that TNFα production by neutrophils and M1 353 

phenotype macrophages following muscle damage promotes muscle regeneration via the 354 

attraction of satellite cells to the site of damage. Fig.2 shows the interaction of TNFα and the NF-355 

κB signalling pathway and its influence on skeletal muscle regeneration.  356 

 357 

The release of IL-10 by M2b macrophages also supports the recruitment of M2c macrophages, 358 

which release cytokines that are essential for the cessation of M1 macrophage infiltration and 359 

activity (J. G. Tidball et al., 2014). The IL-10 released by both M2b and M2c macrophages 360 

stimulates the proliferation of myoblasts needed for muscle growth and regeneration (Deng et 361 

al., 2012). Sub-phenotypes of M2b macrophages are observed throughout the repair process 362 

since their production of IL-10 is needed to promote anti-inflammatory actions during muscle 363 
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regeneration (Bosurgi et al., 2012). IL-10-/- mice show impaired transition of macrophages from 364 

the M1 to M2 phenotypes, resulting in a corresponding impairment to muscle regeneration. It is 365 

interesting to note that IL-10-/- mice  are also used as an animal model of early-onset frailty with 366 

poor muscle mass and function in older age (Walston et al., 2008). Furthermore, mouse myoblast 367 

cell cultures supplemented with IL-10 and M2 macrophages resulted in enhanced myoblast 368 

proliferation (Deng et al., 2012). Therefore, IL-10 can mediate the transition of M1 to M2 369 

macrophages after muscle damage occurs and encourages the proliferation of myoblasts and 370 

maturation of myofibers.  371 

 372 

As myoblasts switch from proliferation to differentiation, a shift from M1 macrophages and 373 

proinflammatory cytokines to M2 macrophages and anti-inflammatory cytokines occurs 374 

concurrently. This cytokine transference diminishes the proinflammatory response and supports 375 

the differentiation of myofibres (Deng et al., 2012), thereby positively influencing the 376 

regenerative process (J. G. Tidball, 2005; Arnold et al., 2007). This is in part linked to insulin-like 377 

growth factor I (IGF-I), a protein known for its growth-promoting properties and anabolic-378 

inducing effects through the up-regulation of myogenic regulatory factors (MRFs) (Chakravarthy 379 

et al., 2000; Mourkioti & Rosenthal, 2005; Xu & Wu, 2000). Importantly, IGF-I is also secreted by 380 

M2 macrophages during muscle regeneration (Tonkin et al., 2015; James G. Tidball & Welc, 2015). 381 

When observing the infiltration of monocytes and macrophages into the muscle injury site of 382 

CCR2-/- mice a considerable reduction of infiltrating cells is observed when compared to the 383 

controls. Interestingly, a reduction of circulating IGF-1 is also observed in conjunction with the 384 

reduced number of infiltrating immune cells. (Lu, Huang, Saederup, et al., 2011). This fascinating 385 

discovery indicates that macrophages provide growth factors that aid in the repair of muscle 386 

tissue damage by encouraging IGF-I stimulated satellite cell proliferation.  387 

 388 

Overall, the regeneration of healthy young muscle occurs by rapid recruitment of immune cells 389 

to the damaged site in order to orchestrate the regenerative process by removing necrotic 390 

cellular debris, coordinating pro/anti-inflammatory events and activating satellite cells through 391 

strictly regulated signalling and chemo-attractant molecules (i.e. cytokines, chemokines). 392 
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Although damaged muscle fibres secrete a number of cytokines, chemokines and growth factors, 393 

it is the resident and infiltrating immune cells that are the main producers of these regenerating 394 

mediators. Consequently, any alterations to the numbers or types of cytokines, chemokines, or 395 

growth factors as a result of age related immune dysfunction has a considerable potential to 396 

disrupt the ability of satellite cells in elderly muscle to become activated, migrate to the site of 397 

injury, proliferate in adequate quantities and/or differentiate appropriately, resulting in an age 398 

linked decline of muscle size and function. Investigations regarding age associated changes to 399 

innate immune cell signalling molecules have discovered substantial difference when compared 400 

to young counterparts. Specifically, an increase in proinflammatory cytokines (i.e. IL-6, TNFα, IL-401 

1β) is observed, leading to the chronic inflammatory state often observed in the elderly 402 

(Bruunsgaard et al., 2003; Ershler & Keller, 2000; O'Mahony et al., 1998). Increases in 403 

proinflammatory cytokines have been identified in the advancement of many geriatric disorders 404 

(Franceschi & Campisi, 2014). Thus, it can be appreciated that inflamm-ageing is also having a 405 

detrimental effect on the innate immune cells ability to properly coordinate the precisely 406 

programed stages of muscle regeneration, due to their inability to appropriately regulate the 407 

signalling molecules circulating within the immuno-muscular microenvironment during skeletal 408 

muscle regeneration. 409 

 410 

Fig. 2: Innate immune signalling pathways in skeletal muscle regeneration.   411 

 412 

3. ADAPTIVE IMMUNITY & MUSCLE REGENERATION  413 

Adaptive immunity is observed as a secondary onset response to a pathophysiological incident, 414 

which is primarily mediated through lymphoid stem cells such as the T-cells and B-cells (Kim et 415 

al., 2007). There has been a remarkable increase in the number of descriptive studies detailing 416 

the interactions between innate immune responses and muscle regeneration. However, 417 

understanding of the role of the adaptive immune system in muscle regeneration is limited. Just 418 

as macrophages and cells involved with innate immunity are detected during acute muscle injury, 419 

adaptive immune cells such as T-cells are also present during the regeneration process (Cheng et 420 

al., 2008). 421 
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 422 

 423 

3.1 Adaptive immune response to muscle damage 424 

T-cell infiltration to the site of injury is apparent approximately 3 days after injury and remains 425 

elevated for at least 10 days (Cheng et al., 2008). The satellite cells begin to migrate in damaged 426 

muscle in the initial 24 hours and begin to proliferate rapidly thereafter. These initial activities 427 

are likely regulated via cytokines secreted by innate immune cells (e.g. macrophages). However, 428 

adaptive immune responses to damaged muscle via the delayed release of cytokines by T-cells 429 

will promote continued satellite cell proliferation. The sustained T-cell presence throughout the 430 

regenerative process suggests that T-cells are fundamentally involved with skeletal muscle repair, 431 

but the mechanisms of these interactions are not well understood.  432 

 433 

Experiments conducted with T-cell deficient mice resulted in a significant reduction in the early 434 

growth and development of muscle (Morrison et al., 2005). Cell culture investigations observing 435 

the impact of activated murine splenic T-cell cytokine secretions (secretome) on satellite cell 436 

function presented a ~24% increase in the proliferation of satellite cells isolated from young (3 437 

months old) mouse muscle, compared to non-secretome treated satellite cell cultures (Dumke & 438 

Lees, 2011). Conversely, there was no significant effect on the proliferation of aged (32 months 439 

old) mouse muscle satellite cells when exposed to the same T-cell secretome. Furthermore, T-440 

cells signalling (i.e. chemokines) also increased the rate of migration of young satellite cells but 441 

not old. However, T-cell secretome significantly reduced the ability of aged satellite cells to 442 

differentiate when compared to young satellite cells (Dumke & Lees, 2011). Additionally, recent 443 

research employing a mouse model observed that adding the secretome from human T-cells onto 444 

a punch-biopsy muscle wound accelerated healing (Mildner et al., 2013). 445 

These findings reveal T-cell regulation of muscle repair, as well as the possibility that ageing may 446 

diminish T-cell regulated satellite cell function. Further research has explored the impact of T-cell 447 

secretome from activated and non-activated T-cells isolated from young (20-25 years old) human 448 

blood on immortalized murine satellite cells. The young activated-T-cell secretome enhanced 449 

proliferation of the satellite cells and reduced differentiation (Al-Shanti et al., 2014). 450 
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Demonstrating that regenerating muscle is influenced by, and responds to, a typical ‘young’ 451 

adaptive immune response. Follow-on work showed that the secretome from young (18-25 years 452 

old) activated T-cells enhances both  proliferation and migration in immortalized murine satellite 453 

cell, however, the secretome from old (78-85 years old) activated T-cells induced premature 454 

differentiation similar to control conditions, with no effects on proliferation or migration of the 455 

satellite cells (Al-Dabbagh et al., 2015). This outcome implies that proteins secreted by the 456 

adaptive immune cells in young people enhance satellite cell proliferation and migration, 457 

whereas secreted proteins by the adaptive immune cells of old people attenuates satellite cell 458 

proliferation and migration by prematurely stimulating differentiation. These studies indicate 459 

that impairments in the ability of satellite cells in elderly people to appropriately proliferate and 460 

migrate to the site of muscle injury are related to age-associated T-cell deficiencies, promoting 461 

age-related reductions in skeletal muscle size and function.  462 

 463 

Various studies have established that T-cells secrete growth factors and cytokines, some of which 464 

can influence satellite cell function (e.g. FGF2, IFNγ, TGFβ, TNFα, and IL4) (Blotnick et al., 1994; 465 

De Rosa et al., 2004; Levings et al., 2002). The challenge for future studies will be to determine 466 

how advanced ageing alters the specific types and concentrations of proteins secreted by old T-467 

cells when compared to young T-cells. This will identify the up- and/or down- regulated immune 468 

factors responsible for altering satellite cell function during muscular regeneration in elderly 469 

people. Conceivably, these discoveries could lead to the manipulation of immune factors in the 470 

immuno-muscular microenvironment of elderly people, possibly replicating a young immuno-471 

muscular microenvironment and overcoming the age associated defects in aged satellite cell 472 

function. 473 

 474 

3.2 Regulation of skeletal muscle regeneration via Regulatory T-cells  475 

Much of the early research beginning to expose the role of adaptive immunity on muscle 476 

regeneration has focused on investigating all T-cells as a single component of immunity 477 

interacting with satellite cells (Fig. 3). However, there are several different sub-phenotypes of T-478 

cells and distinguishing between them during regeneration may be crucial for identifying which 479 



 18 

T-cell sub- phenotypes are up and/or down regulating cytokines and growth factors that 480 

influence satellite cell function. Attention has been drawn to a specific population of immune 481 

response regulatory T-cells (Treg), denoted as the CD4+Foxp3+ sub-phenotype. Not only are these 482 

Treg cells involved with immune response regulation (Josefowicz et al., 2012), they have also 483 

been detected at concentrations of 1.05 ± 0.38 × 104 cells/g of muscle 28 days after injury. 484 

However, alternate T-cell sub-phenotype populations decrease to pre-injury levels of 0.13 ± 0.06 485 

× 104 cells/g of muscle by the same time point of the repair process (Dalia Burzyn et al., 2013). 486 

This finding indicates  that Treg cells may be a vital immune cell type influencing muscle 487 

regeneration.  488 

 489 

Using mouse models with muscular injury induced via Ctx, it was shown that the Treg cell 490 

concentrations increased within the injured muscle as the innate immune cells shifted from a 491 

pro- inflammatory to anti-inflammatory phenotype (i.e. M1 to M2) (Dalia Burzyn et al., 2013). It 492 

was also discovered that Treg cells found specifically in muscle (mTreg) produce distinctive 493 

proteins from their counterparts found in other tissues. These proteins include the anti-494 

inflammatory cytokine IL-10 and the growth factors amphiregulin and platelet-derived growth 495 

factor (PDGF), all of which have been shown to influence typical muscle regeneration (Dalia 496 

Burzyn et al., 2013; Huey et al., 2008; Yablonkareuveni et al., 1990). Furthermore, experiments 497 

where Treg cells were prevented from entering the Ctx injured mouse muscle resulted in innate 498 

immune cells failing to switch from pro-inflammatory M1 phenotype to the anti-inflammatory 499 

M2 phenotype. Treg ablation from damaged muscle also caused and abnormal inflamed 500 

morphology of the regenerating muscle fibres with fibrosis (Castiglioni et al., 2015). Treg-501 

stimulated satellite cells showed sustained proliferation and delayed differentiation (Castiglioni 502 

et al., 2015).  503 

 504 

Although evidence has been presented outlining the role Treg cells perform during muscle 505 

regeneration, further research is required to fully understand how Treg cells are recruited and 506 

expanded within damaged muscle.  It is also interesting to consider that Treg cells are able to 507 

influence muscle repair via interaction with innate immune cells (i.e. macrophages) as well as 508 
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activating satellite cells (D. Burzyn et al., 2013). These observations may help to serve as a 509 

foundation for future studies looking at the impact ageing has on Treg cells and whether  ageing 510 

causes a reduction or increase in the number of Treg cells infiltrating the site of muscle damage. 511 

These studies may also help to determine if ageing impacts Treg cells’ ability to produce the 512 

appropriate types and concentrations of cytokines and growth factors needed for normal muscle 513 

repair and regeneration.  514 

 515 

4. CONCLUSIONS 516 

Immune cell infiltration into the site of muscle damage and subsequent release of signalling 517 

molecules (i.e. cytokines and growth factors) into the microenvironment regulate muscle repair 518 

and regeneration through direct interaction with satellite cells (see Fig. 3). Immune factors 519 

released within an aged immuno-muscular microenvironment differ from those of young. 520 

Investigating specific populations and sub-phenotypes of both innate and adaptive immune cells, 521 

in both young and elderly people, will provide insight into the mechanisms of age-associated 522 

muscle wasting. Developing novel therapies to treat sarcopenia by manipulating the aged 523 

immuno-muscular microenvironment during regeneration may enhanced muscle size and 524 

restore muscle function in the elderly. Current strategies to promote muscle regeneration and 525 

maintenance in elderly people are primarily focused on nutrition and physical activity (English & 526 

Paddon-Jones, 2010; Moore, 2014). These approaches may alleviate the progression and 527 

trajectory of sarcopenia, but only to a relatively minor degree. These therapies are only able to 528 

delay the inevitable loss of skeletal muscle mass, function and regenerative capacity associated 529 

with progressive ageing. A number of pharmacological strategies to tackle muscle wasting have 530 

been proposed, although no treatments are currently in clinical use that block or reverse the loss 531 

of muscle in the elderly (D. Glass & Roubenoff, 2010). Therefore, developing a novel approach to 532 

prevent sarcopenia is essential and elucidating the role of the immune system in muscle 533 

regeneration will help to identify regulatory processes that are candidates for intervention. 534 

  535 
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 1010 
Fig. 1. Timeline of inflammatory responses and immune cell during muscle 1011 
The immune system responds to muscle damage by recruiting a precise sequence of pro and anti-1012 
inflammatory immune cells to the site of injury. Immune cells are observed from the initial pro-1013 
inflammatory phase required for removal of cellular debris through to the final repair of the damaged 1014 
muscle fibres. Neutrophils rapidly infiltrate the extracellular space around the damaged fibres within 2 1015 
hours and peak in number between 6 and 24 hours followed by rapid decline of neutrophils to negligible 1016 
levels within 72 to 96 hours. This initial infiltration of neutrophils further contributes to the inflammatory 1017 
damage to the injured muscle fibres. Subsequently, M1 macrophage concentrations rapidly being to 1018 
increase at the site of injury and initiate the pro-inflammatory functions of muscle repair through 1019 
secretion of several cytokines and mediators. The number of M1 macrophages will continue to increase 1020 
until peak concentrations at 72 to 96 hours after injury and then begin to decline sharply. This is followed 1021 
by the increase in numbers of anti-inflammatory and pro-myogenic M2 macrophages, which reach peak 1022 
concentrations in the regenerating muscle at roughly 120 to 144 hours post injury, remaining significantly 1023 
elevated for several days following. Finally activated T-cells are recruited to the regenerating muscle 1024 
damage site, with concentrations beginning to peak as M2 macrophage number being to decline. 1025 
Populations of T cells, specify mTreg remain significantly elevated for 30 following the initial injury causing 1026 
muscle damage. (Modified from Tidball & Villalta, 2010; Forbes & Rosenthal, 2014). 1027 
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Fig. 2. Innate immune signalling pathways in skeletal muscle regeneration  1040 
The activation of NF-κB in either muscle cells or macrophages can affect muscle cell proliferation and 1041 
differentiation. Cytokines (IL1β, TNFα and IFNγ) can increase NF-κB activation in both muscle and/or 1042 
macrophages. The cytokines contribute to further activation of NF-κB in macrophages and muscle cells or 1043 
they can act on the muscle cells themselves to affect their proliferation or differentiation. TNFα can 1044 
activate NF-κB within macrophages, which then induces the production of additional proinflammatory 1045 
mediators. NF-κB activation can promote proliferation of muscle cells through the up regulation of 1046 
transcripts needed for cell cycle progression (cyclin D1), while suppressing differentiation by decreasing 1047 
the expression or destabilizing transcripts needed for muscle to experience early and terminal 1048 
differentiation (MyoD and myogenin). Along with TNFα promoting proliferation and inhibiting 1049 
differentiation through the NF-κB signalling pathway, it can also promote later stages of differentiation 1050 
through the activation of p38 kinase. Nuclear factor-kappa B (NF- κB), interferon gamma (IFNγ), 1051 
Interleukin-1 beta (IL-1β), Tumour necrosis factor (TNFα),   (Modified from Tidball & Villalta, 2010, Pillon 1052 
et al., 2013; Forbes & Rosenthal, 2014). 1053 
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Fig. 3. Summary of general interactions between immune and muscle cells following acute muscle 1062 
injury.  Following muscle damage quiescent satellite cells become activated and begin to migrate to the 1063 
site of injury. The satellite cells re-enter the cell cycle and begin to proliferate until a proliferative 1064 
threshold is met. A required quantity of the proliferating satellite cells will self-renew to replenish the 1065 
pool of quiescent cells while the remaining proliferating cells will continue to differentiate to repair the 1066 
damaged muscle fibres. Importantly, the phases of satellite cell activation, migration, proliferation and 1067 
differentiation are regulated by immune cells. The immune system responds to muscle damage with a 1068 
complex sequence of reactions, which ultimately lead to inflammation followed by muscle regeneration. 1069 
The initial infiltration of transient neutrophils contain and localize the damage in the muscle and clean up 1070 
cellular debris. M1 macrophages secrete cytokines that induce satellite cell activation and proliferation. 1071 
M2 macrophages that then promote muscle repair, differentiation and recruit T-cells to the injured muscle 1072 
site. T-cells such as mTreg cells secreting numerous growth factors (e.g. IGF-I, amphiregulin) and 1073 
cytokines, which may contribute to facilitating muscle regeneration. Insulin-like growth factor I (IGF-I), 1074 
Interferon gamma (IFNγ), Interleukin-1 beta (IL-1β), Tumour necrosis factor (TNFα), fibroblast growth 1075 
factor (FGF-2), muscle regulatory factors 4 (MRF4), Interleukin-4 (IL-4), Interleukin-10 (IL-10)   (Modified 1076 
from Siegel, A. et al, 2009; Tidball & Villalta, 2010, Pillon et al., 2013; Forbes & Rosenthal, 2014).  1077 


