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Abstract

At the tissue level, cells form a continuous sheet with no intercellular spaces.

Dynamic behavior of these sheets is essential for tissue repair, organ formation in an

embryo, and cancer metastasis. This dissertation explores mechanochemical models

based on first principles to understand collective cell motility within epithelial layers.

Specifically two situations are considered – morphogenesis in a Drosophila egg cham-

ber, and dynamics of confluent monolayers on confined and unconfined geometries.

During tissue elongation from stage 9 to stage 10 in Drosophila oogenesis, the

egg chamber increases in length by about 1.7 fold. During these stages, spontaneous

oscillations in the contraction of cell basal surfaces develop in a subset of follicle cells.

This patterned activity is required for elongation of the egg chamber. However, the

mechanisms generating these spatiotemporal patterns have been unclear. Here, we

use a combination of quantitative modeling and experimental perturbation to show

that mechanochemical interactions are sufficient to generate oscillations of myosin

contractile activity in the observed spatiotemporal pattern. We propose that follicle

cells in the epithelial layer contract against pressure in the expanding egg chamber.
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ABSTRACT

As tension in the epithelial layer increases, Rho-kinase signaling activates myosin

assembly and contraction. The activation process is cooperative, leading to a limit

cycle in the myosin dynamics. Our model produces asynchronous oscillations in

follicle cell area and myosin content, consistent with experimental observations. In

addition, we test the prediction that removal of the basal lamina will increase the

average oscillation period. All together, the model demonstrates that in principle,

mechanochemical interactions are sufficient to drive patterning and morphogenesis,

independent of patterned gene expression.

To model confluent monolayers on confined or unconfined geometries, we use

a vertex model, where each cell is modeled as a polygon and motion of its vertices is

governed by forces arising from cell-cell friction, cell substrate friction, cell elasticity,

pressure, surface tension, and intrinsic contractile forces due to molecular motors.

Since contractility is an active process, we have a biochemical signaling network,

which is a negative feedback loop, regulating the magnitude of contractile force based

on cell perimeter change. Collective cell motility modeled this way, has the same

density dependent average velocity and myosin levels as in experiments. Moreover,

on ring substrates, cells show counter rotation at the inner and outer boundary at

short time scales (a few hours) and vortex formation as seen in experiments. Methods

to incorporate an active protrusive force, based on Rac signaling pathway and cell

death and cell division are underway. All in all, this model is a promising method to

understand collective cell motility in a variety of conditions.
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Chapter 1

Introduction

Migration of cells (cell motility) is a phenomenon crucial to several fundamental

biological processes such as wound healing,1 where cells at the edge of the wound move to

seal it; cancer metastasis,3 where cells move from one tumor site to form another tumor;

and embryogenesis,2 where cells move together in an organized manner to sculpt an organ.

Cell motility can be triggered and directed either by chemical cues such as gradients of

chemokines or growth factors, or physical cues such as geometric confinement, boundaries

or pressure due to growth. While single cell motility is relatively well understood,34 how

that translates to a group of cells (collective cell motility) is not fully understood yet.5

1.1 Mechanics of single cell motility

Single cell migration has long been studied in eukaryotic cells moving on substrates

in vitro which mimic the extra cellular matrix (ECM) in the body. The traditional view

of single cell motility in two dimensions has three major steps. After receiving a (chemical

1
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Contraction Traction

ProtrusionDetachment

Figure 1.1: Illustration of single cell migration on a substrate. The three major
components: protrusion at the cell front, disassembly at the back and translocation due to
actomyosin contraction.

or physical) signal, the cell polarizes and extends a protrusion in that direction. This is

followed by adhesion of the cell front to the substrate through focal adhesions which are

macromolecular protein complexes that connect the cell to the substrate through integrins.

At the rear of the cell, adhesions disassemble and the cell contracts to move forward as a

whole (Fig. 1.1).

Mechanics plays a role in each of the above mentioned steps. Protrusion at the

cell front through polymerization involves the actin filaments pushing against the cell mem-

brane generating forces on the order of nanonewtons per micron.6 Adhesions are the primary

mechanotransducers of the cell. They relay information from the extra cellular environment

to the cell about the ECM’s stiffness or other mechanical properties which are then trans-

lated into biochemical signals interpretable by the cell.7 The assembly and disassembly of

these adhesions is one of the factors that determines the velocity of the cell. The actomyosin

cortex of the cell then generates a contractile force to help the cell move forward.8,9

2
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1.2 Mechanics of collective cell motility

Cells are viscoelastic materials having properties of both elastic solids and viscous

fluids. Changes in mechanical properties of cells often correlate with pathological condi-

tions.12 For example, cell stiffness has been identified as a potential indicator of cancer

metastasis.11,13,14 These viscoelastic properties of cells can be quantified using techniques

such as particle tracking microrheology, AFM techniques and magnetocytometry10,15 .

At the tissue level, in addition to the forces mentioned in section 1.1, adhesions

between cells through adherens junctions16 also play a role in determining the emergent

tissue dynamics. For example, studies have shown that adhesion strength could be a major

factor in determining tissue fate during embryo formation.17 Cells can also transmit force

information through these contacts by pulling or pushing on each other. Cell sorting,

another phenomenon during embryogenesis has been shown experimentally and through

computational simulations to be dependent on cell-cell adhesions.18

Cells at the borders or cells in between a sheet could be extending protrusions19,20

to move the sheet forward. Forces related to these protrusions could play an important role

in guiding the movement of cells in a sheet.21,22 However, the mechanics of protrusions in

a sheet are not completely understood.

The elasticity of the substrate and the forces generated23 can determine cell fate.

Proliferation, migration velocity, and polarization are all shown to be dependent on cell’s

interaction with the substrate.29–32 Interactions of the cell with the substrate through

adhesions generate traction forces. Traction force microscopy or multiple-particle tracking

microscopy with cells on flexible substrates are some of the methods used to map these

3
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forces for a single cell or a sheet.24–27

1.3 Coupling of mechanics and signaling pathways

Force transmitted from the external micro environment of the cell, due to other

cells pulling or pushing on it or due to traction force with the substrate, could lead to sev-

eral biochemical changes in the cell.28 Activation, deactivation, and localization of proteins

which lead to polarization and eventual migration of the cell are shown to be dependent

in some form with the external environment. One such family of proteins essential for

cell migration are RhoGTPases.33,34 The Rho family of GTPases are signaling G proteins

belonging to the Ras family. RhoA, Rac and CdC 42 are the most important GTPases stud-

ied for their roles in cell motility and cytokinesis.35 They switch between an inactive GDP

form to an active GTP form upon receiving activation signals. They are also known for

their role in several signal transduction pathways including actin cytoskeleton regulation,

cell polarity and transcription factor activation.36 Duct initiation in mammary epithelial

morphogenesis,22 Bordercell migration using photoactivatable Rac21 are examples showing

the importance of RhoGTPases in collective cell migration. Activation of these GTPases

on application of external forces has been studied recently. On application of mechanical

stresses through magnetic beads, Rac activation in the cell has been shown to be rapid and

direct.37 Activation of Rho in response to force and cyclic strain has also been shown in

cardiac fibroblasts.38 In light of these reports indicating the interdependence of mechanical

signals and biochemical pathways, it becomes interesting and important to couple RhoGT-

Pase activity to cell mechanics to understand the interplay between the two in the context
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of cell motility.

1.4 Thesis Overview

This thesis aims to highlight the importance of understanding collective cell motil-

ity in the context of organogenesis and cancer metastasis through a modeling approach

coupled with experimental results. Chapter 2 discusses the role of mechanics in the devel-

opmental process of Drosophila oogenesis. Incorporating Rho-ROCK-Myosin signaling in

the form of a negative feedback loop into a mechanical model of the egg chamber during

oogenesis results in basal cell surface oscillations in follicle cells, which have been observed

experimentally. We discuss the roles of growth pressure and basal lamina in determining

the periodicity of these oscillations. Chapter 3 explores the use of vertex models modeling

cells as polygons with vertices - in understanding the effects of cell density and confinement

on collective cell motion. Chapter 4 compares different stochastic simulation methods in

mechanobiology.
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Chapter 2

Role of mechanics in tissue

development during Drosophila

oogenesis

2.1 Introduction

The Drosophila ovary is composed of strings of developing egg chambers of in-

creasing size and maturity (Fig. 2.1A a-d). Each egg chamber contains 16 germ cells

surrounded by a monolayer of epithelial follicle cells. Egg chambers increase in volume over

time while also becoming elongated. Follicle cell shape oscillations begin during stage 9 of

development in a subset of cells near the center and correlate with increasing basal myosin

content due to activation of Rho GTPase and Rho associated protein kinase, ROCK.39 The

maximal level of myosin activity and the number of cells undergoing oscillations increases
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during stage 9 until most of the epithelium shows high myosin activity at stage 10 (Fig.

2.1A b-d). These observed oscillations in the basal surface area of follicle cells restrict the

egg chamber width, and thus promote tissue elongation and morphogenesis. Autonomous

periodic oscillations have been explored in other areas in biology.40–42 Here we propose a

mechanochemical model of cell contractility in the developing epithelium and investigate

the spatial and temporal patterns in these oscillations using a combination of experiments

and modeling. The model couples contractile forces generated by cells with mechanical

tension from the external environment, including both the underlying germline cells and

the overlying basal lamina. The model predicts that a cell can adjust its contractile force

in response to external forces, and in some parameter regimes, the interplay of external

tension and cell contractility leads to oscillations. Our model is based on the hypothesis

that pressure on cells in the epithelium exerted by the growing germline cells induces the

activation of the Rho-ROCK pathway,38,43,44 which leads to a negative feedback in the

form of myosin contractility. We model a section of the egg chamber as circular arrays

of cells connected to each other in a staggered fashion (Fig. 2.1C-E). Cells are coupled

mechanically to each other as well as to the basal lamina through mechanical springs in

the circumferential and radial direction and angular springs in the axial direction. Forces

developed by follicle cells are also under biochemical regulation. We investigate the inter-

play of biochemical signaling and mechanical forces during follicle cell length oscillations.

The model predicts that the internal pressure of the egg chamber influences contractility of

follicle cells. During egg chamber growth, increasing chamber pressure increases stress fiber

formation and myosin contractility. Because cells are also mechanically coupled to each

7
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other, oscillations in any single cell are also coupled to oscillations in neighboring cells. De-

pending on parameters, oscillations could in principle become synchronized. However, since

only asynchronous oscillations are observed experimentally, the model suggests the ranges

of pressure and contractile forces that are consistent with these observations. The model

predicts that the basal lamina serves a mechanical role in the egg chamber development

and affects both the size of the egg chamber and the periodicity of follicle cell oscillations.

Without the basal lamina, the oscillation period should become longer. We tested these

predictions by removing the basal lamina using collagenase, and observed an increase in the

average oscillation period. We also use the model to examine mutants where some of the

follicle cells do not exert contractile force. This simulated mosaic epithelium also exhibits

oscillations with properties consistent with experimental observations. Taken together, the

model identifies important mechanochemical variables within the developing egg chamber

and presents a quantitative understanding of active forces within the epithelial layer. The

model also shows that the interplay between mechanical forces and biochemical signaling

pathways is sufficient in principle to explain the spatial and temporal patterning of myosin

oscillations independent of gene expression, suggesting a novel patterning mechanism during

tissue morphogenesis.

2.2 Model

Experiments show that basal surface area oscillations in the follicle cells during

stages 9-10 of egg chamber development are mostly in the dorsal-ventral axis direction.39

Based on this, a cross section of the egg chamber with unit cell width and radius r, is

8
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represented by a circular array of cells. A change in the basal cell surface area is modeled as

a change in the cell length in the dorsal-ventral (D-V) direction. The length of each cell is

described by angular positions of the cell edges, i.e., the length of the i-th cell is r(θi+1−θi).

We also assume that the passive cell behaves elastically with stiffness kc. Experiments show

that D-V oscillations are driven by periodic assembly and activation of myosin on actin

stress fibers at the basal surface. Therefore, we model this actomyosin contraction in the i-

th cell as an active force, Fi, contracting the cell length (see Fig. 2.1F). Interaction between

two cell layers in the A-P direction are modeled as elastic. When a cell contracts, it exerts

mechanical forces on its neighbors. We model this passive mechanical interaction between

cells using angular springs (Fig. 2.1C).

In the egg chamber, follicle cells are physically adhered to the basal lamina. There-

fore, when the cells contract in the D-V direction, they exert an inward radial pulling force

on the membrane. We neglect the relative motion between the follicular epithelium and

the basal lamina, and model the deformation of the basal lamina using radial springs with

stiffness k. Finally, it is known that the egg chamber is also under expansive internal pres-

sure, probably from germline growth and the mechanics of nurse cells and oocyte within

the epithelium. We include this pressure in the model using the parameter P .

Experiments show that increased contraction is correlated with increased myosin

accumulation within stress fibers at the basal surface. Therefore, the biochemistry of myosin

activity likely regulates active contraction of the follicle cells. In addition, the period of cell

contraction is on the order of several minutes. This timescale is two orders of magnitude

longer than the time scale of myosin binding and unbinding to actin, which occurs within

9
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Figure 2.1: (A) (a-d) Egg chambers labeled with DAPI and myosin-mcherry (surface
view) at stage 8 (a), early stage 9 (b), late stage 9 (c) and stage 10 (d). Maximum inten-
sity projection of the z-stacks shows the early stage apical concentrated myosin and basal
accumulation of myosin after stage 9. Scale bar = 50 μm. (B) Mechanical model. Cartoon
of surface view of a Drosophila egg chamber showing the dorsal ventral (D-V) and anterior
posterior (A-P) axis. Midsection of the egg chamber is zoomed in, in (D). Cells are modeled
as springs of stiffness kc in the D-V direction and are connected in the A-P direction through
angular springs of stiffness kas and preferred angle β as shown in (C). Connection to the
basal lamina is shown in (E). Each cell is identified by the angular positions of its ends θ.
(F) Biochemical model. Molecular pathway governing the activation of myosin contraction
in response to tension. Fi (blue arrow) represents contractile force from the i-th cell and
Fi−1 and Fi+1 (red arrows) represent forces on the i-th cell by neighboring cells.

seconds. Moreover, inhibition of Rho or ROCK prevents myosin assembly and contraction

while constitutive activation of Rho causes constitutive assembly and locks myosin in the

fully assembled and contractile state.39 Therefore, mechanochemical aspects of Rho-ROCK

signaling are probably key to understanding D-V oscillations. It is known that when a

cell is under tension (here, mostly due to mechanical tension from internal pressure), Rho

becomes activated within several minutes.38 Rho activates ROCK, a protein kinase that

further phosphorylates myosin light chain (MLC),45,46 leading to myosin contraction. We
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assume that the contractile force is directly proportional to the fraction of activated myosin.

The modeled signaling pathway is shown in Fig. (2.1F).

2.2.1 Mechanical Model

For a cross section of unit cell width as in Fig. 2.1E, motions of the cell ends in the

r and θ directions can be obtained from a mechanical energy formulation of the cell layer.

This energy is a sum of the elastic energies - from follicle cells as well as the connectors to

the basal lamina, the work done by the actomyosin contractile force and the work done by

pressure P inside the egg chamber. The mechanical energy per length is then

E =

N∑
i=1

1

2
kc(r(θi+1 − θi)− lo)

2

︸ ︷︷ ︸
Cell length

+
1

2
Nk(ro − r)2︸ ︷︷ ︸
Basal lamina

−
N∑
i=1

Fir(θi+1 − θi)︸ ︷︷ ︸
Contractile force

− Pπr2︸ ︷︷ ︸
Pressure-volume

(2.1)

where r is the radius of the circular cell array and is assumed to be the same for all the

cells, lo is the rest length of the cell, N is the number of cells in a cross section, Nk is the

effective stiffness of the basal lamina, and ro is the basal lamina preferred radius.

At the scale of the egg chamber, inertia is unimportant and forces are balanced by

friction. Equations of motion for r and θi can be obtained from the mechanical energy by

differentiation with respect to these variables and equating them to friction. The equations
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are then

dr

dt
= −1

γ

∂E

∂r

= −1

γ
(kcr
∑

(θi+1 − θi)
2 − 2πkclo −

∑
Fi(θi+1 − θi)

− 2Pπr +Nk(r − ro) (2.2)

dθi
dt

= −1

η
(
1

r2
∂E

∂θi
)

= −1

η
(kc(2θi − θi−1 − θi+1) +

1

r
(Fi − Fi−1))

(2.3)

where η and γ represent the frictional coefficients in the θ and r. Thus, we propose that in

the absence of cellular contractile forces, follicles cells are stretched by internal pressure, P .

We propose that the cells generate contractile force that opposes the egg chamber pressure,

and it is the biochemical control of the contractile stress that generates oscillations.

2.2.2 Biochemical Model

Models of Rho-ROCK signaling pathway have been studied before.47,52 Here we

propose a model where the activation of Rho and myosin are related to mechanical tension

in the cell. Increased activation of Rho, ROCK and MLC in tissue cells in response to

external tension has been observed.38 We propose that this also occurs in follicle cells. The

kinetics of Rho, ROCK and MLC activation in the i-th cell are modeled as

dρi
dt

= fρ(si)(1− ρi)−Dρρi (2.4)

12
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dRi

dt
= fR(ρi)(1−Ri)−DRRi (2.5)

dmi

dt
= fm(Ri)(1−mi)−Dmmi (2.6)

where ρi, Ri,mi represent the fraction of activated Rho, ROCK and MLC respectively. si

is the change in length of the i-th cell, (r(θi+1 − θi) − lo) (the mechanical tension is then

kcsi). Every rate equation has an activation and a deactivation part. The deactivation part

is linear, which can represent any number of biochemical mechanisms such as hydrolysis

of RhoGTP to RhoGDP, or constitutive phosphatase activity that inactivates ROCK. In the

activation part, fρ(s) represents the effect of the mechanical tension on the activation of

Rho. Similarly fR(ρ) and fm(R) represent effect of Rho on ROCK and the effect of ROCK

on MLC respectively. Mathematically, to obtain sustained oscillations, nonlinearity in the

system is essential.42 We incorporate nonlinearity in the form of a Hill function for the effect

of tension on the activation of Rho, representing possible cooperativity in Rho activation:

fρ(s) = Aρh(s)(s
n/(Ks + sn)), (2.7)

fR(ρ) = ARρ, (2.8)

fm(R) = AmR (2.9)

where h is a heaviside step function which is zero when s is negative and 1 when s is positive.

This ensures that Rho gets activated upon cell stretching under tension. Aρ, AR,Am are the

rates of activation and Dρ, DR,Dm are the rates of deactivation. Ks is the half maximal

response constant and n is the Hill coefficient for cooperativity.

13
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Since the contractile force F originates from the activation of myosin light chain

(MLC), we can assume that the force is linearly proportional to the fraction of activated

MLC. The proportionality constant Fmax represents the contractile force of a cell when the

activated myosin fraction is 1, i.e, the maximum contractile force.

Fi(t) = −Fmax.mi(t) (2.10)

Fmax is related to the total amount of contractile myosin available for the basal stress fibers,

whereas Fi is related to the amount of activated myosin generating contractile force within

the stress fibers. Note that the proposed mechanical signaling model explains why stress

fibers and contractile force are in the D-V direction in follicle cells. For an approximately

cylindrical egg chamber, the mechanical tension from the internal pressure P is PR in the D-

V direction and PR/2 in the A-P direction. Therefore, for the same internal pressure, Rho

activation and stress-fiber formation would occur in the D-V direction first. The internal

pressure and the shape of the egg chamber determines the direction of oscillation.

2D Epithelial Layer. In the egg chamber, follicle cells form the epithelial sheet,

therefore cells are coupled in the D-V circumferential direction as well as in the A-P direction

(Fig. 2.1D). We model A-P mechanical coupling using angular springs. Therefore the total
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energy of the epithelial sheet is

E =
n∑

j=1

Nj∑
i=1

1

2
kc(r(θj,i+1 − θj,i)− lo)

2 − Fj,ir(θj,i+1 − θj,i)

+ Ebm + Eas − ndPπr2 (2.11)

Ebl =
∑
j

1

2
Njk(ro − r)2 (2.12)

Eas =
∑
j

Nj∑
i=1

1

2
kas (βj,i − βo)

2 , (2.13)

βj,i = arctan

[
r((θj+1,i+1 − θj+1,i)− (θj,i+1 − θj,i))

d

]
(2.14)

where j labels the row in the A-P direction and i label the cell in the same row in the D-V

direction; Ebl is the energy of the mechanical springs connecting cells to the basal lamina,

n is the number of cell rows. Eas is the energy corresponding to the angular springs (of

stiffness kas) connecting different layers, Nj is the number of cells in the j-th row, β is

the angle made by angular springs with the horizontal and d is the distance between rows,

which would correspond to typical cell width (Fig. 1). βo is the preferred angle between

cells in adjacent rows.

In this model, we assume that the cell-cell connections between rows is fixed, i.e

the interactions are not dynamic. In reality, the connections are made through cadherin

bonds and there is a adhesion component as well as a shear/friction component. We have

neglected the shear component because the differences in angular velocities between rows

are small. Therefore relative sliding of cells in adjacent rows is negligible.
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2.3 Methods

2.3.1 Mathematical model

Our model has four cross sections (circular arrays of cells) stitched together into

a cylindrical sheet; each cross section having 30 cells, making it a total of 120 cells in

the system. Each cell has 4 equations corresponding to four variables - angular position,

activated rho, ROCK and MLC fractions. In addition, there is one equation for the radius

of the egg chamber. We solve this set of 481 differential equations simultaneously using

MATLAB’s ode45 for a time period of about 5 hours. Periodic boundary conditions are

used. The initial conditions are generated randomly with the following constraints. The

rho, ROCK, MLC fractions are below 1 and the angular positions of cells (begin and end

positions) are chosen such the sum of all the angular cell lengths equals 2π.

2.3.2 Data analysis from experiments

Fly Stocks

Following fly stocks were used in this work: UAS-GFP-Paxillin, Ubi::DE-Cadherin-

GFP, sqh::sqh-mcherry (from Dr. Eric F. Wieschaus), Talin-EGFP (MiMiC fly from Dr.

Hugo Bellen), Viking-GFP (from Dr. David Bilder). All stocks and crosses were maintained

at room temperature. Female flies, 3-7 days post-eclosion, were used for the experiment.

Live imaging and chemical treatment

Live imaging of drosophila egg chamber was done as previously described.39 Time-

lapse-image was carried out on either Zeiss 710 NLO confocal microscope using 40X, N.A.
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1.1 water immersion lens, or Olympus FV1200 confocal microscope with 40X, N.A. 1.25

oil immersion lens. Z-stacks with 2-3 slices ( 3uM in thickness) were taken to capture the

entire basal myosin. The maximum intensity projected images were used for analysis. In

chemical treatment experiment, egg chambers were first dissected in live imaging medium.

Then the dissection medium was removed and replaced by medium containing Collagenase

(1mg/ml, Sigma), Latrunculin A (100uM, Sigma), or Ionomycin (2.5uM, Invitrogen). Then

egg chambers were either mounted immediately for live imaging or incubate in the medium

for 1hr before quantification. 4% formaldehyde was used for fixative experiment. Alexa

569-conjugate phalloidin (1:300, invitrogen) was used for F-actin staining.

Image Analysis of Fly Movies

Live drosophila egg chamber movies, imaged at 60 second intervals for an hour

during stage 10A, were analyzed to calculate oscillation period. Myosin intensity is calcu-

lated as follows. The myosin labelled images are first filtered using a Gaussian blur filter

with a radius of 25 pixels in ImageJ. These images were then subtracted from the origi-

nals as background. After enhancing contrast, the images were segmented using a software

ilastik .60 Segmented images were manually checked for errors using photoshop and analyzed

using MATLAB for myosin intensity and cell area measurements. The myosin intensity is

normalized with respect to maximum value for each of the frames and plotted as a function

of time in Fig. 2.2. Myosin intensity measurements were used to calculate oscillation period

using autocorrelation as they were less noisy than the surface area data. Distances between

peaks in the autocorrelation plot of myosin intensity gives the period distribution. A total

of 87 cells in the control condition and 91 cells in the collagenase treated condition were
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Figure 2.2: Raw data from experiments - Normalized myosin intensity plotted as a
function of time in control and collagenase treated samples.

analyzed to calculate the period in each case.

2.3.3 Parameters

The list of parameters used is given in tables 2.1 and 2.2. The friction coefficients η

and γ are set to be 100 nN.s/μm, from previous reports on embryo relaxation time obtained

from laser ablation experiments.64,65 The stiffness of each spring, kc was set to 1 nN/μm

per unit cell width to produce a relaxation time of 100 seconds.65 In reality, cell stiffness

could be a function of myosin content. The number of cells N, is estimated to be 30, from

experimental evidence.39 The rest length of the cell is assumed to be the average cell length

from experimental data and is set to 6 μm.39 Typical cell width, d is set to 5 μm. The

stiffness of the angular springs kas is set to 4 nN.μm.

The pressure inside the egg chamber, P , the stiffness of the basement membrane,

k and maximum contractile force Fmax are the variables in the system. Pressure is varied

from 0.1 to 1 kPa, basement membrane stiffness is varied from 0.1 to 3 nN/μm per unit cell
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width. The range for maximum contractile force is chosen such that forces experienced by

the cell are within the nN range as seen in experiments.25,45,66 It is varied from 10 to 60

nN per unit cell width.

The rates of activation and deactivation of Rho, ROCK and MLC are estimated to

be as shown in Table 2.2. The intrinsic rate of Rho GTP hydrolysis is on the order of 0.022

per minute (3x10−4 per sec) which can be stimulated to several fold by GAP proteins.50

The Rho activation rate used in this paper [Table 2.2] could be thought of as a rate upon

stimulation by tension. We assume other rates to be on the same order. To represent

cooperativity, Hill coefficients are commonly chosen to be greater than 2,40–42,47 we choose

a value of 10 in our model.

2.4 Results

2.4.1 Single Cell Oscillates Under Mechanical Stretch

The simplest case is when a single follicle cell is under tension. This case is not

possible to examine in experiments, but it is possible to explore using our model. Fig. 2.3

shows an example where an externally applied force stretches a single cell, and the force

gradually increases with time (Fig. 2.3A). Our model predicts that the cell length will

increase with increasing applied force (Fig. 2.3B), however, activated Rho will also increase

with increasing applied force (Fig. 2.3C). The activated Rho catalyzes activation of myosin

in the stress fibers and the cellular contractile force increases to oppose the applied force.

Within a range of applied force, the Rho-ROCK signaling network exhibits oscillations.

This oscillation is a limit cycle (Fig. 2.3E). The period of oscillation depends on the rate of
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Figure 2.3: Behavior of single follicle cells. (A) As we apply an increasing external
stretching force to a single follicle cell, we see that (B) the follicle cell length increases
with increasing force. But as the force reaches a threshold the cell starts to oscillate. At
large forces the oscillations disappear and the cell continue to stretch. (C) The amount
of activated Rho increases with increasing force and there is an oscillation in the amount
activated Rho. Rho reaches a maximum value at large force. (D,E,F) When the external
force is held constant, 3 behaviors are seen. At low forces (D), the system settles to a
steady level of activated Rho and MLC. At intermediate forces (E), the system exhibits an
oscillatory limit cycle. At high forces (F), a steady state is again reached. Therefore, our
model predicts a Hopf bifurcation with increasing external force.

Rho and ROCK activation. An analytic estimate of the oscillation period is shown in the

Sec: 2.4.7.

2.4.2 Oscillations in cell D-V length and myosin content

When multiple follicle cells are mechanically connected in the epithelium, our

model simulations show that the cells will oscillate along the D-V axis with an average

period around 5-7min.39 The oscillation amplitude ranges from 0.5-2 μm which also is what

experiments observe.39 Experiments show that oscillations in myosin intensity are correlated
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to and precede oscillations in basal cell area in follicle cells.39 In our model, normalized

activated myosin also shows oscillations with periods similar to that of oscillations in cell

length. Fig. 2.4A shows myosin and cell length oscillations on the same plot. Myosin

activation precedes reduction in cell length as observed in vivo. We fit a cosine function

to the computed oscillations and obtain the phase of oscillation for each cell. We find that

this system at long times shows a uniform distribution of oscillatory phase (Fig. 2.4C).

This suggests that the oscillations are asynchronous. If oscillations are synchronous, all

cells would have a similar phase and the phase distribution would be more concentrated.

We do find a synchronous phase in other parameter regimes (Fig. 2.4D,E). The observed

oscillations are also independent of initial starting configurations of the model (Fig. 2.4B).

Fmax and P are the important physical variables in this system. Fmax is the

maximum possible myosin contractile force, representing maximum activation of myosin.

P is the internal egg chamber pressure. The pressure generates a tension of T = Pr in

the D-V direction of the epithelial layer. In response to this tension, cells activate myosin

contraction to balance this tension. Note that there is also a tension in the A-P direction,

but it is half of the tension in the D-V direction. Since increasing tension increases myosin

activation, our model also predicts that the radius of the egg chamber will influence the

observed myosin intensity. Indeed, we see that the combination of egg chamber pressure,

geometry and epithelial tension is another mechanism of spatial pattern formation. Myosin

activation responds nonlinearly to tension, and larger egg chamber radius will lead to a

stronger activation. In an egg chamber with spatially varying radius but uniform pressure,

myosin will become activated first in regions of larger radius.
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Figure 2.4: Follicle cell length and myosin oscillations. (A) Plot showing oscillations in
cell length (blue) and in myosin content (red). Increase in myosin content corresponds to
decrease in cell length. (B) Oscillation period distribution for different initial conditions
(IC), showing that the range is in between 5 to 7 minutes and is independent of IC. (C) Phase
distribution of oscillations in 120 cells showing that the oscillations are asynchronous. The
phases are uniformly distributed around 2π. (D, E) Phase diagrams of oscillatory behavior
with and without basal lamina. The system generally exhibits asynchronous oscillations or
steady non-oscillatory behavior. There is a small synchronous oscillation regime without
basal lamina (white), although this would require a high internal pressure. The red circle
indicates, in our model, the region close to the physiological situation.

Computations show that frequency and amplitude of cell oscillations as well as the

egg chamber radius and mean myosin intensity all depend on Fmax and P . Oscillation period

follows a decreasing trend with increase in Fmax. For some parameter regimes, synchronized

oscillations are also seen. We estimate that physiologically relevant parameters are close to

Fmax = 50nN and P = 0.3kPa.

We further investigated the effect of ROCK activation, and the radius of the

egg chamber on the oscillation period. In experiments, it is possible to interfere with the

activity of ROCK using Y-27632, a rock inhibitor. It was found that at inhibitor doses where

oscillations persisted, the period largely remained unchanged. We model this experiment by

varying ROCK activation rate, AR in Eq. (2.8), and a similar behavior is observed. We still

see oscillations and the oscillatory period depends non-montonically on AR (Fig. 2.8). The
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egg chamber radius does affect oscillation period. For smaller radii, higher contractile force

is required to cause oscillations, whereas at larger radii, higher pressures induce oscillations

(Fig. 2.11D).

2.4.3 The basal lamina plays a role in determining periodicity of follicle

cell oscillations

In the egg chamber, the basal lamina is a highly crosslinked and complex structure,

with collagens comprising about 50 percent of the protein.48 Follicle cells adhere to the

basal lamina via integrin-mediated adhesions that contain focal adhesion proteins such as

talin and paxillin (Fig. 4A, 2.5). We examined the effect of the basal lamina on follicle

cell oscillations by treating wild type (WT) cells with collagenase to partially remove the

basal lamina surrounding the egg chamber (Fig. 2.6B). Fig. 2.6C shows the distribution of

oscillation periods for control and collagenase treated samples. Upon collagenase treatment,

some cells no longer exhibit oscillations. Other cells show an increased oscillation period.

The mean period in the control condition is 5.6 minutes, which increases to 10.6 minutes. In

addition, the egg chamber radius decreases by about 20 percent upon collagenase treatment

(refer Fig. 2.6C inset).

In our model, we can examine the effects of the basal lamina by varying the

stiffness of the mechanical spring connecting the epithelial layer to the basal lamina (k).

We decreased k from 3 to 0 nN/μm per unit cell width in the simulations. In Fig. 2.6D,

oscillation period is shown as a function of k. The general trend in the P − Fmax space is

an increase in oscillation period as the stiffness decreases. In one of the cases, P = 0.1kPa,

Fmax= 60nN per unit cell width (red), the system starts from a steady state and goes to
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Figure 2.5: Coupling of basement membrane to basal myosin in follicle cells.
Using GFP-tagged endogenous talin and UAS-Paxillin driven by heat shock Gal4, we ob-
served an enrichment of focal complex at the end of the actomyosin fibers, which suggests
that basal myosin is mechanically coupled to the basement membrane. (a) A sagittal plane
through the center of a late stage 9 egg chamber expressing Talin-GFP and labeled with
Phalloidin for actin. (b) Surface view. Scale bar is 50μm. (c-e). Micrographs of follicle
cells labelled with Talin-GFP (c) and Phalloidin for actin (d). (f-h). Images of follicle cells
labelled with Paxillin-GFP (f) and myosin-mcherry (g). Scale bar is 25μm.

an oscillatory phase with increasing period as stiffness decreases. In the other case shown

(black), at P = 0.3kPa, Fmax = 50 nN per unit cell width, the system shows a gradual

increase in oscillation period as stiffness decreases.

2.4.4 Autonomy of cell oscillations

Experimentally, wild type cells surrounded by either constitutively relaxing cells

(ROCK RNAi expressing cells) or with constitutively contracting cells (Rho V14 expressing

cells) still oscillate with normal amplitude and period, indicating that these oscillations are

cell autonomous.39 We checked this in our simulations by surrounding wild type cells with

those having no active Rho and ROCK (Fig. 2.6E,F). There seems to be no difference in

period in neighboring and non neighboring wild type cells, as seen in experiments.39
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2.4.5 Activation of myosin as a function of egg chamber width

Tension in the D-V direction of the egg chamber goes as internal pressure times

the radius. As radius increases, increase in tension leads to activation of myosin. During

stage 9 - 10, as egg chamber grows in size, we see increased myosin accumulation due to

increase in egg chamber width.(Fig. 2.7)

2.4.6 Effect of drugs on oscillation period and egg chamber radius

Adding ionomycin, a drug that promotes contraction of actomyosin filaments, dou-

bles the basal myosin intensity as well as reduces the egg chamber width by around 6%.39

In our model, increasing the rate of activation of MLC has the same effect. (Fig. 2.8)

Treatment with various concentrations of Rock inhibitor Y-27632, decreased the

myosin intensity but did not show huge variation in the oscillation period.39 Decreasing the

rate of activation of ROCK shows non monotonous behaviour of the oscillation period and

decrease in activated myosin fraction, consistent with experiments.(Fig. 2.8)

2.4.7 Analytic estimate of oscillation period from a single cell model

For the single cell version of our model, the rate of change in cell length is given

by

ds

dt
=

1

η
(Fext − kcs− Fmaxm) (2.15)

External force acting on the cell is denoted by Fext. If Fext is made a linearly increasing

function of time, we see that the system goes into a stable limit cycle within a range of

forces (Fig. 2). Here Fext acts as the bifurcation parameter, as Fext changes, the system
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changes from a steady state to an oscillatory limit cycle as seen in Fig. 2.

The dependence of the oscillation period on parameters such as cell stiffness kc,

friction coefficient η and biochemical rates are studied using simulations. Since this full

system of equations cannot be solved analytically, we compare period dependence from our

simulations to the analytical solution for period obtained from a simpler single cell model

at the bifurcation boundary.

A simple system to analytically solve is a two chemical component system, where

we only have Rho and MLC. ROCK is assumed to be in steady state. The dependence of

Rho on tension is simplified to be linear. The equations are as follows.

dρ

dt
= fρ(s)(1− ρ)−Dρρ (2.16)

dm

dt
= fm(ρ)(1−m)−Dmm (2.17)

ds

dt
=

1

η
(Fext − kcs− Fmaxm) (2.18)

where

fρ(s) = Aρ.h.s (2.19)

fm(ρ) = Am.R (2.20)

Performing linear stability analysis, the jacobian matrix for the above system of
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equations at steady state is

J =

∣∣∣∣∣∣∣∣∣∣∣∣

−D̃ρ 0 Ãρ

Ãm −D̃m 0

0 −Ãs −D̃s

∣∣∣∣∣∣∣∣∣∣∣∣
Parameter Value Units Meaning Reference

η 100 nN.s/μm Friction coefficient in the tangential direction 65

γ 100 nN.s/μm Friction coefficient in the radial direction 65

kc 1 nN/μm Stiffness of the spring representing cell length 65

N 30 - Number of cells in a cross-section 39

l0 6 μm Rest length of each spring 39

d 5 μm Average cell width 39

kas 4 nN.μm Stiffness of the connecting springs –

k 0.1-3 nN/μm Stiffness of basement membrane springs –

Table 2.1: Mechanical parameters in the model

where

D̃ρ =
Dρ

(1− ρss)
(2.21)

Ãρ = Aρ(1− ρss) (2.22)

D̃m =
Dm

(1−mss)
(2.23)

Ãm = Am(1−mss) (2.24)

D̃s =
kc
η

(2.25)

Ãs =
Fmax

η
(2.26)

The eigen values are then the solutions of the equation

λ3 +Bλ2 + Cλ+D (2.27)
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where

B = D̃ρ + D̃m + D̃s (2.28)

C = D̃ρD̃m + D̃mD̃s + D̃ρD̃s (2.29)

D = ÃρÃmÃs + D̃ρD̃mD̃s (2.30)

Eq. (2.27) has either 1 or 3 negative roots given by Descartes rule of signs. For

the three roots to have negative real parts, the Routh Hurwitz criterion67 is BC −D > 0.

Hence, the bifurcation boundary is given by

BC −D = 0 (2.31)

Solving equations 2.16, 2.17, 2.18 along with 2.31, gives the external force at the boundary

as well as the steady state values at that force. At this force, the system moves from a limit

cycle to steady state.

At the bifurcation boundary, the analytic solution of the period is given by

Period = 2π

√
B

D
(2.32)

The bifurcation point in the full single cell model is found using simulations and the period is

calculated at that external force. Unlike the simple model, this model has two bifurcation

points, one at the onset of oscillations and one at its disappearance. To be consistent

with the simple model, the bifurcation point where the limit cycle disappears is considered
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for period calculation. The value of force at this point is different compared to the value

obtained in the simple model. Plots showing comparison of the full model simulation results

with the analytical estimate are in Figures 2.9 and 2.10. Though the magnitude of the period

is different in both cases, as they are different systems, the trends of period dependence on

various factors seems to be the same at the bifurcation boundary.

2.4.8 Parameter study in the multi-cellular model

In the multi-cellar model, oscillation period follows a decreasing trend with increase

in Fmax. On the other hand, the amplitude shows a consistent increase with increase in

Fmax. Egg chamber width shows a decreasing trend with increase in Fmax, and as expected

the mean myosin fraction shows an increase. The results shown in Fig. 2.11 A and C are

all at P = 0.4kPa. Countour plots of oscillation period, amplitude, egg chamber radius and

mean activated myosin fraction are plotted as a function of P and Fmax in Fig. 2.12.

We further investigated the effect of the radius of cross section of eggchamber,

the cell stiffness and angular spring stiffness between cell layers on the oscillation period.

Angular spring constant did not play a role in affecting the period whereas a decrease in cell

stiffness causes an increase in period (results shown at P = 0.3kPa, Fmax = 40pN per unit

cell width in Fig. 2.11B). At smaller eggchamber widths, higher contractile force (30 pN

per unit cell width,0.2kPa) is required to cause oscillations, whereas at larger radii, higher

pressures (10pN per unit cell width,1kPa) induce oscillations (Fig. 2.11D).
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Parameter Value Units Meaning

Aρ 0.015 s−1 Activation rate of rho

AR 0.015 s−1 Activation rate of ROCK

Am 0.015 s−1 Activation rate of MLC

Dρ 0.015 s−1 Deactivation rate of rho

DR 0.004 s−1 Deactivation rate of ROCK

Dm 0.015 s−1 Deactivation rate of MLC

Ks 0.015 μmn Half maximum response constant

n 10 - Hill coefficient

Table 2.2: Activation and deactivation rates of the Rho-Rock molecular pathway.

2.4.9 Other model predictions

If all cells exert the same contractile force and contractions are synchronized, then

the forces exactly balance and there is no net torque on the egg chamber. However, because

the oscillations are not synchronized, the net torque in the system is not exactly zero. Our

simulations predict that if we incorporate shear motion between the basal lamina and the

epithelial layer, the net torque will cause an overall rotation in the egg chamber against

the basal lamina. This overall egg chamber rotation has been observed.49 In addition,

build up of stress fibers and oscillations of follicles cells start from the middle of the egg

chamber where the radius is largest. As the chamber grows larger, the oscillatory region

grows to encompass the whole epithelial layer. This is consistent with our tension-activated

model because mechanical tension is directly proportional to chamber radius. For the same

internal pressure, larger radius will activate Rho and myosin contraction first.
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2.5 Discussion

We have introduced a mechanochemical model of follicle cell oscillation in the

developing Drosophila egg chamber. The model describes the response of follicle cells to

external forces, and how egg chamber mechanics can potentially influence biochemical sig-

naling and contractile force generation. In particular, we suggest that the egg chamber is

under internal pressure, and follicle cells together with the basal lamina, exert forces to

balance the expansionary pressure. During egg chamber growth, the pressure gradually

increases, leading to an increasing follicle cell contractile force. Eventually, the system un-

dergoes a Hopf bifurcation with the egg chamber pressure as the critical parameter, and

oscillations in contraction appear. We showed that the observed oscillations are not syn-

chronized, and mechanical properties of the basal lamina can influence the frequency of

oscillations.

In this paper we have focused on biochemical regulation of contraction by the Rho

signaling pathway. This is because the time scale of oscillation is on the order of minutes,

much longer than the time scale of myosin interacting with actin (seconds). Available

estimates of Rho activation rates are consistent with the oscillation period.50 However, the

time scale of stress fiber formation in actin networks under force is also on the order of

minutes.51 Experiments have shown that Rho is necessary for the observed autonomous

contraction and therefore we have focused on this pathway. We have also focused on a

simplified 2D description of follicle cells mechanics. 3D mechanical models of epithelial

cell morphology have been proposed.53 Our model can be extended to the 3D regime by

incorporating 3D cell shapes.
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The proposed biochemical signaling model controlling cell contractility may have

implication in other tissue cells. The model suggests that as external forces stretch the cell,

the tension in the cell cortex or membrane increases. This triggers a cooperative activation

of Rho GTPase and ROCK, leading to a cascade of phosphorylation events that eventually

activates myosin light chain, stress-fiber formation and contractile force generation. This

type of tension activated contractile force generation has been observed in fibroblasts.38

Therefore, the basic framework of the model will likely apply to other cells and tissues.

The prevailing view of tissue development is that morphogens pattern cell fates and

gene expression, which in turn determine patterns of differential mechanical properties that

drive major morphogenetic events such as invagination during gastrulation or convergence

and extension movements.54–56 Patterns of active contractile forces are clearly an impor-

tant element throughout morphogenesis.57–59 Here we show that patterns of actomyosin

contractility can in principle emerge from mechanochemical interactions alone, without an

initiating event based on a pattern of gene expression or a morphogen signal. It will be

interesting to determine if this is a widespread mechanism that shapes organs and tissues.
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Figure 2.6: Effects of the basal lamina and mosaic analysis. (A) Images of basal lamina
(labelled with collagen-GFP) and myosin (myosin-mcherry) in control conditions. The
relative positions of collagen and myosin fibers remain unchanged, suggesting the basal
lamina could be mechanically coupled to basal myosin. Scale bar, 20μm. (B) Egg chambers
stained with collagen-GFP from stage 8 to stage 10 in control conditions, at the beginning
of collagenase treatment (t = 0 min) and after collagenase treatment (t = 30 min). (C)
Experimental measurements on follicle oscillations upon disruption of basal lamina.The
distribution of oscillation periods became longer. The average egg chamber width became
smaller (inset). (D) Modeling predictions of oscillation period as a function of stiffness
of the basal lamina. Collagenase treatment reduces basal lamina stiffness and increases
oscillation period for several values of P and Fmax. The predicted egg chamber radius
also becomes smaller as basal lamina stiffness is reduced, in agreement with experiments.
(E) It is possible to abolish myosin contraction in some follicle cells using constitutively
relaxing cells (ROCK RNAi expressing cells), these cells (green) do not oscillate. It is then
possible to examine the interaction between the wild type cells (blue and red) with mutant
cells (green). (F) Experiments and modeling show that there are no changes to oscillatory
period in neighboring wild type cells (blue) or wild type cells directly neighboring mutant
cells (green). Mutant cells however cease to oscillate. The oscillatory period is unchanged
in neighboring vs. non-neighboring wild type cells (inset).
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Figure 2.10: Single-cell model: Period dependence on biochemical rates - The
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Decrease in egg chamber cross-section radius (blue) and increase in mean myosin intensity
(green) with increase in maximum contractile force (C). Oscillation period decreases with
increase in cell stiffness (B). Change from oscillations to steady state with increase in egg-
chamber radius at low pressure and high contracile force (blue). Change from steady state
to oscillations with increase in egg-chamber radius at high pressure and low maximum
contracile force (red) (D).
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Figure 2.12: Multi-cellular model: Contour plots of oscillation period, ampli-
tude, egg chamber radius and mean activated myosin fraction as a function of
maximum contractile force and internal pressure. Slight decrease in period (in the
range 5-7 minutes), as a function of Fmax at all P above 0.3kPa(A). Increase in amplitude
as a function of Fmax (B). Decrease in egg chamber radius as Fmax increases (C). Increase
in myosin intensity as Fmax increases (D).
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Chapter 3

Vertex models for collective cell

motility in confined and unconfined

geometries

3.1 Introduction

Organized motion of epithelial cells as a group is crucial to developmental processes

such as the basic organization of embryos and organ formation. Epithelia are tissues that

form the surface for most organs in the body. They are broadly classified into simple

mono layered and stratified (multi-layered) tissues. Depending on the shape of cells in the

tissue, the mono layer simple epithelium can be further divided into squamous (flat cells),

cuboidal (can take on any shape) and columnar (long, column like) epithelia. Irrespective

of the type of epithelium, cells are connected to each other through three kinds of junctions
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: tight junctions,68 adherens junctions69 and desmosomes.70 Adherens/tight junctions are

the primary force transducers between cells while the desmosomes act as barriers to flow of

water and proteins between cells. Coordinated motion of cells in a sheet is facilitated by

these junctions.

Complex shapes can be achieved during organ formation or embryogenesis due

to coordinated cell movements and rearrangements. Examples include tissue folding and

bending during gastrulation,74,75 convergent extension73 during tissue elongation, and neu-

ral tube formation.72 Forces acting on cells play a key role in shaping a tissue.76,77 These

forces could be a result of intrinsic elasticity of a cell; from its tendency to resist stretch,

or from cells pulling or pushing on each other through adherens junctions.71 These forces

could also result from a cells contractile ability coming from molecular motors.78 Based on

these forces, we can model the dynamics of the epithelial sheet.

Modeling epithelial cell dynamics can help us validate competing hypotheses and

design further experiments to gain a better understanding of collective cell motility and

organ formation. There are several models in place to understand sheet dynamics. These

could be broadly classified into continuum and discrete models. Continuum models model

the whole cell sheet as a two dimensional compressible fluid.79 Discrete models consider

cells as particles83 and model their behavior based on forces acting on them. These discrete

models can further be classified into lattice models,80 cell-centered models81,82 and vertex

models.84 Cell-centered models consider forces acting on the center of the cell and do not

necessarily contain information about the shape of the cell. Vertex models more explicitly

incorporate cell shape information, since each cell is modeled as a polygon representing the
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cell membrane. Each cell vertex has an equation of motion which depends on its connections

to other vertices and the properties of its neighbors. Vertex models have several advantages

over cell-centered and lattice based models.Some of them are- (i) The cells are not limited

to a particular shape. They can take on any shape based on the position of the vertices.

(ii) Cell neighbor rearrangements can be very easily incorporated.

Vertex models were first used to understand dynamics of soap bubbles and foams.85–87

These were later used to study epithelial dynamics, first by Honda and Eguchi.88–90 Since

then, many studies used similar models91,92 for their ease of analysis to study cell packing

and motion during morphogenetic events. Despite the prevalence of these models in study-

ing epithelial dynamics, very few studies incorporate the role of cell signaling into these

primarily mechanical models.

In this study, we bridge this gap. Recent studies have shown changes in activation

of RhoGTPases in response to an external force.37,38 In addition, pattern formation of

RhoGTPases has been observed during wound healing.93,94 RhoA is a principal mediator

of cytoskeletal tension. Active Rho propagates downstream signals by binding to Rho asso-

ciated kinase (ROCK). Phosphorylation of myosin light chain by ROCK leads to contractile

force generation. To understand how active contractility which is dependent on GTPase

signaling works hand in hand with cell shape changes and motion, we incorporated a Rho-

Myosin signaling model within our vertex model. In the next sections, I describe the vertex

model in detail (in Section 3.2) and then talk about two different aspects we studied using

this model. Section 3.3.1 explores the effects of density on collective cell migration prop-

erties and the second section 3.3.2 explores the effect of confinement on motility. Finally,
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we present a way in which the model could be improved to incorporate spatial dynamics of

GTPases within each cell.

3.2 Model

Considering a two dimensional cross section of an epithelial layer, cells can be

modeled as polygons, each identified by a set of vertices as shown in Fig. 3.1. The motion

of the vertices determines the motion of the cell. A single vertex is shared by three cells and

an edge is shared by two cells. A large system or a periodic system with N cells contains

2N vertices. A simple proof for it is as follows:

Let us say each cell has on average 〈n〉 vertices. Since each vertex is shared by

three cells, the total number of vertices, Nvertex = N〈n〉/3. Each edge is shared by two cells,

so the total number of edges in the system, Nedge = N〈n〉/2. The Euler relation requires

that N +Nvertex −Nedge = 1, which gives

N

(
1 +

〈n〉
3

− 〈n〉
2

)
= 1 (3.1)

leading to

1− 〈n〉
6

=
1

N
(3.2)

In the limit of a large system or a periodic system, 1/N approaches 0 and hence 〈n〉 = 6. So

we have Nvertex = N〈n〉/3 = 2N . This tells us that the number of total vertices is known

if we know how many cells the system contains. This property can be used to generate the

initial distribution of vertices.
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Fpassive

Factive Ffriction

i

Figure 3.1: Description of vertex model. Cells in an epithelial sheet modeled as
polygons. Each polygonal vertex is shared by three cells and each edge is shared by two.
Motion of cells is determined by active, passive and friction forces acting on all the vertices
that define the cell boundary.

3.2.1 Equation of motion of a cell vertex

Forces acting on a cell vertex can be classified into passive, active or frictional

forces. At cellular length scales and time scales, inertia is negligible. Hence, a force balance

can be implemented and an equation of motion can be written as shown below for each cell

vertex (i).

ηs
dri
dt︸ ︷︷ ︸

cell- substrate friction

+ Ffci︸︷︷︸
cell-cell friction

= Fpi︸︷︷︸
passive force

+ Fai︸︷︷︸
active force

(3.3)

Fcsi = ηsvi is the friction between cell and substrate (viscous drag), ηs is the frictional

coefficient, vi =
dri
dt

is the velocity of vertex i and ri is its position. Ffci is the friction

between cells, Fpi is the passive force arising from cell deformation and cell-cell adhesion.

Fai denotes the active force arising from cell contractility and polarization dynamics.

42



CHAPTER 3. VERTEX MODELS

3.2.2 Passive force

Eukaryotic cells are mechanically rigid due to cytoskeletal filaments such as actin,

microtubules, and intermediate filaments. Cells also control their volume by controlling

their water content.95 In addition, adhesion between cells in a sheet e.g. due to cadherin

bonds results in forces that contribute to cell shape. Such passive forces can be calculated

from an energy formulation (Up) of the form

Up =

N∑
J=1

K

2
(AJ −A0)

2 +
∑
i,j

Λlij (3.4)

Fpi = −∂Up

∂ri
(3.5)

Here K is the area elastic modulus of the cell that describes resistance of cells to area

changes, AJ is area of cell J , A0 is the preferred cell area which could be a characteristic

area dependent on the cell type, Λ is the adhesion energy per unit length and lij is the edge

length between vertex i and j.

3.2.3 Active force

In addition to passive mechanics, cells also generate active forces. These could be

from the intrinsic contractility of a cell due to molecular motors or cell’s protrusions in the

polarization direction. In this model, we consider three kinds of active forces - contractile

force, persistent force and a random force due to polarization diffusion.

Fai = Fci︸︷︷︸
Contractile force

+ Fpi︸︷︷︸
Persistent force

+ FRi︸︷︷︸
Random force

(3.6)
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j

i
Cell J

AJ

lij

i
Cell J

LJMJ

(i) (ii)

Figure 3.2: Forces acting on a vertex. (i) Passive force acting on a vertex due to
area(AJ) elasticity and adhesion between cells. lij represents the cell edge connecting
vertices i and j. (ii) Active force due to contractility acting on a vertex assumed to be
dependent on the cell perimeter LJ and the amount of activated myosin in the cell MJ .

Contractile force

Phosphorylated myosin leads to contractile forces in the cell. Taking this into

account, the contractile energy function (Uc) is assumed to be

Uc =

N∑
J=1

TJ

2
L2
J (3.7)

TJ = kMJ (3.8)

where LJ is the perimeter of cell J and TJ is the contractility coefficient that is proportional

to the amount of phosphorylated myosin, MJ in a cell which in turn is determined by the

Rho-ROCK-Myosin signaling pathway described below.
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Rho-ROCK-Myosin Signaling pathway

Studies suggest that when a cell is subject to an external stretch, activation of

RhoGTPase increases.38 This ultimately leads to phosphorylation of myosin which then

tries to contract the cell,46 resulting in a negative feedback loop. Although this pathway

involves several other signaling molecules, we have used a simplified version of the pathway

in this model. The simplified pathway involves only two components - Rho and Myosin but

captures the underlying phenomenon. It is built into the model as a system of ordinary

differential equations (ODEs). The level of activated RhoGTPase obeys the following ODE

dρJ
dt

= AρH(sJ)
snJ

Ks + snJ
(1− ρJ)−DρρJ (3.9)

where H is the Heaviside step function making sure ρ gets activated only in response to

cell stretch, Aρ is the maximum activation rate of ρJ , sJ = LJ − L0 is the stretch of the

cell, L0 being the preferred perimeter corresponding to the preferred area A0, Ks is the half

maximal response constant, n is the hill coefficient and Dρ is the deactivation rate of ρ.

The level of phosphorylated myosin follows a similar kinetic equation:

dMJ

dt
= AMρJ(1−MJ)−DMMJ (3.10)

where AM , DM are activation and deactivation rates of myosin. Here we assume uniform

spatial distribution of Rho or myosin within each cell. In reality, this is not true and there

could be non uniform distribution of these molecules within the cell leading to polarization.

In our model, this is modeled using a random force instead.
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Persistent force

Cells migrate in a directed fashion over a characteristic time required to disas-

semble and reassemble cytoskeletal networks necessary for motility. Persistent force in our

model comes from this ability to move in a certain direction persistently before making a

turn. It is described phenomenologically as a term that depends on cell’s past velocities

and is as given below.

Fpi = α

∫ t
−∞ exp(−β(t− t′))vi(t′)dt′

| ∫ t−∞ exp(−β(t− t′))vi(t′)dt′|
(3.11)

where α is the strength of the persistent force, β is a constant that determines the decay

rate of persistence, and vi =
dri
dt

is the velocity of the vertex i.

Random force

Random force due to polarization fluctuation is modeled as Gaussian white noise

with zero mean and finite variance satisfying the following relations

< FRi >= 0 (3.12)

< FRq(t)FRs(t) >= σ2δ(t)δqs (3.13)

where σ is the magnitude of variance characterizing magnitude of polarization fluctuation,

and δ(t), δqs are Dirac’s and Kronecker’s δ-functions respectively.
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3.2.4 Friction force

Cell-cell friction

Considering the part fluid like behavior of the epithelial sheet, friction between

cells can be calculated from the in plane shear stress. This is computed using a finite

volume approach. The cell-cell friction force experienced by a vertex is defined as the total

shear force on the volume element112 defined by a) the cell centers neighboring the vertex

and b) the midpoints of neighboring edges as shown in Fig. reffig:frictionvolumeelement.

Deviatoric stress, which is the total stress acting on a volume element minus the hydrostatic

stress is as in Eq. 3.14. Frictional force is obtained by integrating this stress over the volume

element.

σs = ηc(∇v + (∇v)T − 2

3
∇ · vI) (3.14)

Ffci =

∮
σs · ndS (3.15)

where ηc is the cell - cell friction coefficient, ∇v is the velocity gradient within the volume

element, S is the surface enclosing the volume element, and n is the outward directed normal

to the volume. The fluid is approximately incompressible, so that ∇ · v = 0, giving

σs = ηc(∇v + (∇v)T ) (3.16)

Substituting this simplified form into the friction force equation, Eq.3.15 gives

Ffci = ηc

∮
∇v · ndS (3.17)
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Figure 3.3: Finite volume element considered to calculate cell-cell friction. As-
suming fluid like behavior of the epithelial sheet, frictional forces between cells in the sheet
can be calculated from shear stress within the volume element.

Decomposing v and Ffc into x and y components, friction force can be written as

Ffcx = ηc

∮
∇vx · ndS = ηc

∮
(
∂vx
∂x

nx +
∂vx
∂y

ny)dS (3.18)

Ffcy = ηc

∮
∇vy · ndS = ηc

∮
(
∂vy
∂x

nx +
∂vy
∂y

ny)dS (3.19)

The velocity field can be computationally determined by a Taylor series expansion of the

functions vx and vy about the midpoint of each edge of the volume element. Using the edge

c1x1 with midpoint x0 as an example, the expansion is:

vx(x) ≈ vx0 + (x− x0)
∂vx
∂x

|x0 + (y − y0)
∂vx
∂y

|x0 (3.20)

vy(x) ≈ vy0 + (x− x0)
∂vy
∂x

|x0 + (y − y0)
∂vy
∂y

|x0 (3.21)

48



CHAPTER 3. VERTEX MODELS

where the nodes c1, r1 and r3 are used to obtain

vx0 =
2vx(c1) + vx(r1) + vx(r3)

4
(3.22)

∂vx
∂x

|x0 =
r1y[vx(r3)− vx(c1)] + r3y[vx(c1)− vx(r1)] + c1y[vx(r1)− vx(r3)]

r1y(r3x − c1x) + r3y(c1x − r1x) + c1y(r1x − r3x)
(3.23)

∂vx
∂y

|x0 =
r1x[vx(r3)− vx(c1)] + r3x[vx(c1)− vx(r1)] + c1x[vx(r1)− vx(r3)]

r1y(r3x − c1x) + r3y(c1x − r1x) + c1y(r1x − r3x)
(3.24)

and

vy0 =
2vy(c1) + vy(r1) + vy(r3)

4
(3.25)

∂vy
∂x

|x0 =
r1y[vy(r3)− vy(c1)] + r3y[vy(c1)− vy(r1)] + c1y[vy(r1)− vy(r3)]

r1y(r3x − c1x) + r3y(c1x − r1x) + c1y(r1x − r3x)
(3.26)

∂vy
∂y

|x0 =
r1x[vy(r3)− vy(c1)] + r3x[vy(c1)− vy(r1)] + c1x[vy(r1)− vy(r3)]

r1y(r3x − c1x) + r3y(c1x − r1x) + c1y(r1x − r3x)
(3.27)

Analogous equations for the edges x1c2, c2x2, x2c3, c3x3 and x3c1 can be derived to compute

the entire path integral and hence the friction force between cells.

Viscous drag

The coefficient of friction between the cell and the substrate as well as the media

around it is assumed to be a constant ηs.

Fcsi = ηsvi (3.28)
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d
d

Figure 3.4: Topology changes. T1 transition, a neighbor exchange method to which
allows changes in connectivity of vertices and allows cells to make and break bonds with
neighbors

3.2.5 Topology changes

To faithfully represent collective cell behavior, we need to allow cells to break and

make bonds. Topological changes i.e, changes in connectivity of vertices occur through T1

transitions. T1 transition is a neighbor exchange method which allows cells to make and

break bonds with its neighbors. If the cell edge length goes below a certain threshold, T1

transition is allowed only if after the transition the two vertices of the edge move away

from each other. The edge undergoing transition is rotated by 90o around its midpoint as

shown in Fig. 3.4. Additionally to maintain the integrity of the two dimensional system,

restrictions are placed on the movements of vertices to ensure that edges do not cross or

cells do not fold onto themselves.

3.2.6 Implementation

This model is implemented in both MATLAB and Fortran. All the parameters

used in the model are listed in Table. 3.1. Parameters are rendered dimensionless using a

length scale of
√
A0, time scale of ηs

KA0
and an energy scale of KA

3/2
0
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Parameter Value Meaning

N 1000 Number of cells

ηs 1 Cell-substrate friction coefficient

K 5 Area elastic modulus

A0 1 Preferred Area

Λ 0.5 Adhesion strength

k 2 Contractility coefficient

α 0.1 Strength of persistence

β 0.1 Decay rate of persistence

n 10 Hill coefficient

Aρ 0.05 Activation rate of rho

Am 0.01 Activation rate of MLC

Dρ 0.05 Deactivation rate of rho

Dm 0.005 Deactivation rate of MLC

Ks 120 Half maximum response constant

n 2 Hill coefficient

Table 3.1: Model parameters

3.3 Results

3.3.1 Effect of density on motility

Motion of a single cell in a confluent layer depends on the local forces acting on it.

These forces depend on its connectivity to its neighbors. The average number of neighbors

a cell has can be important for determining the characteristics of collective motion. In other

words, cell density or the number of cells per unit area of the sheet could be an important

player in determining how organized motion is at the tissue level. Several experiments have

shown the importance of density on collective cell motion97–100 but exactly how it affects

migration is not clearly understood.

To understand how cell density affects collective cell migration, we simulated cells

in a square domain with periodic boundary conditions. We compared our simulation results
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with experiments by tracking cells velocities and other properties at different densities.

Varying densities are achieved experimentally either by plating a constant number of cells

and measuring properties at progressively longer times or plating an increasing number of

cells in the same area and measuring properties after 24 hours. Both cases yield the same

results. To simulate this computationally, we changed density by fixing the number of cells

but varying the simulation domain. Bigger box sizes simulate low density conditions and

smaller box sizes represent high density conditions.

Mean cell speed decreases with increase in density

With increase in cell density, experiments show that there is a decrease in cell

speed. To understand if cell-cell adhesion is the driver, we looked at cell speed at various

densities in alpha-catenin knockdown cells in experiments. Alpha-catenin is a key com-

ponent of cadherin-based junctions required for strong epithelial cell-cell adhesion.101 A

similar increasing trend in velocity was observed in the alpha-catenin knockdown cells as

well. This tells us that other factors such as contractility might have an important role

to play in determining mean speed at different densities. In wild type cells, simulations

show a similar increasing trend in velocity as density decreased. In Fig. (3.5),simulated

cell velocities (in grey) are shown as a function of radius. Here, cell radius is a proxy for

density as it scales inversely with density.

Effect of lower cell-cell adhesion on cell speed

To simulate alpha-catenin knockdown we looked at two parameters in the model -

line tension (Λ) and cell-cell friction coefficient (η). Increasing the line tension parameter in
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Figure 3.5: Cell speed as a function of average cell radius. As cell density increases,
the average cell speed goes down. Even with low cell-cell adhesion and low cell-cell friction,
the model shows similar decreasing trend in mean cell speed as density increases

the model is equivalent to decreased adhesion between cells. Another way of incorporating

the effects of knocking down alpha catenin in the simulation is to decrease friction between

cells. Both these parameters show the same cell speed dependence on density as the wild

type as observed in experiments.

Mean myosin levels decrease with increase in density

In addition to looking at cell velocities which represent physical aspects of cell

behavior at different densities, we could analyze the chemical state of the cells in terms of

the mean myosin levels. We chose myosin levels as we know the intrinsic contractility of

the cell depends on the amount of myosin present. The signaling component of the model
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Figure 3.6: Mean myosin content as a function of average cell radius. As cell
density increases, the average myosin content goes down.

gives us a way of looking at effects of density on the local myosin levels and hence the

contractility of a cell. In experiments, we see that the myosin levels increase linearly with

decrease in density or increase in effective cell radius. RhoA activation in the signaling

component of our model depends on the change in perimeter experienced by the cell due

to an external force. Since, increase in density implies a reduction in cell area/perimeter,

myosin levels decrease in simulations as seen in experiments. This validates our hypothesis

of stretch dependent myosin activation in a cell sheet.

54



CHAPTER 3. VERTEX MODELS

3.3.2 Rotation of cells on a circular ring substrate

Cells migrating in physiological conditions experience various degrees of confine-

ment either because of the extra cellular matrix acting as a boundary or by neighboring

cells on multiple sides.102 To understand cell motion in the presence of spatial constraints,

several studies looked at cell behavior by confining single or multiple cells to micropat-

terned islands of different geometries. Huang et al103 showed that when two or three cells

are confined to mm scaled fibronectin islands of circular or square geometry, they exhibit

spontaneous symmetry breaking and coherent rotation. This phenomenon has also been

seen with large numbers of cells (800 − 10, 000 cells per mm2).104 This type of rotation

called as coherent angular motion has shown to be present during the morphogenesis of

mammary gland acini and could be important for development.105

Recent experiments by Wan et al106 have shown that cells on a ring substrate

show counter rotation at the inner and outer boundaries. In addition, vortex formation in

collective cell migration in narrow channels has also been reported.107,108 However, we do

not have a good understanding of how cell mechanics and biochemical signaling give rise to

such behavior yet. Previously, a minimal cell centered model incorporating cell geometry

and mechanics has been able to show rotation on circular substrates.82 In this section, we

use the vertex model to look at collective cell behaviors on geometries with two boundaries

such as a circular ring.

Using our vertex model, we looked at cells confined to a ring shaped substrate

as shown in Fig. 3.7. We looked at two different conditions - one where the contractility

is independent of signaling and the other with a signaling pathway for active contractile
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Figure 3.7: Vertex model in confined geometries. 300 cells modeled as polygons
on a circular ring substrate. The ratio of inner to outer ring radius is 2 : 5. Blue circles
represent the inner and outer boundaries beyond which the cells are not allowed to move.

force. In the first case the contractility coefficient is a constant and there is no signaling

involved in the model. In the second case, we use the Rho-MLC pathway and make the

contractility coefficient proportional to the amount of active myosin. In both these cases,

two types of collective cell motions are seen on ring substrates - rotation or rotation with

vortex formation (Fig. 3.8).

Vortex formation in the constant contractility coefficient model

In addition to coherent rotation that is also seen on circular substrates, cells on

rings also show formation of vortices (Fig. 3.9 A). These vortices span the width of the ring

and are dynamic in space and time. Since there is coherent rotation, on an average all the

cells move with the same angular velocity. Hence, the mean circumferential velocity over

all cells at long times, scales with the radius (Fig. 3.9 B). Plotting mean circumferential

velocities at the inner and the outer boundaries as a function of time reflects the formation
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A B

Figure 3.8: Types of collective motion seen in cells on a ring geometry. Cell
velocity vectors show in in red. (A) Coherent rotation and (B) Rotation with vortices
observed on ring substrates.

of vortices (Fig. 3.9 C). Here, the inner ring cells move in the opposite direction as compared

to cells in the outer ring intermittantly. When there is no vortex formation during rotation,

the circumferential velocities at the inner and outer rings move together as shown in Fig.

3.12. The ratio of the magnitudes of persistent force to random force determines whether

or not cells exhibit coherent angular motion on ring substrates as seen in models of cells on

circular substrates.82 We also examined the parameter space of the strength of persistent

force α and the memory decay rate β to see what causes the additional complexity of vortex

formation during rotation. The range of α and β values that show rotation with vortices is

shown in Fig. 3.9 D.
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3.3.3 Model with signaling shows non uniform myosin distribution in cells

on a ring

In the above mentioned version of the model, the contractile force of a cell was

independent of its size or shape. To incorporate the interdependence of cell shape and bio-

chemical signaling, we introduced cell stretch dependent myosin activation into our vertex

model to examine motion of cells on ring geometries. This model with signaling also shows

coherent angular motion as well as vortex formation as seen in Fig. 3.10 A, and B. This

vortex propagates in space and time around the ring as shown in Fig. 3.11.

We also looked at the distribution of mean myosin content and average cell perime-

ter as a function of radius (shown in Fig. 3.10 C and D). The mean myosin content at the

edges of ring seems to be about 20% higher than the myosin content in interior. This is

consistent with the cell perimeter distribution in the ring.

3.4 Improvements to the vertex model: Incorporating cell

polarization

Persistent force in our model has been defined phenomenologically. In reality, pro-

teins belonging to the Rho family of GTPases Rac, CdC42, and RhoA together determine

the direction of motion of the cell. It is known that Rac is essential for lamellipodia pro-

trusion and hence affects persistent motion of the cell.109,110 It would be interesting to see

how the spatial distribution of Rac affects cell shape and if coupling between mechanics and

this distribution leads to some emergent properties of collective cell motility.

In our model, we could design the tendency of cell protrusion at a vertex to be
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dependent on the local concentration of RacGTPase. Following paragraph describes how

this feature could be implemented. Equations for Rac are based on the simple model

described in previous single cell modeling studies.111,112

PDEs for spatial distribution of GTPases within each cell

A cell is decomposed into finite volumes which are triangles connecting each edge

to the center as shown in Fig. 3.13. Each of these volume elements has GTPase in two

forms, active Ga and inactive Gin. There could be GTPase flux from one volume to the other

within the cell but there is none across the cell boundary (reflective boundary conditions

at the cell edges). Spatial distribution can be calculated from reaction diffusion equations

as shown in Eq. 3.29.

∂Ga

∂t
= Da∇2Ga −∇ · (Gav) +

(
ko +

γG2
a

k2 +G2
a

)
Gin − δGa (3.29)

∂Gin

∂t
= Din∇2Gin −∇ · (Ginv)−

(
ko +

γG2
a

k2 +G2
a

)
Gin + δGa (3.30)

Here Da and Din are diffusion constants for the active and inactive forms of GTPase

respectively. There are two reaction terms - one for production and the other for degradation

for each form of GTPase. Consider the equation for active GTPase (Eq. 3.29. To integrate

this equation over each volume element, the term on the left hand side can be written as

∫
∂Ga

∂t
dA =

∫
∂(GadA)

∂t
−
∫

∇ · (Gavu)dA (3.31)
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where vu is the velocity of the cytoplasm which can be assumed to be equal to the velocity

of the cell boundary.112 Eq. (3.4) now becomes

∂GadA

∂t
=

∫
Da∇2GadA−

∫
∇·(Ga(v−vu))dA+

((
ko +

γG2
a

k2 +G2
a

)
Gin − δGa

)
A (3.32)

Discretizing the left hand side, the convection term and the reaction term:

Ai+1Gi+1
a −AiGi

a

Δt
=

∫
Da∇2GadA−

∮ (
Gi

a(v
i
x − viux

)
nx +Gi

a(v
i
y − viuy)ny)ds

+((ko +
γG2

a

k2 +G2
a

)Gin − δGa)A
i

(3.33)

The superscript i in the equations represents the time point. The diffusion operator

can be discretized as shown in Fig. 3.14. Define

q = ∇Ga (3.34)∫
PTi,a

q dA =

∫
PTi,a

∇Ga dA =

∫
∂PTi,a

Gan ds (3.35)

(3.36)

Now the flux through the finite volume can be written as

∫
Da∇2Ga dA =

∫
Dadiv : q dA =

∮
q · nds =

j=3∑
j=1

q · nj (3.37)

We then use interpolation to find GTPase values at each vertex. Value at each

vertex and the center is chosen to be a weighted sum of all the nearest neighboring finite
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volume element values.

Gv =

n∑
j=1

λjGj (3.38)

such that

∑
λj = 1 if λj ≥ 0 (3.39)

(3.40)

Similar equations can be written for the inactive form of GTPase.

We assume zero flux across cell boundaries. Hence the net G concentration inside

the cell remains the same and there is only conversion between the active and inactive forms

such that ∑
cell

Gi
a +Gi

in = 1 (3.41)

The protrusive force can now be defined as the vector sum of Rac concentration

weighted normal vectors at a vertex. This is illustrated in Fig.3.15 A.

Fpi = krac[Ganli +Ganri ] (3.42)

Assuming that the tendency of a cell to move in a particular direction is proportional to the

GTPase concentration, the polarization vector is defined as vector sum of concentrations
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multiplied by the outward normal vector of all the finite volumes as shown in Fig. (3.15 B).

P =

j=nv∑
j=1

Gjnj (3.43)

The active form of GTPase is mostly membrane bound and the inactive GTPase

form is mostly in the cytosol. Hence the diffusion constant Da can be assumed to be much

less compared to Din and we can further simplify the model by ignoring the diffusion term

for active GTPase.

To check this method, we plotted the concentrations of active and inactive GTPases

in each cell and correlations in velocity and polarization in the monolayer using this model.

The correlations and the preservation of sum of GTPases at 1 shows that the numerical

method is stable. This can be seen in Fig. (3.16).
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3.5 Discussion

In this chapter, we introduced a vertex based model to study the effects of biochem-

ical signaling on collective cell behavior. This model can potentially be used for studying

cells on a variety of substrate geometries. Using this model, we looked at the density depen-

dence of collective cell behavior in terms of mean migration speed. We explored the effects

of cell-cell adhesion, friction and contractility on cell motility at various densities. Quan-

tification of mean myosin levels at various densities in experiments validated our stretch

dependent myosin activation in the model.

Geometric confinement of cells to rings lead to collective cell rotation with the

formation of propagating vortices over different regimes of contractility and persistent force

parameters.

We also showed a method to incorporate spatial distribution of signaling proteins

using this model. Future work includes incorporating other cellular events such as cell

delamination, cell division, rosette formation through vertex transformations. Although it

could be computationally expensive, we can potentially build a three dimensional model to

explain out of plane events during morphogenesis and also include the effects of curvature

of tissue on cell motility.
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Figure 3.9: Vortex formation in cells on ring substrates. (A) Figure showing
rotation with vortices on a ring. (B) Plot showing the average circumferential velocity as a
function of ring radius. Positive velocity implies clockwise direction and negative velocity
implies counter clockwise direction. Mean circumferential velocity is higher at the outer
ring when compared to the inner ring. This is expected in coherent rotation when all the
cells move together as a solid body with a constant angular velocity. (C) Plot showing the
average circumferential velocity as a function of time. Red circles indicate mean velocity at
the inner boundary and blue circles indicate mean velocity at the outer boundary. Mean
velocity at the inner boundary shows positive jumps showing clock wise rotation when the
velocity at the outer boundary is in the counter clock wise direction. This is indicative of
vortex formation as seen in the vortex in (A) where the cells at the inner ring are moving
in a direction opposite to the cells at the outer ring. (D) Phase space of persistent force
parameters α and β showing the range of parameters in which vortex formation is seen.

64



CHAPTER 3. VERTEX MODELS

0

M
ea

n 
ci

rc
um

fe
re

nt
ia

l v
el

oc
ity

0 0.4 0.8

Time

Innerring
Outerring

4 80

0.04

0.08

A
ve

ra
ge

 m
yo

si
n

4 8

4

Radius

A
ve

ra
ge

 p
er

im
et

er

Radius

A B

C D

Figure 3.10: Vortex formation and myosin distribution in cells on ring sub-
strates. (A) Figure showing rotation with vortices on a ring using model with signaling.
Velocity vectors are shown in red. The cell colors represent activated myosin content; blue
to red showing low to high values. (B) Plot showing the average circumferential velocity
as a function of time. Red circles indicate mean velocity at the inner boundary and blue
circles indicate mean velocity at the outer boundary. Mean velocity at the inner boundary
shows positive jumps showing clock wise rotation when the velocity at the outer boundary
is in the counter clock wise direction. This is indicative of vortex formation as seen in the
vortex in (A) where the cells at the inner ring are moving in a direction opposite to the cells
at the outer ring.(C) Plot showing the average myosin content as a function of ring radius.
Higher myosin content in the outer ring cells when compared to the inner ring cells. This
trend is also reflected in the plot (D) showing average perimeter as a function of radius.
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Figure 3.12: Cell velocity at the inner and outer ring boundaries without sig-
naling. Mean circumferential velocity (n = 4, N = 300)at the inner (red) and outer (blue)
boundaries plotted as function of time. Positive velocities represent counter clock wise ro-
tation and negative velocities represent clockwise rotation. Counter rotation at the ring
boundaries is not seen.
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Figure 3.13: Model for spatial distribution of Rac. A cell is decomposed into finite
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is defined as the vector sum of Rac concentration weighted normal vectors at a vertex.
(B) Vector sum of concentrations multiplied by the outward normal vector of all the finite
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Chapter 4

A comparison of stochastic

simulation methods in

mechanobiology

4.1 Introduction

Stochastic simulations are used in biology to understand complex biological phe-

nomena such as movement of molecular motors, quantification of gene expression, and

reaction dynamics in a cell. Coupling between mechanics and chemical state change or a

conformational change is an important feature of several such biological processes. Molec-

ular motors, transmembrane proteins, ion channels, biopolymers, and adhesion complexes

are examples where interplay of mechanics and chemistry plays an crucial role.113–116

Such complex systems have many degrees of freedom of which only a few are of
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specific interest for analysis. For example, considering a molecular motor, we might be

interested only in certain mechanical and chemical states of the protein because they are

experimentally observed. These could be length of the protein and whether or not it is

bound to ATP.

We can write down the equations of motion for these select degrees of freedom117

from first principles, assuming the free energy to be a function of these variables and the rest

of the variables to be in thermal equilibrium. The free energy of the system as a function

of these coordinates could show several local minima separated by barriers and the system

could fluctuate between these energetic basins. These fluctuations can be described by time

dependent probability distributions.

Considering either continous or discrete probability distributions, stochastic mod-

els give us trajectories that jump between basins on an energy landscape.119 Traditionally,

these energy landscapes are approximated to be one dimensional assuming the reaction

dynamics along all other coordinates to be much faster and in thermal equilibrium. The

reaction is treated as the escape of a brownian particle from a deep energetic basin under

the action of a random force according to Kramers theory.118 This assumption might not

hold true when the system has comparable dynamics along one or more coordinates. In the

context of mechanobiology, these coordinates could be mechanical and chemical states of a

protein. In this chapter, we explore the reaction dynamics in systems where the mechan-

ical and chemical coordinates are on equal footing and are coupled. To do so, we use the

simplest form of a two dimensional energy landscape as described below.
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4.1.1 Potential energy as a function of mechanical and chemical coordi-

nates

Consider a symmetric potential of the form120

V (x, s) = U(s) +
1

2
K(x− s)2 (4.1)

where x represents the mechanical coordinate, s represents the chemical coordinate and K

is the coupling constant. U(s) is assumed to be biquadratic in s of the form

U(s) = ΔU(s2 − 1)2 (4.2)

where ΔU is the barrier height. This potential can be written in the following form

V (x, s) = ΔU((s2 − 1)2 + 2K̃(x− s)2) = ΔUṼ (x, s) (4.3)

where

K̃ =
K

4ΔU
(4.4)

Contour of the potential as a function of x and s is shown in Fig.1(A). It has two energetic

basins, one at (−1,−1) and one at (1, 1) and a barrier around the origin between the two

wells. Potential as a function of the chemical coordinate along the x = s line is shown in

Fig.1(B). For a fixed mechanical coordinate, there are two local minima for the chemical

coordinate. For a fixed chemical coordinate, there is one local minimum for the mechanical

coordinate.
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Figure 4.1: Potential energy considered (A) Contour plot of the potential considered
as a function of mechanical and chemical variables, x and s respectively. (B) Potential energy
profile along x = s. ΔŨ is the barrier height.(C) Steady state solution of the Fokker Plank
Equation, FPE associated with the potential, showing the probability of finding a particle
at a certain x and s coordinate at long times. (D) Probability of finding a particle in well
2 (defined as shown in inset) as a function of time obtained from numerical solution of the
FPE. This is compared to the probability obtained from Langevin dynamics simulations.

Since inertia is negligible in biological processes, due to very low Reynolds number,

the stochastic dynamics of a particle in a potential as in (4.3) can be well described by over
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damped Langevin equations along the mechanical and chemical coordinates.

γx
dx

dt
= −∂V (x, s)

∂x
+Rx(t) (4.5)

γs
ds

dt
= −∂V (x, s)

∂s
+Rs(t) (4.6)

where Rx(t), Rs(t) are random forces.

4.1.2 Fokker Planck equation to solve for probability P(x,s,t)

Instead of analyzing multiple particle trajectories using Langevin equations, it is

more convenient to look at the time dependent probability distribution P (x, s, t) represent-

ing many trajectories averaged over random forces. The evolution of this probability over

the landscape in Eq. 4.3, satisfies the Fokker Planck equation (in the high friction limit) of

the form

∂P

∂t
= Dx

∂2P

∂x2
+Ds

∂2P

∂s2︸ ︷︷ ︸
Diffusion

+ γx
∂

∂x

(
∂V

∂x
P

)
+ γx

∂

∂s

(
∂V

∂s
P

)
︸ ︷︷ ︸

Drift

(4.7)

HereDx andDs are the diffusion coefficients and γx and γs are the frictional drag coefficients

along the x and s coordinates respectively. This can be derived from the Langevin equations

from first principles.124

Non dimensionalizing this equation :

Assuming x and s as dimensionless coordinates, the dimension of Dx is (t−1). Defining
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dimensionless parameters

τ = Dx.t (4.8)

ε =
Dx

Ds
=

γs
γx

(4.9)

ΔŨ =
ΔU

kT
(4.10)

Thus, the equation can now be written in the dimensionless form as

∂P

∂τ
=

{
∂

∂x

[
∂

∂x
+ΔŨ

∂Ṽ

∂x

]
+

1

ε

∂

∂s

[
∂

∂s
+ΔŨ

∂Ṽ

∂s

]}
P (4.11)

Hence ε,ΔŨ and K̃ are the three independent dimensionless parameters that define

this system.

To compare different simulation methods, the two dimensional x-s space is divided

into two regions - one to the left (well 1) and the other to right (well 2) of s=0 line, as

shown in Fig. 1(D, inset). Assuming that the particle starts from the point (−1,−1) in

well 1, the evolution of probability in region 2 is calculated from the numerical solution of

Eq. 4.11 (Details in Appendix S1). This probability of a particle in region 2 as a function

of time and the reaction rate are compared with that obtained from different simulation

methods described below.
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4.2 Simulation Methods

Langevin dynamics (LD) simulations

Non dimensionalization of Langevin equations in x and s dimensions would give

equations of the form as shown below in Eq. 4.12 and Eq. 4.13.

dx = −
(
ΔŨ

∂Ṽ

∂x

∣∣∣∣
τ

dτ

)
+ r1

√
2dτ (4.12)

ds = −
(
1

ε
ΔŨ

∂Ṽ

∂s

∣∣∣∣
τ

dτ

)
+ r2

√
2dτ

ε
(4.13)

where the first term on the right hand side in both the equations represents deter-

ministic forcing and the second term represents Brownian force. r1, r2 are random numbers

taken from a normal distribution with mean zero and standard deviation 1. x and s are

propagated according to Eqs. 4.12 and 4.13 in LD simulations.

Fixed time step simulation: x - continuous, s - discrete

In this simulation method, x is a continuous variable but s is discrete; it can be

in one of the two states, s1 = −1 or s2 = 1, corresponding to well 1 or well 2 respectively

and can undergo Markovian jumps between the two states. For every time step dτ , x is

propagated using the Langevin equation (Eq.4.12), assuming the same state of s as at the

previous instant of time. This is graphically shown in Fig. 2(A). The position x at the next

time step is mathematically expressed as below.

x(τ + dτ) = x(τ) + dx (4.14)
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To find s(τ + dτ), the rate of escape from the current state is calculated as follows. The

rate of escape from well 1 to well 2 is given by a constant multiplied by a Boltzmann factor

of the form

kf = ko exp(−ΔŨΔṼ ) (4.15)

where

ΔṼ = Ṽ (x(τ), s2)− Ṽ (x(τ), s1) (4.16)

The rate of escape from well 2 to well 1 is assumed to be a constant

kb = ko (4.17)

The rate constant ko has to be dimensionless as our time τ is dimensionless. This parameter

is usually estimated from experimental data.

If the time taken for escape, i.e, the inverse of the rate is less than the time step

dτ , a jump is made along the s coordinate.121 If not, there is no change in s.

Equilibrium based simulation: Splitting rate expression using λ

In this simulation, the system only jumps from one well to the other. This is

graphically shown in Fig. 2(B). In the figure, R represents the bottom of well 1 at (−1,−1)

and P represents well 2 at (1, 1). The rates for forward (R → P ) and backward(P → R)

reactions are given as

kf = ko exp(−λΔŨΔṼ ) (4.18)
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where

ΔṼ = ṼP − ṼR (4.19)

and

kb = ko exp((1− λ)ΔŨΔṼ ) (4.20)
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where

ΔṼ = ṼR − ṼP (4.21)

In this paper, we consider Method 1 to be the case with λ = 0.5 and Method 2

to be the case with λ = 0 - i.e the on rate is a constant. Note that, the forms of rate

expression chosen always obey detailed balance.

Equilibrium based simulation: Using rate expressions from Langer’s theory

In our case, since the potential energy profile is known, we can also get an estimate

of rates from Langer’s theory which is based on similar ideas as the Kramers rate theory in

the one dimensional case.122

kf = ko exp

(−ΔVF

kT

)
(4.22)

and

kf = ko exp

(−ΔVB

kT

)
(4.23)

Here

ko =
wowbG(ε)

2πkTε
(4.24)

where wo and wb are the frequencies at the reactant well and the barrier top respectively,

ΔVF = V sp − V r (4.25)

ΔVB = V sp − V p (4.26)
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and

G(ε) =
ε

2

⎧⎨⎩1

ε
(1− K̃)− K̃ +

√
(
1

ε
(1− K̃)− K̃)2 +

4K̃

ε

⎫⎬⎭ (4.27)

where V sp,V r and V p are potentials at saddle point, reactant well and the product well

respectively and G(ε) is a function of friction anisotropy ε =
γs
γx

and the coupling constant

K̃.

4.3 Results

4.3.1 Validation of numerical solution from FPE by comparison with

Langevin dynamics simulations

To obtain the probability of a finding a particle in the x-s space, the non dimen-

sionalized Fokker Planck equation (FPE) as shown in Eq. 4.11 is solved numerically using

the Chang Cooper scheme123 (Details given in SI). The analytical solution of FPE matches

the steady state result from the numerical scheme as shown in Fig. 1(C).

To validate the numerical results, a comparison is made between the FPE results and two

dimensional Langevin dynamics(LD) simulations. For the same parameter set and initial

conditions, the LD simulation is run for 1000 particles for 8000 time steps with each time

step corresponding to dτ = 0.001 (dimensionless). The probability of finding a particle in

region 2 - defined as the region containing positive s coordinates or region to the right of

the s = 0 line - is calculated. As shown in Fig. 1 (D), the numerical solution from FPE

and the Langevin dynamics simulations are in good agreement.
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4.3.2 Comparison of fixed time step and equilibrium based simulation

methods

Fixed time step simulations - The mechanical coordinate x is propagated ac-

cording to the Langevin equation, as shown in Eq. 4.12. At every time step, the time to

jump between states along s coordinate is calculated. Only if this time is less than the time

step dτ , a jump in s is made. We used a constant off rate and an on rate which depends on

potential energy difference between states before and after the jump as shown in Eqs. 4.15

and 4.17. The value used for ko is 5× 10−3.

Equilibrium based simulations - In this method, a particle can only be in one

of the two wells and jumps are made between these two states. The rates expressions used

are as shown in Eqs. 4.18 and 4.20. The values used for ko and λ are 3 × 10−4 and 0.5

respectively.

The values of ko in both these simulations are obtained by fitting the probability

curve with the numerical solution from FPE in the standard case with ε = 1 and no external

force. The same value of ko is used for all the equilibrium based simulations in the paper.

Comparison between fixed time step and equilibrium simulations - Plots

showing the evolution of probability in region 2 as a function of time, using fixed time step

simulation and the equilibrium based simulations are shown in Fig. 2(C). The value used

for ko is two orders different in both the simulations. Time taken for the fixed time step

simulation is much longer (in the order of hours) compared to the equilibrium simulations

(in the order of minutes).
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4.3.3 Modifying the potential by introducing a work term F̃ x

In the presence of an external force, the potential is modified as follows

V (x, s) = ΔU((s2 − 1)2 + 2K̃(x− s)2 − 4F̃ x) (4.28)

where

F̃ =

(
F

4ΔU

)
(4.29)

The potential energy profiles along the x = s direction with increasing values of

F̃ from 0.001-0.25 are shown in Fig.3(A). A comparison of probabilities in region 2 as a

function of time is shown for different equilibrium based simulations for one of the values

of F̃ in Fig. 3(B). Simulations based on Langer rates and Method 1 are closer to the

numerical solution of FPE than simulations based on Method 2. Comparison of rates at

various values of F̃ for different simulation methods is shown in Fig. 3 (C,D) for different

values of coupling constant, K̃. At lower forces, the simulations based on Langer rates and

Method 1 work well and are quite comparable to the FPE solution. At forces higher than

0.1, rates diverge from the true value. Note that the simulations using Langer rates also

fail to converge to the rate obtained from solving the FPE.

Clearly, Method 2 does not work well, in the presence of an external force. This

implies that the value of ko cannot be maintained a constant if there is a varying external

force on the system, in simulations using Method 2 - where the forward rate is maintained

a constant independent of changes in system energy.
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Figure 4.3: Adding an external force. (A) Potential energy profiles along x=s with
increasing external force. (B) Probability of finding a particle in well 2 as a function of
time, at F̃=0.01 - comparison between the numerical solution of the FPE and simulations
using Langer rates and the Methods 1 and 2. (C) Rate constants are calculated by fitting
the probability plot to a exponential of the form a+ b exp(−ct). Log of this rate is plotted
a function of increasing force F̃ for different coupling constants, K̃=0.05 and (D) K̃=0.25.

4.3.4 Varying friction anisotropy, ε

The ratio of diffusion coefficients along the mechanical and the chemical coor-

dinates -
Dx

Ds
or equivalently the ratio of friction coefficients -

γs
γx

is denoted by ε. This
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parameter, ε is varied such that diffusion along the mechanical coordinate is either 100 or

10 times slower, equal to (which is our standard case) or 10 times faster than the chemical

coordinate.

Polar histograms of the angles made by the displacement vectors of particle tra-

jectories in each of these cases is shown in Fig. 4(A). Displacement in the direction of the

chemical reaction coordinate is more frequent at low values of ε and vice versa for higher

values.

Simulation methods are compared while varying ε. Here, for Method 1, the rate

constant ko used is scaled by friction anisotropy as follows -

ko(ε) =
ko
ε

(4.30)

Plotting rates as a function of friction anisotropy (Fig. 4(B)) shows that when dif-

fusion along the mechanical coordinate is comparable or faster than that along the chemical

coordinate, simulations using Langer rates or the rate splitting method are in reasonable

agreement with the numerical solution. In these cases, rates from simulations using Method

1 are within 1% error of the rates obtained using Langers formula. Errors arise both with

Langer rates as well as with Method 1 when mechanical coordinate is slower compared to

the chemical coordinate. Similar behavior is observed in the presence of an external force

on the system.
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4.4 Discussion

Through our study we have demonstrated the following. Given a two dimensional

energy landscape, fixed time step and equilibrium simulations give reasonably accurate

results. We suggest using the equilibrium based simulation as it shows no deviation from

the fixed time step method and is much faster.

On and off rates in the model cannot be maintained constants in the presence of

an external force on the system. If there is an external force on the system, both rates

should include a dependence on force.

When diffusion along the mechanical coordinate is comparable or faster than that

along the chemical coordinate, and in the absence or presence of an external force, simula-

tions using Langer rates or the rate splitting method are in reasonable agreement with the

numerical solution.

In conclusion, the rate splitting method is a good way of modeling stochastic

processes dependent on both mechanical and chemical reaction coordinates with a coupling

between them.

Supporting Information

Table 4.1: Parameters used.

ΔŨ 10 Barrier height (in kT)

K̃ 0.01-0.25 Normalized coupling coefficient

ε 0.01-10 Ratio of diffusion coefficients

F̃ 0.001-0.25 Normalized external force
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S1 Numerical scheme - Chang Cooper method

Numerical solution of the Fokker Planck equation in two dimensions To

solve Eq. 4.11 numerically, we used the Chang Cooper method.123 The right hand side of

Eq. 4.11 can be written as a derivative of a flux in the x and s directions.

∂P

∂τ
=

∂Fx

∂x
+

∂Fs

∂s
(4.31)

where

Fx =
∂P

∂x
+ΔŨ

∂Ṽ

∂x
P (4.32)

Fs =
1

ε

(
∂P

∂s
+ΔŨ

∂Ṽ

∂s
P

)
(4.33)

The grid points for the numerical scheme in the x direction are given by i and grid

points in the s direction are given by j. Each term on the right side of Eq. 4.31 can be

written in a central difference scheme around point (i, j). For instance, in the x direction,

∂Fx

∂x
=

Fx
i+1

2 ,j
− Fx

i− 1
2 ,j

Δx
(4.34)

Now, the flux at point i+ 1
2 can be given as

Fx
i+1

2 ,j
=

Pi+1,j − Pi,j

Δx
+ΔŨ

∂Ṽ

∂x

∣∣∣∣
i+ 1

2
,j

Pi+ 1
2
,j (4.35)

The point Pi+ 1
2
,j has to lie somewhere between Pi,j and Pi+1,j along the i direction.
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According to the Chang-Cooper scheme, this is given as

Pi+ 1
2
,j = (1− δi+1)Pi+1,j + δi+1Pi,j (4.36)

But we know that at equilibrium, flux has to be equal to zero. Therefore,

Fx
i+1

2

=
Pi+1,j − Pi, j

Δx
+ΔŨ

∂Ṽ

∂x

∣∣∣∣
i+ 1

2
,j

((1− δi+1)Pi+1,j + δi+1Pi,j) = 0 (4.37)

From equation [4.37], we can calculate the ratio
Pi+1,j

Pi,j
at equilibrium. We know

that at equilibrium

Pi+1,j

Pi,j
= eΔŨ(Ṽ (i+1,j)−Ṽ (i,j)) (4.38)

Let call this ratio K. From equations [4.38] and [4.37], δi+1 can be calculated as

δi+1 =
1

ΔŨ ∂Ṽ
∂x

∣∣∣∣
i+ 1

2

Δx

− kr (4.39)

where

kr =
K

1−K
(4.40)

Now, all parts of Eq. 4.35 are known. Similarly Fx
i− 1

2

can also be evaluated. A

similar procedure in the s direction as well completes the right hand side of equation [4.31].

The time derivative on the left hand side of equation [4.31] is given by a forward difference

scheme as

∂P

∂τ
=

Pn+1
i,j − Pn

i,j

Δτ
(4.41)
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We have used an implicit Chang Cooper scheme, which implies that all the values on the

right hand side of equation [4.31] are at time point n+1. Thus, written in the matrix form,

the equation would look like

Pn+1 = A−1Pn (4.42)

where A is the coefficient matrix. The boundary conditions used are reflective, i.e., the flux

is zero across the boundaries. The initial condition used is a dirac delta function at well 1

(−1,−1). The values used for the dimensionless parameters in the numerical method are

given in Table [4.1]. Running this simulation for long times gives a steady state solution as

shown in Fig. 1(C) which compares well with the analytical solution. The probability as a

function of time in well 2 (1,1) is plotted in Fig. 1(D). The width of the well is chosen to

be 20Δs in the s direction and 40Δx in the x direction. This basically divides the entire

domain in half at s=0; each half representing a well.

S2 Nondimensionalization of Langevin equations

Nondimensionalizing Langevin equations in x and s

dx = − 1

γx

∂V

∂x
dt+ r1

√
2kTdt

γx
(4.43)

Here,

− 1

γx

∂V

∂x
dt = − 1

γx
ΔU

∂Ṽ

∂x

dτ

Dx
(4.44)

= −ΔŨ
∂Ṽ

∂x
dτ (4.45)
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and √
2kTdt

γx
=
√
2Dxdt =

√
2dτ (4.46)

Similarly

ds = − 1

γs

∂V

∂s
dt+ r2

√
2kTdt

γs
(4.47)

Here,

− 1

γs

∂V

∂s
dt = − 1

γs
ΔU

∂Ṽ

∂s

dτ

εDs
(4.48)

= −1

ε
ΔŨ

∂Ṽ

∂s
dτ (4.49)

and √
2kTdt

γs
=
√
2Dsdt =

√
2dτ

ε
(4.50)

S3 Langer’s theory estimate for rate constant in two dimensions

Derivation of rate constant using Langer’s theory

U(s) is assumed to be of the following form

U(s) =

⎧⎪⎪⎨⎪⎪⎩
1

2
ω2
o(|s| − 1)2 near the well bottoms s = 1,−1

ΔU − 1

2
ω2
bs

2 near the barrier top s = 0

(4.51)

Here ωo represents the well frequency and ωb is the barrier frequency. These are assumed
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as follows

ω2
o = 8ΔU (4.52)

ω2
b = 4ΔU (4.53)

According to Langer’s theory, the rate (T2D) in two dimensions can be approximated as

T2D =
1

2π

(
det V̂ R

|det V̂ sp|

) 1
2

H exp

(
−ΔVL

kT

)
(4.54)

where V̂ R and V̂ sp are hessian matrices of the potential energy function at coor-

dinates of the reactant well and saddle point respectively and H is a single positive root of

the equation

det(γH + V̂ sp) = 0 (4.55)

where γ is friction coefficient tensor. γ =

⎛⎜⎜⎝γx 0

0 γs

⎞⎟⎟⎠ ,

V̂ R =

⎛⎜⎜⎝ K −K

−K ω2
o +K

⎞⎟⎟⎠ and V̂ sp =

⎛⎜⎜⎝ K −K

−K −ω2
b +K

⎞⎟⎟⎠
On expanding Eq. 4.55,

(
γ̃sH̃ − 1 + K̃

)(
γ̃xH̃ + K̃

)
= K̃2 (4.56)

where γ̃s, γ̃x, H̃ are
γs
ωb

,
γx
ωb

and
H

ωb
respectively.

Solving Eq. 4.56 for γ̃x =0, we get H̃(0, γ̃s) =
1

γ̃s
. Assuming H̃(γ̃x, γ̃s) is of the
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form

H̃(γ̃x, γ̃s) = H̃(0, γ̃s)F (ε) (4.57)

ans substituting this in Eq. 4.56, gives

F (ε) =
ε

2

⎧⎨⎩1

ε
(1− K̃)− K̃ +

√
(
1

ε
(1− K̃)− K̃)2 +

4K̃

ε

⎫⎬⎭ (4.58)

Therefore

T2D =
ωo

2π

F (ε)

γ̃s
exp

(−ΔVL

kT

)
(4.59)

T2D =
wowbF (ε)

2πkTε
exp

(−ΔVL

kT

)
(4.60)

Here

ΔVL = V sp − V r (4.61)
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