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Chapter 1

Introduction

Understanding how the brain functions is one of the most important goals in sci-

ence and medicine today. For example, the BRAIN (Brain Research through Advanc-

ing Innovative Neurotechnologies) Initiative,1 which was started in 2013 by President

Obama, has pledged hundreds of millions of dollars to the development of technologies

to enhance understanding of brain function. Additionally, a number of governmental

agencies, laboratories, foundations and private companies have recently announced

major programs devoted to the study of the brain. Such initiatives hold great promise,

as neurological diseases and disorders, such as autism, Alzheimer’s and sports-related

brain injury, present major challenges to the health and welfare of a↵ected individuals

and their families, and in many cases e↵ective treatments remain elusive. Recent ad-

vances in various neurotechnologies have now made it possible to study brain function

from a multitude of di↵erent angles, in order to understand the neurological changes
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CHAPTER 1. INTRODUCTION

associated with such disorders. These technologies, along with the growing interest

in the study of brain function, may make it possible to identify ways to treat, or even

prevent or cure, many neurological and psychiatric disorders.

One of the technologies being used to study brain function noninvasively in hu-

mans is functional magnetic resonance imaging (fMRI).2 fMRI measures the blood

oxygen-level dependent (BOLD) response to neuronal activity at moderate tempo-

ral and spatial resolution. In a typical fMRI run, a series of brain volumes each

consisting of roughly 100, 000 volumetric elements (“voxels”) are collected every 2

seconds. While neuronal signals occur on the order of milliseconds, the haemody-

namic response occurs over several seconds, peaking around 6 seconds following the

neuronal signal.3 Therefore, a temporal resolution of 2 seconds per volume allows for

the detection of neuronal activation in specific areas of the brain. By contrast, MRI

techniques used to study structural brain features, such as T1-weighted images, takes

several minutes to acquire.4 The rapid acquisition time of fMRI data is made possi-

ble through reductions in spatial resolution and signal-to-noise ratio; therefore, noise

levels in fMRI data are relatively high.2 Furthermore, fMRI data is subject to many

sources of systematic noise (“artifacts”) due to subject motion, scanner instabilities,

and processing errors.2,5

fMRI data therefore presents a triad of statistical and computational challenges.

First, there are many sources of variability due to noise and artifacts, changes in

the cognitive state of the subject over time, and inter-individual di↵erences. Second,
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fMRI data exhibits a complex spatial and temporal dependence structure. Third, a

single fMRI run can consist of 10 million to 1 billion data points, depending on the

run length, temporal resolution and voxel size, and modern fMRI datasets consist

of hundreds of subjects.4,6–9 Therefore, fMRI data is large, and its analysis presents

computational challenges, particularly for complex methods or those that require

combining information across subjects.

Historically, the most popular use of fMRI data has been to study the location

and intensity of brain activation in response to a particular task or stimulus. Task

fMRI has shed great insight into the function of di↵erent regions of the brain and

the association between brain activity with certain disorders, traits and behaviors.

For example, Sharer et al. (2015)10 found that brain regions involved in visuomotor

sequence learning activated less in children with autism compared with typically

developing children during a reaction time task; such findings help shed light on the

brain mechanisms related to impairments in skill development observed in subjects

with autism.

However, in recent years there has been increasing interest in functional connec-

tivity, which is defined as simultaneous neuronal activation between anatomically

distinct regions of the brain11 and is typically measured using “resting-state fMRI”

(rsfMRI), in which the subject is not asked to perform an explicit task.12 Research

on resting-state functional connectivity (rsFC) has historically focused on analyzing

rsfMRI data at the group level in order to understand the organization of typical hu-
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CHAPTER 1. INTRODUCTION

man brains. For example, the use of group independent components analysis (ICA) to

identify resting-state networks, defined as large regions displaying coordinated pat-

terns of BOLD activation, was popularized by Beckmann et al. (2005).13 Other

common measures of functional connectivity are correlation between the fMRI time

series of di↵erent voxels or regions,14 and parcellations or clusterings of voxels into

functionally similar regions.15

Recently, there is growing interest in studying the organization and connectivity

of the brains of individual subjects.16,17 However, high levels of noise and artifacts

present in fMRI data, combined with relatively short rsfMRI runs (5-10 minutes typ-

ically), make it di�cult to accurately estimate connectivity at the individual level.18

Furthermore, short- and long-term changes in the cognitive state of the subject present

an additional source of variation that results in low reproducibility of subject-level

rsFC measures.19

In this thesis, I address these issues and make several contributions to the analysis

of rsFC at the subject level. In Chapter 2, I develop shrinkage estimates of pairwise

connectivity between di↵erent voxels or regions. Specifically, I propose a method of

estimating within-subject variance using only a single fMRI run from each subject.

I apply the proposed methods to subject-level estimates of voxel-wise connectivity

within the motor cortex and demonstrate the benefits of shrinkage on the reliability

of resulting parcellations of the motor cortex.

In Chapter 3, I propose a novel outlier removal method for high-dimensional data.

4



CHAPTER 1. INTRODUCTION

I apply this method to identify artifacts in rsfMRI data, and I demonstrate the benefits

of artifact removal on the reliability of subject-level resting-state networks estimated

using ICA.

In Chapter 4, I return to the theme of shrinkage and propose a new method to

estimate the within-subject variance of connectivity based on separating two sources

of within-subject variance: variance of true connectivity over time and sampling

variance. I apply the proposed methods to subject-level estimates of pairwise con-

nectivity between 300 ICA-identified regions using the Human Connectome Project

(HCP), a large, state-of-the-art fMRI dataset. I demonstrate that shrinkage results

in improved reliability of subject-level connectivity estimates, even when 30 minutes

of high-quality, high temporal resolution rsfMRI data is collected for each subject.

5



Chapter 2

Improving reliability of

subject-level resting-state fMRI

parcellation with shrinkage

estimators

A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies

in subdividing the human brain into anatomically and functionally distinct regions

of interest. For example, brain parcellation is often a necessary step for defining the

network nodes used in connectivity studies. While inference has traditionally been

performed on group-level data, there is a growing interest in parcellating single sub-

ject data. However, this is di�cult due to the inherent low signal-to-noise ratio of

6
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rsfMRI data, combined with typically short scan lengths. A large number of brain

parcellation approaches employ clustering, which begins with a measure of similarity

or distance between voxels. The goal of this work is to improve the reproducibility of

single-subject parcellation using shrinkage-based estimators of such measures, allow-

ing the noisy subject-specific estimator to “borrow strength” in a principled manner

from a larger population of subjects. We present several empirical Bayes shrinkage

estimators and outline methods for shrinkage when multiple scans are not available

for each subject. We perform shrinkage on raw inter-voxel correlation estimates and

use both raw and shrinkage estimates to produce parcellations by performing clus-

tering on the voxels. While we employ a standard spectral clustering approach, our

proposed method is agnostic to the choice of clustering method and can be used as

a pre-processing step for any clustering algorithm. Using two datasets – a simulated

dataset where the true parcellation is known and varies across subjects and a test-

retest dataset consisting of two 7-minute resting-state fMRI scans from 20 subjects

– we show that subject-level parcellations produced from shrinkage correlation esti-

mates have higher validity and reliability than those produced from raw correlation

estimates. Validity of parcellations is assessed through simulated data and is shown

to improve by up to 30% overall due to shrinkage, and by up to 20% within regions

where true subject-level parcellations di↵er. Application to test-retest data shows

that shrinkage increases the reproducibility of parcellations of the motor cortex by

up to 30%.
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2.1 Introduction

There has been a long-standing interest in subdividing the human brain into anatom-

ically and functionally distinct regions. Previously these subdivisions, or parcel-

lations, were based primarily on mapping anatomical features from post-mortem

brains.20 More recently, the use of resting-state functional magnetic resonance imag-

ing (rsfMRI) has provided the means for performing parcellation on living subjects

using functional information.21–23

There are several potential reasons for the increased interest in functional parcel-

lation of the brain. First, it provides an atlas that can be used to more accurately

compare inter-subject fMRI time series by incorporating functional and anatomical

features into inter-subject registration approaches.15 Second, it allows for dimension

reduction in fMRI analysis by grouping together functionally similar voxels, which

not only reduces computational burdens, but also alleviates the problem of multiple

comparisons and overly conservative family-wise error rate (FWER) corrections.24

Third, the identification of functionally homogeneous regions of interest (ROIs) is

necessary for defining meaningful brain network nodes.25

Many methods have been used to functionally parcellate the brain. These in-

clude, among others, fuzzy C-means,26 independent components analysis,27–29 expec-

tation maximization,30 hierarchical clustering,31–33 spectral clustering,22,34 and K-

means clustering.35 The goal of clustering is to group together items that are similar

to each other and separate items that are dissimilar from each other. As such, all clus-

8
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tering methods for brain parcellation employ a measure of distance or similarity that

is used to classify voxels into coherent clusters. There are many such metrics avail-

able, including euclidian distance, correlation, and eta-squared,16,34 and the choice of

metric will have a direct e↵ect on the result of clustering. Moreover, these metrics

are subject to error whenever the underlying data are measured with noise, and the

degree of noise may have a strong e↵ect on clustering results. While the noise levels of

rsfMRI data may be su�ciently low when the data from many subjects is combined

or averaged to form a group-level parcellation, the noise in a single subject’s data

is substantially higher. The primary approaches to overcome this limitation have

been collecting greater amounts of rsfMRI data on a single subject (30-60 minutes

rather than the standard 5-10 minutes)16,17,33 and utilizing constrained clustering

algorithms.22,33,36 For example, [33] proposed a subject-level clustering method in

which a set of stable seeds is grown into an initial parcellation that is further clus-

tered using a hierarchical approach that enforces spatial contiguity. However, in this

paper and others, reliability is assessed on a single subject with a large amount of scan

time. In contrast, most rsfMRI data are collected on much shorter intervals, making

validation and replication of such approaches hard for practical purposes. Thus, the

generalizability of such methods to more than one subject and their reliability on

scans of shorter length are still open questions. Moreover, accurate assessment of

reliability and validity of constrained clustering methods is di�cult as the ground

truth is unknown, and constraints artificially inflate reliability metrics by reducing

9
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the degrees of freedom of the problem.33

Our proposal is to directly improve the reliability of distance metrics by using

shrinkage estimators. Advantages of this approach are that the amount of scan time

required to produce reliable subject-level parcellations is greatly reduced; resulting

data can be used with standard, e�ciently implemented clustering algorithms; and

clustering results are a product of only the data itself, and not of external constraints.

The goal of this work is to investigate whether shrinkage-based methods can im-

prove the reproducibility of subject-level parcellations generated using rsfMRI data.

Shrinkage methods allow noisy subject-level estimators to “borrow strength” in a

principled manner from a larger population of subjects. In the statistics literature,

shrinkage estimators37,38 have been shown to improve the mean squared error (MSE)

of many traditional estimators by shrinking the estimators towards some fixed con-

stant value, such as the population mean. Shrinkage is implicit in Bayesian inference,

penalized likelihood inference and multi-level models39 and is directly related to the

empirical Bayes estimators commonly used in neuroimaging.40–42 Recently, [43] ap-

plied shrinkage in the context of rsfMRI seed-based connectivity analysis and showed

a nearly 30% average improvement in intra-subject reliability of correlation estimates,

with improvement of over 50% in several subjects.

This paper extends the work of [43] and o↵ers a number of methodological con-

tributions. First, we develop shrinkage estimators for the full voxel-by-voxel distance

matrix, which is required for clustering. Second, we propose methods for constructing
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shrinkage estimators in the practical case where only a single scan is available for some

or all subjects. Third, we explore the utility of shrinkage estimators where the degree

of shrinkage performed is subject-dependent to account for di↵erences in intra-subject

variability. Finally, we perform clustering on shrinkage estimates and demonstrate

improved test-retest reliability of the resulting subject-level parcellations.

To illustrate the feasibility of our proposed approach, we focus on one simple

unsupervised learning technique, namely normalized spectral clustering. We generate

simulated data, where the true parcellation is known and is allowed to vary across

subjects. In addition, we apply the method to real test-retest resting-state fMRI

data from 20 subjects and show that we can increase the reliability of single-subject

parcellations of the motor cortex by up to 30%.

2.2 Methods

In this section, we discuss shrinkage methods and illustrate how they can be used for

single-subject parcellation. We begin by detailing our shrinkage model and methods

for estimating the relevant parameters. We perform shrinkage on measures of func-

tional connectivity and obtain parcellations from these measures using two sets of

data, which are described below. The first is a simulation, for which the ground truth

parcellation is known. The second is a test-retest dataset of resting-state fMRI scans,

for which we use part of each subject’s data as a proxy for the unknown ground truth
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parcellation.

2.2.1 Shrinkage Methods

2.2.1.1 Shrinkage Model

The quantity of interest for each subject i, i = 1, . . . , I, is the true V ⇥ V functional

connectivity matrix C
i

, where V is the number of voxels in a pre-defined region of

interest (ROI) of the brain, which we wish to parcellate. Our goal is to use information

from the other I � 1 subjects to provide stable estimates of the subject-specific value

C
i

; the idea is to find compromise estimators between the unbiased but highly variable

raw subject-specific connectivity estimators and the biased, but much smoother, mean

connectivity estimators.

More precisely, let v and v0 be two distinct voxels in a particular ROI, let X
i

(v, v0)

be the true quantity of interest for subject i (e.g. pairwise correlation), and let

W
ij

(v, v0) be the observed value of X
i

(v, v0) obtained from session j. The classical

measurement error model44 is

W
ij

(v, v0) = X
i

(v, v0) + U
ij

(v, v0),

where U
ij

(v, v0) is subject-level measurement error for subject i during session j at

voxel-pair (v, v0). We assume that X
i

(v, v0) and U
ij

(v, v0) are independent for all i

and j. We further assume that the X
i

(v, v0), i = 1, . . . , I, are independently drawn
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from a population distribution with between-subject variance �2
X

(v, v0), i.e.

X
i

(v, v0) ⇠ N
�

µ
X

(v, v0), �2
X

(v, v0)
 

.

Finally, we assume that for each subject i, the U
ij

(v, v0) are independently and iden-

tically distributed for all j and

U
ij

(v, v0) ⇠ N
�

0, �2
U,i

(v, v0)
 

.

Returning our attention to the quantity of interest, the shrinkage estimator ofX
i

(v, v0)

using session j is given by

W̃
ij

(v, v0) = �
i

(v, v0) ⇤ W̄
j

(v, v0) + {1� �
i

(v, v0)} ⇤W
ij

(v, v0),

where W̄
j

(v, v0) = 1
I

P

I

i=1 Wij

(v, v0), and the shrinkage parameter �
i

(v, v0) represents

the relationship between within-subject variance �2
U,i

(v, v0) and between-subject vari-

ance �2
X

(v, v0):

�
i

(v, v0) =
�2
U,i

(v, v0)

�2
X

(v, v0) + �2
U,i

(v, v0)
.

Here �
i

(v, v0) ranges between 0 and 1 and represents the relative weight given to the

group mean W̄
j

(v, v0) compared to the raw subject-level estimate W
ij

(v, v0). As the

within-subject variance �2
U,i

(v, v0) increases, the subject-level information is less reli-

able, the shrinkage parameter increases, and the shrinkage estimate is more weighted

13



CHAPTER 2. PARCELLATION WITH SHRINKAGE ESTIMATORS

towards the group mean. As between-subject variance �2
X

(v, v0) increases, the group

mean becomes less representative of the true subject-level values, so shrinkage is less

beneficial, �
i

(v, v0) decreases, and the shrinkage estimate is more weighted towards

the subject-level observation. �
i

(v, v0) is estimated directly from the data and is de-

signed to achieve the optimal balance between the raw subject-level estimate and the

group mean.

We employ the Fisher-transformed correlation coe�cient as our measure of func-

tional connectivity, which fulfills the model assumptions of Normality and inde-

pendence of X
i

(v, v0) and U
ij

(v, v0).43 Given a correlation estimate r, the Fisher-

transformed estimate z(r) is given by the transformation r ! 1
2 log

�

1+r

1�r

�

, and is

approximately Normally distributed with variance (T � 3)�1, where T is the number

of time points in the scan. By contrast, the sampling variance of an untransformed

correlation coe�cient decreases as the true correlation increases, which violates the

signal-noise independence assumption. After shrinkage is performed, we then apply

the inverse transformation z ! exp(2z)�1
exp(2z)+1 to obtain an estimate of correlation for the

purposes of parcellation. However, for completeness we also evaluate the benefits of

applying shrinkage directly to the untransformed correlation estimates.

Note that the within-subject variance �2
U,i

(v, v0) is allowed to vary across subjects

i. This allowance stems from the observation that within-subject variance comes

from multiple sources, including sampling variability and session-to-session variabil-

ity. Sampling variability reflects the error of an estimate (e.g. correlation estimate)
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around the value it is estimating and is directly related to the number of time points

used to compute the estimate. For example, as described above, a Fisher-transformed

correlation estimate has asymptotic sampling variance 1
T�3 . It follows that as the

number of time points increases to infinity, this source of variability will decrease to

zero. While sampling variability may be roughly equal across subjects with equal

scan lengths, session-to-session variability may vary across subjects. This type of

variability reflects di↵erences in a subject’s true functional connectivity across multi-

ple scanning sessions due to variations in brain behavior. Moreover, session-to-session

variability may dominate sampling variability. In our sample, for example, we find

that within-subject variance of the Fisher-transformed correlation matrices tends to

be around five times larger than the theoretical sampling variance. We therefore allow

�2
U,i

(v, v0) to di↵er across subjects. However, as there are drawbacks to estimating

�2
U,i

(v, v0) completely separately for each subject, we propose several other methods

of estimating within-subject (“noise”) variance. In total, we propose four methods,

which are discussed in detail below.

2.2.1.2 Variance Component Estimation

Henceforth, we will use the terms within-subject and noise variance interchangeably,

and we will use the terms between-subject and signal variance interchangeably.

Noise Variance Estimation

To estimate the noise variance, it is ideal to have access to multiple scanning sessions
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for each subject (“test-retest data”). However, in many cases only a single scan is

available for each subject. For these situations, we propose two approaches. First,

create a pseudo-test-retest dataset by dividing each subject’s single scan into two

sub-scans, each containing half of the original time points. Second, estimate a global

measure of within-subject variance for all voxel-pairs and subjects using an external

test-retest dataset, a subset of subjects for which multiple sessions are available, or

through psuedo-test-retest data combined with extrapolation. This will be discussed

in more detail below.

We now describe four noise variance estimators, which we denote common (C),

individual (I), scaled (S), and global (G). The common estimator assumes that

�2
U,i

(v, v0) ⌘ �2
U

(v, v0) is the same across all subjects, while allowing variation across

voxel-pairs. The individual and scaled estimators allow �2
U,i

(v, v0) to vary across sub-

jects and voxel-pairs. The individual estimator estimates �2
U,i

(v, v0) separately for

each subject, while the scaled estimator starts with the common noise variance esti-

mator and adjusts it by a subject-specific factor to produce a di↵erent noise variance

estimate for each subject. The global estimator assumes that �2
U,i

(v, v0) = �2
U

is the

same across all subjects and voxel-pairs. This estimator is primarily intended for

the case when limited or no test-retest data is available for the dataset of interest.

All four noise variance estimators can be computed using true test-retest data or

pseudo-test-retest data created from a single scan.

Common Noise Variance Letting D
i

(v, v0) = W
i2(v, v0) � W

i1(v, v0), the common
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noise variance can be estimated as43,44

�̂2(C)
U,i

(v, v0) ⌘ �̂2(C)
U

(v, v0) :=
1

2
V ar

i

{D
i

(v, v0)} =
1

2(I � 1)

I

X

i=1

�

D
i

(v, v0)� D̄(v, v0)
 2

,

where D̄(v, v0) = 1
I

P

I

i=1 Di

(v, v0). To see this, note that

V ar
i

{D
i

(v, v0)} = V ar
i

{W
i2(v, v

0)�W
i1(v, v

0)}

= 2V ar
i

{U
ij

(v, v0)} ,

so V ar
i

{U
ij

(v, v0)} = 1
2V ar

i

{D
i

(v, v0)}.

Individual Noise Variance Given two estimates W
ij

(v, v0), j = 1, 2, of the term

X
i

(v, v0), the individual noise variance can be estimated as follows:

�̂2(I)
U,i

(v, v0) :=
1

J � 1

J

X

j=1

�

U
ij

(v, v0)� Ū
i

(v, v0)
 2

=
�

U
i1(v, v

0)� Ū
i

(v, v0)
 2

+
�

U
i2(v, v

0)� Ū
i

(v, v0)
 2

=
1

2
{U

i2(v, v
0)� U

i1(v, v
0)}2

=
1

2

�⇥

W
i2(v, v

0)�X
i

(v, v0)
⇤

�
⇥

W
i1(v, v

0)�X
i

(v, v0)
⇤ 2

=
1

2
{W

i2(v, v
0)�W

i1(v, v
0)}2

Scaled Noise Variance Given the common noise variance estimate �̂2(C)
U

(v, v0), we use
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a subject-specific scaling factor �
i

to obtain the scaled noise variance estimate

�̂2(S)
U,i

(v, v0) = �
i

⇥ �̂2(C)
U

(v, v0).

The scaling factor �
i

is equal to the test-retest MSE of subject i relative to the average

test-retest MSE over all subjects:

�
i

= D̄2
i

/
¯̄
D2,

where D̄2
i

= 2
V (V�1)

P

v>v

0 D2
i

(v, v0) and ¯̄D = 1
I

P

I

i=1 D̄
2
i

. To see that this provides a

reasonable estimate of an individual subject’s noise variance, notice that

�̂2(I)
U,i

(v, v0) =
1

2
D2

i

(v, v0)

and

�̂2(C)
U

(v, v0) ⇡ 1

I

I

X

i=1

�̂2(I)
U,i

(v, v0) =
1

2I

I

X

i=1

D2
i

(v, v0) =
1

2
D̄2(v, v0).

The approximate equality above follows from the fact that the two terms have the

same expected value (Appendix). Therefore,

�̂2(I)
U,i

(v, v0)

�̂2(C)
U

(v, v0)
⇡ D2

i

(v, v0)

D̄2(v, v0)
,

so across all voxel-pairs (v, v0), the ratio of the the individual noise variance to the
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common noise variance is approximately equal to �
i

. The benefit of the scaled noise

variance, compared with the individual noise variance, is that it is based upon a more

stable estimate of the noise variance, �̂2(C)
U

(v, v0) and requires the estimation of much

fewer terms.

Global Noise Variance We estimate the global noise variance as the mean value of

the common noise variance over all V (V � 1)/2 unique voxel-pairs:

�̂2(G)
U,i

(v, v0) ⌘ �̂2(G)
U

:=
2

V (V � 1)

X

v>v

0

�̂2(C)
U

(v, v0).

If pseudo-test-retest data is used to compute �̂2(G)
U

, the noise variance will be overesti-

mated due to shorter scan length and should be adjusted. Let �2
U

(t) be the expected

global noise variance for a scan of length t, and let �̂2
U

(t) be an estimate of �2
U

(t).

When we use pseudo-test-retest data by splitting a scan of length T , we obtain an

estimate of �2
U

(T2 ). To obtain an estimate of �2
U

(T ), let

✓(T ) =
�2
U

(T )

�2
U

(T2 )
.

Then �2
U

(T ) can be estimated as

�̂2
U

(T ) = ✓̂(T )⇥ �̂2
U

(T2 ). (2.1)

The adjustment factor ✓(T ) can be estimated if multiple scans are available for a
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subset of subjects. However, we also provide an estimate of ✓(t) as follows. Using

the test-retest fMRI dataset described below, for t = {1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7}

minutes, we resample scans of length t within each scanning session and estimate �2
U

(t)

for each resampled dataset. We then compute the average over all resampled datasets

to obtain �̂2
U

(t). We compute ✓̂(t) = �̂2
U

(t)/�̂2
U

( t2) for t = {2, 3, 4, 5, 6, 7}. This gives

a curve estimating the relationship between T and ✓(T ) for T = {2, 3, 4, 5, 6, 7}. To

extrapolate to other scan lengths, we fit a regression curve relating log scan length to

✓(t):

✓(t) = �0 + �1 ⇥ log(t). (2.2)

Using our coe�cient estimates of �0 and �1, one can estimate the appropriate scaling

factor ✓(T ) for scans of length T by simply plugging in their values into equation

2.2. One can then use this scaling factor to adjust the global noise variance esti-

mate obtained from pseudo-test-retest data using equation 2.1 and hence obtain an

appropriate noise variance estimate.

Signal Variance Estimation

The between-subject or signal variance �2
X

(v, v0) is equal to the di↵erence between

the total variance and noise variance. While noise variance may vary across subjects,

signal variance is a population parameter. Therefore, even if we choose to estimate

the noise variance individually, we use the common or global noise variance estimator

to obtain an estimate of the signal variance.

20



CHAPTER 2. PARCELLATION WITH SHRINKAGE ESTIMATORS

The total variance �2
W

(v, v0) at voxel-pair (v, v0) is estimated as44

�̂2
W

(v, v0) :=
1

J

J

X

j=1

�̂2
W

j

(v, v0) =
1

J(I � 1)

J

X

j=1

I

X

i=1

�

W
ij

(v, v0)� W̄
j

(v, v0)
 2

.

We can then simply estimate the signal variance as

�̂2
X

(v, v0) = �̂2
W

(v, v0)� �̂2
U

(v, v0),

Shrinkage Parameter Estimation

We obtain four estimators for the shrinkage parameter �
i

(v, v0) corresponding to the

four noise variance estimators:

�(M)
i

(v, v0) =
�2(M)
U,i

(v, v0)

�2
X

(v, v0) + �2(M)
U,i

(v, v0)
,

where M 2 {I, S, C,G}.

2.2.2 Subject-level Parcellations

Shrinkage estimates of correlation were obtained by applying the inverse-Fisher trans-

formation to the shrinkage estimate of the Fisher-transformed correlation. That is,

we first Fisher-transform the raw estimate, perform shrinkage, then apply the inverse

Fisher transformation. We then generated subject-level parcellations by performing

spectral clustering as described by [45], using the raw and shrinkage correlation esti-
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mates as a metric of similarity. We chose to look for five clusters based on previously

published findings (using the same test-retest resting state data set) that this was the

optimal number of functional partitions for the precentral gyrus in terms of test-retest

reliability.34

2.2.3 Performance of shrinkage methods

2.2.3.1 Reliability of functional connectivity measures

We define reliability of a functional connectivity measure (e.g. correlation) as the

MSE between the estimated measure Ĉ
i

and the truth C
i

. We assess the performance

of a shrinkage estimate as the percent decrease in MSE of the shrinkage estimate

relative to the MSE of the raw estimate.

2.2.3.2 Reliability of parcellations

We define reliability of a parcellation estimate as the Dice similarity coe�cient com-

pared with the true parcellation. Let Â
i

be the adjacency matrix obtained from

clustering, where Â
i

(v, v0) = 1 if v and v0 are assigned to the same parcel for subject

i and 0 otherwise. Let A
i

be the adjacency matrix corresponding to the true par-

cellation of subject i. Dice’s coe�cient of similarity between the estimated and true

parcellations is defined as

S(A
i

, Â
i

) =
2|A

i

\ Â
i

|
|A

i

|+ |Â
i

|
.
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We assess the performance of a parcellation obtained from a shrinkage estimate

of functional connectivity as the percent increase in Dice coe�cient relative to the

parcellation obtained from the corresponding raw estimate.

For the simulation described below, the true connectivity matrix and parcellation

are known quantities, so we can compute exactly the MSE and Dice coe�cient of the

raw and shrinkage estimates. For our fMRI dataset, however, the true connectivity

matrix and parcellation are unknown. We get around this by reserving part of each

subject’s data as a proxy for the truth, which we call the test set. We compute raw

and shrinkage estimates for the remaining data and compare both estimates to the

raw estimate from the test set.

2.2.4 Data

2.2.4.1 Simulated Data

We simulated a 10-by-10 voxel parcellation consisting of four clusters, each cluster

corresponding to one quadrant of the image at the group level (Figure 2.1a). Each

subject-level parcellation was generated by randomly permuting cluster labels along

the borders of clusters 1 and 3 and clusters 2 and 4 (Figure 2.1b).

The true correlation matrices within each cluster were assumed to follow an ex-

changeable structure, meaning that each pair of voxels within cluster k of subject i

at session j has the same pairwise correlation ⇢
ijk

. We further assumed that each
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Figure 2.1: Simulated signal image consisting of four 25-voxel clusters for the group
and two subjects.
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subject i has a fixed within-cluster correlation value ⇢
ijk

⌘ ⇢
i

across all sessions j

and clusters k. Let ⇢ represent the population average within-cluster correlation and

z(⇢) represent the Fisher-transformation of ⇢. Random variation among subjects

i = 1, . . . , I was introduced by adding Gaussian noise to z(⇢), then applying the

inverse Fisher-transformation, z�1(·):

⇢
i

= z�1
�

z(⇢) + u
i

�

, u
i

⇠ N(0, �2
X

)

As negative within-cluster correlations do not make sense under an exchangeable

correlation structure, any negative correlations generated through this process were

resampled until all ⇢
i

were positive. Between-cluster correlations were assumed to

equal zero. The true correlation matrix C⇤
i

for each subject i was therefore constructed

as a block diagonal matrix with the four diagonal blocks corresponding to the within-

cluster correlation matrices for subject i, and the o↵-diagonal blocks set to zero.

For each subject i = 1, . . . , I and session j = 1, 2, a time series of length T

was generated for each voxel in the cluster. Each time point was drawn from a

multivariate Normal distribution with mean zero and covariance matrix ⌃
i

⌘ C
i

.

As correlations are agnostic to within-voxel variance and temporal correlation, these

were not considered. The observed voxel time series were combined to form a 3D

image (2D x time) for each subject i and session j. Observed correlation matrices Ĉ
ij

were computed from the 3D images.
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Parameter Values Default Value
Number of subjects (I) (10, 20, 30, 100) 20
Length of time series (T ) (100, 200, 300, 1000) 200
Within-cluster correlation (⇢) (0.01, 0.05, 0.1) 0.05
Between-subject variance (�2

X

) (0.01, 0.02, 0.03, 0.04, 0.05) 0.02

Table 2.1: Simulation parameters varied (one at a time) and the values they are
varied over. The default value is the value at which each parameter is fixed while the
other parameters are varied.

We varied the following simulation parameters: number of subjects (I), length

of time series (T ), population average within-cluster correlation (⇢), and between-

subject or signal variance (�2
X

). The parameter values tested are given in Table 2.1.

Parameter values were changed one at a time, while all other parameters were fixed

at a default value. The default value of each parameter is also shown in Table 2.1.

We simulated 1000 datasets for each of the 13 unique designs defined by the

parameter values in Table 2.1. For each dataset, we computed the observed correlation

matrix Ĉ
i1 from each subject’s first session. We performed shrinkage on these matrices

using each noise variance estimation method M 2 {I, S, C,G}, described in Section

2.2.1.2. For each method M , we computed the noise variance assuming that two

sessions j = 1, 2 were available for each subject and again assuming that only one

session j = 1 was available for each subject. Let C̃M,`

i

be the shrinkage estimate

obtained by shrinking estimate Ĉ
i1 using noise variance estimation method M and

assuming availability of ` = 1, 2 scans for each subject. We performed clustering as

described in Section 2.2.2 on the raw correlation matrices Ĉ
i1, i = 1, . . . , I and each

shrinkage correlation matrix C̃M,`

i

, M 2 {I, S, C,G}, ` = 1, 2 and i = 1, . . . , I.
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Figure 2.2: Data setup to perform shrinkage and evaluate the performance using
both test-retest data (a) and single-scan data (b). Resting-state fMRI time series for
5 voxels are shown.

Analysis S1: Performance of shrinkage estimates and parcellations

Using the default design specified in Table 2.1, we computed the degree of shrink-

age, performance of the raw and shrinkage correlation matrices, and performance of

parcellations obtained using shrinkage estimates, as described in Section 2.2.3. The

degree of shrinkage is defined as the average value of �
i

(v, v0) over all voxel-pairs.

Analysis S2: Sensitivity to simulation parameters

For each alternative design specified in Table 2.1, we computed the degree of shrinkage

and performance of correlation estimates and parcellations to understand how each

parameter a↵ects the degree of shrinkage towards the group mean and the impact of

the shrinkage procedure on the reliability of similarity metrics and parcellations.
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2.2.4.2 Real fMRI Data

We use data from the publicly available Multi-Modal MRI Reproducibility Resource

(http://www.nitrc.org/projects/multimodal). Image acquisition parameters are

described in detail elsewhere.46 In short, a high resolution T1-weighted MPRAGE

and two 7-minute resting state scans were acquired from 21 healthy adult volunteers.

Both resting state scans were acquired on the same day, and in between the two scans

the subject exited the scanner.

The anatomical scan was registered to the first functional volume and normal-

ized to Montreal Neuological Institute (MNI) space using SPM8’s unified segmenta-

tion/normalization procedure. Resting state data were adjusted for slice time acqui-

sition, and rigid body realignment estimates were calculated with respect to the first

functional volume to account for participant motion. The non-linear spatial trans-

formation estimated during the unified segmentation/normalization was then applied

to the functional data along with the estimated rigid body realignment parameters

and resulted in 2-mm isotropic voxels. Each resting state scan was then temporally

detrended on a voxelwise basis. An aCompCor strategy was used to estimate spatially

coherent noise components, as this method has been shown to e↵ectively attenuate

physiological noise47 as well as motion artifacts.48 The aCompCor noise components

were regressed from the resting state data along with linearly detrended versions

of the rigid body realignment parameters and their first derivatives (computed by

backward di↵erences). Functional data were then spatially smoothed (6-mm FWHM
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Gaussian kernel) and temporally filtered using a .01-.1 Hz pass band. Data from one

participant were excluded from analysis due to a misalignment of the first and second

resting-state scans.

Our region of interest (ROI) for this experiment is the precentral gyrus (M1),

a key component of the motor control network and a region whose gross functional

organization has long been recognized.49 The precentral gyrus ROI was selected from

the “Type II Eve Atlas”50 and contained V = 7396 voxels after being transformed to

MNI space.

To evaluate performance of shrinkage using test-retest data to estimate the vari-

ance components, we split each subject’s data into three parts as illustrated in Figure

2.2a. As a total of 420 images (14 minutes) were collected over the two sessions, each

of the three parts consisted of 140 images (4 minutes and 40 seconds). For the middle

third, each session was demeaned before concatenating the time series. The first two

parts were used to compute the variance components. We performed shrinkage on

the first part and reserved the third part as the test set.

To evaluate performance of shrinkage using only a single scan from each subject,

we split the first session in half to create a pseudo-test-retest dataset, which we use to

estimate the noise variance. We performed shrinkage on the first session and reserved

the second session as the test set (Figure 2.2b). The psuedo-test-retest dataset was

used to compute the common, individual and scaled noise variance estimates; the

global noise variance was computed using both full sessions.
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For both setups, we first computed the V -by-V observed correlation matrices Ĉ
ij

for each subject i and session j = 1, 2 or part j = 1, 2, 3. The estimates produced

using the first session or part, Ĉ
i1, were treated as the “raw” estimates. We then

applied the Fisher-transformation to obtain Ẑ
ij

for all i and j. We computed the

variance components and shrinkage parameter �(M)
i

(v, v0), M 2 {I, S, C,G}, and

performed shrinkage using �(M)
i

(v, v0) on the Ẑ
i1. We then applied the inverse Fisher

transform to obtain shrinkage estimates C̃
i1. For completeness, we also performed the

same procedure directly on the Ĉ
i1 without Fisher-transforming to obtain shrinkage

estimates ˜̃C
i1.

Analysis R1: Performance of shrinkage estimates

The performance of the shrinkage correlation estimates computed from session or part

1 was assessed as described in Section 2.2.3, using the raw estimates from the test set

as a proxy for the unknown ground truth.

Analysis R2: Performance of parcellations

Subject-level parcellations were generated using both raw and shrinkage correlation

estimates, as described in Section 2.2.2. We used the estimates obtained by applying

shrinkage directly to the correlation estimates, as these were shown to have better

performance than shrinkage estimates obtained through the Fisher-transformed cor-

relation estimates. The performance of the parcellations generated using shrinkage

estimates from session or part 1, relative to the parcellations generated using the

corresponding raw estimates, was assessed as described in Section 2.2.3, using the
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Figure 2.3: The degree of shrinkage under the default simulation parameters of
I = 20, T = 200, ⇢ = 0.05, and �2

X

= 0.02, using either single session data (left) or
test-retest data (right).

parcellations generated from the raw estimates from the test set as a proxy for the

ground truth.

2.3 Results

2.3.1 Simulation Results

Analysis S1: Performance of shrinkage estimates and parcellations

Figures 2.3-2.4 show the degree of shrinkage, MSE of raw and shrinkage correlation

estimates, and Dice similarity of parcellations with the true parcellations, under the

default simulation settings (I = 20, T = 200, ⇢ = 0.05, �2
X

= 0.02). Results are shown

by shrinkage method and the type of dataset used, single session (left) or test-retest

data (right), and each boxplot shows the distribution of values over all subjects and

31



CHAPTER 2. PARCELLATION WITH SHRINKAGE ESTIMATORS

Figure 2.4: The MSE of correlation estimates (a), and Dice coe�cient of similarity of
parcellations with the true parcellations (b) under the default simulation parameters
of I = 20, T = 200, ⇢ = 0.05, and �2

X

= 0.02, using either single session data
(left) or test-retest data (right). The percent decrease in the median MSE of the
shrinkage estimates, compared with the MSE of the raw estimates, is reported below
each boxplot in (a); the percent increase in the Dice coe�cient of the shrinkage-based
parcellations, compared with the Dice coe�cients of the raw parcellations, is reported
below each boxplot in (b).
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simulation iterations. In Figure 2.3, the degree of shrinkage for a given subject and

simulation iteration was computed as the average value of the shrinkage parameter

�
i

(v, v0) over all voxel-pairs (v, v0). The degree of shrinkage was sensitive to the

noise variance method employed and the type of dataset (single session or test-retest)

used to perform shrinkage. Using a single session to perform shrinkage, the median

degree of shrinkage over all subjects and iterations was 90.3% with a common noise

variance; 85.3% with individual noise variance; 90.6% with scaled noise variance; and

73.0% with a global noise variance. Using test-retest data to perform shrinkage, the

median degree of shrinkage was 73.5% with a common noise variance; 64.0% with

individual noise variance; 74.2% with scaled noise variance; and 73.7% with a global

noise variance.

Figure 2.4a shows the MSE of the raw and shrinkage correlation estimates. The

average improvement in MSE due to shrinkage was fairly uniform across shrinkage

methods under the default simulation parameters. However, when a single session was

used to perform shrinkage, there were more large outliers than when test-retest data

was used, except when the global noise variance estimator was employed. The median

MSE over all subjects and iterations of the raw correlation estimates was 0.00498.

Using a single session to perform shrinkage, the median MSE of the shrinkage corre-

lation estimates was 0.00130 (73.9% lower) with a common noise variance; 0.00150

(69.9% lower) with individual noise variance; 0.00131 (73.7% lower) with scaled noise

variance; and 0.00130 (73.9% lower) with a global noise variance. Using test-retest
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data to perform shrinkage, the median MSE of the shrinkage correlation estimates

was 0.00119 (76.1% lower) with a common noise variance; 0.00134 (73.1% lower)

with individual noise variance; 0.00118 (76.3% lower) with scaled noise variance; and

0.00121 (75.7% lower) with a global noise variance.

Figure 2.4b shows the Dice coe�cient of similarity with the true parcellations of

the parcellations generated from the raw and shrinkage correlation estimates. The

improvement in Dice coe�cient due to shrinkage was fairly uniform across shrinkage

methods but was maximized when test-retest data was used to perform shrinkage

and when the global noise variance estimator was used with single session data. The

median Dice coe�cient over all subjects and iterations of the raw parcellations was

0.750. Using a single session to perform shrinkage, the median Dice coe�cient of the

shrinkage-based parcellations was 0.924 (23.2% higher) with a common noise vari-

ance; 0.923 (23.1% higher) with individual noise variance; 0.924 (23.2% higher) with

scaled noise variance; and 0.961 (28.1% higher) with a global noise variance. Using

test-retest data to perform shrinkage, the median Dice coe�cient of the shrinkage-

based parcellations was 0.962 (28.3% higher) with a common noise variance; 0.961

(28.1% higher) with individual noise variance; 0.962 (28.3% higher) with scaled noise

variance; and 0.962 (28.3% higher) with a global noise variance.

Figure 2.5 illustrates the performance of the shrinkage-based parcellations in two

di↵erent regions of the images displayed in Figure 2.1. The first is the region in which

all subjects share the same parcellation, namely the top four rows and bottom four
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rows of the image. In this region, shrinkage towards the group mean will clearly be

beneficial, since the group mean is representative of the truth for each subject. The

second is the region in which subject-level di↵erences in parcellations are allowed to

occur, namely the middle two rows of the image. In this region, it is less clear whether

shrinkage will result in parcellations that are closer to the true subject-level parcel-

lations. In Figure 2.5a, we see that the improvement in the Dice coe�cient within

the first region was large for all shrinkage methods. We also see that the methods

that use a single session resulted in the greatest improvement, since these methods

tend to over-estimate the noise variance and thus over-shrink. In this region, since all

subjects have the exact same parcellation, total shrinkage towards the group mean

will be the most beneficial. In Figure 2.5b, as expected, we see that the improvement

in the Dice coe�cient within the second region was less dramatic. In fact, for the

shrinkage methods that tend to over-shrink, there was a reduction in the median

Dice coe�cient compared with the raw parcellations. However, when test-retest data

was used to perform shrinkage or the global noise variance estimator was used with

single session data, there was an improvement in the median Dice coe�cient. When

test-retest data was used to perform shrinkage, the median Dice coe�cient increased

by 19.9% due to shrinkage for all noise variance estimators; when a single session

was used to perform shrinkage and the global noise variance estimator was used, the

median Dice coe�cient increased by 11.3% due to shrinkage.

Analysis S2: Sensitivity to simulation parameters
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Figure 2.5: Dice similarity (with each subject’s true parcellation) within two dif-
ferent regions: the region of the image where all subjects share the same parcellation
(a), and the region of the image where subjects’ parcellations di↵er (b). Results were
computed under the default simulation parameters of I = 20, T = 200, ⇢ = 0.05,
�2
X

= 0.02, using either single session or test-retest data.

Figure 2.6 shows how the degree of shrinkage (top row), MSE of the correlation

estimates (middle row), and the Dice similarity of the parcellations (bottom row)

change with varying simulation parameters. The first column shows the e↵ect of

varying the number of subjects; the second column shows the e↵ect of varying the

time series length; the third column shows the e↵ect of varying the strength of inter-

voxel correlations; and the fourth column shows the e↵ect of varying the degree of

similarity across subjects. Each color represents a di↵erent shrinkage method, and

results are shown in the case of both single session data (top panel of each plot) and

test-retest data (bottom panel of each plot). Each point represents the mean over all

subjects and iterations, and 95% confidence intervals are shown as grey bands, which

may not be visible due to their narrow width.

We see that the degree of shrinkage tends to decrease as the time series length
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Figure 2.6: E↵ect of each simulation parameter on the degree of shrinkage, MSE of
the correlation estimates, and Dice similarity of the subject-level parcellations. Each
point shows the median value over all subjects and iterations. Error bands show ±2
standard errors around the median (may not be visible due to narrow width).
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T increases, as the within-cluster correlation ⇢ increases, and as the between-subject

variance �2
X

increases (Figure 2.6, top row). This is expected, since the shrinkage

parameter is defined as the ratio of within-subject variance to total (within-subject

plus between-subject) variance, and higher values of T and ⇢ reduce the within-

subject variance. There is a weak increase in the degree of shrinkage as the number

of subjects I increases. This reflects bias in the estimation of �
i

(v, v0), a non-linear

function of variance components, a bias that diminishes as the sample size increases.

The MSE of the raw estimates is primarily related to the time series length T ,

since as T increases, sampling variability decreases (Figure 2.6, middle row). As T

increases, the MSE of all estimators decreases, and the MSE of the raw estimator

approaches, but does not achieve, the MSE of the shrinkage estimators. As the

number of subjects I increases, there is also a reduction in the MSE of the shrinkage

estimators, which is due to the increase in the degree of shrinkage associated with

larger sample size.

The Dice coe�cient of the raw parcellations increases as the time series length

T increases, as the within-cluster correlation ⇢ increases, and as the between-subject

variance �2
X

increases (Figure 2.6, bottom row). Similar to the results for MSE of

the correlation estimates, as T increases, the Dice coe�cient of the raw parcellations

approaches that of the shrinkage-based parcellations; unlike the results for MSE, the

shrinkage-based parcellations still dramatically outperform the raw parcellations even

at T = 1000. The Dice coe�cient of the shrinkage-based parcellations increases along
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with the Dice coe�cient of the raw parcellations as T , ⇢, or �2
X

is increased. As

the number of subjects I increases, the Dice coe�cient of the shrinkage estimators

increases, which is again due to the increase in the degree of shrinkage associated

with larger sample size.

2.3.2 Real fMRI Dataset Results

Figure 2.7 shows the degree of shrinkage towards the group mean performed on

the real rsfMRI dataset by noise variance estimation method and the type of dataset

(single session or test-retest) used to perform shrinkage. As in the simulation results,

the degree of shrinkage for subject i was computed as the mean value of the shrinkage

parameter �
i

(v, v0) over all voxel-pairs (v, v0). Each boxplot shows the distribution

of these values over subjects. For those methods that computed only a group-level

shrinkage parameter (the common and global noise variance methods), the shrinkage

parameter is the same over all subjects and the boxplot shows only a single value.

Below, results are reported for the case of shrinkage on Fisher-transformed correla-

tions, followed in brackets by results for the case of shrinkage directly on correlations.

When a single session was used to compute the noise variance, the median degree of

shrinkage over all subjects was 69.6% [70.8%] with a common noise variance; 56.5%

[58.4%] with individual noise variance; 68.9% [71.1%] with scaled noise variance;

and 55.0% [57.3%] with a global noise variance. When test-retest data was used to

compute the noise variance, the median degree of shrinkage over all subjects was
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Figure 2.7: Degree of shrinkage (percent weighting of the group mean, averaged
over all voxel-pairs) by noise variance estimation method and type of dataset (single
session or test-retest) used to perform shrinkage. For the “common” and “global”
noise variance methods, all subjects have the same shrinkage parameter at each voxel-
pair, so the boxplot shows a single value.

Figure 2.8: MSE of raw and shrinkage correlation estimates, by noise variance
estimation method and the type of dataset (single session or test-retest) used to
perform shrinkage. Each dotted line shows the MSE for a single subject’s raw and
shrinkage estimates, and the boxplots show the distributions over all subjects. The
percent decrease in the median MSE of each shrinkage estimate (compared to the
median MSE of the raw estimate) is reported below each boxplot.
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Figure 2.9: Dice coe�cients of similarity (with test set parcellations) of parcellations
produced using raw and shrinkage correlation estimates. Results are shown by noise
variance estimation method and the type of dataset (single session or test-retest) used
to perform shrinkage. Each dotted line shows the Dice coe�cients for a single subject,
and the boxplots show the distributions over subjects. The percent increase in the
median Dice coe�cient of each shrinkage parcellation (compared to the median Dice
coe�cient of the raw parcellation) is reported below each boxplot.

51.5% [52.4%] with a common noise variance; 37.3% [38.5%] with individual noise

variance; 49.5% [51.8%] with scaled noise variance; and 53.2% [54.5%] with a global

noise variance.

As expected, the degree of shrinkage was generally higher when a single session was

used due to upward bias in the noise variance estimation. As the global noise variance

estimator was designed to avoid this problem it does not su↵er from inflated degree

of shrinkage. By contrast, when the individual noise variance estimator was used, the

degree of shrinkage was significantly lower compared with the common or scaled noise

variance estimator. Since each individual noise variance estimate �̂2
i

(v, v0) is based

on only two observations (rather than S = 20), the distribution around the truth

�2
i

(v, v0) is a highly skewed Chi-squared, which introduces bias into the shrinkage
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parameter estimator, since it is a non-linear function of the variance estimators.

Analysis R1: Performance of shrinkage estimates

Figure 2.8 shows the MSE of each raw and shrinkage correlation estimate by the noise

variance estimation method employed and the type of dataset (single session or test-

retest) used to perform shrinkage. Each dotted line represents a single subject, and

the boxplots show the distribution of values over all subjects. Below each boxplot we

report the percent decrease in the median MSE of the shrinkage estimates compared

to the median MSE of the raw estimates. Figure 2.8a shows the results from applying

shrinkage on the Fisher-transformed correlations, and Figure 2.8b shows the results

from applying shrinkage directly to the untransformed correlations.

Results are again reported for the case of shrinkage on Fisher-transformed correla-

tions, followed in brackets by results for the case of shrinkage directly on correlations.

All shrinkage methods resulted in a decrease in the median MSE compared with

the raw estimates. Recall that the data used to compute the raw estimates and

parcellations was di↵erent in the single session case and the test-retest case (see

Figure 2.2). Specifically, the full 7-minute scan from the first session was used in the

single session case, and only the first 4 minutes and 40 seconds of that scan was used

in the test-retest case. Therefore, the raw coe�cients and parcellations, and their

respective reliability measures, di↵er across the two cases. When a single session

was used to compute the noise variance, the raw correlation estimates had a median

MSE of 0.0434. The shrinkage estimates had a median MSE of 0.0325 (25.1% lower)
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[0.0319 (26.5% lower)] with a common noise variance; 0.0348 (19.8% lower) [0.0344

(20.7% lower)] with individual noise variance; 0.0326 (24.9% lower) [0.0319 (26.4%

lower)] with scaled noise variance; and 0.0318 (26.7% lower) [0.0316 (27.2% lower)]

with a global noise variance. When test-retest data was used to compute the noise

variance, the raw correlation estimates had a median MSE of 0.0491. The shrinkage

estimates had a median MSE of 0.0352 (28.3% lower) [0.0345 (29.7% lower)] with a

common noise variance; 0.0373 (24.1% lower) [0.0359 (26.9% lower)] with individual

noise variance; 0.0370 (24.7% lower) [0.0348 (29.1% lower)] with scaled noise variance;

and 0.0351 (28.5% lower) [0.0344 (29.9% lower)] with a global noise variance.

For all methods, applying shrinkage directly to the correlations resulted in greater

reduction in MSE (compared with applying shrinkage to the Fisher-transformed cor-

relations). Whether single session data or test-retest data was used, shrinkage using

the global noise variance estimator resulted in the greatest reduction in median MSE.

At the subject level, when test-retest data was used to perform shrinkage, shrinkage

on untransformed correlations resulted in reduced MSE for 19 out of 20 subjects across

all noise variance estimation methods; when single session data was used, shrinkage

on untransformed correlations resulted in reduced MSE for 17 out of 20 subjects for

the individual noise variance estimation method and 18 out of 20 subjects for all other

noise variance estimation methods.

Analysis R2: Performance of parcellations

Figure 2.9 shows the Dice coe�cients of similarity (with test set parcellations) of the
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Figure 2.10: Subject-level parcellations of the motor cortex from 3 example subjects.
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Figure 2.11: Group-level parcellations from sessions 1 and 2.

parcellations generated from the raw and shrinkage correlation estimates, by noise

variance estimation method and type of dataset (single session or test-retest) used to

perform shrinkage. As in Figure 2.8, each line shows the results for a single subject,

and the boxplots show the distributions of Dice coe�cient values over all subjects.

For each noise variance estimation method, the percent increase in the median Dice

coe�cient of the shrinkage parcellations, compared with the raw parcellations, is

reported below each boxplot.

Since shrinkage on the correlation estimates without Fisher-transforming resulted

in better performance than shrinkage on Fisher-transformed correlations, parcella-

tions were only generated from the shrinkage estimates obtained by shrinking the

correlations directly. The results below therefore reflect the performance of parcella-

tions obtained using this method.

All shrinkage methods resulted in an increase in the median Dice coe�cient of

parcellations compared with raw parcellations. When a single session was used to
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compute the noise variance, the raw parcellations had a median Dice coe�cient

of 0.401. The shrinkage-based parcellations had a median Dice coe�cient of 0.511

(27.6% higher) with a common noise variance; 0.521 (30.0% higher) with individual

noise variance; 0.512 (27.8% higher) with scaled noise variance; and 0.521 (30.0%

higher) with a global noise variance. When test-retest data was used to compute

the noise variance, the raw parcellations had a median Dice coe�cient of 0.403. The

shrinkage-based parcellations had a median Dice coe�cient of 0.467 (15.9% higher)

with a common noise variance; 0.461 (14.4% higher) with individual noise variance;

0.465 (15.5% higher) with scaled noise variance; and 0.479 (18.8% higher) with a

global noise variance.

The improvement in test-retest reliability of parcellations due to shrinkage was

remarkably similar across shrinkage methods. Whether single session data or test-

retest data was used to compute the noise variance, the global noise variance estimator

again showed the best performance, with an increase in the Dice coe�cient of 30.0%

using single session data or 18.8% using test-retest data.

Figure 2.10 shows the parcellations of the motor cortex of three subjects (from

left to right: subjects 2, 3 and 5) resulting from the first scanning session before

shrinkage (Figure 2.10a), the first scanning session after shrinkage (Figure 2.10b),

and the second scanning session with no shrinkage (Figure 2.10c). The parcellations

in Figure 2.10b were based on shrinkage using a single scanning session and the global

noise variance estimator. These parcellations illustrate that subject-level di↵erences
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Figure 2.12: The relationship between scan length and noise variance. Results
are shown using untranformed correlations (C, shown in red) and Fisher-transformed
correlations (Z, shown in teal) to compute the noise variance. Panel (a) shows di-
minishing session-to-session variance as scan length increases. Panel (b) shows how
the adjustment factor ✓(t) = �2

U

(t)/�2
U

(t/2) changes as t increases. The fitted line
relating ✓(t) to log(t) is shown in black.

in parcellations generated from raw correlation estimates are not always seen in subse-

quent scanning sessions. They also illustrate that while shrinkage-based parcellations

are, by nature, more similar to the group-level parcellation, shown in Figure 2.11,

subject-level di↵erences can still be seen.

Time series length and noise variance

Figure 2.12 shows the estimated noise variance �2
U

(t) with 95% confidence interval

(a) and estimated adjustment factor ✓(t) = �2
U

(t)/�2
U

(t/2) (b) for scan lengths rang-

ing from t = 1 to 7 minutes. Results are shown using untranformed correlations
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and Fisher-transformed correlations to compute the noise variance. Figure 2.12b

also shows the fitted line from the regression relating log(t) to ✓(t). The coe�cient

estimates and standard errors from the regression model

✓(t) = �0 + �1 ⇥ log(t) + ✏,

were �̂0 = 0.590 (s.e. 0.00732) and �̂1 = 0.129 (s.e. 0.00493). The adjusted R-squared

of the model was 0.986.

2.4 Discussion

In this work we propose a new approach for improving the test-retest reliability

of subject-level resting state parcellations based upon the use of shrinkage-based

measures of similarity, or distance, between voxels as input to clustering. On 7-minute

resting-state scans from 20 healthy adults, parcellations obtained using shrinkage

correlation estimates were shown to have up to 30% improved test-retest reliability

compared to those obtained using the raw correlation estimates. Through simulations,

similar improvement in reliability were observed for a wide range of sample sizes, time

series lengths, signal strengths, and degrees of similarity among subjects.

Shrinkage methods have found wide usage in the statistics literature, allowing

noisy subject-level estimators to “borrow strength” from a larger population of sub-

jects. The approach is implicit in penalized likelihood inference, multi-level models,39
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empirical Bayes estimation,40–42 and Bayesian inference. Indeed, most shrinkage es-

timators will correspond to the mode of some Bayesian posterior. In recent work,

Shou et al. (2014) applied shrinkage to rsfMRI seed-based connectivity analysis and

showed a nearly 30% average improvement in intra-subject reliability of correlation

estimates. Our work extends these results by developing shrinkage estimators for

the full voxel-by-voxel distance matrix required for clustering; proposing methods for

constructing shrinkage estimators when only a single scan is available; exploring the

utility of shrinkage estimators when the amount of shrinkage is subject-dependent

to account for di↵erences in intra-subject variability; and demonstrating improved

test-retest reliability of subject-level parcellations based on shrinkage estimates.

Typically, subject-level parcellations derived from short rsfMRI scans (e.g., 5-10

minutes) tend to be highly unreliable due to their low SNR. Longer scans (e.g., 30-60

minutes) lead to more reliable results, and many subject-level parcellation methods

are taking advantage of the increased availability of such data. However, there are

still a number of reasons why it may be useful or necessary to use shorter scans to

produce subject-level parcellations. First, many such rsfMRI scans have already been

collected, from which a wealth of information is potentially available. Second, it may

be infeasible to collect longer scans for certain populations, including children, the

elderly, or diseased populations. While healthy adult controls are ideal candidates to

undergo long resting-state scanning sessions, they are not always of primary interest

to researchers. Third, the price of obtaining long scans may be prohibitive. By
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borrowing strength from the group mean to enhance the quality of noisy subject-level

functional connectivity estimates, our shrinkage methods are able to minimize the

limitations of short rsfMRI scans and take advantage of the widespread availability

of such scans for subject-level inference.

Furthermore, our simulations suggest that shrinkage-based parcellations derived

from short scans (200 time points) are equivalent, in terms of reliability, to raw

parcellations derived from much longer scans (over 1000 time points). This suggests

that performing shrinkage may be comparable to collecting scans of considerably

longer length, in terms of reliability. This is an important finding, due to the high

costs involved with performing longer scans. Nonetheless, it may still be beneficial

to collect longer rsfMRI scans when feasible. More data is almost always better, and

subject-level di↵erences will likely be more accurately expressed as the quantity of

subject-level data increases. On the other hand, longer scans should not be viewed

as mutually exclusive with shrinkage methods. Our simulation results suggest that

shrinkage on longer scans can still lead to substantially more reliable subject-level

parcellations. Further research on the benefits of shrinkage on longer scans using real

rsfMRI data will be important to understand this interplay.

Finally, according to our simulations, the shrinkage methods we have proposed not

only improve the reliability of the overall parcellations, but also the reliability within

regions where subject-level di↵erences exist. The ability to accurately parcellate these

regions is vital to quantifying and studying subject-level di↵erences in functional
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organization.

Although we chose to demonstrate the applicability of our shrinkage methods

using correlations as our similarity metric, it is important to note that they are

applicable to almost any similarity or distance metric. As long as the assumptions of

Normality and signal-noise independence are roughly satisfied, our methods can be

applied to a wide variety of metrics. Interestingly, we observed more improvement

in reliability by applying shrinkage directly to correlation estimates, rather than to

Fisher-transformed correlations, even though the model assumptions are not strictly

satisfied for correlation estimates. This is no doubt due to the fact that we are

evaluating the error on the correlation scale. If we were instead to evaluate the error on

the Fisher-transformed scale, it would be better to perform shrinkage directly on the

Fisher-transformed data. We have also applied shrinkage to the inter-voxel similarity

metric described in [34], which incorporates long-range correlations between voxels

within the motor cortex and the rest of the brain, and found that shrinkage reduced

the MSE of the estimates by approximately 40% (results not shown). Furthermore,

though we used spectral clustering for parcellation, there is nothing that prevents

other clustering methods from being used instead. For example, we have observed

similar improvement in parcellation using K-means clustering (results not shown).

The objective of the methods we have described is to maximize the reliability of the

similarity or distance metric utilized in clustering. Therefore, any clustering method

that depends on such a metric will benefit from using shrinkage estimates of that
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metric in place of raw observed values.

Throughout the paper we have described a number of potential shrinkage meth-

ods. Based on our empirical findings we recommend utilizing the global noise variance

estimator, since it is practical for settings where test-retest data is not available (or is

only available for a subset of subjects), and it demonstrated the best performance in

terms of improved reliability of correlation estimates and parcellations. This method

has been implemented in both MATLAB and R and is available for download through

Mathworks File Exchange1 and GitHub2, respectively. The strong performance of the

global noise variance estimator does not necessarily imply that there is no spatial vari-

ability in noise levels, but rather that there may be too many parameters to estimate

in a meaningful way. For example, in the motor cortex alone there are more than

27 million unique voxel-pairs, and estimating a shrinkage parameter for each can be

prohibitive. This may also explain why the scaled noise variance method tends to

out-perform the individual noise variance method. Though both noise variance esti-

mators seek to quantify each subject’s personal noise level, the scaled noise variance

estimator requires the estimation of dramatically fewer parameters. For example,

with 7396 voxels and 20 subjects, rather than estimating over 20⇥27,000,000 pa-

rameters, the scaled noise variance approach requires approximately 27,000,000+20

parameters. As more data is collected, more parameters can be reliably estimated.

Therefore, with longer scans, the common or scaled noise variance estimators may

1
http://www.mathworks.com/matlabcentral/fileexchange/48453-mandymejia-shrinkit

2
https://github.com/mandymejia/shrinkR

52



CHAPTER 2. PARCELLATION WITH SHRINKAGE ESTIMATORS

ultimately begin to out-perform the global noise variance estimator. However, there

is another issue to keep in mind when performing subject-specific shrinkage using

the scaled or individual noise variance estimator. When all subjects share the same

shrinkage parameter, the rank of the subjects’ values relative to one other will not

change as each subject’s value changes. By contrast, if shrinkage is subject-specific,

the rank of subjects may not be preserved. Therefore, even if subject-level parame-

ters can be reliably estimated, care should be taken when performing subject-specific

shrinkage.

Although we have strong evidence of the benefits of the proposed shrinkage meth-

ods, our analysis was limited to the motor cortex in a population of healthy adults.

The benefits of shrinkage on reproducibility are likely to vary, depending on the inter-

voxel similarity metric being estimated, the ROI being parcellated, and the population

being studied, among other factors. Future research should focus on quantifying the

benefits of shrinkage within other regions of interest, for whole-brain parcellation, and

for other, potentially more diverse, populations. Finally, while the methods we have

proposed can be easily applied to any distance or similarity metric, some parcellation

methods employ other versions of subject-level data, such as the entire time series or

principal components. Future research should focus on adapting the ideas presented

in this paper to such settings.
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Appendix

Claim. The expected value of the common noise variance estimator and the ex-

pected value of the mean individual noise variance estimator are the same at each

voxel-pair (v, v0).
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Starting from the LHS and dropping the (v, v0) notation for conciseness, we see that
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Chapter 3

PCA leverage: outlier detection for

high-dimensional functional

magnetic resonance imaging data

Outlier detection for high-dimensional data is a popular topic in modern statistical

research. However, one source of high-dimensional data that has received relatively

little attention is functional magnetic resonance images (fMRI), which consists of

hundreds of thousands of measurements sampled at hundreds of time points. At

a time when the availability of fMRI data is rapidly growing—primarily through

large, publicly available grassroots datasets consisting of resting-state fMRI data—

automated quality control and outlier detection methods are greatly needed. We

propose PCA leverage and demonstrate how it can be used to identify outlying time
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points in an fMRI scan. Furthermore, PCA leverage is a measure of the influence of

each observation on the estimation of principal components, which forms the basis of

independent component analysis (ICA) and seed connectivity, two of the most widely

used methods for analyzing resting-state fMRI data. We also propose an alternative

measure, PCA robust distance, which is less sensitive to outliers and has controllable

statistical properties. The proposed methods are validated through simulation studies

and are shown to be highly accurate. We also conduct a reliability study using resting-

state fMRI data from the Autism Brain Imaging Data Exchange (ABIDE) and find

that removal of outliers using the proposed methods results in more reliable estimation

of subject-level resting-state networks using ICA.

3.1 Introduction

The presence of outliers in high-dimensional settings, such as genetics, medical imag-

ing and chemometrics, is a common problem in modern statistics and has been the

focus of much recent research.51–56 One source of especially high-dimensional data

that could benefit from improved outlier detection methods is functional magnetic

resonance imaging (fMRI). A single fMRI scan usually contains 100,000-200,000 vol-

umetric elements or voxels within the brain, which are sampled at hundreds of time

points. Here, we consider voxels to be variables and time points to be observations,

in which case the outlier problem is to identify time points that contain high levels of
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systematic non-neuronal variation or artifacts. A second type of outlier problem—but

one that is not the focus of this paper—is to identify outlying fMRI scans in a group

analysis.

The acquired fMRI data contains multiple sources of noise related to both the

hardware and the participants themselves.3 These include gradient and magnetic

field instability, head movement, and physiological e↵ects, such as heartbeat and

respiration. These sources of noise appear in the data as high-frequency spikes, image

artifacts and distortions, as well as low-frequency (slow) drift. All fMRI data contain

some artifacts, and it is critical to perform adequate quality control on the data prior

to statistical analysis.

In recent years, a number of grassroots initiatives have resulted in large, publicly

available fMRI databases, and this increased accessibility has emphasized the need

for automated methods to perform accurate and reliable quality control on these

data. Most of this data consists of resting-state fMRI, collected while the subject is

not performing an explicit task. The promise of these datasets is great; many focus

on a particular disease, including the Alzheimer’s Disease Neuroimaging Initiative

(ADNI),4 the Autism Brain Imaging Data Exchange (ABIDE),57 and the Attention

Deficit Hyperactivity Disorder (ADHD) 200,6 providing an enormous opportunity for

researchers to better understand the neurological reasons behind such diseases. How-

ever, these datasets are often a collection of scans from multiple sites with varying

acquisition protocols, preprocessing pipelines and quality control mechanisms, result-
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ing in widely varying types and rates of outliers. Quality inspection often takes place

in a manual or semi-automated manner by the individual research groups that use

these datasets, but this is typically only a cursory process due to the large volume

of data. This presents a timely opportunity for statisticians to adapt established

methods of outlier detection to the unique and very high-dimensional setting of fMRI

data.

Here we propose a fully automated method to detect outliers in fMRI data, which

is based on dimension reduction through principal components analysis (PCA) and

established measures of outlyingness, namely leverage and robust distances. While

leverage has not typically been employed for outlier identification outside of the re-

gression framework, here we argue for leverage as a meaningful measure when the

principal components are themselves of interest, which is the case when PCA is used

for dimension reduction prior to independent component analysis (ICA). We note

that leverage has been previously combined with PCA in the context of principal

components regression.58

A number of outlier detection methods for standard and high-dimensional data

employ PCA. For example, PCA influence functions and other measures of the sensi-

tivity of principal components to each observation59,60 have been proposed as a way

to identify outliers. However, such methods often rely on re-estimating the principal

components with each observation left out, and can therefore be computationally de-

manding. Other outlier detection methods depend on robust covariance estimation
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(see53 for a review), but these methods are usually not well-suited for high-dimensional

settings. One such method that has received significant attention is minimum covari-

ance determinant (MCD) estimators, which identify a subset of observations that

result in an estimated covariance matrix with the minimum determinant.61

Several outlier detection methods employing PCA have been proposed specifically

for high-dimensional data.51 proposed ROBPCA, a robust method of PCA for high-

dimensional data that can also be used to identify outliers, which lie far from the

robust principal components space.52 proposed PCOut and Sign, two computationally

e�cient methods that perform standard PCA after robustly scaling the data and

looking for outliers within the principal directions that explain 99% of the variance

in the data.56 proposed the minimum diagonal product estimator, which is related to

the MCD but ignores o↵-diagonal elements and, unlike the MCD, is identifiable when

there are more variables than observations.55 proposed an adaptation of the MCD to

high-dimensional data through regularization and applied the methods to summary

statistics from a neuroimaging dataset.

However, many of the proposed methods for outlier detection in high-dimensional

data have only been validated using moderately sized data, which often contain more

observations than variables. One exception comes from the field of genetics, where54

proposed a method for identifying outlying genes in microarray data by performing

dimension reduction through PCA followed by computation of robust distances on

the reduced data. The proposed method was validated using microarray datasets
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with approximately 100 observations and 2,000 variables, and was shown to be highly

accurate and improve class prediction accuracy. ROBPCA was also performed for

comparison and resulted in more false positives and false negatives than the proposed

method.

To identify outlying time points in fMRI data, several data-driven approaches have

been proposed, and the removal of these time points (scrubbing or spike regression)

has been shown to be beneficial.62–64 However, the methods proposed thus far tend

to focus on subject head motion and variability of intensities within and across time

points. The focus on motion is well-founded, as it has been thoroughly demonstrated

that motion results in spurious changes to fMRI measures of brain connectivity.62,64–66

However, a more unified framework for outlier identification is needed, as motion is

only one potential source of artifacts in fMRI data. Furthermore, many of the ap-

proaches proposed thus far result in a collection of related quality control measures

that must be combined in some way to identify and remove outliers. Here, we pro-

pose using a single, universal measure of outlyingness that is directly related to the

influence of each time point on the estimation of principal components, which are the

foundation of several common measures of brain connectivity (as described in more

detail in Section 3.2.2).

The remainder of this paper is organized as follows. We begin with a description

of our statistical methodology. We then present a simulation study, which is used

to assess the sensitivity and specificity of the proposed methods. Next, we present a
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reliability analysis employing the ABIDE dataset. We use independent components

analysis (ICA) to identify subject-level brain networks and evaluate the reliability of

these networks with and without outlier removal using the proposed methods. We

conclude with a brief discussion.

3.2 Methods

We propose two PCA-based measures of outlyingness: PCA leverage and PCA ro-

bust distance. We develop thresholding rules to label outliers using either measure.

For both measures, we begin by reducing dimensionality through PCA. These mea-

sures and their corresponding thresholding rules are described in detail below. All

computations are performed in the R statistical environment version 3.1.1.67

3.2.1 Dimension Reduction

We use the following notation: for an fMRI dataset, let T be the number of 3-

dimensional volumes in a 4-dimensional scan and let V be the number of voxels in

the brain, where T ⌧ V .

Let Y
T⇥V

represent the data from a single fMRI scan, where each row of Y is a

vectorized volume after removing voxels outside of the brain. We begin by centering

and scaling each column relative to its median and median absolute deviation,68

respectively, to avoid the influence of outliers. The singular value decomposition
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(SVD)69 ofY is given byY = UDVt, whereU is a T⇥T matrix,D is a diagonal T⇥T

matrix, Vt is a T ⇥ V matrix, and UUt = UtU = VtV = I
T

. Here At denotes the

transpose of matrix A. The diagonal elements of D are d1 � d2 � · · · � d
T

� 0. The

rows of Vt contain the principal components or eigenimages of Y, and the columns

of Ũ = UD contain the corresponding principal component scores. Note that to

avoid memory limitations, rather than compute the SVD of Y directly, one generally

computes the singular value decomposition (SVD) of YYt to obtain YYt = UD2Ut

and then solves for Vt.

We retain Q < T principal components, so that the “reduced data” are given

by the submatrices of U and D corresponding to the first Q principal components.

For ease of notation we redefine U
T⇥Q

and D
Q⇥Q

to represent these submatrices and

Ũ
T⇥Q

= UD. To choose the model order Q, we retain only those components with a

greater-than-average eigenvalue, which explain a greater-than-average percent of the

total variation. This is one of the simplest cuto↵ rules for principal components;70–72

while more sophisticated cuto↵ methods exist we find that this works well in practice

for outlier detection. To avoid extreme solutions, we limit the range of possible model

orders to between 15 and 50.
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3.2.2 Principal components leverage

3.2.2.1 Motivation and definition

In regression, leverage is defined as the diagonals of the “hat matrix”H = X(XtX)�1Xt,

where X is a matrix of explanatory variables.73 The hat matrix projects the outcome

variable or variables Y onto the column space of X, yielding the projected data

Ŷ = HY. Leverage, which is bounded between 0 and 1, is often used to assess the

potential of an observation to influence the regression fit, since it is the proportion of

a change in y
i

that will be reflected in the fitted value ŷ
i

. Similarly, it is proportional

to the uncertainty in the estimate of ŷ
i

, since Var(Ŷ) = �2H. Of particular relevance

for our context, leverage is also a measure of outlyingness among the explanatory

variables.

Extending the idea of leverage to the PCA context, we treat Ũ = UD as a design

matrix in the estimation of Vt. Recall that for computational convenience we often

first obtain U and D through the SVD of YYt. Using the reduced versions of U

and D, we then compute Vt = D�1UtY, which is equivalent to the ordinary least

squares (OLS) estimate V̂t in the multivariate regression model Y = ŨVt +E, since

V̂t = D�1UtY. Note that this equality holds whether the dimension is reduced before

or after Vt is estimated.

We therefore define PCA leverage as h = {h1, . . . , hT

} = diag{H}, where H =

Ũ(ŨtŨ)�1Ũt = UUt. Note that D is simply a scaling factor applied to each variable

64



CHAPTER 3. OUTLIER DETECTION WITH PCA LEVERAGE

and therefore has no e↵ect on leverage, which is a standardized measure. Continuing

the regression analogy, in PCA the matrix H projects Y onto the column space of

Ũ — the principal directions or reduced space of the data — as Ŷ = UDVt =

UDD�1UtY = UUtY = HY. Conceptually, PCA leverage represents the potential

of an observation to influence the estimation of the principal components in Vt.

Furthermore, PCA leverage is a measure of outlyingness not only among the PCA

scores but also within the reduced data Ŷ = UDVt, since Ŷ(ŶtŶ)�1Ŷt = UUt = H.

Note that dimension reduction is essential for PCA leverage to be informative, since

UUt = I when all T components are retained.

Before specifying thresholding rules for PCA leverage to identify outliers, we re-

turn briefly to the interpretation of PCA leverage and describe why it is a meaningful

measure of outlyingness for fMRI data and especially for resting-state fMRI data.

First, while in the regression context leverage only represents the potential influence

of an observation on estimation of regression coe�cients, PCA leverage is a more

direct measure of influence: in regression, an influence point is defined as a point that

is an outlier in the explanatory variables (a “leverage point”) and in the response

variables; by contrast, PCA leverage points are outliers in both Ũ and the original

data Y, implying that we can consider leverage points to be influence points in the

PCA context. Furthermore, while in regression we distinguish between “good” and

“bad” leverage points, in fMRI data observations with high PCA leverage points

are unlikely to represent true signal, since the signal change associated with neuronal
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sources is very small compared with noise and artifacts. Therefore, we assume that all

observations with high PCA leverage are “bad” influence points in the fMRI context.

Additionally, the interpretation of PCA leverage as the influence of each observa-

tion on the estimation of principal components is particularly meaningful for resting-

state fMRI data, as the matrix Vt is the precursor of two of the most common types

of analysis applied to such data, namely the computation of pairwise correlation be-

tween regions of interest and temporally coherent brain networks derived from ICA:

the V ⇥ V pairwise correlation matrix is equal to VD2Vt; subject- and group-level

ICA both begin with a PCA reduction of the subject-level data along the temporal

dimension, giving Vt. Therefore, the estimation of Vt is often of principal interest in

the analysis of resting-state fMRI data, in which case PCA leverage is a meaningful

measure of influence as well as a measure of outlyingness.

3.2.2.2 Thresholding rule

In setting a thresholding rule to identify outliers, it is important to recognize that

leverage of an observation only has relative meaning, since the leverage of a set of

observations sums to the number of variables. With only so much leverage to “go

around”, the leverage of normal observations will necessarily decrease in the presence

of one or more high-leverage observations. This implies that the mean, which is fixed,

may not be representative of normal observations. We therefore use the median

leverage across all observations, m
h

= med(h1, . . . , hT

), as a reference for normal
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values. Let Z
t

= I(h
t

> ↵ ·m
h

) indicate whether observation t exceeds ↵-times m
h

,

in which case it is labeled a “leverage outlier”. We find that ↵ = 3 works well, but

this may be varied to establish a more or less conservative threshold.

Leverage does not display convenient statistical properties, so rules of thumb such

as the one we propose, rather than formal statistical tests, are usually employed to

detect leverage points. While this may work reasonably well in practice, a formal

statistical test for outliers with known and controllable properties is desirable. Fur-

thermore, leverage is known to be subject to masking of outliers,74,75 a phenomenon

in which truly outlying observations have leverage values within the normal range due

to the presence and influence of more extreme outliers. To address both of these lim-

itations, in the following section we propose an alternative robust distance measure

based on minimum covariance determinant (MCD) estimators.61

3.2.3 Principal components robust distance

For a design matrix with an intercept or centered variables, leverage is related to the

squared empirical Mahalanobis distance,76 which is defined for an n⇥p matrix X and

observation i as d2
i

= (X
i

� X̄)tS�1(X
i

� X̄)}, where X̄ and S are the empirical mean

and covariance matrix of X, respectively. The Mahalanobis distance is known to be

sensitive to outliers, as they may have a strong influence on the empirical mean and

covariance estimates; hence, leverage is often believed to be sensitive to outliers.74

However, at first glance PCA leverage may appear to be less sensitive to outliers than
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Mahalanobis distance, since the columns of U are not centered and the middle term

cancels, so that the PCA leverage of each observation does not depend directly on

any other observation.

However, outliers may in fact have a more subtle and indirect e↵ect on the lever-

age of a set of observations, due its properties of being bounded between 0 and 1 and

summing to a fixed value. For example, as described above, the presence of a single

observation with high leverage will reduce the leverage of all other points. Further-

more, due to the fact that all leverage values must be less than 1, it may be di�cult

to distinguish amongst the relative importance of multiple outliers that each have

leverage close to 1. Clearly, leverage may be subject to the influence of outliers.

As an alternate measure, we adopt the minimum covariance determinant (MCD)

distance proposed by.61 For a general dataset, let n be the number of observations

and p be the number of variables. The MCD estimators of location, X̄⇤, and scale, S⇤,

are obtained by selecting a subset of the data of size h < n for which the confidence

ellipsoid determined by S⇤ and centered at X̄⇤ has minimal volume. Within this

subset of the data, the traditional location and scale estimators are computed. The

maximum breakdown point of MCD estimators is obtained by setting h = b(n +

p + 1)/2c and approaches 50% as n ! 1. MCD distance d2
S

⇤(X
i

, X̄⇤) is computed

as a Mahalanobis distance using the MCD estimates of location and shape in place

of traditional estimates. For ease of notation, let d2
i

denote the MCD distance of

observation i.
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Let N = 1, . . . , n, and let N ⇤, |N ⇤| = h, be the indices of the observations selected

to compute the MCD estimates of location and scale. Let N� = N \N ⇤ be the indices

of the remaining observations. We look for outliers within these observations, as they

represent nearly half of the data and are further from the center of the distribution

than those in N ⇤. For Gaussian data, the MCD distances of the observations in N ⇤

approximately follow a Chi-squared distribution with p degrees of freedom,51,54 while

the MCD distances of the remaining observations follow an F distribution.77 While

previous work has simply assumed a Chi-squared distribution for all observations,54

for fMRI data we found that this resulted in a large number of false positives. For

i 2 N�,

d̃2
i

:=
c(m� p+ 1)

pm
d2
i

⇠ F
p,m�p+1, (3.1)

where c and m can be estimated asymptotically or through simulation. To estimate

c we use the asymptotic form, ĉ = Pr
n

�2
p+2 < �2

p,h/n

o

�

(h/n), which is known to

perform well in small samples. To estimate m we use the small sample-corrected

asymptotic form given in.77 To improve the F-distribution fit, like78 and52 we find it

helpful to transform the distances to match the median of the theoretical distribution:

˜̃d2
i

:= d̃2
i

F
p,m�p+1,0.5

median{d̃2
i

: i 2 N�}
. (3.2)

We label a “distance outlier” any observation in N� with ˜̃d2
i

greater than the (1��)th

quantile of the theoretical distribution. We set 1 � � = 0.999 and find that this
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performs well in both simulated and experimental data.

3.3 Simulation Study

3.3.1 Construction of baseline scans

Our simulated dataset is based on three di↵erent fMRI scans from the ABIDE dataset

(described in Section 3.4). Each scan was acquired from a di↵erent subject at a di↵er-

ent site in order to maximize sample heterogeneity. For each scan, we use a contiguous

subset of volumes containing no visible artifacts or detected outliers, resulting in 141,

171 and 89 volumes in each scan, respectively. We reduce each 3D volume to 2 di-

mensions by using only the 45th axial (horizontal) slice, which corresponds roughly

to the center of the brain.

To construct the simulated baseline (noise- and artifact-free) scans, we take the

following steps. We first center each scan “across time” by subtracting the mean

value of each voxel, which separates primarily anatomical information from functional

information. For scan i, let T
i

be the length of the scan and V
i

be the number of

voxels in the brain mask, so that scan i is represented by the T
i

⇥V
i

matrix Y
i

. After

centering across time, we have Y
i

= Z
i

+B
i

, where Z
i

represents primarily functional

information and B
i

represents primarily anatomical information (each row of B
i

is

identical).

As described in detail in Section 3.4, for each site we perform group ICA (GICA)
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and identify the independent components corresponding to known resting-state brain

networks. Let Q
i

be the number of brain networks identified for the site of scan

i. We then perform the first step of dual regression79 to obtain scan-level temporal

components for each brain network. This results in the decomposition Z
i

= A
i

S
i

+

E
i

=: X
i

+E
i

, where S
i

is Q
i

⇥ V
i

and contains the vectorized resting-state networks

identified through GICA for the site of scan i, and A
i

is T
i

⇥ Q
i

and contains the

corresponding temporal components for scan i. E
i

is the residual, which consists of

structured (spatially and temporally correlated) noise.

3.3.2 Artifact-free images

For each scan i, we construct three simulation setups: baseline image (B
i

) plus white

noise (setup 1); basline image plus functional signal (B
i

+X
i

) plus white noise (setup

2); and baseline image plus functional signal plus structured noise (setup 3).

To test the specificity of each outlier detection method in the artifact-free setting,

we generate images with varying signal-to-noise ratio (SNR) in the following way. In

general, we estimate the variance across time and take the average across voxels. For

scan i, let the signal variance be �̂2
i,X

= 1
V

i

P

V

i

v=1
ˆV ar{X

i

(v)} and the noise variance

be �̂2
i,E

= 1
V

i

P

V

i

v=1
ˆV ar{E

i

(v)}. Define SNR as the ratio of signal variance to noise

variance, and let � be the desired SNR of the simulated scans. We simulate scans with

� 2 {0.025, 0.050, 0.075, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. For setups 1 and 2, we generate the

white noise matrix W
i

(�) for scan i as independent, mean-zero Gaussian noise with
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variance �2
i,E

(�) = �̂2
i,X

/�. For setup 3, we generate the structured noise matrix

E
i

(�) =
p

SNR
i

/�⇥ E
i

, where SNR
i

= �̂2
i,X

/�̂2
i,E

is the baseline SNR of scan i.

Therefore, the simulated artifact-free data for each setup at SNR � is B
i

+W
i

(�)

for setup 1; B
i

+X
i

+W
i

(�) for setup 2; and B
i

+X
i

+E
i

(�) for setup 3. For setups

1 and 2, we randomly generate W
i

(�) 1000 times; for setup 3 the noise is fixed.

We are interested in quantifying the specificity, or the percentage of observations

not labeled as leverage or distance outliers that are truly non-outliers. Since there

are no artifacts in the simulated data, specificity in this case is simply the percentage

of volumes in each scan not labeled as outliers. For each simulation setup, specificity

is nearly 100% on average using either method, with very narrow confidence bands.

3.3.3 Images with artifacts

For each scan i, we again construct the three simulation setups described above,

but with SNR fixed at SNR
i

. We generate four comon types of artifacts found in

fMRI data: spike artifacts, motion artifacts, banding artifacts, and ghosting artifacts.

Spike artifacts are created by increasing the intensity of an entire volume by a given

percentage. Motion artifacts are created by rotating a volume by a given angle.

Banding artifacts are generated by changing the intensity in a particular location in

“k-space”, the Fourier transform of the image, resulting in a striped appearance in

the image. Ghosting artifacts are created by superimposing an image of a “ghost” of

a given intensity moving through space over time.
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Artifact Type Parameter Range
Spike percent intensity increase 1%� 10%
Motion rotation angle 1� � 5�

Banding change in k-space value at location (15,15) 50� 200 times
Ghosting mean ghost intensity/mean scan intensity 0.06� 0.32

Table 3.1: Varying parameter and range of values for each artifact. At each iteration,
the artifact intensity is generated from a uniform distribution with the specified range.

At each of 1000 iterations, one simulated fMRI scan is generated for each subject,

artifact type and simulation setup. For spike, motion and banding artifacts, 10 vol-

umes are randomly selected, and the artifact intensity for each volume is randomly

generated from a uniform distribution. For ghosting artifacts, 9 sequential volumes

are randomly selected, and the ghost intensity is randomly generated from a uniform

distribution. The parameters and intensity range for each artifact type is given in

Table 3.1. An example of each artifact type is displayed in Figure 3.1.

We are interested in both the specificity (defined in the previous section) and the

sensitivity, or the percentage of true outliers that are identified as outliers. Figure 3.2

shows the mean and 95% bootstrap confidence intervals of sensitivity and specificity

by outlier detection method, simulation setup, and artifact type. We see that as the

simulation setup becomes more realistic, the sensitivity to outliers tends to decrease,

while the specificity is relatively stable. The distance method has higher sensitivity

and specificity than the leverage method across simulation setups and artifact types.

While di↵erences across artifact types are apparent, comparisons are not meaningful,

as such di↵erences may be driven by the range of intensities chosen (see Table 3.1).

73



CHAPTER 3. OUTLIER DETECTION WITH PCA LEVERAGE

Figure 3.1: Examples of each artifact type. Figure (a) shows a normal volume
on the left and a volume with a spike artifact on the right. Figure (b) shows the
image mask before and after rotation. The spike, rotation and ghosting artifacts are
generated from the maximum artifact intensity as described in Table 3.1; the banding
artifact is generated randomly as described in Table 3.1.
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Figure 3.2: Sensitivity and specificity of each method in the presence of artifacts
by simulation setup. Each line represents a di↵erent scan for each artifact type and
shows the mean across 1000 iterations with a 95% bootstrap confidence interval.

3.4 Experimental Data Results

Using a large, multi-site fMRI dataset, we assess the result of outlier removal on the

scan-rescan reproducibility of a common analysis, identification of subject-level brain

networks through ICA. This section is organized as follows. We begin with a descrip-

tion of the dataset employed and show an example of the leverage and distance mea-

sures. We then describe how we identify subject-level brain networks through GICA

and dual regression, and how we assess reproducibility of these networks. Finally,

we quantify the improvement to reproducibility with the proposed outlier detection

methods using a linear mixed model to account for subject and site e↵ects.
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3.4.1 fMRI Dataset

We use data from the publicly available Autism Brain Imaging Data Exchange (ABIDE),

which contains neuroimaging and phenotypic information collected from 1203 sub-

jects, including 583 subjects with autism spectrum disorder (ASD) and 620 typically

developing (TD) subjects.57 The ABIDE consists of 20 datasets collected at 16 inter-

national sites. Table 3.2 lists each dataset and the number of subjects in each. Image

acquisition parameters and demographic information for each dataset are available

at http://fcon_1000.projects.nitrc.org/indi/abide/. For each subject, a T1-

weighted MPRAGE volume and one or more resting-state fMRI (rs-fMRI) sessions

were collected on the same day.

Image pre-processing consisted of the following steps. SPM12b’s segmentation tool

was first used to correct for broad intensity variations across the MPRAGE volume;

the bias-corrected MPRAGE was then registered to the first (stabilized) functional

volume and normalized to Montreal Neuological Institute (MNI) space. Volumes cor-

responding to the first 10 seconds of the rs-fMRI scan were dropped to allow for

magnetization stabilization. The remaining volumes were slice-time adjusted using

the slice acquired at the middle of the repetition time (which varied by site). Rigid

body realignment parameters were estimated with respect to the first (stabilized)

functional volume of the rs-fMRI scan and used to calculate mean framewise dis-

placement (FD), a summary measure of between-volume participant motion.62 The

non-linear spatial transformation estimated from the co-registered MPRAGE was

76

http://fcon_1000.projects.nitrc.org/indi/abide/


CHAPTER 3. OUTLIER DETECTION WITH PCA LEVERAGE

Dataset N N+ N
ICA

Q+

California Institute of Technology (Caltech) 38 19 19 8
Carnegie Mellon University (CMU) 27 18 18 5
Kennedy Krieger Institute (KKI) 146 140 50 8
University of Leuven: Sample 1 (Leuven 1) 29 23 23 6
University of Leuven: Sample 2 (Leuven 2) 35 31 31 10
Ludwig Maximilians University Munich (LMU) 57 55 50 10
NYU Langone Medical Center (NYU) 184 108 50 13
Oregon Health and Science University (OHSU) 28 28 28 8
Olin Institute of Living at Hartford Hospital (Olin) 36 29 29 4
University of Pittsburgh School of Medicine (Pitt) 57 54 50 12
Social Brain Lab, the Netherlands (SBL) 30 30 30 9
San Diego State University (SDSU) 36 32 32 14
Stanford University (Stanford) 40 35 35 5
Trinity Centre for Health Sciences (Trinity) 49 47 47 11
University of California, Los Angeles: Sample 1 (UCLA 1) 82 44 44 11
University of California, Los Angeles: Sample 2 (UCLA 2) 27 18 18 6
University of Michigan: Sample 1 (UM 1) 110 89 50 6
University of Michigan: Sample 2 (UM 2) 35 34 34 9
University of Utah School of Medicine (USM) 101 94 50 10
Yale Child Study Center (Yale) 56 46 46 11

Table 3.2: For each dataset, the total number of subjects (N), number of sub-
jects that passed quality inspection (N+), number of subjects used to perform GICA
(N

ICA

), and the number of signal GICA networks identified (Q+).
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then applied to the functional data along with the estimated rigid body realignment

parameters and resulted in 2-mm isotropic voxels in MNI space. Each resting state

scan was temporally detrended on a voxelwise basis and spatially smoothed using a

5-mm full width at half maximum (FWHM) Gaussian kernel.80

After pre-processing, each rs-fMRI scan was quality inspected for motion and

issues with registration and normalization using the following procedure. First, scans

were flagged for quality if mean FD across the scan was greater than 2 standard

deviations above the sample mean. We then calculated the Pearson spatial correlation

between the first (stabilized) volume of each subject’s MNI-registered data and SPM’s

EPI template.81 In total, 229 subjects were found to have major quality problems.

Table 3.2 displays the number of subjects from each data collecting site that passed

quality inspection. All scans were included in our analysis to assess the e↵ect of

outlier removal; however, only those scans that passed quality inspection were used

to create group-level ICA maps.

For a single example scan, Figure 3.3 shows the leverage and robust distance

functions, along with 6 motion parameters (roll, pitch, yaw, and translation in each

direction) and their derivatives. Volumes labeled as outliers using the leverage and

distance functions are indicated in red. Leverage and distance outliers are indicated

with a red dot. Below the plot, the volumes corresponding to the spikes at time points

60, 90, 135 and 150 (shaded on the plot) are shown. Three of the spikes are leverage

and distance outliers, while the spike at time point 90 is only a leverage outlier.
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Obvious banding artifacts are seen at time points 60 and 150, a moderate banding

artifact is seen at time point 135, and no visible artifact is apparent at time point 90.

While the artifact at time point 150 would be detected using motion measures, the

other spikes would likely go undetected using only motion.

Figure 3.4 shows the distribution of the proportion of volumes in each scan iden-

tified as outliers using each method. For 17.6% of subjects, no leverage outliers are

identified, while for 4.6% of subjects no distance outliers are identified. The percent of

subjects in each dataset with no outliers identified using either method varies widely,

reflecting the heterogeneity in data quality across ABIDE datasets.

3.4.2 Identification of subject-level brain networks

through GICA and dual regression

We perform GICA separately for each of the 20 ABIDE datasets using the following

procedure. For datasets containing more than 50 subjects that passed quality inspec-

tion, we use 50 randomly selected subjects from among these; otherwise we use all

subjects that passed quality inspection. Let N
k

be the resulting set of subjects for

dataset k. For each subject i 2 N
k

, let Y
i

be the T
i

⇥ V
k

data matrix after centering

each voxel across time, where V
k

is the number of voxels in the group-level brain mask

for dataset k. For each subject i 2 N
k

, we perform PCA and retain 50 PCs to obtain

Y
i

= U
i

D
i

Vt

i

+ E
i

, resulting in the reduced 50 ⇥ V subject-level data Ỹ
i

= D
i

Vt

i

.
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Figure 3.3: For a single subject, the motion parameters, leverage function, and
robust distance function. Leverage and distance outliers are indicated in red. Below
the plot, the volumes corresponding to the spikes at time points 60, 90, 135 and 150
(shaded on the plot) are shown. Three of the spikes are leverage and distance outliers,
while the spike at time point 90 is only a leverage outlier. Obvious banding artifacts
are seen at time points 60 and 150, a moderate banding artifact is seen at time point
135, and no visible artifact is apparent at time point 90. While the artifact at time
point 150 would be detected using motion measures, the other spikes would likely go
undetected using only motion.
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Figure 3.4: Distribution of the percent of volumes in each scan identified as outliers
using each outlier removal method. The leverage method tends to identify no or very
few outliers more often than the distance method.

(Note that for ICA we use PCA to reduce dimensionality along the temporal dimen-

sion, whereas for outlier detection we reduce along the spatial dimension.) Next, we

temporally concatenate all subjects to form the 50N
k

⇥ V matrix Y
k

. We then per-

form PCA again with Q = 30 components to obtain Y
k

= U
k

D
k

Vt

k

+ E
k

, resulting

in the reduced Q⇥ V group-level data Ỹ
k

= D
k

Vt

k

. Finally, we perform the fastICA

algorithm82 to obtain Ỹ
k

= A
k

S
k

, where S
k

is a Q⇥ V matrix whose rows contain

the group-level spatial independent components and A
k

is the Q⇥Q mixing matrix.

To identify “signal” independent components (ICs), we first standardize each spa-

tial IC by subtracting its mean and dividing by its standard deviation and threshold

the result at ±2. We then visually inspect each spatial IC and label those corre-
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sponding to known resting-state brain networks. This results in 4-14 signal ICs per

dataset (Table 3.2). While the number of signal ICs identified for some datasets is

quite small, this is not surprising given the widely varying quality and quantity of

data in each dataset. We observe a positive association between sample size and num-

ber of signal ICs: based on a simple no-intercept linear model, we estimate that for

every additional subject included in analysis, on average 0.23 (95% CI: [0.20, 0.26])

additional signal ICs are identified through GICA. As more subjects are included in

GICA, more resting-state brain networks can be clearly identified. Let S+
k

denote the

Q+
k

⇥ V matrix containing only the Q+
k

signal components identified for dataset k.

To obtain subject-level ICs, we perform dual regression79 as follows. Let S+
k

be centered and scaled across voxels and Y
i

be centered and scaled across time as

described above. Let Ẏ
i

be Y
i

after also centering each time point across voxels. In

the first regression, temporal ICs for subject i 2 N
k

are obtained by regressing Ẏt

i

against S+
k

t

to obtain At

i

=
⇣

S+
k

S+
k

t

⌘�1

S+
k

Ẏt

i

. In the second regression, subject-level

spatial ICs for subject i 2 N
k

are obtained by regressing Ẏ
i

against A
i

to obtain

S
i

= (At

i

A
i

)�1 At

i

Ẏ
i

. This results in the ICA decomposition Ẏ
i

⇡ A
i

S
i

, where A
i

is

T
i

⇥Q+
k

and S
i

is Q+
k

⇥V
k

. We are interested in S
i

, whose rows contain the vectorized

ICA-estimated brain networks for subject i.
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3.4.3 Measuring reproducibility of subject-level

brain networks

Let S
i1 and S

i2 be two sets of spatial ICs for subject i obtained by performing dual

regression separately for two di↵erent scanning sessions of subject i 2 N
k

(but using

the same group ICs S+
k

). Note that using the same group ICs avoids the “ICA

matching problem”, since the ICs in S
i1 and S

i2 correspond to the same group ICs in

S+
k

. To assess reliability of subject-level spatial ICs, for each subject i and component

q we compute the number of overlapping voxels between S
i1(q) and S

i2(q) after both

have been thresholded at ±2 standard deviations. We then average over all signal

components to obtain the average scan-rescan overlap per component for each subject,

denoted Z
ikm

for subject i in dataset k using outlier removal method m 2 {none,

leverage, robust distance}. This is our measure of reproducibility of subject-level

brain networks identified through ICA.

Note that in the ABIDE dataset most subjects have only a single scanning session.

To simulate scan-rescan data we simply split each subject’s data into two “sessions”,

consisting of the first bT
i

/2c volumes and the remaining volumes. While this may

over-estimate the true scan-rescan overlap, we are primarily interested in the change

in overlap due to outlier removal, rather than the absolute amount of overlap.

To test for changes in scan-rescan overlap due to each outlier removal method, we

fit a linear mixed e↵ects model with a fixed e↵ect for each method, a fixed e↵ect for
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each dataset, and a random intercept for each subject. We employ this model for its

ability to test several groups and methods simultaneously and to account for within-

subject correlation across methods. We fit the model on all subjects for whom at

least one leverage or distance outlier was identified (96.3% of subjects). We therefore

estimate the following model:

Z
ikm

= b
i0 + �

k

+ ↵
m

I
m>0 + ✏

ikm

, ✏
ikm

⇠ N(0, �2
e

), b
i0 ⇠ N(0, �2

u

) (3.3)

where m = 0 indicates no outlier removal. Here, �
k

represents the average scan-rescan

overlap per component for subjects in dataset k when no outlier removal is performed,

and ↵
m

represents the change in overlap per component when outlier removal method

m is used. To obtain coe�cient estimates, we fit this model using the lme function

from the nmle package.83 Since we have a large sample size, we compute Normal 95%

confidence intervals.

3.4.4 E↵ect of outlier removal on reproducibility

Figure 3.5 shows estimates and 95% confidence intervals for the model coe�cients.

The left-hand plot displays the coe�cients for the outlier removal methods (↵
m

).

Both methods significantly improve reproducibility of subject-level brain networks

identified through ICA. However, removal of leverage outliers results in greater im-

provement than removal of distance outliers. Specifically, removal of leverage outliers
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Figure 3.5: Estimates and 95% confidence intervals for the model coe�cients. The
left-hand plot displays the coe�cients for each outlier removal method (↵

m

); both
methods result in statistically significant improvement to reproducibility of subject-
level brain networks identified through ICA, and removal of leverage outliers results in
greater improvement than removal of distance outliers. The right-hand plot displays
the fixed e↵ects for each dataset (�

k

) and illustrates the heterogeneity in reproducibil-
ity of ICA results across ABIDE datasets.

results in an increase in scan-rescan overlap of 87 [95% CI: 71-103] voxels per com-

ponent, while removal of distance outliers results in an increase of 51 [95% CI: 36-67]

voxels per component. The right-hand plot of Figure 3.5 displays the fixed e↵ects for

each dataset (�
k

) and illustrates the heterogeneity in reproducibility of ICA results

across ABIDE datasets before outlier removal.

We also stratify the model by those subjects who passed and did not pass quality

inspection. Figure 3.6 shows estimates and 95% confidence intervals for the model

coe�cients after stratification. The left-hand plot shows that subjects who failed
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quality inspection (QC = 0) tend to improve more than those who passed quality

inspection (QC = 1). However, data from both groups of subjects benefit from outlier

removal. Specifically, removal of leverage outliers results in an increase in scan-rescan

overlap of 103 [95% CI: 67-140] voxels per component for subjects who failed quality

inspection, and of 83 [95% CI: 66-101] voxels per component for subjects who passed

quality inspection. Removal of distance outliers increases scan-rescan overlap by 70

[95% CI: 33-106] voxels per component for subjects who failed quality inspection,

and by 47 [95% CI: 30-64] voxels per component for subjects who passed quality

inspection. The right-hand plot of Figure 3.6 shows that, in general, subjects who

failed quality inspection tend to have lower baseline reproducibility than those who

passed quality inspection. It also again illustrates the heterogeneity in data quality

across ABIDE datasets, even within subjects who passed quality inspection.

3.5 Discussion

We have proposed a method to detect outlying time points in an fMRI scan by

drawing on the traditional statistical ideas of PCA, leverage, and outlier detection.

The proposed methods have been validated through simulated data and a large,

diverse fMRI dataset. We have demonstrated that the proposed methods are accurate

and result in improved reproducibility of a common type of analysis for resting-state

fMRI data, identification of brain networks through ICA. While other types of analysis
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Figure 3.6: Estimates and 95% confidence intervals for the model coe�cients after
stratifying by quality inspection results. The left-hand plot shows that while both
groups of subjects benefit from outlier removal, subjects who failed quality inspection
(QC= 0) tend to benefit more than those who passed quality inspection (QC= 1).
The right-hand plot shows that subjects who failed quality inspection tend to have
lower baseline reproducibility than those who passed quality inspection.
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could have also been used for this purpose, such as estimation of pairwise correlation

between voxels or regions of interest, we chose to focus on a more di�cult problem.

The proposed techniques are, to the best of our knowledge, the first to provide a

single measure of outlyingness for time points in an fMRI scan, which can be easily

thresholded to identify outliers. Unlike motion-based outlier detection methods for

fMRI, they are agnostic to the source of artifact. Furthermore, PCA leverage is

directly related to the estimation of principal components, which are used to compute

independent components and are also a representation of the covariance matrix used

in seed connectivity analysis.

One limitation of our approach is that we perform validation on a single dataset,

the ABIDE. However, this dataset is in fact a diverse collection of 20 datasets from

16 international sites, which strengthens the generalizability of our results. Another

limitation of the proposed methods is that they may be sensitive to the number of

principal components retained. However, we have found that the method performs

well with di↵erent model orders (e.g. 20 or 30), and we propose an automated method

of selecting model order, in order to provide a fully automated approach. A limitation

of the PCA leverage method is that the thresholding rule is, as in regression, somewhat

arbitrary. However, use of the median leverage across observations as a benchmark

is a sensible approach, and we tested a range of values before selecting the proposed

cuto↵ of 3 times the median. We believe this value will work well in general for resting-

state fMRI, but for di↵erent types of data the researcher may wish to re-evaluate this
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choice.

While the proposed methods have been designed and validated for resting-state

fMRI data, they may be easily extended to other types of medical imaging data,

such as task fMRI and EEG data, as well as other types of high-dimensional data.

Furthermore, they may also be extended to group analyses; future work should focus

on exploring these directions.

As the availability of large fMRI datasets continues to grow, automated outlier

detection methods are becoming essential for the e↵ective use of such data. In par-

ticular, the reliability of analyses employing these diverse datasets may be negatively

impacted by the presence of poor quality data. The outlier detection approach we

propose stands to improve the quality of such datasets, thus enhancing the possi-

bilities to use these data to understand neurological diseases and brain function in

general.
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Chapter 4

Scan Length, Shrinkage and

Reliability of Resting-State

Functional Connectivity in the

Human Connectome Project

4.1 Introduction

In recent years, there has been a proliferation of studies of brain connectivity uti-

lizing resting-state functional magnetic resonance imaging (rsfMRI). Interest in esti-

mating resting-state functional connectivity (rsFC) for individual subjects continues

to grow, due in part to its potential to shed light on cognitive changes associated
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with certain psychological disorders, typical neurological development, and aging-

related cognitive decline. For example, group di↵erences in rsFC have been observed

in autism,84,85 attention deficit hyperactivity disorder,86,87 depression,88 Alzheimer’s

disease,89,90 mild cognitive impairment,91 and schizophrenia,92,93 while normal aging

has also been shown to coincide with changes in rsFC.94

Meanwhile, there is a growing recognition of the importance of accuracy of results

in psychological science95–97 and specifically for the study of group and inter-individual

di↵erences in rsFC.98 Accuracy of rsFC estimates is typically a greater concern for

the study of inter-individual di↵erences, as subject-level estimates are typically much

noisier than group averages. While sampling variability does play a role in the accu-

racy of rsFC estimates, it is also widely recognized that rsFC varies both within and

across scanning sessions due to changes in the cognitive and emotional state of the

subject.19,98 This introduces a challenge in the study of associations between subject-

level rsFC and behavioral measures or traits, which are expected to be relatively stable

over time. Another important use of subject-level rsFC is in identifying important

functional areas for presurgical planning,94 for which accuracy is clearly vital. There

is also growing interest in achieving su�cient within-subject accuracy to be able to

distinguish an individual from a group of subjects based on rsFC (e.g. fingerprinting)

which may be useful in the clinical setting for diagnosis and treatment.99–101

Broadly speaking, the accuracy of an estimate can be assessed in terms of validity

or reliability. Here validity refers to the degree an estimate measures what it purports
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to measure, and reliability to the consistency of an estimate across di↵erent samples.

In the context of measures derived from fMRI data, validity is often di�cult to assess

due to the absence of a ground truth measure. Still, there have been some e↵orts

to assess validity of the existence of connections through simulations102 or careful

modeling of anatomical connectivity.103 These e↵orts have provided insight into the

accuracy of various methods of modeling connectivity, including full correlation, par-

tial correlation, inverse covariance, lag-based models and Bayes? net. The accuracy

of the estimated strength of connections, which is often of interest in studies of group

and inter-individual di↵erences, has been assessed primarily through reliability, which

only requires multiple observations rather than knowledge of the true rsFC of each

subject. Due to the growing availability of test-retest rsfMRI datasets and the contin-

ued interest in the study of brain connectivity, there has been a recent proliferation of

studies focusing on reliability of rsFC. Here we provide a brief review of the methods

and findings of this literature.

The manner in which reliability is defined across studies varies widely, but can

grouped into three broad categories: intersession reliability, intrasession reliability,

and end-point reliability. Intersession reliability asks, how similar is the rsFC of a

subject across multiple scanning sessions occurring days or even months apart.101 This

is usually the true measure of interest, especially for the study of group di↵erences or

inter-individual di↵erences in rsFC associated with traits or behavioral measures that

display minimal variation over time. Intrasession reliability, on the other hand, asks
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how similar is the rsFC of a subject across multiple runs within the same session.

This tends to overestimate true intersession reliability,19,98,99,104 but can serve as

a reasonable alternative when multiple rsfMRI sessions are not available. In some

cases, intrasession reliability be of interest, for example for the study of associations

between rsFC and behavioral measures that vary across sessions. A related measure

of reliability is based on alternating epochs within the same session. This tends to

overestimate true intrasession reliability, since variability in true rsFC is likely to

be greater across two contiguous epochs than across two sets of alternating epochs

spanning the same time period.19 Finally, end-point reliability asks, how similar is

an estimate of rsFC produced from the first t minutes of a scanning session to the

estimate produced using the full session of T � t minutes. While this may provide

insight into the rate of convergence of a series of estimates, it is not a true measure of

reliability in the strictest sense, as the estimates being compared are not independent.

Specifically, as t approaches the full scan duration T the two estimates become more

dependent, and as a consequence the estimate produced from the first t minutes

becomes more similar to the estimate produced using the full T minutes, eventually

reaching equality at t = T . End-point reliability therefore may greatly overestimate

the true intrasession and intersession reliability of rsFC estimates.

Studies also di↵er in terms of the metric used to quantify reliability. Several

common metrics are intra-class correlation coe�cient (ICC), correlation, and mean

squared error (MSE).105–108 Among these measures, ICC has the advantage of tak-
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ing into account both within-subject variability and between-subject variability. It

therefore can tell us something about how similar multiple observations from the same

subject are to each other, relative to the di↵erences between subjects. However, ICC

itself can be defined in various ways, and may range from 0 to 1 or �1 to 1 depend-

ing on the definition employed One should therefore take care when interpreting and

comparing estimated reliability levels across di↵erent studies.

Many studies have focused on determining the scanning duration needed to ac-

curately estimate rsFC19,94,99 and related measures, including spatial topography

of resting-state networks,94,109,110 regional homogeneity,104,111 graph theoretic met-

rics,112,113 and task activation.114 While it has been clearly shown that increased

scan duration leads to improved reliability of rsFC and related measures,94,99,102–104

di↵erent studies have reached vastly di↵erent conclusions about what scan duration

is su�cient, with recommendations ranging from 5 minutes,112,113 to 90 minutes or

more.18 This discrepancy may be attributed to the fact that there are many other

factors than scan length that have been shown to influence reliability , in addition to

the di↵erences in the definition of reliability described above. A number of studies

have provided evidence for best practices to improve reliability through the methods

employed for acquisition, preprocessing, and connectivity analysis.

In terms of acquisition, increasing temporal resolution19,104,113 and having sub-

jects lie with eyes open rather than closed94 have been shown to result in improved

reliability. The result of increasing spatial resolution is more controversial, with104
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finding that it results in improved reliability but114 finding that while it allows for

better separation of physiological noise and spatial localization of activation, it also

results in reduced temporal signal-to-noise ratio, thereby requiring a simultaneous

increase in scan duration to maintain a given level of power. In terms of acquisition

length and timing, Shehzad et al. (2009)98 and Laumann et al. (2015)18 find that

combining estimates of rsFC from multiple sessions produces more reliable estimates

of rsFC than using data from a single scan of the same (combined) duration.

In terms of preprocessing, several studies have found that global signal regression

tends to worsen reliability,104,113 while nuisance regression tends to improve reliabil-

ity.104 In addition, performing analysis in surface rather than volumetric space may

result in improved reliability.104

In terms of the methods used to perform connectivity analyses, the use of func-

tional versus anatomical regions of interest (ROIs)99 and accurate identification of

functional ROIs102 have been found to improve reliability. Furthermore, di↵erent

methods of estimating connectivity (e.g. full correlation, inverse covariance, partial

correlation) vary in terms of their ability to identify true connections.102,103 Reli-

ability has also been shown to vary with the size of the regions considered110 and

the specific connections being studied.18,94,98,99,115 For example, higher reliability

has been observed for correlations that are statistically significant at the group level;

for within-network versus between-network correlations; and for connections within

the DMN network versus within the task positive, attention, motor and visual net-
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works.18,94,98

As many of the factors described above may not always be subject to manipulation,

in particular the specific connections of interest, there is unlikely to be a single answer

to the question of how long to scan to produce su�ciently reliable estimates of rsFC.

It therefore remains important to both increase the duration and/or number of scans

whenever possible and to adopt best practices for improving reliability. One practice

that has been shown to improve reliability of subject-level rsFC and parcellations

is shrinkage, in which subject-level observations “borrow strength” from the group

mean. In Mejia et al. (2015),116 we considered voxel-level rsFC produced using

relatively short (5-7 minute) scans and showed that performing shrinkage resulted in

improvement in reliability of rsFC by 25-30%. While this provided clear evidence

for the benefits of shrinkage for voxel-level rsFC in cases when longer scans are not

feasible, it was not clear whether shrinkage would remain beneficial with increased

scan duration and ROI size, or with the adoption of “best practices” such as increasing

temporal resolution and transformation to surface space. It was also not clear whether

shrinkage would be beneficial for the most reliable connections, such as connections

between regions within the DMN. To address these questions, in this paper we use the

Human Connectome Project (HCP) to explore the e↵ect of shrinkage on reliability

of whole-brain rsFC between regions identified through ICA, using much longer (up

to 30 minutes) scans and an acquisition and preprocessing pipeline that has been

designed to produce very high-quality rsfMRI data. Furthermore, the data has been
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“denoised” to remove sources of non-neuronal variation and has been transformed

to surface space. Therefore, the HCP is nearly ideal in terms of the best practices

outlined above and longer scan duration, providing an opportunity to evaluate the

benefits of shrinkage in a such a setting.

4.2 Methods

4.2.1 Data and connectivity estimation

4.2.1.1 Human Connectome Project Data

The Human Connectome Project (HCP) is a collection of neuroimaging and phe-

notypic information for over a thousand healthy adult subjects, 523 of which were

publicly released to this date (http://humanconnectome.org).8 All data were ac-

quired on a customized 3T Siemens connectome-Skyra 3T scanner, designed to achieve

100 mT/m gradient strength. For the analyses described below, we use the following

data provided as part of the HCP data release. For 461 of the 523 subjects, a multi-

band / multi-slice pulse sequence with an acceleration factor of eight117–121 was used

to acquire four roughly 15-minute rsfMRI sessions, each consisting of 1200 volumes

sampled every 0.72 seconds at 2 mm isotropic spatial resolution. The sessions were

collected over two visits that occurred on separate days, with two sessions collected
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at each visit. Across sessions at each visit, phase encoding directions were alternated

between right-to-left (RL) and left-to-right (LR) directions. Before October 1, 2012,

the first session of each visit was acquired with RL phase encoding, and the second

session was acquired with LR phase encoding (RL/LR). After this date, the first visit

continued to be acquired in the RL/LR order, but the second visit was acquired in

the opposite order, with the LR acquisition followed by the RL acquisition (LR/RL).

Spatial preprocessing was performed using the minimal preprocessing pipeline as

described by Glasser et al. (2013),122 which includes correcting for spatial distortions

and artifacts and projection of the data time series to the standard grayordinate

space. Structured artifacts in the time series were removed using ICA + FIX (in-

dependent component analysis followed by FMRIB’s ICA-based X-noiseifier),123,124

and each data set was temporally demeaned with variance normalization according

to Beckmann and Smith (2004).125 Group independent component analysis (GICA)

was performed on the full rsfMRI time series for all 461 subjects to estimate a set of

spatial independent components (ICs) that represent population-average resting-state

networks.125 GICA was performed using model orders of 25, 50, 100, 200 and 300 in-

dependent components (ICs). After identification of spatial ICs at each model order,

time courses were estimated for each subject and IC by performing the first stage of

dual regression.79 Specifically, the group IC spatial maps were used as predictors in

a multivariate linear regression model against the full rsfMRI time series, which was

created by concatenating the four sessions of each subject into a single time series in
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Figure 4.1: Illustration of the data for a single subject. For five regions, the full
time series, consisting of 4800 volumes, is shown. Each time series consists of four
sessions, occurring over two visits. In the GICA provided in the HCP data release,
the sessions were reordered so that both visits are concatenated in the LR/RL order.

the following order: visit 1 LR, visit 1 RL, visit 2 LR, visit 2 RL (see Figure 4.1).

4.2.1.2 Connectivity matrix estimation

The quantity of interest for each subject is the true Q⇥Q connectivity matrix, repre-

senting the pairwise connectivity during rest between each of theQ 2 {25, 50, 100, 200, 300}

regions identified through GICA. We are interested in how the reliability of estimates

of this connectivity matrix changes with longer scan duration. To this end, we es-

timate the connectivity matrix using the first ` volumes of the time series for each

subject at both visits, with ` 2 {300, 600, . . . , 2400}. At TR of 0.72 seconds, the

resulting time series range from 3.6 to 28.8 minutes in duration.

Shrinkage of connectivity estimates. Shrinkage estimators, which “borrow strength”

from the population to improve subject-level estimates, have been shown to improve

reliability of voxel-level connectivity estimates based on short rsfMRI scans.43,116

Here, we assess the ability of shrinkage estimators to improve reliability of connectiv-
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Figure 4.2: Illustration of data setup for intersession and end-point reliability anal-
ysis for a single subject i. For intersession reliability analysis, we are interested in
how similar the connectivity estimates W (`)

i1 , W̃ (`)
i1 and W̃ ⇤(`)

i1 are to the full visit 2

raw estimate W (L)
i2 , L = 2400, as ` varies from 300 to 2400. For end-point reliability

analysis, we are interested in how close the connectivity estimates W (`)
i1 , W̃ (`)

i1 and

W̃ ⇤(`)
i1 are to the full visit 1 raw estimate W (L)

i1 , as ` varies from 300 to 2400.
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ity estimates produced from longer scans.

We first provide a brief introduction to empirical Bayes shrinkage estimators. We

start with a simple measurement error model.44 For subjects i = 1, . . . , n, let the

true connectivity between two regions q and q0 be denoted X
i

(q, q0). For visit j and

scan length `, we have an estimate of X
i

(q, q0), which we denote W (`)
ij

(q, q0). The

measurement error model assumes that the estimate W (`)
ij

(q, q0) can be decomposed

into a signal X
i

(q, q0) and a noise term U (`)
ij

(q, q0):

W (`)
ij

(q, q0) = X
i

(q, q0) + U (`)
ij

(q, q0), (4.1)

where X
i

(q, q0) ⇠ N{µ(q, q0), �2
x

(q, q0)} and U (`)
ij

(q, q0) ⇠ N{0, �2(`)
u

(q, q0)}. We

assume that X
i

(q, q0) and U (`)
ij

(q, q0) are independent, the X
i

(q, q0) are independent

across subjects, and the U (`)
ij

(q, q0) are independent across subjects and repetitions.

Then the shrinkage estimator of X
i

(q, q0) is equal to the empirical posterior mean,

W̃ (`)
ij

(q, q0) = �
t

(q, q0)W̄ (`)
·j (q, q0) + {1� �

t

(q, q0)}W (`)
ij

(q, q0),

where W̄ (`)
·j (q, q0) = 1

n

P

i = 1nW (`)
ij

(q, q0). The shrinkage parameter �
t

(q, q0) is

given by

�
t

(q, q0) =
�2(`)
u

(q, q0)

�2(`)
u

(q, q0) + �2
x

(q, q0)

and ranges from 0 (no shrinkage) to 1 (complete shrinkage to the group mean), de-
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pending on the relative size of the within-subject and between-subject variance terms.

Estimation of these variance components is, in theory, straightforward: defining

�2(`)
w

(q, q0) as the total variance, which is estimated as the variance of the W (`)
ij

(q, q0),

averaged over visits, the noise variance can be estimated as

�̂2(`)
u

(q, q0) =
1

2
V ar

i

{W (`)
i2 (q, q0)�W (`)

i1 (q, q0)},

and the signal variance can be estimated as

�̂2
x

(q, q0) = �̂2(`)
w

(q, q0)� �̂2(`)
u

(q, q0).

However, this presupposes the availability of multiple observations or visits for

each subject. While this is true in our case, it is not a reasonable assumption in

general, as many studies only collect a single resting-state fMRI scan for each subject.

Furthermore, when multiple visits or sessions are available, they can be combined to

create a single estimate of connectivity with improved accuracy.18 Therefore, the

salient problem is to estimate the within-subject variance of a single connectivity

estimate produced using all of the rsfMRI data available for each subject. This

clearly precludes the availability of multiple observations of the quantity of interest.

In Mejia et al. (2015),116 we proposed a solution based on the idea of “pseudo scan-

rescan” data, in which a single scanning session is treated as two sessions, composed

respectively of the first and second halves of the time series. This approach was also
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recently applied in the context of reliability correction by Mueller et al. (2015).115 In

Mejia et al. (2015),116 we found the within-subject variance estimate produced from

this approach to be upwardly biased, and proposed using an empirical adjustment

factor to correct for this. However, this adjustment method assumes that the majority

of within-subject variance can be attributed to sampling variance, and it is best suited

to connectivity estimates produced from noisier time series as in the case of Mejia

et al. (2015),116 where voxel-level connectivity based on short (7.5 minute) scans

were estimated. We now present a more general method of estimating within-subject

variance from a single session, which seeks to separate sampling variance from other

sources of within-subject variance.

Consider a set of independent measurements {X
it

} from subjects i = 1, . . . , n at

time points t = 1, . . . , T . Suppose that the quantity of interest for each subject is some

summary statistic across time points, such as the sample mean or variance. Let Y
i,⌦

represent the true value of this quantity during the continuous time period ⌦ = [1, T ],

and let bY
i,S

represent the estimate produced using a discrete set of observations S ⇢ ⌦.

For example, let bY
i,T be the estimate of Y

i,⌦ based on the full set of measurements

T = {1, . . . , T}.

We consider that the true signal can be written as Y
i,⌦ = Z

i

+W
i,⌦, where Z

i

⇠

N (µ, �2
z

) is the long-term average of the subject i and W
i,⌦ ⇠ N (0, �2

w

) is the true

deviation from that value during time period ⌦. We assume that Z
i

are independent

across subjects and W
i,⌦ are independent across non-overlapping time periods ⌦. For
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any evenly spaced sampling S of ⌦, we consider that the estimate bY
i,S

can be written

bY
i,S

= Y
i,⌦ + U

i,S

= Z
i

+W
i,⌦ + U

i,S

,

where U
i,S

ind⇠ N
�

0, �2
u,S

�

and �2
u,S

depends upon the sampling S. We further assume

that Z
i

, W
i,⌦ and U

i,S

are mutually independent.

We are interested in performing empirical Bayes shrinkage on the estimate bY
i,T ,

where the quantity of interest is the true long-term average Z
i

. There are two sources

of variance around Z
i

associated with the estimate bY
i,T , the signal variance �2

w

and

the sampling variance �2
u,T . We must therefore estimate both within-subject vari-

ance terms as well as the population variance �2
z

in order to produce the shrinkage

parameter,

� =
�2
w

+ �2
u,T

�2
w

+ �2
u,T + �2

z

.

The denominator can simply be estimated as dV ar
i

{bY
i,T }.

Sampling Variance Estimation. Without loss of generality, assume that T is even

and let S
o

= {1, 3, . . . , T � 1} and S
e

= {2, 4, . . . , T}. Consider bY
i,S

o

and bY
i,S

e

, which

can be written as
8

>

>

<

>

>

:

bY
i,S

o

= Z
i

+W
i,⌦ + U

i,S

o

;

bY
i,S

e

= Z
i

+W
i,⌦ + U

i,S

e

If sampling variance is inversely proportional to the number of observations in the

sample (which follows by the central limit theorem for any summary statistic that
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can be written as a mean), then U
i,S

o

and U
i,S

e

each have variance 2�2
u,S

, since S
o

and

S
e

each contain half the number of observations as S. Observe that

V ar
i

{bY
i,S

o

� bY
i,S

e

} = V ar
i

{U
i,S

o

� U
i,S

e

}

= V ar
i

{U
i,S

o

}+ V ar
i

{U
i,S

e

}

= 4�2
u,S

.

Therefore, the sampling variance can be estimated as �̂2
u,S

= 1
4
dV ar

i

{bY
i,S

o

� bY
i,S

e

}.

We note that a bootstrap approach could also be used to estimate the sampling

variance with greater e�ciency. However, when enough subjects are available, the

proposed subsampling approach can also result in e�cient estimation. Furthermore,

the proposed approach is less computationally demanding.

Signal Variance Estimation. Let S1 = {1, . . . , T/2} and S2 = {T/2 + 1, . . . , T},

and consider bY
i,S1 and bY

i,S2 , which can be written as

8

>

>

<

>

>

:

bY
i,S1 = Z

i

+W
i,⌦1 + U

i,S1 ;

bY
i,S2 = Z

i

+W
i,⌦2 + U

i,S2

,

where ⌦1 = [1, T/2] and ⌦2 = (T/2, T ]. Since ⌦1 and ⌦2 are non-overlapping, by

assumption W
i,⌦1 and W

i,⌦2 are independent. Observe that
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V ar
i

{bY
i,S1 � bY

i,S2} = V ar
i

{(W
i,⌦1 + U

i,S1)� (W
i,⌦2 + U

i,S2)}

= V ar
i

{W
i,⌦1}+ V ar

i

{W
i,⌦2}+ V ar

i

{U
i,S1}+ V ar

i

{U
i,S2}

= 2�2
w

+ 4�2
u,S

.

V ar
i

{bY
i,S1�bY

i,S2} = V ar
i

{(W
i,⌦1+U

i,S1)�(W
i,⌦2+U

i,S2)} = V ar
i

{W
i,⌦1}+V ar

i

{W
i,⌦2} +V ar

i

{U
i,S1}+V ar

i

{U
i,S2} = 2�2

w

+4�2
u,S

.

Therefore, the signal variance can be estimated as �̂2
w

= 1
2
dV ar

i

{bY
i,S1�bY

i,S2}�2�̂2
u,S

.

We also assess the performance of an “oracle” shrinkage estimator, which uses

both visits from each subject to estimate the variance components. While this is

not realistic (since, again, if multiple visits are available they would be combined

into a single, improved estimator), it provides an upper bound on the performance

of shrinkage estimators, since it is based on the best—if realistically unattainable—

estimate of within-subject variance. In the continuation we denote this estimate

W̃ ⇤(`)
ij

(q, q0). We refer to the proposed shrinkage methods for single-session fMRI data

as “single-session shrinkage” or simply “shrinkage”.
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4.2.2 Reliability of connectivity estimates

We now describe the methods used to assess reliability of the raw and shrinkage

estimates of connectivity for each subject. We are primarily interested in intersession

reliability but we also assess end-point reliability to illustrate the bias inherent in this

approach.

As illustrated in Figure 4.2a, in order to assess intersession reliability of the raw

and shrinkage connectivity estimates for each subject, we compare the estimates

produced using the first ` volumes of visit 1 to the raw connectivity estimate produced

using all L = 2400 volumes of visit 2. As shown in Figure 4.2b, to assess end-point

reliability for each subject, we compare the raw and shrinkage connectivity estimates

produced using the first ` volumes of the first visit to the raw estimate produced using

all L volumes of the same visit.

The metric we use to quantify reliability is absolute percent error. Specifically, the

intersession reliability of the raw estimate of connectivity between regions q and q0 for

subject i and scan length ` is the absolute value of {W (`)
i1 (q, q0)�W (L)

i2 (q, q0)}
.

W (L)
i2 (q, q0) ,

while the intersession reliability of the corresponding shrinkage estimate is the ab-

solute value of {W̃ (`)
i1 (q, q0)�W (L)

i2 (q, q0)}
.

W (L)
i2 (q, q0) . End-point reliability of raw

and shrinkage estimates is computed in a similar way by plugging in W (L)
i1 (q, q0) for

W (L)
i2 (q, q0).

As illustrated in Figure 4.3, we summarize reliability over subjects at three di↵er-

ent resolutions: omnibus, seed-level and edge-level. This organization provides both
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a high-level view of how reliability changes with additional scan duration and the use

of shrinkage estimates, and a detailed view of how reliability varies across di↵erent

pairs of regions and how scan duration and shrinkage a↵ect reliability of specific con-

nections. We first compute the median reliability across all subjects for each edge (or

pair of regions). The result is edge-level reliability, illustrated in the bottom panel of

Figure 4.3. Edge-level reliability can be visualized as a set of images, each showing

the reliability of connectivity between a single seed and all other regions in the brain.

As visualization of all regions and model orders is impractical, we select for visualiza-

tion four seed regions lying within well-known resting state networks, including the

visual cortex, the somatomotor cortex, the default mode network (DMN), and the

basal ganglia (Figure 4.4). Next, we compute seed-level reliability by treating each

region as a seed and computing the median edge-level reliability of connectivity with

all other regions in the brain. Illustrated in the middle panel of Figure 4.3, seed-level

reliability can be visualized as a single image, illustrating for each region the overall

reliability of connectivity with every other region in the brain. Finally, we compute

omnibus reliability as the median edge-level reliability across all unique pairs of re-

gions, resulting in a single scalar summary of reliability as illustrated in the top panel

of Figure 4.3.
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Figure 4.3: We summarize reliability at three di↵erent resolutions: omnibus, seed-
level and edge-level. Omnibus reliability is computed as the median edge-level relia-
bility across all unique pairs of regions, resulting in a single scalar summary measure
of reliability. Seed-level reliability is computed as the median edge-level reliability
within each seed, resulting in a single map of reliability. Edge-level reliability is com-
puted as the median reliability across subjects at each edge, resulting in a map of
reliability for each seed region.
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Figure 4.4: Three selected seed regions selected from model order 300, lying respec-
tively in the visual cortex (IC 16), the somatomotor cortex (IC 21), and the DMN
(IC 30). The visual seed is located in the bilateral lingual gyrus; the somatomotor
seed is located in the left dorsolateral pre- and post-central gyri; the DMN seed is
located in the posterior cingulate cortex (PCC).

4.3 Results

Figure 4.5 compares the omnibus intersession and end-point reliability measures of

the raw connectivity matrix estimates as a function of scan length and model order.

Here smaller values of percent error signify greater reliability. The two measures

of reliability paint very di↵erent pictures of the accuracy of connectivity estimates

at each scan length, with end-point reliability underestimating the true intersession

error of connectivity estimates by 50 percent or more. This bias increases as scan

length ` approaches L = 2400, since a subset of the data used to compute the refer-

ence W (L)
i1 (q, q0) is used to compute the estimate W (`)

i1 (q, q0), with the two quantities

reaching equality at ` = L. For this reason, end-point reliability is guaranteed to

converge artificially to “perfect” reliability. Furthermore, Figure 4.5 suggests that

the end-point approach tends to significantly overestimate reliability even for short
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relative scan length, where ` is much less than L.

Figure 4.5 also illustrates the e↵ect of scan length and ICA model order on re-

liability. Unsurprisingly, greater scan length results in increased intersession relia-

bility. Specifically, intersession error decreases by approximately 30% as scan length

increases from 300 (3.6 minutes) to 2400 (28.8 minutes). This suggests that while

observing the functional connectivity of a subject over a longer period of time in a

given session results in a connectivity estimate that is closer to the long-term aver-

age for that subject, session-to-session di↵erences in rsFC limit the reproducibility of

rsFC estimates produced from a single scanning session.

Finally, Figure 4.5 also shows that reliability of rsFC between a few larger regions

(e.g. model order 25) tends to be greater than reliability of rsFC between many

smaller regions (e.g. model order 300). This may be counter-intuitive, as smaller

regions might be expected to have more coherent signals than larger regions and

hence result in better estimates of rsFC. There are a number of possible drivers

of the observed, opposite e↵ect. First, the regions were defined using group ICA,

and smaller group-level regions may be less spatially accurate than larger regions for

individual subjects. For example, the entire somatomotor region may be spatially

similar across subjects, while its subregions may exhibit greater subject-to-subject

di↵erences. There may also be visit-to-visit deviations in the true spatial location

of small functional ROIs due to errors in registration or normalization. Second, the

di�culty of model identification in ICA increases with the model order, and therefore
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there may be more error associated with estimation of a greater number of ICs.

Finally, the ICA time courses are essentially a weighted average across voxels, and

averaging a greater number of voxels will tend to in reduced noise levels, and hence

less noisy estimates of rsFC.

Figure 4.6 compares the omnibus intersession reliability of raw and shrinkage

estimates of rsFC (bottom panel), as well as the degree of shrinkage (top panel),

as a function of scan length and model order. Using oracle shrinkage, the degree

of shrinkage decreases with increasing scan length, indicating greater weighting to-

wards subject-level estimates as those estimates become more reliable. However, using

single-session shrinkage, the degree of shrinkage exhibits an initial decrease followed

by an increase after ` = 1200. This may be due to the fact that the direction of

phase encoding switches midway through acquisition of each session. Since di↵er-

ences in the phase encoding direction introduce an artificial source of variability, this

results in overestimation of the true within-subject (intersession) variance based on

single-session data, thus inflating the degree of shrinkage. However, this is likely an

artifact of the unique HCP acquisition protocol, rather than a failing of the proposed

single-session shrinkage methods.

Figure 4.6 clearly illustrates that both single-session and oracle shrinkage estimates

exhibit greater intersession reliability than raw estimates across all model orders and

scan lengths. Notably, shrinkage estimates produced using short scans (` = 300,

3.6 minutes) display similar reliability to raw estimates produced using much longer
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scans (` = 2400, 28.8 minutes). Somewhat surprisingly, oracle shrinkage estimators

only marginally outperform single-session shrinkage estimators, which suggests that

the benefits of shrinkage are somewhat robust to di↵erences in the degree of shrink-

age. The degree of shrinkage towards the group mean using oracle shrinkage is fairly

high (approximately 0.5 or greater), and undershrinkage appears to be worse than

overshrinkage in terms of improving reliability. For example, at model order 300 and

scan length 2400, single-session shrinkage results in nearly complete shrinkage to the

group mean, while oracle shrinkage results in approximately equal weighting of the

subject-level estimate and group mean. However, the reliability of the two resulting

shrinkage estimates is nearly identical.

Figures 4.7 to 4.10 display intersession reliability maps of raw and shrinkage esti-

mates at model order 300 as a function of scan length.1 Reliability is computed at the

subject level and is summarized at the edge and seed levels as illustrated in Figure

4.3. Figure 4.7a shows seed-level reliability; Figures 4.8a to 4.10a show edge-level

reliability for the three seed regions shown in Figure 4.4. For each seed, the quantity

displayed is the absolute percent error. Part (b) of each figure also shows the percent

change in intersession error after shrinkage, relative to the raw estimates; negative

values indicate improved reliability.

Figure 4.7 illustrates that raw and shrinkage estimates exhibit improved reliability

with increased scan length. Both single-session shrinkage and oracle shrinkage esti-

1
For Figures 4.7 to 4.14, the subcortical and left-hemispheric surface grayordinates are not dis-

played but show similar trends.
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mates exhibit greater reliability than raw maps for all scan lengths and seed regions.

Oracle shrinkage estimators only marginally outperform single-session shrinkage esti-

mators; therefore, only the results of oracle shrinkage are displayed in the remainder

of this document. Improvement due to shrinkage is greatest for shorter scans, with

approximately 30-40% decrease in error in most regions at ` = 300. However, im-

provement is still significant for longer scans, with approximately 10-20% decrease in

error in most regions at ` = 2400.

Figures 4.8 to 4.10 illustrate that, for a given seed region, edge-level reliability

varies dramatically across connections. In general, within-network connections exhibit

greater reliability than across-network connections, with proximal or contralateral

connections within the motor network (see Figure 4.9) and the DMN (see Figure

4.10) exhibiting the greatest reliability. For all three regions, shrinkage results in

improved reliability for the vast majority of connections.

Figures 4.11 to 4.14 display maps of within-subject variance, between-subject

variance, and degree of shrinkage of connectivity estimates at model order 300 as a

function of scan length. Both variance components and the degree of shrinkage are

population-level parameters, so for each quantity there is one value for each edge

or connection. For each seed, Figure 4.11 summarizes the variance components and

degree of shrinkage as the median across all connections; Figures 4.12 to 4.14 show

the variance components and degree of shrinkage for each connection with the three

seed regions shown in Figure 4.4.
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Figures 4.11 to 4.14 illustrate that as scan length increases, within-subject variance

decreases as subject-level estimates of rsFC become more accurate, while between-

subject variance remains similar across di↵erent scan lengths. Furthermore, there

are clear spatial patterns of within-subject and between-subject variance, which are

most apparent at the edge level. For example, the highest between-subject variance is

exhibited by connections within the DMN and visual networks, while moderately high

between-subject variance is exhibited by connections within the motor network and

between the motor and visual networks. Similar spatial patterns are also observed

for within-subject variance.

As detailed in Section 4.2.1.2, the degree of shrinkage is determined by the ratio

of within-subject variance to total (within-subject plus between-subject) variance.

The degree of shrinkage can be seen as a measure of reliability of raw estimates of

connectivity, with lower values signifying greater reliability of subject-level estimates

and therefore less need for shrinkage towards the group mean. Figures 4.12 to 4.14

show that the degree of shrinkage is lowest for connections within the DMN, motor

network and visual network, and for connections between the motor and visual net-

works. Other between-network connections tend to have a higher degree of shrinkage.

Figure 4.11 shows that overall, the degree of shrinkage is lower for connections with

frontal and temporal/occipital networks and higher for connections with the visual

network, motor network, medial temporal lobe, and the temporal pole.
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4.4 Discussion

In this paper we investigate the e↵ect of scan length on reliability of estimates of rsFC.

We further study the benefits of shrinkage to improve reliability of these estimates.

We find that shrinkage improves reliability of rsFC by approximately 30-40% for

short scans and 10-20% for longer scans (up to 30 minutes). Our results illustrate that

while longer scans can improve reliability of rsFC, shrinkage of subject-level estimates

towards the group mean also results in a significant improvement in reliability, and

this benefit is not unique to shorter scans. This study also shows that the benefits

of shrinkage are not limited to noisy, voxel-level fMRI data but are also observed for

regional time series that have been denoised using FIX and are based on high-quality

and high-resolution fMRI data collected through the Human Connectome Project.

Our results suggest that increasing scan length beyond 20 or 30 minutes is likely to

yield diminishing returns in terms of improved reliability of rsFC. As seen in Figure

4.6, intersession reliability appears to improve slowly as scan duration approaches

30 minutes, and at ` = 2400 (28.8 minutes), the rsFC estimates still exhibit 50-

100% error, depending on the model order. This suggests that session-to-session

variations in rsFC are far from negligible, which is consistent with previous findings

that intrasession reliability tends to be greater than intersession reliability.19,98,99,104

If the goal is to produce the best estimate of the long-term average rsFC of a given

subject, combining data from multiple sessions, ideally occurring on di↵erent days,

may result in more accurate estimates of rsFC as previously observed by Shehzad et
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al. (2009)98 and Laumann et al. (2015).18

Furthermore, as illustrated in Figure 4.6, shrinkage estimators of rsFC appear to

be quite robust to overshrinkage (e.g. single-session shrinkage estimator at ` � 2100).

This indicates that repeated measures of rsFC for a given subject tend to be closer to

the group average than to each other, and true subject-level di↵erences in rsFC may

therefore be quite subtle and di�cult to estimate accurately. This again suggests that

combining multiple rsfMRI scanning sessions may improve estimation of subject-level

rsFC.

Our results also show that end-point reliability is a poor proxy for true intersession

reliability (see Figure 4.5. To realistically assess reliability in contexts where only a

single session of data is available for each subject, an alternative approach is to use

split-half data. For example, for a single fMRI session of length L, reliability can be

assessed by estimating rsFC using the first L/2 volumes of the session and the last

L/2 volumes, and comparing the two estimates.
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Figure 4.5: Comparison of omnibus intersession and end-point reliability of raw
connectivity estimates by scan length at each model order (25, 50, 100, 200, 300).
Smaller values of absolute percent error signify greater reliability. For each model
order and at every scan length, end-point reliability is a poor proxy for intersession
reliability, as end-point error greatly underestimates the true intersession error. Fur-
thermore, this bias increases sharply as the scan length increases to L = 2400. This
is because the estimate produced from ` < L volumes becomes more similar to the
reference produced from L volumes, eventually reaching equality at ` = L.
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Figure 4.6: Top panel: Degree of shrinkage versus scan length for each model order
(25, 50, 100, 200, 300) (median over all connections). For oracle shrinkage, the degree
of shrinkage tends to decrease as scan length increases. However, for single-session
shrinkage, the degree of shrinkage exhibits an initial decrease followed by an increase.
This is likely artifact of the unique HCP acquisition protocol, in which the phase
encoding method changes midway through each session, leading to an inflation of the
within-subject variance estimated from a single session. Bottom panel: Comparison
of omnibus intersession reliability of raw and shrinkage connectivity estimates by
scan length for each model order. Smaller values of absolute percent error signify
greater reliability. Both single-session and oracle shrinkage estimates exhibit greater
intersession reliabilty than raw estimates across all model orders and scan lengths.
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Figure 4.7: Seed-level reliability.
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Figure 4.8: Edge-level reliability, visual seed.
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Figure 4.9: Edge-level reliability, somatomotor seed.
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Figure 4.10: Edge-level reliability, DMN seed.
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Figure 4.11: Seed-level variance components and degree of shrinkage. For
each quantity, the median value over all connections with a given seed is displayed.
As scan length increases, between-subject variance stays relatively constant, while
within-subject variance and hence the degree of shrinkage decreases.
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Figure 4.12: Edge-level variance components and degree of shrinkage, visual seed.
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Figure 4.13: Edge-level variance components and degree of shrinkage, somatomotor
seed.

127



CHAPTER 4. SCAN LENGTH, SHRINKAGE AND RELIABILITY OF RSFC IN
THE HCP

Figure 4.14: Edge-level variance components and degree of shrinkage, DMN seed.
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Chapter 5

Discussion

In Chapters 2 and 4, I proposed shrinkage methods for estimation of subject-level

functional connectivity based on resting-state fMRI data. The empirical Bayes meth-

ods employed rely on estimation of both between-subject and within-subject variance

of the estimators on which shrinkage is to be performed. In Chapter 2, I introduced

the idea of estimating within-subject (inter-session) variance from single-session data.

Specifically, I proposed a psuedo-scan-rescan technique, combined with an adjustment

factor estimated from the data for varying scan lengths. However, several limitations

of the method and analysis led to the extension presented in Chapter 4. Specifi-

cally, the empirically-estimated adjustment factor may become less appropriate as

conditions vary, such as the specific connections being considered and the quality

of the fMRI data. In Chapter 4, I therefore propose a new technique to estimate

within-subject variance from single-session data, in which two di↵erent sources of
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within-subject variation are identified: sampling variance and variance of the signal

over time. This new technique is more general and is designed to work in a variety

of cases, including settings where sampling variance dominates (e.g. voxel-level time

courses produced from short, noisy fMRI sessions) and settings where signal vari-

ance dominates (e.g. region-level time courses produced from long, denoised fMRI

sessions).

Furthermore, in Chapter 2 reliability of shrinkage estimates was assessed using a

single fMRI study containing relatively short scans from a small population of sub-

jects, and only connections within the motor cortex were considered. The benefits of

shrinkage for di↵erent regions, datasets, and scan lengths remained to be determined.

To this end, in Chapter 4 I employed data from the Human Connectome Project,

where for each of 461 subjects nearly 60 minutes of resting-state fMRI data was ac-

quired at a TR of 0.72 seconds, resulting in an unusually high number of observations

for each subject. Furthermore, the acquisition and processing methods employed in

the HCP were designed to optimize data quality and reduce sources of noise, and

region-level connectivity rather than voxel-level connectivity was considered. There-

fore, the raw connectivity estimates considered in Chapter 4 would be expected to

exhibit much greater reliability than those considered in Chapter 2. However, the

results indicate that shrinkage remains strongly beneficial to the reliability of con-

nectivity estimates across di↵erent scan lengths, even when using the neary optimal

fMRI data of the HCP.
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In Chapter 3, I considered another source of error in analyses of fMRI data, namely

artifacts, which are common and may arise from a number of sources, including sub-

ject motion, scanner instabilities, and processing errors. In order to identify artifacts,

I proposed a novel high-dimensional outlier detection method. Artifact detection and

removal may be performed as a pre-processing step, and can therefore be combined

with shrinkage methods to maximize reliability of connectivity estimates. However,

artifact detection can also be used on fMRI data prior to other types of analysis,

including ICA or task activation studies. The proposed methods can also be tai-

lored to many di↵erent contexts, including other types of functional neuroimaging,

group analyses of structural MR images, and other types of high-dimensional data

not related to imaging. As the availability of “big data” continues to grow, quality

control will become increasingly important, and outlier detection methods designed

for high-dimensional data such as those proposed in Chapter 3 will continue to be

an important topic of research. This is especially true in the context of fMRI data,

as publicly available datasets such as the ABIDE, ADHD-200, 1000 FCP, ADNI and

HCP become increasingly large, more widely available and more highly utilized. As

the BRAIN initiative exemplifies, understanding of brain function and organization

is one of the most important topics of scientific research today, and these datasets,

combined with appropriate quality-control methods, are a major component of that

e↵ort.
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