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Abstract 

Diffusion MRI is a useful medical imaging tool for noninvasive mapping of the 

neuroanatomy and brain connectivity. In this dissertation, we worked on developing 

diffusion MRI techniques to probe brain tissue microstructures from various perspectives. 

Spatial resolution of the diffusion MRI is the key to obtain accurate microstructural 

information. In Chapter 2 and 3, we focused on developing high-resolution in vivo diffusion 

MRI techniques, such as 3D fast imaging sequence and a localized imaging approach using 

selective excitation RF pulses. We demonstrated the power of the superior resolution in 

delineating complex microstructures in the live mouse brain. With the high resolution 

diffusion MRI data, we were able to map the intra-hippocampal connectivity in the mouse 

brain, which showed remarkable similarity with tracer studies (Chapter 4). Using the 

localized fast imaging technique, we were the first to achieve in utero diffusion MRI of 

embryonic mouse brain, which revealed the microstructures in the developing brains and 

the changes after inflammatory injury (Chapter 5). 

The second half of the dissertation explores the restricted water diffusion at varying 

diffusion times and microstructure scales, using the oscillating gradient spin-echo (OGSE) 

diffusion MRI. We showed in the live normal mouse brains that unique tissue contrasts can 

be obtained at different oscillating frequency. We demonstrated in a neonatal mouse model 

of hypoxia-ischemia, that in the edema brain tissues, diffusion MRI signal changed much 

faster with oscillating frequency compared to the normal tissue, indicating significant 

changes in cell size associated with cytotoxic edema (Chapter 6). In the mild injury mice, 

OGSE showed exquisite sensitivity in detecting subtle injury in the hippocampus, which 
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may relate to microstructural changes in smaller scales, such as the subcellular organelles 

(Chapter 7). Finally, we addressed the technical issues of OGSE diffusion MRI, and 

proposed a new hybrid OGSE sequence with orthogonally placed pulsed and oscillating 

gradients to suppress the perfusion related pseudo-diffusion (Chapter 8).   

In conclusion, we developed in vivo high-resolution diffusion techniques, and time-

dependent diffusion measurements to characterize brain tissue microstructures in the 

normal and diseased mouse brains. The knowledge gained from this dissertation study may 

advance our understanding on microstructural basis of diffusion MRI. 
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Chapter 1 Fundamentals of Diffusion MRI 

1.1 Basics of Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging (MRI) utilizes the main magnetic field, radiofrequency 

(RF) field, and magnetic gradients to map the spatial distributions and other properties of 

several nuclei in biological tissues. In this thesis, I am working exclusively with MRI of 

water proton (1H), so MRI here refers to proton MRI. Basic image contrasts provided by 

MRI include proton density, longitudinal magnetization (T1), and transverse magnetization 

(T2). It is an important medical imaging technique to visualize the anatomy and physiology 

of the brain and other organs. 

1.1.1 MR Physics 

In most medical applications of MRI, protons (hydrogen atoms) in water molecules 

are the source of MR signal, which have well-known magnetic properties and behave as 

the nuclear spins. When proton spins are subjected a main magnetic field (B0 field, in unit 

of Tesla), the spins tend to align in the direction of the magnetic field at equilibrium, giving 
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rise to a net magnetization. At the same time, the spins precess about the axis of the B0 

field at a well-defined frequency, the Larmor Frequency (ω0): 

ω0 = γ· B0     Equation 1.1 

where γ is the nuclear specific gyromagnetic ratio, which is 42.576 x 106 Hz/tesla for proton 

(1H) (1). 

When an electromagnetic radiofrequency (RF) pulse is applied at the same Larmor 

frequency, the nuclear spins absorb the electromagnetic energy and the equilibrium state is 

disturbed, called the excitation. From a macroscopic view, the net magnetization vector 

rotates in a spiral movement from the direction of B0 field (Z axis), down to the direction 

of the RF field (XY plane, perpendicular to Z). In a rotating frame of reference, the net 

magnetization vector tips down during excitation, and the flip angle depends on the 

strength and duration of the RF pulse.  

Shortly after the excitation, the spins will return from the excited states to thermal 

equilibrium. This process is called relaxation, which follows two different mechanisms: 

1) Longitudinal relaxation is due to energy exchange between the spins and surrounding 

lattice (spin-lattice relaxation). The longitudinal component (along Z axis) of the 

magnetization (Mz) recovers according to 
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       Equation 1.2 

where T1 is the spin-lattice time constant and characterize the tissue-specific relaxation 

time when the longitudinal magnetization returns to 63 % of its equilibrium value. T1 

values increase with increasing B0. M0 is … 

2) Transverse relaxation results from spins getting out of phase. As spins move together, 

their magnetic fields interact (spin-spin interaction), slightly modifying their precession 

rate, which causes a cumulative loss in phase and transverse magnetization (Mxy, in the 

XY plane,) decay.  

      Equation 1.4 

where T2 is the spin-spin time constant and characterize the tissue-specific relaxation time 

when then transverse magnetization losses 63% of its original value. T2 values decrease 

with increasing B0, and T2 ≤ T1. 

Combining Equation 1.4 and 1.5, the dynamics of the nuclear magnetization can be 

described by the Block equation (2): 

  Equation 1.5 

which describes the precessional behavior (first term), as well as the exponential relaxation 

of both the longitudinal (second term) and the transverse (third term) components. 

1
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1.1.2 Imaging principles 

Decoding of the spatial distribution of the spins relies on application of magnetic field 

gradients, which is the time derivation of the magnetic field 𝐺 =
𝑑𝐵

𝑑𝑡
 along three dimensions. 

The different gradients used to perform spatial localization are applied at distinct moments 

and in different directions. For example, the frequency encoding (FE) gradient, the phase 

encoding (PE) gradient, and the slice selection (SS) gradient are along three orthogonal 

directions.  

By solving Block equation for an inhomogeneous object with time-varying gradients, 

the received MR signal from an excited location at (x, y, z) can be simplified as 

  Equation 1.6 

where m(x,y,z) is a function of the spin magnetization properties, such as density ρ(x,y,z), 

T1(x,y,z), and T2(x,y,z), and kx(t), ky(t), and kz(t) are the time integrals of the gradient 

waveforms along x, y, and z, respectively: kx(t) = 
𝛾

2𝜋
∫ 𝐺𝑥(𝜏)𝑑𝜏

𝑡

0
, ky(t) = 

𝛾

2𝜋
∫ 𝐺𝑦(𝜏)𝑑𝜏

𝑡

0
, and 

kz(t) = 
𝛾

2𝜋
∫ 𝐺𝑧(𝜏)𝑑𝜏

𝑡

0
. What is Gx, etc? 

 
  



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
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Equation 1.6 states that the MR signal can be interpreted as the spatial Fourier 

transformation of the spin magnetization. Therefore, the readout signal directly recorded 

from the MR receiver coil resides in a Fourier space of the MR image, called the k-space. 

By increasing or decreasing the FE and PE gradients, MR signals will fill up the k-space, 

whose 2D or 3D Fourier transform gives an MR image of the spin distribution. This is 

known as the spin warping method (3), and so far the most common MR reconstruction 

method. 

  By manipulating the timing, duration, and strength of MR gradients and RF pulses, 

various MR pulse sequences can be generated, which give rise to a large reservoir of MR 

image contrasts with rich anatomical and functional information. Basic MR pulse 

sequences include the gradient echo sequence and spin echo sequence (Figure 1.1) and 

their derivations, such as the steady state fast precession (SSFP), inversion recovery (IR), 

echo planar imaging (EPI), fast spin echo (FSE), etc (1). 
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Figure 1.1: Pulse sequence diagrams of (A) gradient echo sequence and (B) spin echo 

sequence, which consist of the radiofrequency (RF) pulse, slice selection gradient (SS), 

phase encoding (PE) gradient, frequency encoding (FE) gradient, and signal readout.  

1.1.3 Applications of MRI in Biomedicine 

Since the first NMR-based image by Dr. Paul Lauterbur in 1973 (4), MRI has come a 

long way to become a major medical imaging tool for diagnosis of a variety of neurological 

diseases. Compared to computer tomography (CT) and optical imaging, MRI can generate 

rich image contrasts adapted for different diagnostic purposes, especially in the brain 

(Figure 1.2). For example, the T2-weighted image contrast from a fluid attenuated 

inversion recovery (FLAIR) sequence is widely used for detection of periventricular 

lesions in patients with multiple sclerosis (MS); MR angiography (MRA) enhances the 

arteries to evaluate them for stenosis (vessel wall narrowing) or aneurysms (vessel wall 

http://en.wikipedia.org/wiki/Angiography
http://en.wikipedia.org/wiki/Stenosis
http://en.wikipedia.org/wiki/Aneurysm
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dilatations); MR spectroscopy (MRS) is used to measure the levels of 

different metabolites in brain tissues; Functional MRI (fMRI) measures blood-oxygen-

level dependent (BOLD) signal changes in the brain that is related to 

neural activity; diffusion MRI utilizes water diffusion to probe tissue microstructure and is 

particular useful for early detection of stroke and delineation of white matter structures, 

which will be described in detail in the following section. 

 

Figure 1.2: A range of MRI modalities that embodies rich anatomical and functional 

information, such as the proton density imaging (A), T2-weighted imaging (B), T1-

weighted imaging (C), angiography (D), diffusion-weighted imaging (E), diffusion tensor 

imaging (F), perfusion imaging (G), and functional MRI (H). 

 

http://en.wikipedia.org/wiki/In_vivo_magnetic_resonance_spectroscopy
http://en.wikipedia.org/wiki/Metabolites
http://en.wikipedia.org/wiki/Functional_MRI
http://en.wikipedia.org/wiki/Human_brain
http://en.wikipedia.org/wiki/Neuron
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1.2 Diffusion MRI 

Diffusion MRI (dMRI) came into existence in the mid-1980s (5-7), which allows the 

mapping of the behavior of water molecule diffusion in biological tissues. Water molecules 

in tissues do not diffuse freely as they do in a bottle of water, but interact with many 

obstacles, such as macromolecules, cell membrane and myelin sheath (8). Therefore, by 

examining the behavioral of water molecule diffusion, dMRI can potentially reveal 

microscopic details about tissue microstructure, in normal or pathological states. 

1.2.1 Physics of Diffusion 

The equation that characterize the Brownian motion of the molecules was first 

described by Albert Einstein in 1905, known as the Einstein equation for diffusion 

<(x’ - x)2> = 2Dt   Equation 1.7 

where x is the displacement of molecules during diffusion time t, and D is the diffusion 

coefficient, characteristic of the molecule and its diffusion environment. This relation leads 

to the definition of diffusion coefficient  

    Equation 1.8 

where <v(τ)v(0)> is the autocorrelation function of the molecular velocity. 
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In 1956, Torrey modified Bloch's original description of transverse magnetization to 

include diffusion terms (9), called the Bloch-Torrey equation: 

 Equation 1.9 

1.2.2 Diffusion weighted imaging 

Diffusion MRI utilizes diffusion sensitization gradients to examine the behavior of 

water diffusion in biological tissues. The dMRI sequence, in its simplest form, originated 

from the Stejskal-Tanner experiment (10) to measure the water diffusion. As illustrated in 

Figure 1.3, a pair of pulsed gradients was applied before and after the 180⁰ pulse. If the 

water molecules are stationary, the spin dephasing induced by the first diffusion gradient 

will be rephrased by the second diffusion gradient. If the water molecules move during the 

applications of the first and second diffusion gradient, the dephasing will not be fully 

refocused by the rephasing gradient, and therefore, the magnitude of the MR signal is 

attenuated as described in Equation 1.9. 
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Figure 1.3: A schematics of the Stejskal-Tanner experiment to measure molecular 

displacement during application of the dephasing and rephasing gradient (adapted from (11) 

Chapter 9. 

 

The amount of diffusion attenuation depends on the shape, strength, and timing of the 

diffusion gradients, characterized by so called “b-value”.  

S/S0 = exp(-b∙D)   Equation 1.10 

where  𝑏 = 𝛾2 ∫ [∫ 𝐺(𝑡′)𝑑𝑡′
𝑡

0
]
2
𝑑𝑡

𝑇𝐸

0
  Equation 1.11 

D denotes the diffusion coefficient and G denotes the diffusion gradient. In a pulsed 

gradient spin echo sequence (Figure 1.3), the b-value can be simplified as (10) 

  b = γ2 G2 D δ2 (Δ - δ/3)  Equation 1.12 

where δ is the duration of the diffusion gradients, and Δ is the diffusion separation time, 

which include the time from the beginning of the first gradient to the beginning of the 
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second gradient. When the diffusion gradients are applied simultaneously along several 

directions, the b-value can be generalized to a b-matrix and S/S0 = exp(-ΣΣbij∙Dij) with i = 

x,y,z and j = x,y,z. 

Later, it was realized the in a complex media, the molecular diffusion behavior no 

longer follows self-diffusion as described in Equation 1.8. To address this deficiency, 

Tanner introduced the notion of the apparent diffusion coefficient (ADC) (12), defined as 

the diffusivity one would calculate using the Stejskal and Tanner formula (10), if the 

displacement distribution were Gaussian.  

1.2.3 Diffusion tensor MRI and other advanced dMRI 

The ADC in anisotropic tissue varies depending on the direction in which it is 

measured, e.g., ADC measured along an axon is higher than ADC measured 

perpendicularly to it. In order to measure the direction-depend diffusion, application of a 

series of gradients with distinct directions is required. A more general description of water 

diffusion uses a three-dimensional (3D) Gaussian model of molecular displacements, 

which introduces diffusion tensor of water (13-15), D as matrix in place of a scalar ADC 

to describe the orientation dependence of water diffusion. With diffusion-weighted signals 
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from ≥ six independent directions, the diffusion tensor D can be estimated by multivariate 

linear regression from Equation 1.10, along with several tensor-derived parameters, such 

as fractional anisotropy (FA), radial diffusivity, and axial diffusivity. These scalar 

measurements are widely used for evaluation of white matter integrity such as axonal 

damage and demyelination (16,17). 

However, the diffusion tensor model is based on a Gaussian description of 

displacement distribution function and over-simplifies the water diffusion in complex 

biological tissues. To address these limitations, advanced diffusion acquisition and 

reconstruction schemes were established. For example, diffusion spectrum imaging (DSI) 

provides a model-free approach that directly relates the diffusion signal decay with a 3D 

displacement distribution function via a Fourier transform (18).  Compared to DTI, DSI is 

sensitive to intra-voxel heterogeneities in diffusion directions caused by crossing fiber 

tracts, but requires a large set of diffusion directions and high diffusion attenuation. Along 

this line, variations of DSI with varying diffusion direction sampling schemes were 

developed, such as the high angular resolution diffusion imaging (HARDI) or Q-ball 

imaging (19), and multi-shell Q-ball imaging (20).  
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On the other hand, sophisticated diffusion models were investigated to extract specific 

geometric information of microstructures, such as the AxCaliber model (21), the NODDI 

model (22), the diffusion basis spectrum model (23) and many other compartment models. 

Higher order diffusion models such as the diffusion kurtosis imaging (DKI) (24), and other 

non-Gaussian diffusion MRI (25) are also explored. Furthermore, different diffusion 

sensitization gradients were also used to probe unique microstructural information at 

varying scales, such as the double pulsed field gradient MRI (26) and the oscillating 

gradient diffusion MRI (27). 

1.2.4 Diffusion MRI tractography 

Advances in diffusion MRI provides non-invasive ways of mapping the white matter 

fiber tracts in the brain. Since 1999, DTI based fiber tracking (28,29) has been recognized 

as a valuable tool to visualize and evaluate the 3D organization of the WM pathways, to 

perform tract-specific measurements or tract-based brain parcellation, and even assist real-

time neurosurgical planning.  

Over the last decade, various diffusion tractography algorithms have emerged, along 

with specific software packages to facilitate the implementation. In addition to the original 
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deterministic streamline tracking that propagate the trajectory according to the direction of 

the major eigenvector of the tensor, probabilistic tracking algorithms (30-32) were 

proposed to incorporate the orientation uncertainty to reduced systematic errors during 

tracking. In order to address the issue of crossing fibers within voxels that commonly 

present in the brain, advanced diffusion models are used to provide orientation distribution 

function (ODF) or fiber orientation distribution (FOD) basis for fiber tracking, such as the 

Q-ball reconstruction (33) and spherical decomposition (34) using Q-ball or HARDI data. 

However, a recent study (35) showed that although emphasizing the crossing fibers 

improve the sensitivity in fiber tracking, it reduced the specificity at the same time.  

Diffusion tractography of the brain connectivity has attracted wide attentions in 

recently years, such as the investments in the north American human connectome project 

(36,37) and the European human brain project (https://www.humanbrainproject.eu/), while 

the validity of the in vivo tractography is still under investigation (38-41).  

1.2.5 Applications of diffusion MRI and its limitations 

Ever since its first use in detecting cerebral ischemia in the cat brain (42), diffusion 

MRI has become the major clinical diagnostic tool for acute stroke (43-46), which is 
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important for early administration of therapeutic interventions. The subsequent 

pseudonormalization of ADC at subacute stages and the further increase of ADC at chronic 

stages (47-50), help to identify the transition from acute cytotoxic edema to vasogenic 

edema due to the breakdown of the blood-brain barrier and cell membrane damage. 

Although the empirical knowledge is well established about ischemic stroke and its 

demonstration in diffusion MRI, the mechanism of the underlying pathology that give rise 

to the diffusion signal change is not yet clear (42,51-54).  

Besides its wide application in stroke, diffusion MRI is frequently used to detect 

demyelination diseases and axon loss, such as that in multiple sclerosis (55-57). Moreover, 

the unique contrasts from diffusion MRI is particularly useful in studying the brain 

development. Compare to the conventional T1 and T2 weighted imaging, dMRI is able to 

delineate the unmyelinated microstructures in the developing brains (58,59) and to detect 

fetal brain injuries (60-63).  

Although diffusion MRI have shown to be important tool in delineating  neuroanatomy 

and detecting neurological diseases, limitations of this technique are recognized, regarding 

its acquisition and reconstruction procedures and the inclusive relation between the 

diffusion MRI signal and the underlying microstructure. For example, imaging artifacts 
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results from the eddy currents, EPI distortion, and motion are still hampering the image 

quality of in vivo dMRI; the spatial resolution of in vivo dMRI on current scanner systems 

is limited compared to the scale of tissue microstructures; histological validation of the 

reconstructed microstructures and tractography is insufficient; and the interpretation of 

dMRI diagnosis is still ambiguous. In this dissertation, we attempted to address some of 

these issues and proposed our solutions. 
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Chapter 2 In vivo high-resolution diffusion tensor 

imaging of the mouse brain  

2.1 Introduction 

Diffusion tensor imaging (DTI) (64) is a useful tool for studying brain anatomy and 

pathology. Based on a three-dimensional (3D) Gaussian model of water molecule diffusion, 

DTI provides several unique image contrasts that can reveal the spatial arrangement and 

structural integrity of major white matter tracts in the brain (65-69). Besides its utility in 

the clinic, DTI has also been frequently applied in basic research to examine the laboratory 

mouse brain (70). It has been widely used to characterize white matter injuries in mouse 

models of neurological disease, e.g., traumatic brain injury (71), multiple sclerosis (72), 

and stroke (73). DTI has also been used to study brain development and its genetic control 

mechanisms through various mutant mouse models (74-76), as the macroscopic 

information about neuro-anatomy provided by DTI complements the cellular and 

molecular information from histology. The wide applicability of DTI to studies on mouse 

brain anatomy and pathology makes it useful to have DTI based mouse brain atlases to 

assist structure delineation and lesion detection in DTI data. To fulfill this demand, several 
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ex vivo DTI based mouse brain atlases have been established, which provided exquisite 

anatomical details within the mouse brain (77-79). However, currently no high-resolution 

in vivo atlas is available. 

While in vivo mouse brain DTI can now be routinely performed, its application to a 

broader range of mouse models is still limited by the available imaging resolution and 

speed. The reason is that several complex structures in the mouse brain, e.g., the small 

white matter tracts in the thalamus, can only be visualized properly with high-resolution 

imaging (80,81). Such high-resolution DTI of the live mouse brain, however, requires 

lengthy acquisition times, which limits the throughput and makes it challenging to use DTI 

to examine neonatal or injured mice that may not survive long MRI scans. Even though ex 

vivo DTI can be used to acquire high-resolution images from postmortem samples (80-82), 

it cannot substitute for in vivo DTI when longitudinal monitoring is necessary. Recent 

reports have also shown that ex vivo DTI is less sensitive to certain white matter injuries 

than in vivo DTI due to changes in tissue microstructure associated with death and chemical 

fixation (83-86).  

Because signal-to-noise ratio (SNR) is the main factor dictating the available 

resolution and speed in MRI, improvement in SNR can be translated into improvements in 
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imaging resolution and speed. In the past few years, high-field magnets and sensitive radio 

frequency coils in combination with fast imaging sequences have greatly enhanced our 

ability to use DTI to examine the mouse brain (74,80,87-89). The recent advent of the 

cryogenic probes (cryoprobes), which can significantly improve SNR by reducing the 

thermal noise of the electronics, has opened new opportunities to further improve the 

resolution and speed of in vivo mouse brain DTI. Several recent reports have shown that a 

cryoprobe can improve SNR by a factor of 2-3 over similar room temperature coils under 

comparable experimental conditions (90,91). The use of fast imaging sequence is also 

critical for in vivo mouse imaging. Compared to conventional diffusion-weighted spin-

echo (DW-SE) or echo-planar (DW-EPI) sequences, the diffusion-weighted gradient-spin-

echo (DW-GRASE) sequence (80) provides imaging speed comparable to multi-shot DW-

EPI but with reduced image distortion. In this study, we demonstrate high-resolution in 

vivo DTI of the mouse brain using a transmit-receive cryoprobe and the DW-GRASE 

sequence at 11.7 Tesla. Based on the results, an in vivo group-averaged DTI atlas of the 

adult mouse brain with structural segmentation was developed, together with a detailed 

analysis of the differences in structural morphology and tissue contrasts between the in 

vivo atlas and a previous ex vivo atlas. 
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2.2 Material and methods 

2.2.1 Animals and experimental setup  

All experimental procedures were approved by the Animal Use and Care Committee 

at the Johns Hopkins University School of Medicine. Both adult (C57BL/6, two-month old, 

female, n = 8, from three litters) and neonatal (postnatal day 7, 11 and 14, n = 3) C57Bl/6 

mice were used.  

2.2.2 Image acquisition 

In vivo imaging was performed on a horizontal 11.7 Tesla MR scanner (Bruker Biospin, 

Billerica, MA, USA) with a triple-axis gradient (maximum gradient strength = 74 

Gauss/cm) and a quadrature surface transmit/receive cryogenic probe with a size of 20 mm 

x 16 mm for each of two RF elements. The surface temperature of the cryoprobe was 

maintained at 37 oC. During imaging, mice were anesthetized with isoflurane (1%) together 

with air and oxygen mixed at 3:1 ratio via a vaporizer and positioned in an animal holder 

(Bruker Biospin, Billerica, MA, USA). Custom-designed mouse beds with different sizes 

were built for positioning the neonatal mice. Respiration was monitored via a pressure 
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sensor (SAII, Stony Brook, NY, USA) and maintained at 40-60 breaths per minute. After 

imaging, animals recovered within 5 minutes.   

In vivo DTI of the adult mouse brains was performed using a modified 3D diffusion-

weighted gradient and spin echo (DW-GRASE) sequence (80) with the following 

parameters: TE/TR = 33/500 ms, 2 signal averages, 20 imaging echoes (4 spin echoes 

distributed along the phase encoding direction and 16 gradient echoes distributed along the 

slice selection direction) after each excitation with twin navigator echoes in the end for 

motion and phase corrections, 12 diffusion directions, b = 1000 s/mm2, field of view (FOV) 

= 16 mm x 16 mm x 17.6 mm, a matrix size of 128 x 128 x 140, and a native imaging 

resolution = 0.125 mm x 0.125 mm x 0.125 mm. BIR4 adiabatic pulses (92) were used to 

achieve uniform excitation and refocusing over the 3D volume of interest. With respiratory 

gating, the total imaging time was approximately 2-2.5 hours. The same protocol was used 

for 3D DTI of the neonatal mouse brains, except that the FOV was reduced to 16 mm x 13 

mm x 15 mm and the matrix size was reduced to 128 x 104 x 120. The total imaging time 

was within 1.5 hours with respiration gating. In each experiment, the point spread functions 

(PSFs) due to T2 and T2* decays were measured along the phase encoding and slice 

selection directions, and the average FWHM (full width at half maximum) of the PSFs 
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were approximately 0.082 mm and 0.098 mm respectively. The SNR was evaluated as the 

ratio of the mean signal intensity against the standard deviation of noise, where signals 

were averaged from 1 mm2 boxes within the regions of interest (ROIs) and the noise was 

chosen from the background of the image in an area of about 4 mm2. 

2.2.3 Data processing 

The 3D images acquired using the DW-GRASE sequence were reconstructed from 

raw data in MATLAB (www.mathworks.com) with navigator-based motion and phase 

correction (93). Using the log-linear fitting method implemented in DTIStudio 

(http://www.mristudio.org) (94), diffusion tensor was calculated at each pixel along with 

the apparent diffusion coefficient (ADC), fractional anisotropy (FA), primary eigenvector, 

axial diffusivity (λ║, the primary eigenvalue), and radial diffusivity (λ⊥, the average of the 

secondary and tertiary eigenvalues). The adult mouse brain images were rigidly aligned to 

ex vivo mouse brain images in our MRI based mouse brain atlas (78) using the landmark 

based rigid transformation implemented in the DiffeoMap software (www.mristudio.org). 

3D reconstruction of white matter tracts was performed in DTIStudio using the multi-ROI 

fiber assignment by continuous tracking (FACT) method (69,95,96).  

http://www.mathworks.com/
http://www.mristudio.org/
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Based on the 3D adult mouse brain images (n = 8), group-averaged mouse brain 

images were generated using the iterative procedure described in (78,97) , first using 

intensity based linear affine transformation (98) and then dual-channel (ADC+FA) large 

deformation diffeomorphic metric mapping (LDDMM) (99) implemented in Diffeomap. 

ADC and FA maps were used for image registration because they provide complimentary 

contrasts that define the brain and ventricular boundaries (from the ADC image) and 

internal white matter tracts (from the FA image) and are not directly affected by the 

inhomogeneous intensity profile associated with the transceiver (91). Sixty brain structures 

were manually segmented in the group-averaged mouse brain images as described in (78), 

following the Paxino’s mouse brain atlas (100,101). The group-averaged mouse brain 

images and structural segmentation together formed the in vivo group-averaged adult 

mouse brain atlas.  

For comparisons between in vivo and ex vivo mouse brain DTI data, a previously 

published ex vivo DTI based mouse brain atlas (78) and datasets (C57BL/6, 2-3 months old 

female, n = 10) were used. Using dual-channel (ADC+FA) LDDMM, in vivo and ex vivo 

diffusion tensor images of each mouse brain were registered to the in vivo and ex vivo 

mouse brain atlases, respectively. Using the maps derived in this process, the structural 



 

 

24 

 

segmentations in the atlases were transformed to the rigidly aligned individual mouse brain 

data and refined by manual segmentation. Based on these segmentation results, volumes 

and diffusion parameters (ADC, FA, λ║, and λ⊥) of major structures were obtained from 

both datasets. Differences in structural volume and diffusion parameters between the in 

vivo and ex vivo datasets were tested using the nonparametric Wilcoxon test. To further 

quantify the morphological differences between the in vivo and ex vivo mouse brain atlases, 

a mapping between the two atlases was also generated using the dual channel (ADC+FA) 

LDDMM. By concatenating this mapping with the mapping from individual ex vivo mouse 

brain to the ex vivo template, a combined mapping from individual ex vivo mouse brain to 

the in vivo atlas was obtained. Based on the mappings from individual in vivo and ex vivo 

mouse brains to the in vivo mouse brain atlas, Jacobian maps (102) were calculated, and 

voxel-wise comparisons of the Jacobian maps from the in vivo and ex vivo datasets were 

performed (Matlab, Mathworks, www.mathworks.com) after correction for multiple 

comparisons with a false discovery rate of 0.05 to locate regions with significant changes 

in local tissue volume. A tissue displacement map was also calculated between the group-

average in vivo and ex vivo mouse brain images to characterize morphological differences. 

http://www.mathworks.com/
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2.3 Results 

In vivo high-resolution DTI enhanced our ability to non-invasively examine 

microstructures in the mouse brain. As is shown in Figs. 2.1(A-B), when an isotropic 

resolution of 0.125 mm is used, small white matter structures in the adult mouse brain (e.g., 

the stria medullaris, stria terminalis, and fasciculus retroflexus) could be delineated in the 

in vivo DTI data. As is also shown in Fig. 2.1(D-E), complex 3D trajectories of these white 

matter tracts could be reconstructed and visualized with high spatial resolution in all three 

dimensions. Certain gray matter regions that possess unique DTI contrast patterns, e.g., the 

axon-rich layers in the hippocampus and the cerebellar cortex, could also be resolved. The 

in vivo data, however, showed a small but noticeable loss of sharpness attributed to T2/T2* 

decay and physiological motions when compared to our previous ex vivo 3D DTI data (Fig. 

2.1(C)), which were acquired at the same spatial resolution using a diffusion-weighted spin 

echo sequence for over 20 hours (78).  
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Figure 2.1: In vivo 3D high-resolution DTI and tractography of a representative adult 

mouse brain at 0.125 mm isotropic resolution. Direction-encoded colormaps (DECs) at 

several coronal slices (A) and sagittal slices (B) of the mouse brain are compared to 

matching images from our previous ex vivo data (C) of the same resolution after rigid 

alignment of the two datasets. The high resolution of the in vivo data allows reconstruction 

of both major and small white matter tracts (D & E) in the brain. The red-green-blue color 

scheme used in the DEC images is: red: left-right axis; green: rostral-caudal axis; blue: 

superior-inferior axis. Abbreviations: ac – anterior commissure; bsc: brachium sup 

colliculus; cp– cerebral peduncle; opt – optical tract; fi – fimbria; f – fornix; ml: medial 

lemniscus; sm – stria medullaris; st – stria terminalis; fr– fasciculus retroflexus; LV – 

lateral ventricle; 3V – third ventricle; 4V – fourth ventricle. Scale bar = 1 mm.  

 

The relatively short acquisition time and high resolution made it possible to acquire in 

vivo DTI data from neonatal mouse brains. Fig. 2.2 shows high-resolution 3D DTI data 



 

 

27 

 

acquired from normal P7, P11 and P14 mouse brains. Even though the sizes of the neonatal 

mouse brains were significantly smaller than the size of the adult mouse brain, the high-

resolution 3D DTI data allowed us to delineate immature white matter (e.g., the corpus 

callosum and stria medularis) and gray matter structures (e.g., cerebellar cortex) in the 

neonatal mouse brain. It is necessary to note that due to the geometry of the cryoprobe 

(dual surface coil quadrature setup), the in vivo data have decreasing SNR along the dorsal-

ventral axis of the brain (Table 2.1).  

 

Figure 2.2: In vivo DTI of normal neonatal mouse brains at 0.125mm isotropic resolution. 

Coronal and sagittal FA and DEC images at postnatal day 7 (P7), 11 (P11), and 14 (P14). 

Abbreviations: cc –corpus callosum; ac – anterior commissure; cp– cerebral peduncle; opt 

– optical tract; fi – fimbria; sm – stria medullaris; st – stria terminalis; fr– fasciculus 

retroflexus. Scale bar = 1 mm.  
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Table 2.1: SNR values in five dorsal to ventral brain regions of in vivo (n = 8) and ex vivo 

(n = 10) mouse brain DTI images. The mean SNR values and standard deviations were 

measured on the non-diffusion-weighted images. 

 

Structures In vivo Ex vivo 

Cortex 161.5±8.8 175.8±21.3 

Hippocampus 133.3±11.9 203.1±21.3 

Thalamus 90.3±12.1 148.5±12.9 

Hypothalamus 73.3±10.5 199.8±30.7 

Amygdala 69.8±9.4 196.4±24.4 

 

A group-averaged in vivo high-resolution DTI dataset of the adult mouse brain was 

created to study group-averaged morphological features and tissue contrasts (Fig. 2.3). 

Although a loss in image sharpness due to residual mismatch after registration among the 

subject images could be observed in the averaged images, small white matter tracts in the 

thalamus and cerebellar cortex/white matter remained well defined. A segmentation map 

of 60 brain structures of the in vivo mouse brain atlas was generated (Fig. 2.3, superimposed 

on direction-encoded colormap images). The group-averaged atlas and datasets can be 

downloaded at (http://cmrm.med.jhmi.edu).   

http://cmrm.med.jhmi.edu/
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Figure 2.3: Group-averaged FA and DEC images and structural segmentations in the in 

vivo mouse brain DTI atlas. Average FA and DEC images from eight adult mouse brains 

are shown in coronal and horizontal views. Inset figures magnify complex structures from 

the hippocampus and cerebellum. Outlines of structural segmentations are overlaid on the 

DEC images.  

 

Several differences were observed in structure morphology and tissue water diffusion 

properties between the in vivo and ex vivo mouse brain DTI data.  Although the volumes 

of major brain structures did not change significantly between in vivo and ex vivo data 

(Table 2.2), the 60% reduction in the ventricular volumes after death and fixation was 

accompanied by large deformations in its neighboring structures. For example, in the tissue 

displacement and Jacobian maps (Fig. 2.4), the hippocampus showed a large displacement 
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accompanied by significant (p < 0.05) expansion at its caudal portion (indicated by the 

white arrows in Fig. 2.4) in the ex vivo mouse brains (n = 10). The dorsal cortex also 

showed relatively a large tissue displacement and significant expansion in local tissue 

volume (indicated by the yellow arrows in Fig. 2.4).  

 

Table 2.2: ROI-based measurements in gray matter structures of the in vivo and ex vivo 

mouse brain DTI datasets. The volume (mm3), ADC (mm2/s) and FA in several major gray 

matter structures are presented as mean ± standard deviation from in vivo (n=8) and ex vivo 

(n=10) DTI data. Gray matter segmentations defined in the in vivo atlas were transformed 

to individual mouse brain data and used as ROIs. * p < 0.01, ** p < 0.005. 

 

Structures 

Volume (mm3) ADC (x10-3 mm2/s) FA 

In vivo Ex vivo In vivo Ex vivo In vivo Ex vivo 

Cortex 100.4±5.1 99.5±4.9 0.55±0.02 0.45±0.10 0.21±0.01** 0.19±0.01 

Hippocampus 25.0±1.4 26.5±2.4 0.56±0.03** 0.45±0.10 0.25±0.02 0.25±0.02 

Striatum 21.0±0.9* 23.0±1.8 0.52±0.03* 0.41±0.10 0.27±0.02** 0.18±0.01 

Thalamus 20.6±0.9 20.7±1.4 0.53±0.03** 0.39±0.07 0.37±0.03** 0.27±0.01 

Septum 1.6±0.1 1.8±0.2 0.63±0.05** 0.41±0.10 0.35±0.03** 0.25±0.01 

Cerebellum 54.9±3.0 55.0±1.6 0.50±0.03** 0.37±0.09 0.35±0.02** 0.29±0.02 

Ventricles 8.42±0.71 3.36±0.47 NA NA NA NA 
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Figure 2.4: Morphological differences between the in vivo (n = 8) and ex vivo (n = 10) 

mouse brains. (Top row) Color-coded Log-Jacobian maps of the transformation between 

the in vivo and ex vivo mouse brains superimposed on average in vivo FA maps). Only the 

voxels with significant changes in Log-Jacobian values (p < 0.05 after corrections for 

multiple comparisons) are shown. A Log-Jacobian value greater than 0 indicates expansion 

of the ex vivo mouse brains with respect to the in vivo mouse brains, and shrinkage 

otherwise. (Bottom row) Color-coded maps of estimated tissue displacement between the 

average ex vivo and in vivo mouse brain images superimposed on average in vivo FA maps. 

Cortical and hippocampal regions that show large morphological changes between the in 

vivo and ex vivo images are indicated by the yellow and white arrows, respectively.  

 

While the FA changed significantly in gray matter (Table 2.2), FA values measured in 

major white matter tracts in vivo and ex vivo show no apparent difference (Table 2.3), 

which agrees with previous reports (86). ADC measured in major white matter tracts were 

significantly reduced in the ex vivo data (Fig. 2.5(A) and Table 2.3), with both axial 

diffusivity and radial diffusivity reduced proportionally with ADC (Table 2.3). In major 
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gray matter structures, ADC values were also reduced in the ex vivo data, but less than 

white matter structures (e.g., approximately 20% reduction in the cortex vs. 47% reduction 

in the corpus callosum, Tables 2.2 and 2.3), and FA also showed significant reduction, e.g., 

in the cortex, cerebellum, and thalamus (Table 2.2). As a result of these changes, the ADC 

images of the in vivo and ex vivo mouse brains showed different contrasts, with the ex vivo 

ADC image showed stronger contrast between the white and gray matter structures than in 

vivo ADC image (Fig 2.5(A)). In the axial diffusivity images, the contrast between the 

cortex and corpus callosum observed in vivo mostly disappeared ex vivo, whereas in the 

radial diffusivity images, the contrast was preserved (Fig. 2.5(B)). The standard deviations 

of ADC measured in the ex vivo mouse brains (n = 10) were larger than those measured in 

vivo (n = 8), whereas standard deviations of FA measured ex vivo were mostly less than 

those measured in vivo (Fig. 2.5(C)). 

 

Table 2.3: ROI-based comparison of white matter diffusion properties in the in vivo and ex 

vivo mouse brains. The FA, ADC (mm2/s), parallel diffusivity (λ//, mm2/s) and radial 

diffusivity (λ┴, mm2/s) of several white matter tracts are presented as mean ± standard 

deviation from in vivo (n=8) and ex vivo (n=10) DTI data. White matter segmentations 

defined in the in vivo atlas were transformed to individual mouse brain data and used as 

ROIs. * p < 0.01, ** p < 0.005 Abbreviations: cc –corpus callosum; ac –anterior 

commissure; opt –optical tract; ic –internal capsule; fi –fimbria; fx –fornix. 
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Structu

res 

FA 
ADC (x10-3 

mm2/s) 
λ// (x10-3 mm2/s) λ┴ (x10-3 mm2/s) 

In vivo Ex vivo In vivo Ex vivo In vivo Ex vivo In vivo Ex vivo 

cc 
0.52±0.0

2 

0.53±0

.02 

0.58±0.0

3** 

0.31±0

.08 

0.95±0.0

4** 

0.52±0

.11 

0.79±0.0

5** 

0.44±0

.10 

ac 
0.57±0.0

3 

0.54±0

.02 

0.56±0.0

3** 

0.32±0

.09 

0.97±0.0

5** 

0.56±0

.13 

0.70±0.0

6** 

0.44±0

.10 

opt 
0.66±0.0

4 

0.64±0

.03 

0.63±0.0

4** 

0.31±0

.06 

1.22±0.1

2** 

0.61±0

.10 

0.67±0.0

5** 

0.34±0

.05 

ic 
0.60±0.0

3 

0.57±0

.02 

0.55±0.0

4** 

0.33±0

.07 

0.98±0.0

6** 

0.59±0

.10 

0.66±0.0

8** 

0.42±0

.07 

fi 
0.68±0.0

2** 

0.64±0

.02 

0.69±0.0

5** 

0.26±0

.06 

1.33 

±0.06** 

0.47±0

.10 

0.73±0.0

8** 

0.31±0

.06 

f 
0.49±0.0

4 

0.44±0

.03 

0.52±0.0

4** 

0.30±0

.07 

0.83±0.0

6** 

0.46±0

.10 

0.74±0.0

8** 

0.45±0

.09 

 

 

 
 

Figure 2.5: Morphological and diffusion properties differ between the average in vivo and 

ex vivo mouse brains.  (a) ADC measured in the in vivo mouse brain (left) is much higher 

than that in the ex vivo mouse brain (right). (b) Parallel diffusivity (λ//) and radial diffusivity 

(λ┴) show different white matter – gray matter contrasts in the in vivo and ex vivo mouse 

brains. (c) Standard deviation of ADC and FA maps in the in vivo (n=8) and ex vivo (n=10) 

groups. 
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2.4 Discussion 

In this study, high-resolution DTI data were acquired using a 3D imaging sequence, 

while previous in vivo DTI studies mostly used multi-slice sequences, e.g., multi-slice spin 

echo or multi-slice EPI.  Multi-slice DTI is more time efficient than 3D DTI, and has been 

commonly used to study the structural integrity of major white matter pathways, such as 

the corpus callosum, in mouse models (89,103). With four-segment EPI acquisition, 

Harsan et al., reported in vivo mouse brain DTI (30 diffusion directions) with an in-plane 

resolution of 0.156 mm x 0.156 mm and 0.5 mm slice thickness (88). Multi-slice DTI, 

however, has limited through-plane resolution (~0.5 mm) depending on available gradient 

strength and SNR. The partial volume effect due to this limitation makes it difficult to 

delineate complex white matter or gray matter structures along the slice direction. The 

limited through-plane resolution also is not ideal for co-registering images from multiple 

animals, as interpolations in the slice direction can often cause visible degradation in image 

resolution. Compared to multi-slice acquisition, 3D acquisition allows high spatial 

resolution along all three dimensions at the cost of longer acquisition times, which often 

limits its application for imaging live mice. Previous studies using 3D DTI were mostly ex 

vivo anatomical studies (80,81,104). Recently, Cai et al. demonstrated in vivo 3D DTI of 
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the neonatal rat brain using a 3D diffusion weighted fast spin echo sequence with a spatial 

resolution of 0.15 mm x 0.15 mm x 0.2 mm in 3 hours (87).  

By using a cryoprobe, we were able to speed up 3D acquisition by reducing the 

repetition time while still maintaining an acceptable SNR. Two recent reports demonstrated 

high-resolution in vivo mouse brain DTI using a cryoprobe and multi-slice sequences 

(105,106). With 11.7 T cryoprobe and a 3D DW-GRASE imaging sequence, we were able 

to acquire 3D images from the adult and neonatal mouse brain with an isotropic resolution 

of 0.125 mm within 2-2.5 hours. Even though the in vivo 3D DTI results shown here still 

could not match our previous ex vivo 3D DTI in term of SNR or image sharpness (Table 

2.1 and Fig. 2.1), the results nonetheless showed considerable improvements in our ability 

to resolve small structures in the live mouse brain. The spatial resolution in this study was 

chosen so that the in vivo mouse brain data could be compared to our previous ex vivo 

mouse brain data at similar levels of partial volume effects. In practice, if a reduced 

resolution is deemed satisfactory to delineate the target structures or lesions, the acquisition 

time can be shortened to increase screening throughput. While the cryoprobe offers 

significant advantages over conventional room temperature coils for imaging the mouse 

brain at high resolution, it also has its own technical constraints. The cryoprobe used in this 
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study operated in transceiver mode. As a result, the intensity profile of the diffusion-

weighted images and the SNR measured in different parts of the brain were not uniform 

(Table 2.1), which may affect the quantification of the measured diffusion parameters, e.g., 

FA and diffusivities (107,108) . The non-uniform excitation and refocusing profiles can 

also result in imaging artifacts for multiple RF sequences such as the GRASE sequence 

used here. To resolve this problem, we applied adiabatic excitation and refocusing pulses 

to achieve near uniform excitation and refocusing profiles at the expense of high radio-

frequency power deposition. Improved coil design such as discussed in (90) or the use of 

room temperature body coil transmission with phased array cryocoil receive is expected to 

offer more uniform excitation profiles in the future. 

Using the high-resolution in vivo mouse brain DTI data, we constructed a group-

averaged DTI atlas of the live mouse brain. Mouse brain atlases are important resources 

for basic neuroscience research because they contain useful anatomical information for 

identifying brain structures and understanding their spatial relationships. While there are 

several histology-based mouse brain atlases (e.g., (100)), whose structural definitions are 

commonly used as the gold standard, MR-based atlases have been established in recent 

years, with increasing resolution and sophistication (i.e., multiple MR contrasts, detailed 
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structural segmentation, and creation of population averaged and multi-modality brain 

atlases) (77-79,109-118). Compared to histology-based atlases, MR-based atlases are 

inherently three-dimensional, and the ability to construct group-averaged atlas makes it 

possible to present group-averaged anatomical features and quantify inter-subject 

variability. MR-based mouse brain atlases are useful in analyzing MRI data acquired from 

mouse brains, for example, automatic structural segmentation and volume measurements 

(109,119-121). They can also be used as templates to perform voxel-based analysis to 

examine changes in structural morphology and tissue properties (122-126). Many of these 

MR-based atlases, especially DTI based mouse brain atlases, were previously generated 

from post-mortem brain specimens in order to achieve high spatial resolution and image 

quality. Post-mortem data, however, may not accurately capture the properties of the brain 

under normal physiological conditions as death and chemical fixation can alter structural 

morphology and tissue properties (83-86,111). By comparing in vivo T2-weighted images 

with ex vivo T2*-weighted images acquired from brain specimens dissected out of the skull, 

Ma et al. (111) reported significant differences in structural volume and surface areas 

between in vivo and ex vivo data. Keeping the brain inside the skull could reduce but not 

completely remove the structural deformation associated with death and fixation (77).  In 
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terms of tissue diffusion characteristics, Sun et al (86) showed significant differences in 

tissue ADC values after death and fixation but no apparent change in white matter FA 

values. For studies that involve in vivo monitoring of structural morphology and pathology 

using DTI and perform atlas or voxel-based image analysis of in vivo mouse brain DTI 

data, it is beneficial to have an in vivo mouse brain atlas and a good understanding of the 

differences between in vivo and ex vivo DTI-based outcome measures.  

In this study, using the structural segmentation embedded in the atlas, differences 

between the in vivo and ex vivo mouse brain datasets were systematically characterized. 

Compared to previous studies based on T2-weighted images (77,111), the rich DTI 

contrasts allowed accurate registration for white matter structures (99), which in turn 

improved the overall image registration quality and enhanced our ability to detect subtle 

morphological differences between in vivo and ex vivo mouse brain images. In addition to 

the well-documented collapse of the ventricles in post-mortem samples and deformations 

of surrounding structures, voxel-based analysis revealed additional regions with significant 

morphological differences between the two datasets, mainly located in the dorsal part of 

the brain. In term of changes in diffusion parameters after death and fixation, changes in 

gray and white matter contrasts in ADC maps, and to a lesser degree, in FA maps (Tables 
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2.2-2.3, and Fig. 2.5) suggest that the effects of death and chemical fixation on tissue ADC 

values were not uniform throughout the brain. As expected, FA values measured in vivo 

showed larger variability, both inter-subject and inter-scan, than FA measured ex vivo, 

because the ex vivo DTI data had higher SNR than the in vivo data and were free of motion-

related artifacts.  Interestingly, we found that the ADC values measured in vivo showed 

less variability than the ADC values measured ex vivo. Potential causes of this difference 

include variations due to perfusion fixation, e.g., differences in fixation related changes in 

cell membrane permeability and the ratio between intracellular and extracellular space, and 

precision of temperature control during ex vivo imaging. Even though the number of 

animals studied here is limited, these results suggest that the in vivo mouse brain atlas 

provides a more accurate representation of brain morphology and diffusion properties of 

the adult mouse brain under normal physiology condition than existing ex vivo atlases.   

2.5 Conclusions 

In summary, our study demonstrates the use of a cryoprobe in combination with 3D 

DW-GRASE sequence to achieve in vivo 3D high-resolution DTI of the mouse brain. The 

high resolution and relatively short acquisition time allowed detailed examination of 
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neuroanatomy and anatomical connectivity in the mouse brain. A high-resolution DTI atlas 

of the live mouse brain was developed with structure segmentations. Detailed analysis 

showed volumetric and contrast differences between in vivo and ex vivo DTI of the mouse 

brains, indicating the importance of the in vivo DTI atlas. 
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Chapter 3 Localized micro-imaging of the live 

mouse brain with HARDI 

3.1 Introduction 

Along with the many new and exciting technical advances in diffusion MRI (dMRI) 

as discussieed in  Chapter 1.2.3, further developments of diffusion MRI (dMRI) hinge on 

our understanding of the relationships between dMRI signals and the underlying brain 

microstructure (22,23,39,127-129). Such knowledge can only be obtained through 

studying the relationships between dMRI signals and histopathological findings in 

experimental animal models. The laboratory mouse brain is an ideal subject for examining 

the microstructural basis of dMRI signals, because there is a wealth of histology-based 

information on its microstructure. In addition, there are many well-established mouse 

models that mimic various pathological conditions in patients with neurological diseases. 

Knowledge gained through studying the mouse brain using dMRI may be readily translated 

to study the anatomy and pathology of the human brain. dMRI of the mouse brain, however, 

faces many technical challenges (130) . The lengthy acquisition required by high-resolution 

dMRI to resolve mouse brain structures had essentially limited its application to post-
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mortem specimens. Several recent studies on post-mortem rodent (80-82,131) have 

demonstrated that dMRI can be used to visualize complex microstructure in the mouse 

brain. Ex vivo dMRI, while offering superior image quality and high spatial resolution, has 

its own limitations, as death and chemical fixation can significantly alter the 

microstructural properties of brain tissues and the diffusion of water in those tissues, 

resulting in major differences in dMRI contrast between in vivo and ex vivo dMRI as 

demonstrated in the Chapter 2 and in (85,86,132). It is, therefore, important to develop in 

vivo high-resolution mouse brain dMRI techniques to investigate the potential of dMRI 

under physiological conditions.  

In this work, we demonstrate that in vivo DTI and HARDI of the mouse brain can be 

performed at approximately 100 m isotropic resolution using spatially selective RF pulses 

and a 3D gradient and spin echo (GRASE) imaging sequence (80,133). By selectively 

exciting a portion of the brain that contains the structures of interest, a dramatic reduction 

in imaging volume, and therefore, imaging time, was possible. Further acceleration was 

achieved using the 3D GRASE sequence, which, in this study, obtained images twenty 

times faster than conventional spin echo sequences.  High-resolution dMRI data of the 

cerebellum, hippocampus, and several cortical regions of the mouse brain were compared 
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to histology, focusing on the capability of dMRI to resolve microstructures and 

connectivity in these regions.  

3.2 Material and methods 

3.2.1 Experimental animals 

All experimental procedures were approved by the Animal Use and Care Committee 

at the Johns Hopkins University School of Medicine. Five adult mice (C57BL/6, three-

month old, female) were used in this study.  

3.2.2 RF pulse design 

The 90 localized excitation RF pulses used in this study were designed based on a 

linear class of large tip-angle (LCLTA) pulses (134), with spiral k-space trajectories that 

start and end at the origin. Under the “incoherently refocused” condition (134), a two-

dimensional spatially selective 90˚ RF pulse can be derived by inverse Fourier transform 

of the desired excitation profile. Although B1 field weighting can be incorporated in the 

Fourier kernel, we assumed a homogeneous B1 field across the mouse brain because the 

mouse brains were always positioned near the center of a large volume coil, and the inner 
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diameter (72 mm) of the volume coil was far larger than the size of the mouse brain (10-

12 mm in diameter). The pulse length was set at 2.5 ms, and the pulse amplitudes ranged 

from 15 to 20 µT, depending on the size, position, and shape of the desired field of 

excitation (FOE) (134). The typical waveform of an RF pulse to excite a square region in 

the mouse brain is shown in Fig. 3.1(A-B). We chose an eight-turn spiral-in excitation k-

space trajectory (Fig. 3.1(C-D)), which resulted in an excitation resolution of 1 x 1 mm in 

the x-y plane, with a maximum gradient strength of about 21 Gauss/cm. The imaging field 

of view (FOV) was chosen to be slightly larger than the field of excitation (FOE) to 

accommodate the transition area between the excited region and the suppressed region 

(approximately 1/10 of the FOE). The performance of the spatially selective RF pulses was 

tested using the standard, double flip-angle B1 mapping (135). While the FOE in the x-y 

plane was controlled by the selective excitation pulses, a slab-selective refocusing pulse 

(Mao pulse (136)) was applied to restrict the imaging slab in the z direction. 
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Figure 3.1: Spatially selective excitation RF pulse and its experimental validation. A-B: 

The pulse amplitude and phase of a typical 90° selective excitation pulse. C-D: an eight-

turn spiral-in gradient waveform and excitation k-space trajectory in the x-y plane. The 

gradient waveform was synchronized with the RF waveform to achieve selective excitation. 

F-G: the results of selective excitation with 8 mm x 8 mm and 6 mm x 6 mm fields of 

excitation (FOEs), respectively. H: the measured flip angle map of the excited region 

(corresponding to the FOE in F). I: the normalized (with respect to the maximal value) 

intensity profiles along the dashed lines in F and G. 
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3.2.3 Image acquisition 

In vivo imaging was performed on a horizontal 11.7 Tesla MR scanner (Bruker Biospin, 

Billerica, MA, USA) with a triple-axis gradient (maximum gradient strength = 74 

Gauss/cm). The selective excitation pluses were transmitted though a quadrature volume 

excitation coil (72 mm diameter, Bruker Biospin, Billerica, MA, USA), and signal was 

acquired using a 10 mm diameter, planar surface receive-only coil (with active decoupling). 

Animal anesthetization and monitoring was the same as described in Chapter 2.2.1.  

Before each dMRI experiment, a multi-slice, T2-weighted image (echo time (TE) = 50 

ms, repetition time (TR) of 2000 ms) was first acquired as an anatomical reference and was 

used to identify the FOE. Typical FOEs used in this study included the anterior brain FOE 

(approximately from the bregma 2 mm to -2 mm, covering the motor and sensory cortex); 

middle brain FOE (approximately from the bregma 0 mm to -4 mm, covering part of the 

sensory cortex, visual cortex, and hippocampus); and the posterior brain FOE 

(approximately from the bregma -5 mm to -9 mm, covering the cerebellum) as the main 

structures of interest (Table 3.1). The anterior and middle FOEs were designed to cover 

only half the brain, assuming relative symmetry in normal brains. For each FOE, the planar 

receive surface coil was placed immediately above the specific FOE to ensure optimal 
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sensitivity. Data were acquired with a modified 3D diffusion-weighted GRASE sequence 

(80), which acquired 40 echoes in each repetition. A double-sampled EPI readout (137), 

which samples the same k-space line twice, with both positive and negative gradients, was 

incorporated into the GRASE sequence to enhance SNR, as well as to reduce artifacts from 

imperfect read-out gradients. A twin-navigator (93) was implemented to correct motion-

induced phase errors, and no respiration trigger was used. Using the Fieldmap method 

(138-140), B0 homogeneity in a region containing the FOE was optimized using the first 

and second order shim to reduce image distortion and a T2* signal decay during the double-

sampling EPI readout. A water line width of less than 30 Hz could be routinely achieved 

within the FOE. The imaging parameters of the HARDI protocol were: TE/TR = 21/500ms; 

two signal averages; 30 diffusion directions (141); b = 2335 s/mm2; 63 minutes scan time 

for 0.1 x 0.1 x 0.1 mm resolution; and 102 minutes for 0.08 x 0.08 x 0.08 mm resolution. 

Ex vivo whole brain HARDI data were acquired from a postmortem C57BL/6 mouse brain 

specimen, which was perfusion fixed with 4% paraformaldehyde (PFA), and later 

transferred to phosphate buffered saline with 2 mM gadopentetate dimeglumine 

(Magnevist, Berlex Imaging, Wayne, NJ) (78) to enhance MR signals. Specimens were 

scanned using a vertical 11.7 Tesla NMR spectrometer (Bruker Biospin, Billerica, MA, 
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USA) and a birdcage volume coil (15 mm inner diameter). The same imaging sequence as 

that used in vivo MRI with whole-brain coverage was used, but with slightly different 

parameters: TE/TR = 27/1000ms; two signal averages; 30 diffusion directions; b = 4000 

s/mm2; 0.1 x 0.1 x 0.1 mm resolution. The total scan time was about 20 hours. 

 

Table 3.1: Definition of the anterior, middle and posterior brain fields of excitation (FOEs), 

and the SNR of non-diffusion weighted images from these FOEs. 

 

Field of Excitation (FOE) Anterior Middle Posterior 

FOE width & height (mm) 8 x 5 8 x 5 8 x 5 

FOV size (mm)  

(readout x phase x slice)   
9.6 x 5.6 x 4 9.6 x 5.6 x 4 9.6 x 5.6 x 4 

Readout direction Superior-inferior Superior-inferior Left-right 

Slice position with 

respect to Bregma (mm) 
+2 to -2 0 to -4 -5 to -9 

Structures of interest 

Motor/Sensory 

cortex 

Striatum  

(right hemisphere) 

Sensory/visual 

cortex 

Hippocampus 

(right hemisphere) 

Cerebellum 

SNR 42 ± 0.6 (n=5) 44 ± 2 (n=5) 42 ± 2.6 (n=3) 

 

3.2.4 Data processing 

Images were reconstructed from k-space data using Matlab (Mathworks) and 

processed using MRtrix (142), which used the constrained spherical deconvolution (CSD) 

method to reconstruct fiber orientation distribution (FOD). FOD-based probabilistic 

streamline tracking was performed to generate super-high-resolution track density images 
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(TDI) (143,144). Fiber-tracking was performed using a step size of 0.01 mm and a 

maximum angle of 45° between steps. Tracking terminated when the FOD amplitude 

became less than 0.01, or when fibers exited the specific brain regions. Probabilistic 

streamlines with a length between 0.4 - 1 mm were selected (131), and about one million 

such streamlines were tracked to generate TDI at a grip size of 10 m isotropic resolution. 

3.2.5 Immunohistochemistry 

Mice were anesthetized and perfused with 0.1M phosphate-buffered saline (PBS), 

followed by 4% paraformaldehyde in 0.1M PBS, and then were post-fixed with 4% 

paraformaldehyde for 12-18 hours. Brains were cryo-protected in a 30% sucrose solution 

in 0.1M PBS. The forebrain was cryostat-sectioned at 40 m coronally and the cerebellum 

was sectioned at 20 m parasagitally. Representative sections were mounted and adjacent 

slides were used for immunohistochemical stainings with different antibodies. Endogenous 

peroxidase was quenched using 3% hydrogen peroxide in 0.1M PBS. Antigen-retrieval was 

performed with 0.01 M citrate buffer containing 0.05% Tween-20 (pH 6). Slides were then 

incubated in blocking solution, followed by primary antibody incubation at 4°C overnight: 

Anti-Pan-Axonal Neurofilament Marker (SMI312R, Covance, Princeton, NJ, USA, 1:2000) 
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and Anti-Parvalbumin antibody (ab11427, Abcam, MA, USA, 1:4000) for the detection of 

large GABAergic neurons and their processes (e.g., Purkinje-Neurons of the cerebellum); 

Anti-Glial Fibrillary Acidic Protein antibody (Anti-GFAP Z0334, Dako, Richmond, VA, 

USA, 1:2500) for the detection of astrocytes; and Anti-Microtubule-associated Protein 2 

(Anti-MAP2, M1406,  Sigma-Aldrich, St.Louis, MO, USA, 1:1000) for the detection of 

neuronal dendrites. Negative control slides were put in blocking solution. Slides were 

rinsed and visualized using the ABC ELITE kit (Vector Labs, Burlingame, CA, USA) and 

3,3′ -Diaminobenzidine (DAB, Sigma-Aldrich, St. Louis, MO, USA). Images were 

acquired using a Zeiss Observer.Z1 microscope equipped with an AxioCam MRc camera 

at 20X.  

3.3 Results 

The 90 spatial excitation RF pulse designed in this study produced satisfactory 2D 

excitation profiles using a conventional quadrature volume coil at 11.7 Tesla. Images 

acquired with an 8 mm x 8 mm FOE and a 6 mm x 6 mm FOE are shown in Fig. 3.1(F-G). 

The residual outer-volume signal intensity was less than 6% of the average inner-volume 

signal intensity (Fig. 3.1(I)). For large FOEs that include air-tissue interfaces, e.g., the area 
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close to the ear canal, which have severe B0 inhomogeneity and thereby distort the 

excitation k-space trajectory, residual signals outside the FOE could be observed near the 

air-tissue interfaces (indicated by the white arrows in Fig. 3.1(F)). The artifact disappeared 

when the FOE fell completely within the brain (Fig. 3.1(G)). Within the selected region, 

the measured flip angles were relatively uniform (90°±2.2°, Fig. 3.1(H)). 

Using selective excitation, high-resolution dMR images of local brain regions could 

be acquired within a relatively short time period. Figure 3.2(A) shows three sagittal 

direction-encoded colormap (DEC) images acquired separately with the anterior, middle, 

and posterior FOEs at 100 m isotropic resolution. Figures 3.2(B-D) compare DEC images 

acquired at 80 m isotropic resolution with images acquired at 100 m and 125 m 

isotropic resolution. With the standard 30-direction diffusion-encoding scheme, the 

imaging time ranged from 40 minutes for the 125 m resolution data to two hours for the 

80 m resolution data in a local FOE (indicated by the cubic frame in Fig. 3.2(F)). Major 

white matter tracts, e.g., the corpus callosum, and several small white matter structures 

could be resolved in the high-resolution data (Fig. 3.2(A-B)). For example, the alveus of 

the hippocampus, a thin sheet of axonal fibers (indicated by the blue arrows in Fig. 3.2(B-

E)), could be distinguished from the neighboring corpus callosum/external capsule and 
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hippocampus in the DEC image at 80 m resolution (Fig. 3.2(B)). Tensor-based fiber-

tracking results based on the 80 m data could separate the alveus from the corpus callosum 

(Fig. 3.2(F-G)). In comparison, images acquired at 100 and 125 m resolutions (Fig. 3.2(C-

D)) showed the alveus with reduced FA and a loss of clearly defined diffusion orientation, 

due to partial volume effects.  In order to reliably resolve small white matter tracts and 

crossing fibers, it is necessary to use more sophisticated approaches than the conventional 

diffusion tensor model. Figure 3.2(H) demonstrates that fiber orientation distribution (FOD) 

estimated from the dMRI data, using spherical deconvolution, could resolve the fibers in 

the alveus (blue FOD surface) and corpus callosum/external capsule (red FOD surface) at 

100 and 125 m resolution.  
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Figure 3.2: High spatial resolution diffusion MRI of the live mouse brain. A: Sagittal views 

of the DTI colormaps taken from the anterior, middle, and posterior FOEs used in this 

study. B-D: Axial direction-encoded colormaps of the hippocampus at 80 m, 100 m, and 

125 m isotropic resolutions, respectively. The axial location of these images is indicated 

by the dashed line in A. E: A Pan-Neurofilament-stained section that shows the alveus (alv) 

of the hippocampus (indicated by the blue arrows) and the corpus callosum (indicated by 

the yellow arrows). F-G: Fiber-tracking results at 80 m isotropic resolution, where the 

corpus callosum fibers (yellow) and the alv fibers (blue) can be separated. The purple frame 

in F indicates the actual imaging volume. H: The fiber orientation distribution (FOD) maps 

of the selected regions (orange squares in B-D) at three resolutions. Scale bars in A and B 

are 500 μm, and the scale bar in E is 200 μm. 

 

Figure 3.3 compares localized in vivo dMRI data with ex vivo whole-brain dMRI data, 

both acquired at 100 m resolution. For white matter structures, the in vivo and ex vivo 



 

 

54 

 

DEC images (Fig. 3.3(A-B)) showed similar tissue contrasts, and several small white 

matter tracts, e.g., the dorsal hippocampal commissure and optic tracts, could be delineated 

in both datasets. In the hippocampus, the in vivo and ex vivo data both showed the radiating 

pattern (indicated by the orange arrows) reported previously (131,145). This is further 

illustrated using the track-density imaging (TDI) technique (Fig. 3.3(B-E)), which renders 

fiber tracking results at a resolution higher than the native imaging resolution, and provides 

an intuitive way to visualize tissue microstructures. This pattern was in good agreement 

with the spatial arrangement of small axons and dendrites in the hippocampus, as shown 

by the Parvalbumin-stained histological sections (Fig. 3.3(C-F)). Small differences in gray 

matter tissue contrasts, however, could be observed in several regions. For example, the in 

vivo data showed more prominent radially organized structures near the surface of the 

visual cortex (Fig. 3.3(D), indicated by the yellow arrows) and higher diffusion anisotropy 

in a region immediately above the dentate gyrus (Fig. 3.3(D), indicated by the blue arrows) 

than the ex vivo data.   
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Figure 3.3: Comparison of the localized in vivo dMRI of the mouse hippocampus with the 

ex vivo results from a whole-brain scan. A-B: DTI colormaps (scale bar 500 μm) and TDI 

maps from the anterior hippocampus from the in vivo (left) and ex vivo (right, mirrored) 

dMRI experiments. C: Parvalbumin-stained section of a selected area in the anterior 

hippocampus. D-F: DTI colormaps, TDI map, and Parvalbumin-stained section of the 

posterior hippocampus, following the same order as in A-C. Abbreviations: dhc— dorsal 

hippocampal commissure; ml—medial lemniscus; opt— optical tract. Scale bars in C and 

F are 200 μm. 

 

The in vivo high resolution HARDI data could provide detailed tissue microstructural 

information in the mouse brain. As shown in Figure 3.4(A), individual cerebellar folium 

and white matter tracts in the mouse cerebellum could be delineated in the DEC image 

based on the in vivo HARDI data. While the DEC image shows only the dominant structural 

components in each pixel, e.g., parallel fibers in the cerebellar cortex (indicated by the 

white arrow in Fig. 3.4(A)), spherical deconvolution of the HARDI data revealed additional 

structural components (represented by the blue FOD surfaces in Fig. 3.4(D)) that were 
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arranged perpendicular to the parallel fibers (represented by the red FOD surfaces in Fig. 

3.4(D)). Neurofilament (NF)-, Glial Fibrillary Acidic Protein (GFAP)-, and Parvalbumin-

stained sections (Fig. 3.4(C, E-G)) showed that the secondary structural components might 

include small axons, dendrites, and processes of glial cells in the cerebellar cortex, as they 

all run orthogonal to the parallel fibers (perpendicular to these sections). The high-

resolution TDI of the cerebellum (Fig. 3.4(B)) demonstrated the spatial arrangement of 

axonal fibers as they fanned out near the end of the cerebellar folia, as shown by the 

neurofilament staining (Fig. 3.4(E))).  

 

Figure 3.4: Localized HARDI of the mouse cerebellum. A-B: DTI colormap and TDI of 

the mouse cerebellum on a mid-sagittal view. C: Neurofilament-stained section 

corresponding to B. D: Fiber orientation distribution (FOD) map of the selected area 
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indicated in B. The inset plot indicates two groups of crossing fiber coexisting in the 

cerebellar cortex. E: Neurofilament-stained section corresponding to D. F-G: Glial 

fibrillary acidic protein (GFAP)- and Parvalbumin-stained sections of the cerebellar cortex. 

Scale bars in A and C are 500 μm, and the scale bar in E is 200 μm. 

 

Figure 3.5 compares MRI and histological images of the mouse motor, sensory, and 

visual cortices. In all three cortical regions, MAP2-stained sections showed radially 

oriented long-running apical dendrites in the cortex. In comparison, NF-stained sections 

showed radially oriented axons in the outer layer of the cortex and densely populated axons 

with no clear dominant orientation in the inner layer. FOD maps derived from the in vivo 

HARDI data showed predominantly radially oriented FODs in the outer layer of the three 

cortices and both radially and tangentially oriented FODs in the inner layer of the cortices. 

Compared to the motor cortex, TDI-generated images showed that the inner layer of the 

sensory and visual cortices have a large amount of axons running tangentially to the cortical 

surface, and the estimated FOD maps showed these tangential fibers, especially in the 

visual cortex. In all three cortices, the outer layers had higher FA values than the inner 

layers, with most significant difference in the visual cortex (Table 3.2). 

 

Table 3.2: FA values measured from the outer and inner layers of the motor, sensory, and 

visual cortices. 

 

Regions of interest FA p-value 

javascript:void(0);
http://www.sciencedirect.com/science/article/pii/S1053811914000251#t0015
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Motor cortex 
Outer 0.143 ± 0.016 

0.07 
Inner 0.136 ± 0.015 

Sensory cortex 
Outer 0.142 ± 0.018 

0.02 
Inner 0.122 ± 0.009 

Visual cortex 
Outer 0.159 ± 0.009 

9.5 x 10-5 
Inner 0.090 ± 0.005 

 

 

Figure 3.5: In vivo HARDI of the mouse motor (M1), sensory (S1), and visual (V1) cortices 

and corresponding neurofilament (NF) and microtubule-associated protein 2 (MAP2)-

stained sections. Images in the left-most column are DTI colormaps of localized anterior / 

middle / posterior mouse brain FOEs and high-resolution TDI maps of the M1 / S1 / V1 
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cortices in selected areas, as indicated on the colormaps. The right-most three columns 

show FOD maps estimated from the HARDI data from each cortex and matching NF- and 

MAP2-stained sections. The regions shown in the FOD maps are indicated by the dashed 

rectangular boxes in the NF and MAP2 sections. The dashed lines in the right-most three 

columns separate the cortex into outer and inner layers. Scale bar in A is 500 μm,  and all 

the other scale bars are 200 μm. 

 

3.4 Discussion 

Spatially localized imaging is a tried-and-true approach to obtain high-resolution 

images from a target region within a reasonable time. Even though imaging with whole-

brain coverage is important for examining the overall anatomy or neuropathology, many 

studies that focus on a particular brain region, e.g., the mouse cortex and hippocampus, 

may benefit from the increased imaging resolution or speed provided by localized imaging 

techniques. Several techniques have been utilized to achieve spatial localization. For 

example, 2D localized imaging can be achieved by using a slice-selective 90° RF pulse and 

a 180° RF pulse in an orthogonal fashion (146,147), or by using direct 2D RF pulses as 

demonstrated by Finsterbusch et al. (148,149). While the former requires no specially 

designed RF pulses, the latter offers more flexibility in terms of pulse sequence design and 

shape of the region to be excited. The LCLTA pulses used in this study achieved 

satisfactory in-volume homogeneity (90° ± 2.2°) and outer-volume suppression within a 
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relatively short duration (2.5 ms), which was ideal for our experiments, as tissue T2s 

shorten at a high magnetic field. Moreover, the LCLTA method provides an analytical 

approach to pulse design and is compatible with parallel transmission. For example, Xu, et 

al. (150) extended the LCLTA framework to an eight-channel parallel transmitter and 

achieved about a four-fold acceleration for 2D selective excitation profiles in a phantom 

experiment. Ullman et al. (151) demonstrated 3D localized imaging of the live rat brain 

based on a numerical optimization of small tip-angle pulses (152,153). In this study, the 

single-channel LCLTA pulse was integrated with our DW-GRASE sequence to improve 

the spatial and angular resolutions of in vivo dMRI experiments. Simple rectangular FOEs 

were sufficient here, given that the imaging volume is rectangular with conventional 

Cartesian k-space acquisition. Using the FOEs in our experiments, the imaging volumes 

were reduced to approximately one-sixth of the whole-brain volume, and the scan time was 

reduced proportionally. To mitigate the SNR loss associated with high spatial resolution, 

heavy diffusion attenuation, and short scan time, we placed a sensitivity surface receive 

coil as close to the FOE as possible. This, however, is only effective when the target regions 

are close to the head surface, such as the cortex, whereas the deep brain structures, e.g., the 

thalamus and the hypothalamus, still suffer from low SNR.  
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Localized high-resolution dMRI, using selective excitation and fast imaging sequences, 

allowed us to examine the live mouse brain in greater detail than ever before. While ultra-

high resolution (<50 m) ex vivo dMRI of the mouse brain has been reported (80-82), 

spatial and diffusion angular resolutions of the live mouse brain dMRI have been hindered 

by SNR and lengthy imaging time. Recently, Harsan et al. reported in vivo mouse brain 

HARDI (30 diffusion directions, b-value = 1000 s/mm2) with an in-plane resolution of 

0.156 mm x 0.156 mm and a 0.5 mm slice thickness in 99 minutes (154), and we have 

reported 125 m isotropic resolution in vivo DTI (10 directions) of the mouse brain in three 

hours using a cryo-genic probe (132). In this study, we were able to acquire in vivo HARDI 

(30 diffusion directions, b-value = 2335 s/mm2) of the mouse hippocampus at 80-100 m 

isotropic resolution within one to two hours, and the level of microstructural details 

available in the in vivo high-resolution data were comparable to ex vivo data acquired at 

the same resolution (Fig. 3.3). We further tested the capability of the technique to resolve 

microstructures in the mouse cerebellum, which has been well documented. In the mouse 

cerebellar cortex, the in vivo data showed two orthogonally arranged groups of fibers: one 

parallel to the surface of the cerebellar cortex (represented by the red FOD surfaces in Fig. 

3.4(D)), and the other perpendicular to the cerebellar cortex (represented by the blue FOD 
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surfaces in Fig. 3.4(D)), similar to previous reports based on post-mortem mouse brain 

specimens (155). The first group may reflect the densely packed parallel fibers in the 

cerebellar cortex, and the second group may reflect axons/dendrites of the cerebellar 

Purkinje cells (Fig. 3.4(G)) and processes of glia cells (Fig. 3.4(F)).  

We then examined the microstructural organization of the mouse neo-cortex. There 

have been several reports on imaging cortical microstructures in the human brain. Diffusion 

anisotropy in the cortex was revealed in in vivo DTI studies of both developing (156) and 

mature (157) human brains. Several recent studies showed that different cortical regions 

have unique microstructural signatures. For example, McNab et al. showed that the human 

motor cortex contained mostly radially organized structures, whereas part of the sensory 

cortex showed tangentially organized structures (158). High-resolution HARDI of 

postmortem brain samples further delineated the layered patterns in the human cortex, e.g., 

Dyrby et al. separated the cortex into two depth layers based on the different fiber 

orientations in the inner and outer rims of the cortex (159); Leuze et al. divided the visual 

cortex into four layers using the FOD patterns and tractography feature (160). Other studies 

have attempted to parcellate cortical regions using raw diffusion signals (161) or FOD-

derived contrasts (162,163).  These post-mortem studies demonstrated that high-resolution 
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HARDI signals could be used to characterize the neo-cortical microstructure, especially 

the layered organization with radial or tangential patterns. It is not clear whether in vivo 

high-resolution data will show consistent cortical tissue contrasts and how the contrasts 

correlate with microstructures. As the human and mouse neocortex, despite their 

differences, share a similar columnar organization (164), high-resolution studies on the 

mouse cortex could bring insight into these questions. In this study, high-resolution dMRI 

of the mouse cortex showed contrast patterns similar to those seen in postmortem human 

brain specimens. For example, the observation that radially arranged structures dominate 

the outer layer of the visual cortex, while tangentially arranged structures dominate in the 

inner layer (Fig. 3.5), is similar to the observations reported by previous post-mortem 

human brain studies (159,160). A comparison between HARDI results and histological 

data suggested that multiple structural components could contribute to these unique 

patterns. MAP2-stained histological sections displayed relatively uniform radiating 

dendritic fibers in all three cortices, whereas neurofilament-stained sections showed a 

layered axonal organization, with the inner layer of the cortex more densely stained than 

the outer layer. While it is still difficult to quantitatively measure the contribution of each 
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structure’s components, the results demonstrate the potential of our technique in assisting 

future detailed analysis.  

3.5 Conclusions 

In summary, we demonstrate that high spatial resolution and angular resolution dMRI 

of the live mouse brain is now feasible with localized imaging, in combination with fast 

imaging sequences. The dMRI contrast derived from the in vivo high-resolution data 

revealed complex microstructures in both the gray matter and white matter. The techniques 

presented in this study could be potentially used to investigate longitudinal changes in local 

neuroanatomy and connectivity under normal or diseased states. 
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Chapter 4 In vivo Mapping of the Mouse Intra-

hippocampal connectivity 

4.1 Introduction 

    Structural connectivity of the brain, from individual synapses to large white matter 

tracts, forms the fabric that supports brain functions, and often provides important clues 

that lead to deeper understanding of its structural and functional organization. Because of 

this, significant efforts have been made to construct a comprehensive map of the brain 

connectivity, and an array of imaging techniques have been utilized to map connectivity 

from the synaptic level using electron micrograph up to the system level using magnetic 

resonance imaging (MRI).  

    Diffusion MRI (70,165,166) based tract reconstruction, or tractography (167-169), 

has been increasingly used to map brain connectivity in terms of major white matter 

pathways, and is a major technical component of the Human Connectome Project (HCP) 

(36,37,170). While exciting new findings are emerging, most of them focus on large white 

matter tracts, while there exist a large amount of small white matter tracts that connect 

several functionally unique units within a brain region. Characterization of these tracts will 
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lead to better understanding of the structural organization of these units.  Only recently, 

several groups started to use diffusion MRI to exam these tracts (171-173). At this level, 

the proximity of these small bundles of axons to neurons, astrocytes, and their processes, 

makes it challenging to determine their trajectories or microstructural properties as the 

current diffusion MRI technique cannot distinguish their contributions to the measured 

signals from other structures in the same pixel. Even with sophisticated diffusion modeling 

and tractography techniques recently proposed for this scenario, the fact that diffusion MRI 

only provides limited and indirect information on tissue microstructure at limited spatial 

resolution (~ 2 mm isotropic in human diffusion MRI) remain the main obstacles on our 

ways to solve the problem.   

     Given that diffusion MRI is the main non-invasive technique to study structural 

connectivity, spatial resolution is the key to study small white tracts in the brain. Recent 

high-resolution diffusion MRI studies of post-mortem human brain specimens have 

demonstrated unique sensitivity in identifying small white matter tracts. On one hand, the 

results from post-mortem specimens may not be directly translated to in vivo studies due 

to the significant microstructural changes associated with death and chemical fixation (174-

176). On the other hand, it is not known the tractography obtained in ex vivo studies can be 
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replicated in vivo due to the limitations with in vivo imaging techniques, such as imaging 

resolution, motion artifacts, and signal-to-noise ratio. On existing MR instruments, in vivo 

imaging of the entire brain at exquisite high resolutions is so far impractical, due to the 

prolonged time it requires. 

    In this study, we used 3D high-resolution diffusion MRI to examine small fiber 

tracts in the live mouse brain, with a focus on the intra-hippocampal connectivity. The 

hippocampus is a prominent component of the nervous system that mediates memory, 

spatial navigation, and motion (177,178), and the anatomical and functional organizations 

of the mouse hippocampus have been investigated in depth as a model system (179-183). 

Besides its extensive connections to the rest of the brain, it contains an intrinsic network 

between its subfields that form distinct functional units (184-186). In the Allen Mouse 

Brain Connectivity Atlas (187), extensive tracer-based connectivity data in the mouse brain, 

including hippocampus, became readily available. Recently, we developed a localized 

dMRI technique that can “zoom-in” a region of interest in the mouse brain to acquire 

diffusion MRI data up to 0.08 mm isotropic resolution (188). Direct comparison of in vivo 

high-resolution diffusion MRI data of the mouse hippocampus with the Allen Mouse Brain 

Connectivity Data provided a unique opportunity to examine the capability of diffusion 
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MRI-based in reconstructing the intra-hippocampal network and allowed us to integrate 

the rich connectivity information obtained from the two vastly different modalities. This 

baseline mouse brain connectivity from histological and microscopic scale to in vivo and 

macroscopic scales also offers translational knowledge for human connectome research. 

4.2 Methods 

4.2.1 In vivo high resolution diffusion magnetic resonance imaging 

    Twelve adult mice (C57BL/6, three-month old, female) from the Jackson 

Laboratory (Bar Harbor, ME) were used in this study. In vivo MRI was performed on a 

horizontal 11.7 Tesla MR scanner, with the same setup and similar imaging procedures 

(selective excitation RF pulses and 3D DW-GREASE sequence) as described in Chapter 

3.2.3.  

 In this study, the region for localized imaging, or field of excitation (FOE), had a 

spatial dimension of 8 mm (dorsal-ventral, the x axis) x 5 mm (mid-sagittal to lateral, the 

y axis) x 5 mm (from bregma 0 to -5 mm, the z axis). The FOE was set to cover the right 

hippocampus and surrounding regions. The imaging field of view (FOV) was chosen to be 

slightly larger than the FOE to accommodate the signal drop-off at the transition band of 
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FOE. The imaging parameters of the diffusion MRI protocol were: TE/TR = 21/500ms; 

two signal averages; FOV = 9.6 mm x 5.6 mm x 5 mm, resolution = 0.1 mm x 0.1 mm x 

0.1 mm; four non-diffusion weighted image (b0); 30 (n = 5) or 60 (n=7) diffusion directions 

(141); and b = 2500 s/mm2. The diffusion imaging parameters were selected based on the 

recommendations in (189). It took less than 2 minutes to acquire a single diffusion-

weighted image. It took 63 and 118 minutes to obtain a 30 and 60-direction HARDI 

datasets, respectively. Raw data from the scanner were Fourier transformed after zero-

padding (to 50 μm isotropic resolution) with navigator-based phase correction (Matlab, 

Mathworks.com). 

4.2.2 Histology 

Immunohistochemical processing of the mouse brain samples followed the protocol 

described in Chapter 3.2.5. Coronal brain slices at the level hippocampus were stained with 

Anti-Pan-Axonal Neurofilament Marker (SMI312R, Covance, Princeton, NJ, USA, 1:2000) 

for axons and Anti-Microtubule-associated Protein 2 (Anti-MAP2, M1406, Sigma-Aldrich, 

St. Louis, MO, USA, 1:1000) for the detection of neuronal dendrites. 
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4.2.3 Registration of dMRI to Allen Mouse Brain Atlas  

    Projection mapping images from multiple subjects (n = 8 with injection sites in the 

hippocampus) were downloaded from the Allen mouse brain connectivity atlas. These 

images were labeled using injected recombinant deno-associated virus (AAV) tracers and 

acquired using serial two-photon microscopy with minimal tissue damage and deformation 

(190). A series of image registration procedures were taken to co-register the dMRI data 

and projection data, as shown in the pipeline in supplementary Fig. S1B. Since the high-

resolution HARDI data acquired in this study only covered partial brain volume, a DTI-

based in vivo whole mouse brain atlas from our previous study (176) was used as a link 

between the HARDI datasets and the Allen mouse brain reference atlas (191). First, the 

whole brain DTI-based mouse atlas was aligned to the Allen mouse brain reference atlas 

down-sampled to 50 μm isotropic resolution, using landmark-based rigid transformation 

(Diffeomap, www.mristudio.org) followed by intensity-based 12-degree affine 

transformation and large deformation diffeomorphic metric mapping (LDDMM) (99) 

utilizing the similar tissue contrasts between the reference atlas and dMRI images (Fig. 

4.1(A)). Second, the HARDI datasets were aligned to the transformed whole brain DTI-

based atlas (obtained from the previous step and cropped to match the localized volume in 

http://www.mristudio.org/
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the HARDI datasets) through landmark-based affine transformation and LDDMM.  The 

registration accuracy between the down-sampled Allen reference atlas and the aligned 

HARDI datasets were evaluated using 15 landmarks manually placed throughout the 

hippocampus by three independent raters (75). The average registration error was 0.28 ± 

0.14 mm in all three dimensions (Fig. 4.1(B)). After the registration steps, structural 

segmentations in the Allen mouse brain reference (678 structures including 17 

hippocampal subfields) can be transferred into the HARDI datasets (Fig. 4.1(C)).  

 

Figure 4.1: Coregistration of the diffusion MRI and the Allen mouse brain reference atlas 

(AMBA). (A) The image registration pipeline: the localized HARDI images were aligned 

to a whole brain mouse brain atlas, which was first aligned to the AMBA data through a 
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series of linear and nonlinear image registration procedures. (B) The registration accuracy 

was evaluated by manually placed landmarks on AMBA and the HARDI images. (C) After 

the coregistration, the brain segmentation from AMBA can be transferred to the HARDI 

data for quantitative analysis. Only the 17 hippocampal subfield segmentation was shown 

here, in anterior and posterior coronal sections as well as in 3D. 

 

4.2.4 dMRI-based tractography 

     The hippocampus was manually segmented using ROIEditor (www.mristudio.org). 

In order to obtain tractography results that best resemble the viral tracing data, we tested 

several approaches. Using MRtrix (142), fiber orientation distribution (FOD) at each pixel 

was estimated using the constrained spherical deconvolution (CSD) method (34). Both 

deterministic and probabilistic fiber-tracking was performed, with a step size of 0.005 mm, 

a minimal length of 0.5mm, and a maximum angle of 45° between steps. Tracking 

terminated when the FOD amplitude became less than 0.1 or 0.01, respectively, or when 

fibers exited the manually segmented hippocampal region. Whole hippocampus tract 

density images (TDIs) at a grid size of 10 µm isotropic were generated based on short 

streamlines (0.4 – 1 mm in length) from random seed points throughout the hippocampal 

region to visualize the microstructural organization in the hippocampus (131). The fiber 

streamlines started from specific region of interests (ROIs) as seed region, which were 

http://www.mristudio.org/
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defined closed to the viral tracer injection sites in the corresponding tracer experiments. 

The resulting seed-based probabilistic streamlines were used to generate TDIs at a grid size 

of 50 μm isotropic. TDIs generated from individual hippocampus were also registered to 

the Allen brain reference image using the same transformations used to align the HARDI 

datasets. The aligned TDIs were then averaged to obtain group-averaged TDIs for each 

particular injection site.  

    For each of the 17 hippocampal subfield structural delineations in the Allen brain 

atlas, the tracer-based projection density is defined as the fraction of tracer-projected pixels 

to the total number of pixels in the division. Similarly, dMRI-based projection density was 

calculated as the fraction of voxel with tract density greater than 0.005 to the total number 

of voxels in each structural regions.  

4.2.5 Statistical analysis 

    For each injection site, dMRI-based tract density values from each hippocampal 

subfield structures were compared with tracer projection density metadata, which was 

defined as sum of detected pixels / sum of all pixels in division. Linear regression between 

the TDI density and tracer density was analyzed in GraphPad (http://graphpad.com), and 



 

 

74 

 

the goodness of fit is evaluated by R2 and p-value from an F-test of the regression. The 

cross correlation between the 2D connectivity maps was also calculated.  

4.3 Results 

4.3.1 High-resolution diffusion MRI revealed microstructural 

organization in the mouse hippocampus 

    Within a localized imaging volume (as defined in Fig. 4.2(A)), in vivo HARDI data 

of the mouse hippocampus at 0.1 mm isotropic resolution displayed distinct layered 

organization, and the contrasts in the direction-encoded colormaps reflected the spatial 

arrangement of axons and dendrites in the subfields (Fig. 4.2(B-C)).  These were better 

visualized in the track density maps (Fig. 4.2(B’-C’)), such as the radiating dendritic 

processes in CA1- stratum radiatum (CA1-sr) and molecular layer of the dentate gyrus 

(DG-mo). The 3D high-resolution also facilitated reconstruction of microstructures in three 

dimensions simultaneously (Fig. 4.2(D-E)).   
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Figure 4.2: Localized 3D high-resolution diffusion MRI of the mouse hippocampus. (A) 

Illustration of the localized imaging volume of unilateral hippocampal field in the mouse 

brain. (B-C) Coronal slices of the direction encoded colormap (DEC) from diffusion tensor 

reconstruction showing the laminar structures in the anterior and posterior hippocampus. 

(B’-C’) Corresponding whole brain tract-density images (TDI) showing detailed 

microstructures, such as the dendritic spreading in the hippocampal layers. (D-E) DEC and 

TDI in sagittal and horizontal views of the hippocampus, respectively. 

 

Comparisons between fiber orientation distribution (FOD) maps computed from the 

HARDI data using constrained spherical deconvolution (CSD) and MAP2 and 

neurofilament stained histological sections further demonstrated the capability of high-

resolution diffusion MRI in reconstructing the complex axonal and dendritic networks in 
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the mouse hippocampus (Fig. 4.3).  For example, in the CA1-sr region, the radially 

orientated (green) FOD lobes coincided with the densely populated dendritic processes 

there,and the smaller mediolateral orientated (red) FOD lobes agreed with axons within the 

Schaffer collaterals that project inputs from CA3 to CA1. At lower spatial resolution (0.2 

mm ~ 0.3 mm isotropic resolution, Fig. 4.3), the ability of diffusion MRI to resolve 

different network components was reduced, as the FODs became less well defined (e.g., 

the red FOD lobes in CA1-sr) or lost (e.g., green FOD lobes in ventral DG-mo, indicated 

by white arrows) at lower resolution. 

 

Figure 4.3: dMRI can reconstruct the organization of axons and dendrites in the mouse 

hippocampus. (a) Microtubule-associate protein 2 (MAP2) and neurofilament (NF) stained 

coronal sections (20X) of the mouse hippocampus. Scale bars = 200 um.  (b) The 
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corresponding dMRI-derived FA image overlaid with structural boundaries in the 

hippocampus transferred from the Allen Mouse Brain Atlas after registration. Scale bar = 

200 um. (c) Enlarged MAP2 and NF stained images from the rectangular box in (a), with 

various layers delineated based on the Allen Mouse Brain Atlas. Scale bars = 50 um. (d) 

Fiber orientation distribution (FOD) maps derived from dMRI data acquired at resolution 

of 0.1, 0.2, and 0.3 mm isotropic resolution (interpolated to 0.05 mm isotropic resolution 

for comparison). At each pixel, the size and orientation of the lobes reflects the probability 

of water molecule diffusion along this orientation. The color represents orientation with 

red for the left-right axis, green for the superior-infereior axis, and blue for the anterior-

posterior axis, as illustrated by the color arrows in the lower right corner. 

 

4.3.2 Comparison of tractography and tracer based reconstruction of the 

intra-hippocampal network 

Comparison between tracer-labeled projection mapping images from the Allen 

connectivity atlas and probabilistic tractography results from the tracer injection sites 

showed remarkable similarity in their spatial distributions within the hippocampus. For 

example, tractography results generated from a CA1 seed region showed connectivity 

along the rostrocaudal axis within the CA1 region, which agreed with the tracer projection 

images (Fig. 4.4(A)). Tractography results from a CA3 seed region showed connectivity 

between the CA3 region and the dentate gyrus and CA1 region, as the tracer results, but 

less connections in the caudoventral portion. Population averaged tractography results 

showed that these results were consistent among different subjects (n = 7). However, 
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certain connections (e.g., sparsely distributed fibers in the U-shaped connections from CA3 

to CA1) became attenuated after averaging, probably due to individual variations in the 

trajectories of these connections and residual mismatch in the registration process. The 

similarity was visualized in 3D (Fig. 4.4(B)) showing the probabilistic tractography 

performed better than deterministic tractography based on the same data and it results 

mostly captured the spatial distributions of tracers. At lower resolution, we found 

increasing mismatch between the tracer and tractography results (Fig. 4.5).  

 

Figure 4.4: HARDI-based tractography of the mouse hippocampus. (A) Tract-density 

images (TDI) generated from seed regions in CA1, CA3, and dentate gyrus (DG), 

respectively. Top row shows the tracer projection mapping images from the Allen mouse 

brain connectivity atlas with injection sites in the anterior CA1, CA3, and DG (white 
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arrows). Both the individual subject TDIs (middle rows) and population averaged TDIs (n 

= 7, bottom rows) match well with the tracer projection mapping images from the Allen 

mouse brain connectivity atlas (top rows). The injection sites of the tracer experiments 

were in anterior sections of the CA1, CA3, and DG (arrows), and the corresponding TDIs 

were generated with fiber tracking seed regions similar to the tracer injections sites. The 

TDIs were overlaid on the fractional anisotropy (FA) images. (B) Three dimensional (3D) 

fiber tracts obtained by HARDI-based deterministic and probabilistic fiber tracking, in 

comparison with the tracer-based virtual tractography from the Allen mouse brain 

connectivity atlas. The tracer injection sites and fiber tracking seed regions were the same 

as that defined in (A). 

 

 

 

Figure 4.5: Spatial resolution of diffusion MRI is important for resolving small fiber tracts 

in complex microstructures. (A) TDI generated from seed region in the anterior CA3 field, 

using HARDI data at 0.1 mm isotropic resolution and 0.2 mm isotropic resolution, 

respectively. At low resolution, the connection from CA3 to CA1 is weaker (yellow 

arrows). (B) 3D fiber tracts reconstructed from HARDI-based probabilistic fiber tracking, 
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using HARDI data at 0.1 mm isotropic resolution and 0.2 mm isotropic resolution, 

respectively. Insufficient extension of the CA3 fiber tracts were observed at low resolution. 

 

Fig. 4.6 displays the tractography results in sagittal planes and combines them together 

into the basic mouse intra-hippomcapal network. The network consists of DG fiber tracts 

connects the subiculum to the CA3 field in the anterior hippocampus, the CA3 fiber tracts 

reaching to the CA1 field, and CA1 tracts that travel posteriorly and exit through the 

subiculum. 

 

Figure 4.6: Sagittal TDI maps showing the DG pathway (pink), CA3 pathway (green) and 

CA1 pathway (red) and corresponding tracer projection mapping images. Integration of the 

three pathways revealed the classical view of hippocampal circuitry, including the 

perforant pathway, the Mossy fiber pathway and the Schaffer collateral pathway. 
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After aligning individual HARDI dataset to the Allen Mouse Brain Atlas, 

segmentation of hippocampal subfield defined in AMBA was transferred to the HARDI 

data (Fig. 4.1(D-E)) and used to examine the connectivity between different subfields 

based on the HARDI datasets. The similarity between the HARDI-based and tracer-based 

connectivity was quantitatively investigated using tractography-based projection density 

measure, which measures the fraction of a particular region connected to another region 

and was similar to the tracer-based projection density measures used by AMBA. Based on 

the results of eight representative tracer experiments, which had distinct injection sites 

across the hippocampus and injection volume within a certain range (0.3-1.3 mm3, Table 

4.1), the tractography density (n = 5) with tracer density showed significant correlations in 

all subfields (p < 0.01) (Fig. 4.6(A)) with the tractography results in the CA1 regions 

showing the strongest correlation with the tracer studies (r2 ≥ 0.76) and the CA3 region 

showing moderate correlations (r2 ≥ 0.38). When concatenating all the projection density 

data to a source / target connectivity map (Fig. 4.6(B)), we found that both tractography 

density and tracer density connectivity maps showed higher projection densities along the 

diagonals than the off-diagonals, indicating stronger connectivity between neighboring 

regions than distant regions. The two connectivity maps had a cross-correlation of 0.71, 
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but mismatches existed. For example, the spurious connection in the upper-right corner of 

the tractography density map indicated false positive fiber tracts. 

 

Figure 4.6: Quantitative comparisons of projection densities from the viral tracer data and 

the HARDI-based tractography. (A) Comparisons of eight tracer experiments with 

injection sites over the hippocampus and corresponding TDI datasets. In each sub-graph, 

the data represent projection densities in the 17 target regions of the hippocampal subfields 

with sources regions in the specified the injection site / seed ROI. Horizontal axis 

represents the projection density from TDI and the vertical axis represents the projection 

density from tracer data. The sources regions were chosen from eight representative sites 

from anterior, middle and posterior sections in CA1, CA3, and DG, which is illustrated in 

3D in the upper-left inset. (B) Connectivity matrices consist of projection densities from 

the eight tracer data (upper panel) or TDI data (lower panel). The horizontal axis represents 

the target region and vertical axis represents the source region. The projection densities 

was normalized to 0-1 for each row. The two connectivity matrices shares similarity with 



 

 

83 

 

a correlation coefficient of 0.71. The dashed diagonal lines indicates strong connections 

along the diagonals. 

 

Table 4.1: Usage of the Allen mouse brain connectivity atlas data. All tracer experiments 

with injection sites in the hippocampus are listed here. Eight representation datasets were 

used in this study to compare with diffusion MRI tractography. The other datasets were not 

used due to inappropriate injection volume or the injection sites are similar to one of the 

eight datasets. 

ID Injection 

site 

Coordinates Inje

ction 

volume 

Used 

for 

compare

? 

Note 

1001478

61 

CA1 

(anterior) 

[7500, 1600, 

7100] 

0.07

05 

Yes  

1169007

14 

CA1 

(anterior) 

[7500, 1700, 

7000] 

0.16

02 

No Inj site 

similar 
1204362

74 

CA1 

(anterior) 

[7000, 1900, 

7300] 

0.12

70 

No Inj site 

similar 
1204947

29 

CA1 

(medial) 

[7800, 2000, 

8200] 

0.01

043 

No Inj volume 

low 
1001484

43 

CA1 

(posterior) 

[9100, 3300, 

9200] 

0.03

52 

Yes  

2724047

72 

CA3 

(anterior) 

[7400, 2600, 

8400] 

0.12

65 

Yes  

1127450

73 

CA3 

(anterior) 

[7100, 2500, 

8000] 

0.03

82 

No Inj volume 

low 
1139352

85 

CA3 

(anterior) 

[8200, 4200, 

8600] 

0.29

69 

No Inj volume 

high 
1805237

04 

CA3 

(anterior) 

[7200, 2600, 

8200] 

0.01

23 

No Inj volume 

low 
1123084

68 

CA3 

(medial) 

[7700, 3300, 

8900] 

0.09

50 

Yes Inj site 

similar 
1144293

38 

CA3 

(medial) 

[7800, 3200, 

8800] 

0.18

60 

No Inj site 

similar 
1276490

05 

CA3 

(posterior) 

[8100, 4900, 

8500] 

0.54

05 

Yes  

1001481

43 

DG 

(anterior) 

[6800, 2700, 

6200] 

0.08

01 

Yes  

1001412

14 

DG 

(anterior) 

[6900, 2800, 

6700] 

0.13

48 

No Inj site 

similar 
2729700

39 

DG 

(anterior) 

[6400, 2700, 

5900] 

0.00

46 

No Inj volume 

low 
1127457

87 

DG 

(medial) 

[8000, 2400, 

7300] 

0.05

65 

Yes  

1140082

20 

DG 

(medial) 

[8300, 2500, 

7500] 

0.06

14 

No Inj site 

similar 
1121673

95 

DG 

(medial) 

[7900, 2400, 

7300] 

0.02

79 

No Inj site 

similar 
1126722

68 

DG 

(posterior) 

[8900, 4000, 

8800] 

0.07

20 

Yes  

1144300

43 

DG 

(posterior) 

[8400, 3300, 

8400] 

0.10

84 

No Inj site 

similar 
1131660

56 

DG 

(posterior) 

[8900, 4600, 

8400] 

0.13

31 

No Inj site 

similar 
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4.4 Discussion 

Recently advances in diffusion MRI and tractography techniques have brought 

promise to examine brain connectivity at increasingly smaller scales. The advantages of 

diffusion MRI include the ability to examine multiple networks in the same brain as well 

as its potential to translate into the clinics. The biological relevance of diffusion 

tractography in major white matter fibers has been investigated with histological evidences 

(38,39,192). The validation is more difficulty for tractography in grey matter structures, 

especially with of probabilistic fiber tracts (193). The intra-hippocampal connectivity is 

important for us to understand the structural and functional organization of the 

hippocampus. Current knowledge on intra-hippocampal connectivity in the mouse was 

mostly obtained from extensive tracer-based studies, which offer superior image resolution 

and high specificity and the possibility to reconstruct the 3D trajectories (187). This 

extensive knowledge make it possible to study the role of intra-hippocampal connectivity 

in several neurological diseases that involves the hippocampal circuitry, such as the 

Alzheimer’s disease (194,195), stroke, and hippocampal sclerosis (196). Combing the 

existing knowledge from tracer-based study with state-of-the-art diffusion MRI techniques 
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could potentially open new ways to investigate the integrity of intra-hippocampal networks, 

their longitudinal changes after diseases onsets and after treatments.   

In this study, we use high-resolution diffusion MRI and tractography to examine intra-

hippomcapl network in the mouse brain. Previous studies have stressed the importance of 

spatial and angular resolution. Using a localized imaging approach, we have achieved both 

high spatial and angular resolution (0.1 mm isotropic resolution and 60 directions in 2 

hours). The high spatial and high angular resolution dMRI data acquired with this approach 

not only allowed delineation of the hippocampal microstructure and laminar organization 

(Fig. 4.3), but also facilitated image registration and improved the fiber tracking results 

(Fig. 4.7). Even though super-high resolution diffusion MRI data can be acquired from 

post-mortem brain specimen (81,197), neither the ex vivo imaging techniques nor the 

tracking results may be directly translatable to in vivo study. In addition to the improvement 

on resolution, we optimized the fiber tracking algorithms and parameters to reproduce 

connectivity patterns comparable to the tracer studies. HARDI-based probabilistic fiber 

tracking performed well in resolving the branching fibers in the grey matter layers of the 

hippocampus, with fine-tuned tracking parameters (data not provided). 
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Figure 4.7: Effects of spatial and angular resolution in tractography. (A) TDI maps from a 

anterior CA3 seed region, generated with HARDI data acquired at 0.1 mm (top row) and 

0.2 mm (middle row) isotropic resoltion and 60 diffusion directions, and 0.1 mm isotropic 

resolution and 30 diffusion directions (bottom row). (B) Probabilistic fiber tracts from CA1, 

CA3, and DG seed regions, generated with HARDI data acquired at 0.1 mm (top row) and 

0.2 mm (bottom row) isotropic resoltion and 60 diffusion directions. 

 

In order to correlate the dMRI tractography with histological evidence, we developed 

an image processing pipeline to compare the probabilistic tractography with the Allen 

mouse brain connectivity atlas. Both the visual comparisons of the 2D projection maps and 

3D tractography (Fig. 4.4), and the quantitative comparison of the projection density (Fig. 

4.6) demonstrated the similarity between the HARDI-based and tracer-based connectivity. 
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While the major pathways were successfully reconstructed, differences were also identified, 

e.g. the lack of CA3 to CA1 connections in anterodorsal CA1 region (Fig. 4.4(A)) and the 

relatively low correlation between tracer density and TDI density from the CA3 seed region 

(Fig. 4.6(A)). The mismatch may result from dominance of dendritic processes in CA1-sr 

as suggested in the MAP2 staining (Fig. 4.3), such that CA3 to CA1 Shaffer collaterals 

were not easily tracked. Also, false positives in the TDI connectivity map can be found 

between distantly connected regions, compared to the tracer connectivity map (Fig. 4.6(B)). 

One possible factor leading to the false positive is that the viral tracer used in the Allen 

connectivity atlas is an anterograde tracer that crosses single synaptic connection, whereas 

dMRI-based fiber tracking is bi-directional and not restricted by the number of synaptic 

connections. 

Several important connections were closely examined (Fig. 4.5). 1) In the CA1 field, 

it is known that axons originated from the pyramidal cells of CA1 primarily project to the 

subiculum. This pathway is robustly captured. 2) The collateral fibers, arising from the 

CA3 pyramidal cells play an important role of distributing fibers across CA3, CA2, and 

CA1 fields and also innervating the polymorphic layer in DG. Majority of the CA3-to-CA3 

associational connections and CA3-to-CA1 Shaffer collaterals are confined in the stratum 
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radiatum. Using HARDI-based probabilistic fiber tracking, we roughly traced these 

pathways, but the CA3-to-CA1 connection could not sufficiently extend to anterodorsal 

CA1. 3) The dentate gyrus receives inputs from the enterohinal cortex and send projections 

to the CA3 field through the mossy fibers, along with the associational fibers that transverse 

longitudinally (178). Our tractography results indicated the DG fibers run antero-

posteriorly, and some of those fibers spread to the CA3 field. 4) The innervation patterns 

of the CA1, CA3 and DG fibers give rise to the trisynaptical pathway (part of the perfront 

pathway), namely the DG-CA3-CA1 connection. TDI maps of this pathway is fairly close 

to the underlying anatomy.  

    Although the general validity of diffusion tractography is still under investigation 

(198), our investigation on mouse hippocampus circuitry suggests to dMRI can be a 

promising tool to perform “in vivo histology” of the brain connectivity. As the MR 

technology continue to advance, e.g., high magnetic field and gradient strength in human 

scanners, the high-resolution dMRI as performed in this study would be readily translatable 

to image the human brain connectivity.  
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4.5 Conclusion 

    We proposed a localized imaging technique to obtain high-resolution dMRI of the 

mouse hippocampus, together with an image processing pipeline for quantitative mapping 

of the intrinsic hippocampal connectivity in vivo. The major connections in the 

hippocampal circuitry are reconstructed with high-fidelity to the Allen mouse brain 

connectivity atlas, with limitation in recovering long distance connections. 
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Chapter 5 In Utero Localized Diffusion MRI of 

the Embryonic Mouse Brain Microstructure and 

Injury 

5.1 Introduction 

During embryonic and fetal development, the brain undergoes rapid growth, including 

formation of basic functional units and critical neural circuitry. Injuries during this critical 

period often have profound impacts on brain structures and functions at later stages. For 

example, intrauterine inflammation is one of the common causes of preterm birth, with 

adverse neurological outcome (199). Fetal brain magnetic resonance imaging (MRI) is 

emerging as a promising tool to study brain development (58,59) and to detect fetal brain 

injury (60-63). Compared to other imaging modalities, primarily ultrasound, MRI provides 

rich tissue contrasts for delineation of fetal brain structures and injuries. Once 

abnormalities are detected by ultrasound, MRI is the technique of choice in the clinic to 

establish the pattern of injuries (200).  

Compared to conventional T1/T2 MRI, diffusion MRI (dMRI), especially diffusion 

tensor imaging (DTI) (70,201), is well suited for characterization of the fetal brain 
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structures and injuries because its contrasts reflect the organization of brain microstructures 

and are less dependent on myelin content (70,202). Its unique ability in characterizing 

developing grey and white matter structures has been established by studies of postmortem 

fetal brain specimens (203,204) as well as preterm babies and infants (156,205). Several 

groups pioneered in in utero dMRI of the human fetal brain (206-210) to evaluate normal 

and abnormal fetal brain development.  

To realize the full diagnostic potential of in utero fetal brain dMRI, it is important to 

understand the relationships between tissue microstructural changes and their 

manifestation in diagnostic markers. The laboratory mouse provides a convenient vehicle 

to examine these relationships as it is commonly used to study the dynamics of mammalian 

brain development and pathogenesis. In addition, the existence of a large repertoire of 

genetically modified mouse strains further facilitates the investigations of the genetic 

mechanisms controlling brain development and responses to injuries. MRI has been used 

to examine the embryonic mouse brain, but mainly in post-mortem specimens. Several 

groups demonstrated three-dimensional (3D) T1- and T2-weighted MRI of ex vivo 

embryonic mouse brains with spatial resolutions up to 20 µm (113,115,211), and ex vivo 

DTI of embryonic mouse brain with superb tissue contrasts and resolutions up to 50µm 
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(130,212). Despite the advances in ex vivo dMRI of the mouse brain, there is no substitute 

for in vivo MRI as death and chemical fixation inevitably alter tissue microstructural 

properties (213,214) and MR signatures of key pathological events, such as edema, may 

not be preserved in ex vivo specimens (215,216).  

In utero MRI of the live mouse embryos is extremely challenging due to motions from 

both the embryo and maternal mice and limited signal-to-noise ratio (SNR). Moreover, 

high resolution in all three dimensions is often required to resolve structures within the 

miniature brains (< 6 mm in any dimensions). Only recently, Turnbull and colleagues 

demonstrated successful in utero embryonic mouse brain T1-weighted MRI using advanced 

motion correction techniques (217,218). Compared to conventional T1/T2 MRI, dMRI is 

known to be particularly sensitive to motion, and the application of the diffusion gradients 

further reduces SNR. Due to these technical challenges, feasibility of in utero dMRI 

embryonic mouse brain has not been reported. 

In this study, we explored the feasibility of in utero dMRI of the embryonic mouse 

brain using a localized imaging approach with spatially selective excitation pulses 

(219,220), which were designed based on a linear class of large tip-angle (LCLTA) pulses 

(221). The localized imaging strategy is advantageous because a pregnant mouse has 
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multiple embryos, each located within its own gestational sac inside the uterus and 

occupies only a small portion of the maternal body.  Localization can significantly reduce 

the field-of-view, and therefore shorten the imaging time and reduce susceptibility to 

motion. Combined with a 3D fast imaging sequence and motion correction techniques, our 

goal was to perform in utero dMRI of the embryonic mouse brain and use the technique to 

study microstructural features during brain development and injury. 

5.2 Materials and Methods 

5.2.1 Animal Preparation 

All experimental procedures were approved by the Animal Use and Care Committee 

at the Johns Hopkins University School of Medicine. Pregnant CD-1 mice (Charles River 

Laboratories) with an average littler size of 11 pups (19 days on full-term gestation) were 

used in this study. Among them, three pregnant dams were subjected to a model of 

intrauterine inflammatory according to previous studies (222-224). Briefly, on gestational 

day 10 (embryonic day 17, or E17), timed pregnant mice were placed under isoflurane 

anesthesia and a mini-laparotomy was performed. Lipopolysaccharide (LPS, Sigma, St. 

Louis, MO, Lot. 102M4017V) 50μg in a 100μl phosphate buffer solution (PBS) was 
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infused between 2 gestational sacs in the lower right uterine horn. Routine closure was 

applied and the dams were recovered in individual cages. Control mice were gestational 

age-matched pregnant dams without surgery. 

Imaging was performed on normal pregnant mice (n = 10) and injured mice 6 hrs after 

injection of LPS (n = 3). During imaging, pregnant mice were anesthetized with isoflurane 

(1%), together with air and oxygen mixed at a 3:1 ratio, via a vaporizer. Respiration was 

monitored via a pressure sensor (SAII, Stony Brook, NY, USA) and maintained at 30–60 

breaths per minute. Among the ten normal mice, five received gadopentetate dimeglumine 

(Gd-DTPA, Magnevist, Berlex Imaging, Wayne, NJ) at a dose of 0.4 mMol/kg via 

intraperitoneal injection (i.p.) injection at the lower abdomen at approximately 2 hrs before 

MRI. 

5.2.2 Pulse sequences for single and multi-FOE localized MRI 

Localized imaging targeting a selected mouse embryo was achieved using two-

dimensional spatially selective 90⁰ excitation pulses, calculated based on a linear class of 

large tip-angle (LCLTA) pulses (221) as described in Chapter 3.2.2.  The pulses were 

designed to excite a rectangular field of excitation (FOE) in the x–y plane that covered the 
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target embryonic mouse brain, with a pulse duration of 3 ms and pulse amplitude of 9-10 

μT. We used a 12-turn spiral-in excitation k-space (maximum gradient strength of 148 

mT/m), which resulted in an excitation resolution of 1.5 × 1.5 mm. A slab-selective 

refocusing pulse (136) were applied to restrict the imaging slab in the z direction. The 

selective excitation pluses were combined with a house-made 3D diffusion-weighted 

gradient spin-echo sequence (DW-GRASE) (176,212) with an echo train length of 20 for 

fast imaging (Fig. 5.1(B)). Twin navigator echoes (225) were appended after the imaging 

echoes to correct phase errors due to motion and instrument instability. Respiratory 

triggering was not used.  

This localized imaging module can be replicated for simultaneous acquisition of 

multiple embryonic mouse brains in an interleaved fashion. As illustrated in Fig. 5.1(A), 

two different selective excitation pulses and signal acquisitions were evenly spaced in each 

repetition time (TR). An example of multi-FOE imaging is demonstrated in Fig. 5.2(A). If 

the two FOEs do not overlap in the x, y, and z directions, multi-FOE imaging with 2D 

selective excitation pulses can be achieved with minimal interferences between them. With 

this approach, the idle time in TR was utilized to improve the efficiency, and a longer TR 
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became afforded in the 3D acquisition to enhance the SNR as well as contrast in T2-

weighted images. 

 

Figure 5.1: Use of selective excitation pulse and a 3D diffusion-weighted gradient spin-

echo sequence (DW-GRASE) sequence for localized diffusion MRI. (A) Performance of 

the spatially selective excitation pulse was tested in an agarose gel phantom. The red box 

in the image of the phantom represents an 8 × 8 mm field of excitation. The yellow and 

blue curves in (B) show the excitation profile along the x-axis and y-axis, 

respectively. (C) A diagram of the 3D DW-GRASE sequence with spatially selective 

excitation pulse. The sequence can be extended to include two fields of excitation and 

acquisition. The diagram shows two localized imaging modules that target two separate 

embryos in an interleaved fashion. The localized imaging module is expanded to show the 

timing of the 2D selective excitation pulse together with the spiral gradient in the x–y plane, 

diffusion sensitization, the GRASE readout, and the twin-navigator echoes. Each GRASE 

readout acquires five double-sampled gradient and spin echoes and is repeated four times 

to achieve an acceleration factor of 20 compared to the conventional spin echo sequence. 
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5.2.3 Image acquisition 

In vivo imaging was performed on a horizontal 11.7 Tesla MR scanner (Bruker Biospin, 

Billerica, MA, USA). Radio frequency (RF) pluses were transmitted through a 72 mm 

diameter quadrature volume coil, and signal was acquired using either an 8-channel phased 

array rat body coil or a 15 mm diameter planar surface receive-only coil, which was placed 

directly on the mouse abdomen to maximize sensitivity (Bruker Biospin, Billerica, MA, 

USA).  

To locate the target embryo, coronal and sagittal multi-slice T2-weighted images of 

full coverage were acquired (echo time (TE)/TR = 50/3000 ms, in-plane resolution = 0.16 

mm x 0.16 mm, slice thickness = 1 mm, and scan time ≈ 8 min) as the reference images to 

define the target embryo and corresponding FOE. The 8-channel phased array rat body coil 

covered the entire abdomen and was used to acquire 0.2 mm isotropic resolution dMRI 

with TE/TR = 21/1000 ms, two non-diffusion-weighted (b0) images and six diffusion-

weighted images (b = 800 s/mm2) in 34 mins. The same parameters were used for multi-

FOE imaging and imaging of the injured embryonic mice from the intrauterine 

inflammation model. The 15 mm planar surface coil provided limited coverage but higher 

sensitivity than the body coil and was used for high resolution DTI with the following 
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parameters: TE/TR = 21/500 ms; two signal averages; spectral width = 120 kHz; four b0 

images and 30 diffusion directions (226); b-value = 1000 s/mm2; field of view (FOV) = 

12.8 mm x 12.8 mm x 8 mm; and spatial resolution = 0.2 mm x 0.2 mm x 0.2 mm in 72 

min (n = 5) (2 min per diffusion direction) or 0.16 mm x 0.16 mm x 0.16 mm in 113 min 

(n = 1). High resolution 3D T2-weighted b0 images were acquired with a TR of 1000 ms at 

0.13 x 0.13 x 0.13 mm resolution in 9.6 min.  

Ex vivo imaging was performed on the dissected embryonic mouse brains (n = 5) from 

the maternal mouse. The brain specimens were immersion fixed in 4% paraformaldehyde 

(PFA), and later transferred to PBS with 2 mM Gd-DTPA. Specimens were scanned using 

a vertical 11.7 Tesla NMR spectrometer (Bruker Biospin, Billerica, MA, USA) and a 

birdcage volume coil (10mm inner diameter). We used similar imaging parameters as those 

in the in vivo dMRI, except a higher b-value was used to compensate the reduced diffusivity 

in ex vivo samples (b-value = 1500 s/mm2). Temperature was maintained at 37° during the 

scan. 
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5.2.4 Image Processing 

The 3D k-space data were apodized with a tapered cosine window, zero-padded to 

twice of the original size, and reconstructed in Matlab (Mathworks). The twin-navigator 

echoes were Fourier transformed along readout direction, which were then used to align 

the phases of the odd- and even-numbered spin echoes from each repetition (212). The 30 

diffusion-weighted images (DWI) were aligned to the mean DWI using 3D rigid 

transformation to correct the inter-scan motion. Diffusion tensor fitting were performed in 

DtiStudio (www.mristudio.org) using log-linear fitting, and fiber tracts were obtained with 

a FA threshold of 0.15 and maximum angle of 60⁰. Spherical deconvolution of the 30 

direction dMRI data was performed in MRtrix (142) with a harmonic order of six to 

generate the fiber orientation distribution (FOD) map. Quantitative analysis of the 

fractional anisotropy (FA) and apparent diffusion coefficient (ADC) was performed in ROI 

Studio. The SNR was calculated as the ratio of the mean of a single b0 image to the standard 

deviation of the subtraction image between two b0 images in a cortical region of interest 

(ROI) that was close to the coil. The contrast-to-noise ratio (CNR) was calculated as the 

difference in SNR between two ROIs. 

http://www.mristudio.org/
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5.2.5 Histo-pathological Examination 

Following MRI acquisition, embryos were taken out and whole heads were fixed in 4% 

PFA at 4 ̊C overnight. The next day, specimens were washed with PBS extensively and 

immersed in 30% sucrose until saturation, followed by cryosection at 20μm thickness and 

histochemical staining. Routine Nissl and Hematoxylin and eosin (H&E) stainings were 

performed to evaluate the morphological change of the injured fetal brains. All photographs 

used for quantification were taken with Zeiss AxioPlan 2 Microscope System (Jena, 

Germany) attached to a Canon EOS Rebel Camera (Tokyo, Japan) with a 4X objective. 

5.3 Results 

On gestational day 17, a large portion of the abdominal space was occupied by more 

than ten embryos in its uterus, each located within its own gestational sac in the maternal 

uterus (Fig. 5.2(A)). Using an 8-channel phased array body coil, multi-slice T2-weighted 

images of the entire mouse abdomen were captured to locate each individual embryos and 

to define fields of excitation (FOEs) for selected embryos. For example, in Fig. 5.2(A), two 

FOEs in the size of 10 mm x 10 mm x 8 mm (yellow and blue boxes), each containing the 

head of a selected embryo, were defined based on the T2-weighted images. The generated 
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selective excitation pulses provided uniform excitation within the FOEs and suppressed 

signals from tissue outside the FOEs (Fig. 5.2(B)). 

 

Figure 5.2: Mouse embryos in the abdomen of a pregnant CD-1 mouse on gestational day 

17 localized with selective excitation pulses based on user-defined FOEs. (A) 3D rendering 

of 11 mouse embryos in the uterus, reconstructed based on multislice T2-weighted images. 

The yellow and blue boxes indicate the FOEs for two embryonic mouse brains used in 

twin-FOE imaging. (B) A selected embryonic mouse brain defined in coronal and sagittal 

multislice T2-weighted images of the mouse abdomen (corresponding to FOE1 in (A)). 

3D T2-weighted images of this embryonic mouse brain acquired using the GRASE 

sequence with selective excitation show minimal aliasing. 

 

With the twenty-echo DW-GRASE sequence, a single 3D diffusion weighted image 

at 0.2 mm isotropic resolution could be acquired in 2 minutes. Motion during the 2 minute 
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period could be corrected using the twin navigator echoes, which reduced the motion-

induced smearing in both non-diffusion weighted (Fig. 5.3(A)) and diffusion-weighted (Fig. 

5.3(B)) images. Motions between images, from both the mother and embryos, could be 

corrected by post-imaging registration (Fig. 5.3(C)). Based on the rigid registration results, 

the overall movements of the embryonic mouse brains were estimated and plotted over 

time (Fig. 5.3(D)). The average translational motion during a one-hour period was 0.18 ± 

0.09 mm (the maximum motion was 0.60 ± 0.46 mm, n=5). Fig. 5.4 shows mean DWI and 

ADC maps from two mouse embryos acquired simultaneously from the two FOEs defined 

in Fig. 5.2.    
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Figure 5.3: Motion correction based on twin-navigator echo phase correction and 

retrospective image registration. Navigator echo phase correction improves image quality 

by removing motion artifacts, eg, smearing of structural boundaries (indicated by the 

arrowheads), in both nondiffusion-weighted images (A) and diffusion-weighted images(B). 

Rigid image registration corrects motion-induced misalignment between images. For 

example, mismatch between Image #1 and Image #2 can be corrected after 

registration (C). (D) Translational motions of five embryonic mouse brains were estimated 

based on rigid transformations and plotted over a 1-hour period. Horizontal axis denotes 

scan time in minutes, and vertical axis denotes the translational movements in mm. 
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Figure 5.4: DWI and ADC maps acquired simultaneously from two embryonic mouse 

brains, as defined in Fig. 2A, using the multiple FOE acquisition technique. 

 

Further improvement in image resolution and contrast was achieved by using high 

sensitivity planner surface coil and injection of Gd-DTPA. In our study, at two hours after 

i.p. injection of Gd-DTPA, signal enhancement could be observed in the mouse embryos 

and persist for more than two hours. With Gd-DTPA, the SNR measured in the parenchyma 

increased 1.7 times compared to that without Gd-DTPA (26.1 ± 4.3 (n=5) versus. 15.3 ± 

4.4 (n=3)), and the contrast to noise ratio between the CSF and brain parenchyma increased 

1.9 times (7.07 ± 1.31 (n=5) versus 3.66 ± 0.63(n = 3)). Taking advantage of the high SNR, 

T2-weighted image of the embryonic mouse brain could be acquired at 0.13 mm isotropic 

resolution within 10 minutes, which was sufficient to define the overall brain morphology 

http://onlinelibrary.wiley.com/doi/10.1002/jmri.24828/full#jmri24828-fig-0002


 

 

105 

 

in 3D. For example, the ventricular system in the embryonic mouse brain can be outlined 

in 3D (Fig. 5.5(A)).  

Diffusion tensor data at 0.2 mm isotropic resolution and 30 diffusion encoding 

directions could be acquired in 72 minutes. In the FA and direction-encoded colormaps 

(Fig. 5.5(B)), major grey matter and white matter structures in the E17 mouse brain could 

be delineated. The cortical plate and intermediate zone could be separated by their unique 

tissue orientations. Several white matter tracts, e.g., the cerebral peduncle (cp), optical tract 

(opt), and fimbria (fi), could also be identified based on their high FA values and 

orientations. The in vivo DTI results were compared with ex vivo data acquired at the same 

resolution (Fig. 5.5(C)). Changes in overall brain morphology were observed between the 

in vivo and ex vivo embryonic brains, e.g., flatter brain shape and shrunk ventricles, but 

tissue contrasts remained mostly unchanged. In vivo ADC measured in both grey and white 

matter structures were significantly higher than ex vivo (temperature kept at 37 °C). In 

comparison, in vivo FA values in most regions, except the intermediate zone, did not show 

significant difference (Table 5.1). The results are consistent with the previous findings in 

the adult mouse brain (213,214). 
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Figure 5.5: (A) T2-weighted images of an embryonic mouse brain acquired at 0.13 mm 

isotropic resolution. The ventricles were reconstructed in 3D based on the high-

contrast T2-weighted images. (B) In vivo DTI of an E17 embryonic mouse brain at 0.2 mm 

isotropic resolution, in comparison with ex vivo DTI result (C) at the same resolution. 

Several gray and white matter structures in the E17 mouse brain can be delineated in the 

FA maps (top rows) and direction-encoded colormaps (bottom rows), eg, the cortical plate 

(CP), intermediate zone (IZ), cerebral peduncle (cp), internal capsule (ic), optic tract (opt), 

and fimbria (fi). 
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Table 5.1: Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of several 

grey and white structures measured from the in vivo and ex vivo E17 embryonic mouse 

brains (n = 5). Data is presented as mean ± standard deviation across subjects. * and ** 

denote that a two-tailed t-test between the in vivo and ex vivo measurements produced a p-

value less than 0.01 and 0.001, respectively. Abbreviations: CP - cortical plate; IZ - 

intermediate zone. 

Structures 
ADC (x10-3 mm2/s) FA 

In vivo Ex vivo In vivo Ex vivo 

Frontal CP 0.65±0.09 0.47±0.02* 0.41±0.11 0.42±0.02 

Temporal CP 0.59±0.05 0.45±0.03** 0.39±0.06 0.33±0.03 

IZ 0.64±0.10 0.39±0.03** 0.44±0.07 0.24±0.02** 

cerebral peduncle 0.67±0.07 0.31±0.03** 0.34±0.05 0.30±0.07 

optical tract 0.77±0.10 0.33±0.03** 0.31±0.07 0.29±0.03 

fimbria 0.57±0.10 0.40±0.02* 0.35±0.07 0.35±0.04 

internal capsule 0.54±0.08 0.38±0.04* 0.37±0.05 0.33±0.07 

 

 

Fig. 5.6 demonstrates diffusion tensor data of an E17 mouse brain acquired at 0.16 mm 

isotropic resolution in 2 hours.  Compared to the images at lower resolution, several white 

matter structures, e.g. the fimbria (fi) and the cerebral peduncle (cp), could be more easily 

resolved. The in vivo DTI results were similar to ex vivo at the same resolution, but less 

sharp than the ex vivo DTI at 0.1 mm isotropic resolution (Fig. 5.6(C)), which was acquired 

in 4hrs. The microstructural organization of embryonic mouse cortex could be visualized 

using spherical deconvolution (142) of the 30 direction diffusion data. The cortical plate 
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showed dominant radial orientation, probably due to the presence of radial glial fibers, and 

the intermediate zone beneath it showed two fiber groups crossing each other. Major white 

matter tracts, e.g., the cerebral peduncle (cp), optical tract (opt), and stria terminalis (st), 

could be reconstructed in 3D and visualized in relation to gray matter structures, such as 

the cortical plate (CP), hippocampus (Hi), and thalamus (Th) (Fig. 5.6(C)).  

 

Figure 5.6: (A) In vivo DTI colormaps of an embryonic mouse brain acquired at 0.16 mm 

isotropic resolution (top row), compared with ex vivo DTI acquired at 0.16 mm resolution 

(bottom row). (B)FOD map showing microstructural organization in the cortical plate and 

intermediate zone, overlapped on a zoomed-in region from (A). (C) Early white matter 

tracts reconstructed from the in vivo dMRI data at 0.16 mm isotropic resolution. The 3D 

trajectories of the cerebral peduncle (cp), optic tract (opt), and stria terminalis (st) are 

rendered relative to the cortical plate (CP), hippocampus (Hi), and thalamus (Th). 
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The localized in vivo dMRI technique was used to detect embryonic brain injury in an 

inflammatory model of intrauterine LPS injection. Nine embryonic mouse brains from 

three pregnant dams were examined using the phased array body coil. As this is a model 

of inflammation in outbred CD1 mice, an expected range of cortical and sub-cortical 

injuries were found in these embryonic mice.  Three representative embryonic mouse 

brains were demonstrated in Fig. 5.7. Reductions in T2-weighted signal and ADC value 

were detected in the cortical regions (yellow arrows, ADC = 2.59 ± 0.76 x 10-4 mm2/s, n = 

7) in almost all the embryos, and several mice showed sub-cortical injury (blue arrows, 

ADC = 2.01 ± 0.40 x 10-4 mm2/s, n = 4). The ADC in these affected tissues was reduced to 

about 1/3 of the normal cortical ADC of 0.65 ± 0.09 x10-3 mm2/s (Table 5.1), indicating 

acute injury, e.g. edema, may have developed within 6hrs after the LPS challenge. Nissl 

and H&E stained sections (Fig. 5.7(B)) at similar levels showed reduced cortical thickness 

(0.457 ± 0.026 mm in the LPS treated embryos versus 0.575 ± 0.021 mm in the controls, p 

< 0.05). At high magnification (Fig. 5.7(B)), shrunken neurons with enlarged intercellular 

space and many unstained regions in cortical area were observed. In the LPS group, the 

alignment of neurons was not as clear as the control group. Furthermore, the development 
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of neuronal processes (axon/dendrites) was disrupted and organelles became pyknotic 

(insets). 

 

Figure 5.7: (A) In vivo T2-weighted images (T2w), DWI, and ADC maps of three E17 

embryonic mouse brains at 6 hours after intrauterine injection of LPS. The images were 

acquired at 0.2 mm resolution using the localized DW-GRASE sequence. Yellow and blue 

arrows indicate cortical and subcortical injury (reduced T2 intensity and ADC) in these 

mice, respectively. (B) Nissl and H&E-stained sections at similar levels as the MR images, 

from a control embryo and an LPS-treated embryo. The LPS-treated embryo showed 

reduced cortical thickness (red arrows, including the cortex plate, subplate, intermediate 
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zone, and ventricular zone) and shrunken neurons (insets), compared to the control embryo. 

The black arrowheads point to the normal and shrunken cytoplasm in the cortical neurons. 

 

5.4 Discussion 

In vivo dMRI of the embryonic mouse brain advances our ability to monitor the 

embryonic brain development under physiological conditions and in a longitudinal scale. 

It offers a powerful tool for developmental neuroscience for spatial-temporal mapping of 

normal embryonic brain development, detection of abnormality in prenatal injury models 

(223), and phenotype screening in genetically modified models (227). More importantly, 

this non-invasive technique demonstrates high translational potential for in utero 

monitoring of fetal brain in clinical practice. 

The key innovation of this study is the application of spatially selective excitation (221) 

to perform localized imaging of individual mouse embryo. Localized imaging is ideal for 

imaging the live embryonic mouse brain. As individual embryos occupy a small fraction 

of the abdomen, reducing the field-of-view without aliasing provides immense benefit in 

imaging speed, which can be translated to higher imaging resolution and reduced 

sensitivity to motion. The reduced field-of-view technique has been used to image several 

internal organs, including the heart, kidney and spinal cord (219,220). The excitation 
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profiles of the spatially selective excitation pulses used in this study were tested in our 

previous study in the mouse brain at 11.7 Tesla (25) and remained satisfactory for 

applications in the abdomen. Using this approach, a 3D diffusion-weighted image from an 

embryonic mouse brain can be acquired in less than 2 minutes to acquire. The fast speed 

reduced the sensitivity to fetal and maternal motion. With navigator-based motion 

correction, artifacts due to intra-image motions were reduced, and inter-image motions 

could be mostly remedied by 3D image registration. With the current setup, we had an 80% 

success rate in acquiring satisfactory diffusion MRI data. Two out of the ten DTI data 

contained large inter-image motions, due to large movement of the organs in the abdomen, 

such as release of the bladder during imaging, which could not be fully corrected. One 

limitation of the current setup is the use of 2D selective excitation pulses, which restrict 

the selection of embryos for multi-FOE imaging (no overlap in both x-y and z). With the 

advances in 3D selective excitation pulses and parallel transmission hardware (219), it will 

be straightforward to achieve multi-FOE imaging with even higher efficiency.  

High-throughput acquisition of the T2-weighted b0 image and ADC maps of single or 

multiple embryonic mouse brains was achieved using a body coil. These images can be 

sufficient to reveal brain morphology, including the sizes of the brain and ventricles, as 
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well as certain pathology, as in the case of LPS-induced inflammation model. We 

demonstrated in a mouse model of intrauterine inflammatory injury that cortical injury can 

be detected from the ADC maps. The reduction of ADC as shown in vivo and the shrinkage 

of neurons after fixation and dehydration, suggested severe edema may have developed 

within 6hrs exposure to inflammation. This information could be lost or confounded by 

chemical fixation in ex vivo MRI. In vivo detection of such abnormalities at acute stages 

provide critical diagnostic value to evaluation of potential long-term neurological and 

immune deficits (224). Longitudinal monitoring in the perinatal stages can further trace the 

disease progression and guide therapeutic interventions. 

In this study, diffusion tensor imaging of the embryonic mouse brain, which requires 

high SNR, was acquired using a high sensitivity planar surface coil and after injection of 

Gd-DTPA. Compared to the body array coil, the planar surface coil provides higher 

sensitivity but only allows a limited imaging area, which often contains less than three 

mouse embryos and discourages the use of multi-FOE imaging. The injection of Gd-DTPA 

significantly increased SNR due to shortening of tissue T1. Previous studies (228) have 

shown that Gd-DTPA can go through the placenta and enter the embryonic mouse brain 

due to the undeveloped blood-brain barrier (BBB). Gd tends to stay in the uterus for a 
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prolonged time because it is excreted by the embryos in the fluid and then taken up by the 

embryo again. This is important for DTI because it provides ample time for lengthy DTI 

acquisition. The effect of exposure to MRI and Gd-DTPA on the embryonic mouse 

development was studied in (32) and no adverse effect was found in term of weight and 

extremity morphology, etc.  

At 0.2-0.16 mm isotropic resolution, we demonstrated in vivo DTI of the embryonic 

mouse brain for the first time. The data revealed important microstructural information in 

the developing mouse brain under normal physiological conditions. In the E17 embryonic 

mouse brain, we found high anisotropy in the developing cortical structures (e.g., CP and 

IZ), which had unique orientations in the colormap and FOD map (Fig. 5.6). The fiber 

orientations corresponded well to the radially arranged radial glial cells and the highly 

organized cells and axons with minimal dendrites present at early developmental stages. 

The high resolution also allowed us to delineate several major white matter fiber tracts and 

traced their trajectories (Fig. 5.5(D)), which extends our ability to trace early white matter 

development and abnormalities in vivo. Continuing development in this area, especially 

with higher imaging resolution, will further enhance our ability to study the brain 

microstructure at early developmental stages. 
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In conclusion, in utero dMRI of the normal and injured embryonic mouse brains was 

achieved using the localized imaging approach, which addressed the unique anatomy of 

the mouse uterus to accelerate the acquisition and reduce motion sensitivity. High-

resolution DTI of the embryonic mouse brain revealed the major gray matter and white 

matter structures, and the diffusion measurements reflected normal and pathological brain 

development. 
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Chapter 6 Oscillating gradient diffusion MRI of 

normal and hypoxia-ischemia injured mouse 

brains 

6.1 Introduction 

Diffusion MRI (dMRI) utilizes water molecule diffusion to probe brain microstructure 

and is an important tool to visualize brain structures and a wide spectrum of pathologies. 

Information on the extent of water molecule diffusion in the labyrinth of tissue 

microstructures is encoded into dMRI signals by diffusion sensitizing gradients (165). By 

varying the orientation, strength, and timing of the diffusion sensitizing gradients, many 

aspects of tissue microstructural organization can be extracted from the collected dMRI 

signals. Advanced dMRI techniques, e.g., high angular resolution diffusion imaging 

(HARDI) (229,230) and diffusion spectrum imaging (DSI) (231), use sophisticated 

diffusion encoding schemes with multiple gradient orientations and strengths to reveal the 

structural organization and connectivity in the brain.   

The timing of the diffusion sensitizing gradients, especially the diffusion time, can also 

be used to explore tissue microstructural properties. The concept of diffusion time 
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dependent dMRI had been introduced more than two decades ago (232), and demonstrated 

diffusion time dependence of dMRI signals in biological tissues (233-236). In order to 

overcome the limited minimum diffusion time (> 5 ms) in conventional pulsed gradient 

spin echo (PGSE) methods, oscillating gradient spin echo (OGSE) method was developed 

to achieve ultra-short diffusion times using high frequency oscillating gradient waveforms 

(27,237-239) (illustrated in Figure 6.1). In fact, OGSE dMRI is a unique tool to measure 

the so-called temporal diffusion spectrum, which is the Fourier transform of water 

molecule velocity autocorrelation function (232,240). The relationship between temporal 

diffusion spectrum and microstructural properties, such as cell size and membrane 

permeability, has been studied using numerical simulation (241-243) as well as in 

phantoms (237,244,245) and animals (27,246). Applications of OGSE dMRI to study 

tissue microstructure in normal (247-251) and diseased brains (252,253) showed promising 

results. Recently, the feasibility of performing OGSE-dMRI experiments on clinical 

scanners with limited gradient strengths has been demonstrated, and increased ADCs with 

oscillating frequency was reported in several white and gray matter structures in human 

brain (254,255). 
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Figure 6.1: Concept of time-dependent water diffusion and measurements with OGSE. 

With conventional PGSE, the diffusion time is usually quite long, and the water diffusion 

measured at this long diffusion time (Δ1) is restricted by the microstrutrual boundaries, 

such as the cell membrane. With sinusoidal OGSE, the diffusion time  (Δ2) is reduced to ¼ 

of the oscillating cycle, which can be further reduced within increasing oscillaiting 

frequency (Δ3- Δ4). At these short diffusion times, the water molecules displacements (𝑥̅ =

2√2𝐷𝑡) are in smaller ranges, and therefore, the diffusion becomes less restricted. 

 

In this study, we further investigated whether OGSE dMRI could provide additional 

information on brain microstructural changes after formaldehyde fixation and after 

hypoxic-ischemic injury. Previous PGSE-dMRI based studies showed significant 

differences between in vivo and ex vivo ADC values in the brain, as death and chemical 
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fixation can alter tissue microstructural properties, for instance, membrane permeability 

and relative sizes of tissue compartments (85,86). Similarly, microstructural changes in the 

brain after hypoxia-ischemia, including swelling of cell bodies and processes, have also 

been extensively studied (256-258), and such changes may be the underling causes of the 

dramatic reduction in ADC after acute HI injury (259-261). Understanding how these 

microstructural changes affect OGSE-dMRI signals and temporal diffusion spectra will 

extend our knowledge on the relationships between tissue microstructures and dMRI 

signals.  

6.2 Methods 

6.2.1 Animals and experimental setup 

In this study, we used five adult C57BL/6 mice (six-month old, female) and 23 

postnatal day 10 (P10) C57BL/6 mouse pups (Jackson Laboratory, Bar Harbor, ME, USA). 

The P10 mouse pups were subjected to hypoxia ischemia using the Vannucci model 

adapted for neonatal mice as described previously (unilateral ligation of the right carotid 

artery followed by 45 minutes of hypoxia, FiO2=0.08) (262,263). After imaging 

experiments, mice were sacrificed via transcardially perfusion and fixation with 4% 
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paraformaldehyde (PFA) in phosphate buffered saline (PBS) for ex vivo MRI and histology. 

After fixation, the mouse heads were removed and immersed in 4% PFA in PBS for 24 

hours, and then transferred to PBS for one week. All animal procedures were approved by 

the Animal Use and Care Committee at the Johns Hopkins University School of Medicine. 

6.2.2 Pulse sequences 

A PGSE echo planer imaging (EPI) sequence was used to acquire the baseline PGSE 

MRI data. For the OGSE experiments, the gradient pulses in the DWSE-EPI sequence were 

replaced by the apodized cosine (27) and cosine-trapezoid (255) oscillating gradient 

waveforms. The effective b-values of the three sequences were calculated by numerical 

integration of following equation.  

     Equation 1 

The calculation of effective b-values was validated using an agarose gel (4% by weight) 

phantom with a b-value of 600 s/mm2. No statistical difference was found among the PGSE, 

apodized cosine, and cosine-trapezoid OGSE measurements at 50 to 200 Hz.  

b = g(t )
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6.2.3 In vivo MRI of the adult mouse brain 

In vivo MRI experiments were performed on a horizontal 11.7 Tesla Bruker scanner 

(Bruker Biospin, Billerica, MA, USA) in a triple-axis gradient system (maximum gradient 

strength = 740 mT/m) with a 72 mm volume transmit coil and a 15 mm planar surface 

receive coil to image the mouse forebrain, whereas the mouse cerebellum was imaged with 

a quadrature surface transmit/receive cryogenic probe in order to achieve high resolution 

(264). 

In vivo OGSE-dMRI was acquired using the cosine-trapezoid oscillating gradient 

waveform and 4-segment multi-slice EPI readout with a partial Fourier factor of 1.32. 

Imaging parameters for OGSE of the adult mouse forebrain were: echo time (TE)/repetition 

time (TR) = 57.5/5000 ms; four signal average; diffusion gradient length (δ) = 20 ms; 

number of oscillating cycles (N) = 1, 2, 3, 4 for oscillating frequencies of 50Hz, 100Hz, 

150Hz and 200Hz, respectively; b-value = 600 s/mm2; two non-diffusion weighted images 

(b0 images) and six diffusion weighted images (gradient directions: [1 1 0], [1 0 1], [0 1 1], 

[-1 1 0], [1 0 -1], and [0 -1 1]); 0.125 mm x 0.125 mm in-plane resolution with a field of 

view (FOV) of 16 mm x 16 mm and slice-thickness of 0.8 mm for eight coronal slices; 

scan time ≈ 11 minutes with respiration triggering for each oscillating frequency. The 
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mouse cerebellum was imaged with slightly different parameters: TE/TR = 44/2000 ms; 

eight signal average; δ = 15 ms ; N = 2, 3, 4 for oscillating frequencies of 100Hz, 150Hz 

and 200Hz, respectively; b-value = 600 s/mm2; two b0 images and ten diffusion weighted 

images (the six directions listed previously plus [1 1 1], [-1 1 1], [1 -1 1], and [1 1 -1]); 0.1 

mm x 0.1 mm in-plane resolution with a FOV of 12.8 mm x 9.6 mm and slice-thickness of 

0.6 mm for six sagittal slices; scan time ≈ 13 minutes with respiration triggering for each 

oscillating frequency. PGSE data were acquired using the pulse gradient with the same 

parameters (including TE and TR) to the corresponding OGSE data and δ/∆ = 4/20 ms. Co-

registered T2-weighted images were acquired using a fast spin echo sequence with TE/TR 

= 50/3000 ms, two signal averages, and echo train length = 8.  

6.2.4 In vivo MRI of the neonatal mouse brains after hypoxia-ischemia 

In vivo dMRI of the HI-injured neonatal mouse brain were performed at 24 hours after 

injury (P11) on the 11.7 Tesla scanner using a 72 mm diameter quadrature transmit coil 

and a 10 mm diameter receive-only planar surface coil. Each mouse was imaged with two 

4% agarose gel phantoms on both sides of the brain for calibration. Imaging parameters for 

the neonatal OGSE dMRI are: TE/TR = 52/2000 ms; four signal average; δ = 20 ms; N = 
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1, 2, 3 and 4 for oscillating frequencies of 50Hz, 100Hz, 150Hz and 200Hz, respectively; 

b-value = 600 s/mm2; two b0 images and six diffusion weighted images; 0.17 mm x 0.17 

mm in-plane resolution with a field of view (FOV) of 16 mm x 16 mm and slice-thickness 

of 0.8 mm for eight slices along anterior-posterior; scan time ≈ 5 minutes with respiration 

triggering for each oscillating frequency. Co-registered PGSE dMRI data (δ/∆ = 4/20 ms) 

were acquired with the same parameters (including TE and TR). A high b-value PGSE scan 

was acquired to obtain fractional anisotropy (FA) image for anatomical definition, with 

TE/TR = 24/2000 ms, one signal average,δ/∆ = 4/12 ms, b-value = 1000 s/mm2, four b0 

images and 30 diffusion weighted images, scan time ≈ 6 minutes.  

6.2.5 Ex vivo MRI 

The same mice used for in vivo MRI were used for ex vivo MRI. Ex vivo dMRI of the 

adult and P11 mouse brains was performed on a vertical 17.6 Tesla NMR spectrometer 

(Bruker Biospin, Billerica, MA, USA) with a Micro2.5 gradient system (maximum 

gradient strength = 1500 mT/m) and a 15 mm diameter transceiver volume coil. During 

MRI, the specimens were immersed in fomblin (Fomblin Perfluoropolyether, Solvay 

Solexis, Thorofare, NJ, USA) for susceptibility matching and to prevent dehydration. The 
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temperature of the specimens was maintained at 37 °C via the spectrometer’s temperature 

control system. The same imaging protocol as the in vivo MRI was used, except that the b-

value was 800 s/mm2 for both OGSE and PGSE scans. 

6.2.6 Data analysis 

The k-space EPI data were zero-padded by a factor of two without apodization prior 

to Fourier transform. The ADC maps at each diffusion gradient were calculated by 

averaging the diffusion coefficients from the all diffusion directions with ADC = -

ln(S/S0)/(b-b0). ADC values from in vivo experiments were corrected based on the ADCs 

of an agarose gel phantom to correct for instability due to animal breathing. The rate of 

ADC increase with oscillating frequency (ΔfADC) was calculated by the linear fitting in 

Matlab (www.mathworks.com). The regions of interest (ROIs) were manually defined 

based on ADC, FA, and co-registered T2-weighted images in ROIEditor 

(www.mristudio.org) for quantitative analysis. Statistical tests were performed using 

paired two-tailed Student’s t-test. 

http://www.mristudio.org/
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6.2.7 Tissue processing and histopathology 

Perfusion fixed mouse brains were removed from skulls and cryo-protected in 30% 

sucrose. The brains were cut serially on a sliding microtome of 60 microns. Every 10th 

section was stained with cresyl-violet and adjacent sections were stained with hematoxylin 

and eosin (H&E). Near- adjacent sections were stained immune-cyto-chemically for glial 

fibrillary and acidic protein (GFAP). An immune-peroxidase method was used with a 

polyclonal rabbit antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) to GFAP. 

The histological slides were imaged with a Nikon microscope (Nikon Instruments Inc., 

Melville, NY, USA).  

6.3 Results 

6.3.1 Formaldehyde fixation altered the temporal diffusion spectra in the 

adult mouse brain 

Both in vivo and ex vivo OGSE-dMRI of the adult mouse brain showed frequency-

dependent ADC changes (Fig. 6.2). In the cortex and hippocampus, the rates at which the 

in vivo ADC values increased with frequencies (∆fADC) were 0.33 ± 0.05 µm2 and 0.38 ± 

0.05 µm2, respectively (Table 6.1). In comparison, ex vivo PGSE-ADC values measured in 
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the same regions were significantly reduced. With increasing frequency, the ex vivo OGSE-

ADC values in the cortex and hippocampus increased more rapidly than the in vivo 

measurements, and the corresponding ∆fADC values (Table 6.1) were significantly higher 

than the in vivo estimates (p = 8.85 x10-7 and p = 2.57 x10-6). As a result, the differences 

between in vivo and ex vivo OGSE-ADC values gradually decreased in the cortex (Fig. 

6.2(B)) and hippocampus (Fig. 6.2(C)) with increasing frequency.  

 

Figure 6.2: Comparisons of in vivo and ex vivo ADC maps of the adult mouse brain 

acquired using pulsed gradient spin echo (PGSE) and oscillating gradient spin echo (OGSE) 

methods. A: Axial T2-weighted, PGSE-ADC, and OGSE-ADC (at 100 and 200 Hz) 

images of a representative adult mouse brain. The blue and red shadings indicate the 

regions of interest that are manually placed to obtain ADC values in the cortex and 

hippocampus, respectively. B,C: Plots of in vivo ADC (solid lines) and ex vivo ADC 
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(dashed lines) values measured in the cortex and hippocampus at different frequencies 

(n = 5). Error bars indicate the inter-subject standard deviation. * and ** denote that a two-

tailed t-test between the in vivo and ex vivo measurements produced a P-value less than 

0.01 and 0.001, respectively. 

 

Table 6.1: In vivo and ex vivo ADC measurements (n = 5) of the adult mouse cortex and 

hippocampus. Note: * and ** denote that a two-tailed t-test between the in vivo and ex vivo 

measurements produced a p-value less than 0.01 and 0.001, respectively.   

 

ADC(μm2/ms) 
Cortex Hippocampus 

In vivo Ex vivo In vivo Ex vivo 

PGSE 0.62±0.02** 0.49±0.02 0.64±0.01** 0.52±0.02 

50Hz 0.64±0.02** 0.57±0.02 0.65±0.01** 0.55±0.02 

100Hz 0.65±0.02 0.61±0.02 0.67±0.01** 0.60±0.02 

150Hz 0.66±0.02 0.65±0.02 0.69±0.01* 0.63±0.02 

200Hz 0.69±0.02 0.67±0.02 0.72±0.02* 0.66±0.02 

∆fADC(µm2) 0.33±0.05** 0.87±0.07 0.38±0.05** 0.71±0.05 

 

In the mouse cerebellum, we also found considerable differences between the in vivo 

and ex vivo temporal diffusion spectra. The in vivo ADC values in the cerebellar granule 

cell layer (CBGr) and cerebellar molecular layer (CBML) were significantly higher (1.5-2 

times) than the ex vivo ADC values in PGSE and OGSE up to 200 Hz (Fig. 6.3(A-B)). The 

in vivo ∆fADC of the CBGr (3.46 ± 0.21 µm2) was significantly higher than the ex vivo 

values (2.21 ± 0.20 µm2, p = 1.11x10-5) and the in vivo ∆fADC of the CBML (0.55 ± 0.28 

µm2). No significant difference was found between the in vivo and ex vivo ∆fADC values 

in the CBML (Fig. 6.3(C), p = 0.32). These differences resulted in different contrasts 
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between CBGr and CBML in the in vivo and ex vivo ADC maps over the 0-200Hz 

frequency range (Fig. 6.3(A)).  

 

Figure 6.3: Frequency-dependent tissue contrast in the adult mouse cerebellum. A: Para-

sagittal (0.6 mm off the midline) T2-weighted, PGSE-ADC, OGSE-ADC, and fitted 

ΔfADC images of the in vivo and ex vivo mouse cerebellum. The orange lines indicate the 

location of the cerebellar molecular layer (CBML), and the blue lines indicate the location 

of the cerebellar granule cell layer (CBGr). B: Plots of in vivo and ex vivo ADC values 

measured in the CBGr and CBML at different frequencies (n = 5). C: Comparison of the in 

vivo and ex vivo ΔfADC values in the CBGr and CBML (n = 5). Error bars indicate the 

inter-subject standard deviation. * and ** denote that a two-tailed t-test between the in vivo 

and ex vivo measurements produced a P-value less than 0.05 and 0.001, respectively. 
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6.3.2 Pseudo-normalization of OGSE-ADC values observed in severe 

edema regions after neonatal HI injury  

Among the twenty-three neonatal mice that underwent right carotid artery ligation and 

hypoxia, six mice (three males and three females) developed extensive cortical and 

hippocampal edema on the right side at 24 hours after injury as indicted by reduced PGSE-

ADC and hyper-intense T2 signals (Fig. 6.4). The PGSE-ADCs in the ipsilateral cortex 

and hippocampus were reduced by 51.9 ± 5.4% and 42.3 ± 8.7% with respect to the 

contralateral side, respectively (Fig. 6.5(A-B)). As frequency increases, the contrast 

between the edema regions and neighboring regions gradually decreased in the OGSE-

ADC maps compared to the PGSE results. The pseudo-normalization of OGSE-ADC 

values in the edema region is the result of rapid increase in OGSE-ADC values with 

increasing frequency (Fig. 6.5). For example, the ∆fADC values were elevated by 4.5 times 

in the ipsilateral cortex than its contralateral counterpart, and 3.7 times in hippocampus 

(3.7 times) (Table 6.2). At 200 Hz, the ipsilateral ADC values became statistically 

undistinguishable from the contralateral side (Fig. 6.5(A-B)). Within the hippocampus, two 

layer structures were enhanced in the OGSE-ADC maps at 100-200 Hz (yellow arrows in 

Fig. 6.4) and in the ∆fADC map. 
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Ex vivo dMRI of the same neonatal mouse brains after 4% PFA fixation presented 

large variations in ADC values in the ipsilateral cortex and hippocampus, as indicated by 

the blue and orange arrows in Fig. 6.4. Despite the large variability in ex vivo ADC values, 

the ∆fADC values measured in the ipsilateral cortical lesions remained fairly consistent 

(1.35 ± 0.08 µm2), which were higher than those in the contralateral cortex (1.02 ± 0.13 

µm2, p = 0.002). Ex vivo ADC measurements in the contralateral brain were consistent (Fig. 

6.5(A-C)), which also had elevated ∆fADC values but at a lesser degree compared to that 

in the edema regions.  
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Figure 6.4: Representative MR images of three (out of six) P11 mice with severe edema in 

the cortex and hippocampus. Axial T2-weighted, PGSE-ADC, OGSE-ADC (at 100 and 

200 Hz), and ΔfADC maps were shown. Both in vivo and ex vivo MR images were 

displayed. The blue and orange arrows indicate high signal variations in the ipsilateral 

cortical and hippocampal regions of ex vivo specimens, respectively. The yellow arrows 

indicate two layers (R1/R2) in the ipsilateral hippocampus that were enhanced at 200 Hz. 

Definitions of the cortical, hippocampal and R1/R2 ROIs were superimposed on the 

enlarged ΔfADC map of the injured hemisphere. 

 

 

Figure 6.5: Changes in ADC with frequency in the cortex, hippocampus, and the joint 

regions of the R1 and R2 (R1/R2). The ΔfADC values in the edema regions were 

significantly higher than both in vivo and ex vivo ΔfADC values measured in the 

contralateral regions. Error bars indicate the inter-subject standard deviation. The ex vivo 

ADC values from the ipsilateral side were not included due to large variations. * and ** 

denote that a two-tailed t-test between the ipsilateral and contralateral measurements 

produced a P-value less than 0.01 and 0.001, respectively. 
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Table 6.2: In vivo ADC measurements measured from five P11 mice at 24 hours after 

hypoxia-ischemia in the cortex, hippocampus, and the two layers of the hippocampus (R1 

/ R2 as indicated in Fig. C) of the ipsilateral and contralateral hemispheres. Note: results 

of two-tailed paired t-test were denoted by ** p≤0.001, * p≤0.01  

 

ADC 

(μm2/ms) 

Cortex Hippocampus R1/R2  

Ipsi Contra Ipsi Contra Ipsi Contra 

PGSE 
0.33±0.04

** 
0.68±0.03 

0.39±0.06

** 
0.68±0.07 

0.50±0.07

** 

0.67±0.0

6 

50Hz 
0.41±0.07

** 
0.68±0.09 

0.46±0.06

** 
0.68±0.06 0.63±0.10 

0.70±0.0

9 

100Hz 
0.50±0.10

** 
0.71±0.10 

0.54±0.08

* 
0.70±0.09 0.76±0.12 

0.72±0.1

2 

150Hz 
0.60±0.11

* 
0.74±0.10 0.63±0.10 0.73±0.07 

0.84±0.10

* 

0.77±0.1

0 

200Hz 0.72±0.08 0.76±0.06 0.68±0.04 0.76±0.05 
0.90±0.11

** 

0.75±0.0

9 

∆fADC(µ

m2) 

1.93±0.36

** 
0.43±0.24 

1.51±0.23

** 
0.41±0.32 

2.05±0.43

** 

0.44±0.2

2 

 

A histological survey of H&E-stained sections revealed severe tissue swelling in the 

hippocampus (Fig. 6.6(A-B)) and cerebral cortex (Fig. 6.6(C-D)) at 24hrs of recovery. In 

the hippocampus, the CA1 region in HI mice showed discrete expansion of several layers, 

including the stratum oriens (so), stratum radiatum (sr), and stratum lacunosum-moleculare 

(slm) (Fig. 6.6(A-B)). The slm appeared to have the most severe injury in hippocampus at 

24hrs after HI (compare the length of the identified arrows, Fig. 6.6(A-B)). Edema was 

also present in somatosensory cerebral cortex. The damaged zone showed a clear pallor of 

staining compared to the nearby cortical parenchyma (Fig. 6.6(C-D)). Cortical swelling 
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was evident by comparing the width between the pial surface and the subcortical white 

matter (marked by black lines in Fig. 6.6(C-D)). GFAP immunostaining revealed activation 

of astrocytes in hippocampus at 24hrs after HI compared to controls (Fig. 6.6(E-H)). 

Injured astrocytic processes in HI hippocampus were swollen and appeared fragmented in 

some instances. 

 

Figure 6.6: H&E and GFAP stained histological sections of the contralateral (control) and 

ipsilateral (HI) sides of a representative HI injured P11 mouse brain. A,B: In the HI 

hemisphere (B), severe tissue swelling was found in the hippocampus, with increases in 

the thickness of the stratum oriens (so), stratum radiatum (sr), and stratum 

lacunosum/moleculare (slm). Scale bar (in A) = 77 µm (same for B). C,D: Tissue swelling 

was evident in the cerebral cortex after HI. The dashed arrows indicate the boundary of 

necrotic region, and the black lines in the pial surface and subcortical white matter indicate 

the width of cortex. Scale bar = 77 µm in C (applies for D). E,F: Astrocytic GFAP 

immunoreactivity (brown staining) was diminished in the HI hippocampus (F) compared 

with control hippocampus (E). Scale bars = 117 µm in E,F. G,H: Higher magnification 

images show normal astrocytes in control hippocampus (G) and fragmented astrocytes in 

the hippocampus of HI brain (H). Scale bars = 50 µm. 
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6.4 Discussion  

One of the appealing features of OGSE-dMRI is its potential to filter dMRI signals 

based on the sizes of underlying microstructural barriers and thereby provide an additional 

angle to examine tissue microstructural organization and integrity using dMRI. To better 

understand the capability of OGSE-dMRI, it is important to examine perturbations in 

temporal diffusion spectra in response to tissue microstructural changes, especially under 

pathological conditions. In this study, a relatively small portion of the temporal diffusion 

spectrum was measured in the mouse brain, from 0 Hz (PGSE) to 200 Hz with a spectral 

resolution of 50 Hz. We measured changes in temporal diffusion spectra using absolute 

ADC values and ∆fADC, which was simply the slope of ADC increase as the frequency 

increased from 0 Hz to 200 Hz. The effective diffusion times in this study ranged from 20 

ms (PGSE) down to 1.25 ms (OGSE at 200 Hz), during which the mean square distances 

of water molecule diffusion fell between 11 m and 2.7 m (calculated based on the free 

water diffusion constant of 3 x 10-3 mm2/s at body temperature (265)). The range of 

distances is approximately at the cellular and subcellular level, e.g., the nucleus. Based on 

the results of previous phantom experiments (237) and simulations (242), the limited 

frequency span and resolution will only allow us to examine microstructures within a 
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certain range of spatial scales, with reduced sensitivity for microstructures outside this 

range. One example that illustrates this limitation is the observed temporal diffusion spectra 

of CBGr and CBML (Fig. 2). The CBML consists of a large number of parallel fibers with 

diameters around 0.2-0.3 m (266), which is an order of magnitude smaller than the mean 

square distance of free water diffusion at 200 Hz. This may explain why its ADC values 

showed little increase from 0 to 200 Hz and little change in its ∆fADC values after fixation. 

In comparison, the CBGr contains densely packed granule cells (5-10 μm in diameter) 

(267), and the data showed moderate increases of ADC with increasing frequency and 

significant differences between its ∆fADC values measured in vivo and ex vivo (Fig. 2B-

C).  

The comparisons between in vivo and ex vivo OGSE dMRI data demonstrated that 

formaldehyde fixation could significantly alter the temporal diffusion spectra in biological 

tissues. The reductions in PGSE-ADCs in formaldehyde fixed mouse cortex and 

hippocampus are inline with previous reports (85,86). The narrowing of the gaps between 

in vivo and ex vivo ADCs as frequency increased and the increases in ∆fADCs in these two 

regions (Fig. 6.2 and Table 6.1) are also inline with findings by Does et al. (27) in the 

postmortem rat brains. Structural changes that can potentially contribute to these changes 
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can be multifold, including changes in surface-to-volume ratio, compartment size and 

diffusivity, cell membrane permeability, and nuclear-to-cell ratio (241,244,245). A 

previous report that studied the effects of tissue fixation on diffusion properties of rat brain 

slices (85) showed increased intracellular apparent restriction size, likely due to cell 

swelling (268), after fixation with 4% formaldehyde. According to numerical simulations 

based on a tissue model of densely packed cells (241), an increase in cell size will decrease 

ADC values across a large frequency range and lead to increased ∆fADC, which agrees 

with our observations in the cortex and hippocampus (Fig. 6.2 and Table 6.1). As the 

differences between the in vivo and ex vivo OGSE-ADC values remained significant at 200 

Hz, additional microstructural changes might exist at the subcellular or lower levels. 

Previously, we showed that, in ex vivo mouse brains, the CBGr and several other regions 

with densely populated neuronal cell bodies had significantly higher ∆fADC than other 

regions (247). In this study, high-resolution in vivo images of the mouse cerebellum also 

showed a frequency dependent contrast between CBML and CBGr (Fig. 6.3).  It is not 

clear what caused the drop in ∆fADC by 36% in the CBGr after death and fixation.  

Microstructural changes under pathological conditions can provide additional insights 

into the sensitivity of OGSE-dMRI to tissue microstructures. Previous studies in cat brains 
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after middle cerebral artery occlusion showed no diffusion time dependence in ADC for 

diffusion times from 20 ms to 2 s (51). In the neonatal mouse model of unilateral hypoxic-

ischemia (253,262), we found significant diffusion time dependence at diffusion times 

from 1.25 ms to 20 ms. The pseudo-normalization of OGSE-ADC values in the edema 

region agree with a recent human acute stroke study by Baron et al (269). The phenomenon 

suggests that the microstructural changes associated with the decrease in PGSE-ADC are 

mostly at the cellular or subcellular level (> 1 μm), e.g., swelling of cells, as suggested by 

previous reports (259) and consistent with our histological assessments. It is interesting to 

note that the ADCs of several metabolites also show less decrease than water molecules 

after stroke (270-272). For example, ADC of the N-acetyl-aspartate (with a diffusion 

constant of 0.78 x 10-3 mm2/s) measured using PGSE decreased by 19% at 3 hours after 

focal cerebral ischemia, whereas the water ADC dropped by 43% (270). One possible 

explanation is that the mean square distances traveled by metabolites at long diffusion time 

are similar to that of water molecule diffusion at short diffusion time, and therefore the 

ADCs of the metabolites reflect microstructural changes at a scale smaller than those of 

water ADCs measured with the same diffusion time. As discussed above, multiple 

microstructural changes can lead to the change in temporal diffusion spectra in the edema 
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regions. It is known that, in cytotoxic edema shortly after hypoxic-ischemia, energy failure 

of the ion channels causes an influx of water from extracellular space to the intracellular 

space (273). The expansion of the affected cortex and hippocampal layers, which resulted 

from tissue swelling as shown in our histological data, was likely an important factor 

accounting for the drop in PGSE-ADC and increases in ∆fADC. We also found severe 

necrosis in the ipsilateral cortex and hippocampus, including break down of the nuclei and 

cellular organelles, which may also explain the elevated ∆fADC values as the intracellular 

environment became less restrictive. The locations of the two layer structures in the 

hippocampus highlighted in the 200 Hz OGSE-ADC maps (R1/R2 in Fig. 6.4) correlated 

with the hippocampal pyramidal cell layer, the granule cell layer in the dentate gyrus, and 

their extended dendritic arborization in neighboring regions. The fact that the two regions 

showed higher OGSE-ADC values than the contralateral side at 200 Hz suggests there were 

microstructural changes at subcellular or finer levels.  

6.5 Conclusion 

Our results demonstrate the unique ability of OGSE-dMRI in differentiating tissue 

microstructures at different spatial scales. We found that formaldehyde fixation can 
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significantly alter the temporal diffusion spectra in the mouse brain. The tissue contrast 

between CBGr and CBML in post-mortem mouse cerebellum could be reproduced in live 

animals. In the neonatal mouse brain with hypoxic ischemic injury, pseudo-normalization 

of OGSE-ADC in the edema regions suggest that the microstructural changes associated 

with the decrease in PGSE-ADC are mostly at the cellular or subcellular level. 
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Chapter 7 Detection of subtle hypoxic-ischemic 

injury by OGSE in neonatal mice 

7.1 Introduction 

The unique ability of oscillating gradient spin-echo (OGSE) diffusion MRI (dMRI) to 

examine tissue microstructure at different spatial scales has been increasingly recognized 

(27,241,247,254,255). While applications of the technique to neurological diseases, e.g., 

stroke and tumor (216,253,269), are emerging, the benefits of the additional multi-scale 

information are not fully explored. In the last chapter, we demonstrated that OGSE dMRI 

in the Vannucci model of neonatal mouse hypoxia-ischemia (HI) at 24hrs after injury, and 

hypothesized that the highly time-dependent ADC measurements in the severe edema 

region is related to cytotoxic cell swelling.  

In clinical practice, a wide spectrum of varying degrees of brain injury after HI injury 

that are common observed, and so does the neurological outcomes in the animal models. 

Such variability may due to the inter-subject differences and developmental stages 

(262,274-277). Besides the individual susceptibility, it is found regional vulnerability is 

prominent in the brain.  For example, the cerebral cortex, hippocampus, and striatum (278-
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281) are extremely sensitivity to the HI insult and show acute changes in response to the 

excitotoxic damage. Delayed neurodegneration was found in the thalamus (282), and was 

likely apoptosis. White matter injury is also extensively studied (283,284), which is 

associated with the immaturity of oligodendrocyte progenitors. Various cellular and 

molecular mechanisms were proposed (285,286) that may contribute to the different types 

and timings of the injury. The role of astrocyte activation or glial swelling (281,287) was 

highly debated, which was thought to lead to secondary brain damage in some studies 

(288,289), whereas its neuroprotective values were also realized (290,291). Impairment of 

mitochondria is a direct consequence of the energy deficits and neurotoxicity after HI 

(292,293), and plays a key part in the development of apoptotic neuronal degeneration 

(282,294).  

Diffusion MRI evidences of the region-specific injury of different severity have been 

discussed in many previous studies. Both severe injury and mild white matter injury were 

observed using T2-weighted imaging and conventional PGSE (103,289,295,296). Based 

on the PGSE measurements, Lodygensky et al., (296) reported reduced ADC in the 

hippocampal CA1 field and increased ADC in the surrounding white matter structure in 

neonatal mice at 24 hrs post injury. In this study, we found distinctively different degrees 
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of injury were developed from the same injury model, while in the mild injury group, 

diffusion time-dependent characteristics of the hippocampal injury and white matter injury 

was revealed. The key innovation of this study lies in the use of explored microstructural 

change in small spatial scales, which may related to subcellular structures (e.g., astrocytic 

processes and mitochondria). This is not possible from existing MRI studies. We attempted 

to detect the subtle microstructural changes at acute stages (3hrs) after the injury, and 

followed its progression at subacute stage (24hrs). 

7.2 Methods 

Neonatal C57BL/6 mice (n = 14) from four litters were subjected to unilateral ischemia, 

followed by 45 minutes hypoxia using the Vannucci model (262,263) at postnatal day 10 

(P10). In each litter, one or two sham mice (n = 7 in total) were scanned at the same time 

points. 

In vivo OGSE experiments were performed on an 11.7 T horizontal spectrometer with 

a 15 mm receive-only planner surface coil and 72 mm quadrature transmitter coil, using 

cosine-trapezoid oscillating gradient waveforms (255) and a four-segment EPI readout. 

Pulsed gradient spin echo (PGSE, δ/∆ = 4/20 ms) and OGSE (up to 300 Hz) data were 
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acquired TE/TR = 52/2000 ms, NA=4, 6 diffusion directions [1 1 0; 1 0 1; 0 1 1; -1 1 0; 1 

0 -1; 0 -1 1], b = 600 s/mm2, in-plane resolution = 0.17 mm x 0.17 mm, and eight slices 

with slice thickness of 0.80 mm. It took one hour to scan one mice, including all the scans 

and the setup time. For each litter of about four HI mice, the 3hr time point scan actually 

spanned from 2hrs to 6hrs after HI injury, and the 24hr scans were conducted from 23hrs 

to 26hrs. 

The ADC values were calibrated using a gel phantom placed beside the mouse brains. 

∆fADC was calculated by linear fitting of the ADC values with gradient frequency. Two-

way analysis of variation (ANOVA) was performed in GraphPad Prism 

(http://www.graphpad.com/scientific-software/prism) to compare the multi-frequency 

ADC measurements between the ipsilateral and contralateral sides, between the 3hrs and 

24 hrs scans, and between the mild injury (n=11) and sham mice(n=7). Bonferroni post-

tests (297) was performed to evaluate the statistical differences at each oscillating 

frequencies. p < 0.001 was regarded highly significant, p < 0.01 was regarded significant. 

Multi-way analysis of variance (ANOVA) was also performed to analyze the interactive 

effects of oscillating frequency, mild and sham injury, and post-injury time. 
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The mice were sacrificed immediately after the 24hrs scan, perfusion fixed, and cryo-

protected for histological examination. The brains were cut serially on a sliding microtome 

at a thickness of 80 microns. Every 10th section was stained with cresylviolet and adjacent 

sections were stained immunohistochemically for glial fibrillary acidic protein (GFAP). 

Near-adjacent sections were stained for Microtubule-associated protein 2 (MAP2) and 

superoxide dismutase 2 (SOD2). Another three HI injured mice from a separate litter were 

sacrificed after the 3hrs scan for histology. 

7.3 Results 

7.3.1 Microstructural changes at acute and subacute stages 

Due to the intra-subject difference in response to the Vannucci model of hypoxia-

ischemia, especially at neonatal stages, variations in the severity and pattern of brain injury 

were observed. Fig. 7.1 demonstrated two neonatal mouse from the same litter, imaged at 

24hrs after HI. The characteristics of the severe injury case (Fig. 7.1(B)) was previously 

reported in (216). In the mild injury mice (Fig. 7.1(A)), hyperinensive T2-weighted signal 

was observed in the ipsilateral external capsule (EC) (yellow arrow), as well as in the 

thalamus (blue arrow). In the ADC maps, the PGSE showed elevated ADC in a thin layer 
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along EC, similar to the findings in (103,295); whereas the OGSE-ADC at 100Hz and 

200Hz showed a thicker region of ADC increase, which expanded from the EC to the CA1 

field of the hippocampus right beneath it (red arrow). The change of ADC in CA1 was the 

further highlighted from the ∆fADC ADC map. It is realized that although the severe and 

mild injury mice had vastly different injury patterns, but the time-dependent change of 

ADC in the hippocampal CA1 field share the same features: low ADC in PGSE that rapidly 

increased with oscillating frequency. 

 

Figure 7.1: T2-weighted image, PGSE and OGSE ADC maps, and ∆fADC of the neonatal 

mice scanned at 24hrs after the HI-injury. The two mice from the same litter showed a 

large diversity in their degrees of injury. Yellow arrows point to the external capsule; blue 

arrows point to the thalamic lesion, and the red arrows point to the leasion in hippocampal 

CA1-field. 

 

In order to capture the MR signature and the pathology in the two types of injury and 

time-course of the injury progression, we performed a longitudinal study with relatively 
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large samples of mice, which were scanned at 3hrs and 24hrs after HI. Majority of the mice 

(n=11) developed mild injury, consistently showing T2 hyperintensity and ADC elevation 

in the external capsule (EC) (Fig. 7.2). The ADC difference between the ipsilateral and 

contralateral sides was subtle at 3hrs, but more obvious at 24hrs (yellow arrows). The 

abnormality in the ipsilateral CA1 was prominent in the ∆fADC since 3hrs after injury (red 

arrow). The others (n=3) developed severe edema in the cortex and hippocampus at 3hrs, 

which further progressed at 24hrs (Fig. 7.2). It is noticed that in the PGSE-ADC map, the 

low ADC in the ipsilateral CA1 began to pseudo-normalize at 24hrs (orange arrows). 

 

Figure 7.2: T2-weighted image, PGSE and OGSE ADC maps, and ∆fADC of the neonatal 

mice scanned at 3hrs and 24hrs after the HI-injury. The mice demonstrated mild injury (n 

= 12, top row) and severe injury (n = 3, bottom row). Yellow arrows point to the external 
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capsule; red arrow points to the hippocampal CA1-field in the mild injury mouse, and the 

orange arrows point to the CA1-field in the severe injury mice. 

 

Further information can be obtained from the quantitative analysis in Fig. 7.3. In the 

mild injury group at 3hrs after injury, two-way ANOVA analysis revealed difference 

between the ipsilateral and contralateral ADC in EC (yellow shaded ROI). Post-hoc 

Bonferroni tests showed the difference was significant from OGSE measurements (50-

200Hz) (Fig. 7.3(A), red stars), but was not detected from PGSE. At 24hrs, both PGSE and 

OGSE ADCs were significant higher in ipsilateral EC than the contralateral side (black 

stars). In hippocampal CA1 field (green shaded ROI), neither the two-way ANOVA nor 

the individual PGSE and OGSE ADC values showed differences between the ipsilateral 

and contralateral sides at 3hrs after injury (Fig. 7.3(B)). However, it was still noticeable 

that the ipsilateral ADC increased faster with oscillating frequency and ΔfADC was higher 

than the contralateral ADC. At 24hrs, the PGSE-ADC in ipsilateral CA1 become 

significantly higher in the ipsilateral CA1 (p<0.01), and the difference was enhanced at 

OGSE frequencies (p<0.001). The ∆fADC values were significantly higher in the 

ipsilateral EC and CA1 at both 3hrs and 24hrs (Fig. 7.3(C-D)). Longitudinal comparison 

showed that in the ipsilateral EC, OGSE-ADC (100-200Hz) increased from the 3hrs scan 
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to the 24hrs scan (Fig. 7.3(A) orange stars); while in the contralateral EC, all ADC 

decreased (blue stars). In the ipsilateral CA1, all ADC values (0-200Hz) were significantly 

higher at 24hrs compared to that at 3hrs, and the contralateral CA1 ADC decreased with 

time at high frequencies (150-200Hz). The ∆fADC was mostly consistent over time, except 

that in the ipsilateral CA1, which increased from 3hrs to 24hrs (Fig. 7.3 (D) orange star). 

ADC measured in the sham mice and comparison with the mild injury mice was shown in 

Table 7.1. The contralateral side of the mild injury mice did not show significant 

differences with the sham mice, except for ADCs measured in EC at 3hrs after injury (0-

50Hz). The ΔfADC calculated from EC of the sham mice was in-between the ipsilateral 

and contralateral EC of mild injury mice. 
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Figure 7.3: (A-B) ADC values (0-200Hz) measured at 3hrs (solid curves) and 24hrs 

(dashed curves) after HI in the ipsilateral (orange curves) and contralateral (blue curves) in 

EC (yellow shaded ROI) and CA (green shaded ROI) ROIs, respectively. Data was 

presented as mean value (n = 11) ± standard error of mean (SEM). Red and black stars 

indicate significant differences between ipsilateral and contralateral sides at 3hrs and 24hrs, 

respectively. Blue and red starts indicates significant differences between 3hrs and 24hrs 

ADC in the ipsilateral and contralateral sides, respectively. (C-D) ∆fADC measured at 3hrs 

(solid bars) and 24hrs (diagnal bars) after HI in the ipsilateral and contralateral in EC and 

CA ROIs, respectively. * p< 0.01 and ** p<0.001, and NS denotes no significant difference 

from post-hoc Bonferroni tests following two-way ANOVA. 

 

 

 

Table 7.1: ADC (0-200Hz) and ΔfADC values in the external capsule and CA1, measured 

from the sham mice (n=7), and ipsilteral and contralateral sides of the mild injury mice 

(n=11) at 3hrs and 24hrs after injury. Data is presented as mean ± standard deviation. * 

denotes p<0.01 of post-hoc Bonferroni tests following two-way ANOVA between the 

sham and ipsilateral ADC, and between sham and contralateral ADC, respecitvely. 
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External Capsule 

ADC 

(10-3 

mm2/s) 

3hrs 24hrs 

Sham Ipsi Contra Sham Ipsi Contra 

PGSE 0.73±0.04 0.80±0.05* 0.79±0.05* 0.70±0.05 0.85±0.07* 0.73±0.04 

50 Hz 0.73±.0.03 0.86±0.04* 0.80±0.04* 0.70±0.04 0.91±0.07* 0.73±0.05 

100Hz 0.77±0.04 0.88±0.04* 0.82±0.03 0.72±0.03 0.95±0.07* 0.77±0.04 

150Hz 0.80±0.03 0.91±0.05* 0.84±0.03 0.76±0.03 0.98±0.07* 0.77±0.04 

200Hz 0.82±0.04 0.94±0.08* 0.86±0.04 0.78±0.03 1.01±0.07* 0.79±0.05 

ΔfADC 

(10-6 

mm2) 

0.53±0.20 0.65±0.23 0.34±0.15 0.51±0.18 0.80±0.13* 0.33±0.13 

CA1 

ADC 

(10-3 

mm2/s) 

3hrs 24hrs 

Sham Ipsi Contra Sham Ipsi Contra 

PGSE 0.73±0.04 0.72±0.04 0.77±0.04 0.70±0.05 0.78±0.04 0.73±0.04 

50 Hz 0.73±0.03 0.78±0.03 0.77±0.04 0.70±0.05 0.86±0.05* 0.73±0.05 

100Hz 0.77±0.02 0.82±0.03 0.83±0.03 0.74±0.05 0.91±0.05* 0.78±0.05 

150Hz 0.80±0.03 0.86±0.04 0.84±0.04 0.78±0.04 0.96±0.05* 0.79±0.05 

200Hz 0.83±0.04 0.90±0.05 0.87±0.03 0.79±0.04 0.99±0.06* 0.81±0.06 

ΔfADC 

(10-6 

mm2) 

0.60±0.14 0.84±0.18* 0.51±0.18 0.64±0.22 1.18±0.28* 0.52±0.14 

 

 

Multi-way ANOVA was used to separate the effects of multiple factors and analyze 

their interactions on the ADC measurements (Table 7.2). As expected, the effect of 

oscillating frequency and HI injury had high significances (p ≈ 0) on ADC values measured 

in EC and CA1. The impact of post-injury time was significant in CA1 (p = 0.004) but not 

in EC (p = 0.62), indicating that the injury progressed from 3hrs to 24hrs in the CA1 field. 
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The interaction terms showed that there are significant correlations between oscillating 

frequency and HI (p < 0.002), and between post-injury time and HI (p ≈ 0). 

 

Table 7.2: Multi-way analysis of variation (ANOVA) on effects of oscillating frequency 

(0-200Hz), HI injury (ipsilateral, contralateral, and sham), and scan time (3hrs versus 24hrs) 

on the ADC measurements in external capsule and the hippocampal CA1 field. 

 

Multi-way ANOVA External capsule CA1 

Oscillating Freq 1.82 x 10-18 6.84 x 10-39 

HI injury 4.19 x 10-40 2.51 x 10-23 

Post-injury time 0.62 4.51 x 10-3 

Freq & HI 1.71 x 10-3 6.16 x 10-7 

Freq &Time 0.88 0.96 

HI & Time 4.69 x 10-16 2.31 x 10-21 

Freq & HI & Time 0.95 0.68 

 

7.3.2 Histological evidences of varying scales of microstructural changes 

It is known that in addition to neuronal injury by acute cyctotoxic edema, astrocytes 

activation is also a well-known contributor to the secondary cerebral damage after HI injury 

(256,289,298). GFAP staining of the neonatal mice at 24hrs after injury demonstrated 

drastic activation of the astrocytes and their processes in the ipsilateral cortex, 
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hippocampus and external capsule, compared to the contralateral side (Fig. 7.4), which 

matched well with the OGSE-ADC maps.  

 

Figure 7.4: Glial fibrillary acidic protein (GFAP) stained sections from two coronal 

sections of a mild injury mouse at 24hrs after injury. At high magnification, drastic 

astrocytic swelling was found in the ipsilateral brain. Scale bars at low and high 

magnification is 1000 μm and 50 μm, respectively. 

 

At a subcellular level, the organelles such as the mitochondria is highly sensitive to 

the energy failure and neurotoxicity after HI. Superoxide dimustase-2 (SOD2) as a 

mitochondrial matrix protein was used to evaluate for mitochondrial swelling. All of the 3 

hour animals show mitochondrial swelling in the ipsilateral hemisphere in hippocampus 

CA1. In Fig. 7.5C, some of the mitochondrial have swollen to 1-2 microns and they also 

form swollen mitochondrial aggregates or clumps. The swelling was likely due the influx 
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of water and calcium brought about by mitochondrial permeability transition. Water 

becomes trapped and confined in mitochondria until they rupture. 

 

 

Figure 7.5: Superoxide dismutase 2 (SOD2) stained section from a mild injury mouse at 

3hrs after injury. At high magnification, the mitochondria in the hippocampal CA1 field 

showed severe swelling, which also form swollen mitochondrial aggregates or clumps. 

Scale bars at high magnificaiton is 10 μm. 

 

7.3.3 Subtle microstructural changes in the cerebral cortex 

In the mild injury mice, although the lesion was most prominent in EC and CA1 areas, 

we found the cerebral cortex also demonstrated subtle abnormality, comparing the 

ipsilateral and contralateral cortices. In Fig. 7.5(A), the ADC at 200Hz was slightly higher 

in the ipsilateral cortex, and the difference was more prominent from the ΔfADC map 
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(yellow arrow). Interestingly, this injury pattern agreed well with the perfusion map, 

measured by arterial spin labeling [ref]. Quantitative analysis (Fig. 7.5(B)) also revealed 

the difference between the ipsilateral and contralateral ΔfADC was significantly higher in 

the mild injury mice (n = 12) compared to the sham mice (n = 7). The difference was not 

shown from conventional PGSE measurements (Fig. 7.5(C)). 

The subtle injury in the cortex was also demonstrated in the MAP2 staining of the mild 

injury mice at 3hrs after injury (Fig. 7.6). In the ipsilateral cortex, swollen dendritic 

processes were identified (C, hatched arrows), and dendritic bundlingwas apparent. 
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Figure 7.5: (A) T2-weighted images, PGSE and OGSE (200Hz) maps, ΔfADC map, and 

perfusion map of a mild injury mice at 3hrs and 24hrs after injury. (B-C) Ipsilateral and 

contralateral differences at 3hrs and 24hrs after injury in the sham group (n = 7), mild injury 

group (n = 7), and severe injury group (n = 3), evaluated with ΔfADC values and PGSE-

ADC values, respectively. 
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Figure 7.6: Immunoperoxidase staining for microtubule-associated protein 2 (MAP2) in 

ipsilateral (A,C,E) and contralateral (B,D,F) parietal cortex  of a P10 HI mouse at 3 hours 

recovery. A patchy pattern of MAP2 immunostaining is observed in ipsilateral cortex (A) 

that is not apparent in contralateral cortex (B). Asterisks in A identify low-staining barrels 

in C. In ipsilateral cortex (C) bundles of swollen dendrites (brackets) are observed. 

Individual swollen dendritic profiles are identified (C, hatched arrows). In contralateral 

cortex (D) the dendrites are largely free of dilations (solid arrows) and dendritic bundling 

is less apparent. At higher magnification (E), vacuolation and bloating of single dendrites 

is seen in ipsilateral cortex (hatched arrows) , while in contralateral cortex (F) MAP2 

staining is generally very delicate and distributed in a network within the cortical neuropil 

(solid arrows).  Scale bars is 72 μm in (A-B), 22 μm in (A-B), and 8 μm in (A-B).  
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7.4 Discussion 

In this study, we focused on investigating the MR signature and pathology of subtle 

HI injury. Our results demonstrated that OGSE measurements enhanced the sensitivity in 

detecting subtle edema, and unique contrast of OGSE reveals more extensive injuries 

compared to the conventional PGSE. For example, the microstructural changes in the 

hippocampal CA1 field is better characterized at high oscillating frequencies, which relates 

to cellular levels of injury such as the astrocytes activation and subcellular injury such as 

mitochondrial swelling. Because of short diffusion time accessible in OGSE, these small 

changes of microstructures (~2-3 microns) can be possibly probed. 

We found interesting diffusion time dependent ADC changes in the CA1 and EC of 

the mild injury mice. Periventricular white matter injury in rodent models of mild HI injury 

was established in earlier studies with hyperintensive T2-weighted signal and ADC 

(73,103,295,299), which suggested vasogenic edema accompanying damage in the 

oligodendrocytes. Our data showed similar high ADC at PGSE, as well as other oscillating 

frequencies, which further increased from 3hrs to 24hrs in the ipsilateral EC. Interestingly, 

the contralateral ADC decreased from 3hrs to 24hrs, which may related to developmental 

change that was also observed in the sham mice. In addition, the contralateral ADC were 
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slightly different from the sham mice at 3hrs, which may result from the transient effect of 

hypoxia to the contralateral brain.  

Lodygensky et al. (296) reported CA1 injury using a similar neonatal HI model in the 

P7 mice, where the authors found ADC reduction in CA1 at 24hrs after injury and 

associated it with caspase-3 activation and apoptosis (300). This study examined P10 injury 

at 3hrs and 24hrs after HI, using multi-frequency dMRI measurements. At 3hrs, the 

individual ADC measurements (0-200Hz) did not show differences, but the ΔfADC 

revealed enhancement in the CA1 layer. At 24hrs, the ipsilateral ADC values (0-200Hz) 

were significantly higher than the contralateral side, and the difference was enhanced at 

high oscillating frequencies, leading to an extended region of hyperintensive ADC along 

with the surrounding white matter.  

Moreover, the subtle edema in the cerebral cortex as revealed from OGSE and ΔfADC 

measurements showed interesting injury pattern that correlates with the perfusion deficits. 

Dendritic dilation as evidenced in the MPA2 staining seems to support the OGSE findings.  
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7.5 Conclusion 

We examined a wide range of brain injury in a neonatal mouse model of hypoxia-

ischemia using OGSE dMRI at acute and subacute stages. The OGSE measurement is 

shown to be highly sensitive to small scale microstructural changes, such as swelling of 

astrocytic processes and mitochondria. 
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Chapter 8 Pseudo-diffusion suppressed hybrid 

pulsed and oscillating gradient diffusion MRI for 

clean OGSE measurement 

8.1 Introduction 

Oscillating gradient spin-echo (OGSE) diffusion MRI has recently drawn attentions 

due to its ability to distinguish tissue microstructures at varying length scales (1-5). In the 

last decade, it has been increasingly used to extract unique tissue contrasts and probe 

microstructural in healthy tissues, such as normal in vivo (6-8) or ex vivo (9-14) rodent 

brains; and to characterize pathological microstructural changes in disease models, such as 

brain tumor (15,16) and ischemia (2,8,17). However, applications of this technique in 

human studies (18,19) remained limited due to the relatively limited gradient strength 

available on current clinical MR systems (<100 mT/m). Because the diffusion attenuation 

factor (b-value) decreases rapidly with the increase of oscillating frequency (b ∝ 1/f 3) for 

OGSE diffusion MRI, the achievable b-value is inevitably low with common clinical 

gradients, e.g. b = 200-300 s2/mm for oscillating frequencies of 50-60 Hz (18,19).  
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At this low b-value regime, the sensitivity of OGSE diffusion MRI to tissue 

microstructure is reduced, and the so-called pseudo-diffusion related to tissue perfusion 

can no longer be ignored and may affect the apparent diffusion coefficient (ADC) measure. 

This is because blood flow in randomly oriented capillaries (at the voxel level) mimics a 

random walk (“pseudo-diffusion”), commonly known as the intravoxel incoherent motion 

(IVIM) (20,21). Although the IVIM can be a useful measure of microscopic perfusion (22-

24) in addition to bulk perfusion, it confounds the real diffusion signal and is therefore 

called pseudo-diffusion. It is known that conventional pulsed gradient spin echo (PGSE) 

diffusion signals measured at low b values contain pseudo-diffusion, which can be 

separated using bi-exponential fitting (21) with a series of ADC measurements from 

multiple b-values. In this study, we hypothesized that OGSE measurements at low b-values 

are susceptible to the pseudo-diffusion effect and proposed a new sequence that combined 

orthogonal pulsed and oscillating gradients to suppress the contributions from pseudo-

diffusion. In vivo experimental data from adult mouse brains were used to test the effects 

of pseudo-diffusion on OGSE signals at different oscillating frequencies and whether the 

hybrid sequence was able to achieve accurate OGSE measurements at low b-values (< 300 

s2/mm). 
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8.2 Methods 

8.2.1 Theory  

The basic idea is to superimpose a baseline pulsed gradient to the oscillating gradient (Fig. 

1A), as well as to the non-diffusion weighted (b0) scan. Since the diffusion temporal 

spectrum follows a Fourier relationship with the gradient integral ( |𝐹(𝜔)| =

ℱ (∫ 𝑔(𝜏)𝑑𝜏
𝑡

0
) ), which is a linear transformation, superimposing of the pulsed and 

oscillating gradient leads to a linear combination of their spectra in the Fourier space. Using 

the baseline signal from the pulsed gradient in the b0 image, we can still obtain ADC from 

the oscillating gradient: 
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Since 
1−𝑓

𝑓
≫ 1 and 𝑒(𝐷∗−𝐷)∙𝑏2 ≫ 1. 

where b1 and b2 denotes the b-values from the oscillating gradient (g1) and the pulsed 

gradient (g2), respectively; and D and D* denotes the diffusion coefficients of the true 

water diffusion and pseudo-diffusion, respecitvely. 

This approach, however, will result in nonlinear relationship between the b-values of 

pulsed/oscillating gradients and the resulting b-value of the hybrid gradient. This is shown 

in the following equation: 
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 Equation 8.3 

Since the third term in Equation 8.2 is a non-zero entry, the b-value is not a simple 

summation of the b1 from the pulsed gradient and b1 from the oscillating gradient (b ≠ 

b1+b2). Also the temporal diffusion power spectrum (|F(ω)|2) of the combined gradient is 

not a linear combination of the pulsed and oscillating gradients’ integral spectra (Fig. 1A).  

Our solution is to place the pulsed and oscillating gradients on orthogonal directions. 

In this way. The hybrid gradient waveform can be expressed as a complex number (g = 

g1+i*g2) (Fig. 1B). |F(ω)|2 of this hybrid gradient then becomes a linear combination of 
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the power spectra of the individual gradients (Fig. 1B). The b-value of the hybrid gradient 

waveform can be calculated based on the complex representation: 
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Equation 8.3 

where the third term (imaginary part) does not contribute to diffusion attenuation, and 

therefore, b-values from the two orthogonal gradients are linearly addable (b = b1+b2). 

 
Figure  8.1: Hybrid pulsed and oscillating gradients in two schemes of combinations. (A) 

Direction superposition of pulsed (g1) and oscillating (g2) gradients in the same diffusion 

direction and the resultant temporal diffusion power spectrum (|F(ω)|2). Red arrows 

mismatched between the power spectrum of the hybrid gradient and the superposed spectra 

of the pulsed and oscillating gradient. (B) Hybrid gradient consist of orthoganally oriented 

pulsed and oscillating gradients. The diffusion power spectrum of this hybrid gradient 

overlaps with the superposed spectra of the pulsed and oscillating gradient. 
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8.2.2 Image Acquisition 

In vivo tests of the hybrid sequence were performed on normal C57BL/6J adult mice 

(Male, 3 month-old, n=5) on an 11.7 T horizontal NMR spectrometer (maximum gradient 

strength = 760 mT/m) with 72 mm quadrature volume transmitter and a 10 mm diameter 

receive-only planner surface coil. The hybrid sequence consists of pulsed gradients 

according to gradient table B1 below (the three numbers in each row indicate the 

distribution of the gradient along the x, y, and z gradient axes), and orthogonally orientated 

cosine-trapezoid oscillating gradients according to gradient table B2.  

𝐵1 =

[
 
 
 
 
 
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 0 1]

 
 
 
 
 

   and  𝐵2 =

[
 
 
 
 
 
1 1 0
0 1 1
1 0 1
1 1 0
0 1 1
1 1 0]

 
 
 
 
 

   

T2-weighted images were acquired with an echo time (TE) / repetition time (TR) = 

50/2000 ms, field of view (FOV) = 16 mm x 16 mm, in-plane resolution = 0.08 mm x 0.08 

mm, and fives slices with slice thickness = 1 mm (the second slice cut through the anterior 

commissure). High b-value PGSE images were acquired for anatomical definition: TE/TR 

= 21/2000 ms, four-segment EPI readout, one signal average, diffusion duration 
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(δ)/diffusion separation (∆)  = 4/12 ms, and 30 diffusion directions (25) with b  = 1000 

s/mm2. Two sets of diffusion experiments were performed: 

(A) ADC measurements at multiple b-values were acquired at TE/TR = 32/2000 ms, four-

segment EPI readout, two signal average, in-plane resolution = 0.17 mm x 0.17 mm, and 

was later interpolated to 0.08 mm x 0.08 mm (co-registered to the T2-weighted image). 

Conventional PGSE was scanned with δ / ∆ = 10/13.2 ms, six diffusion directions as listed 

in gradient table B1, and b = 50-1000 s/mm2. Conventional OGSE (OGSE only) was 

scanned with diffusion duration = 10 ms, six diffusion directions as listed in gradient table 

B2, oscillating frequency of 100Hz (number of cycles N = 1 and b = 50-700 s/mm2) and 

200Hz (N = 2 and b = 50-300 s/mm2). The hybrid OGSE was performed with the same 

parameters as the OGSE-only scans with the addition of PGSE gradient of b = 300 s/mm2. 

(B) ADC measurements at multiple oscillating frequency (0-300Hz) were acquired at 

TE/TR = 52/2000 ms, four signal average, and the same imaging resolution as in (A). PGSE 

data was scanned with δ / ∆ = 20/23.2 ms, six diffusion directions, and b = 500 s/mm2. 

OGSE-only data was scanned with diffusion duration = 20 ms, six diffusion directions, b 

= 200 s/mm2, N = 1, 2, 3, 4, 5, 6 for oscillating frequencies of 50Hz, 100Hz, 150Hz, 200Hz, 
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250Hz, and 300Hz, respectively. The hybrid OGSE was performed with the same 

parameters as the OGSE-only scans with the addition of PGSE gradient of b = 300 s/mm2. 

8.2.3 Data analysis 

The pseudo-diffusion suppressed ADCs (ADC* from Equation 8.1) were averaged 

over six diffusion directions to obtain isotropic diffusion weighting. The diffusion tensor 

can also be obtained from the hybrid diffusion data by log-linear fitting of the ADC* 

calculated from each diffusion direction. Fractional anisotropy (FA) map was calculated 

from the 30 diffusion direction high b-value diffusion data for region of interest (ROI) 

definition. 

The signal-to-noise ratio was evaluated based on the b0 images, calculated as the mean 

signal in the predefined ROI divided by the standard deviation of the background signal. 

The noise level in the ADC maps was evaluated using coefficient of variation (CV), which 

is ratio between the standard deviation of the ADC values to the mean ADC in the 

predefined ROIs.  

Data was presented as mean value ± standard error of mean (SEM) (n = 5). Statistical 

analysis was performed to evaluate the effects of pseudo-diffusion (OGSE-only versus 
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hybrid) and b-value in Experiment A, or the effects of pseudo-diffusion and oscillating 

frequency in Experiment B, using two-way analysis of variation (ANOVA) with repeated 

measures in GraphPad Prism (http://www.graphpad.com/scientific-software/prism). 

Bonferroni post-tests (26) was performed to compare the statistical differences between 

OGSE-only and hybrid sequences at each b-value in Experiment A, or the differences at 

each oscillating frequency in Experiment B. p < 0.001 was regarded highly significant, p 

< 0.01 was regarded significant, and p > 0.05 was regarded non-significant (NS). 

8.3 Results 

We focused on the mouse cortex in this study, which has sufficient blood supply, 

relatively homogenous microstructures, and high SNR due to the sensitivity profile of the 

planner surface coil. The SNR of the b0 images in the cortical region was 103.3 ± 16.3 (n 

= 5) in Experiment A when short TR was used, and 87.2 ± 17.1 in Experiment B when long 

TR was used. Figure 8.2(A) show coronal sections of the ADC maps acquired using the 

conventional OGSE sequence and the proposed hybrid OGSE sequence at different 

frequencies and b-values. The hybrid OGSE-ADC maps were slightly darker than that from 

the OGSE-only sequence at b = 200 s/mm2. The ADC maps showed relatively low contrast-
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to-noise ratio at b = 200 s/mm2, when the signal decay was 12.7 ± 0.7 % (n = 5). The CV 

of ADC values measured in the cortical ROI indicated a higher noise level in the OGSE-

only ADC maps, compared to that in the hybrid OGSE ADC maps (p < 0.0001) (Figure 

8.2(B)), especially in the low b-value regime. Post-hoc Bonferroni tests showed no 

statistical differences in CV measured from the two sequences, except at b = 50 s/mm2 (p 

< 0.001). 

 

 

Figure 8.2: (A) PGSE and OGSE ADC maps (100Hz) of a mouse brain, acquired using 

convetional PGSE, OGSE sequence (OGSE-only) and the proposed hybrid OGSE 

sequences at b-values of 200 mm2/s (top row) and 500 mm2/s (bottom row). (B) Coefficient 

of variation (CV) calculated in the cortical region of the OGSE-only and hybrid OGSE 

maps, at b-values of 50-700Hz. 

 

Effects of pseudo-diffusion were observed in both PGSE and OGSE-only 

measurements in the cortical region (solid lines in Figure 8.3(B), based on the ROIs defined 

in Figure 8.3(A)), characterized by higher ADC values at low b-values (e.g., 50 s/mm2) 
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compared to those at moderate or high b-values (>300 s/mm2). With the hybrid pulsed and 

oscillating gradient sequence, the pseudo-diffusion effect was suppressed (dashed lines in 

Fig. 8.3(B)), and the derived ADC-values (ADC*(100Hz and 200Hz)) showed no 

significant difference over the range of b-values (p = 0.1 and 0.7 respectively, one-way 

ANOVA). Two-way ANOVA analysis of the OGSE measurements at different frequencies 

showed significant differences between the OGSE-only measurements and the hybrid 

OGSE measurements (p < 0.0001 at both 100Hz and 200Hz). Bonferroni post-tests showed 

the differences were significant between ADC (100Hz) and ADC*(100Hz) over the b-

value range of 50-150 mm2/s (blue stars), and between ADC(200Hz) and ADC*(200Hz) 

over the b-value range of 50-100 mm2/s (red stars). At b values greater than 200 mm2/s, 

the OGSE-only measurements showed no apparent change with increasing b-values, and 

the OGSE* and the OGSE-only curves arrived at the same ADC values, presumably clear 

of the effects of pseuodiffusion. The results suggested that the hybrid sequence was able to 

suppress the effects of pseudo-diffusion.  

 



 

 

171 

 

 

Figure 8.3: ADC measumrents from the conventional PGSE sequence, OGSE-only 

sequence (100 Hz and 200Hz), and the hybrid OGSE sequence (100Hz* and 200Hz*), over 

the b-value range of 50-700 mm2/s. The data was presented as mean ± standard error of 

mean (SEM) (n = 5). The cortical region of interet (ROI) is defined based on the fractional 

anisotropy (FA) maps. Blue stars and red stars indicates the statistical significance of the 

differences between 100Hz and 100Hz*, and between 200Hz and 200Hz*, respectively. 

Note: *** denotes p < 0.001, ** denotes p < 0.01 from the Bonferroni post-tests.  

 

The contribution from the pseudo-diffusion may alter the time-dependence of the ADC 

measurements, which is dictated by underlying tissue microstructure. We evaluated the 

ADC values measured over the oscillating frequency range of 0-300Hz, using the OGSE-

only sequence and the hybrid OGSE sequence at b-value of 200 mm2/s. Although the 
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pseudo-diffusion is relatively low at b-value = 200 mm2/s, but its effect is not negligible as 

show in Figure 8.4(A), especially at high oscillating frequencies. Two-way ANOVA 

analysis of the data revealed significant difference between OGSE-only group and the 

hybrid OGSE group (p < 0.0001), and the post-hoc Bonferroni tests showed the differences 

were most evidential at 200 Hz and 300Hz (p < 0.001). It was noticed that if the ADC 

values were plotted against the square root of oscillating frequency, the frequency-

dependent ADC changes follows a linear regression (Figure 8.4(B), R2 = 0.55), according 

to (27,28).  The slopes of the linear fitting were 11.15 ± 1.8 x10-6 mm2·s-1/2 for the OGSE-

only measurements, and 8.86 ± 1.4 x10-6 mm2·s-1/2 (p = 0.31, n = 5). 

 

Figure 8.4: ADC values obtained from the OGSE-only sequence and the Hybrid OGSE 

sequence over the frequency range of 0-300Hz, and plotted against the oscillating frequncy 

(A) or the square root of frequency (B). Note ** denotes p < 0.01 from the Bonferroni post-

tests. 
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We further demonstrated that the hybrid OGSE sequence were able to acquire 

diffusion tensor data by fitting the ADC* (Equation 8.4) from six or more diffusion 

directions. Figure 8.5 showed the direction-encoded colormaps reconstructed from the 

conventional OGSE and hybrid OGSE tensors at b-values of 300 mm2/s and 600 mm2/s. 

The tensors from two sequences revealed the same tissue orientational information, such 

as that in the cortex and white matter regions. The colormaps at low b-value major 

contained noise due to the low contrast-to-noise ratio, but the major white matter structures 

can be delineated, e.g., the corpus callosum (cc), fimbria (fi), cerebral peduncle (cp), and 

optic tract (opt).  The ripples in the OGSE-only colormaps resulted from the imaging 

artifacts in the non-diffusion weighted image (e.g. insufficient crusher gradients), which 

was suppressed by the additional PGSE gradient in the hybrid sequence. 
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Figure 8.5: Direction-encoded colormaps reconstructed from the conventional OGSE and 

hybrid OGSE tensors at b-values of 300 s/mm2 and 600 s/mm2. Abbreviation: cc- corpus 

callosum, fi- fimbria, cp- cerebral peduncle, opt- optical tract. 

 

8.4 Discussion 

In this study, we first investigated the role of pseudo-diffusion on OGSE 

measurements in the low b-value regime, which was frequently encountered in clinical 

applications. In previous human brain OGSE studies (18,19), even with the trapezoid 

cosine gradient, low oscillating frequencies (50-60Hz), and many oscillating cycles, the 

highest achievable b-value was only in the range of 200-300 s/mm2. Our experiments 

showed that the conventional OGSE signal was contaminated by the pseudo-diffusion at 

low b-values (Figure 8.2), e.g., the ADC was significantly higher than the true ADC (from 

high b-values). Using the hybrid OGSE sequence with orthogonally placed pulsed and 

oscillating gradient, we demonstrated that the contribution from pseudo-diffusion was 

removed and clean OGSE signal could be obtained at very low b-values. The results 

indicates that the proposed new sequence can be a solution to achieve accurate OGSE 

measurements on clinical scanners. It is valuable for in vivo studies on preclinical scanners, 

since it offer the possibility to reach higher oscillating frequency, which may offers extra 
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microstructural information beyond the current scope. Also, fewer oscillating cycles may 

be used to reduce the echo time and thus improve signal-to-noise ratio. We also realized 

that even though accurate OGSE-ADC can be achieved at low b-values using the hybrid 

OGSE, the contrast-to-noise ratio remains low, which introduced noise in the ADC 

measurement. Improving the SNR in the raw data can be a rescue, e.g. using high 

sensitivity coils. 

Another important question is whether the pseudo-diffusion impacts OGSE signals of 

different oscillating frequency in a different manner. Our data of OGSE measurements 

from 0-300Hz (Figure 8.3) indicated that the pseudo-diffusion contribution is higher at 

high oscillating frequencies (200-300Hz), and lower at low frequencies. Therefore, 

pseudo-diffusion may alter time-dependence of the ADC measurements or the temporal 

diffusion spectrum, which is characteristic of the tissue microstructure. The slopes of linear 

regression of ADC against the square root of oscillating frequency was higher with pseudo-

diffusion, compared to that without pseudo-diffusion. But there was no statistical 

difference between the two slopes, possibly due to relatively low pseudo-diffusion at b = 

200 s/mm2 and the high individual differences in cerebral perfusion. In order to know the 

exact fraction of pseudo-diffusion at different oscillating frequencies, bi-exponential fitting 
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with multiple b-value measurements is needed, which however, specially designed high 

gradients to reach the high b-value regime. 

8.5 Conclusion 

We proposed a hybrid OGSE sequence with orthogonally oriented pulsed and oscillating 

gradients to suppress pseudo-diffusion at low b-values. The pseudo-diffusion is present in 

both PGSE and OGSE measurements, and may alter the time-dependent ADC 

characteristics. With the hybrid sequence, accurate OGSE-ADC can be obtained in the low 

b-value regime, which is important for clinical applications of OGSE technique with 

limited gradient. 
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