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Running title: Cortico-cerebellar functional connectivity after motor learning

Abstract

Interactions between the cerebellum and primary motor cortex are crucial for the acquisi-

tion of new motor skills. Recent neuroimaging studies indicate that learning motor skills is

associated with subsequent modulation of resting-state functional connectivity in the cere-

bellar and cerebral cortices. The neuronal processes underlying the motor-learning induced

plasticity are not well understood. Here, we investigate changes in functional connectiv-

ity in source-reconstructed electroencephalography (EEG) following the performance of a

single session of a dynamic force task in twenty young adults. Source activity was recon-

structed in 112 regions of interest (ROIs) and the functional connectivity between all ROIs

was estimated using imaginary part of the coherence. Significant changes in resting-state

connectivity were assessed using partial least squares (PLS). We found that subjects adapted

their motor performance during the training session and showed improved accuracy but with

slower movement times. A number of connections were significantly upregulated after motor

training, principally involving connections within the cerebellum and between the cerebellum

and motor cortex. Increased connectivity was confined to specific frequency ranges in the

mu and beta bands. Post-hoc analysis of the phase spectra of these cerebellar and cortico-

cerebellar connections revealed an increased phase-lag between motor cortical and cerebellar

activity following motor practice. These findings show a reorganization of intrinsic cortico-

cerebellar connectivity related to motor adaption and demonstrate the potential of EEG

connectivity analysis in source-space to reveal the neuronal processes that underpin neural

plasticity.

Keywords: Neural plasticity, intrinsic connectivity, motor learning, EEG source analysis,

Cerebellum

2



1 Introduction

Neural plasticity is the ability of the brain to adapt its intrinsic functional organization to

environmental changes and pressures, physiologic modifications and experiences (Pascual-

Leone et al., 2005). Motor skill learning is a paradigmatic example of neural plasticity

(Karni et al., 1995; Doyon and Benali, 2005; Halsband and Lange, 2006; Hikosaka et al.,

2002; Sanes and Donoghue, 2000). Analogous to perceptual learning, the acquisition of new

motor skills advances through two distinct stages: A single session improvement that can be

induced by a limited number of trials, and subsequent slowly evolving, post-training incre-

mental performance gains (Karni et al., 1998; Pascual-Leone et al., 2005; Luft and Buitrago,

2005; Doyon and Benali, 2005). In many instances, most gains in performance evolve in a

latent manner not during training, but rather after training has ceased. The latent phase in

human skill learning is thought to reflect a process of consolidation of experience-dependent

changes in the cortex that are triggered by training, but continue to evolve thereafter (Karni

and Sagi, 1993). Fast (single session) and slow (multi-session) learning processes are thought

to involve distinct neural processes: dis-inhibition of existing connections within neural pop-

ulations may induce changes on a short timescale, whereas structural modifications of con-

nections and synapses may subserve slow learning and memory consolidation (Karni et al.,

1998; Dudai, 2004; Dayan and Cohen, 2011).

Neuroimaging studies have investigated the neural substrates of these two phases of motor

learning (Ungerleider et al., 2002; Kelly and Garavan, 2005; Tomassini et al., 2011; Krakauer

and Mazzoni, 2011). Fast learning of sequential motor tasks modulates regional brain ac-

tivity in the dorsolateral prefrontal cortex (DLPFC), primary motor cortex (M1) and pre

supplementary motor area (preSMA) (Floyer-Lea and Matthews, 2005; Sakai et al., 1999)

− which show decreased activation as learning progresses − and in the premotor cortex,

supplementary motor area (SMA), parietal regions, striatum and the cerebellum − which

show increased activation with learning (Grafton et al., 2002; Honda et al., 1998; Floyer-Lea

and Matthews, 2005). M1 is one of the key brain regions involved in fast motor learning.
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Likewise, slow learning − reflected by improved motor performance over multiple training

sessions − is associated with increased activation in neuronal populations in M1 (Floyer-

Lea and Matthews, 2005), primary somatosensory cortex (Floyer-Lea and Matthews, 2005),

SMA (Lehéricy et al., 2005), putamen (Lehéricy et al., 2005; Floyer-Lea and Matthews,

2005), premotor cortex, supplementary motor area, parietal regions, and the cerebellum

(Grafton et al., 2002; Floyer-Lea and Matthews, 2005), as well as an increase of gray matter

in the supplementary motor area (Hamzei et al., 2012).

It is hence apparent that different parts of the distributed motor system, including sub-

cortical structures such as the cerebellum and basal ganglia, are associated with motor skill

learning (Karni et al., 1998; Galea et al., 2011). Therefore, understanding the functional role

of multiple brain regions in motor learning requires investigation of distributed brain net-

works and connectivity patterns. Task-driven functional connectivity (Coynel et al., 2010)

and effective connectivity (Ma et al., 2011; Tzvi et al., 2014) have indicated changes in the

connections between M1 and the cerebellum during motor learning (Raymond et al., 1996;

Inoue et al., 2000; Della-Maggiore et al., 2009). Alternatively, cortico-cerebellar connectivity

has been indirectly assessed by evaluating changes in somatosensory evoked potentials (SEP)

or motor evoked potentials (MEP) (Haavik and Murphy, 2013; Andrew et al., 2015; Baarbé

et al., 2014). Recent resting-state fMRI studies revealed increased functional connectivity in

cortical and subcortical regions after a short course of motor learning (Vahdat et al., 2011;

Ma et al., 2011; Taubert et al., 2011; Tung et al., 2013; Sami et al., 2014). These findings

further emphasise the involvement of the cerebellum in motor control and the consolidation

of motor memory (Raymond et al., 1996; Inoue et al., 2000; Della-Maggiore et al., 2009).

Because of their superior temporal resolution, connectivity analysis of MEG and EEG data

may provide additional information about the neuronal processes underpinning the changes

in intrinsic connectivity following motor skill learning. Several MEG studies have shown

changes in beta-band synchronization in the motor cortex during motor learning, reflecting

a modulation in cortical excitability (Boonstra et al., 2007; Houweling et al., 2008; Pollok
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et al., 2014). However, few studies have investigated connectivity changes in the distributed

motor system using EEG or MEG. Motor-related changes in beta-band coherence have been

observed in surface EEG (Deeny et al., 2009; Tropini et al., 2011). Coherence within the

primary motor area in resting-state EEG has been used to predict subsequent motor acquisi-

tion in single session motor skill learning (Wu et al., 2014). Recent studies have shown that

connectivity analysis of source-reconstructed MEG and EEG permits a better comparison

to functional connectivity in fMRI data than sensor-based analyses (Mantini et al., 2007;

Brookes et al., 2011; Mehrkanoon et al., 2014c). The ability to detect robust resting-state

networks in source-reconstructed MEG and EEG suggests that this approach may also be

sensitive to changes in intrinsic connectivity induced by motor learning. We hence performed

source connectivity analysis in resting-state EEG recorded directly before and after a single

session of motor skill learning. Given the prior results in fMRI connectivity analysis, we hy-

pothesised that motor training would change the functional connectivity in the distributed

motor system, in particular between the cerebellum and motor cortex. To examine this hy-

pothesis, we compared whole-brain resting-state connectivity in source-reconstructed EEG

before and after motor training and studied changes in intrinsic connectivity. By examin-

ing the frequency, phase and temporal information of resting-state coherence we sought to

further elucidate the neuronal processes involved in neural plasticity during motor learning.

2 Materials and Methods

2.1 Participants

Twenty healthy right-handed adults (age: 21.3±1.8 years; 10 males) participated as volun-

teers in this study. The Human Research Ethics Committee of the University of Tasmania

approved the protocol. All participants gave their informed consent according to National

Health and Medical Research Council guidelines.
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2.2 Experimental design

We compared intrinsic connectivity in source-reconstructed EEG before and after motor

learning. For motor skill acquisition, we used a simple motor task in which participants were

required to make a transition between two force levels as fast and accurately as possible. In

a previous study we have shown a reorganization in corticomuscular coherence when partici-

pants make an overshoot when reaching the second target (Mehrkanoon et al., 2014b). Here

we investigated how movement accuracy changes during a single session of motor training

and compared cortico-cortical and cortico-cerebellar coherence during resting-state pre and

post motor training. The task design involved three consecutive sessions: 1) an initial 10-

minute resting-state session, 2) 20 motor skill training trials, and 3) a further 10 minutes of

resting-state.

Participants were seated in a light- and sound-attenuated room with their right hand on

a flat panel and their forearm supported. In the resting-state conditions, participants were

instructed to relax with eyes closed and refrain from falling asleep. During the motor training

session, participants were required to generate force by using their index finger and thumb

(i.e. a pincer grip) against a force sensor (Figure 1C). Participants received visual feedback

of the exerted force and were instructed to keep their force within pre-defined force intervals

(target 1: 0.7−1.1N, target 2: 1.9−2.3N) displayed on a computer screen (Figure 1A). At

the start of each trial, participants had to move the cursor into target 1 and keep it in the

middle of targets until they perceived an auditory stimulus (a 1-s tone at 500 Hz). Once

the stimulus was finished, participants had to move the cursor into target 2 as quickly as

possible by increasing the exerted force and the keep it in the middle of target 2 until the

end of the trial. The auditory stimulus was presented after a variable time interval (9−11 s)

from the onset of the trial. The movement trajectory from target 1 to 2 was used to quantify

motor performance.
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Figure 1: Task design. A) Diagram of the two force targets. B) Participant with an EEG

cap. C) The force transducer. Subjects exerted force by using the index finger and thumb

against the force sensor.
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2.3 Data acquisition

A force sensor (LSB200 L2357, JR S-Beam load cell, FUTEK, California, USA) was used

to measure the force exerted by the participant. The load cell was calibrated for every

participant before the experiment. Participants were instructed to exert force against the

load cell by using their index finger and thumb (Figure 1C). The force signal was amplified

(SCG110, Strain Gage Amplifier, FUTEK, California, USA) and digitized at 1 kHz (NI USB-

6259 BNC, National Instruments, Austin, Texas). 64 channel surface EEG was continuously

acquired during the entire experiment (Figure 1B) from a 72 channel DC-amplifier during

the entire 30-minute session (i.e. 10-minute resting-state, 20 trials of a motor task practice,

and 10-minute resting-state) using an ANT Neuro waveguard EEG cap. EEG electrodes

were arranged according to the international 10-20 system. Two additional channels were

used for the electrooculography. All data were recorded at a sampling rate of 2048 Hz, and

referenced against an electrode centered on the midline between Fz and Cz. The impedances

of all electrodes were kept below 5 kΩ. EEG data were band-pass filtered (0.5−80 Hz).

Independent component analysis (InfoMax) was used to identify and remove cardiac, ocular

and muscular artifacts (Cardoso, 1997). The resulting EEG signals were then down-sampled

to 500 Hz prior to further analyses.

2.4 Behavioural data analysis

We assessed motor performance by quantifying the speed and accuracy of the force trajecto-

ries between the two force targets. For each trial, the start of the trajectory from target 1 to

2 was defined as the last flection point of force trajectory before leaving target 1. Similarly,

the endpoint was defined as the first flection point of force trajectory when reaching target 2.

Movement duration was then defined as the time difference between the start and endpoint

of the force trajectory. The movement error was defined as the force difference between the

endpoint of the force trajectory and the middle of target 2 (2.1 N). This movement error

hence corresponds to either an overshoot or an undershoot. We also quantified the interac-

tion between speed and accuracy by fitting an exponential function to the movement-error
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versus movement-duration trade-off across the 20 participants given by:

e =
1

1 + a exp(bτ)
, (1)

where e denotes the movement error, a is a scaling parameter, b is the tuning parameter,

and τ is the movement duration. In particular, the skill parameter, a, can be derived from

Eq.(1) as a = 1−e
e(exp(bτ))

, where ‘1 − e’ denotes the movement accuracy (Reis et al., 2009).

We used a nonlinear least squares technique to estimate the skill parameter, a, and tuning

parameter, b.

2.5 EEG data analysis

Functional connectivity analysis was performed on data from reconstructed cortical and

cerebellar sources. To this end, an EEG source reconstruction approach was used to estimate

cortical oscillations in the gray matter. Time−frequency coherence was estimated between

all source combinations in two conditions: Pre (before motor training) and post (after motor

training) resting-state. We compared the pre and post resting-state connectivity using a

multivariate statistical approach to reveal the connections that showed a significant change

in the intrinsic functional connectivity. Each of these steps, depicted schematically in Figure

2, is now defined in greater detail.

2.5.1 Source reconstruction

Analyses of the acquired EEG analysis were undertaken using a combination of publically

available and in-house programs written in MATLAB (The Mathworks, Natick, MA). We

used independent component decomposition (InfoMax ICA) to remove electro-occulograph

(EOG) and electromyograph (EMG) artifacts from band-pass filtered EEG. For each par-

ticipant, artifact-free EEG was down-sampled at 512 Hz before source reconstruction. We

then employed the standard Low Resolution Electrical Tomography (sLORETA) algorithm

to estimate source signals (Pascual-Marqui, 2002) computed by a Locally Spherical Model

with Anatomical Constraints (LSMAC) (brainmapping.unige.ch/cartool Brunet et al.
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Figure 2: Construction of pre-post resting-state cortical networks. Top row: a) EEG data

were acquired, b) preprocessed, artifact corrected and source reconstructed, and c) assessed

pair-wise for time-frequency coherence. Resulting time-frequency spectra were concatenated

(across subjects) and analyzed by using a multivariate partial least square analysis, d)

Resting-state network constructed from an eigenvector derived from the PLS analysis, and

e) spectral content of the network with a peak at significant carrier frequency 10 Hz.
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(2011)) and the standard MNI152 brain template for all subjects. The LSMAC model does

not require the estimation of a best-fitting sphere, but instead uses the realistic head shape

and local estimates for the thickness of scalp, skull and brain underneath each local electrode.

A total of 5400 solution points (henceforth referred to as voxels) were regularly distributed

within the gray matter of the cortex and cerebellum. The forward model was solved by an

analytical solution using a 3-layer conductor model. The source-space was subdivided into

112 anatomically defined regions of interest (ROIs) according to the macroscopic anatomi-

cal parcellation of the MNI template using the Automated Anatomic Labelling (AAL) map

(Mazziotta et al., 2001). In CARTOOL (Brunet et al., 2011), four regions in the cerebellum

have been merged: L-Cerebellum 4 and 5 (2 ROIs merged), R-Cerebellum 4 and 5 (2 ROIs

merged), Vermis 1 and 2 (2 ROIs merged), and Vermis 4 and 5 (2 ROIs merged). Hence,

112 AAL regions were analyzed instead of the original 116 of the AAL atlas. On average,

each ROI consisted of about 50 voxels. From these voxels we then determined one voxel per

region that has the minimum average Euclidean distance to the rest of voxels in that brain

region, the so-called centroid voxel. We then applied PCA to each of the centroid voxels

separately, i.e., PCA to the “X, Y, and Z” components of a voxels time-series, to extract

the orientation of the source-dipole dynamics within each ROI. The first PCA component

(i.e., the first PCA projection) estimated from a single centroid voxel time-series was then

used for further analysis. This is similar to the approach described by Hipp et al. (2012);

Mehrkanoon et al. (2014c).

2.5.2 Functional connectivity analysis

We then computed functional connectivity between all voxel pairs using time-frequency co-

herence (Mehrkanoon et al., 2013, 2014a). Time-frequency coherence quantifies linear corre-

lations between two observations, {xt}Nt=1 and {yt}Nt=1, as a function of time t and frequency

f . Let x(t) and y(t) be two voxels time-series acquired from two given ROIs. The linear
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correlation between these two voxels time-series is given by

Γ̂xy(t, f) =
S
{
P̂xy(t, f)

}
√
S
{
P̂xx(t, f)

}
S
{
P̂yy(t, f)

} t = 1, 2, ..., N , (2)

where P̂xy(t, f) denotes the Fourier cross-spectral density (CSD) estimate between signals

x(t) and y(t), and P̂xx(t, f) the power spectral density (PSD) estimate. Fourier based spectral

decomposition was performed by using a unit power Hamming window of 1 s duration. The

smoothing operator S{.} used in this analysis is given by

K(t, f) = exp

(
−

(
t2

2σ2
t

+
f 2

2σ2
f

))
, (3)

where σt = 0.75 s and σf = 1.5 Hz denote the time and frequency widths of the Gaussian ker-

nel. Smoothing was implemented by convolving the kernel K(t, f) with the time-frequency

interdependence measures to improve the reliability of the coherency estimate (Mehrkanoon

et al., 2013). Complex-valued time-frequency coherency was estimated between all voxel

pairs − the total number of voxel combinations for 112 voxels is 6216 − producing a mul-

tidimensional time-frequency functional connectivity array (i.e. time × frequency × voxel

combinations) for the pre- and post- resting-state conditions for all 20 subjects.

2.6 Statistical analysis

Multivariate statistical analysis was used to compare the connectivity arrays pre and post

motor learning. Partial least squares (PLS) regression is a statistical tool that finds a linear

regression model by projecting the independent and dependent variables to a new space that

is rank ordered by the percent covariance explained. That is, PLS decomposes the original

data into orthogonal modes that account for that part of the covariance structure that cor-

relates with a specified design matrix (Geladi and Kowalski, 1986; McIntosh and Lobaugh,

2004; Langdon et al., 2011; Krishnan et al., 2011) (see also Eqs.(4a-c)). Here we use a design

contrast as independent variable. In particular, a simple contrast between pre and post was
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defined and regressed against the multivariate connectivity arrays. As the dependent vari-

able we took the imaginary part of the complex-valued coherence in order to minimize the

effect of volume conduction on the estimation of true functional connectivity (Nolte et al.,

2004; Mehrkanoon et al., 2014a). Using only the imaginary part reduces the effect of source

leakage on functional connectivity, as volume conduction (and hence source leakage) results

in spurious correlations with a zero time (and phase) lag (see also Nolte et al. (2004); Hassan

et al. (2014)).

To conduct PLS at the group level, the imaginary part of time-frequency coherence was first

averaged across time (Eq.(4a)), yielding the coherence spectra as a function of frequency,

voxel combinations, and number of subjects for all pre and post conditions. To implement

the contrast, the pre-training coherence spectra were subtracted from post-training coher-

ence spectra and then averaged across subjects, yielding grand-average group-level functional

connectivity spectra as a function of frequency and voxel combinations (Eqs.(4b),(4c)). The

resulting matrix was decomposed by the singular value decomposition into orthogonal com-

ponents consisting of the singular values, S (Eq.(4d)), the latent variable (Eq.(4e)) (here

frequency spectra obtained from the projection of the contrasted connectivity array), and

the corresponding weights (or the left singular vectors, U, which are the eigenvectors of the

covariance matrix of D) (Eq.(4d)).

Γ̂ipre (f,m) =
1

N

N∑
t=1

=
{

Γ̂mipre (t, f)
}
, (4a)

Di(f,m) = Γ̂ipost (f,m)− Γ̂ipre (f,m), i = 1, 2, . . . , 6216, m = 1, 2, . . . , 20, (4b)

Di(f) =
1

20

20∑
m=1

Di(f,m) ∈ R(6216×f), (4c)

SVD(D) = USVT, (4d)

Y = UTD ∈ R(6216×f), (4e)
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where ={.} denotes the imaginary part of the coherence at the ith voxel combination for

the mth subject, U = [u1, . . . ,ui] ∈ R(6216×6216), S ∈ R(6216×f) is a pseudo-diagonal matrix

consisting of the singular values of D − whose top f rows contains diag{s1, . . . , sf} and

whose bottom (6216− f) rows are zero, V = [v1, . . . ,vf ] ∈ R(f×f) is the right singular vec-

tors of the contrasted connectivity matrix D, and T is the matrix transpose. To determine

which of the PLS components are statistically significant, we generated surrogate data using

permutation testing (McIntosh and Lobaugh, 2004; Langdon et al., 2011). For each subject,

we randomly permuted the connectivity arrays for pre- and post-training before regressing

the data against the contrast to obtain subject-level surrogate data. Similar to the original

data, the grand-average surrogate spectra were obtained and decomposed into orthogonal

components. This analysis was performed for 1000 realizations to estimate the distribution

of surrogate components. These surrogate components embody the expected distribution of

values under the null hypothesis that there is no training effect (and hence pre- and post-

training data are exchangeable). PLS components were considered statistically significant

if their eigenvalue exceeded 95% of the corresponding eigenvalues of this surrogate distri-

bution (p<0.05). The PLS and statistical analyses rendered three significant components

that consistently indicated enhancement in intra-cerebellar and cortico-cerebellar functional

connectivity across participants (Figures 4-6).

The significance of the ensuing network edges and their spectral contents was then examined

using bootstrapping (McIntosh and Lobaugh, 2004; Langdon et al., 2011). Bootstrapping

was performed by randomly permuting the labels of the trials across conditions (pre- and

post-training). This generates the null hypothesis that the magnitude of the PLS projections

simply reflects finite sample size and noise in the data. Likewise, rejection of the null sug-

gests the presence of a specific training-related change in multivariate functional connectivity

measures.
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2.7 Post-hoc analysis

We then examined the phase relationship and temporal fluctuations of the time-frequency

coherence of the edges that were significantly modulated by motor learning. For each sig-

nificant PLS component, the imaginary part of the time-frequency coherence was averaged

across all the significant edges. We then compared the average coherence spectra between

pre- and post-training to identify the direction of the changes. In addition, we investigated

phase spectra of the significant edges to identify changes in the phase difference between pre-

and post-training. We also investigated the temporal fluctuations of the time-frequency co-

herence by estimating the Hurst component of the temporal fluctuations in coherence for the

significant edges and frequencies (Mehrkanoon et al., 2014a). The Hurst exponent quantifies

the long-range auto-correlation structure of the time courses of the significant edges in pre-

and post- resting-state conditions. We used a two-sample t-test to test whether phase differ-

ence and Hurst component of time-frequency coherence were significantly different between

pre- and post-motor training.

3 Results

3.1 Motor skill acquisition

Significant changes in movement accuracy occurred over the course of the motor training tri-

als, with a clear increase in accuracy but an apparent decrease in movement speed. To test if

the improvement in movement accuracy was statistically significant, we partitioned the trials

in three blocks: First (6 trials), middle (7 trials), and last (7 trials). A repeated-measures

ANOVA revealed a significant decrease in movement error from the first (0.25±0.051 N),

middle (0.19±0.04 N) to last block (0.14±0.03 N) (F(2,19)=2.73 p=0.004; Figure 3A, left

panel). In addition to increased movement accuracy, an increase in movement duration was

observed across trials: movement duration increase from τ = 0.79± 0.12 s (the first block),

τ = 0.83 ± 0.11 s (the middle block), to τ = 1.2 ± 0.14 s in the last block. The increase in

movement duration was statistically significant (F(2,19)=10.82, p� 0.01; Figure 3A, middle
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panel). We also measured the scaling parameter − a parameter that quantifies an interac-

tion between movement-error and movement duration − across the three trial blocks using

Eq.1: The scale parameter a increase from 0.9, 1.83 to 2.78 in the first, middle an last block

respectively (Figure 3A, right panel). We used bootstrapping to estimate the standard error

of the skill and tuning parameters across subjects. We then performed a t-test to compare

the skill measure and tuning values across the first and last blocks of trials, which showed

the skill parameter significantly increased (t(19)=6.1, p<0.0001) and the tuning parameter

values significantly decreased (t(19)=-4.1, p=0.0003) between the first and the last block of

trials.

These results indicate a speed-accuracy trade-off, as the movement error decrease whilst

the movement duration increased (Figure 3B, left panel). Note that the circles, asterisks

and triangles correspond to the average movement-error in the three blocks of trials for all

20 participants, respectively (see Figure 3B, left panel). Crucially, participants not only

decreased the speed of the cursor movement to obtain greater accuracy, but also exhibited

greater accuracy when they performed the cursor movement quickly in the late compared

to the early trials. That is, the late trials (triangles) do not only exhibit a reduction in the

movement error and an increase in the movement duration, but also show a clear reduction

in the movement error at short movement duration − i.e. the early trials (circles) (Figure

3B, left panel). The fitted curves − dashed-line and dotted dashed-line − argue this is true

at short times (i.e. τ ≈ 0.5 s), but not at longer times: The tail of the fitted curves indeed

showed small variability in the movement error at longer movement durations, e.g. τ ≥ 1.3 s

(Figure 3B, left panel). Importantly, changes in the trend of the fitted curves were captured

by the tuning parameter (i.e. rate of task accuracy (Eq.1) across the three blocks of trials:

The tuning parameter decreased monotonically from b = 1.6 (the first block) to b = 1.14 (the

middle block) and b = 0.65 (the last block) while the movement duration increased (Figure

3B, right panel). Improvement in the performance and accuracy of the cursor movement −

i.e. reduction in the movement error with an increase in the movement duration − was asso-

ciated with a significant effect on the scaling measures that quantified the trade-off between
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Figure 3: Grand-average motor performance and skill measure in the first- middle- and

last- blocks of trials. A) Average movement-error profiles (left panel), average movement

duration (middle panel), and skill measure values derived from Eq.(1) (right panel). B)

Speed-accuracy trade-off as a function of movement-error and movement duration for the

three blocks of trials for all 20 participants (left panel), tuning parameter values for the three

block of trials across 20 participants (right panel).
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speed and accuracy in the present motor task. This effect suggests that participants changed

their strategy (i.e. trajectory planning) over trials from making rapid but inaccurate cursor

movements to slower but more accurate movements during a single session of motor training.

3.2 Cortico-cerebellar functional connectivity

Following motor training, participants immediately underwent the post resting-state acqui-

sition. Figure 2 recapitulates the steps of the analyses: 1) time-frequency coherence between

source time-series captured the linear dependencies between cortical regions (Figure 2C),

2) the PLS of the brain-wide connectivity arrays captured changes in the pre-post resting-

state networks (Figure 2D), 3) post-hoc analyses of time-frequency coherence revealed the

dynamics of connections that were significantly modulated by motor training (Figure 2E).

We found significant differences in the brains intrinsic functional connectivity patterns fol-

lowing motor training. By applying multivariate PLS method to compare pre- and post

resting-state connectivity, we identified the connections that were significantly modulated

after motor training. The PLS and statistical analyses rendered three significant components

(p<0.01) that consistently indicated enhancement in intra-cerebellar and cortico-cerebellar

functional connectivity across participants (Figure 4−6). Component 1 (15% of the variance,

p=0.02) showed enhanced functional connectivity between homologous cerebellum areas and

between the right precentral (or primary motor cortex) and right postcentral (somatosen-

sory cortex) (Figure 4A−B). Component 2 (9% of the variance, p=0.03) showed increased

cortico-cerebellar functional connectivity (Figure 5A−B) with connections between precen-

tral and cerebellum regions and with cliques between the left/right cerebellum and vermis.

Notably, these cerebellar regions showed increased functional connectivity to left primary

motor cortex and right postcentral gyri. These two modes explained 24% of the variance.

The third significant component (7% of the variance, p=0.04) revealed increased connectivity

in a distributed set of connections. These include left and right cerebellar region 6b, left and

right temporal pole, right putamen, left and right amygdala, left and right insula and left

and right olfactory cortex.
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In addition to the connections that were significant modulated due to motor training, PLS

also provided the frequency spectra (latent variables) of the connections that were signif-

icantly modulated. These spectra showed distinct peaks in the alpha and beta frequency

ranges (Figure 7A). Resampling revealed that connectivity was modulated within a few nar-

row spectral bases indicating narrowband carrier frequencies. Notably, networks 1 and 2

showed a significant (p<0.05) peak in the lower mu/alpha frequency (8−11 Hz) and (9−12

Hz) respectively (Figure 7A, left and middle panels), a frequency that is classically charac-

teristic of sensorimotor systems. Network 3 showed two peaks across the lower mu/alpha

and the beta range (9−12 Hz) and (19−22 Hz), indicating a large-scale network with nar-

rowband oscillation frequency (right panel). Using post-hoc analyses we then investigated

time-frequency coherence of the connections that were significantly modulated by motor

training. We first compared the imaginary components of the grand-average coherence spec-

tra: We selected three exemplar pairs of pre- versus post- training significant edges from the

three networks shown in Figures 4−6: Left-cerebellum 9−vermis 9 (network 1, Figure 7B, left

panel); left primary motor cortex−vermis 3 (network 2, middle panel); and left cerebellum

7b−left temporal mid gyrus (network 3, right panel). The post-training imaginary compo-

nent of the coherence is more than double the pre-training strength of functional connectivity

at the significant frequencies (10 Hz and 20 Hz; p<0.05; network 3) such that the pre−post

coherence measures are 0.1−0.42 (left panel), -0.03−0.22 (middle panel), -0.05−0.36 and

0.05−0.18 (right panel) respectively. In addition to the strength of coherence, we investi-

gated the phase spectra in order to explore the effect of motor skill acquisition on the phase

direction of cerebellum and cortico-cerebellar functional connectivity (Figure 7C). Specifi-

cally, we compared the pre and post phase spectra at the specific frequencies found to be

significantly different (i.e. 10 Hz and 20 Hz) for the three selected pairs of edges. The

post-training phase spectra of the three edges were indeed significantly different (t1,19=2.72,

p<0.05) compared to the pre-training phase spectra. All post-training phase spectra in-

creased compared to the pre phase spectra (row C), indicative of a delay from the cortex to

the cerebellum. That is, the cerebellum phase lags the cortex at the carrier frequencies of
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Figure 4: Significant enhancement of resting-state pre-post functional connectivity after

motor task performance. A) Increased cerebellum connectivity pattern, and increased con-

nectivity between primary motor cortex and sensorimotor areas, B) topography of functional

connectivity in component 1 using a circulogram connectome. The purple, black and yel-

low voxels (or spheres) represent the Euclidean centers of the ROIs for the left hemisphere,

middle (vermis area) and right hemisphere respectively.
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Figure 5: Significant enhancement of resting-state pre-post functional connectivity after mo-

tor task performance. A) Increased cortico-cerebellar functional connectivity, B) topography

of functional connectivity in component 2 using a circulogram connectome.
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Figure 6: Significant enhancement of resting-state pre-post functional connectivity after

motor task performance. A) Increased fronto-temporal connectivity pattern, B) topography

of functional connectivity in component 3 using a circulogram connectome.
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mu (10 Hz) and beta (20 Hz) bands, indicating the directivity of the effect that accompanies

the upregulation of the coherence or synchronization. To illustrate the specificity of these

results, we show the functional connectivity for two other edges (right M1 vermis3 and left

occipital right parietal) that were not statistically significant (z-score=1.49, p=0.068 and

z-score=0.1, p=0.46, respectively; Fig. S1, supplementary material).

Following previous work (Van De Ville et al., 2010; Mehrkanoon et al., 2014a), we finally

sought to quantify the temporal evolutions of connectivity in these significant connections

using the Hurst exponent. To characterize changes in the dynamics of inter- cerebellum

and cortico-cerebellar functional connectivity patterns, we estimated the Hurst exponent of

pre- and post-training temporal evolutions of the above three significant edges at signifi-

cant frequencies 10 Hz (network 1), 11 Hz (network 2), 12 Hz and 20 Hz (net- work 3)

(Figure 7D). The mean and standard deviation of the Hurst exponents of the three sig-

nificant edges obtained from pre and post resting-state conditions lie in the same range

0.58±0.1 and 0.61±0.12 respectively: Left-cerebellum 9-vermis 9 (left panel), left primary

motor cortex-vermis 3 (middle panel), and left cerebellum 7b-left temporal mid gyri (right

panel). Crucially, the confidence intervals of the Hurst exponent of all networks remain well

above 0.5, which implies that the networks have persistent, long-range temporal dependen-

cies consistent with slow power-law decay. The slight increase in these exponents did not

reach statistical significance, so only support the persistence of long-range correlations in

cortico-cerebellar networks.

We also sought to investigate the power spectral density (PSD) analysis of occipital EEG

signals and voxels’ signals in the cerebellum to clarify the specificity of the results against

potential effects of muscular artifacts on the observed changes in functional connectivity.

These analyses revealed limited high-frequency activity indicative of EMG activity. In ad-

dition, no significant increase in the spectral power was observed after motor learning that

could explain the upregulation of cortico-cerebellar connectivity (Fig. S1D).
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Figure 7: Spectral−temporal dynamics of pre−post resting-state networks. A) Power spec-

tral density of the networks 1, 2 and 3 with peaks at the significant carrier frequencies of 10

Hz (left panel), 11 Hz (middle panel), and 12 Hz, 20 Hz (right panel) respectively, B) the pre

and post imaginary parts of the coherence at the significant frequencies (see above) for the

three significant edges: Left-cerebellum 9−vermis 9 (component 1) (left panel), left primary

motor cortex−vermis 3 (component 2) (middle panel), and left cerebellum 7b−left temporal

mid gyrus (component 3) (right panel), C) pre and post phase spectra of the three signifi-

cant edges at the significant frequencies in component 1 (left panel), component 2 (middle

panel), and component 3 (right panel), D) the Hurst exponent of the pre and post temporal

evolutions (dynamics) of the three significant edges (see above) from the components 1, 2,

and 3 at significant frequencies of 10 Hz (left panel), 11 Hz (middle panel), and 12 Hz and

20 Hz (right panel).
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4 Discussion

We investigated changes in cortical and subcortical networks after a single session of motor

training, by examining brain-wide functional connectivity in source-reconstructed resting-

state EEG. The imaginary part of the coherence was estimated between 112 ROIs during

eyes-closed resting-state immediately before and after motor training and changes in brain-

wide connectivity induced by motor training were assessed using PLS. We observed three

significant components that revealed upregulation in functional connectivity in and between

central regions of the motor system, in particularly the cerebellum and motor cortex. These

findings are consistent with previous fMRI studies on motor learning (Doyon et al., 2009;

Dayan and Cohen, 2011; Hardwick et al., 2013), and hence confirm the feasibility of ex-

amining changes in intrinsic connectivity using source-reconstructed EEG. Our analyses

additionally reveal that increased coherence was observed in the alpha and beta frequency

bands, brain rhythms that have been closely associated with motor control. The correspond-

ing phase spectra revealed greater phase difference after training, indicative of a longer delay

from the cortex to the cerebellum. The current results extend previous findings by revealing

the changes in synchronous brain oscillations in a distributed motor network following a

single session of motor training.

The first two significant PLS components revealed increased connectivity within the cere-

bellum and between cerebellum and motor cortex. These two modes explained 24 % of

the variance. The third mode explained 7% of the variance and revealed increase connec-

tivity in a distributed set of connections including again the cerebellum and the temporal

pole, putamen, amygdala and insula. Together these results indicate a prominent role of

the cerebellum in the after effects of motor training. The central role of the cerebellum

and cortico-cerebellar loops in motor learning are consistent with existent literature (Ray-

mond et al., 1996; Inoue et al., 2000; Della-Maggiore et al., 2009; Nguyen-Vu et al., 2013).

Moreover, motor adaptations and learning are impaired in patients with cerebellar damage

(Diedrichsen et al., 2005; Smith and Shadmehr, 2005). However, cerebellar activity is tra-
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ditionally thought to be difficult to measure using EEG/MEG. The cerebellum is regarded

as a deep source, and moreover the dendritic physiology of cerebellar neurons differs from

that of pyramidal cells in cerebral cortex. As such, the cerebellum has been generally over-

looked in scalp EEG/MEG for several years (Dalal et al., 2013), however, recent studies have

further investigated the functional roles of the cerebellum and cortico-cerebellar interactions.

Regions in the cerebellum often exhibit oscillatory activity at much higher frequencies that

are not necessarily coherent with other locations (Niedermeyer and da Silva Fernando, 2004).

However, when synchrony is imposed on the cerebellar cortex from outside, large-amplitude

local field potential (LFP) signals can emerge from cerebellar circuits (Kandel and Buzsáki,

1993; Buzsáki et al., 2012). In addition, the distance between voxels located in the cerebellum

and the closest EEG electrodes is between 1−7 cm, which is similar to the distance between

voxels in the occipital cortex and EEG sensors and not as deep as many other subcortical

structures. Future work could employ higher-density EEG (128-256 channel caps) together

with a realistic head model derived from individual MRIs in order to more accurately identify

the cerebellar contributions to cortico-cerebellar functional connectivity in motor learning

(Hassan et al., 2014). Indeed, several studies have revealed oscillatory MEG activity origi-

nating from the cerebellum in the theta, alpha and beta bands (Gross et al., 2002; Pollok

et al., 2009; Jerbi et al., 2007; Fujioka et al., 2012; Dalal et al., 2013). The current find-

ings show increased cerebellar connectivity in the mu/alpha (component 1 and 2) and beta

band (component 3), which is consistent with previous studies showing alpha-band coher-

ence in the distributed motor system during sensorimotor integration (Pollok et al., 2009;

Gross et al., 2005; Kujala et al., 2007). Given that both the spatial and spectral pattern

of increased connectivity observed in this study is consistent with existing literature, these

findings confirm the ability to measure cerebellar connectivity using source-reconstructed

EEG. To improve electric source imaging analyses, it is hence suggested to use high-density

EEG (128-256 channel caps) with realistic head models derived from individual MRIs (Has-

san et al., 2014). We examined the PSDs of occipital EEG signals and voxels’ signals in

the cerebellum to clarify the specificity of the results against the potential effects of muscu-
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lar artifacts on the observed changes in functional connectivity (see supplementary material).

We used sLORETA − a distributed dipole model − to reconstruct source activity and

computed coherence between all pairs of source signals of 112 anatomically defined ROIs.

These analyses resulted in high-dimensional connectivity arrays for the resting-state record-

ing pre and post motor training. Statistical comparison of these connectivity arrays requires

controlling the family-wise error rate when mass-univariate testing is performed at every

connection comprising the network (Zalesky et al., 2010). Here we use PLS, a multivariate

regression technique, to avoid Type-1 errors. Rather than testing every connection sepa-

rately, PLS extracts consistent changes in coherence across all connections. Permutation

testing accommodates the variability between participants. The low number of significant

components revealed that while the connectivity arrays were high dimensional, the changes

in intrinsic connectivity induced by motor training were in fact low dimensional. That is, the

connections that were modulated by motor training revealed similar frequency spectra. PLS

hence provides a data-driven approach to map changes in brain-wide connectivity induced

by interventions such as motor learning. Wu et al. (2014) also used PLS to identify cortico-

cortical coherence in resting-state EEG that was correlated with motor skill acquisition.

Whereas they estimated functional connectivity in sensor space and used M1 as seed region,

we interrogate brain-wide connectivity in source space. As the method is data driven it can

be easily applied to identify changes in intrinsic connectivity induced by other interventions,

including brain stimulation techniques such as TMS and tDCS (Polańıa et al., 2011; Thut

and Miniussi, 2009; Grefkes and Fink, 2011).

Motor performance was assessed by quantifying the speed and accuracy of the force trajecto-

ries. In a previous study we showed that cortico-muscular coherence revealed synchronization

in the alpha and gamma band only when participants made an overshoot when reaching the

second target (Mehrkanoon et al., 2014b). We interpreted this dual-band synchronization

as the afferent and efferent processes involved in parsing prediction errors and generating

new motor predictions. These prediction errors reflect the mismatch between predicted and
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actual sensory outcome of motor commands. In the present study we expected that partic-

ipants would learn this relationship over time and thereby minimize their prediction error.

When comparing speed and accuracy across trials we indeed observed a significant reduction

in movement overshoot − and hence increased accuracy − over trials. However movement

time also increased across trials. While this trade-off may not indicate increased motor per-

formance per se, it reflects motor adaption as participants adjust their motor commands

and the predicted sensory outcomes according to performance on the first few trials, and as

revealed by the change in skill measure and tuning parameter (Figure 3).

Interestingly, previous research has shown that sensory prediction errors drive cerebellum-

dependent adaption of reaching (Tseng et al., 2007), consistent with the present findings.

Motor learning literature broadly distinguishes between motor adaptions and motor sequence

learning, as they are mediated by different neural substrates (Doyon et al., 2003). Motor

adaption reflects the process by which subjects learn to adapt to environmental perturba-

tions or changes and is primarily mediated by the cortico-cerebellar system (Doyon et al.,

2003, 2009; Hardwick et al., 2013). Motor adaptation is generally studied in reaching tasks

in which the relationship between movements of a manipulandum and cursor on a monitor

is perturbed. While the relationship between forces changes and visual feedback is not per-

turbed in the presented study, the relationship is still unknown when participants initially

commence the task: They hence need to update their internal models while performing

this new task (Imamizu et al., 2000). The observed increase in cortico-cerebellar functional

connectivity is consistent with this interpretation.
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5 Conclusions

The outcomes of the present study indicate that upregulation of cortico-cerebellar network

connectivity reflects functional changes as a result of a single session of motor training.

Changes in the spectra, phase, and spatiotemporal patterns of source-space EEG resting-

state networks reveal that the cerebellum is central in motor adaptions via phase-lagged

interactions with the motor cortex and basal ganglia at the mu and beta frequency bands.

In sum, using source-reconstruction EEG, we captured the spectral and topographical fin-

gerprints of changes in intrinsic connectivity as a result of motor training. The ability to

capture modulations in intrinsic connectivity between the cortex and cerebellum demon-

strate the potential of EEG to assess neural plasticity induced by motor training.
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