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Abstract 14 

Major Depressive Disorder (MDD) contributes to a significant worldwide disease burden, expected 15 
to be second only to heart disease by 2050.  However, accurate diagnosis has been a historical 16 
weakness in clinical psychiatry.  As a result, there is a demand for diagnostic modalities with greater 17 
objectivity that could improve on current psychiatric practice that relies mainly on self-reporting of 18 
symptoms and clinical interviews.  Over the past two decades, literature on a growing number of 19 
putative biomarkers for MDD increasingly suggests that MDD patients have significantly different 20 
biological profiles compared to healthy controls.  However, difficulty in elucidating their exact 21 
relationships within depression pathology renders individual markers inconsistent diagnostic tools.  22 
Consequently, further biomarker research could potentially improve our understanding of MDD 23 
pathophysiology as well as aid in interpreting response to treatment, narrow differential diagnoses, 24 
and help refine current MDD criteria. Representative of this, multiplex assays using multiple sources 25 
of biomarkers are reported to be more accurate options in comparison to individual markers that 26 
exhibit lower specificity and sensitivity, and are more prone to confounding factors.  In the future, 27 
more sophisticated multiplex assays may hold promise for use in screening and diagnosing 28 
depression and determining clinical severity as an advance over relying solely on current subjective 29 
diagnostic criteria.  A pervasive limitation in existing research is heterogeneity inherent in MDD 30 
studies, which impacts the validity of biomarker data.  Additionally, small sample sizes of most 31 
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studies limit statistical power.  Yet, as the RDoC project evolves to decrease these limitations, and 32 
stronger studies with more generalizable data are developed, significant advances in the next decade 33 
are expected to yield important information in the development of MDD biomarkers for use in 34 
clinical settings. 35 

1 Introduction 36 

Major Depressive Disorder (MDD) is a highly prevalent illness in the United States that causes broad 37 
functional impairments  (1) with significant public health costs (2, 3) and evidence of increasing rates 38 
over the past few decades (4). Together, this indicates that there is significant need to develop an 39 
objective characterization of the disorder for screening and diagnostics. The diagnosis of MDD 40 
currently relies on the clinical judgment of individual clinicians with high levels of subjectivity and 41 
potential variability.  Following the publication of the 5th edition of the Diagnostic and Statistical 42 
Manual of Mental Disorders (DSM 5), concerns have been expressed with regards to the revised 43 
definition of MDD (5).  Although based on opinion, the response to the changes of diagnostic criteria 44 
has highlighted how differing beliefs exist with regards to the MDD diagnosis, the subjectivity of 45 
diagnosing depressed patients, and the perception of a decrease in the reliability of MDD criteria 46 
under DSM 5 guidelines (5).  Concerns about the validity of psychiatric diagnosis for depressive 47 
disorders is disconcerting and further emphasize the demand for more objective diagnostic modalities 48 
to assess MDD, such as blood-based and cerebrospinal fluid (CSF) biomarkers.  Although there has 49 
been a significant amount of research in the development of fluid biomarkers for use in establishing 50 
MDD diagnosis (6-10), a consensus on which biomarkers are sensitive and specific enough to be 51 
used in a clinical setting has yet to be reached (11).  In fact, studies of putative monaminergic 52 
biomarkers such as peripheral and CSF levels of serotonin, dopamine, and noradrenaline often report 53 
conflicting results (12). Fortunately, there has also been an increased interest in other potential 54 
approaches by which MDD biomarkers may be discovered (13, 14).  The objective of this article is to 55 
provide a broad overview of several types of biomarkers for MDD currently being investigated and 56 
to describe recent progress in identifying biomarkers that may potentially aid in the standardization 57 
of MDD diagnosis. Due to the sizeable literature investigating candidate MDD biomarkers and the 58 
limited space afforded to the authors, this overview will only focus on a select number of tissue-59 
based biomarkers and recent multiplex studies published before December 1, 2015, while excluding 60 
current literature from the burgeoning neuroimaging biomarker data of structural imaging that has 61 
been previously reviewed (15-17).  62 

2 Biomarker Candidates 63 

2.1    Hypothalamic-Pituitary-Adrenal Axis (DST, DEX/CRH, Cortisol Response, Hypocretin) 64 

HPA-axis hyperactivity has been associated with a spectrum of neuropsychiatric disorders due to its 65 
deleterious effects on the nervous system including dendritic process atrophy, decreased 66 
neurogenesis and neuroplasticity, and neuronal losses (18, 19); consequently, a wide range of 67 
biomarkers may be disrupted by HPA-axis dysfunction, such as disturbed adrenocorticotropic 68 
hormone (ACTH) regulation, dysfunctional corticosteroid receptor signaling, and glucocorticoid 69 
excess (18). 70 
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Furthermore, mutations in genetic regions involved in abnormal HPA-axis function (such as the 71 
FKBP5 allele) have also been associated with an increased risk for depression, and are similarly 72 
associated with abnormal plasma cortisol and ACTH concentrations (20-23).   73 
However, beyond genetic factors, epidemiologic and clinical studies have determined that 74 
disturbances in HPA axis function have been consistently associated with biological changes in 75 
depression (24, 25). For example, one facet of depression history that is associated with HPA axis 76 
changes is early life stress. Early life stress (e.g. maltreatment or abuse) was found to result in HPA 77 
axis dysfunction during childhood and adolescence, and contributed to an increased risk of 78 
developing MDD later in life (26).   79 
 80 

Moreover, diminished cortisol suppression following dexamethasone (DEX) administration was 81 
observed in MDD patients with metabolic abnormalities of prefrontal and hippocampal regions, areas 82 
often related to MDD pathology (27).  Other studies found that antidepressant treatment often 83 
resulted in decreased cortisol levels and a return to normal HPA axis function (28, 29).  84 

 85 
 Originally, as corticotropin releasing hormone (CRH) has been reported to be associated with 86 
increased depressive symptoms such as anhedonia and reduced appetite (30), a combined DEX/CRH 87 
test was thought to be capable of increasing diagnostic power over the Dexamethasone Suppression 88 
Test (DST) (12, 31). However, abnormal DEX/CRH results also occur in other psychiatric disorders 89 
resulting in lack of specificity as a diagnostic biomarker for major depression (12).  Measuring 90 
cortisol levels is a more direct and accurate method of assessing HPA axis activity in depressed 91 
patients (32). Additionally, more recent studies focusing on cortisol measurements have 92 
demonstrated a link between cortisol levels and depression severity or depressive subtypes.   93 
 94 

A recent meta-analysis (33) reports a significant association between HPA-axis hyperactivity as 95 
measured by elevated cortisol levels and the presence of melancholic or psychotic depression while 96 
lower cortisol levels were characteristic of depression with atypical features. For example, a 97 
longitudinal study of adolescents with depressive symptoms found that male adolescents with high 98 
morning salivary cortisol levels and increased depressive symptoms were more susceptible to the 99 
development of MDD demonstrating a sex-linked differentiation (34).  100 

Another study also reported that persistent increases in cortisol awakening response (CAR) in 101 
adolescents more strongly correlated with higher levels of depressive symptoms than with anxiety 102 
symptoms (35).  Lastly, a large cohort study confirmed increased CAR and dynamic cortisol 103 
secretion in depressed patients compared to controls in both current MDD and remitted MDD 104 
subjects, indicating that both measurements reflect an inherent risk in the development of depression 105 
(29).  These studies suggest the use of morning salivary cortisol as a trait-like biomarker for 106 
developing preventative measures for high-risk populations, especially in asymptomatic individuals 107 
with possible genetic risks (36).  However, a recent study revealed that increased CAR in healthy 108 
female adolescents significantly correlated with higher magnitudes of Profile of Mood States 109 
(POMS) subscale scores for “Tension-Anxiety,” “Depression-Dejection,” “Fatigue,” and 110 
“Confusion” (37) suggesting that morning salivary cortisol levels may also be descriptive of mood 111 
states and episodic depressive symptoms rather than characteristic of a purely trait marker for MDD.  112 
Such findings suggest variability in the use of salivary cortisol as a depression biomarker. However, 113 



Is there Progress? An Overview of 
Select Biomarker Candidates for 
Major Depressive Disorder 

 

 4 This is a provisional file, not the final typeset article 

it is important to consider how these contrasting conclusions may be affected by methodological 114 
heterogeneity and differences in subject populations among these studies.   115 

Another possible biomarker source includes hypocretin, a neuropeptide that plays a role in sleep and 116 
arousal. Recently, it has been suggested that decreased numbers and size of hypocretin-containing 117 
neurons may be associated with the development of depressive symptoms including eating/drinking 118 
behaviors and disrupted sleep (38, 39). One study found that hypocretin levels in the CSF of MDD-119 
diagnosed patients with high suicidal ideation were significantly lower than those of patients with 120 
dysthymia and adjustment disorder (40).  Additionally, hypocretin levels correlated significantly with 121 
CSF levels of other peptides that affect sleep and appetite including delta sleep-inducing-peptide-like 122 
immunoreactivity (DSIP-IL), corticotrophin releasing factor (CRF), and somatostatin.  Not only are 123 
these results indicative of the diagnostic utility of measuring hypocretin concentrations, but these 124 
peptides may also be useful in discriminating affective disorders by associating differing biological 125 
characteristics with signs and symptoms of depression. However, one study reported results that 126 
counter the more common conception of lower hypocretin levels in depression (41). Bearing in mind 127 
the relatively few studies and the dynamic character of HPA axis components in general concerning 128 
hypocretin-based biomarkers for depression, future studies would be instrumental in further 129 
elucidating hypocretin effects in depressed patients.   130 

2.2     Thyroid Function and Thyroid Autoimmunity 131 

A number of studies have related thyroid dysfunction with depressive symptoms and depressive 132 
disorders (42-50). However, a direct correlation is indeterminate as evidenced by a number of 133 
conflicting studies (51-56). More recent studies have shown a relationship between levels of anti-134 
thyroid antibodies with depression (57-59) and poorer “psychosocial well-being” (60).   However, 135 
there also exists literature demonstrating equivocal data concerning this association (61). In fact, one 136 
group found that thyroid function and thyroid autoantibody levels were not associated with 137 
depression severity despite an association with the presence of depressive symptoms (58). Supporting 138 
these results, a general population study showed no significant difference in depressive symptoms 139 
between euthyroid individuals and those characterized to have subclinical hypothyroidism (62). 140 
Conversely, another general population study found an increase in prevalence of lifetime depression 141 
diagnosis in subjects positive for thyroid peroxidase antibodies, suggesting its use as a trait marker 142 
for depression despite finding no association between depression disorder diagnosis and TSH or free 143 
T4 levels (63). Interestingly, one study (64) found T3 and T4 levels derived from hair were 144 
significantly lower in patients concurrently having a depressed episode (P<0.001), which may 145 
indicate the use of thyroid hormones as a state-like biomarker. In this sense, future studies should 146 
focus on readily accessible markers of thyroid function that have some state-like diagnostic utility in 147 
major depression diagnosis as studies researching their use as trait-like markers have demonstrated 148 
mostly equivocal results. 149 

2.3    Cytokines and Inflammatory Markers 150 

There also exists an abundance of evidence that elevated proinflammatory cytokine concentrations 151 
and an increased immune response are associated with depression diagnosis, symptomatology, and 152 
severity (65-69).  Reflective of this significant proinflammatory response in depressive disorders, a 153 
recent proteomic study found elevated levels of acute phase reactants (e.g. ferritin, serotransferrin, 154 
Haptoglobin-related protein, ceruloplasmin) and proinflammatory markers (e.g. IL-16, MIF, 155 
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Tenascin-C, EN-RAGE) in drug-naïve MDD patients, indicating a disorder-related increase in 156 
immune processes (70). These findings are supported by neuroimaging and animal studies, which 157 
have demonstrated that alterations in neuroplasticity promote manifestations of depressive 158 
phenotypes as a result of cytokine-induced neural apoptosis and metabolic dysregulation (71).  159 
Further, inflammatory cytokines have been described to alter basal ganglia processes leading to 160 
common depressive phenotypical characteristics including anhedonia, fatigue, and psychomotor 161 
retardation (72-75).  A recent review also reported increased neopterin levels in a number of studies 162 
of depressed patients, specifically in melancholic subtypes of depression (76).  Additionally, 163 
inflammatory markers IL-6 and soluble intercellular adhesion molecule (sICAM) have been 164 
associated with sleep disturbances in depressed patients (77). IL-8 and TNF-α have also been 165 
reported to remain elevated in certain subsets of depressed patients after antidepressant therapy, 166 
indicating possible trait characteristics (78).  167 

 C-reactive protein (CRP) and interleukin (IL)-6, specifically, have been found to exhibit trait 168 
characteristics (i.e. gender effects, impact of early life adverse events) as an inflammatory biomarker 169 
for depressive pathology (79-82). In their meta-analysis, Valkanova and colleagues (83) found that 170 
these two putative analytes had a small but significant association with the development of 171 
depressive symptoms, indicating the presence of raised inflammatory markers preceding the 172 
development of MDD. However, the authors cautioned that their results might have limited 173 
significance due to heterogeneity (i.e. of depression, methodologies, populations, etc.) across studies.   174 
For instance, one study (84) found both higher and lower levels of different inflammatory markers in 175 
major depressed patients depending on the presence or absence of melancholic features, indicating 176 
that that the overall characteristics of depressive symptoms were more associated with the 177 
composition of inflammatory profiles and less so on concentrations of individual markers.  178 
Moreover, a study of an elderly population found that when controlling for age-related chronic 179 
diseases, CRP was not a statistically significant marker associated with the presence of MDD or sub-180 
threshold depression (85).  Lastly, one group reported significantly lower levels of IL-6 in subjects 181 
with high self-reported depressive symptoms while showing no significant differences of IL-8, IL-10, 182 
and TNF-α levels when compared to controls (86). As a whole, these studies demonstrate the 183 
complexities of relying on individual inflammatory marker concentrations to characterize generalized 184 
depression. 185 

Yet, there is reasonable evidence that suggests inflammatory responses are more prominent in certain 186 
subsets of MDD than others.  A study evaluating biomarker associations with depressive subtypes 187 
found that increased inflammatory markers (i.e. CRP, IL-6, TNF-α) were significantly associated 188 
with atypical depression as compared to typical or melancholic depression (87).  Consistent with 189 
these results, a more recent study (88) reported that elevated IL-6 levels were consistently higher in 190 
patients with atypical depression. Similarly, a recent study has detected consistently increased CRP 191 
levels in depressed patients with comorbid diabetes mellitus (89).  Moreover, these studies reinforce 192 
clinical evidence that both inflammatory diseases and depression are often associated with comorbid 193 
illnesses like metabolic disorders (87, 90), especially in more elderly subjects (91-93).  It is possible 194 
that in many cases, the predisposition to depression in patients with elevated inflammatory biomarker 195 
concentrations is affected by a number of outlying factors often present before the emergence of the 196 
first depressive symptoms.  Therefore, in addition to their lack of specificity to MDD, the diagnostic 197 
value of individual inflammatory biomarkers could be hindered by some inherent heterogeneity of 198 
depression.  Although they may be useful as MDD biomarkers in a research environment, their low 199 
sensitivity and specificity (6) prevent them from being utilized in the majority of clinical settings.   200 
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In contrast to the relatively limiting findings of individual inflammatory analyte concentrations as 201 
biomarkers for depression, inflammatory markers have potential use as state markers by 202 
characterizing treatment response to antidepressants (94, 95).  Significantly, antidepressant effects 203 
are associated with a decrease in proinflammatory/anti-inflammatory protein ratios, especially in 204 
patients that respond to treatment when compared to non-responders or healthy controls (96).  205 
Specified inflammatory markers tend to correlate well with treatment efficacy in depressed patients.  206 
For instance, TNF-α levels have been reported as a marker of treatment response and 207 
psychopathological improvement (94, 97).  However, a recent meta-analysis (98) failed to detect 208 
pharmacological effects on serum levels of TNF-α, although they reported that IL-1β levels 209 
decreased after antidepressant treatment. Another analyte, high sensitivity C-reactive protein (hs-210 
CRP), was found to be a highly specific baseline biomarker when evaluating patient response to 211 
Infliximab in treatment-resistant depression (TRD) (99).  Similarly, CRP levels have been used to 212 
differentially evaluate treatment efficacy between escitalopram and nortriptyline (100). Considering 213 
the high incidence of treatment resistance in MDD diagnosed patients, inflammatory markers capable 214 
of determining antidepressant treatment response will have a significant impact in depression 215 
management and allow practitioners the ability to modify treatment plans according to personalized 216 
histories and peripheral biomarker results.  For further review, please read the following articles: 217 
Dantzer et al. (101), Leonard & Maes (102), Miller et al. (9, 75), Müller & Schwarz (103) Raison & 218 
Miller (104), and Young et al. (105).  219 

2.4    Markers of Oxidative Stress 220 

Oxidative stress has also been proposed to have an important role in depression pathology (102, 106-221 
108). Consistent with preclinical studies that display increased antioxidant capacity with 222 
antidepressant therapy (109-111), human studies have demonstrated that increased oxidative activity 223 
is reversible by SSRI action in severely depressed, medication-naïve patients (112) or melancholic 224 
patients (113), implying the involvement of oxidative processes in depressive disorders and 225 
monoamine metabolism. However, one study (114) found that treatment with antidepressants did not 226 
affect oxidative-antioxidative markers in MDD subjects while another found increased oxidative 227 
stress after treatment (115). An explanation for these inconsistent results may be the varying 228 
oxidative effects of different antidepressant formulations and duration of treatment that vary between 229 
studies. Whatever the case, the extensive literature associating oxidative processes and depression 230 
suggests markers of oxidative stress may be able to identify depressed patients and quantify severity.   231 

Several studies have found significantly increased oxidative stress markers (e.g. 8-hydroxy-232 
deoxyguanosine (8-OHdG), F2 isoprostane, peroxidase, malondialdehyde (MDA), superoxide 233 
dismutase (SOD)) and decreased antioxidative capacity in MDD patients (112-118).  Some studies 234 
have also demonstrated specific correlations of depressive subtypes or features with oxidative stress, 235 
yet results remain conflicting.  Decreased GSH has also been found to correlate with severity of 236 
anhedonia in depressed patients (119) while plasma GSH-R and erythrocyte glutathione peroxidase 237 
(GPX) levels were elevated in MDD patients with melancholic features (113). A study determining 238 
the relationship between psychological responses and 8-OHdG levels found a positive correlation 239 
with depression-rejection scores of the POMS scale in females compared to a negative correlation in 240 
men, suggesting gender differences in depression-associated oxidative damage markers (120).  241 
Additionally, increased expression and distribution of allele frequencies of enzymatic proteins 242 
involved in the production of oxidative free radicals (e.g. inducible nitric oxide synthase and 243 
myeloperoxidase) were characteristic of patients with recurrent depression (121).  Recently, Smaga 244 
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and colleagues (122) completed a review of a number of clinical studies that demonstrated higher 245 
oxidant status in depressed patients including higher plasma peroxide levels, higher nitric oxide 246 
levels in serum, and higher xanthine oxidase levels. The authors also found that oxidative DNA 247 
damage and higher levels of lipid peroxidation markers were also prevalent in a number of 248 
depression studies. 249 

In elderly populations, free radicals have been implicated in the pathophysiology of other 250 
neurodegenerative disorders along with MDD (123, 124).  A study by our group has shown increased 251 
CSF F2-isoprostanes in geriatric patients diagnosed with MDD; further, an inverse relationship was 252 
found between amyloid-β 42 and F2-isoprostane CSF levels, suggesting that increased oxidative 253 
stress pathology may be associated with increased brain amyloid burden (125).  These findings are 254 
corroborated by other published findings that imply similar pathological mechanisms (e.g. increased 255 
levels of lipid peroxidation) between major depressive disorder and chronic, age-related diseases 256 
(126).  Due to the complex neurobiological complications that are present in late-life depression, 257 
there is a need to identify specific markers in order to direct biology-based treatment.  258 

2.5    Neurotrophins 259 

Neurotrophins (i.e. nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 260 
neurotrophin (NT)-3, 4, and 5) are homodimeric proteins that interact with the tropomyosin receptor 261 
kinase (Trk) family of receptors through which they mediate the processes of neurogenesis and 262 
neural plasticity in both the peripheral and central nervous systems (127).  Several connectomic 263 
studies have increasingly indicated the disruption of integral whole-brain structural networks in 264 
MDD, suggesting the presence of abnormal neuronal synapse formation within certain populations of 265 
depressed patients (128, 129).  In fact, there is evidence that disrupted neurogenesis may be a 266 
characteristic of MDD pathophysiology; especially of the hippocampus (130, 131).  Due to the role 267 
of neurotrophins in neuroplastiticty, their use as potential biomarkers has often been reviewed.  Of 268 
these, the most researched is BDNF, with studies finding its downregulation in the limbic structures 269 
of chronic-stress exposed rats and reports of decreased peripheral levels in MDD patients (132-136).  270 
Significantly, a recent study (137) has shown serum BDNF may also have significant potential as a 271 
discriminatory diagnostic tool for first major depressive episode (MDE) patients, prompting the need 272 
for more expansive studies concerning its use in clinical settings.  While there have been conflicting 273 
results concerning correlations of depression severity with BDNF levels (138), BDNF concentrations 274 
have been reported to increase after antidepressant therapy with more prominent elevations in 275 
patients with higher baseline depression severity (139-145).  Several studies have also reported 276 
elevated BDNF levels in responders to antidepressant treatment compared to non-responders that 277 
continued to demonstrate lower BDNF concentrations after pharmacologic management (146, 147).  278 
These findings suggest that BDNF may be utilized as a state marker to assess psychopharmacological 279 
therapy and prognosis of individual MDD patients (148), although the effect on BDNF levels may 280 
vary between different classes of antidepressants (149).  Ultimately, due to its intrinsic function in 281 
influencing the development and maintenance of a patient’s cognitive abilities, BDNF could have 282 
potential for evaluating other therapy effects involving learning, memory, and executive functions 283 
(134, 150).    284 

Alternatively, de Azevedo Cardoso and colleagues (151) have suggested that BDNF may also have 285 
trait-like properties. For example, differences between male and female BDNF levels have been 286 
associated with contrasting antidepressant effects between the two genders (145).  Additionally, there 287 
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is evidence that BDNF levels are more negatively affected in patients with chronic depression who 288 
have experienced more adverse life events (152).  Supporting this theory, several groups have 289 
illustrated how BDNF genotypic variations were associated with risk for depression (151, 153-157). 290 
BDNF DNA methylation patterns have also been associated with depression severity, and the 291 
presence of suicidal ideation in MDD subjects (158-160).  Consequently, the potential for BDNF to 292 
be a trait and state-like marker makes it one of the more versatile biomarker candidates being 293 
researched today. 294 
In contrast, fewer studies have focused on other neurotrophins, with the notable exception of NGF, 295 
which has been found to be increased during circumstances that cause anxiety or anticipation of 296 
anxiety (161).  Regarding NGF’s relationship to depressive symptoms, reports of NGF 297 
concentrations have yielded conflicting results (151, 162, 163).  Additionally, due to its association 298 
with other affective disorders such as bipolar disorder (BPD) (164), it is unlikely to be specific to 299 
MDD.  These limitations, however, should not preclude it from further research. 300 

2.6    Markers in Genetics and Genomics for MDD 301 

Past studies have suggested that there is a complex genetic component to the development of MDD, 302 
with evidence that heritability is a key factor in a significant number of depression cases (165-167). 303 
Additionally, several studies have revealed various polymorphisms and overexpression of certain 304 
genes in patients presenting with depressive symptoms (168-170).  One example is a blood-based 305 
study that found increased serotonin type 1A receptor (5-HT1A) expression within platelets of MDD 306 
patients compared to controls (171).  The authors also reported decreased levels of serotonin (5-HT), 307 
platelet poor plasma (PPP) 5-HT, and a decrease of the 5-HT metabolite, 5-hydroxyindoleacetic acid 308 
(5-HIAA), suggesting that increased 5-HT1A expression inversely correlated with 5-HT activity via a 309 
negative feedback mechanism.  Often, such genetic variants imply pathological mechanisms 310 
associated with the dysfunction of different biological systems implicated in depression.  Another 311 
example is HPA axis hyperactivity, which is believed to influence the pathogenesis of MDD due to 312 
findings of glucocorticoid (GR) and mineralocorticoid (MR) receptor dysfunction in depressed 313 
patients (24). For instance, a longitudinal study focusing on neuropsychiatric disorders in an elderly 314 
community found that several single-nucleotide polymorphisms (SNPs) of angiotensin-converting 315 
enzyme (ACE) were significantly associated with the risk of late-life depression (172).  Additionally, 316 
they reported that two SNPs (rs4291 and rs4295) were associated with the risk of incident depression 317 
over the study’s 10-year follow-up.  More recent studies have determined that polymorphisms of the 318 
FKBP5 gene (a gene that plays a role in immune regulation) also modulate GRs, and have been 319 
associated with the development of depression (20-23).  A meta-analysis of HPA axis dysfunction 320 
associated with GR abnormalities found that glucocorticoid-induced leucine zipper (GILZ), a product 321 
of GR-initiated gene transcription, has been suggested to be associated with biological pathways 322 
relevant to depression (173).  Though few studies have focused on GILZ concerning depressive 323 
disorders, there is clinical evidence that a reduction in its expression is associated with reduced 324 
hippocampal volumes found in MDD diagnosed subjects (174).  325 

More comprehensive data concerning the heritability of depressive disorders will likely come from 326 
the increasingly complex genome-wide research being conducted today. For example, the GeneQol 327 
Consortium (175) gathered data from a substantial number of studies that undoubtedly demonstrate 328 
the involvement of genetic variables in quality of life (QOL) domains (e.g fatigue, pain, general 329 
functioning, social functioning, general health). Of the biomarker candidates they reviewed, 330 
candidate genes and molecular markers that had the most evidence of association with QOL domains 331 
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were genes for inflammatory cytokines (e.g. IL-1β, IL-6, IL-8, TNF-α).  Additionally, inflammatory 332 
markers (e.g. CRP), and anti-inflammatory markers (e.g. IL-1RN, IL-1RA, IL-10) were also 333 
associated with a smaller number of QOL domains. Other QOL associated markers include genes for 334 
dopaminergic and serotonergic synapses (MAOA, 5-HTT (SLC6A4), TPH1), the glutathione 335 
metabolic pathway (DPYD), and pain receptor pathways (OPRM1). However, the specificity and 336 
accuracy of these markers for MDD may be limited by significant genetic heritability among 337 
psychiatric disorders (176), and the fact that current MDD genomic data is limited by heterogeneity 338 
and insufficient power (177). Yet, these findings still underlie the potential of genetic irregularities to 339 
play a role in more accurately characterizing and diagnosing depressive disorders.  Currently, better 340 
powered studies are required to determine the etiologic and genetic variables involved in MDD 341 
pathology, especially when conducting genome-wide research. 342 
MicroRNAs (miRNAs) are a popular genetic marker in researching MDD biomarkers due to their 343 
role as small RNA regulators involved in neural stem cell proliferation, neurogenesis, and neural 344 
plasticity (178).  In addition, several miRNA alterations were associated with an increase in risk for 345 
major depression and negatively regulate the expression of either serotonin receptors (SERT) or 5-346 
HT1B receptors (179).  Significantly, one study (180) has indicated that miRNA profiles are capable 347 
of separating Major Depressive Episode (MDE) patients from controls while a second study (181) 348 
found 30 miRNAs to be differentially expressed in MDD patients after escitalopram treatment.  349 
These findings are further corroborated by results from a study demonstrating gene variations in 350 
Drosha RNase and Digeorge syndrome critical region 8 (DGCR8), a known cofactor in miRNA 351 
processing, and AGO1, a component protein involved in the production of mature miRNAs, as being 352 
capable of significantly differentiating MDD patients and healthy controls in relation to genotype and 353 
allele frequencies (182).  Another study demonstrated that dysregulation of circadian rhythms in 354 
MDD patients was associated with the rs76481776 polymorphism of miR-182, suggesting that 355 
symptoms of MDD may be inherently linked to genetic variations that affect miRNA function (183).  356 
These distinctive miRNA profiles in depressive disorders predispose them to becoming a promising 357 
source of biomarkers for MDD research and diagnostics.  With   more studies confirming their 358 
involvement in depression and with advances in miRNA expression measurement techniques (184), 359 
miRNA data may prove to be useful additions to MDD biomarker panels.    360 
Several studies have demonstrated an association between telomere length and depressive disorders.  361 
Szebeni and colleagues’ recent post-mortem study, previously described, found decreased expression 362 
of telomerase reverse transcriptase (TERT), an enzyme whose function is to prevent telomere 363 
shortening (TS), in oligodendrocytes derived from different parts of the brain (185).  Another study 364 
found over expression of certain genes involved in propagating TS in the leukocytes of female MDD 365 
subjects (186).  Specifically, these genes have been associated directly or indirectly with telomere 366 
dysfunction (STMN1, P16ink4a), oxidative stress (OGG1), and aging (OGG1) while others (FOS, 367 
DUSP1) were linked to the stress-related p38MAPK pathway, although they are not specific to 368 
depression and may be found in normal aging or anxiety disorders (186).  In fact, at least one large-369 
scale study has shown an association between symptoms of anxiety and TS in comparison to 370 
depression-associated telomere dysfunction over a 2-year period of time (187).  Considering that 371 
telomere length is a biomarker of cellular aging, it is not surprising that it is more commonly 372 
associated with chronic periods of life-long depression rather than acute episodes (188).   373 

Yet, shorter telomere lengths have also been observed in children of lower socioeconomic status with 374 
coexisting dopaminergic/serotonergic genetic sensitivity to harsher social environments (189).  This 375 
study suggests that significant stress at an early age may be associated with genetic and biological 376 
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changes that predispose children to depressive disorders. Therefore, TS may not be exclusively 377 
valuable as a biomarker in older populations, but may also be useful in identifying children who are 378 
more prone to TS as a result of immature protective mechanisms against inflammatory, oxidative, 379 
and HPA-axis effects on cellular genetic coding.  Furthermore, a recent study reported a negative 380 
correlation between telomere length and cortisol reactivity in female adolescent subjects with familial 381 
risk for depression (190).  This study implies how inherent HPA axis dysregulation, consistent with 382 
biological changes in depression pathology, is associated with telomere shortening that typifies the 383 
accelerated cellular aging in younger cohorts (190). Accordingly, such studies indicate TS could find 384 
more use as a predictive or screening marker in younger and geriatric populations, respectively, than 385 
a specific biomarker for MDD.  However, a recent large-scale study found increased mitochondrial 386 
DNA and shortened telomere length in subjects with major depression status, but did not find either 387 
variable to correlate with increased risk of developing major depression, suggesting characteristics of 388 
a state biomarker (191).  Further research will be required to elucidate the basis for these contrasting 389 
findings.   390 

Lastly, significant consideration should be given to the difficulty of directly associating genetic 391 
phenotypes with psychiatric disorders. In response to this challenge, Gottesman and Gould (192) 392 
proposed criteria for developing endophenotypes, intermediary constructs that would act as tractable 393 
traits that could more effectively characterize the heritability of psychiatric disorders. Hasler et al. 394 
(193), and more recently Goldstein and Klein (194), have published detailed reviews about both 395 
psychopathological (e.g. neuroticism, anhedonia, depressed mood, increased stress sensitivity) and 396 
biological (e.g. morning cortisol, tryptophan depletion, DEX/CRH, CRH dysfunction, hippocampal 397 
volume, reduced 5HT1A receptor expression) endophenotypes for depression. However, there 398 
continues to be a relative lack of evidence for current putative endophenotypes, specifically due to a 399 
deficiency of family and twin studies (194). It is therefore possible that future endophenotype studies 400 
and analysis may contribute to the growing literature characterizing MDD as well as further the 401 
development and understanding of MDD etiology and pathophysiology that remain the most 402 
heterogeneous components of the disorder. 403 

2.7    Epigenetics 404 

Epigenetic mechanisms have been used to explain how early life exposures to toxic or stressful 405 
stimuli may contribute to the predisposition or development of mental illness (195). For depressive 406 
disorders, histone modification at the amino (N)-terminal tails and DNA methylation have been the 407 
most studied in determining how epigenetic factors affect the progression, severity, symptomatology, 408 
and treatment response of depression (196, 197). Significantly, these epigenetic modifications may 409 
affect expression of certain receptors (e.g. glucocorticoid receptors in the hippocampus), which leads 410 
to either an increased or decreased risk for depression in the future (196). This is supported by animal 411 
studies that show antidepressant-like effects of histone deacetylase inhibitors (195, 196, 198-200), 412 
which are thought to induce histone acetylation in certain regions of the brain. Overexpression of 413 
DNA methyltransferases also leads to an increase in DNA methylation and has been associated with 414 
abnormal dendritic spine plasticity and alterations in behavioral responses.  Supporting this, one 415 
group found site-specific hypermethylation of TrkB-T1 to be increased in suicide completers (201), 416 
suggesting a pattern of methylation abnormalities in subjects with depressive phenotypes.  Recently, 417 
epigenome-wide association studies have demonstrated several genes with methylation associations 418 
in depressed subjects compared to controls. As these studies are mostly array-based, they have had 419 
the advantage of investigating the entire genome, but replication studies are currently lacking (202). 420 
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One recent genome-wide study (203) was able to separate medication naïve MDD subjects from 421 
controls by observing differences at 363 CpG sites that differed from the pattern they observed in 422 
their schizophrenia patients (204) indicating disease-specific patterns. Furthermore, several candidate 423 
gene studies involving DNA methylation have been investigated and include genes that have been 424 
previously implicated in depression. Among these genes, SLC6A4, BDNF, and NR3C1 have been 425 
the most studied, with BDNF methylation having the most consistent data concerning associations 426 
between DNA methylation and depressive symptoms/antidepressant response (202). This study 427 
demonstrated a significant association between depression and methylation levels of BDNF at 428 
specific CpG sites. Notably, the authors have shown that such robust biomarkers may come from 429 
easily obtainable specimens such as buccal samples. Although epigenetic research is still in its 430 
infancy, these epigenetic mechanisms and resulting patterns in chromatin remodeling are becoming 431 
established as a basis by which chronic social defeat, early life stress, variability of maternal care, 432 
and antidepressant therapy may influence the progression or resolution of depressive symptoms (197, 433 
202, 205, 206). Further studies and elaboration on these mechanisms will likely lead to significant 434 
advances in the development of an epigenetic model from which MDD biomarkers may be retrieved.  435 
Please see Nestler et al. (195), Tsankova et al. (197), and Januar et al (202) for further review. 436 

3 Proteomics, Metabolomics, and the Utility of Multiplex Assays 437 

3.1    Proteomic and Metabolomics Research 438 

There have been recent technological advances that have allowed more in-depth characterization of 439 
medical disorders on both the analytical and clinical level.  Mass spectrometry (MS) proteomics has 440 
allowed researchers to quantify expression levels of proteins for detecting changes after translation or 441 
protein interactions (207).  High performance liquid chromatography (HPLC) has been used to 442 
separate and assess proteomes/metabolites in both schizophrenia (208) and BPD (209).  With 443 
depression, Martins-de-Souza’s group was able to observe differing levels of various proteins 444 
involved in metabolic pathways and molecule transport between MDD subjects and control subjects 445 
(P<0.05) (210). Interestingly, they found that those with MDD who developed psychosis had 446 
differentially expressed proteins that were different from MDD subjects who did not develop 447 
psychosis. Thus, their report suggests that proteomes may aid in the characterization of MDD 448 
subtypes and the varied symptomology of psychiatric patients. There has also been an increase in use 449 
of high-resolution nuclear magnetic resonance (NMR) spectroscopy to evaluate biofluids to 450 
document not only baseline levels of metabolites, but produce complete time-lines of metabolite 451 
variability that may result from drug administration or medical disorders (211).  Consequently, a 452 
number of recent studies have taken advantage of these more complex analytical tools to search for 453 
possible MDD biomarkers in different biological systems.   454 

Using gas chromatography/mass spectrometry (GC/MS) coupled with multivariate statistical 455 
analysis, Ding and colleagues were able to produce distinct blood-based metabolic profiles that were 456 
able to separate MDD patients from healthy controls (212).  Critically, their study found significant 457 
separation between a subgroup of MDD patients with “early life stress” (ELS) versus those that did 458 
not have ELS, indicating possible use for characterizing depressive subtypes.  Their investigation 459 
further supports the theory of separate pathophysiologic mechanisms that cause differing metabolite 460 
concentrations between MDD subtypes.  This is a significant finding given that ELS has been 461 
considered a preventable risk factor for a number of pathological psychiatric disorders (213).  462 
Similarly, Zheng and colleagues (214) used a GS/MS-based urinary metabolite signature to 463 
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demonstrate significant separation of MDD from controls in both training samples and an 464 
independent test cohort that included medicated MDD subjects.  Another group used HPLC to 465 
evaluate plasma levels of glutamic acid, aspartic acid, glycine, gamma-aminobutyric acid (GABA), 466 
and nitric oxide (NO) of medication-naïve melancholic MDD patients, and differentiate them from 467 
matched controls (215).  The resulting data indicated that plasma GABA levels were associated with 468 
anhedonia and suicidal ideation in affected MDD subjects.  The authors observed that the studied 469 
analytes could be used as trait-like biomarkers since metabolite plasma concentrations continued to 470 
be abnormal even after 2 months of fluoxetine treatment despite having no significant correlation 471 
with Hamilton Depression Rating Scale (HAM-D) scores or severity of depression. The results of 472 
this study may indicate how dysregulation of the metabolism of monamine neurotransmitters may 473 
vary and predict the course of depression in certain individuals. Ditzen et al. (216) used 2D 474 
polyacrylamide gel electrophoresis and time-of-flight mass spectrometry peptide profiling to 475 
determine differences in CSF proteomes between depressed patients and controls finding 11 476 
significantly differentially expressed proteins and 16 phosphorylated proteins that separated the two 477 
groups. These proteins have been implicated in CNS diseases, nervous system development, and cell 478 
death. Additionally, Stelzhammer and colleagues (70) have demonstrated a number of proteomic 479 
changes in first onset, drug-naïve MDD patients including markers of inflammation (ferritin, EN-480 
RAGE, ceruloplasmin, IL-16, serotransferrin, tenascine-C), oxidative stress (cortisol), RAS markers 481 
(ACE), and changes in growth factors (BDNF and GH). Lastly, Wang and colleagues (217) have also 482 
reported consistently high sensitivity, specificity, and accuracy in discriminating between MDD 483 
subjects and healthy controls by using matrix-assisted laser desorption ionization time-of-flight MS 484 
to determine peptide profiles in first episode, drug-naïve MDD. The potential for a laboratory-based 485 
analysis to aid in MDD patient identification validates future research using these developing 486 
technologies along with further evaluating any candidate biomarkers found to be capable of 487 
discriminating affective disorders. 488 

3.2 Emerging Multiplex-Based Biomarkers 489 

Though there have been a number of studies analyzing the various neurobiological features 490 
persistently found in depressed patients, no specific marker from a single biological system has been 491 
capable of significantly improving upon the current diagnostic criteria set for MDD patients. As 492 
several of the aforementioned biomarkers seem necessary but not individually sufficient, multiplex 493 
assays are currently the most promising to contribute consistent results to aid in further standardizing 494 
MDD diagnosis and research. As past studies have demonstrated, depression pathology is influenced 495 
by disruption from multiple systems including the HPA axis, oxidative pathways, inflammatory 496 
processes, and neurotrophic homeostasis.  Collectively measuring the putative analytes of each 497 
system will likely increase the power of any diagnostic panel developed for MDD.  This concept is 498 
supported by studies that used multiple analytes of different origins and considered to be potential 499 
biological markers of depressive disorders to increase specificity and sensitivity in diagnosing MDD.  500 
One study worth noting achieved high sensitivity (above 90%) and specificity (above 80%) in 501 
distinguishing MDD patients from healthy controls (218).  The authors used nine biomarkers from 502 
different biological sources such as inflammatory and oxidative indices (α1 antitrypsin, 503 
apoplipoprotein CIII, myeloperoxidase, soluble TNFα receptor type II); the HPA axis (epidermal GF, 504 
cortisol); neurogenesis (BDNF); and metabolism (prolactin, resistin) to develop an algorithm that 505 
produces a score that could potentially be used for an objective diagnosis of MDD. In addition to 506 
achieving high sensitivity and specificity in their pilot study, Papakostas et al. also produced a similar 507 
performance in their replication study.  This group further refined their model algorithm by factoring 508 
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in gender, BMI, and normalized cortisol levels (219).  Another group used CSF concentrations of 509 
multiple analytes including inflammatory biomarkers (IL-6), serotonin metabolites (5-510 
hydroxyindoleacetic acid), dopamine metabolites (homovanillic acid), and HPA axis biomarkers 511 
(hypocretin) to detect severe suicidal behavior and increased risk of completing suicidal attempts in 512 
MDD patients (220).  Likewise, CSF protein biosignatures were found to be capable of 513 
discriminating depressed, bipolar, and schizophrenic patients from healthy controls (221).  These 514 
markers included proteins involved in neurogenesis (e.g. neuronal growth regulator 1, neural 515 
proliferation differentiation and control protein); neurotransmission (seizure related 6 homolog 516 
protein); and oxidative damage (glutathione peroxidase 3).  However, Maccarrone and colleagues 517 
have indicated difficulties differentiating between individual psychiatric disorders and controls, as 518 
only a few proteins of their CSF biosignatures were found competent enough to distinguish between 519 
disease groups.  They have reported high accuracy rates of distinguishing bipolar, depressed, and 520 
schizophrenic patients (i.e. 83.3% for MDD).  Other multiplex studies that have been discussed in 521 
previous sections have also shown significant inflammatory/oxidative features (70) and epigenetic 522 
variations (203) in MDD subjects.  Due to their inherent sophistication and more comprehensive 523 
analysis relative to individual markers, these multiplex assays have the potential to reduce 524 
inconsistent data that develop due to differences in study populations and methods seen in past, 525 
single biomarker studies (219). However, it is currently imperative to conduct future studies that 526 
focus on replicating and confirming such findings that yield increased MDD diagnostic accuracy 527 
using these methods. 528 

4 Limitations of Current Research 529 

The main variables that are consistently problematic in the development of a reliably viable MDD 530 
biomarker involves the heterogeneity of depressive disorder pathophysiology, etiology, and study 531 
designs, which in turn may contribute to conflicting data. As a result, variations between studies 532 
reviewed here limit the precision and generalizability of the findings.  Additionally, although with 533 
notable exceptions mentioned (e.g., the ADNI study and Vreeburg et al. study (29)), most studies we 534 
reviewed collected data from small samples sizes often consisting of fewer than 100 subjects.  535 
Another difficulty is how to consistently associate biomarkers with DSM criteria for MDD (e.g. low 536 
mood, poor concentration, suicidal ideation), which are not always necessary in diagnosing 537 
depression and could be present in other psychiatric disorders including schizophrenia.  538 
Consequently, any biomarkers that are heavily associated with non-specific clinical symptoms of 539 
depression may produce a high rate of false positives.  This is significant as the majority of studies 540 
focus on exploring biological differences between depressive disorders and control groups, but do not 541 
extensively evaluate putative biomarkers’ diagnostic specificity against other psychiatric disorders.  542 
Although current research has an increasing neuroscience focus advocated by the National Institute 543 
of Mental Health through the novel Research Domain Criteria (RDoC) project (222), we are likely 544 
decades away from discovering the basic underpinnings of neurobiological changes present in 545 
psychiatric disorders and how they relate to behavioral shifts; discoveries that are necessary to 546 
determine the adequacy of developing biomarkers (223).  Consequently, the only standards available 547 
to compare the validity and specificity of diagnostic biomarkers are syndromic and descriptive 548 
categories developed by expert consensus (224).  Although the most recent research on MDD 549 
biomarkers has suggested the possibility of finding more objective forms of diagnostics compared to 550 
the aforementioned diagnostic criteria in clinical use today, it is still unclear how these discrete 551 
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markers would relate to the diverse clinical presentations and differing populations that continuously 552 
confound research on MDD.   553 

5  Conclusions 554 

Multiple biological pathways are robust sources of tissue-based MDD biomarkers with trait and state 555 
characteristics. However, individual biomarkers currently impart limited clinical utility.  In the 556 
future, multiplex assays comprised of putative depression biomarkers may improve upon the clinical 557 
evaluation of MDD, assess treatment efficacy, and serve to standardize discharge criteria.  However, 558 
independent replication studies with large sample sizes are needed to fully substantiate the validity of 559 
such panels.  Furthermore, the use of these markers are limited by high costs and confounding factors 560 
associated with each component of prospective diagnostic constituents (225).  If these markers 561 
become reproducible and translate into readily available diagnostic tools with ease of access, low 562 
cost, rapid formulation, and high sensitivity/specificity, the implications for clinical use would be 563 
tremendous.  After decades of investigations and several promising markers falling into obscurity, it 564 
is difficult to say whether we are getting closer or farther away from one of the holy grails of 565 
diagnostic biomarkers for depression.  Suffice it to say, every study that contributes to the 566 
development of such biomarkers will assuredly be needed if such a goal is to be achieved. As the 567 
RDoC project and current technology evolve to lessen the limitations of past studies, future large 568 
scale MDD biomarker studies will be necessary to yield advances that will hopefully have utility in 569 
the clinical setting. 570 
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