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Abstract 

 

The cornerstone of anti-infective therapy is attainment of the effective target concentration of the 

drug at the site of infection; achieving this goal requires integration of the pharmacokinetic and 

pharmacodynamics properties of the anti-infective drug. In this interplay, systemic and local 

quantitative analysis of the drug plays an integral part in providing information about the 

pharmacokinetic and pharmacodynamic properties of the anti-infective; this information is 

critical for drug development as well as evaluation of adequacy of established therapies. In this 

thesis, we will demonstrate the role of systemic and local quantitative analysis in the 

development of preventative strategies for HIV and also, the role of quantitative analysis in 

assessing adequacy of therapy in pediatric tuberculosis (TB). 

 

The projects in this thesis highlight the various points that are key for successful use of anti-

infective drugs. The first two projects, CHARM-01 and CHARM-02, focus on use of anti-

infectives for prophylaxis; specifically the development of tenofovir (TFV)-containing gels as 

locally applied (rectal) microbicides. Since these gels are locally-dosed, there are several factors 

that have to be considered such as the mucosal safety of the formulations, the ability of the 

formulations to cover all potentially HIV-exposed mucosa, and the ability to reach the optimal 

concentration of the active drug, TFV diphosphate (TDF-DP) to prevent HIV infection. 

 

In contrast, the PHATISA project looks at systemic (oral) dosing of anti-TB drugs in children for 

treatment. Children are a unique population in that optimal therapy has to account for the 

differences in absorption, distribution, metabolism and excretion of xenobiotic in the growing, 

ever-changing child. For instance, children have a less acidic gastric environment and their 

gastric motility is slow, which may affect the absorption of drugs. Children, mainly neonates and 

infants, have different water body composition as compared to older children and adults, which 

may affect the volume of distribution of drugs. The ontogeny of metabolic enzymes may affect 

the degree of metabolism that goes on at a specific age, and immaturity of the kidneys will affect 

the excretion of drugs. Unfortunately, most drug regimens used in children are extrapolated from 

adult dosing, which does not consider the abovementioned factors that are unique to children9. In 

the PHATISA study, we sought to evaluate whether a revised WHO-recommendation for TB 

drugs is able to achieve the presumed optimal concentrations for treatment of TB in children. 
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              Chapter 1. Introduction 
 

The cornerstone of anti-infective therapy is attainment of the effective target 

concentration of the drug at the site of infection; achieving this goal requires integration 

of the pharmacokinetic and pharmacodynamics properties of the anti-infective drug1.  In 

this interplay, systemic and local quantitative analysis of the drug plays an integral part 

in providing information about the pharmacokinetic and pharmacodynamic properties 

of the anti-infective; this information is critical for drug development as well as 

evaluation of adequacy of established therapies. In this thesis, we will demonstrate the 

role of systemic and local quantitative analysis in the development of preventative 

strategies for HIV and also, the role of quantitative analysis in assessing adequacy of 

therapy in pediatric tuberculosis (TB).  

 

The projects in this thesis highlight the various points that are key for successful use of 

anti-infective drugs. The first two projects, CHARM-01 and CHARM-02, focus on use of 

anti-infectives for prophylaxis; specifically the development of tenofovir (TFV)-

containing gels as locally applied (rectal) microbicides.  Since these gels are locally-

dosed, there are several factors that have to be considered such as the mucosal safety 

of the formulations, the ability of the formulations to cover all potentially HIV-exposed 

mucosa, and the ability to reach the optimal concentration of the active drug, TFV 

diphosphate (TDF-DP) to prevent HIV infection.2-5  
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In contrast, the PHATISA project looks at systemic (oral) dosing of anti-TB drugs in 

children for treatment. Children are a unique population in that optimal therapy has to 

account for the differences in absorption, distribution, metabolism and excretion of 

xenobiotic in the growing, ever-changing child.  For instance, children have a less acidic 

gastric environment and their gastric motility is slow, which may affect the absorption of 

drugs.6 Children, mainly neonates and infants, have different water body composition as 

compared to older children and adults, which may affect the volume of distribution of 

drugs.  The ontogeny of metabolic enzymes may affect the degree of metabolism that 

goes on at a specific age, and immaturity of the kidneys will affect the excretion of 

drugs6-8. Unfortunately, most drug regimens used in children are extrapolated from 

adult dosing, which does not consider the abovementioned factors that are unique to 

children9. In the PHATISA study, we sought to evaluate whether a revised WHO-

recommendation for TB drugs is able to achieve the presumed optimal concentrations 

for treatment of TB in children.   

 

1.1. Microbicide Development for HIV Prevention 

             1.1. 1.  Rationale for microbicide development 

Though there has been a global decline in the incidence of HIV over the past decade, 

there were still more than 2 million new infections worldwide and close to 48,000 just in 

the United States in 201310,11. Both globally and regionally, the HIV epidemic 

disproportionately affects subgroups of the population, such as men having sex with 

men (MSM) 10-12Hence, methods augmenting current behavioral and biomedical 
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approaches are needed to control the HIV epidemic, and pre-exposure prophylaxis 

(PrEP) is one such key biomedical strategy.  

 

 HIV PrEP development has been ongoing in the past two decades. Data from animal 

models13-16 and experience of using antiretroviral drugs in prevention of mother-to-child 

transmission as well as use of anti-retroviral drugs (ARVs) for post-exposure prophylaxis 

gave initial impetus for the hypothesis that ARVs may be efficacious as PrEP. 

Subsequently, human clinical trials for PrEP have been carried out, most commonly, 

using TFV with or without emtricitabine.  In 2012, the Food and Drug Administration 

(FDA) approved the fixed dose combination of emtricitabine and TFV, marketed as 

TruvadaTM, for PrEP based on two randomized controlled trials (iPrEX study in MSM17 

and the Partner’s in Prevention study in discordant couples of heterosexual men and 

women18); these two studies showed HIV risk reduction by 44% and 75%, respectively19. 

  

1.1.2. Topical microbicides 

For PrEP development, attaining an anti-viral concentration that will prevent 

establishment of infection at the viral route of entry is critical. For example, for 

individuals at risk of HIV exposure via intravenous drug use, attainment of target 

concentration in blood is important. While, for those that are exposed to HIV via the 

sexual route, adequate anti-viral concentration at the site of the exposure to HIV, mainly 

the genital mucosa and rectosigmoid mucosa, will be essential.  
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With this in mind, there have been several clinical trials aimed at developing topical 

microbicides to be applied vaginally or rectally.  Topical microbicides have the 

advantage of minimizing systemic exposure while maximizing the local mucosal 

concentration, which makes them ideal for PrEP20-23. Early on, topical microbicide 

research focused on drugs presumed to act within the cervicovaginal lumen to prevent 

HIV from reaching its target CD4+ cells in cervicovaginal tissue. These products included 

Nonoxynol-9, other surfactants, and polyanions, which were all ineffective; some even 

increased the risk of HIV acquisition. Following these early disappointments, the field 

then shifted to formulations with antiretroviral drugs, which act directly on or within 

CD4+ cells, as topical microbicides24.  

 

The success of coitally dependent use of TFV 1% gel in reducing HIV in high risk women 

by 39% in the CAPRISA004 study provided a proof-of-concept for efficacy of topical 

microbicdes25. Given the disproportionate burden of HIV in men having sex with men for 

whom receptive anal intercourse is the primary route of HIV infection, rectal 

microbicide development has been a focus of several studies in recent years12,26-32. 

 

 

1.1.3. Key features of effective topical microbicide 

There are several key factors that determine the success of PrEP, which include 

adherence, drug concentration at exposure site, and susceptibility of the exposed 

mucosa to HIV infection, and the viral inoculum (i.e. viral load of the infectious 
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cervicovaginal fluid or semen of the infected partner)33. The critical role of adherence 

was delineated in the failure of the Fem-PrEP and the VOICES studies to demonstrate 

HIV prevention benefit34,35 , mainly resulting from low adherence in the study 

population. Even in the PrEP studies that showed efficacy (CAPRISA004, iPrEX, Partners 

in Prevention, and TDF2), those persons with higher adherence had fewer HIV 

acquisition events17,18,25,36.  The size of the HIV inoculum varies roughly with the viral 

load within the blood of the infected sexual partner and reduction of this viral load to 

undetectable levels reduces HIV transmission dramatically 37. Conversely, a high viral 

load is seen at the time of acute HIV infection and sexual exposure to an infected 

individual at this time could, presumably, overwhelm the effect of the microbicide38.  

 

Another key factor for success of PrEP is drug concentration at the exposed site. In 

development of PrEP, it is not the mere presence or absence of the antiviral drug at the 

mucosa, but the ability to achieve a sustained effective concentration for a period of 

time sufficient to “outlast” the viral exposure 20.  One of the many advantages of topical 

microbicides is the ability to achieve a high local concentration of the drug to maximize 

efficacy while achieving relatively little systemic exposure, thus, minimizing systemic 

toxicity.  For example, we know that tissue TFV concentration is 100 times higher after 

administration of a single vaginal gel dose than a single oral dose21-23.  

 

Integrity of the mucosa exposed to HIV also impacts the success of topical microbicides. 

We know that concurrent STIs that result in mucosal lesions and inflammation, such as 
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Herpes infection increase the risk of HIV acquisition. On the other hand, microbicide 

development also has to take into account that some microbicide formulations may 

increase the risk of HIV infection by damaging the mucosa. We know from prior 

lubricant and enema studies that formulations with high osmolality result in mucosal 

damage 39,40.  

 

One of the first trials of a rectal microbicide was MTN-006, which evaluated the TFV1% 

vaginal gel formulation (VF) for use as rectal microbicide41. The study showed that the 

high osmolality of the formulation resulted in unacceptably frequent gastrointestinal 

adverse events, albeit minor ones, which may compromise acceptability and the 

widespread use of the formulation. Following the results of MTN-006, a reduced 

glycerin formulation (RGVF) was designed and tested in MTN-00742. The result showed 

that the RGVF had less adverse events when compared to the VF formulation.  A third 

formulation designed specifically for rectal use (RF) was evaluated in CHARM 01 and 

CHARM 02, the focus of this thesis.  

 

1.1.4. CHARM-01 and CHARM-02 studies 

The CHARM-01 and CHARM-02 studies address several key determinants of candidate 

rectal microbicide success as PrEP:  mucosal safety, local and systemic concentration, 

colonic distribution, and effect of study gels on colonic permeability. The CHARM-02 

study compares the safety, systemic exposure, distribution in the colonic lumen and 

colonic permeability effects of a single dose of each of three candidate rectal 
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microbicide gels of 1% TFV with varying osmolalities: the rectal formulation (RF), the 

reduced glycerin formulation (RGVF), and the vaginal formulation (VF). On the other 

hand, the CHARM 01 compared the abovementioned candidate microbicide gels in 

multiple compartments (plasma, colonic mucosa, mucosal mononuclear cells, PBMCs, 

rectal and vaginal fluid) after 7 consecutive daily doses of the RF and RGFVF and a single 

dose of VF. 

 

The result of both studies demonstrated that all three products were safe as no severe 

adverse events (AE) were reported; however, the hyperosmolal product, VF, had more 

minor AE’s associated with it, mostly gastro-intestinal complaints.  The VF was also 

associated with increased permeability of the colon to the drug surrogate as measured 

by concentration of the drug surrogate in the blood and urine. Despite the two-fold 

difference in osmolality, the RF and RGVF did not drastically differ in their achieved 

concentration in the various compartments, and both have good distribution in the 

colonic mucosa.  

 

1.2. Assessment of Adequacy of TB drugs in Children 

1.2.1. Burden of Pediatric Tuberculosis 

One third of the world’s population is estimated to be infected with tuberculosis.  In 

2013, about 9 million new cases of TB and 1.5 million deaths were estimated, with the 

majority of the burden concentrated in South-East Asia, the Western Pacific, and the 

African regions43. Given their immature immune system, children bear the greatest 
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burden of morbidity and mortality. In 2013, it is estimated that about 550,000 new 

cases and 80,000 deaths occurred in children less than 15 years of age.  This estimate is 

likely a gross underestimation of pediatric TB burden, as it does not include HIV-TB co-

infected children. In addition, unlike in adults, diagnosis of tuberculosis in children is 

quite challenging. Unlike adults, children have non-specific symptoms, and also have 

pauci-bacillary disease. The most widely used diagnostic tool, sputum smear, is only 

positive in 5-10%, and the gold standard, sputum culture, is only positive in 40% of 

children with TB.44,45  

Another distinguishing characteristic of pediatric tuberculosis is that children are more 

prone to severe forms of tuberculosis due to their immature immune system.  In 

addition, since children have pauci-bacillary disease and are unlikely to transmit TB to 

others, most of the public health efforts have concentrated on adult TB, ignoring the 

pediatric disease.  

 

1.2.2. Tuberculosis therapy in adults  

Our current first-line tuberculosis (TB) therapy is composed of four-drug therapy: 

Isoniazid (INH), rifampin (RIF), pyrazinamide (PZA) and addition of ethambutol (EMB) (in 

areas with high INH resistance and for severe cases) for two months, followed by four 

months of INH and RIF.  These four drugs were instituted into TB therapy several 

decades ago:  INH in 1952, RIF in 1966, PZA in 1952, and EMB in 1961.46 The fact that 

these drugs remain a first-line regimen is telling of the stagnation in the realm of TB 

drug development. In fact, there is only one new class of TB drug approved since the last 
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TB drug approval in 197147, bedaquiline, which was approved in 201248 . Fortunately, 

there are a few new drugs in the pipeline, which may be available in the next few years. 

 

1.2.3. TB therapy in Children 

 There is a paucity of data in regards to optimal TB treatment in children. Most target 

concentrations for TB therapy in children are developed by extrapolation from adult 

data. This method is fraught with inaccuracies, as it does not take into account the 

differences between adults and pediatrics; as mentioned earlier, in addition to the 

obvious size differences, there are several differences including enzymatic ontogeny 

maturation, differences in volume of distribution and percent water in the body and 

maturation of organ system involved in clearance of these drugs.  

 

In 2009, McIlleron, et al., published a study looking at the WHO-recommended dosages 

for isoniazid in a pediatric population. They showed that 70% of the children that 

received the adult dose were actually underdosed49. Based on this information and 

meta-analysis of the few existing pediatric studies, the WHO released a rapid advice to 

change the recommended dosages, in some instances, doubling the previously 

recommended dose.  The report emphasized the paucity of data and critical need for 

PK/PD studies in children50. 

 

1.2.4. The PHATISA study 
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We conducted a prospective observational study in the province of Kwa Zulu Natal, 

South Africa – a region with one of the highest prevalence’s of TB – to look at the 

implementation of the new drug doses, and whether these recommended dosages did 

actually achieve the supposed therapeutic target concentrations.  

 

We recruited children under10 years of age that presented for care at a tertiary health 

care center, and initiated on first-line anti-TB regimen. Our study included children with 

HIV/TB co-infection. 

The study indicates that even with the increased dosage recommendation, many 

children did not achieve the presumed target concentrations for the four first-line TB 

drugs; the result was more striking for under-dosing of rifampin. Overall, the study 

highlights the need for continued research in optimizing anti-TB therapy in children.  
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Abstract 

 

Objective: CHARM-02 is a cross-over, double-blind, randomized trial to compare the safety and 

pharmacokinetics of three rectally applied tenofovir 1% gel candidate rectal microbicides of 

varying osmolalities: vaginal formulation, VF (3111 mOsmol/kg); the reduced glycerin vaginal 

formulation, RGVF (836 mOsmol/kg); and an iso-osmolal rectal-specific formulation, RF (479 

mOsmol/kg). 

Materials and Methods: Participants (n=9) received a single, 4ml, radiolabeled dose of each gel 

twice, once with and once without simulated unprotected receptive anal intercourse (RAI). 

Safety, plasma tenofovir pharmacokinetics, colonic small molecule permeability, and SPECT/CT 

imaging of lower gastrointestinal distribution of drug and virus surrogate were assessed. 

Results: There were no Grade 3 or 4 adverse events reported for any of the products.  Overall, 

there were more Grade 2 adverse events in the VF group compared to RF (p=0.006) and RGVF 

(p=0.048). In the absence of simulated unprotected RAI, VF had up to 3.8-fold greater systemic 

tenofovir exposure, 26-234-fold higher colonic permeability of the drug surrogate, and 1.5-2-

fold greater proximal migration in the colonic lumen, when compared to RF and RGVF. Similar 

trends were observed with simulated unprotected RAI, but most did not reach statistical 

significance. SPECT analysis showed 86% (standard deviation 19%) of the drug surrogate co-

localized with the virus surrogate in the colonic lumen. There were no significant differences 
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between RGVF and RF formulation, with the exception of higher plasma tenofovir 

concentration of RGVF in absence of simulated unprotected RAI. 

Conclusion: VF had the most adverse events, highest plasma tenofovir concentrations, greater 

mucosal permeability of the drug surrogate, and most proximal colonic luminal migration 

compared to RF and RGVF formulations. There were no major differences between RF and 

RGVF formulations. Simultaneous assessment of toxicity, systemic and luminal 

pharmacokinetics, and co-localization of drug and viral surrogates, substantially informs rectal 

microbicide product development. 
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Introduction 

Even though the incidence of HIV is declining in many regions globally, men who have sex with 

men (MSM) continue to be affected disproportionately and increasingly. Global MSM incidence 

estimates are difficult due to poor surveillance in this group; however, the limited available 

data shows that MSM carry a high burden of HIV in high-income countries as well as in low and 

middle-income countries.12,26-32,51,52 In the United States, despite an overall decline in incidence 

of HIV, the incidence of HIV in men having sex with men (MSM) has been increasing 

significantly, with data from 2010 showing a 12% rise in incidence of HIV.53 Hence, prevention 

of HIV in this vulnerable group, including biomedical interventions like rectal microbicides (RM), 

is vital. 

Key features of successful RM development include safety, efficacy and acceptability of the 

product by the target population. RM have the advantageous feature of directly targeting the 

colonic mucosa that is at risk of HIV infection with high antiretroviral (ARV) drug concentrations 

while simultaneously limiting systemic exposure and potential toxicity.54 High local 

concentrations may also enable periodic dosing by achieving local tissue concentrations above 

protective target concentrations more rapidly than can be achieved by oral dosing. However, 

locally high concentrations need to be developed carefully to rule out local toxicity.  

Encouraged by the success of oral pre-exposure prophylaxis (PrEP) with tenofovir (TFV)-

containing regimens 17,18,36,55, TFV, a potent nucleotide reverse transcriptase inhibitor (NRTI) 

with a long intracellular active drug half-life, is being investigated as a RM. RMP-02/MTN-006 

evaluated rectal application of the vaginal formulation (VF) TFV 1% gel, the formulation used in 

CAPRISA 004 and VOICE studies for vaginal application25,41,56, and found a rate of minor adverse 
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events too frequent to recommend further development as a RM. The gastrointestinal related 

adverse events were attributed, in part, to the very high osmolality (3111 mOsmol/kg) of the 

formulation. Subsequently, a TFV 1% reduced glycerin formulation (RGVF) with far lower 

osmolality (836 mOsmol/kg) was studied in MTN-007 showing that RGVF was safe and well 

tolerated 42. Based on these favorable tolerability results, a phase II trial of the RGVF gel is now 

underway (MTN-017). A third TFV 1% gel, formulated specifically for rectal use (rectal 

formulation, RF) has been developed to achieve even lower, near physiologic, osmolality (479 

mOsmol/kg) and pH value closer that of the rectum (pH close to 7)57.  The RF vehicle was 

selected from among four candidate RM vehicles based on PK/PD, toxicity and acceptability58. 

The current study, Combination HIV Antiretroviral Rectal Microbicide (CHARM) 02 (CHARM-02), 

is a double-blinded, randomized, pharmacokinetic and safety study of three rectally applied TFV 

1% gel candidate rectal microbicide formulations; the VF, RGVF, and, RF are distinguished 

primarily by their far different osmolalities. The goals of the study were to evaluate the safety, 

systemic TFV pharmacokinetics (PK), colonic luminal distribution and clearance of the three 

gels, and their impact on mucosal permeability. In addition, we assessed the degree of overlap 

in the colonic luminal distribution for each of the gels with a surrogate for HIV-infected 

ejaculate. CHARM-02 was designed as a complement to, and performed in parallel with, 

CHARM-01 whose objectives included multi-compartmental PK, a detailed mucosal safety 

assessment, and an evaluation of the HIV protective effect using an ex vivo colorectal HIV-1 

challenge assay59. These studies represent the first-in-human studies of TFV 1% RF gel.   
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Materials and Methods 

Study design and participants 

The Johns Hopkins Medicine Institutional Review Board approved this single-center, 

randomized, double-blinded, crossover study of three TFV 1% gel formulations. All research 

participants completed a written informed consent prior to screening. Eligible participants were 

healthy, male, HIV seronegative adults with history of consensual receptive anal intercourse 

(RAI) at least once within the six months prior to screening. All participants received each study 

gel twice, once with and once without simulated unprotected RAI. There was a minimum of 11 

days washout period between each gel administration (Supplemental Appendix 1: Protocol). 

The primary safety endpoint was Grade 2 or higher clinical or laboratory adverse events as 

defined by the Division of AIDS Table for Grading the Severity of Adult and Pediatric adverse 

events, version 1.0, December 2004 as well as addendum 3 (Rectal Grading Table for Use in 

microbicide Studies)60.  Primary pharmacokinetic endpoints include plasma TFV concentration, 

luminal distribution of the drug and viral surrogates and impact on mucosal permeability of the 

three gel formulations. 

Dose preparation and administration 

The three rectally applied TFV 1% formulations in this study are a vaginal formulation (VF), a 

reduced-glycerin vaginal formulation (RGVF) and a rectal-specific formulation (RF). Study 

investigators administered all doses in the research clinic. Each dose of the study gels was 

111In-diethylene-triamine-pentaacetic acid (111In-DTPA, 

Cardinal Health, Halethorpe, MD) with 4mL of the study gel as the radiolabeled study drug 

surrogate.  In addition, for the visits with simulated RAI, 500 Ci 99mTc-sulfur colloid (99mTc-SC) 
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was mixed with 2.5mL of autologous seminal plasma, and administered 60 minutes after gel 

product dosing as the HIV surrogate (based on similar 100 nm sulfur colloid particle size in a 

colloidal suspension). The seminal plasma was collected prior to the study dosing visits in one 

or several outpatient visits to the research clinic until adequate semen volume was acquired.  

 In order to quantitatively describe the distribution of the formulation following addition of 

ejaculate and the potential for mixing due to the coital forces, simulated unprotected RAI with 

autologous semen was carried out. All participants received a bowel preparation using a 

Normosol-R (Abbott Laboratories) enema to remove bowel contents from the distal colon and 

to more closely match realistic clinical conditions in which these rectal products will be used. 

Normosol, a pH and salt-balanced electrolyte solution for licensed intravenous administration 

and fluid replacement, was chosen in order to reduce confounding toxicity to the colonic 

mucosa.  The research participant then inserts a single-use artificial phallus with catheter in 

urethral position into rectum and cycles the devices in and out of the rectum to its full extent 

once each second for 5 minutes. With the phallus remaining in situ, the autologous semen 

sample, radiolabeled with 99m-Tc-sulfur colloid, is injected by the study team member through 

catheter within the device. The subject then resumes simulated intercourse with 10 more 

in/out cycles of the device and then removes the device. This procedure has been used 

successfully in previous studies.61 

Safety and Acceptability:  Safety of the three products was assessed during the entire study 

period; participants were asked about any adverse event during each study visit, which were 

followed by a directed physical examination and safety laboratory examination. They were also 

instructed to contact the investigators should any adverse event occur while they were at 
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home.   Acceptability of each study product was evaluated through administration of a brief 

questionnaire after each dose.   

Drug concentration analysis 

Blood samples (4mL) were drawn in K2EDTA vacutainer tubes (BD, Franklin Lakes, NJ) at pre-

dose, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.33, 2.66, 3, 3.5, 4, 8, 12 and 24 h post dose; plasma 

was separated from the tubes after centrifugation at 1000x g for 10 minutes at 4 oC. Aliquots 

were set aside for gamma counting (permeability) and aliquots were stored at -80 0C for 

batched TFV analysis. TFV concentrations were determined by a previously validated ultra 

performance-liquid chromatographic-tandem mass spectrometric (UPLC-MS/MS) method at 

The Johns Hopkins University Clinical Pharmacology Analytical Laboratory (CPAL)21,62.  The assay 

had a lower limit of quantification of 0.31 ng/mL.  Peak concentration (Cmax), times to peak 

concentration (Tmax), and area under the concentration-time curve for 24 hours (AUC0-24) were 

calculated using WinNonlin (Pharsight, 6.3, Cary, NC). 

SPECT/CT Imaging distribution 

Two hours and 24 hours after each gel administration, participants underwent single photon 

emission computed tomography with transmission computed tomography (SPECT/CT) to 

determine the luminal distribution and clearance of each study gel radiolabel (111In-DTPA) and 

whole semen radiolabel (99Tc-Sulfur colloid). Participants were imaged using a dual-head VG 

SPECT series system (GE Medical Systems, Waukesha, WI) equipped with a CT unit (Hawkeye) 

as previously described.61,63 CT images were reconstructed with a filtered back projection 

algorithm onto a 256 × 256-matrix size. After SPECT acquisition, images were reconstructed 

using the OSEM algorithm and fused with CT images, into a 128 x 128 x 128 matrix size with 
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each voxel representing 3.45 mm3, using the General Electric eNTEGRA workstation, software 

version 1.04 (GE Medical Systems, Waukesha, WI) 64. 

Curve-fitting and concentration-by-distance calculations were performed using R version 3.1.0 

(The R Foundation for Statistical Computing, Vienna, Austria) per previously described 

algorithms63,65. Briefly, a flexible principal curve algorithm was used to construct a three-

dimensional curve based on the colon images. After the centerline was constructed, a 

concentration-by-distance curve was estimated along the centerline using the orthogonal 

projections. For standardizing distances within and among research participants, the readily 

identifiable coccygeal plane in the CT (axial view) was used as the origin (z=0 value) of the 

centerline as previously described66. The distance along the centerline between the origin of 

the radiolabel signal and the coccygeal plane was recorded as Dmin (minimum distance 

associated with the closest, most distal, point where radiolabel was detected within the lumen 

of the colon) with negative values indicating radiolabel origin below the coccyx and positive 

values indicating centerline origin above the coccyx in the cranio-caudal axis. Previously defined 

imaging pharmacokinetic-distance parameters – Dmax (distance associated with the most 

proximal radiolabel signal within the colon), DCmax (distance associated with maximum 

concentration), and Dave (mean residence distance) – were calculated for further analysis66.  

Mucosal permeability. Blood samples were collected at the same 17-time points as for plasma 

TFV PK. Urine samples were collected in three intervals: 0-2hrs, 2-4hrs, and 4-8 hours post 

dose. Gamma emissions in 1 ml aliquots were measured on a gamma counter (Wizard2 

automatic gamma counter model 2480, PerkinElmer, Waltham, MA) within a 110–150-keV 

energy window, and data corrected for decay relative to the time of dosing.  Urine gamma 
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emission results were also volume-corrected. Radioactivity was expressed as a fraction of the 

dose administered in order to normalize readouts among subjects and products. Plasma 111In-

DTPA results were analyzed by calculating the Cmax, Tmax, and AUC0-24. For urine, maximum 

observed urine excretion rate (Max rate), area under urinary excretion curve (AURC) and 

percent of dose recovered in urine (%recovered) were calculated. Both plasma and urine 

analysis were carried out using WinNonlin (Pharsight, 6.3, Cary NC).  

Dual Isotope 111In and 99mTC Image Analysis 

We determined the fraction of the HIV surrogate (99mTc-SC) co-located with microbicide 

surrogate (111In-DTPA) to delineate the adequacy of the study product distribution relative to 

the HIV surrogate distribution. Cross-talk correction was performed using previously described 

methods67,68. Using R (version 3.1.2), all voxels with high 99mTc were selected and defined as 

“voxels at risk” (VAR).  In order to remove scattered voxels far from the region of interest, only 

200 or more contiguous voxels among the VAR, named contiguous VAR (cVAR), were 

considered. 

For this analysis, we used the 99.99% quantile of the intensities of a pure background signal 

(abdominal location inconsistent with colon distribution) for 99mTc and 111In, respectively, as a 

scan-specific threshold. Within the cVAR in each scan, two quantities 𝑝𝑣 and 𝑝𝑖 were calculated: 

𝑝𝑣 is the proportion of voxels with both high 99mTc and high 111In among all the cVAR; 𝑝𝑖 is 

similar to 𝑝𝑣, but indicates the gamma signal intensity based proportion which is the sum of 

intensities of 99mTc of voxels with high 99mTc and high 111In among the total sum of intensities of 

99mTc in cVAR.  Both quantities indicate the proportion of 99mTc covered by 111In among all the 
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99mTc within cVAR, the only difference is that 𝑝𝑣 is voxel-based while 𝑝𝑖 is an intensity (mass)-

weighted version of 𝑝𝑣.  

Data analysis and sample size: A sample size of 9 research participants was calculated to detect 

a 0.7 difference in proportion of adverse events and a standardized mean difference of 0.93 in 

the pharmacokinetic-distance or permeability outcomes between any of the study gel 

formulations in a paired analysis with 80% power using 2-sided, 5% alpha error.   Data were 

analyzed using the statistical package STATA/IC 13.1 software (StataCorp LP, College Station, 

TX). Statistical significance was defined as a p-value < 0.05.The number and frequency of Grade 

2 or higher AEs were tabulated for each of the 3 study formulations after the final dosing visit. 

The proportion of events was compared between each pair of formulation using McNemar’s 

test. Friedman test was used to assess differences in frequency of AEs among study products, 

and  based on the result,  a Wilcoxon Rank Sum test was utilized for pairwise analysis.  For 

comparison of plasma TFV PK, pharmacokinetic-distance, and mucosal permeability outcomes, 

Wilcoxon rank sum paired analysis was used. In addition, to delineate linear correlation 

between plasma TFV concentrations and mucosal permeability, a Pearson’s correlation 

coefficient was calculated, with data transformation as needed.  

 

Results 

 

Subjects 

Seventeen men provided written informed consent and were screened (Figure 1). Of these, 9 

fulfilled the inclusion and exclusion criteria and were enrolled.  Mean age of the research 
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participants was 41.8 years (standard deviation [SD] 9.3). Three were European American and 6 

were African American by their own report. Data from all nine participants were included for 

adverse event analysis (safety cohort). Data from 8 were included in the other analyses (PK 

cohort). One research participant was excluded from the PK cohort due to laboratory evidence 

that he was surreptitiously taking tenofovir/emtricitabine during the study period. 

Adverse Events 

Overall, there were 54 adverse events (AE) and there were no Grade 3 or 4 AEs. AEs were more 

common when participants were receiving VF (6/9) as compared to RF (1/9) or RGVF (3/9)(table 

1).  Pairwise comparison revealed a statistically significant higher number of overall Grade 2 AEs 

in the VF group as compared to RF (13 vs. 1, p=0.006) and RGVF (13 vs. 5, p=0.048).  

Twenty-three of the AEs (41.8%) were deemed related to the study gels, and all but one of 

these events were Grade 1.  All of the 23 AEs were gastro-intestinal in nature, including 

abdominal cramps (34.8%), diarrhea (26%), bloating/flatulence (21.7), urgency (8.7%), 

proctalgia (4.4%) and rectal bleeding (4.4%). There were numerically higher number of AEs in 

VF as compared to RGVF and VF, which did not reach statistical significance in pairwise analysis 

(Figure 2 and Table 1). 

 

Plasma pharmacokinetics of Tenofovir 

In the absence of simulated unprotected RAI, the median Cmax of TFV for the VF formulation 

was 6.4-fold higher than for the RF (p=0.009)(Table 2). VF also had a 4-fold higher median Cmax 

than RGVF, but this did not reach statistical significance (p=0.06).  Median Cmax for RGVF was 

also 1.6-times higher than RF (p=0.005).  With simulated unprotected RAI, the trend of higher 
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median Cmax for VF was also observed, but only the difference in Cmax for VF and RGVF was 

statistically significant (36.5 ng/mL vs. 6.87ng/mL, respectively, p=0.03)(Figure 3 and Table 2).  

In addition, there was a statistically significant shorter Tmax observed for VF when compared to 

the RF formulation (1.18 hrs vs. 2.85 hrs, p=0.005 without simulated RAI, 1.26 vs. 1.65hrs, 

p=0.016 with simulated unprotected RAI).  

Similar to the trend noted for Cmax, there was an overall trend of higher AUC0-24 for the VF 

formulation, both in the absence and presence of simulated unprotected RAI; however, only 

the comparison of VF and RGVF yielded a statistically significant difference, with VF having a 

3.8-fold higher AUC0-24 than RGVF (p=0.027).  

Imaging Distribution 

Of the forty-eight 2-hour post dose SPECT/CT scans that were scheduled, all were completed. 

Three (2 RF, 1VF) did not show any microbicide or HIV surrogate signal due to loss of isotope as 

a result of a bowel movement prior to imaging.  The 24-hours post dose scans were 

discontinued after the first 5 scans in which there was no signal detected due to a combination 

of radioactive decay and bowel movements.  

For the analysis of the drug surrogate (111In-DTPA) in the absence of simulated RAI, there was a 

statistically significant difference in Dmax and Dave for VF when compared to RF and RGVF; Dmax 

for VF was 1.5-times and 2-times higher than RF and RGVF, respectively (p=0.04 and 

0.002)(Table 3). Similarly, Dave for VF was 2.9- and 2.1-times higher than RF and RGVF, 

respectively (p=0.015 and 0.02). In contrast, there was no statistically significant difference in 

DCmax among the three products, although VF medians were higher than the other 

formulations. There was also no difference in Dmin among the products.  In the presence of 
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simulated RAI, VF had numerically higher medians of Dmax, DCmax, Dmin, and Dave when compared 

to RF and RGVF, but none of these reached statistical significance.  

When comparing the distribution of the drug and the HIV surrogate, there was no statistically 

significant difference in Dmax and DCmax. There was a trend of higher Dave for the drug surrogate 

in RF and RGVF, but it did not reach statistical significance (p=0.06 and 0.07, respectively)(Table 

4).  The drug surrogate was closer to the anus when compared to the HIV surrogate for the RF 

and RGVF (p=0.004 and 0.002, respectively). Sample SPECT images and distance-concentration 

plots are depicted in Figure 4 a-c.  

Adjusted for the mass of the HIV surrogate in each voxel, 86% (SD 0.19) of the HIV surrogate 

was co-located with the drug surrogate; without the mass adjustment (simply comparing 

coincident radiolabel voxel-by-voxel, regardless of the amount in each voxel), the mean 

percentage coverage goes down to 36.2% (SD 0.13). There was no statistically significant 

difference in percent coverage of the HIV surrogate among the three gel formulations using 

either co-localization method. 

 

Mucosal Permeability 

Plasma 111In-DTPA PK. In the absence of simulated RAI, dose-adjusted median Cmax for VF was 

34-fold and 7-fold higher than RF and RGVF, respectively (p=0.006 and 0.02)(Table 5a). A larger 

difference was noted with AUC, with VF 234-fold, and 26-fold higher when compared to RF and 

RGVF, respectively (p=0.005 and 0.02).  Median Cmax and AUC, larger for RGVF compared to RF, 

nearly achieved statistical significance (p=0.06 and 0.08, respectively).  
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With simulated RAI, a similar pattern was noted with the dose-adjusted median Cmax for VF 

being 7-fold and 8-fold higher than RF and RGVF, respectively (p=0.02 and 0.03). The median 

AUC for VF was 63-times and 32-fold higher than RF and RGVF (p=0.02 for both). There was no 

difference in AUC between RF and RGVF. There was also no statistically significant difference in 

regards to permeability Tmax among the three products, with or without simulated RAI.  

Comparing the permeability PK parameters in the presence and absence of simulated RAI for 

each product, there was a pattern of numerically higher median Cmax and AUC for all three 

products with coital simulation; however, only median Cmax for RF, comparing with and without 

simulated RAI, reached statistical significance, with a 9-fold increase in Cmax with coital 

simulation (p=0.03). 

We also found a significant linear correlation(r=0.83, p<0.001) between plasma TFV 

concentration and plasma 111In-DTPA(Figure 5a). 

Urine 111In-DTPA PK. In the absence of simulated RAI, maximum observed excretion rate for VF 

was 6.6-times and 3.2-times higher than RF and RGVF (p=0.016 and 0.046)(Table 5b).  The area 

under the urinary excretion rate curve (AURC) for VF was 5-times and 2.7-times higher than RF 

and RGVF, respectively (p=0.01 and 0.03). The percent of 111In-DTPA recovered in urine for VF 

was also significantly higher for VF as compared to the RF and RGVF, 1.75-times and 4.7-times 

higher, respectively (p=0.046 and 0.009).  

With simulated RAI, similar results were seen with 2.8-times and 7.25-times higher maximum 

observed excretion rate for VF as compared to RF and RGVF, respectively (p=0.036 and 0.021). 

The AURC for VF was 2.8-times, and 5.8-times higher than RF and RGVF, respectively (p=0.027 
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and 0.016). Also, the percent of drug surrogate recovered for VF in urine was higher than RF 

and RGVF by 1.75-fold and 4.7-fold, respectively (p=0.046 and 0.009). 

There was no difference noted between the maximum observed excretion rate, area under the 

urinary excretion rate curve or percent recovery of the In-DTPA from the urine when comparing 

the RF and RGVF.  Among and between products, there was no statistical difference between 

median maximum excretion rate, AURC and % recovered from urine when comparing values in 

the presence and absence of simulated RAI. There was a significant correlation between plasma 

TFV concentration and percent urine recovery of 111In-DTPA (r=0.92, p<0.001)(Fig 5b)   
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Discussion 

The CHARM-02 study showed that a single rectal dose of the three TFV gel formulations under 

study, was safe as there was no Grade 3 or 4 toxicity reported. However, minor adverse events 

were more common with VF as compared to the RGVF and RF. Similar results were observed in 

the companion study, CHARM-01, with VF accounting for 48% of reported adverse events in the 

entire study, despite only one VF dose being administered, compared to 7 consecutive doses of 

each for RF and RGVF59.   

Systemic TFV exposure was greater following VF dosing compared to the other formulations 

without simulated RAI, but depended on which PK parameter was compared. With the VF 

formulation, TFV Cmax was 6-fold higher and twice as rapid when compared to RF in the absence 

of simulated RAI. TFV AUC was 3.8-fold higher with VF than RGVF. RGVF also achieved higher 

peak concentrations than RF. This general trend of greater systemic exposure correlating with 

increased osmolality is seen to an even greater extent with permeability for DTPA (discussed 

below). With simulated unprotected RAI, these patterns generally persisted, but lost statistical 

significance. As simulated unprotected RAI generally increased permeability of TFV and DTPA, 

this may have had a leveling effect on the differences seen without RAI. Also, plasma TFV 

correlated with the 111In-DTPA permeability estimates, though TFV permeability was of much 

smaller magnitude compared to DTPA. The difference could be partly attributed to the 

relatively poor bioavailability of the charged TFV molecule relative to DTPA.  The high 

correlations for DTPA permeability measurements and plasma TFV concentration suggests   

Indium-DTPA can serve as a reasonable model for permeability measurement for TFV 
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Imaging of the drug surrogate in the absence of simulated unprotected RAI revealed 

significantly higher colonic mucosal distribution (Dmax and Dave) of VF when compared to RF and 

RGVF. This may best be explained by the far greater osmolality of VF which draws significantly 

more fluid into the colonic lumen, thus, increasing the spread of the radiolabel after dosing 

relative to the lower osmolality RGVF and RF formulations. It is noteworthy that RF and RGVF 

were not different in their luminal distribution in the colon. 

Our weighted dual isotope analysis showed that 86% of the viral surrogate was co-located or 

“covered” by the drug surrogate and was not different among the formulations. We believe this 

to be a critically important variable since the goal of rectal microbicide development is to 

develop a formulation that can outdistance and outlast HIV. This dual isotope analysis reflects a 

high degree of concordant drug-HIV distribution within the lumen, but it doesn’t assess 

mucosal coverage, per se, given the resolution of the radiographic method. Animal studies 

using fluorescent labeling and histologic imaging enable a more direct assessment of mucosal 

coverage69. These studies indicate optimal mucosal coverage with iso-osmolar and slightly 

hypotonic products. Finally, none of these methods address diffusion of drug or HIV into the 

mucosal tissue over time.  

The striking difference in mucosal permeability among the study gels was evidenced by the 

plasma and urine concentration of the drug surrogate (111In-DTPA). Plasma Cmax and AUC of the 

drug surrogate for VF were greater than 30-fold and 200-fold, respectively, when compared to 

the RF, in the absence of simulated RAI. Statistically significant, but smaller magnitude 

differences, were seen for RGVF compared to VF. RGVF trended toward values greater than RF. 

Similar patterns were seen with simulated RAI.  These DTPA permeability differences are 
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consistent with the osmolality differences among the study products. Generally, for both TFV 

and DTPA colonic mucosal permeability, the greater the osmolality, the greater the systemic 

exposure: VF > RGVF > RF. This suggests that the predominant effect of the hyperosmolar gels 

was increased colonic mucosal permeability, which more than counterbalanced the competing 

physiologic effect of increased fluid from colon tissue into the colonic lumen with higher 

osmolarity products.  Besides osmolality, there may be other differences between products 

(e.g., pH and viscosity) that contributed to the results, although given size of the compartment 

and the rectum’s ability to buffer pH, such contributions are presumed to be minimal.70 It is 

notable, that there are not more consistent differences between the RGVF and RF given the 

nearly 2-fold difference in osmolality. This may be due, in part, to mitigation of some 

anticipated mucosal integrity-related differences by offsetting hyperosmolarity-related fluid 

fluxes into the colonic lumen. 

Since we did not assess histologic damage or HIV infectivity, we cannot tell if these permeability 

differences increase HIV infection risk. Our previously published works with hyperosmolar 

sexual lubricants and hyperosmolar enemas are consistent with our CHARM-02 permeability 

observations40,71. Unlike CHARM-02, both of those earlier studies included colon biopsies and 

both demonstrated greater loss of the colonic single columnar epithelial layer associated with 

very high osmolality products -  2,100 mOsmol/kg Fleet enema40 and 3,429 mOsmol/kg 

commercial sexual lubricant 71 – when compared to iso-osmolar controls.  

Hence, a significant limitation of the current study is that no biopsies were obtained; so, 

histologic toxicity, tissue PK, and susceptibility to ex-vivo HIV infection were not assessed. Other 

than inferring potential mucosal alteration based on the TFV and drug surrogate concentrations 
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in plasma and urine, there was no histological examination performed to evaluate structural 

changes in the mucosa. The companion study, CHARM-01, included intensive safety analyses 

which included histology, microbiology, and susceptibility to ex-vivo HIV infection. We chose 

not to perform intraluminal manipulations to capture biopsies given our primary goal of 

assessing colonic luminal drug and HIV surrogate distribution, both of which we wanted to 

assess unperturbed by endoscopic instrumentation.  

VF is no longer under development as a rectal microbicide given the adverse effect profile and 

safety concerns with rectal use, some of which are reinforced in this study. The incorporation of 

simulated RAI in CHARM-02 proves critical in the comparison of the novel RF formulation being 

compared to RGVF for the first time in CHARM-01 and CHARM-02. CHARM-02 demonstrated 

that while RGVF demonstrated greater plasma TFV concentrations and a trend toward greater 

mucosal permeability compared to RF, these differences disappeared with simulated RAI. 

Further, RGVF and RF had similar, excellent co-distribution of drug and HIV surrogates. Of note, 

there were slightly more frequent minor adverse events reported in RGVF group compared to 

RF, but these differences were not statistically significant. On the basis of these observations 

and the CHARM-01 findings, we do not find a compelling advantage of RF over RGVF. There are 

two ongoing clinical studies of the RGVF formulation, PROJECT GEL and MTN-017. The results of 

these studies, especially MTN-017, which is an international, multi-center phase II trial, will 

inform the potential benefit and future development of rectal microbicides. 
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Table 1. Proportion and frequency of overall Grade 2 adverse events and frequency of  AEs 

deemed related to study product 

 

     p-values  
  

RF                   RGF                        VF 
RF vs. 
RGVF 

RF vs. VF RGVF vs. 
VF 

Participants (n,%) 
with Grade 2 
AE(n=9) 

1(11.1%) 3(33.3%) 6(66.7%) 0.63* 0.063* 0.38* 

Number of Grade 2 
AEs(n, %)(n=18) 

1(5.3%) 5(26.3) 12(68.4%) 0.5** 0.006** 0.048** 

Number of Grade 1 
and 2 AEs deemed 
study-product 
related, (n, %)(n=23) 

4(17.4%) 6(26.1%) 13(56.5%) 0.58** 0.09** 0.19** 

*p-values derived from pairwise comparison of formulations using McNemar’s test 

**p-values derived from pairwise comparison of formulations using Wilcoxon Rank Sum 

test; these were performed after a Friedman test showed differences in frequency of 

AEs among the study products 
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Table 2.  Plasma TFV pharmacokinetic parameters by product; median (25th percentile, 75th 

percentile) 

 

  
 
RF 

 
 
RGVF 

 
 
VF 

p-value 
RGVF vs. 
RF 

p-value 
VF vs. RF 

p-value 
VF vs. 
RGVF 

Cmax(ng/ml)*       
             No SURAI 
 
 

3.65 
(1.35, 4.55) 

5.95 
(5.07, 7.99) 

23.3 
(12.93-30.6) 

0.035 0.009 0.06 

                  SURAI 12.4 
(3.1, 31.7) 

6.87 
(3.71, 23.5) 

36.45 
(22.75-65.8) 

0.53 0.093 0.03 

Tmax(hr)*       
             No SURAI 
 
 

2.85 
(1.89, 6.23) 

1.03 
(0.95, 2.53) 

1.18 
(0.92, 1.23) 

0.07 0.005 0.67 

                SURAI 1.65 
(1.54, 5.63) 

1.53 
(1.5, 1.64) 

1.26 
(0.8, 1.54) 

0.19 0.016 0.1 

AUC0-24* 
(ng.hr/ml) 

      

             No SURAI 
 
 

30.13 
(14.9, 55) 

39.17 
(19.1, 57.4) 

81.64 
(48.8, 137.1) 

0.67 0.09 0.14 

                   SURAI 46.51 
(20.8, 71) 

23.13 
(19, 53.5) 

87.83 
(73.5, 122.5) 

0.46 0.09 0.027 

 

SURAI: Simulated unprotected receptive anal intercourse; *Comparison of SURAI vs. no SURAI 

for each PK-parameter yielded p-value>0.05. 

P-values derived from pairwise comparison of formulations using Wilcoxon Rank Sum test; 

these were performed after a Friedman test showed differences in frequency of AEs among the 

study products. 
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Table 3.  Drug surrogate (111In-DTPA) imaging pharmacokinetic-distance parameters in 

centimeter by product at 2 hours after dosing; median (25th percentile, 75th percentile) 

 RF RGVF VF P-value 
RGVF vs. 
RF 

P-value 
VF vs. RF 

P-value 
VF vs. RGVF 

Dmax       
No SURAI 
 
 

13.9 
(9.86, 18.8) 

10.1 
(9, 12.5) 

21.1 
(16.9, 27.6) 

0.16 0.037 0.0023 

      SURAI 
 
 

12.3 
(10.2,20.3) 

13.77 
(11.1, 18.5) 

18.16 
(10.6, 26.2) 

0.64 0.28 0.42 

DCmax       
No SURAI 
 
 

1.38* 
(-1.3, 4.15) 

2.08 
(-0.84, 5.5) 

3.16 
(1.82, 5.6) 

0.73 0.25 0.67 

      SURAI 4.34* 
(2.47, 6.42) 

3.79 
(1.52, 6.04) 
 

5.5 
(1.2, 6.91) 

0.64 0.95 0.56 

Dmin       
No SURAI 
 
 

-5 
(-6.3, -1.98) 

-4.28 
(-6.78, -2.43) 

-3.72 
(-5.22, -0.87) 

0.64 0.25 0.46 

      SURAI 
 
 

-3.77 
(-5, 1.86) 

-3.63 
(-4.17, -1.56) 

-2.66 
(-4, -0.13) 

0.64 0.28 0.56 

Dave       
No SURAI 
 
 

2.51 
(1.2, 2.36) 

3.43 
(1.23, 4.72) 

7.31 
(5.48, 9.29) 

1 0.015 0.021 

     SURAI 5.33 
(3.73, 7.9) 

5.86 
(4.24, 6.36) 

6.62 
(5.27, 14.8) 

0.92 0.42 0.30 

 
Note: The coccyx is the reference point for all the distance variables above. 

SURAI: Simulated unprotected receptive anal intercourse; Dmax: furthest point where 

radiosignal was detected; DCmax: distance at maximum concentration; Dave: mean residence 

distance; Dmin: distance associated with the most distal signal; CDS: Coital dynamic simulation 
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*The only comparison between CDS vs. no CDS that yielded p-value<0.05 was DCmax for RF 

(p=0.035) 

P-values derived from pairwise comparison of formulations using Wilcoxon Rank Sum test; 

these were performed after a Friedman test showed differences in frequency of AEs among the 

study products. 
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Table 4.  Comparison of the pharmacokinetic-distance parameters of the virus surrogate (Tc-

Sulfur colloid) and drug surrogate (In-DTPA) in centimeter by product at 2 hours after dosing; 

median (25th percentile, 75th percentile) 

 

 RF RGVF VF P-value 
RGVF vs. 
RF 

P-value 
VF vs. RF 

P-value 
VF vs. RGVF 

Dmax       
Tc 
 
 

13.29 
(12.1,15.4) 

15.84 
(12.2,16.4) 

15.1 
(13.2,26.4) 

0.25 0.14 0.42 

In 
 
 

12.29 
(10.2,20.3) 

13.77 
(11.1, 18.5) 

18.16 
(10.6, 26.2) 

0.64 0.28 0.42 

DCmax       

Tc  
 

2.97 
(1.6, 4.21) 

2.91 
(1.37, 4.4) 

4.01 
(3.24, 5.82) 

0.91 0.22 0.20 

In 4.34 
(2.47, 6.42) 

3.79 
(1.52, 6.04) 
 

5.5 
(1.2, 6.91) 

0.64 0.95 0.56 

Dmin       
Tc 
 
 

-8.55* 
(-8.91,-5.61) 

-7.782** 
(-11.2, -6.67) 

-5.63 
(-11.4,-1.62) 

0.64 0.85 0.25 

In 
 
 

-3.77* 
(-5, 1.86) 

-3.632** 
(-4.17, -1.56) 

-2.66 
(-4, -0.13) 

0.64 0.28 0.56 

Dave       
Tc 
 
 

3.73 
(2.39,4.07) 

3.51 
(2.95, 3.96) 

4.77 
(4.21, 6.21) 

0.91 0.025 0.064 

In 5.33 
(3.73, 7.9) 

5.86 
(4.24, 6.36) 

6.62 
(5.27, 14.8) 

0.91 0.41 0.3 

Note: The coccyx is the reference point for all the distance variables above. 

Dmax: furthest point where radiosignal was detected; DCmax: distance at maximum 

concentration; Dave: mean residence distance;  Dmin: distance associated with the most distal 

signal 
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*, **: Comparison of Dmin for Tc and In for RF, p=0.004, and RGVF, p=0.002 

P-values derived from pairwise comparison of formulations using Wilcoxon Rank Sum test; 

these were performed after a Friedman test showed differences in frequency of AEs among the 

study products 
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Table 5a.  111In-DTPA permeability parameters by product (plasma). Median (25th percentile, 

75th percentile) 

 RF RGVF VF P-value 
RGVF 
vs. RF 

P-value 
VF vs. 
RF 

P-
value 
VF vs. 
RGVF 

Cmax ( curie/ml)(E-08)                                 
                                   No 
SURAI 

 
2.23* 
(0, 6.25) 

 
10.2 
(3.15, 
16.4) 

 
75.4 
(32.5, 123) 

 
0.055 

 
0.0056 

 
0.024 

                                          
SURAI 

20.2* 
(9.5, 50.3) 

18.1 
(0, 48.5) 

140 
(80.1, 213) 

0.75 0.021 0.030 

 Tmax(hr)       
                                   No 
SURAI 

 
1.93 
(0,4.23) 

 
2.35 
(1.03,2.69
) 

 
1.3 
(1.18,1.49) 

 
0.83 

 
0.83 

 
0.56 

                                          
SURAI 

1.58 
(0.74,2.57
) 

1.33 
(0,1.57) 

1.35 
(0.92,1.65) 

0.31 0.34 0.71 

AUC 
( curie.hr/ml)(E-06) 
                                   No 
SURAI 

 
 
0.58 
(0,5.44) 
 

 
 
5.31 
(2.15,17.4
) 

 
 
135 
(68.6,265.3
) 

 
 
0.088 

 
 
0.0056 

 
 
0.024 

                                          
SURAI 

3.9 
(1.1,48.3) 

7.65 
(0.49.8) 

246.1 
113,395.2) 

0.83 0.021 0.023 

 
SURAI: Simulated unprotected receptive anal intercourse; *Comparison of Cmax for SURAI vs. 

no SURAI for RF formulation: p=0.03 

 

P-values derived from pairwise comparison of formulations using Wilcoxon Rank Sum test; 

these were performed after a Friedman test showed differences in frequency of AEs among the 

study products. 
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Table 5b.  111In-DTPA permeability parameters by product (urine); median (25th percentile, 

75th percentile) 

 RF RGVF VF P-value 
RGVF vs. 
RF 

P-value 
VF vs. RF 

P-value 
VF vs 
RGVF 

Max rate 
 

                  No SURAI 

 
 
0.058 
(0.037,0.11) 

 
 
0.12 
(0.068,0.2) 

 
 
0.38 
(0.19,0.48) 

 
 
0.093 

 
 
0.016 

 
 
0.046 

                        SURAI 0.21 
(0.042,0.29) 

0.082 
(0.066,0.22) 

0.58 
(0.33,0.98) 

0.53 0.036 0.021 

 
                  No SURAI 

 
0.26 
(0.16,0.39) 

 
0.5 
(0.3,0.85) 

 
1.34 
(0.84,1.6) 

 
0.093 

 
0.012 

 
0.036 

                          SURAI 0.75 
(0.16,1.16) 

0.36 
(0.24,0.84) 

2.09 
(1.09,3.46) 

0.46 0.027 0.016 

% recovered     
                   No SURAI 

 
0.45 
(0.23,0.59) 

 
0.74 
(0.4,1.24) 

 
2.2 
(1.13,2.71) 

 
0.12 

 
0.012 

 
0.046 

                         SURAI 1.37 
(0.29,1.40) 

0.51 
(0.32,0.96) 

2.4 
(1.57,3.58) 

0.14 0.046 0.009 

SURAI: Simulated unprotected receptive anal intercourse; Max rate: maximum observed 

excretion rate; AURC: Area under the urinary excretion rate curve from 0 to last measurable 

rate; % recovered: Percent of initial dose of 111In-DTPA recovered in the urine 

P-values derived from pairwise comparison of formulations using Wilcoxon Rank Sum test; 

these were performed after a Friedman test showed differences in frequency of AEs among the 

study products. 
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Figure 3a. Median plasma TFV concentration (log-transformed) for each time point by product 
without simulated unprotected receptive anal intercourse 
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Abstract 

 

Objectives 

CHARM-01 characterized the safety, acceptability, pharmacokinetics (PK), and 

pharmacodynamics (PD) of three tenofovir (TFV) gels for rectal application: the vaginal 

formulation (VF), the reduced glycerin vaginal formulation (RGVF) and the rectal specific 

formulation (RF) gel. The focus of this thesis is the comparison of the compartmental PK 

obtained from the six matrices: plasma, peripheral blood mononuclear cells (PMBC), colonic 

tissue, colonic mucosal mononuclear cells (MMC), rectal and vaginal fluid. CHARM-01 extends 

the objectives of CHARM-02 to multiple dosing and includes tissue drug concentrations, but 

does not include the colonic luminal imaging used in CHARM-02. 

Methods 

Participants received 4 mL of the three TFV gels in a blinded, crossover design: seven daily 

doses of RGVF, seven daily doses of RF, and six daily doses of placebo followed by one dose of 

VF, in a randomized sequence. Colonic tissue, blood samples, rectal and vaginal fluids were 

obtained before any rectal dosing (baseline) and thirty minutes after the 7th dose. In addition, 

blood samples, vaginal and rectal fluid samples were obtained at 2,4 and 24 hours after the 

final dose.  

Results  

TFV moieties were detected in all matrices except for PBMC; all concentrations of TFV-DP in 

PBMC were below the lower limit of quantification. There were no differences between RF and 
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RGVF in terms of TFV PK profile in plasma, rectal tissue homogenate, vaginal and rectal fluid.  

Median tissue mucosal mononuclear cell (MMC) TFV-DP trended higher for RF when compared 

to RGVF, 1136(IQR: 473-2200) and 320(IQR: 170-1150) fmol per 10^6 cells, respectively; 

however, this difference did not reach statistical significance (p=0.067).  

Conclusion 

There were no statistically significant differences between the PK features of TFV in RF and 

RGVF in plasma, rectal homogenate, colonic MMC, rectal and vaginal fluid.  

There was a trend of higher colonic MMC in RF as compared to RGVF, which did not reach 

statistical significance. Because participants received only a single VF dose, PK after VF dosing 

couldn’t be compared to PK after RGVF and RF dosing. 
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Introduction 

Men having sex with men have a disproportionate burden of HIV globally. Part of the reason for 

such high prevalence is that the risk of contracting HIV is significantly higher in those that 

practice unprotected receptive anal intercourse (RAI)72-74. Hence, in addition to current 

biomedical and behavioral prevention strategies, rectal microbicides will provide an additional 

prophylactic method.   

 

One essential feature for rectal microbicide development is the ability of the candidate RM 

formulation to be present at a concentration that will inhibit infection at the site at risk of HIV 

infection.  As stated earlier, local dosing has the benefits of attaining higher drug concentration 

at the mucosa compared to systemic dosing21,56. In CHARM-01, we compare the concentration 

of TFV and its moieties in six matrices, namely, plasma, PBMC, colonic tissue, colonic MMC, 

rectal and vaginal fluid.  

 

Ethics Statement 

The study was designed by the investigators with collaborative input from CONRAD and the 

NIAID/DAIDS/Prevention Sciences IPCP for HIV Topical Microbicides, as stipulated in the award 

notice and reviewed by the U.S. Food and Drug Administration (FDA). The study was approved 

by the University of Pittsburgh Institutional Review Board (IRB) as well as the University of 

California at Los Angeles IRB. All subjects provided written informed consent. The trial is 

registered at ClinicalTrials.gov, number # NCT01575405 and is in compliance with the CONSORT 

2010 recommendations for reporting of trial results (www.consort-statement.org). 

http://www.consort-statement.org/
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Materials and Methods 

 The CHARM-01 study was a Phase 1, double blind, randomized crossover trial in which 

participants received the three TFV gel formulations (VF, RGVF, and RF) in a randomized 

sequence. Each phase of product administration lasted 7 days with a 21 (± 7) day washout 

period (Figure 1). The first and seventh doses of study product were administered in the clinic 

and the remaining five doses were administered by the participant at home, with daily, 

protocol-defined reminders to encourage product use.  

 

During the RGVF and RF phase of dosing, participants received seven identical doses of either 

the RGVF or RF TFV gel. However, during the VF phase of dosing, participants received six doses 

of a hydroxyethyl cellulose (HEC) placebo gel, with only a final dose of VF TFV gel. As the 

majority of participants in the RMP-02/MTN-006 rectal safety trial who received VF TFV gel 

experienced gastrointestinal side effects (bloating, abdominal discomfort, and diarrhea), it was 

considered unethical to ask participants to use more than one dose of VF TFV gel56.   

 

The study was conducted at two clinical sites (The University of Pittsburgh, Pittsburgh, 

Pennsylvania. and the David Geffen School of Medicine, University of California at Los Angeles, 

Los Angeles, California). Enrollment began in March 2013 and the last participant completed 

the study in October 2013. The target sample size was 18 (nine participants at each site) and 

enrolled participants were assigned at random to one of the three study formulation 

sequences. Randomization was done in blocks of three at each site to ensure balance between 
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formulation groups and the sequence of administration between sites.  The randomization 

scheme was stratified by site and generated by the University of Pittsburgh, Center for 

Research on Health Care Data Center, using computer-generated random numbers. The role of 

HH was the pharmacokinetic and pharmacodynamics data analysis and interpretation.  

 

The randomization assignments for up to 12 participants (24 total per site) were delivered to 

the Director of Pharmacy Affairs at the Magee-Womens Research Institute (MWRI) who held 

primary responsibility for maintaining the blinding and generated the product labels.   

 

Study population 

The study population consisted of healthy, RAI-abstinent, HIV-uninfected, adults (male and 

female) aged 18 years or older at time of screening who had been successfully vaccinated for 

hepatitis B virus (HBV) or who had naturally acquired immunity to HBV, as evidenced by HBV 

antibody titers. An inclusion criterion for female participants was the active use of an 

acceptable form of contraception (e.g., barrier method, intrauterine device, hormonal 

contraception, surgical sterilization, or vasectomization of the male partner). Individuals with 

abnormalities of the colorectal mucosa, significant gastrointestinal symptoms (such as a history 

of rectal bleeding), evidence of anorectal Chlamydia trachomatis (CT) or Neisseria gonorrhea 

(GC) infection, chronic HBV infection, or a requirement to use drugs that were likely to increase 

the risk of bleeding following mucosal biopsy were excluded from the study.  
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Study products 

The VF TFV gel, the RGVF TFV gel, and the Universal HEC placebo gel were manufactured, under 

direction from CONRAD (Arlington, VA),  by DPT Laboratories (San Antonio, TX). DPT 

Laboratories generated pre-filled RGVF applicators and packaged the RGVF device with a 

plunger. DPT Laboratories also manufactured the RF TFV gel under direction of Dr. Lisa Rohan’s 

Group at MWRI.  The HTI applicators (HTI Plastics, Lincoln, NE) were used in the CHARM-01 

study. These applicators had been initially designed for vaginal use and have been used in all of 

the previous vaginal microbicide trials with TFV gel. They have also been used rectally in the 

RMP-02/MTN-006 and MTN-007 studies42,56. Each opaque pre-filled applicator was packaged 

with a plunger and labeled with a code to preserve the identity of the formulation.  Each pre-

filled applicator contained a dose of approximately 4 mL of TFV gel of the HEC placebo. The pre-

filled applicators were shipped directly to study site pharmacies and were stored by and 

dispensed from the site pharmacy. 

 

Each participant was assigned applicators based on the randomization number.  At Visits 3, 6, 

and 9, the participant’s first dose of study product was administered by the clinical staff. During 

the period of daily administration, study participants were instructed to insert one dose of gel 

into the rectum once daily throughout the seven-day period.    

 

Study procedures 

There were a total of eleven study visits and one follow-up phone call. After obtaining informed 

consent all participants were screened with a thorough medical history, a targeted physical 
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examination, a digital rectal examination, and rectal swabs for CT/GC nucleic acid amplification 

testing (NAAT).  Urine was also collected for CT/GC NAAT and for pregnancy testing in the 

female participants (pregnancy testing was repeated at all subsequent clinical visits). Blood was 

collected for safety labs (complete blood count, urea nitrogen, creatinine, alanine 

aminotransferase, and aspartate aminotransferase) and serology (syphilis, HIV-1, hepatitis B, 

and herpes simplex 1 and 2). Participants who met the aforementioned inclusion criteria during 

the Screening Visit were enrolled into the study. The Enrollment Visit occurred within 28 days 

of screening. At the Enrollment Visit, participants were randomized, and a rectal examination 

and focused physical examination were performed. Rectal swabs were collected for CT/GC. 

Rectal sponges for PK were also collected. Participants then received a normal saline pH 7.4 

enema. A flexible sigmoidoscope was inserted into the rectum and biopsies were collected at 

approximately 15 cm from the anal verge.  At Visits 3, 6, and 9 (Treatment Initiation Visits), all 

participants had a single applicator of study gel inserted into the rectum. Within 30 minutes, 

samples were collected for CT/GC. At Visits 4, 7, and 10 (Last Dose Treatment Visits), a normal 

saline enema was then administered followed by a single dose of study product.  Approximately 

30 minutes later (± 15 minutes) blood, and in females, self-collected vaginal sponges were 

collected for PK studies. A sigmoidoscope was then inserted and the same rectal tissue biopsy 

samples were collected as described during the Enrollment Visit (with the exception of samples 

for GC/CT and cytokines).  Additional blood and rectal/vaginal sponges were collected at 2 

hours (± 30 minutes) and 4 hours (± 30 minutes) after product insertion.  At Visits 5, 8, and 11 

(conducted 18-30 hours after Visits 4, 7, or 10) blood and rectal/vaginal sponges were collected 

for PK.  
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Pharmacokinetic procedures  

Blood plasma, peripheral blood mononuclear cells (PBMCs), vaginal and rectal fluid, and 

rectal tissue were obtained before rectal dosing (Visit 2) and 30 minutes after the seventh 

dose of the gels (Visits 4, 7, and 10). Additional samples of blood plasma, PBMCs, and 

rectal/vaginal fluid samples were obtained at 2, 4, and 24h after the final dose (Visits 5, 8, 

and 11). 

 

Sample Processing: TFV and TFV-DP concentrations were determined via validated liquid 

chromatographic-tandem mass spectrometric (LC-MS/MS) methods at The Johns Hopkins 

University Clinical Pharmacology Analytical Laboratory as described previously [23].  All 

assays were validated following the recommendations of the FDA, Guidance for Industry: 

Bioanalytical Method Validation guidance document [10]. TFV concentrations were 

determined in plasma, rectal fluid, and vaginal fluid.  TFV-DP concentrations were 

determined for PBMCs, rectal tissue homogenates, and rectal MMCs. The measured value 

from each PK assay was used unless the PK value was determined to be between the lower 

limit of quantification (LLOQ) and the lower limit of detection (LLOD), in which case, a 

number equal to half that assay’s LLOQ was imputed for that PK value. 
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Analysis of outcomes 

Pharmacokinetics: TFV-based gel formulations’ PK were evaluated in six compartments 

(plasma, PBMCs, rectal fluid, rectal tissue, rectal MMCs, and cervicovaginal fluid) after rectal 

administration of the study product. For matrices other than tissue which were sampled 

multiple times after the last dose, the 24 hour post-dose concentration vs. time profile was 

examined for the final rectal dose of each TFV-containing study product (after 7 doses for RF 

and RGVF, after 1 dose for VF); TFV (or TFV-DP in PBMCs) maximum concentration (Cmax), time 

to maximum concentration (Tmax), and area under the TFV concentration-time curve from 0 to 

24h (AUC0-24 [log-linear trapezoidal method]) was estimated using non-compartmental methods 

(WinNonlin v. 6.3 software, Pharsight, St. Louis, MO).   Rectal biopsies, which were sampled 

only once with each product, were taken 30 minutes after each final study product dose to 

determine TFV and TFV-DP concentrations in tissue homogenates and TFV-DP in MMCs. We 

performed paired comparisons between RF and RGVF using the Wilcoxon rank sum test with 

exact two-sided significance test ( p < 0.05). VF was not compared due to non-steady state 

conditions as only one drug-containing dose was given. 

 

 

Results 

Enrollment and retention 

A total of 14 participants (11 men and 3 women) were enrolled and randomized in the study 

(Figure 2), 12 of whom completed the study. The majority of participants were white (57%) with 
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a mean age of 37.7 (± 14.3) years (Table 1). There was no statistical difference between sites in 

gender composition or the proportion of white participants, although there was a marginal 

difference with respect to age (41.7 versus 23.0; p=0.0414) with UCLA having a slightly older 

cohort. One female participant was enrolled but developed pyelonephritis prior to product 

exposure and was removed from the study. A second participant was randomized to receive the 

RGVF gel as the first study product. The participant completed Visit 5 but was subsequently 

withdrawn due to gastrointestinal symptoms including bloating and abdominal discomfort 

suggestive of irritable bowel syndrome. All other participants completed the study.  Averaged 

across all study visits, the proportion of completed administrative procedures, clinical 

procedures, clinical laboratory sample collection, and research laboratory sample collection 

was 89%, 87%, 96%, and 86% respectively. 

 

Pharmacokinetics 

TFV moieties were detected in all compartments sampled, except for PBMC TFV-DP which was 

below the LLOQ for all products (Table 3). The plasma TFV concentration-time profile (figure 3), 

Cmax, Tmax, and AUC0-24 were not significantly different for the RF and RGVF products (Table xx). 

There were no differences between RF and RGVF in TFV or TFV-DP in rectal tissue homogenate, 

though tissue MMC TFV-DP trended toward greater values with RF when compared to RGVF 

with median (IQR) RF/RGVF ratio of 1.8 (0.4, 3.9) (p=0.07). As mentioned previously, only a 

single exposure (Day 7) of the VF TFV 1% gel was given to those during their randomization to 

the VF arm; consequently, the VF product findings for PK are not summarized here. 
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Discussion 

Rectal exposure to study products was associated with the detection of TFV in plasma, rectal 

fluid, and rectal tissue and TFV-DP in rectal tissue and tissue MMC but not in PBMCs. As 

previously reported, rectal exposure to TFV gels was also associated with detection of TFV in 

vaginal fluids.  

 

 

The compartmental PK data from CHARM-01 are similar to PK data generated in the RMP-

02/MTN-006 study (Yang PLOS ONE 2014): rectal exposure to TFV gels is associated with 

minimal systemic exposure, lack of drug detection in PBMCs, high concentrations in rectal 

tissue/fluid, and detection in vaginal fluid. MMC TFV-DP trended toward ~2-fold greater 

concentrations following RF when compared to RGVF. Otherwise, there were no PK differences 

between these two products.  

 

Single dose VF PK values cannot be fairly compared to the drug accumulation in steady-state RF 

and RGVF PK values after 7 doses. For example, based on our single dose VF PK data and the 

long TFV and TFV-DP half-life within most of the matrices tested [30], accumulation of TFV and 

TFV-DP after 7 daily VF doses would match or exceed the concentrations seen with the RF and 

RGVF products in this study.  

 

The CHARM-01 PK data do suggest that the RF formulation may deliver higher local 

concentrations of TFV-DP to the rectal mucosa than the RGVF formulation, although this did not 
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reach significance. This is the only discriminating parameter between the RF and RGVF TFV gels 

in the CHARM-01 study and may be insufficient to displace the RGVF TFV gel that is currently 

being evaluated in an International Phase 2 expanded safety study (MTN-017; ClinicalTrials.gov 

Identifier: NCT01687218) being conducted in the United States, Peru, Thailand, and South 

Africa. The results of the MTN-017 study (expected in early 2016), with approximately 192 

participants, eight week periods of exposure to daily or pericoital RGVF TFV gel, as well as a 

PK/PD substudy of 36 participants, will have a critical role in defining the future for the RGVF 

TFV gel as a candidate rectal microbicide for Phase 3 safety and effectiveness trials. Certainly, 

with increasing rates of HIV infection in MSM and transgender women  there is an urgent need 

to develop new approaches for the prevention of HIV infection in these highly vulnerable 

populations. 
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Table 1 Baseline demographic data by site 

 

Variables  
UCLA 

(n = 11) 

PITT 

(n = 3) 

Overall  

(n = 14) 

Age  41.7 ± 13.6 23.0 ± 1.7 37.7 ± 14.3 

Male  9(81.82%) 2(66.67%) 11 (78.57%) 

Race    

White 6(54.55%) 2(66.67%) 8(57.14%) 

Black or African American 4(36.36%) 1(33.33%) 5(35.71%) 

American Indian or Alaska Native 1(9.09%) 0(0.00%) 1(7.14%) 

Hispanic    

No, not of Hispanic, Latino/a, or Spanish 
origin 

9(81.82%) 3(100.00%) 12(85.71%) 

Yes, Mexican, Mexican American, 
Chicano/a 

1(9.09%) 0(0.00%) 1(7.14%) 

Yes, Another Hispanic, Latino/a or 
Spanish origin 

1(9.09%) 0(0.00%) 1(7.14%) 
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Table 2. Pharmacokinetic data are summarized as median 

                (interquartile range)* 

Matrix Moiety PK Units RF TFV RGVF TFV VF TFV 

Plasma TFV Cmax ng/mL 7.1  
(3.5-11.9) 

6.0  
(4.3-7.1) 

         5.1  
    (3.3-6.2) 

  AUC ng*hr/
mL 

78  
(33-135) 

64  
(28-97) 

36  
(23-57) 

PBMC TFV-DP  fmol/M All BLQ All BLQ All BLQ 

Colon 
tissue 

TFV 30’ ng/mg 2.9  
(0.5-5.8) 

1.4 
 (0.7-3.7) 

1.0  
(0.1-9.2) 

 TFV-DP 30’ ng/mg 10.3 
 (BLQ-36.8) 

5.2 
(BLQ-12.8) 

BLQ  
(BLQ-6.4) 

Colon 
tissue 
MMC 

TFV-DP 30’ fmol/M 1136 
 (473-2200) 

320  
(170-1151) 

91  
(19-367) 

Rectal 
Fluid 

TFV Cmax ng/mL 8.1x105  
((1.8 -16) x105) 

9.4 x105  
((4.3-14)x105) 

3.6x105  
(0.8-8.2)x105) 

  AUC ng*hr/
mL 

1.4 x106  
((0.45-2.9)x106) 

1.4 x106  
((0.66-2.5)x106) 

7.9x105 

( (5-14)x105) 

Vaginal 
Fluid# 

TFV Cmax ng/ 
sponge 

31, 220 133, 172 6, 12 

  AUC ng*hr/ 
sponge 

486, 3,499 922, 1,377 88, 29 

*No RF v. RGVF comparisons are statistically significant (all p>0.05, Wilcoxon rank sum test). VF 

was not compared to other products. #Only 2 subjects, both shown. 
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Figure 1. Flow diagram of participant progress through the CHARM-01 study 
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ABSTRACT: 
 

Background: There is a paucity of evidence regarding optimal dosing of anti-tuberculosis drugs 

in children. The aim of this study was to identify the pharmacokinetic parameters of first-line 

anti-tuberculosis drugs, and concentrations achieved, after the implementation of the 2010 

World Health Organization (WHO)-recommended pediatric dosages.  

Methods:  We conducted a prospective, observational pharmacokinetic study in children 10-

years old, or younger, who were on isoniazid, rifampin, pyrazinamide, and ethambutol therapy 

in Durban, KwaZulu-Natal, South Africa.  Blood was collected at six time points over a 24-hour 

period, chosen using optimal sampling theory. Drug concentrations were simultaneously 

modeled to identify the compartmental pharmacokinetics of each drug in each child, using the 

ADAPT program.   

Results:  The best six sampling time points in children were identified as 0 (pre-dose), 0.42, 

1.76, 3.37, 10.31 and 24 hours post dose. Thirty-one children were recruited and blood drawn 

at these time points. Rifampin, ethambutol and pyrazinamide were best described using a 1-

compartment model, while isoniazid was best described with a 2-compartment model. Only 

9.6%, 83%, 64.5% and 30.7% of children attained the WHO 2-hour target therapeutic 

concentrations of rifampin, isoniazid, pyrazinamide, and ethambutol, respectively. Moreover, 

only 77%, 19%, and 26% achieved the area under concentration-time curves associated with 
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optimal clinical response of rifampin, pyrazinamide, and isoniazid, respectively. No single risk 

factor was significantly associated with sub-therapeutic drug levels. 

Conclusion: Drug concentrations of all first line anti-tuberculosis drugs were markedly below 

the target therapeutic concentrations in most South African children who received the revised 

WHO-recommended pediatric weight based dosages.  
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Tuberculosis (TB) continues to be a major global public health threat in which children bear a 

significant portion of disease mortality and morbidity. In 2012, there were an estimated 8.6 

million new cases worldwide, with most cases in several high-burden countries including South 

Africa, China, India and Russia. In South Africa, childhood TB accounts for 15-20% of the burden. 

To compound this, the additional problem of multidrug resistant TB (MDR-TB)-, extensively- 

and totally-drug resistant strains has emerged.1, 2 Despite these ominous threats, the first-line 

treatment regimen for TB, comprised of isoniazid, rifampin, pyrazinamide, and often 

ethambutol, has remained stagnant for several decades. With the failure to ensure adequate 

control of the childhood TB burden, an evaluation of drug concentrations associated with 

standard dosing of the existing drugs is paramount, since inadequate drug levels may 

contribute to treatment failure and the problem of MDR-tuberculosis.2  

 

The design of pediatric pharmacokinetic (PK) studies needs to be optimized. Often, pediatric PK 

studies have relied on a convenience sampling strategy, and a desire to incorporate the 2hr 

time point. However, this “random” and arbitrary sampling strategy leads to imprecision in PK 

estimation, and is a common source of error.3-5 First, there is need to define the full 

concentration-time profile over a dosing interval so that AUC0-24, Tmax, and Cmax can be 

identified, which always vary from child to child. Specifically between-individual PK variability is 

a fact that must be taken into account in study design. Second, the duration of sampling is most 

accurate when the sampling time encompasses at least three elimination half-life values for all 

drugs.4 An approach that takes these concerns into account is application of optimal sampling 



79 
 

theory, based on Fisher information matrix.3, 5 Blood draws are performed at particular 

“information rich” time points, allowing for identification of unbiased PK parameter estimates. 

The number of sampling times is also minimized, without loss of information since sampling 

occurs at points that maximize useful information. Here, we applied optimal sampling theory to 

the sampling strategy design so that more accurate PK parameter estimates could be identified 

in children. 

 

The importance of accurately identifying PK parameter estimates in children is to ensure that 

optimal dosing strategies can be designed. An optimal dose is that which achieves a target 

concentration that is known to be associated with optimal microbial and clinical outcomes. The 

most commonly utilized reference concentrations by the WHO have been 2hr drug 

concentrations, with references of rifampin 8 mg/L, isoniazid 3 mg/L, pyrazinamide 20 mg/L, 

and ethambutol 2 mg/L.6  In order to achieve these target 2hr drug concentrations, the WHO 

recently recommended new treatment doses for children.7 These 2hr concentrations are often 

confused with “peak” (Cmax) concentrations, however McIlleron et have shown that they differ.8 

Moreover, 2hr concentrations have been found not to be predictive of clinical outcomes in 

several studies in adults.9-11 Furthermore, these 2hr concentrations were not designed to 

address the question of acquired drug resistance (ADR); ADR is unquestionably driven by low 

drug concentrations, which initiate a series of molecular events termed “the antibiotic 

resistance arrow of time”.11-22 On the other hand, studies in the hollow fiber model (HFM) and 

in murine TB, and our re-analysis of older guinea pig studies, have identified that instead it is 

AUC0-24/MIC and Cmax/MIC of these first line drugs that drive efficacy and suppress ADR.15-18, 22-24 
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The HFM studies and computer-aided clinical trial simulations predicted that PK variability was 

the main driver of therapy failure and ADR in South Africa.11 This was confirmed in three 

studies, first a meta-analysis of prospective studies that involved 2,382 patients, and later in 2 

prospective clinical studies.12, 13, 25 In one  clinical study of 142 adult South Africans, >90% of 

therapy failure (death, relapse and microbial failure) and 100% of ADR was explained by having 

a pyrazinamide AUC0-24 ≤ 363 mg·h/L, a rifampin AUC0-24 ≤13 mg·h/L and an isoniazid AUC0-24 

≤52 mg·h/L, as well as low Cmax.
12 These findings have since been validated in a separate 

prospective clinical study.25 Moreover, these concentration thresholds predictive of outcome in 

adult TB were virtually the same as identified in HFM and in mice.15-18, 22 Here, we investigated 

how often South African children treated with the new WHO recommended doses achieve the 

older reference concentrations used by the WHO as well as how often they achieved the AUC0-

24 thresholds that predicted clinical outcomes in adults. 

 

MATERIALS and METHODS 

Regulatory compliance 

The Institutional Review Boards (IRB) of the University of KwaZulu-Natal and Johns Hopkins 

University approved this study. 

 

Study Population and Setting 

Pharmacokinetics of Anti-Tuberculosis Medications in South African Children (PHATISA) is a 

prospective, single-center, observational PK study that was conducted at the King Edward VIII 

hospital in Durban, South Africa, from May 2012 to March 2013. Children 10 years of age or 
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younger with the diagnosis of TB were enrolled. The diagnosis of TB was based on clinical 

symptoms, radiological findings, tuberculin skin testing, history of household contact, and 

microbiologic confirmation. Children were excluded from the study if they had a hemoglobin 

level <6 grams per deciliter, alanine aminotransferase (ALT) more than 3 times the normal value 

for age, evidence of coagulopathy based on an abnormal PT/PTT, probable diagnosis of 

abdominal TB based on clinical findings, or any history of intolerance or allergy to the first-line 

anti-TB drugs. Children who were enrolled in another study were also excluded.  

 

Baseline clinical data was obtained for each participant, including age, nutritional status 

(weight, height, mid upper arm circumference), alkaline aminotransferase, creatinine, blood 

urea nitrogen (BUN), and chest radiography. HIV testing was performed by antibody testing for 

children older than 18 months of age, and by HIV DNA PCR for those younger than 18 months 

of age. Dietary information and concomitant medications were recorded for the 24hrs of the 

blood sampling. 

 

Definitions 

The diagnosis of definite TB was made if there was microbiological evidence (by sputum or 

tissue culture Mycobacterium tuberculosis positivity) or probably TB (by acid-bacillus smear 

positive and/or a classic radiological finding); those that did not meet these criteria but showed 

symptoms of TB (possible TB) and were started on treatment were also included in the study.26 

Children were started on standard first-line anti-TB agents, rifampin, isoniazid, and 

pyrazinamide with addition of ethambutol for severe forms of TB in accordance with the new 



82 
 

WHO guidelines. These guidelines recommend that children receive 10-15 mg/kg of isoniazid, 

10-15 mg/kg of rifampin, 30-40 mg/kg of pyrazinamide, and 15-25 mg/kg of ethambutol.7 

Informed consent was obtained from parents or guardians prior to enrollment. 

 

Drug treatments 

Drugs were provided by the hospital pharmacy and were obtained from Aspen Pharmacare and 

Sanofi-Aventis South Africa (Pty) Ltd. Drugs were ground and given as food emulsions for 

children too young to swallow tablets. The drugs were given as fixed dose combinations. The 

doses were rounded to the nearest value using the available tablet sizes: combined rifampicin, 

isoniazid and pyrazinamide 60,30 and 150 mg tablet, combined rifampin and isoniazid  60 and 

30 mg or 60 and 60 mg tablets, pyrazinamide 150 and 500 mg tablets, and ethambutol 100 and 

400 mg tablets according to weight based charts. 

 

Study and sampling procedures 

Blood samples were obtained from each participant between the fourth and twelfth day after 

initiation of anti-TB therapy. In order to avoid biased PK parameter estimation, optimal 

sampling theory was utilized to identify information-rich time points for each of the four drugs 

with the use of ADAPTII software.3-5, 27 Six time points were identified. Peripheral intravenous 

catheters were used for sample collections. At each time-point, 2-ml of blood was collected in 

EDTA-coated tubes. Each specimen was immediately placed on ice until processing.  Blood 

samples were centrifuged at 2,000 x g for 10 minutes. The plasma layer was separated within 

30 minutes after sampling and stored in a cryovial at -80ºC until time of analysis.  
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Drug concentration measurement assays  

Measurement of drug concentrations was carried out by a previously published multiplexed 

three-drug assay using liquid chromatography coupled to tandem mass spectrometry (AB-Sciex 

Qtrap® 4500 LC/MS/MS system).28 The internal standard was 6-amino nicotinic acid. Calibration 

and quality control standards, along with a blank plasma aliquot and an internal standard 

aliquot, were used for all runs. Dilutions of standard drug solutions were used to cover the 

range of concentrations expected for each drug. Three quality control solutions were used to 

span the range of serum drug concentrations: lowest (QL), intermediate (QM), and highest 

(QH). Inter-day and intra-day coefficients of variation were below 10%. Selected multiple 

reaction monitoring (MRM) transitions were run in positive ion mode of [M+H]+. Precursor ions 

to product ions were isoniazid (mass-to-charge ratio [m/z] 138.1 51.9), rifampin (m/z, 

823.1791.2), pyrazinamide (m/z, 124.1  52.1), and 6-amino nicotinic acid (m/z, 138.7 

58.9). Analyst® 1.5 software version 1.5.1 was used.  

 

Compartmental PK analyses  

All concentrations of rifampin, isoniazid, pyrazinamide, and ethambutol were modeled using 

the ADAPT 5 software program.29 First, we utilized the standard two stage estimation method 

to generate initial PK parameter estimates for each drug for a one-, two-, or three-

compartment model, with first-order input and elimination. The compartmental parameter 

estimates were then used in subroutine POPINIT of ADAPT. Next, each drug was modeled to 

identify pharmacokinetic parameter estimates for each child using the maximum-likelihood 
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solution via the expectation-maximization algorithm (MLEM). Choice of best compartmental 

model was then made based on lowest Akaike information criterion (AIC) score and Bayesian 

Information Criteria (BIC). While ideally they should agree, the BIC, which penalizes for 

complexity, was used for the final decision. However, we also applied the rule of parsimony, 

based on Occam’s razor, which was that if AIC and BIC chose the more complex model, but that 

model did not significantly improve the parameter estimates compared to the less complex 

model, then the simpler model offered the best explanation. 

 

Statistical analysis  

STATA version 12 was used for statistical analysis. The baseline characteristics and secondary PK 

parameters such as Cmax, Tmax, and AUC0-24 were summarized as means ± standard deviation. 

The 2hr concentration values were considered to be binary data: above the reference target 

concentration or below. The 2 hour reference concentrations for rifampin were 8 mg/L, for 

isoniazid 3 mg/L, for pyrazinamide 20 mg/L, and for ethambutol 2 mg/L, based on previous 

studies that utilized these concentrations to design new doses.30 These were used simply to 

identify if the intended target concentrations for the new WHO doses had been attained. Next, 

we wanted to identify the proportion of children in these WHO recommended doses who 

achieved or exceeded, the AUC0-24s shown to be associated with clinical outcome in pulmonary 

TB adult patients.12 These were a pyrazinamide AUC0-24 ≤ 363 mg·h/L, a rifampin AUC0-24 ≤13 

mg·h/L and an isoniazid AUC0-24 ≤52 mg·h/L. For this latter analysis the concentrations were not 

dose- or weight-normalized. 
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For each of the four drugs, the Cmax and AUC were dose-normalized, depicted as Cmax/D and 

AUC0-24/D, respectively. Graphical exploratory data analysis showed that the Cmax and AUC0-24 

were not normally distributed; hence, non-parametric tests were used to investigate 

differences in  Cmax and AUC among the covariates. The Wilcoxin rank-sum test was used to 

delineate differences in Cmax/D and AUC0-24/D between younger and older children (<2 years vs. 

>2 years), sex (male vs. female), HIV serostatus (positive vs. negative), and nutritional status 

(malnourished vs. non-malnourished).  

 

RESULTS 

Application of optimal sampling theory revealed that the best six sampling time points in 

children were 0 (pre-dose), and 0.42, 1.76, 3.37, 10.31 and 24 hours post dose. These sampling 

times were then used to time blood draws. A total of 36 children, treated between May 2012 

and March 2013, were eligible for the study. Three parents declined informed consent. One 

patient improved with antibiotic therapy for bacterial pneumonia and the clinical diagnosis of 

probable TB was removed with discontinuation of anti-TB therapy. Another patient was 

diagnosed with probable gastrointestinal TB after imaging, and was disqualified from the study. 

The baseline anthropometric and clinical data in the 31 remaining children is summarized in 

Table 1. 80.6% children presented with pulmonary tuberculosis; 19.4% had disseminated 

disease.  

 

All children were inpatients and doses were received under supervision of nurses; however 11 

children received their doses as outpatients. Dosages received by participants for each of the 
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four drugs were ascertained by checking the bottles of the drugs as well as the prescribed 

dosage in the participants’ charts (Figures 1-4, Panel A). Overall, 90.3% (28/31), 83% (26/31), 

41.9% (13/31), and 84.6% (11/13) of participants received dosages within the revised WHO 

recommendations for rifampin, isoniazid, pyrazinamide, and ethambutol, respectively (Figures 

1-4, Panel A). 

Spearman’s rank correlation coefficient was used to determine if correlations existed between 

underdosing of one drug and another. This evaluation revealed a strong statistically significant 

correlation between underdosing of isoniazid and rifampin (ρ=0.746, p-value 0.001), isoniazid 

and pyrazinamide (ρ=0.373, p-value 0.039), but not between rifampin and pyrazinamide 

(ρ=0.278, p-value 0.13). This correlation reflects the fact that fixed dose combinations were 

used, an effect compounded by weight banding. 

 

Rifampin, pyrazinamide, and ethambutol were best described using a one-compartment model, 

while isoniazid was best described using a two-compartment model. The mean population PK 

parameter estimates for all four drugs are shown in Table 2. Secondary PK estimates such as 

Cmax, 2hr concentrations, and AUC0-24, are shown in Figures 1-4, which highlight the wide inter-

patient variability for each of the drugs.  Table 3 shows how poorly either the 2hr concentration 

and Cmax were as predictors of AUC0-24. The r2 were mediocre, except for pyrazinamide which 

had a moderate r2. The duration of therapy until blood draws for drug concentration 

measurement was a median of 7.0 (range:4-12) days. The relationship between duration of 

therapy and drug concentration is shown in Table 4, which shows none of the slopes 

significantly differed from zero. Thus, the duration of therapy until blood draws for the PK study 
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was not associated with low or high serum drug concentration, even for rifampin which 

undergoes autoinduction. 

 

Table 5 shows a summary of the proportion of children who achieved the reference 2hr drug 

concentrations that has been used for dose design in children. For all four drugs, a substantial 

portion of children achieved 2hr concentrations below the reference targets, especially 

rifampin and pyrazinamide. This means that for children in KwaZulu, the new WHO 

recommended doses still fail to achieve their intended target concentration. Table 4 also shows 

that median value and range of 2hr concentration differed from those for Cmax for all drugs, 

except the pyrazinamide median (but not range).  

 

Table 5 also shows that for isoniazid and pyrazinamide, most children did not achieve the  

AUC0-24 that have been shown to be associated with optimal long term responses such as cure 

in adults. In the case of rifampin, a recent clinical study in adults identified a rifampin AUC of 35 

mg*h/L as predictive of speed of sterilizing effect and 2-month sputum conversion rates.25 

Twenty-two (71.0%) of the 31 children had a rifampin AUC≤35 mg*h/L, which suggests they 

would have slow sterilizing effect rates and delayed cure. Thus, overall, rifampin, isoniazid and 

pyrazinamide exposures were below optimal AUC0-24 in a majority of the children. 

 

Next, we performed a univariate analysis for failure to achieve target 2hr drug levels for each of 

the four study drugs against clinical and demographic factors,  only HIV positivity was 

significantly associated with low 2hr/D for isoniazid (p = 0.04, Wilcoxon rank sum comparison). 
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There was a trend towards significance for low AUC0-24/D for isoniazid and pyrazinamide (p = 

0.07 for both drugs).  

 

DISCUSSION 

There are several findings in our study. First, we evaluated the plasma concentration of the four 

first-line anti-tuberculosis drugs that are achieved in children dosed according to the 2010 

revised WHO dosing recommendation. The most important finding in our study was the 

surprisingly high proportion of children with sub-therapeutic plasma concentrations of all four 

drugs, even in those receiving recommended revised WHO dosages. Our PK parameter 

estimates and drug concentrations are likely accurate and have minimal bias, given that we 

employed optimal sampling theory to identify the most information rich sampling times, as 

opposed to a design based on convenience. Our findings  suggest a need to increase the doses 

of these drugs in children above what is currently recommended by the WHO. On the other 

hand however, the target concentrations used to make this recommendation assume that the 

2hr and AUC concentrations needed for optimal effect in adults are the same as in children. 

This is currently unknown and should be investigated, given possible differences in bacterial 

burden between adults and children with tuberculosis.31  

 

Secondly, the PK parameter estimates in the children we studied differed from those from 

other parts of sub-Saharan Africa and from India.32, 33 A study from Cape Town, South Africa, 

reported different AUCs and Cmax concentrations in children who received the revised WHO 

recommended doses. As a result, the proportion of children who achieved sub-therapeutic drug 
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concentrations was lower than in our current study. Both studies are correct, and the 

differences simply illustrate the large between-patient PK variability in children between 

different regions of the same country, perhaps due to genetic, demographic, and nutritional 

factors as well as co-morbities. Our current study was conducted among children primarily of 

Zulu ancestry, who also had a wider age range (3 months to 10 years, with 48% being > 2 years 

of age) compared to the Cape Town study.32, 33 Indeed, in a study of ofloxacin in adults from the 

same two places, PK parameter estimates differed between them in MDR-TB patients.34 

Similarly, PK parameters and their variability are expected to differ in children in different 

countries. This variability strongly emphasizes the crucial need to establish population PK 

parameter estimates in children in each different locale where there is a large pediatric 

tuberculosis burden: children in Mumbai differ from those in KwaZulu-Natal who differ from 

those in Cape Town. Our findings should be used to allow more targeted local adjustment of 

doses by clinicians. 

 

In summary, despite implementation of the 2010 WHO dosing guidelines, a considerable 

proportion of children still achieve sub-therapeutic anti-TB drug concentrations. Since 

metabolism of each of the drugs is from different xenobiotic metabolism enzymes encoded by 

unlinked alleles, the subtherapeutic concentrations observed across all four drugs suggest that 

dosing practices (in this case in pursuance of WHO guidelines) is one of the major reasons for 

the low drug concentrations, and not pharmacogenetic reasons. The current practice of 

prescribing first-line TB drugs is weight-based; hence, a 2-month old infant will receive the 

same 10 mg/kg dose of INH as a 10-year old child. This approach ignores the significant 
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physiologic differences that exist between infants and children, in addition to the weight 

difference. As an example, principles of allometric scaling, such as the ¾ power laws mean that 

children of different weights should be dosed differently based on different mg/kg doses.35-38 In 

other words, a 10 mg/kg dose in a 5 kg infant (50 mg) will achieve different concentrations in a 

30 kg child who is ten years old (300 mg) because the effect of weight on clearance and volume 

is non-linear. Thus, further well-powered studies are needed to elucidate optimal age- and 

weight-based dose schedules in the pediatric population. In addition, studies that also compare 

the clinical responses in children with and without sub-therapeutic levels are needed to further 

inform and strengthen the underlying concern that failure to achieve the therapeutic targets in 

the anti-TB pharmacotherapy for children may be a driver of poor outcomes and ADR.  
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Table1. Baseline demographics and clinical characteristics 

Clinical factor Median (range) 

Demographics  
Age, years 
       ≤ 2 years, n 
       > 2 years, n 

2.29 (0.25-10.5) 
16 
15 

Weight, kg 11.5 (6.1-19) 
Height, cm 84 (66-114) 
Malnourished, n (%) 20 (64.5) 
HIV+, n (%) 7 (22.6) 
Female, n (%) 13 (41.9) 
 
Laboratory Data 

 

Hemoglobin, g/dL 9.2 (7-11.7) 
Alanine aminotransferase 16 (9-71) 

 
 

28.5 (20-62) 

Microbiologic Data, n 
       Smear positive 
       Culture positive 
       Hain positive 
       GeneXpert 
 

 
5/23 
7/20 
7/8 
1/13 

Diagnostic Data  
Positive TST, n** 13/17 
Chest X ray findings, n 
      Cavitary lesion 
      Parenchymal consolidation 
      Perihilar adenopathy 

22/31 
4/22 
19/22 
14/22 

  

**TST=Tuberculin skin test 
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Table 2. Pharmacokinetic parameter estimates of first line-anti-tuberculosis drugs South 
African children. 
 

 Isoniazid 
mean (±SD) 

Rifampin 
mean (±SD) 

Pyrazinamide 
mean (±SD) 

Ethambutol 
mean (±SD) 

Total clearance (L*hr-1) 12.2 (7.58) 12.7 (9.9) 2.7 (0.9) 20.6 (6.1) 
Volume of central compartment (L) 56.4 (7.5) 85.1 (42.7) 24.0 (2.3) 135 (21.2) 
Absorption constant (hr-1) 10.0 (4.4) 14.8 (7.4) 0.9 (0.3) 1.7 (2.1) 
Inter-compartmental clearance (L*hr-1) 

 
10.2 (2.8) NA NA  

Volume of peripheral compartment (L) 1.0 (0.3) NA NA  

SD=standard deviation; NA= not applicable for a one compartment model 
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Table 3. Concentrations achieved in South African children treated with World Health 
Organization recommended dosing 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 Pyrazinamide 
(n=31) 

Rifampin 
(n=31) 

Isoniazid 
(n=31) 

Ethambutol 
(n=13) 

Observed 2-hour concentration 
Median (range); mg/L 
 

22.55 (2.35-66.35) 
 

2.87 (0.05-
14.18) 

 

4.50 (0.82-11.80) 1.10 (0.02-3.07) 

Children with 
concentration below 
reference (%) 

14 (45%) 29 (94%) 11 (35%) 11 (85%) 

     
Pharmacokinetic model derived peak 
Median (range); mg/L 
 

22.51 (11.18-47.17) 3.47 (0.56-
10.20) 

6.05 (1.83-10.28) 1.44 (0.62-6.28) 

Pharmacokinetic model derived AUC0-24 

Median(range); mg*h/L 233.9 (110.10-
525.7) 

21.2 (1.8-67.3) 28.7 (6.8-153.0) 10.8 (4.7-22.7) 

Children with AUC0-24 

below optimal (%) 
25 (81%) 7 (23%) 23 (74%) - 
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Figure 1. Isoniazid doses and concentrations achieved in 31 South African children.  

 

 

 

 

 

The p-values are for the D'Agostino and Pearson omnibus normality test, whereby a 

p≥0.05 is significant for a normal distribution, while lower p-vales indicate a non-normal 

distribution. 
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a. Isoniazid doses administered are compared to the WHO recommended doses. 

The majority of patients were dosed according to the WHO recommended doses. The 

ratio between the highest and lowest dose administered was 4.7. 

b. Isoniazid 2hr concentration had a lowest-to-highest ratio of 14.7, several fold 

higher than that imposed by dose. The true time to peak concentration (Tmax)  had a 

median and range of 1.75 (0.33-3.67) hrs, indicating a wide variability in Tmax, and that 

the 2hr concentration rarely coincided with isoniazid peak concentration in the children.  

c. Isoniazid peak concentration differed from the 2-hour concentration in 

distribution. The ratio between the lowest and highest peak was 5.6, closely tracking the 

doses administered.  

d. The isoniazid AUC0-24  achieved varied 22.5-fold between the lowest and highest, 

much higher than the ratio for doses.  
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Figure 2. Rifampin doses and concentrations achieved in 31 South African children.  

 

 

 

 

A p≥0.05 is significant for a normal distribution. 

a. The ratio of the lowest-to-highest rifampin dose was 2.5-fold, and mostly was either 

in the WHO recommended doses or even higher.  

b. Rifampin 2hr concentration had a lowest-to-highest ratio of 308.3, more than 100-

fold higher than ratio for the dose.  
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c. Rifampin peak concentration had a lowest-to-highest ratio of 18.2, and thus lower 

than the variability of the rifampin 2-hr concentration. 

d. Rifampin AUC0-24  achieved varied 37.8-fold between the lowest and highest. More 

than10-fold due to dose.   
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Figure 3. Pyrazinamide doses and concentrations achieved in 31 South African 

children. 

 

 

 

A p≥0.05 is significant for a normal distribution. 

a. The ratio of the lowest-to-highest pyrazinamide dose was 2.8-fold, with a large 
proportion below the WHO recommended doses.  
b. Pyrazinamide 2hr concentration had a lowest-to-highest ratio of 28.3, several fold 
higher than ratio for the dose.  
c. Pyrazinamide peak concentration had a lowest-to-highest ratio of 4.2, and thus lower 
than the variability of the pyrazinamide 2-hr concentration. 
d. Pyrazinamide AUC0-24  achieved varied 4.8-fold between the lowest and highest 
concentrations.   
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Figure 4. Ethambutol doses and concentrations achieved in 13 South African children. 
 

 

 

 

A p≥0.05 is significant for a normal distribution. 
a. The ratio of the lowest-to-highest ethambutol dose was 2.5-fold, with a large 
proportion below the WHO recommended doses.  
b. Ethambutol 2hr concentration had a lowest-to-highest ratio of 139.1, >100-fold 
higher than ratio for the dose.  
c. Ethambutol peak concentration had a lowest-to-highest ratio of 4.3, and thus lower 
than the variability of the ethambutol 2-hr  concentration. 

d. Ethambutol AUC0-24  achieved varied 4.9-fold between the lowest and highest concentrations.   
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Chapter 5:  Conclusion 

 

Pharmacokinetic analysis is a vital part of drug development and optimization of 

therapeutic regimens.  In this thesis, the role of systemic and local quantitation of 

tenofovir after local (rectal dosing) was presented. In addition, utility of quantitative 

pharmacokinetic analysis to evaluate adequacy of therapeutic regimens currently 

recommended for clinical practice was evaluated in the setting of first-line anti-TB 

medications in a pediatric population where data-driven dosing regimen 

recommendations are lacking. 

 

1. Rectal Microbicide Development for Pre-exposure Prophylaxis 

1.1. Our Findings 

In CHARM-02, we found that all three candidate TFV 1% gel products were safe for one-

time dosing. There were more minor gastro-intestinal AEs during VF administration 

period. CHARM-02 also mainly focused on PK and evaluation of colonic distribution of 

three candidate TFV 1% gel products: We found that the hyperosmolal product, VF, has 

the greatest distribution (highest Dmax), and also, as inferred from the permeability and 

plasma TFV concentration data, is associated with the greatest permeability to small 

molecules.  There was high (86%) co-localization of the drug and virus surrogate and no 
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difference in co-localization of the drug and virus surrogate between these three study 

gels.    We also noted that all the differences seen in the colonic distribution between VF 

and the other two study gels becomes insignificant when dosing was followed by 

simulated coitus compared to no differences seen when dosing is not followed by 

coitus.   We believe PK with and without coitus are both relevant as some doses will not 

be followed by sex and some will, hence a combination of the sex/no sex differences 

may combine over time to generate persistent differences between products in a given 

individual. 

 

CHARM-01 looked at safety and multi-compartment PK after multiple (7-doses) doses of 

the RF and RGVF TFV 1 % gel, and single dose of VF gel. Daily dosing of the RF and RGVF 

gels for one week was found to be safe without any histologic evidence of tissue 

damage (data not included in the thesis, but presented in the published manuscript)59. 

The VF product was associated with increased minor AEs, significant, since this was with 

only a single dose compared to 7 doses for the other two products. Looking at the PK of 

TFV in plasma, rectal tissue, rectal and vaginal fluid and its active moiety, TFV-DP, in 

colonic MMC, PBMC, and rectal tissue, there were no statistically significant differences. 

Of note, the median concentration of TFV-DP in colonic MMC was numerically higher 

(but not quite statistically significant at the 5% level) for RF as compared to RGVF with 

median mucosal mononuclear cell (MMC) TFV-DP RF/RGVF ratio of 1.8 (interquartile 

range 0.4-3.9) (p=0.07)]. Hence, despite the almost two-fold difference in osmolality 
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between RF and RGVF, there were no major safety or PK differences between these two 

study formulations.  

 

Based on these two studies, we conclude that both RF and RGVF are safe to be 

advanced to phase II trials. Currently, MTN-017, a phase II clinical trial with RGVF is 

underway.  

 

1.2. Challenges and Future Directions 

 

One major challenge for HIV microbicdes is identifying the target TFV concentration that 

is protective from HIV infection in the pertinent compartment. This would require 

bridging studies that can relate concentrations from easily obtainable compartments, 

such as plasma, to concentrations that are less accessible, but more pertinent to 

assessing HIV infection, such as colonic/vaginal mucosa. In the CAPRISA 004 study, 

where women received coitally-depended TFV 1% gel, TFV concentration of at or above 

1000ng/ml in cervico-vaginal fluid was associated with increased protection from HIV. In 

the iPrEx study, where MSM were provided with oral emtricitabine/tenofovir as PrEP, a 

TFV-DP concentration of 16 fmol/million cells in PBMC was associated with increased 

protection17,75. In order to make sense of these concentrations, we need bridging 

studies that simultaneously measure concentrations of TFV and its active moiety in 

several compartments simultaneously, such as the CHARM-01 study, which looked at 

multi-compartment PK after rectal dosing of TFV 1% gel. Once we have several bridging 
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studies, we then will be able to integrate the information with pharmacodynamic data 

obtained from clinical trials to identify the target concentration for prevention of HIV 

infection.  Such a “connect-the-dots” exercise using data across studies is, however, 

subject to potential drift in PK across studies due to methodologic differences (analytical 

methods or population differences) that require attention to subtle differences and 

caution in application. It is most preferable to collect PK samples at all anatomic sites in 

at least, some subjects in seroconversion outcome studies to minimize known and 

unknown variables.  

 

Another challenge is our quantification of the distribution of the study gels. In CHARM-

02, we used SPECT/CT along with radiolabeled drug and virus surrogate to look at the 

distribution of the three study products. The main limitation of this method is that it 

only assesses the distribution of the study gels in the colonic lumen, but does not 

evaluate mucosal distribution, per se.  One potential method that may improve our 

ability to deliver more active drug to the mucosa is use of nanoparticles. With the 

advances in nanotechnology, novel mucus-penetrating nanoparticles are being 

investigated for mucosal drug delivery. For instance, Ensign,  et al., demonstrated 

vaginal delivery of a mucus-penetrating acyclovir formulation in mice which rapidly 

penetrates cervicobaginal mucus nearly as quickly as water76. In addition, 

nanoformulations coupled with imaging modalities such as fluorescence particle 

tracking technology will optimize our ability to quantify drug delivery via mucosal 

surfaces more effectively by providing far higher resolution of drug on the mucosal 
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surface (100-1,000 micron resolution) than provided by SPECT/CT (3.54 millimeter 

resolution scale).  Using these microscopic imaging methods, these mucus penetrating 

nanoparticles are seen to provide a highly uniform distribution across the mucosal 

surface, in contrast to conventional particles which move more slowly through mucus 

and rest on the mucosal surface in very heterogenous patterns. Especially in a setting of 

coitally dependent microbicide use, both speed of mucosal contact and uniform 

mucosal surface distribution are preferred. Drug diffusion across the mucosal surface 

and into the tissue may well establish homogeneity of distribution in time, but coitally 

dependent dosing may not allow this time delay. To this end, anti-retroviral 

nanoforumulations for mucosal use, such as TFV, are being actively investigated77,78.  

 

Last, the success of any PrEP product will depend on acceptability and adherence to 

PrEP regimen. While there were multiple variables affecting adherence in the VOICE and 

Fem-PrEP studies, product acceptability was one of the relevant factors in its infrequent 

use and contributed to poor adherence, which hindered the studies’ ability to evaluate 

efficacy of the TFV as PrEP34,35. This also highlights the need for objective assessment of 

drug adherence such as using drug concentration as a reflection of drug use. Though this 

data was captured in the VOICE trial, TFV concentration in plasma samples was only 

collected quarterly and was not assayed until the study was complete. Having a more 

frequent drug level assessment available in real time may aid in providing objective 

measure of adherence to enable targeted adherence interventions.  Additional novel 

ways to assess adherence are critically needed.  
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2. TB Therapy in Children 

2.1. Our Findings 

The results of the PHATISA study shows that even with the revised higher doses of first-

line anti-TB drugs, many children are achieving below target concentration for all of the 

drugs; this was particularly striking for rifampin, one of the backbones of TB therapy, 

with only 3 out of 31 children achieving the target concentration. Given RIF’s ability to 

develop resistance with just one single mutation and the fact that children will be 

treated with only INH and RIF for the continuation phase, it would  mean that children 

are receiving INH monotherapy during the continuation phase. For populations such as 

Kwa Zulu Natal, an epicenter for TB and HIV, and areas with high INH resistance, this 

may result in major treatment failures and possibly contribute to the already growing 

problem of mulit-, extensive, and totally-drug resistant TB.  

 

2.2. Challenges and Future Directions 

The paucity of data regarding optimal TB therapy in this population results in suboptimal 

therapeutic regimens in this vulnerable population. Given the major differences in 

immunology, bacterial burden and distribution of TB disease in adults and children, we 

need well-designed, well-powered pediatric studies that relate the PK of these first line 

drugs to clinical outcome (pharmacodynamics).  
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Since the revised WHO pediatric dosing guideline came to effect in 2011, there have 

only been two studies, other than the PHATISA study, that evaluated the new dosing 

regimen79,80. Hence, well-designed, well-powered studies that relate PK of these first 

line drugs to clinical outcome (PD) are urgently needed.  

 

More importantly, as novel therapies for TB are being planned, we need children to be 

included in the studies so that more accurate dosing regimens, which take into account 

factors specific to the pediatric population, can be evaluated. Regulations such as the 

Food and Drug Administration Safety and Innovation Act (FDASIA) of 2012, which 

require pharmaceutical companies to include pediatric studies prior to submission for 

new drug application (NDA), may facilitate more inclusion of children in drug 

development.  
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