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Abstract

The brain generates complex sequences of movements that can be flexibly reconfigured in

real-time based on sensory feedback, but how this occurs is not fully understood. We devel-

oped a novel ‘sequence licking’ task in which mice directed their tongue to a target that moved

through a series of locations. Mice could rapidly reconfigure the sequence online based on

tactile feedback. Closed-loop optogenetics and electrophysiology revealed that tongue/jaw

regions of somatosensory (S1TJ) and motor (M1TJ) cortex encoded and controlled tongue

kinematics at the level of individual licks. Tongue premotor (anterolateral motor, ALM)

cortex encoded intended tongue angle in a smooth manner that spanned individual licks

and even whole sequences, and progress toward the reward that marked successful sequence

execution. ALM activity regulated sequence initiation, but multiple cortical areas collec-

tively controlled termination of licking. Our results define a functional cortical network for

hierarchical control of sensory- and reward-guided orofacial sequence generation.
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Chapter 1

Introduction

A baby is born. She is crying, kicking, knowing nothing about this strange world. But the

world does not appear in total randomness (Simoncelli and Olshausen, 2001). A falling toy

will not suddenly freeze in the air, float back up, or liquify; where she moves her hand toward

at this moment must be where she moves her hand away from next; a meaningful phrase

she hears is not a string of arbitrary sounds, and her first utterance of “ma-ma” is rewarded

by warm laughters of parents. Grasping patterns like these is a natural instinct since we are

born (Saffran and Kirkham, 2018) and is the foundation to develop advanced intelligence

throughout our life, from exploring new environments to mastering motor skills and perhaps

to building an internal model of the world which we can imagine within. Channeling the

physical world, our senses transmit continuous streams of signals that are related in space

and time. What often concurs with these sensory streams is a sequence of motor signals.

The motor sequence changes the sensory streams and the sensory updates in turn inform

future motor actions, forming an intricate sensorimotor loop (Hayhoe, 2017; Gallivan et al.,

2018). Relationships embedded in these sensorimotor sequences hold the secrets of how the

world and us together evolve.

Studies of sensorimotor sequences span different functional and anatomical domains of

the nervous system. On one end, specialized circuits, such as those found in the spinal cord
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and brainstem responsible for stereotypic walking (Kiehn, 2016), breathing and chewing

(Moore et al., 2014), govern detailed sequencing of muscle activations with specific integra-

tion of sensory or homeostatic feedback. Due to genetically determined wiring and limited

plasticity, these circuits trade functional flexibility with reliability, accuracy and readiness

for use. On the other end, highly plastic circuits in cerebrum and cerebellum have greater po-

tential to adapt for changing demands guided by sensory experiences and objectives (Doya,

2000; Hikosaka et al., 2002). Most skillful behaviors involve supervised and memorized

sensorimotor sequences (Desrochers et al., 2016). These sequences often exhibit a hierar-

chical organization where elementary patterns of sensory input and motor kinematics form

short sequences that are structured into longer and more complex compositions (Rosenbaum,

2009; Zhang and Ghazanfar, 2020). Though memorized, these sequences must be flexibly

rearranged or branched upon arrival of relevant sensory input (Gallivan et al., 2018). A

fascinating and unresolved question, therefore, is how the brain organizes such hierarchical

representation and flexible control.

This thesis aims (1) to establish a novel behavioral paradigm in mice which marries

skillful, hierarchical and flexible sequence behaviors with a wide selection of experimental

tools to measure and manipulate the nervous system, (2) to explore the level of control and

flexibility that mice can achieve with coordinated tongue-jaw movements, (3) to define the

cortical regions that are important for this sequence performance, and (4) to characterize

and understand the neural representations across a functional network that underlies the

behavioral sequence generation. It also describes technical innovations arising from these

investigations that have broader applications.

1.1 Behavioral Sequencing

To put the features and utilities of the novel task into context, we first need to ask what is

unique about sequence behaviors, and why are they worth studying? We will then review
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classic behavioral models in human and non-human species that have provided windows to

look into the neural underpinning of the sequence behaviors, consider each of their strengths

and limitations, and in the end point out the gaps filled and the opportunities offered by the

present task. Afterall, a model that does not address meaningful questions would be useless

no matter how amenable it is to genetic manipulations or how many advanced tools have

been developed for it.

1.1.1 Characteristics of Behavioral Sequences

One may be tempted to reduce a sequence of behaviors to a chain of simple stimulus-response

associations, where the sensory state caused by a previous response serves as a stimulus to

trigger the next response. Despite meaningful contributions (Clower, 1998), this kind of

response chaining theories have been largely rejected by both theoretical considerations and

experimental evidence (Rosenbaum, 2009). The main point of this section therefore is not

to further criticize these theories, but to highlight the key ingredients sequence behaviors

entail beyond isolated sensorimotor transformation.

Sequences with diverging states cannot be achieved via chaining a series of fixed senso-

rimotor transformations. When we write, type or pronounce the two words, “sequence” and

“sequencing”, the initial part “sequen” are the same, which produces the same sensory states,

whereas the ending has to differ, which is not possible given any fixed stimulus-response pair.

Common slips of the tongue, such as a spoonerism of saying “kitchen” as “chicken”, sug-

gest that a later sensorimotor component is already available early on. Context-dependent

sequence generation is not unique to speech, and has been widely studied in the planning

and production of saccade sequences (Hayhoe and Ballard, 2005) and object manipulation

(Cohen and Rosenbaum, 2004). In general, informative sensory cues are not always present

when a motor program needs to be selected or unfold differently. The brain therefore must

keep a memory of past states, guide ongoing movements, and plan for future actions by

inference (Niv, 2019). Despite the computational distinction between movements that can
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be causally chained and those requiring inference, the nervous system would likely solve the

infinite number of real life tasks by the same sets of circuits and via universal mechanisms.

We will expand on that later when reviewing surprising neural representations found even

in simple sequences.

Another problem of response chaining theories is their inability to explain the gener-

alization from one behavioral pattern to another. Every language learner would have the

experience that saying a new phrase can be hard but substituting different words becomes

much easier once the syntax becomes familiar. Motor sequences learned with one hand can

facilitate, or transfer to, the performance using the other hand (Shea et al., 2011). Both

children and macaques are able to learn a multi-touch sequence and generalize to perform

its reversed version (Jiang et al., 2018). Generalization can be accounted for by a hierarchi-

cal organization of behavioral elements as it offers control at different levels of abstraction

(Rosenbaum, 2009). For instance, phonemes are organized in words, which are in turn orga-

nized in phrases, sentences, etc., which can be flexibly reorganized to form novel expressions

according to grammatical rules. A motor sequence can be decomposed into subsequences,

or chunks, which are separated by extended time gaps and/or increased error rate from one

chunk to another (Rosenbaum et al., 1986; Jin and Costa, 2015). Sequence chunking is not

only a result of experimental quantification but also an intrinsic property of the sensorimotor

system necessary for proficient performance (Sakai et al., 2003). Learning of a new sequence

involves formation of chunks and gradual shortening of gaps within and between chunks (Jin

and Costa, 2015).

A single response to a cue has a natural end point - when the response is completed,

it is over. However, for motor sequences, especially those with periodic movements such

as walking, a stopping mechanism would be necessary to terminate the ongoing movements

based on internal state or external cue (Fujii and Graybiel, 2003). In a study about motor

output buffering, typists in the middle of a typing sequence were able to stop promptly in

response to an auditory cue, emitting only one extra key press on average (Logan, 1982). Pa-
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tients with Parkinson’s and Huntington’s disease, however, exhibited deficits in terminating

a movement sequence (Benecke et al., 1987; Agostino et al., 1992).

In sum, a behavioral sequence is composed of a series of elementary movements, usu-

ally organized in a hierarchy; planning and memory are often necessary to determine the

course of a sequence in addition to sensory cues; a sequence can be executed and terminated

automatically and independent from sensory feedback, or flexibly based on specific sensory

feedback and internal states. In addition, timing each movement is also an important aspect

of sequence behaviors.

1.1.2 Behavioral Models

Human sequence behaviors can be dazzlingly complex, hard to control experimentally, and

not feasible for other animals to learn. When developing a behavioral task, it is an art

to distill the essential elements of sequencing while keeping the form simple. Tanji and

colleagues trained macaques to hold a handle and wait for a start signal to initiate three

movements of pushing, pulling and turning in a specific sequence in order to obtain a reward

at the end (Tanji and Shima, 1994). We will later refer this as the Push-Pull-Turn task. There

are two nice features about this design. First, since there is no external cue (in one version

of this task) about what movement should be executed next, monkeys have to keep the

sequence in mind before and during the execution. This memory-guided motor sequencing

differs from other tasks where each movement is guided by a distinct sensory cue. Second,

consecutive movements are separated by a short interval when the hand is passively returned

to a neutral position. This sets the initial sensory state of the motor plant identical before

monkeys execute the next movement. As a result, movement sequencing cannot be achieved

by simply learning a chain of mapping from the last sensory state to the next movement.

Instead, a memory about sequence context (e.g. serial order) must be maintained. A major

limitation of this task is the difficulty to study hierarchical sequences due to the limited

number of possible movement combinations. Hikosaka and colleagues developed a task which
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requires monkeys or humans to perform a two-level hierarchy of motor sequences (Hikosaka

et al., 1995; Sakai et al., 2003). There is a 4-by-4 array of buttons for a monkey to press.

A lower level sequence, or a subsequence, consists of pressing two simultaneously lit buttons

in the correct order. A series of five randomly determined subsequences comprise a higher

level sequence, thus the name “2 × 5 task” (or “2 × 10 task” for humans). This task is

able to produce a huge number of arbitrary sequences. Although subjects were not asked to

remember the order of subsequences in a sequence, they tend to spontaneously predict the

upcoming subsequences with anticipatory movements before the light comes on. In another

word, this task, once well-learned, is naturally performed in a memory-guided fashion. One

may notice that tasks like these tend to ignore, or intentionally control for, the influence of

the sensory inputs during sequence performance. This helps to distinguish a sensorimotor

association process from a memory-guided one. However, they do not offer an opportunity

to study the integration of sensory input with memory and how inference can be made.

Saccades inherently incorporate sensory and motor components and usually occur in

sequences (Hayhoe and Ballard, 2005). An average human induces 100-thousand saccades

each day, making it perhaps our most frequently performed sensorimotor sequence behavior

(unless someone is really talkative). In most saccade sequence tasks, subjects learned to make

directional saccades sequentially to a set of targets. For example, the Pull-Push-Turn and

“2 × 5” tasks both have variations that replace hand movements with directional saccades

(Isoda and Tanji, 2002; Lu et al., 2002; Berdyyeva and Olson, 2010). Other tasks use more

natural behaviors such as sequences of free-viewing scans for a hidden target (Desrochers

et al., 2015a).

Human speech, in my opinion, is the pinnacle of sensorimotor sequence control. In non-

human species, vocalization can also be a sophisticated sensorimotor sequence behavior.

When songbirds sing, the vocal organs need to be orchestrated with rich dynamics and

millisecond precision. Songs are acquired by juvenile birds imitating the calls of adult tutor

birds with a growing vocabulary and an evolving repertoire (Okubo et al., 2015). There
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is a clear hierarchical organization of motor elements in zebra finch songs. A typical bout

of song is composed of one or more motifs, each of which consists of a rapid sequence of

3-8 syllables, and the syllables may be further divided into notes (Brown, 2017). As a

beautiful and intricate behavior, birdsong is worth to be understood in its own right. It also

provides unique opportunities to study how sequences are shaped at developmental timescale

(Brainard and Doupe, 2013). From a primate-centric point of view, however, it is not clear

to what extent we can find generalizable mechanisms from such a highly specialized system.

Perhaps, a fundamental difference between birdsongs and the learned sequence behaviors in

primates is the way behavioral goals (or loss functions) are defined, which may lead to very

different neural architectures.

Like humans and non-human primates, rodents exhibit a myriad of goal-oriented sequence

behaviors. Navigating through space is inherently a sensorimotor sequence, which often

involves a synthesis of memory and sensory cues to guide the decision at each turn and

corner. Studies of spatial navigation in rodents (Foster, 2017) and relational representation

in general (Wilson et al., 2014; Miller et al., 2017; Aronov et al., 2017; Liu et al., 2019) have led

to a tremendous breakthrough in our understanding of how the brain organizes related states

of the world. However, the brain has multiple processing and learning systems. Mechanisms

found in the hippocampal-prefrontal system may not explain procedural behaviors which

rely more on the sensorimotor system (McDonald and Hong, 2013), though the boundary

can be blurry.

Rodents do not have a long history of use in studying refined sensorimotor control.

Many of the new studies began by adapting primate behavioral tasks. For example, mice

have been recently trained to move a cursor to target via a joystick (Panigrahi et al., 2015),

to adapt to force fields when operating a manipulandum (Mathis et al., 2017), or to reach

for a food pellet (Guo et al., 2015) or water droplet (Galiñanes et al., 2018). Although

more sophisticated than most rodent tasks, these behaviors do not involve sensorimotor

sequences. Costa and colleagues developed a motor sequence task where mice learned to
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press a lever repetitively for a fixed number of times before getting a reward (Jin and Costa,

2010). There is only one fixed sequence to be learned which is composed of a single type of

movement (i.e. lever pressing) with unconstrained time intervals between movements. Due

to its minimalist design, this task has been limited to mainly study sequence initiation and

termination. However, even with relatively crude behaviors and limited applications, mouse

models allow one to attribute neural representations to defined circuit components more

easily and to apply better controlled neural perturbations, thanks to an ever growing arsenal

of genetic tools, the amenity to new electrophysiological and imaging techniques, and a fast

experimental turnover for testing hypotheses. But can it be better?

We can only study the neural basis of a brain function if it is present in a task performed

by a given species. A useful rodent task for sensorimotor sequence research should therefore

exhibit features unique to sequence behaviors, such as hierarchy, memory-guidance, and

flexible control. However, it was not known whether or not rodents are capable of behaviors

with such complexity. The task developed in this thesis demonstrates that mice can indeed

master memory-guided motor sequences using their tongues, rapidly reconfigure the sequence

online based on tactile feedback, and string sequences into a higher level composition. It fills

the gap and provides new opportunities to inform generalizable mechanisms for sensorimotor

sequence control.

1.2 Neural Basis of Behavioral Sequences

A behavior can be explained at different levels - psychological, representational, architectural

(circuit), cellular and molecular. If neuroscience follows the path of other natural sciences,

our understanding deepens when we are able to reduce an upper level explanation to the

next. In the past three decades, cognitive and systems neuroscientists have made significant

progress to bridge psychological observations of sequence behavior to neural representations

and, to certain extent, circuit architectures (Georgopoulos, 2000; Desrochers et al., 2016;
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Mackevicius and Fee, 2018). This section reviews how different brain regions and neurons

encode and control motor sequence execution, how expected and unexpected sensory se-

quences are processed, and theoretical models for sensorimotor sequence processing.

1.2.1 Coding and Control of Motor Sequences

The first links between sequence behavior and its neural substrates came from clinical stud-

ies. Patients with lesions in supplementary motor area (SMA) and certain surrounding

regions showed deficits when performing alternating movements with two hands (Laplane

et al., 1977), sequential limb movements (Dick et al., 1986), speech (Goldberg, 1985), and

temporally controlled finger movements (Halsband et al., 1993). Damage to the supplemen-

tary eye field (SEF) caused poor performance in sequential saccades, especially when the

patients had to rely on memory in the absence of visual guidance (Pierrot-Deseilligny et al.,

1995). The prefrontal cortex (PFC) is also involved in motor sequencing (Kolb and Milner,

1981; Kimura, 1982). Patients with Parkinson’s (Harrington and Haaland, 1991; Agostino

et al., 1992; Martin et al., 1994) and Huntington’s (Thompson et al., 1988) diseases showed

impairments in motor sequence tasks, suggesting a role for basal ganglia in sequence control.

In search of brain activities specific to sequence execution or learning, early human func-

tional imaging studies usually took advantage of the unique features of complex motor se-

quence mentioned before, and contrasted that with simple movements. In these studies

(Roland et al., 1980; Shibasaki et al., 1993; Jenkins et al., 1994; Kami et al., 1995; Catalan

et al., 1998; Grosbras et al., 2001), many brain regions were found to be differentially acti-

vated in sequence performance or learning, which include not only SMA, anterior cingulate

cortex (ACC), lateral premotor cortex (LPM), lateral PFC, the parietal cortex, and parts of

striatum, but also primary motor (M1) and primary sensory (S1) cortex. However, it was

not entirely clear to what extent the increased activity in each area was due merely to a

greater demand for motor drive or to signals for sequencing (Tanji, 2001).

Over the years, several brain regions involved in sensorimotor sequence behaviors have
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Figure 1.1: Cortical regions related to motor sequence control

From Desrochers et al. (2016). “Representation of main areas involved in sequential control in the
human (left) and monkey (right) brain.”

been characterized using single-unit recording and pharmacological inactivation in non-

human primates (Figure 1.1). Tanji and colleagues compared neuronal coding from M1

and SMA in the Push-Pull-Turn task (Tanji and Shima (1994); Figure 1.2). They found

that M1 neurons only responded for a specific movement regardless of which sequence it

was in. In SMA, however, 26% of neurons fired in anticipation of a specific sequence, and

another 36% of neurons that fired during the sequence responded to a specific movement at

a certain rank order (e.g. a Pull as the second movement). M1 neurons also did not distin-

guish sensory- versus memory-guided movements whereas SMA neurons were more involved

in memory-guided sequences and PM neurons more in sensory-guided ones (Mushiake et al.,

1991). Traditionally defined SMA was divided into a rostral pre-SMA and SMA proper.

Unlike SMA, 64% of neurons in pre-SMA became active when monkeys were learning a new

sequence (Shima et al., 1996; Clower and Alexander, 1998). Consistent with these elec-

trophysiological results, pharmacological inactivation of SMA and pre-SMA did not impair

simple arm reaching movements but caused inability to perform memory-guided, but not

visually-guided, reaching sequences (Shima and Tanji, 1998). Inactivations of pre-SMA, but
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Figure 1.2: Sequence coding in supplementary motor area

From Tanji (2001) “Discharges of a supplementary motor area neuron whose activity increased
selectively during the interval after completion of a particular movement, PULL, and before the
initiation of another particular movement, PUSH. In raster displays, each row represents a trial, and
dots represent individual discharges of this neuron. Small crosses denote the time of occurrence
of the movement onset. In histograms, discharges over 12 trials are summated. Bin width for
the display purpose is 40 ms. Triangles at the top of each raster indicate the start of the first
movement.”

not SMA, have been shown to cause deficits in learning new sequences in the “2 × 5” task

(Hikosaka et al., 1995). In addition to phasic responses to individual movements, SMA neu-

rons showed slow ramping activities throughout the course of a movement sequence when

monkeys performed a hand cycling task (Russo et al., 2019). It will be demonstrated in this

thesis that neurons in the anterolateral motor (ALM) cortex of mice also exhibit a dom-

inant “ramping” activity, or more precisely, a smoothly changing activity that tracks the

progression of a sequence.

Supplementary eye field (SEF) is an area close to SMA in the rostrolateral direction. In

a saccadic version of the “2 × 5” (Lu et al., 2002) and Pull-Push-Turn (Isoda and Tanji,

2002; Berdyyeva and Olson, 2010) task, SEF neurons were found to encode movements in a
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context-dependent manner similar to SMA neurons for arm and hand sequences. Intracorti-

cal microstimulation (ICMS) interfered with the sequencing of saccades and caused deficits

in saccade kinematics (Berdyyeva and Olson, 2014). Despite the name, SEF may not be the

only region for sequencing eye movements, as ICMS in SMA was also able to evoke saccades

(Mushiake et al., 1991) and activities related to sequential saccades have also been found in

SMA (Clower and Alexander, 1998; Berdyyeva and Olson, 2010).

Further rostromedial from pre-SMA is ACC, where most neurons showed selectivity

to rank order and were activated more when monkeys were learning new sequence orders

through trial-and-error (Procyk et al., 2000), reminiscent of pre-SMA coding but seeming

to have more emphasis on rank order. Although the majority of studies of ACC have been

focused on value representation, model updating and outcome evaluation, there could be

deeper connections to sequence behaviors in terms of behavioral flexibility and persistence

(Kolling et al., 2016).

Barone and Joseph were the first to observe single neurons coding for sequence structures

in the brain (Barone and Joseph, 1989). They recorded neurons from dorsolateral prefrontal

cortex (dlPFC) when monkeys learned to keep a sequence of three visual targets in working

memory and then, in the absence of ordinal cues, reproduce that sequence by reaching to

those targets in the correct order. About 12% of neurons maintained a working memory-like

activity tuned to a specific target direction at a particular rank. During sequence execution,

another 32% of neurons responded to movement toward a specific target direction, but only

did so given certain subsequent movements but not others. Interestingly, neuronal coding

across SMA, pre-SMA, SEF and dlPFC recorded in a same saccade task all showed rank

selectivity without any qualitative difference (Berdyyeva and Olson, 2010).

Things we do in daily life are usually not isolated. Instead, some are grouped together

to serve a small goal, and multiple small goals together achieve a bigger one (Lashley, 1951).

This kind of cognitive hierarchy can be different from typical movement hierarchy because

each component of the former is a goal-oriented sub-task. PFC hosts a cascade of executive
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processes from PM to anterior PFC that controls behaviors at levels from sensory input to

perceptual context to temporal episode (Koechlin et al., 2003). Desrochers et al. found that

the BOLD response in rostrolateral PFC (rlPFC), but not pre-PMd, ramped as participants

progressed through a sequence of tasks. Transcranial magnetic stimulation (TMS) to rlPFC,

but not pre-PMd, resulted in compromised task performance (Desrochers et al., 2015b).

The cerebral cortex works together with basal ganglia and the cerebellum with topo-

graphically matched recurrent loops (Parent and Hazrati, 1995; Hunnicutt et al., 2016). It

is not surprising to find neural activities in these subcortical structures related to sequence

behaviors, and to see behavioral deficits when the activities are perturbed. In the “2 ×

5” task, inactivation of middle and posterior putamen impaired execution of well-learned

sequences, whereas inactivating anterior caudate and putamen only affected the learning of

new sequences (Miyachi et al., 1997). Reducing cholinergic (Van Den Bercken and Cools,

1982) or dopaminergic (Matsumoto et al., 1999) transmission in striatum also caused deficits

in sequence behaviors. After a movement sequence becomes habitual, striatal neurons were

found to produce phasic response at the onset and offset of the sequence (Jin and Costa,

2010; Jin et al., 2014; Desrochers et al., 2015a).

The human and non-human primate models are in some sense double-edged swords.

On one hand, we cannot fully understand human intelligence without studying them, since

rodents simply lack the counterparts to certain specialized brain regions that are important

for our unique cognitive functions (Preuss, 1995). On the other hand, with many of these

specialized regions in primates showing similar (and sometimes ambiguous) activities and

contributions, it could be useful to study qualitatively similar behaviors using the “simplified”

rodent brains where the general circuit architecture is very relatable. Additionally, being

able to reduce the representational level explanation to the circuit level will further help

to elucidate the underlying mechanisms. Understanding rodent brain functions also has its

own significance. For example, is there a network of brain regions that produces memory-

guided yet flexible sensorimotor sequences? What could be the coding principles, circuit
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architectures, and computational tradeoffs that allow smaller brains to pack these and other

functions into its less parcelated and limited real estate?

1.2.2 Representations of Sensory Sequences

In healthy individuals, every motor output produces sensory feedback. A sequence of motor

outputs naturally leads to a sequence of sensory inputs. Being able to recognize and utilize

specific sensory patterns is key to behavioral adaptability and construction of internal models.

For example, if the sensory sequence deviates from an expected one, detecting the “surprises”

can inform the motor system to steer its course of action. In contrast to the classical sensory

prediction error, sequence recognition and error detection may also depend on its sensory

or motor contexts. The difference is analogous to how M1 and SMA neurons can both

respond to a specific movement while the latter’s activity also depends on abstract sequence

structures (Tanji and Shima, 1994).

Even in the absence of motor output, the brain is able to passively pick up spatial and

temporal sensory patterns. In anesthetized (or awake) rats, a light dot sweeping from one

place to another in the visual field could elicit sequential firing of neurons in the primary

visual cortex (V1). After repeated presentation of such sweeps, a single flash of light at the

starting point recalled sequential firing in those neurons as if a sweeping dot were displayed

(Xu et al., 2012). Repeated presentation of a grating sequence could lead to potentiation of

V1 response in a sequence-specific manner where an altered element would induce a weaker

response (Gavornik and Bear, 2014). Oftentimes, expected sensory sequences result from

self-generated movements. As mice ran through a linear track with different visual patterns

on the wall, a subset of V1 neurons were found to signal unexpected changes in the otherwise

familiar visual flow (Keller et al., 2012; Fiser et al., 2016; Zmarz and Keller, 2016). A later

study found that A24b (a subdivision of ACC) and the adjacent secondary motor cortex

(M2) provided prediction signals to V1 (Leinweber et al., 2017). Similar effects of sensory

cancellation by self-motions and prediction error signals were also observed in the auditory
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cortex (Schneider et al., 2018).

The most ubiquitous feedback to motor output is tactile and proprioceptive. It is surpris-

ing to see how little we know about their sequence representation in the brain. Among the

limited literature, an fMRI study asked subjects to discriminate if two tactile sequences are

identical, and found activations in S1, SMA and dlPFC (Numminen et al., 2004). A recent

study characterized neuronal tuning to sequential stimulation of adjacent whiskers in mouse

primary somatosensory cortex (S1) (Laboy-Juárez et al., 2019), although it did not examine

contextual level coding. Interestingly, when mice used whiskers to navigate through a tactile

augmented reality, neurons in the whisker S1 did not tend to distinguish self-motion induced

or decoupled sensory inputs (Sofroniew et al., 2015). The increasing evidence (Schneider,

2020) of sequence related signals in other modalities and the partially contrasting results

from the whisker system expose a big gap in somatosensory research on sensory sequence

representation. Although sequence level sensory prediction and prediction error is out of the

scope of this thesis, the novel behavioral paradigm provides a great opportunity to further

explore these topics.

1.2.3 Theories and Models

It has been argued that even if we knew “every action potential from every neuron”1 and the

entire connectome of the brain, we would still not be able to understand how the nervous

system works. Understanding (including misunderstanding) does not come from data, but

from models.

Models speak in different levels of abstraction. Here, we will discuss example models

which reduce psychological/behavioral level explanation to representational level, and/or

from representational to architectural/circuit level. Models also have different scopes. Some,

for instance, may be concerned only with neural signal generation; others may cover the entire
1Erin McKiernan. Apr 2, 2013. President Obama’s brain map project is hardly the next

Human Genome. The Guardian. https://www.theguardian.com/commentisfree/2013/apr/02/
president-obama-brain-mapping-project-not-ideal
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sensorimotor loop plus learning mechanisms.

Recurrent neural networks (RNN) sit in the spotlight for sequence recognition and gen-

eration (LeCun et al., 2015). The simplest RNN consists of a group (or layer) of units

that transforms activity from the input side to the output side, and the same output also

loops back to the units themselves, usually with a time delay. This configuration allows

the network to retain and accumulate information from past “selves” across time, and use

this memory, in combination with new input, to generate the output. Via supervised, un-

supervised or reinforcement learning, “synaptic” weights are adjusted and the network will

produce desired sequences of activity based partly on the external (or “sensory”) input and

partly on the internal memory.

The behaviors of a RNN in the context of motor control can be understood from a dy-

namical systems point of view (Shenoy et al., 2013). Each instance of the RNN output

describes a state living in the state-space of all possible states. A dynamical system spec-

ifies the rules of change where the next state is a function of the current state, external

inputs, and noise (Strogatz, 2001). Once an appropriate initial state is set, a sequence of

states will be iteratively rolled out along a trajectory. For memory-guided motor sequences,

different trajectories must occupy different domains of the state-space, especially in the

presence of noise, otherwise progression along one trajectory can be accidentally shunted

to another, causing unwanted behaviors to occur. Differential preparatory activities and

various the movement-rank selective responses (Barone and Joseph, 1989; Tanji and Shima,

1994; Clower and Alexander, 1998; Lu et al., 2002; Berdyyeva and Olson, 2010) can be useful

to maintain unique evolution of population activity for different sequences. A recent work

has shown that both artificial RNN and biological neurons in M1 have large separation, or

little entanglement, among different state trajectories (Russo et al., 2018).

Although RNNs can carry out the core computation of the dynamics, having RNNs alone

is not enough to account for real life behaviors. That would require more integrated and

specialized networks which can handle complex sensorimotor transformation, representation

16



of internal states, and learning mechanisms (Richards et al., 2019). For example, Banino

et al. connected two modules of LSTM (a variant of RNN), two modules of convolutional

neural networks (CNN), several fully connected layers, reward signals, and etc. together to

model how an individual (e.g. rat) learns to perform spatial navigation based on visual and

vestibular feedback (Banino et al., 2018). They found that place and grid cell-like responses

naturally emerged in specific modules of this network as a result of exploration. Another

RNN based model deals specifically with hierarchical motor sequences (Yamashita and Tani,

2008). It has three layers of RNNs with fast to slower temporal dynamics. Proprioceptive

and tactile inputs and motor outputs are all connected with the fastest RNN. After the

model being trained on an hierarchical object manipulation task, units in different layers

show hierarchical representations of the task structure. The faster layer signals detailed

movements whereas the slower layer signals contexts of movement sequences. The activity

in the slower layer also keeps state trajectories of different tasks separate despite the shared

individual movements.

1.3 The Control of Tongue

Sensorimotor control of the tongue is involved in a wide range of both innate and learned

behaviors, some essential for survival, such as communication and feeding, others mind-

boggling, like knotting a cherry stem2. Mechanosensitive primary afferents transduct tactile

information from the surface of the tongue to brainstem. From there, the main ascending

pathway goes to the VPM thalamus and then to the somatosensory cortex. Sensorimotor

transformation occurs across multiple sensory, motor, and cognitive areas (Crochet et al.,

2019). To produce movements, motor commands are sent to the brainstem and then to

the hypoglossal nucleus where motor neurons control the eight muscles in our tongue. This

section will first introduce the tongue as a motor plant, then move on to the brainstem circuits
2Malia Wollan. June 23, 2017. How to Knot a Cherry Stem With Your Tongue.

The New York Times Magazine, https://www.nytimes.com/2017/06/23/magazine/
how-to-knot-a-cherry-stem-with-your-tongue.html
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that generate innate patterns of tongue movement, and in the end review the neural basis

of goal-oriented tasks where licking has been used as a major form of behavioral readout.

1.3.1 The Tongue

Mammalian tongues are classified into Types I and II (Doran, 1975). Type II tongues are

heavily used for extra-oral exploration such as food gathering (Monotremata, Marsupilia,

Pholidota) and can protrude more than 100% of its resting length. Type I tongues mainly

function inside the mouth such as during eating, and can protrude less than 50% of their

resting length. Both being Type I, the human and mouse tongues share more similarities

than differences (Treuting et al., 2017). They have roughly the same shape, though the two

halves are more obvious in mice. Both tongues are based near epiglottis and extend to the

incisors. The dorsal surface is roughened with papilla and the ventral side is smooth (though

still keratinized in mice). However, mice lack a lingual frenulum, the vertical fold of mucous

membrane that connects the human tongue to the floor of the mouth. With less attachment

between the anterior tongue to the mouth floor, mice are able to protrude the tongue a bit

longer (proportionally) than humans can.

The tongue is controlled by four extrinsic (genioglossus, hyoglossus, styloglossus, and

palatoglossus) muscles that go from bones into the tongue, and four intrinsic (superior lon-

gitudinal, inferior longitudinal, vertical, and transverse) muscles that live inside the tongue

(McClung and Goldberg, 2000; Aoyagi et al., 2015). The incompressibility of liquid gives the

tongue a fixed total volume. When the tongue is constricted circumferentially, it will extend

longitudinally; when the volume of the left half shrinks, the right expands. Therefore, the

intrinsic muscles can change the shape of the tongue by altering the distribution of stress

from within. The extrinsic muscles can move the tongue forward or backward, and pull it

to the left or right, in coordination with intrinsic muscles. Retrograde tracing showed that

motor neurons in different subdivisions (though with overlap) of the hypoglossal nucleus in-

nervate different tongue muscles (McClung and Goldberg, 1999). Although sixteen muscles
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(eight on each side) are involved in controlling the tongue motion, it is not clear if the tongue

has sixteen degrees of freedom since it depends on whether or not different muscles can be

activated independently by upstream circuits.

1.3.2 Brainstem Circuits

The brainstem hosts a complex network of nuclei and circuits that funnel outputs into

hypoglossal nuclei to drive tongue movements (Figure 1.3). There are three major themes

in these control circuits - rhythm, reflex, and descending control.

Many behaviors are rhythmic in nature, such as breathing and chewing. In rodents,

whisking and licking are typically also rhythmic. Although seemingly unrelated, these be-

haviors tend to oscillate at a similar (or harmonic) frequency in a phase-locked fashion

(Kurnikova et al., 2017). Behind the scene, the preBotzinger complex is regarded as the

master oscillator that shares a common oscillatory signal to many clients. In addition to

initiating breathing, this complex resets the premotor oscillator for whisking (Moore et al.,

2013; Deschênes et al., 2016) and is thought to serve a similar function in other rhythmic

orofacial movements including licking and vocalization (Kleinfeld et al., 2015). However, the

rhythm of tongue motions can shift from the rhythm of breathing (Welzl and Bureš, 1977) to

Figure 1.3: Diagram of brainstem circuits for tongue control

From McElvain et al. (2018). “‘Feedforward’ circuit diagram for muscles of the tongue. Arrow
signifies the direction of signal flow; red signifies inhibitory and black signifies excitatory connec-
tions. Compiled data as described in the text. Many feedback connections and interconnections
among premotor structures have been excluded for simplicity. Dashed lines are connections based
on functional rather than anatomical data. Abbreviations: PrV (principal trigeminal nucleus);
SpVO (spinal subnucleus oralis); SpVC (spinal subnucleus caudalis); Mes-V (mesencephalic sen-
sory nucleus); VPMdm (ventral posterior medial nucleus, dorsomedial); VPMpc (ventral posterior
medial nucleus, parvocellular division); S1 (primary sensory) cortex; ALM (anterior lateral motor)
cortex; SNr (substantia nigra pars reticulata); CeA (central amygdala); Pontine/ cerebellum (cir-
cuit from pontine nuclei through cerebellar deep nuclei); lateral hypothal (lateral hypothalamus);
PPN (pedunculopontine nucleus); Raphe (Raphe nuclei); PreBotC (preBotzinger respiratory com-
plex) hIRt (hypoglossal intermediate reticular zone); IRt (intermediate reticular formation); Peri-V
(peri-trigeminal area); PCRt (parvocellular reticular formation); dMRF (dorsal midbrain reticu-
lar formation); LPGi (lateral paragigantocellular reticular formation); and MdD (dorsal medullary
reticular formation).”
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Figure 1.3: Diagram of brainstem circuits for tongue control
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that of chewing (Travers et al., 2010). A hypoglossal subregion of intermediate reticular for-

mation (hIRt) has been suggested as part of a separate licking oscillator (Travers et al., 1997;

Stanek et al., 2014). So far, the circuit mechanisms for the muscular sequencing of rhythmic

licking and the coordination with other orofacial structures are still largely unknown.

There is an abundance of reflexes that the tongue participates in (Miller, 2002) and many

of the underlying circuits have been characterized (McElvain et al., 2018). For example,

touching the tongue can orient it toward the stimulus (Bosma, 1973). Pulling the jaw open

increases tongue protrusion (Miller, 2002). Infusing water into the mouth of anesthetized rats

could induce reflexive swallowing (Grill and Norgren, 1978). As many learned sensorimotor

sequences are composed of a hierarchy of simpler units of movement, it is important to

know which require descending control, which can be mediated automatically via brainstem

circuits, and under what circumstances the dependency can be changed.

Motor cortex is the most extensively studied region for direct descending control of tongue

in primates (Sessle, 2011), rodents (Svoboda and Li, 2018) (Figure 1.4), and other species.

Pyramidal tract neurons in the anterolateral motor area (ALM), a subregion of the secondary

motor cortex (M2) in mice, send direct projections to the hIRt (Li et al., 2015). Intracortical

microstimulation and optogenetic activation of ALM can induce rhythmic licking-like tongue

and jaw movements (Komiyama et al., 2010; Li et al., 2015; Allen et al., 2017), whereas

inhibition can change aspects of licking kinematics (Bollu et al., 2019). The ventrolateral

striatum receives afferents from orofacial cortex (Hunnicutt et al., 2016) and the basal ganglia

output neurons in substantia nigra pars reticulata project to various brainstem premotor

regions (McElvain et al., 2018). Like in the cortex, stimulating these regions can evoke

orofacial movements, though with abnormal forms (Delfs and Kelley, 1990; Inchul et al.,

2005). The Crus I and II of cerebellum and the fastigial nucleus have been suggested to

mediate tongue related sensorimotor processing (Bryant et al., 2010; Gaffield and Christie,

2017; Lu et al., 2013; Gao et al., 2018). Neurons in fastigial nuclei project directly to the

hypoglossal nuclei (Stanek et al., 2014). Stimulation of different deep cerebellar nuclei was
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Figure 1.4: Functional mapping of the rodent motor cortex

Adapted from Svoboda and Li (2018). Region in the motor cortex with various recording locations
(left) and microstimulation locations (right) superposed. The outline corresponds to the standard
mouse brain from Allen Mouse Common Coordinate Framework. Note that studies on rats (FOF,
M2) were scaled (scaling factor, 1.6, rat:mouse) to account for differences in brain size.

able to evoke different tongue movements (Bowman and Aldes, 1980).

1.3.3 Cortical Mechanisms in Goal-oriented Behaviors

Goal-directed behaviors differ from reflex-like behaviors in that they are executed voluntarily

and are shaped by rewards and punishments. In operant tasks, subjects are trained to per-

form goal-directed behaviors by making appropriate motor responses to sensory cues. This

process involves multiple subsystems in the central nervous system (Doya, 2000; Hikosaka

et al., 2002), including various regions in the cerebral cortex that participate in the sensori-

motor transformation.

The cortical mechanisms of sensory processing and motor control of the tongue were first

studied in non-human primates. The tongue and jaw subregions in primate M1 and S1 are

situated at the lateral ends of pre and postcentral sulcus, respectively. Monkeys were trained

in a tongue protrusion task where they needed to use their tongue to push a button with a

specific amount of force, and in a biting task where the biting force needed to be controlled

(Murray and Sessle, 1992c). Many M1 and S1 neurons were modulated during one or both
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tasks (Murray and Sessle, 1992b; Lin et al., 1994). In the tongue protrusion task, temporary

bilateral cooling of M1 made monkeys unable to exert enough force for a sufficient period of

time (Murray et al., 1991). Cooling of S1 increased the variability of tongue protrusion force

both within and across trials (Lin et al., 1993). However, neither M1 or S1 cooling had an

effect in the biting task, suggesting a difference in cortical involvement. In a modified task

where monkeys performed tongue protrusions in three directions, 45% of the neurons in M1

tongue subregion showed directional selectivity in both preparatory and executive periods

(Murray and Sessle, 1992a). Simultaneous recording in orofacial S1 and M1 showed strong

directional coding in both regions but with different amplitudes and temporal profiles (Arce

et al., 2013). It is, however, hard to investigate the circuit basis for the coordination of these

two regions in monkeys.

More recently, a lot of progress has been made on the circuit mechanisms for sensorimotor

transformation, motor planning, and working memory using goal-oriented licking tasks in

mice (Svoboda and Li, 2018). In one such task, a vertical bar is presented to a mouse within

its whisker field. The mouse needs to find, or “sample”, the location of the bar by whisking

against it and, after a delay without the bar, is required to make a left or right lick based

on the previously sampled bar position (Guo et al., 2014). Mice not only need to acquire

the correct sensorimotor mapping between different bar locations to lick directions, but also

to hold the information in working memory between the sampling and response periods. A

systematic screening via optogenetic inhibition across the dorsal cortex defined whisker S1

as a site for processing the tactile information during sampling, and ALM as a key region for

holding a preparatory activity of upcoming lick direction during the delay period and later

sending out the motor command. Detailed characterization of sensory and motor responses

suggested a flow of sensorimotor transformation from whisker M2 to ALM, across ALM

cortical layers (Chen et al., 2017), and across pyramidal tract neuron subtypes (Economo

et al., 2018). ALM forms strong recurrent connections between the two hemispheres (Li et al.,

2016), with motor thalamus (Guo et al., 2017), and indirectly with cerebellum (Gao et al.,

23



2018; Chabrol et al., 2019). This network is robust to perturbation in part of the circuit and

may support an attractor dynamics for discrete actions (Inagaki et al., 2019). M1TJ neurons

have also been found to encode lick direction in an operant task (Mayrhofer et al., 2019).

Given similar neuronal tuning in M1TJ and ALM, further studies are needed to examine the

coding and functional differences of these two regions, perhaps in more complicated tasks.

How similar mouse ALM and M1 are to the primate motor cortices (such as M1, PM,

and SMA) is not clear. Although a one-to-one match does not seem possible, we do find

similar logic of corticofugal projections, and signals for movements, motor planning, and

possibly reward expectation (Chabrol et al., 2019). These perhaps partly reflect a related

evolutionary path and partly reflect similar computational demands.

Although most of the tasks in mice discussed so far use tongue movements (typically lick-

ing) as a behavioral readout, the sensory input or feedback from the tongue is rarely studied.

The tongue is able to receive somatosensation and taste at the same time. Mice have been

trained to perform operant tasks with cues of different tastes, and various task-correlated

neuronal activities in the gustatory cortex (GC) and orbitofrontal cortex (recognized as sec-

ondary GC) were reported (MacDonald et al., 2009; Yoshida and Katz, 2011; Fonseca et al.,

2018). Tactile (and thermal) information from the tongue is represented in S1TJ (Clemens

et al., 2018) although it is unclear if they can also be found in GC. During active sensing, the

motor output is naturally linked with the sensory feedback (Graham et al., 2014; Severson

et al., 2017). However, there has not been any study looking into how the S1TJ processes

tactile feedback in a behavioral task.

1.4 Main Objectives

To sum up, generating complex and flexible sensorimotor sequences is at the core of advanced

brain functions. Our understanding about the underlying neural mechanisms will continue

to deepen as new studies bridge the gap between sequence behaviors and their circuit basis.
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Different behavioral models in different species tend to balance a tradeoff among behavioral

complexity, tractability and neural accessibility. With advances in technologies of recording

and manipulating neural circuits, greatly improved tools for behavioral measurements, and

the observations of non-primate species performing more complex tasks, a mouse model

for sensorimotor sequence behavior has become imaginable. Like humans, mice exhibit rich

orofacial behaviors. However, little is known about how sensorimotor sequences of the tongue

can be generated in the brain.

In Chapter 2, we establish a novel ‘sequence licking’ task in which mice directed their

tongue to a target that moved through a series of locations. We show that mice could rapidly

reconfigure the sequence online based on tactile feedback.

In Chapter 3, via a systematic optoinhibition screening, we identify that ALM and M1TJ

mediate sequence initiation and maintain the magnitude of licking kinematics during execu-

tion; S1TJ is important to guide the lick in the correct sequence; multiple anterior cortical

regions are responsible for active sequence termination.

In Chapter 4, we first characterize the single-unit response properties and how they tem-

porally tile the sequence performance. At population level, we reveal that S1TJ, M1TJ, and

ALM neurons hierarchically encode behavioral variables with increasing levels of abstraction.

In Chapter 5, we zoom in on two types of high level coding by ALM neurons. First,

the neuronal activities for sequence progress are modulated by reward signals. Second, ALM

neurons maintain a working memory across trials which suggests a mechanism for composing

a sequence of sequences.

In Chapter 6, we will summarize and expand on our findings, discuss limitations of the

present study, and propose future directions.
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1.5 General Methods

1.5.1 Mice

All procedures were in accordance with protocols approved by the Johns Hopkins University

Animal Care and Use Committee. Mice were kept in a reverse light-dark cycle with each

phase lasting 12 hours. Prior to surgery, mice were housed in groups of up to 5, but afterwards

housed individually. Ten mice (8 male, 2 female) were obtained by crossing VGAT-IRES-

Cre (Jackson Labs: 028862; B6J.129S6(FVB)-Slc32a1tm2(cre)Lowl/MwarJ; Vong et al. (2011))

with Ai32 (Jackson Labs: 012569; B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J)

(Madisen et al., 2012) lines. Two (1 male, 1 female) were heterozygous VGAT-ChR2-EYFP

(Jackson Labs: 014548; B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/J) (Zhao et al., 2011)

mice. Eight (6 male, 2 female) were wild-type mice, including seven C57BL/6J (Jackson

Labs: 000664) mice and one wild-type littermate of the VGAT-ChR2-EYFP mice. Two

were male TH-Cre 1 (Jackson Labs: 008601; B6.Cg-7630403G23RikTg(Th-cre)1Tmd/J) (Savitt,

2005) mice. Two (1 male, 1 female) were Advillin-Cre (Jackson Labs: 032536; B6.129P2-

Aviltm2(cre)Fawa/J) (Zhou et al., 2010) mice. Mice ranged in age from ∼2-9 months at the

start of training. A set of behavioural testing sessions typically lasted ∼1 month.

1.5.2 Surgery

Prior to behavioural testing, mice underwent the implantation of a metal headpost. For

surgical procedures, mice were anesthetized with isoflurane (1-2%) and kept on a heating

blanket (Harvard Apparatus). Lidocaine was used as a local analgesic and injected under

the scalp at the start of surgery. Ketoprofen was injected intraperitoneally to reduce inflam-

mation. All skin and periosteum above the dorsal surface of the skull was removed. The

temporal muscle was detached from the lateral edges of the skull on either side and the bone

ridge at the temporal-parietal junction was thinned using a dental drill to create a wider

accessible region. Metabond (C & B Metabond) was used to cover the entirety of the skull
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surface in a thin layer, seal the skin at the edges, and cement the headpost onto the skull

over the lambda suture.

To make the skull transparent, a thin layer of cyanoacrylate adhesive was then dropped

over the entirety of the Metabond-coated skull and left to dry. A silicon elastomer (Kwik-

Cast) was then applied over the surface to prevent deterioration of skull transparency prior

to photostimulation. Buprenorphine was used as a post-operative analgesic and the mice

were allowed to recover over 5-7 days following surgery with free access to water.

For silicon probe recording, a small craniotomy of about 600 µm in diameter was made

for implantation of a ground screw. The skull was thinned using a dental drill until the

remaining bone could be carefully removed with a tungsten needle and forceps. Following

this, one or more craniotomies of about 1 mm in diameter were made over the sites of

interest for silicon probe recording. Craniotomies were protected with a layer of silicon

elastomer (Kwik-Cast) on top. Additional craniotomies were usually made in new locations

after finishing recordings in previous ones.

1.5.3 Task Control

Task control was implemented with an Arduino-based system (Teensy 3.2 and Teensyduino),

including the generation of audio (Teensy Audio Shield). Custom MATLAB-based software

with a graphical user interface was developed to log task events and change task parameters.

Touches between the tongue and the port were registered by a conductive lick detector

(Svoboda lab, HHMI Janelia Research Campus), where the mouse acted as a mechanical

switch that opened (no touch) or closed (with touch) the circuit. Any mechanical switch has

electrical bouncing issues when a contact is weak and unstable. To handle bouncing during

loose touches, we merged any contact signals with intervals less than 60 ms.

The auditory cue that signaled the beginning of each trial was a 0.1 s long, 65 dB SPL,

15 kHz pure tone. Touches that occurred during the auditory cue were not used to trigger

port movement as they were likely due to impulsive licking rather than a reaction to the cue.
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The lick port was motorized in the horizontal plane by two perpendicular linear stages

(LSM050B-T4 and LSM025B-T4, Zaber Technologies), one for anterior and posterior move-

ment and the other for left and right. A manual linear stage (MT1/M, Thorlabs) installed

in the vertical direction controlled the height of the lick port. The motors were driven by

a controller (X-MCB2, Zaber Technologies) which was in turn commanded by the Teensy

board via serial interface communication. Although the linear stages were set up in cartesian

coordinates, we specified the movement of the port using a polar coordinate system. For a

chosen origin of the polar coordinates, the seven port positions were arranged in an arc sym-

metrical to the midline with equal spacing (in arc length) between adjacent positions (Figure

2.1a). A movement of the lick port was triggered by the onset of a touch during sequence

performance. A second port movement could not be triggered within 80 ms, which prevented

mice from driving a sequence by constantly holding the tongue on the port (although we

never observed such behavior). When a movement was triggered, the port first accelerated

(477 or 715 mm/s2) until the maximal velocity (39.3 mm/s) was reached, then maintained

the maximal velocity, and decelerated until it stopped at the end position. The acceleration

and deceleration phases were always symmetrical, such that the maximal velocity might not

be reached if the distance of travel was short. The movement was typically in a straight line.

For 4 of the 9 mice, when the two positions were not adjacent (e.g. at backtracking and the

following transition), the port would move in an outward half circle whose diameter was the

linear distance separating the two positions. This arc motion minimized the chance of mice

occasionally catching the port prematurely before the port stopped. Nevertheless, catching

the port prematurely did not trigger the next transition in a sequence because, in this case,

the port movement could only be triggered again after 200 ms from the start of backtracking

(and 300 ms after the following touch). As a result, mice always needed to touch the port

at the fully backtracked position in order to continue progress in a sequence.

Mice performed the task in darkness with no visual cues about the position of the port.

To prevent mice from using sounds emitted by the motor to guide their behavior, we played
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Figure 1.5: Two-axis optical force sensors

(a) CAD images of the sensor core (left) and the assembly (right) with a lick tube.

(b) Linear relationship between the applied force and the sensor output voltage.

two types of noise throughout a session. The first was a constant white noise (cutoff at

40 kHz; 80 dB SPL) and the second was a random playback (with 150-300 ms interval) of

previously recorded motor sounds during 12 different transitions.

1.5.4 Two-axis Optical Force Sensors

A stainless steel lick tube was fixed on one end to form a cantilever. Mice licked the other

free end, producing a small displacement (< ∼0.1 mm at the tip for 5 mN) of the tube.

Two photointerrupters (GP1S094HCZ0F, Sharp) placed along the tube (Figure 1.5a) were

used to convert the vertical and horizontal components of displacement into voltage sig-

nals. Specifically, the cantilever normally blocked about half of the light passing through,

outputting a voltage value in the middle of the measurement range. Pushing the tip down

caused the cantilever to block more light at the vertical sensor and thereby decreased the

output voltage; conversely, less force applied at the tip resulted in increased voltage. For

the horizontal sensor, pushing the tube to the left or right decreased or increased the voltage

output, respectively. Output was amplified by an op-amp then recorded via an RHD2000

Recording System (Intan Technologies).

By design (the circuit diagram and the displacement-response curve are available in the

GP1S094HCZ0F datasheet), the force applied at the tip of the lick tube and the displacement
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sensor’s output voltage follow a near linear relationship within a range of forces. To find

this range, we measured the voltages (relative to baseline) with different weights added to

the tip. Excellent linearity (R2 = 0.9999) was achieved up to >20 mN (Figure 1.5b). In

contrast, the maximal force of a lick was on average about 4 mN (Figure 2.4a).

The motorization of the lick tube introduced mechanical noise to the force signals. The

spectral components of these noises were mainly at 300 Hz and its higher harmonics, presum-

ably due to the resonance frequency of the tube, whereas the force signal induced by licking

occupied much lower frequencies. Therefore, we low-pass (at 100 Hz) filtered the original

signal (sampled at 30 kHz/s) to remove the motor noise. Additional interference came from

the 850 nm illumination light used for high-speed video, which leaked into the optical sen-

sors (mainly in early experiments with 2 mice) and caused slow fluctuations in the baseline

over seconds. To mitigate this slow drift, we used a baseline estimated separately for each

individual lick as follows. We first masked out the parts of the signal when the tongue was

touching the port, then linearly interpolated to fill in these masked out lick portions using

the neighboring (i.e. no touch) values. These interpolated time series served as the baseline

for each lick. Since the lick force was only a function of voltage change compared to baseline

(rather than the absolute voltage), the above procedure would at most negligibly affect the

force estimation. Due to the dependency of this procedure on complete touch detection, we

excluded 8 sessions from behavioral quantifications in Figs. 1 and 2 where only touch onsets

were correctly registered.

1.5.5 High-speed Videography and Tongue Tracking

High-speed video (400 Hz, 0.6 ms exposure time, 32 µm/pixel, 800 pixels × 320 pixels)

providing side- and bottom-views of the mouth region was acquired using a 0.25X telecentric

lens (55-349, Edmund Optics), a PhotonFocus DR1-D1312-200-G2-8 camera, and Streampix

7 software (Norpix). Illumination was via an 850 nm LED (LED850-66-60, Roithner Laser)

passed through a condenser lens (Thorlabs).
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Figure 1.6: Performance of the deep neural networks for tongue tracking

(a) Confusion matrix showing the performance of the classification network. The numbers repre-
sent percentages within each (true) class (n = 1611 frames).

(b) Performance of the regression network. Top, the gray probability distribution shows how L
from five human individuals varied from the mean L across the five. The red distribution
shows how predicted L varied from the human mean. Bottom, similar quantification as the
top but for θ. n = 573 frames.

Three deep convolutional neural networks were developed (MATLAB, Deep Learning

Toolbox) to extract tongue kinematics and shape from these videos. The first network

classified each frame as “tongue-out”, if a tongue was present, or “tongue-in” otherwise. This

network was based on a pretrained network, ResNet-50 (He et al., 2015), but the final layers

were redefined to classify the two categories. A total of 37658 frames were manually labeled

in which 1611 frames were set aside as testing data. Image augmentation was performed to

expand the training dataset. A standard training scheme was used with a mini-batch size

of 32 and a learning rate of 1×10−4 to 1×10−5. The fully trained network achieved a high

accuracy in classifying the validation data (Figure 1.6a).

The second network assigned a vector from the base to the tip of the tongue in each

frame classified as “tongue-out”. L and θ were derived from this vector (Fig. 1c). A total

of 12095 frames were manually labeled in which 643 frames were used only for testing. The

architecture and training parameters of this network are similar to those of the classification
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network except that the final layers were redefined to output the x and y image coordinates

of the base, tip and two bottom corners (not used in analysis) of the tongue with mean

absolute error loss. The regression error of the fully trained network in testing data was 3.1

± 5.4° for θ and 0.00 ± 0.13 mm for L (mean ± SD). This performance was comparable to

human level (Extended Data Fig. 1b). Specifically, a subset of frames (separate from testing

data) were labeled by each of the five human labelers. The variability in human judgement

was quantified by the differences between L and θ from individual humans and the human

mean for each frame. We also computed the differences between L and θ from the network

and the human mean for each frame. The two distributions showed a comparable variability,

although the network showed small biases (L: humans 0 ± 0.11 mm, network -0.05 ± 0.10

mm; θ: humans 0 ± 5.7° SD, network 3.3 ± 5.5° SD; mean ± SD).

In a subset of trials and in frames classified as “tongue-out”, the third network, a VGG13-

based SegNet (Badrinarayanan et al., 2015), extracted the shape of the tongue by semantic

image segmentation, i.e. classifying each pixel as belonging to a tongue or not. Human

labelers used a 10-vertex polygon to encompass the area of the tongue in a total of 3856

frames. The training parameters were similar to the other networks except for a mini-batch

size of 8 and a learning rate of 1×10−3.

1.5.6 Behavioral Training

Behavioural sessions occurred once per day during the dark phase and lasted for approxi-

mately an hour or until the mouse stopped performing, whichever came earlier. Mice would

receive all of their water from these sessions, unless it was necessary to supply additional

water to maintain a stable body weight. The amount of water consumed during behaviour

was measured by subtracting the pre-session volume of water in the dispenser from the

post-session volume. On days where their behaviour was not tested they received 1 ml of

water. Mice were water restricted (1 ml/day) for at least 7 days prior to beginning training.

Whiskers and hairs around the mouth were trimmed frequently to avoid contact with the
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port.

The precise position of the implanted headpost varied across mice, so each mouse required

an initial setup of the lick port’s positions. The lick port moved in an arc with respect to a

chosen origin (see Task Control). The origin was initially set at the midline of the animal

and 2 mm posterior from the posterior face of the upper incisors. If there was any yaw of the

head, the whole arc was rotationally shifted accordingly. The lick port’s z-axis was manually

adjusted until the lick port was approximately 1 mm below the interface between upper and

lower lips when the mouth was closed.

In initial training sessions, the distance between the leftmost (L3) and the rightmost (R3)

lick port position was reduced, the radius of the arc was shortened, and the water reward was

larger. As mice learned the task, both the L3 to R3 distance and the radius of the arc were

gradually increased over a few days of training (Figure 2.6b). The difficulty of the task was

increased whenever the mouse showed improvements in performing the task at a given set of

parameters. The difficulty remained constant in two conditions: either when the maximum

set of parameters had been met (a radius of 5 mm for males and 4.5 mm for females) or if the

mouse appeared demotivated (typically indicated by a significant decrease in the number of

trials and licks). During the initial training sessions, water was occasionally supplemented

at other points during the sequence to encourage licking behaviour. The amount of water

reward per trial was eventually lowered to ∼3 µL. For 3 of the 24 mice included in this study,

we first trained them to lick in response to the auditory cue with the lick port staying at fixed

positions. After mice responded consistently to the go cue, we shifted to the complete task

with gradually increased difficulty. Although the 3 mice performed similarly to others when

well trained, this procedure proved to be less efficient than beginning with the complete task.

Once a mouse had become adept at standard sequences, they were trained on the back-

tracking sequences. The first 9 fully trained mice were used in backtracking related analyses;

later mice used for other purposes were not always fully trained in backtracking. For 5 of

the 9 mice, we first trained them with backtracking trials in only one direction and added
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the other direction once they mastered the first. For 3 of the 9 mice, backtracking trials

and standard trials were organized into separate blocks of 30 trials each. In developing this

novel task, we tested subtle variations in the detailed organization of trial types, such as

varying the percentage of backtracking trials in a block, or different forms of jumps in the

port position. Two of these 3 mice continued to performed the block-based backtracking

trials during recording sessions.

1.5.7 Trial Selection

The first trial and the last trial were always removed due to incomplete data acquisition.

Trials in which mice did not finish the sequence before video recording stopped were excluded

from the analyses that involved kinematic variables of tongue motion.

1.5.8 Behavioral Quantification

The duration of individual licks was variable. In order to average quantities within single

licks, we first linearly interpolated each quantity using the same 30 time points spanning the

lick duration (from the first to the last video frames of a tracked lick). L’ was computed

before interpolation. When the tongue was short, the regression network showed greater

variability in determining θ and sometimes produced outliers. Thus, we only show θ when

L is longer than 1 mm. In addition, any “lick” with a duration shorter than 10 ms was

excluded.

The instantaneous lick rate was computed as the reciprocal of the inter-lick interval. The

instantaneous sequence speed was defined as the reciprocal of the duration from the touch

onset of a previous port position to the touch onset of the next.

Directly averaging trials pooled across animals assumes that different animals follow

the same distribution, and thus underestimates potentially meaningful animal-to-animal

variability. To incorporate this variability, we performed a hierarchical bootstrap procedure

(Davison and Hinkley, 1997) when computing confidence intervals where noted. In each
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iteration of this procedure, we first randomly sampled animals with replacement, then, from

each of these resampled animals, sampled sessions with replacement, and then trials from

each of the resampled sessions. The statistic of interest was then computed from each of these

bootstrap replicates. In our optogenetic inhibition experiments, each animal only contributed

one behavioral session for a given experimental condition. Therefore, the hierarchy only had

two levels.

1.6 Disclosures

One manuscript (Xu et al., 2020) posted to a preprint website has been reformatted to

comply with the requirements of this thesis.
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Chapter 2

Sequence Licking Task

2.1 Introduction

Sequence behaviors are ubiquitous in our everyday life. Everything related to language

(speaking, writing/typing) is performed in sequences. We look at the visual world with

sequences of saccades (Hayhoe and Ballard, 2005). Your morning routine is largely a mem-

orised sequence of sequences. However, if you found yourself in a hotel instead of your home

the sequences can be adjusted or even reprogrammed flexibly and immediately. Perhaps it

is exactly because of the ubiquity and our excellence of sequence behaviors that an average

person tends to take the production of such behaviors for granted or is even not aware of their

existence, until brain regions responsible for sequence control start to dysfunction (reviewed

in Chapter 1.2.1).

From a reductionist point of view, it is reasonable to begin understanding complex be-

haviors by first studying the individual components (Clower, 1998). Indeed, most studies in

motor control and sensorimotor transformation have been focusing on simple (not necessar-

ily in terms of the underlying mechanisms) stimulus-response associations (Crochet et al.,

2019). However, many sequence behaviors have their unique features (reviewed in Chapter

1.1.1), such as an intrinsically hierarchical organization, the need for inference and flexible
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control as sequences unfold. Even behaviors that can in principle be achieved by a chain of

simple associations were shown to be controlled by the brain in a framework of sequences

(Tanji, 2001).

Past research on the neural basis of sensorimotor sequences has employed a variety of

model systems, though mainly with manual or saccadic sequences in non-human primates

(Desrochers et al., 2016). For a detailed understanding of the circuit mechanisms, a mouse

model with similar richness in behavior would be useful given its anatomical tractability and

genetic accessibility. More importantly, most of the previous studies have focused separately

on the memory-guided motor sequence or a chain of sensorimotor associations (e.g. Shima

et al. (1996); Isoda and Tanji (2002); Berdyyeva and Olson (2010)). Therefore, the field

would benefit from a paradigm where ongoing sequences can be simultaneously guided by

both memory and sensory cues through a process of inference.

This section serves to provide a background for the novel behavioral task. The above is a

typical introduction which follows the vein of past research. However, it is a hindsight that

fails to reflect the actual thinking leading to the present task design. I believe that showing

the trajectory of development and discovery can be helpful to understand why the task is

the way it is, and be inspiring for future exploration. Previously, in a separate project, I

trained mice to lick or not to lick based on complex cues. As a common “trick” in training,

the distance between the lick port and the mouth was occasionally adjusted to balance the

motivation and impulsiveness of mice licking. It appeared to me that when the port distance

changed, the lick patterns gradually adapted as a result. Inspired by a study showing that

mice could adapt to a force field when operating a manipulandum (Mathis et al., 2017), Yuxi

Chen and I, out of curiosity, decided to formally test whether the strength of licks adapts

to a change in target distance. Despite great efforts, the preliminary results did not seem

interpretable and the behavioral design appeared very limited. Nevertheless, I developed

the optical force sensors and pioneered video analysis during this period. Moreover, the

observations certainly drew our attention to the nuances of the tongue sensorimotor control.
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One day, when reading a theoretical paper about hippocampal spatial maps (Stachenfeld

et al., 2017), I realized a computational resemblance between a rat running along a track

and a sequential motion of an external object, such as a lick port. Both involve linking one

sensorimotor state to another; both can have branching points, spatially versus procedurally.

At this point, we had the general idea about mice sequentially licking across a number of

positions, receiving a reward, and licking back - just like a rat navigating back and forth on a

linear track. We quickly realized that asking mice to actively trigger, rather than follow, the

movement of the lick port was 1) more analogous to common real-world interactions, 2) would

explicitly involve a sensorimotor loop, and 3) was also more conducive to training. This basic

form would later become the “standard” sequences. Inspired by the spatial teleportation in

a video game for human subjects to play in an fMRI scanner (Deuker et al., 2016), we

designed the “backtracking” sequences that “teleports” the lick port from one position back

to a previous non-adjacent position. It requires new associations to be built and executed

in a context-dependent manner.

2.2 Methods

The use of mice, surgical procedures, behavioral task control, instrumentation, behavioral

training procedures, and common analysis methods are described in Chapter 1.5.

2.2.1 Hearing Loss

Hearing loss experiments were performed to exclude the possibility that mice used sounds

produced by the motors to localize the motion of the lick port during sequence performance.

To induce temporary hearing loss (∼27.5 dB attenuation) (Mowery et al., 2015), we inserted

two earplugs made of malleable putty (BlueStik Adhesive Putty, DAP Products Inc.) into

the ear canal openings bilaterally under microscopic guidance. Earplugs were shaped like

balls and then formed appropriately to cover the unique curvature of each ear canal. When
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necessary, the positioning of the earplugs was readjusted, or larger balls were inserted. Five

well trained mice performed one “earplug” session and one control session. Mice did not

have experience with earplugs prior to the earplug session. In earplug sessions, mice were

first anesthetized under isoflurane to implant earplugs (taking 11-12.5 mins), then were put

back to the homecage to recover from anesthesia (taking 10-11.5 mins), and performed the

task after recovery. In control sessions, mice were anesthetized for the same duration (and to

remove earplugs if necessary), and allowed to recover for the same duration before performing

the task.

2.2.2 Odor Masking

Odor masking experiments were performed to exclude the possibility that mice used potential

odors emanating from the lick port to localize its position during sequence performance. A

fresh air outlet (1.59 mm in diameter) was placed in front of the mouse and aimed at the

nose from ∼2 cm away with ∼45° downward angle. We checked the coverage of air flow (2

LPM) by testing whether a water droplet (∼3 L) would vigorously wobble in the flow at

various locations, and confirmed that both the nose and all the seven port positions were

covered. Prior to the test session, head-fixed mice were habituated to occasional air flows

when they were not performing sequences. In the test session, the air flow was turned off first

and turned on continuously after the 100th trial (in four mice) until the end of the session,

or turned on first and turned off after the 100th trial (in two mice). The air-off period served

as the control condition for air-on period.

2.2.3 Learning Curves

Learning curves included data from all trials except for the first and the last trial of each

session. Values in the learning curves were averaged in bins of 100 trials, with 50% overlap

of consecutive bins.
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2.3 Results

2.3.1 Sequence Licking Task

We trained head-fixed mice to perform a task in which they used sequences of directed licks

to advance a motorized port through 7 consecutive positions, either from left to right or

right to left, after an auditory cue (15 kHz, 0.1 s) that signaled the start of a trial (Figure

2.1a). Each transition from one position to the next was driven in a closed-loop manner by
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Figure 2.1: Behavioral setup

(a) Schematic of the sequence licking task.

(b) Schematic of the two-axis optical force sensors and high-speed videography in relation to a
head-fixed mouse.

(c) Zoomed in high-speed video images showing the bottom view of a mouse licking the port.
Overlaid vectors in red are outputs from the regression DNN, which point from the base to the
tip of the tongue. Tongue length (L) is defined by the vector length. Tongue angle (θ) is the
rotation of the vector from midline (positive being to the mouse’s right). Light red shading
depicts shape of the tongue based on output from the segmentation DNN.
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a single lick touching the port. Thus, if a lick missed the port, the port would remain at the

same position until the tongue eventually made contact. The port was no longer movable

after the mouse had finished the 7 positions and a water droplet was delivered as a reward

after a short delay (0.25 s, or 0.5 s in two mice). The next trial would then start after a

random inter-trial interval (ITI) with a mean duration of 6 s, and the sequence would go in

the opposite direction.

We used high-speed (400 Hz) video to capture tongue motions during sequence per-

formance (Figure 2.1b) and developed an analysis pipeline based on deep artificial neural

networks (DNN) to extract horizontal tongue angle (θ) and length (L) from each video
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Figure 2.2: Behavioral measurements of an example trial

Time series of task events and behavioral variables during the first 2 s of an example trial. Variables
recorded from the force sensors include the vertical lick force (Fvert, positive acts to lift the port
up) and the lateral lick force (Flat, positive acts to push the port to the right). Kinematic variables
including L, its rate of change (L’) and θ were derived from high-speed video. Periods of tongue-
port contact are shaded in gray and are numbered (#) sequentially. R3, R2, R1, Mid, L1, L2
and L3 indicate the 7 port positions from the rightmost to the leftmost. Arrowheads indicate the
touch onsets for which a port movement (or the delayed water delivery at the last position) was
triggered.
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frame (Methods; Figure 2.1c). To quantify the sensory feedback experienced by the tongue

when touching the port, we developed a set of sensors that measured the vertical and lateral

component of instantaneous contact force (Fvert and Flat) (Figure 2.1b and 1.5). Electrical

contact detection was used to determine the precise onset and offset times of touch. An

example trial shows all the measurements aligned in time (Figure 2.2).

Mice modulated each lick differently to reach different target locations (Figure 2.3).

Specifically, the modulation was mainly in θ whereas the patterns of L and its rate of change

(L′) remained similar across targets (Figure 2.4a). When focusing on a single pattern at

most lateral positions, we saw the tongue shooting out and quickly, but only briefly, reaching

maximal deviation from midline (|θ − 0°|max or simply |θ|max) (Figure 2.4b). As a result,

the onset of touch mostly occurred around |θ|max. Interestingly, the modulation of L did

not match that of |θ|, suggesting a potential dissociation of control. Later, when analyzing

licks which may or may not have contact, we use θshoot, defined as the θ when L reaches 0.84

maximal L (Lmax), to succinctly depict the lick angle (Figure 2.4b). In addition, we will

use capital Θ to represent unified tongue angles where the sign in right to left sequences is

flipped so that data with both sequence directions can be pooled together.

Mice performed the task in darkness such that there were no visual cues to guide the licks.

#1

1 mm

Right to left

Left to right
#4 (Mid)

#7

Figure 2.3: Example trajectories of two licking sequences

Two example trials showing the trajectories of the tongue tip when a mouse sequentially reached
the 7 port positions, for both sequence directions. Arrows indicate the direction of time within
each trajectory.

42



0

2

4

R3 R2 R1 Mid
Port position Interval

L1 L2 L3
-45

0
45

-30

0

30

# 1~2 2~3 3~4 4~5 5~6 6~7
0

5

10

Sp
ee

d
(p

os
iti

on
s/

s)
Δ

Θ
to

uc
h (
˚)

L m
ax

 (m
m

)
θ to

uc
h (
˚)

10

30

0

.84
1

L / Lmax

P(Lmax)

P(|θ|max)

|θ|max

Ptouch onset

|θ| (°)

P(θshoot)

0
1
2
3

-200
0

200

-30
0

30

-2
0
2
4

R3 R2 R1 Mid L1 L2 L3
-1
0
1

 F
la

t (
m

N
)

 F
ve

rt (
m

N
)

L'
 (m

m
/s

)
L 

(m
m

)
θ 

(˚)

Port position

a b

c

Figure 2.4: Quantification of sequence licking patterns

(a) Patterns of kinematics and forces of single licks at each port position (n = 22003 trials; mean
± 95% bootstrap confidence interval). The duration of individual licks was normalized.

(b) Top, the pattern of angle deviation from midline (|θ−0°| or simply |θ|) of single licks at R3 and
L3. The vertical line indicates maximum |θ| (|θ|max). Middle, tongue length (L) expressed as a
fraction of its maximum (Lmax). The horizontal line indicates, on average, the fraction where
|θ|max occured. Bottom, time aligned probability distributions showing when touch onset,
|θ|max, Lmax or θshoot occured. Red lines mark quartiles. n = 22003 trials. Lick patterns show
mean ± 95% bootstrap confidence interval.

(c) Top, probability distributions of Lmax and touch for licks at each port position. Bottom,
probability distributions of the change in Θtouch (∆Θtouch) and instantaneous sequence speed
(Methods) for each interval separating port positions. Distributions show mean ± SD across
n = 15 mice.
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We played both white noise and pre-recorded mechanical noise of port transitions as masking

sounds to prevent mice from using auditory cues (Methods). In addition, temporarily induced

hearing loss (Methods) rendered mice unable to respond to the auditory cues but did not

affect sequence performance, except in one of five mice, compared with control (Figure 2.5a).

To test whether or not mice used odor emanating from the port for localization, we masked
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Figure 2.5: Sequence performance does not depend on audition or olfaction

(a) Time to first touch (left; median ± interquartile range) and number of missed licks during
sequence performance (right; mean ± 95% bootstrap confidence interval) in control versus
hearing loss (earplug) conditions. ∗ p < 0.01, not significant otherwise, one-tailed KS-test,
Bonferroni correction for multiple comparison.

(b) Time to first touch (left; median ± interquartile range) and number of missed licks during
sequence performance (right; mean ± 95% bootstrap confidence interval) in control versus
odor masking (air flow) conditions. ∗ p < 0.05, not significant otherwise, one-tailed KS-test,
Bonferroni correction for multiple comparison.
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out any potential odor by applying a constant flow (2 LPM) of fresh air covering the nose

and port region (Methods), and found no significant drop in sequence performance, except

in one of six mice, compared with the condition without air flow (Figure 2.5b).

Mice typically obtained proficiency in standard sequences after a total of ∼1500 trials of

training (Methods; Figure 2.6). In addition to stereotypic licking kinematics, expert mice

showed remarkable speed of sequence execution, with the 7 positions completed in about a

second (Figure 2.6a).
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Figure 2.6: Learning curves for standard sequences

(a) Learning curves for 13 individual mice (gray) and the mean (black) showing the reduced
sequence initiation time (left) in response to the auditory cue and the increased sequence
speed (right).

(b) Gradual increase in task difficulty (Methods) accompanying the improved performance shown
in (a).
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2.3.2 Flexible Execution of Sequences with Backtracking

To determine if the sequence generation after training was strictly “ballistic” or was capable

of flexible reconfiguration based on sensory feedback, we next varied the task by introducing

unexpected port transitions after mice had learned the standard sequences (Figure 2.7a).

Specifically, in a randomly interleaved subset (1/3 or 1/4) of trials, when a mouse licked

at the middle position, the port would backtrack two steps rather than continue to the

anticipated position (Figure 2.7b). Mice previously trained only with standard sequences

learned to detect the change of port transition, lick to the new position and finish the rest

of the sequence. However, mice showed mixed learning curves (Figure 2.8). About 3 mice

were more biased to previously learned standard sequences and tended to miss the port
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Figure 2.7: From standard to backtracking sequences

(a) Transition diagrams depicting standard sequences and those with backtracking (green).

(b) Example trials where the port backtracked (green arrows) when a mouse touched Mid. Licks
including both touches and misses are indexed with respect to the lick at Mid. Top, the mouse
missed once before it successfully relocated the port and finished the rest of the sequence.
Bottom, after an initial miss and a lick back, the mouse made a second attempt and caught
the port.
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Figure 2.8: Learning curves for backtracking sequences

(a) Learning curves for 9 individual mice (gray) and the mean (black) showing the duration of
time spent to perform standard (left) and backtracking (right) sequences.

(b) Similar to (a) but limited to the interval following the 4th (middle) lick in standard (left) or
backtracking (right) sequences.

many times before relocating the lick port through exploration. The other 6 mice more

readily made changes. On average, well-trained mice took 1 to 2 missed licks before quickly

relocating the port (Figure 2.9a).

The lick patterns of L and L’ appeared identical whether a mouse was performing a

standard sequence or one with backtracking (Figure 2.9b). In contrast, Θ was strongly mod-

ulated toward backtracked directions starting at the second lick after backtracking occurred.

A slight change in Θ was also present in the first lick after backtracking, presumably due to

the mouse sensing the onset of port motion on its tongue toward the end of the prior lick. To

our surprise, mice did not pause the ongoing sequence after detecting backtracking (Figure

2.9c). Instead, they showed the same, if not higher, lick rate when making adjustments in
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Figure 2.9: Flexible execution of sequences with backtracking

(a) Top, time to locate the port at its next position during the 4th interval, for standard sequences
(black) or for sequences when the port backtracked (green). Bottom, the number of missed
licks during the 4th interval. Mean ± 95% bootstrap confidence interval.

(b) L, L’ and θ patterns for seven consecutive licks aligned at the 4th (Mid) touch (#0). Licks in
standard sequences (n = 7365 trials) are shown in black, those in backtracking sequences (n
= 2674 trials) are in green. Mean ± SD.

(c) Probability distributions of instantaneous lick rate for each interval separating consecutive
pairs of the seven licks during standard (black) or backtracking (green) sequences (n = 8 mice;
mean ± SD).

single lick bouts. This suggests that flexible control of sequence execution can be indepen-

dent from the pattern generators responsible for generating basic rhythmic licking patterns

(McElvain et al., 2018).

Together, these observations demonstrate that head-fixed mice can learn to perform

complex and flexible licking sequences guided by sensory feedback.
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2.4 Discussion

Rodents are highly tactile species and use rich orofacial behaviors to interact with the en-

vironment (McElvain et al., 2018). We found that mice exhibited a remarkable ability to

learn complex licking sequences with behavioral features beyond simple stimulus-response

associations.

The licking sequences have a hierarchical structure and require guidance from memory.

Individual directed licks are organized in short sequences with two directions, which in turn

are strung into a high-level sequence where the two directions alternate. Efficient sequence

execution requires mice to know what is about to come by keeping a memory of the past. For

example, to start a sequence promptly, mice reacted to the same auditory cue by initiating

licks to different sides depending on which direction the sequence would go (also see Results in

Chapter 5). In the memory-guided Pull-Push-Turn task (Tanji and Shima (1994); reviewed

in Chapter 1.1.2), monkeys returned hand to the same standby position between movements.

As a result, the end state of a previous movement could not be used to guide the next. In

this task, mice retracted the tongue back to mouth with a demodulated tongue angle (Figure

2.4b) before protruding for the next lick angle. A memory of sequence context (e.g. sequence

direction) may be required to determine which direction to go next. However, to test this

more rigorously, one would need different sequences to contain the same subsequence of licks

(instead of a single lick to be the same) to avoid any small differences in kinematics (Figure

2.3; middle licks).

The learned sequences are not immutable. Mice learned to use the absence or presence

of tactile feedback to decide whether or not an ongoing sequence should be branched to

a backtracking sequence. Modifying motor sequences by branching differs from classical

cerebellum-dependent motor adaptation in at least two ways (also see Krakauer et al. (2019)).

First, backtracking performance involved complete reversals of direction and reorganization

of the motor sequence rather than fine adjustments to the standard sequence. Second,

feedback-driven corrections could occur in a trial-by-trial and all-or-none fashion. In contrast,
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cerebellum-dependent adaptations to perturbations usually show a gradual shift in movement

kinematics over multiple trials and a washout effect after the perturbations are removed

(Bastian, 2006; Shadmehr et al., 2010). However, this is not to suggest that cerebellum

is not involved in other aspects of sequence control. It has been shown that the motor

cortex, motor thalamus, and cerebellum form robust loops responsible for the preparation

and control of directed licks (Gao et al., 2018; Chabrol et al., 2019).

Although the present study mainly used four different sequences, one can imagine a

practically unlimited number of alternative sequences. Furthermore, different sequences do

not have to be randomly interleaved or occur with specific probabilities. For example, to

investigate how mice would behave with different prior (or expected) sequences, one can put

the same sequences in different blocks of trials and study the performance at block transitions.

Another interesting question is whether mice can generalize sequence transitions in one

direction to the other in a mirrored fashion like what has been reported in primates (Jiang

et al., 2018). Because mirroring changes all the physical relationships from one movement

to another, an ability to generalize would suggest that the sequence structure is represented

independently from detailed licking kinematics. To test the possibility, one can first train

mice to learn a novel sequence and then introduce its mirrored sequence. If mice generalize

the abstract sequence structure, the second phase of learning will be much faster than the

first.

Overall, the novel sequential licking task fulfills the need for a rodent model to study

complex sensorimotor sequences. It demonstrates how skillful and flexible mice can use their

tongue, in coordination with other orofacial apparatus, to accomplish goals. The versatile

task design opens up new opportunities for future research.

50



Chapter 3

Closed-loop Optogenetic Inhibition

Screen of Cortical Areas

3.1 Introduction

Identifying brain regions that produce the behavior of interest is the first step to understand

its neural underpinning. The present sequence licking task is a novel behavior, the first

in rodents involving complex sensorimotor sequence control. It is not clear which cortical

regions, if any, are responsible for the sequence generation and what their roles are?

The performance of licking sequences relies on the coordinated motor control of tongue,

jaw and other orofacial apparatus (Travers et al., 1997; McElvain et al., 2018), but also

tactile and perhaps proprioceptive feedback from these structures (Miller, 2002). Electrical

and optogenetic mapping studies have generally charted two motor subregions in rodent

brains that are able to evoke tongue and jaw movements (Svoboda and Li, 2018). One is

the anterolateral motor cortex (ALM) (Komiyama et al. 2010); another more lateral to it is

thought to be the tongue/jaw subregion of the primary motor cortex (or M1TJ) (Mayrhofer

et al., 2019). Regarding the sensory processing, physical stimulation to the tongue evokes

major hemodynamic and intracellular calcium responses in the tongue/jaw subregion of
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primary somatosensory cortex (S1TJ), and a secondary response in M1TJ, presumably due to

prominent axonal projections found from S1TJ to M1TJ (Mayrhofer et al., 2019). Inhibiting

ALM and M1TJ neurons can bias the production of directed licks (Li et al., 2015; Allen et al.,

2017; Mayrhofer et al., 2019), but little is known about the contribution of S1TJ. It is also

not clear how the ALM, M1TJ, S1TJ, and potentially other cortical regions, would function

when mice perform more complicated sensorimotor sequences. Therefore, a systematic loss-

of-function screen of all the candidate regions is needed.

In this sequence licking task, mice wait for an auditory cue to initiate a sequence, then

roll out a specific motor program based on memory and sensory feedback, and eventually

terminate the licking sequence after the water reward is consumed. A brain region can be

involved in all or only a subset of the three temporal stages. To dissect these contributions,

the loss-of-function manipulation must have high temporal resolution and be triggered at

the right time points. Optogenetic inhibition can be turned on and off rapidly and can be

directed to specific brain regions and circuit components. Guo and colleagues pioneered the

“clear-skull” technique which renders intact skulls optically transparent (Guo et al., 2014).

Light can be delivered to any region of the dorsal cortex without invasive or irreversible

preparations, thus making high throughput functional screening during behavior possible.

Additionally, in a self-paced task like ours, the timing of optoinhibition must be triggered

by the behavior in a closed-loop manner.

In sum, closed-loop optoinhibition across cortical regions combined with detailed behav-

ioral quantification enable us to systematically characterize the role that each cortical region

plays in the control of sequence licking.

3.2 Methods

The use of mice, surgical procedures, behavioral task control, instrumentation, behavioral

training procedures, and common analysis methods are described in Chapter 1.5. Common
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procedures for silicon probe recording and spike sorting are describes in Chapter 4.2.1.

3.2.1 Photostimulation

Bilateral stimulation of the brain was achieved using a pair of optic fibers (0.39 NA, 400

µm core diameter) that were manually positioned above the clear skull prior to the be-

ginning of each behavioural session. These optic fibers were coupled to 470 nm LEDs

(M470F3, Thorlabs). The illumination power was externally controlled via WaveSurfer

(http://wavesurfer.janelia.org). Each stimulation had a 2 s long 40 Hz sinusoidal wave-

form with 0.1 s linearly modulated ramp-down at the end. The peak powers in the main

experiments were 16 mW and 8 mW. We used the previously reported 50% transmission

efficiency of the clear-skull preparation (Guo et al., 2014) and report the estimated average

power in the Results. There was a 10% chance of light delivery triggered at each of the

following points in a sequence: cue onset, the fourth (middle) touch, or the first touch after

water delivery. To ensure that the light from photostimulation did not affect the mouse’s

performance through vision, we set up a masking light with two blue LEDs directed at each

of the mouse’s eyes. Each flash of the masking light was 2 s long separated by random

intervals of 5-10 s. This masking light was introduced several training sessions in advance

of photostimulation to ensure the light no longer affected the behaviour of the mouse. In

addition, the optic fibers were positioned to shine light from ∼5-10 mm above the animal’s

head on these days leading up to photostimulation.

In a subset of silicon probe recording sessions (related to Figure 3.2), we used an optic

fiber (0.3 NA, 400 um core diameter) to simultaneously photoinhibit the same (within 1 mm)

or a different cortical region (∼1.5 or ∼3 mm away) via a craniotomy. The tip of the fiber was

kept ∼1 mm away from the brain surface. For testing the efficiency of photoinhibition, the

same 2 s photostimulation was applied but only at the mid-sequence, with 7.5% probability

for each of the four powers (1, 2, 4 and 8 mW). For each isolated unit, the photo-evoked

spike rate was normalized to that obtained during the equivalent 2 s time window without
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photostimulation. To avoid a floor effect, we also excluded units that on average fired less

than one spike during the no stimulation windows. We classified units as putative pyramidal

neurons if the width of the average spike waveform (defined as time from trough to peak)

was greater than 0.5 ms, and as putative fast spiking interneurons if shorter than 0.4 ms

or if units had more than twice the firing rate during 8 mW photostimulations than during

periods of no stimulation.

3.2.2 Behavioral Quantification

The rate of licks, rate of touches, Θshoot and Lmax as a function of time were computed using

0.2 s time bins. The summary quantifications (Figures 3.7 and 3.9) used data averaged

within 1 s after the start of photoinhibition (or the equivalent time in no-inhibition trials).

The shorter window helped to minimize the effects “bleeding over” from mid-sequence to

initiation, and from consumption to mid-sequence. Although this was not an issue for the

consumption period, we nevertheless used the 1 s window for consistency. The summary

metric SD(Θshoot) was obtained by averaging the standard deviation of Θshoot in each 0.2 s

time bin within the 1 s window. Other metrics were directly computed without binning.

3.3 Results

To determine which brain regions contributed to the performance of our novel sequence

licking task, and at which points during sequence execution, we performed systematic closed-

loop optogenetic silencing experiments.

We used the “clear-skull” preparation (Guo et al., 2014), a method that greatly improves

the optical transparency of intact skull, to non-invasively photoactivate channelrhodopsin-

expressing GABA-ergic neurons and thus indirectly inhibit nearby excitatory neurons (Figure

3.1a). In different experimental sessions, bilateral inhibition was centered at each of five

regions: the ALM (Svoboda and Li, 2018) cortex, a somatomotor region centered at the
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cue onset
4th touch onset (closed-loop)Auditory cue

All opto stim lasts 2 seconds

Touch
Water delivery

Inhibition at initiation (Init)
Inhibition at mid-sequence (Mid)
Inhibition at consumption (Cons)

1st touch onset after water
(closed-loop)

 ALM
M1B
S1TJ (tongue/jaw)
S1BF
S1Tr

VGAT-CRE+/-;Ai32+/-
Example clear-skull

a b

Figure 3.1: Experimental setup for optoinhibition screen

(a) Example clear-skull preparation overlaid with circles indicating the five bilateral target regions.

(b) Triggering scheme for photoinhibition at sequence initiation, mid-sequence and water con-
sumption.

body-related primary motor cortex (M1B) (Ayling et al., 2009; Guo et al., 2015), the S1TJ

cortex (Mayrhofer et al., 2019; Clemens et al., 2018), the macrovibrissae subregion (or barrel

field) of the primary somatosensory cortex (S1BF), and the trunk subregion of the primary

somatosensory cortex (S1Tr, also including a part of posterior parietal cortex). For each

region, inhibition was triggered with equal probability (10%) at sequence initiation, at mid-

sequence or at the start of water consumption (Figure 3.1b). Importantly, stimulation at

mid-sequence and at consumption was triggered in closed-loop by the onset of the fourth

(middle) touch during the sequence and by the onset of the first touch after water delivery,

respectively. In the case of consumption, the trigger conditions ensured that the tongue had

contacted water before inhibition started.

With the light powers we used (4 mW each hemisphere; Methods), light within 1 mm

distance reduced mean spike rate of putative pyramidal cells (Figure 3.2a-c) by 91%, light

at ∼1.5 mm away by 61%, and ∼3 mm away by 19% in behaving animals (Figure 3.2d).

Interestingly, the mean spike rate of putative fast spiking (FS) neurons at ∼3 mm away was

also reduced by 19%, rather than showing an increase due to photoactivation, suggesting

that the decreased activity of both pyramidal and FS neurons was likely due to a reduction

of cortical input. In contrast, light shined within 1 mm increased the mean spike rate of FS
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Figure 3.2: Efficiency of optoinhibition

(a) Average spike waveform of putative pyramidal cells (black; n = 224) and putative FS neurons
(blue; n = 117), normalized to the amplitude of negative peaks.

(b) Relationship between spike widths (defined as the trough to peak time of average waveform)
and changes in mean spike rate under opto illumination (4mW, within 1 mm) relative to
baseline. Pyramidal cells (black; n = 42) and FS neurons (blue; n = 41) were classified by
the two thresholds (dashed lines at 0.4 and 0.5 ms) with ambiguous units (gray; n = 6) in the
middle.

(c) Distributions of spike widths from neurons in (b) (filled bars; n = 89) and from all neurons
(empty bars; n = 414) including those where illuminations were not at recording sites. Clas-
sification thresholds are shown in dashed lines.

(d) Left, inhibition efficiency of putative pyramidal cells as a function of light power and distance
away from the center of illumination (n = 224 units total). Right, similar to left but shows the
excitation efficiency of putative FS neurons (n = 117 units total). Mean ± 95% hierarchical
bootstrap confidence interval.
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neurons by 739% and at ∼1.5mm by 140%.

3.3.1 S1TJ is Required for Proper Targeting

Somatosensory inputs not only provide information about external objects but also enable

the proprioceptive sensing of the body’s position in space (Proske and Gandevia, 2012) for

motor control (Franklin and Wolpert, 2011). Missing sensory feedback can render seem-

ingly effortless manipulations surprisingly difficult even though motor capability per se is

unchanged (Chesler et al., 2016). Inhibiting S1TJ randomized the targeting angle of licks,

shown by the increased standard deviation (SD) in of individual licks (Figure 3.3a; shadings

around traces) and the SD in Θshoot at given time points for individual mice (Figure 3.6d

and 3.7d). Despite the increased variability in targeting, the ability to direct licks away from

the midline (i.e. |Θshoot − 0°| or simply |Θshoot|) was uncompromised (Figure 3.7c). Inhibit-

ing S1TJ also did not shorten the length of licks (Figure 3.6b and 3.7b). Taken together,

this suggests that S1TJ inhibition left intact the core motor capabilities required for tongue

protrusions and licking, but corrupted these commands and their proper targeting, possibly

due to missing sensory feedback.

In contrast, when inhibiting ALM (Figure 3.3b), mice not only had difficulty directing

licks away from the midline (Figure 3.6c and 3.7c), but also showed decreased length of lick

(Figure 3.6b and 3.7b). The variability of licks, however, did not change (Figure 3.6d and

3.7d). Inhibiting M1B (Figure 3.4a) only caused a moderate increase in the variability of

lick angle and no decrease in lick length. Inhibiting S1Tr (Figure 3.4b) and S1BF (Figure

3.5 or 3.6) did not change any aspects of lick control (Figure 3.7).

3.3.2 ALM is Critical for Sequence Initiation

ALM has been shown to be important in motor preparation of directed single licks to obtain

water reward (Komiyama et al., 2010; Svoboda and Li, 2018). Here, we found that inhibiting

ALM at sequence initiation strongly suppressed the production of licking sequences (Figure
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Figure 3.3: Effects of optoinhibition to S1TJ and ALM

Effects of S1TJ (a) and ALM (b) inhibition for each of the three periods. Top row, the rate of licks
(solid lines) or touches (dashed lines) as a function of time for trials with (blue) or without (black)
inhibition (mean ± 95% hierarchical bootstrap confidence interval). Horizontal bars indicate the 2
s long illumination. Time zero is the onset of inhibition, or the equivalent time in trials without
inhibition. Middle and bottom rows, L and patterns (mean ± SD) for five consecutive licks in
trials with (blue) or without (black) inhibition. Lick #0 is the lick that triggered inhibition, #1
the first lick after the trigger, #-1 the lick before, etc. Licks from inhibited trials are colored blue
and those without inhibition are in black. n = 1542 trials for S1TJ from 5 sessions, one session per
mouse. n = 1181 trials for ALM.
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Figure 3.4: Effects of optoinhibition to M1B and S1Tr

Effects of M1B (a) and S1Tr (b) inhibition for each of the three periods. Top row, the rate of licks
(solid lines) or touches (dashed lines) as a function of time for trials with (blue) or without (black)
inhibition (mean ± 95% hierarchical bootstrap confidence interval). Horizontal bars indicate the 2
s long illumination. Time zero is the onset of inhibition, or the equivalent time in trials without
inhibition. Middle and bottom rows, L and patterns (mean ± SD) for five consecutive licks in
trials with (blue) or without (black) inhibition. Lick #0 is the lick that triggered inhibition, #1
the first lick after the trigger, #-1 the lick before, etc. Licks from inhibited trials are colored blue
and those without inhibition are in black. n = 1240 trials for M1B from 5 sessions, one session per
mouse. n = 1269 trials for S1Tr.
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Figure 3.5: Effects of optoinhibition to S1BF

Effects of S1BF inhibition for each of the three periods. Top row, the rate of licks (solid lines)
or touches (dashed lines) as a function of time for trials with (blue) or without (black) inhibition
(mean ± 95% hierarchical bootstrap confidence interval). Horizontal bars indicate the 2 s long
illumination. Time zero is the onset of inhibition, or the equivalent time in trials without inhibition.
Middle and bottom rows, L and patterns (mean ± SD) for five consecutive licks in trials with (blue)
or without (black) inhibition. Lick #0 is the lick that triggered inhibition, #1 the first lick after
the trigger, #-1 the lick before, etc. Licks from inhibited trials are colored blue and those without
inhibition are in black. n = 1399 trials for M1 from 5 sessions, one session per mouse.

3.3b). In 3 of the 5 mice, licks were largely absent (Figure 3.7a and 3.6a). Inhibiting S1TJ

caused more moderate suppression (Figure 3.3a), and there was no obvious change when

inhibiting other regions (Figure 3.4, 3.5, 3.6a, and 3.7a). When applied at mid-sequence,

ALM inhibition also suppressed the production of licks, although less strongly. Inhibiting

any other region at mid-sequence showed little effect.
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Figure 3.6: Effects of optoinhibition by individual mice

(a) Rate of licks (r) of individual mice (mean ± 95% bootstrap confidence interval) with (blue) or
without (black) inhibition in ALM (top), S1TJ (middle) or S1BF (bottom) and in each of the
three periods.

(b) Similar to (a) but quantifies Lmax as a function of time for individual mice (mean ± SD).

(c) Similar to (b) but quantifies effects in Θshoot. The standard deviation of Θshoot (SD(Θshoot))
is separately plotted in (d) for clarity.
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Figure 3.7: Summary of optoinhibition effects

(a) Changes in lick production across regions and periods, quantified as lick rate in trials with
inhibition as a fraction of lick rate in trials without inhibition. Red bars indicate means (n =
5 mice). ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, not significant otherwise, two-tailed t-test.

(b) Same as (a) but for changes in Lmax.

(c) Same as (a) but for changes in the ability to direct licks away from the midline, quantified
using |Θshoot|.

(d) Same as (a) but for changes in the variability of lick angles, quantified using the standard
deviation of Θshoot.
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3.3.3 Anterior Cortex Activity is Collectively Required for Se-

quence Termination

Previous studies have attributed M1B almost exclusively to body and limb control. To

our surprise, when inhibiting M1B at water consumption, mice were impaired at stopping

ongoing sequences (Figure 3.4a, top right). This prolonged licking was not due to additional

attempts to reach the port for water as mice continuously made successful contacts. However,

we also observed a trend toward an increase of lick production when inhibiting S1TJ, and

more subtly, S1BF and S1Tr.

To test the possibility that inhibition of multiple areas caused persistent lick bouts due

simply to spread of inhibition into M1B, we repeated all the above experiments with half

of the illumination power (2 mW). The effects of ALM inhibition on sequence initiation,

tongue length and angle control, and of S1TJ inhibition on angle control, remained consistent

with, though much weaker than, our previous results using higher power (Figure 3.9). At

consumption, however, inhibiting M1B resulted in similar deficit in terminating ongoing

sequences. Surprisingly, this paradoxical effect also became evident when inhibiting ALM

and S1TJ (Figure 3.8). Therefore, our observation that inhibition of multiple anterior cortical

areas produces a deficit in sequence termination was not due to spread of inhibition into M1B.

TouchLick
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Figure 3.8: Effects of low power optoinhibition at consumption periods

Effects of low power (2 mW) inhibition at ALM (n = 850 trials), S1TJ (n = 774) and M1B (n
= 784) during consumption period. The rate of licks (solid lines) or touches (dashed lines) as
a function of time for trials with (blue) or without (black) inhibition (mean ± 95% hierarchical
bootstrap confidence interval). Horizontal bars indicate the 2 s long illumination. Time zero is the
onset of inhibition, or the equivalent time in trials without inhibition.
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Figure 3.9: Summary of low power optoinhibition effects

(a) Changes in lick production across regions and periods, quantified as lick rate in trials with
inhibition as a fraction of lick rate in trials without inhibition. Red bars indicate means (n =
3 mice). ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, not significant otherwise, two-tailed t-test.

(b) Same as (a) but for changes in Lmax.

(c) Same as (a) but for changes in the ability to direct licks away from the midline, quantified
using |Θshoot|.

(d) Same as (a) but for changes in the variability of lick angles, quantified using the standard
deviation of Θshoot.

Rather, our results indicate that sequence termination is an active process mediated

collectively by multiple regions in the anterior cortex. Since our data show that ALM and

S1TJ played active roles in tongue control, inhibiting them with high power presumably

impaired both sequence execution and termination. Low-power inhibition appeared to spare

the control of execution more than that of termination, revealing deficits in the latter.
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3.3.4 M1TJ Inhibition Impairs Motor Control of Licking

Functional mapping and anatomical tracing from previous studies have shown that M1TJ

is involved in the control of tongue/jaw motions (Mayrhofer et al., 2019; Komiyama et al.,

2010) and that it communicates with S1TJ (Mayrhofer et al., 2019). To test the role of M1TJ

in sequence control, we performed additional inhibition experiments in a separate group of

mice. M1TJ inhibition showed similar effects as ALM inhibition, including suppressed lick

production, shortened tongue length and reduced angle modulation (Figure 3.10).
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Figure 3.10: Effects of optoinhibition to M1TJ and S1BF

Effects of M1TJ (a) and S1BF (b) inhibition for each of the three periods. Top row, the rate of licks
(solid lines) or touches (dashed lines) as a function of time for trials with (blue) or without (black)
inhibition (mean ± 95% hierarchical bootstrap confidence interval). Horizontal bars indicate the 2
s long illumination. Time zero is the onset of inhibition, or the equivalent time in trials without
inhibition. Middle and bottom rows, L and patterns (mean ± SD) for five consecutive licks in
trials with (blue) or without (black) inhibition. Lick #0 is the lick that triggered inhibition, #1
the first lick after the trigger, #-1 the lick before, etc. Licks from inhibited trials are colored blue
and those without inhibition are in black. n = 709 trials for M1TJ from 3 sessions, one session per
mouse. n = 766 trials for S1BF.
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3.4 Discussion

The role of rodent S1TJ during behavior has never been investigated before. To our surprise,

S1TJ inhibition randomized the licking sequence while keeping the length of licks and the

mice’s ability to lick to the sides intact. There are at least two possible explanations for this

effect. First, the inhibited sensory feedback is proprioceptive. From a feedback control point

of view (Scott et al., 2015), a missing or perturbed proprioceptive feedback from the tongue

may cause the motor output (such as lick angle in our case) to oscillate randomly (Fink et al.,

2014). The lack of deficits in tongue length may be due to the fact that mice do not need to

maintain tongue length at an intermediate level (like monkeys in Lin et al. (1993)). Therefore

the length control largely operates in an opened-loop fashion. The second possibility is that

inhibiting S1TJ abolishes the tactile feedback from the lick port. Without feeling the port,

mice may start exploring around randomly. However, this second explanation seems less

likely since mice sometimes miss the port spontaneously and they tend to keep licking at the

expected port position instead of searching randomly. For future experiments, it would be

interesting to see whether or not we can use S1TJ inhibition to mask out tactile feedback of

the fourth lick in a standard sequence and trick mice to think backtracking has happened.

If the mice lick back, it means the S1TJ inhibition indeed blocked tactile feedback from the

port (though a negative result can have various interpretations).

Previous works have shown that inhibiting ALM can prevent reward-oriented voluntary

licks (Komiyama et al., 2010). Our result generalizes its role from initiating simple rhythmic

licking to initiating specific licking sequences. Furthermore, ALM is responsible for main-

taining the proper length and angle modulation of the tongue throughout the course of the

sequences. In contrast to a traditional view that consummatory licks are largely driven by

brainstem reflexes to the sense of water (Miller, 2002) and independent from cortical control

(Komiyama et al., 2010), we found that inhibiting ALM during consumption could dramat-

ically impair mice’s ability to direct licks to the side though only slightly affect the length

of licks (Figure 3.3b). It is possible that the brainstem circuits are able to produce straight
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consummatory licks in a “default” mode, but have no built-in mechanism to maintain a

series of directed licks.

Our results show that sequence termination is an active process. If the consummatory

licks at the end of each sequence are passively perpetuated by the sense of water, licking

will automatically stop once water is fully consumed. However, when inhibiting any of the

anterior cortical regions, we observed prolonged licking to the lick port even in the absence

of water. The evidence for the neural control of sequence termination has largely focused on

basal ganglia. Parkinson’s and Huntington’s patients have been reported to have deficits in

stopping ongoing movement sequences (Benecke et al., 1987; Agostino et al., 1992). Many

neurons in basal ganglia respond to sequence initiation and termination (Jin and Costa,

2010; Jin et al., 2014; Desrochers et al., 2015a). It is possible that the cerebral cortex is

engaged in this process via the cortical-striatal loop, but may not be in a somatotopically

specific way. More studies will be needed to dissect which neuronal subtypes (both in terms

of genetic identity and connectivity) are mediating sequence termination and to track down

the chain of signals.

The optoinhibition screening approach tries to strike a balance between experimental

throughput and anatomical specificity. The spread of inhibition is not trivial to quantify (Li

et al., 2019). Although the characterization shown in the Results only takes illumination

power and corticocortical distance into account (Figure 3.2d), other factors such as the

animal’s behavioral state (anesthetized, awake, or engaged in task), the connectivity of

different regions (e.g. inhibiting S1TJ may have less impact on ALM than inhibiting ALM

on S1TJ), and even the sex- or age-dependent level of expression of opsins can all play a

role in inhibition efficiency. A comprehensive titration is simply not practical. It is possible

that the similarity in behavioral deficits caused by ALM or M1TJ inhibition may be in part

due to the spread of light. However, the distance between ALM and S1TJ are far enough

and we did not see activation of inhibitory neurons due to the spread of light. Furthermore,

the behavioral deficits are qualitatively different in ALM and S1TJ. Future works will likely
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transition from screening types of experiments to specific hypothesis-driven manipulations

which can take advantage of, for example, virus-mediated local expression of opsins in a

projection-defined subpopulation of neurons.
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Chapter 4

Single-neuron and Population Coding

of Sensorimotor Sequences across

Cortical Area

4.1 Introduction

Single-neuron responses to the execution of motor sequences have been well-characterized

in non-human primates. To briefly recapitulate what has been reviewed in Chapter 1.2.1,

neurons in the primary motor cortex (M1) predominantly respond to specific movements

regardless of the sequence context. In contrast, supplementary motor area (SMA), supple-

mentary eye field (SEF), premotor cortex (PM), dorsolateral prefrontal cortex (dlPFC), and

anterior cingulate cortex (ACC) all contain neurons, to varying degrees, that are tuned to

a conjunction of specific movement, a movement’s temporal position in a sequence (i.e. se-

quence rank), and/or the identity of neighboring movements. Although a functional cortical

hierarchy has become a canonical view for visual processing (Felleman and Van Essen, 1991),

it remains unclear what are the relationships among the various cortical regions for senso-

rimotor sequence control. Rodent cortex has fewer areal specializations (Preuss, 1995) and
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may serve as a reduced model for us to better understand the essential processing principles.

Unfortunately, we know very little about how neurons in rodent brains encode for sensori-

motor sequences, let alone the underlying circuit basis. By establishing the novel sequence

licking task (Chapter 2) and a systematic screening for important cortical regions (Chapter

3), we are well-positioned to start looking into the neural code in these key regions during

sequence performance.

With advances in recording and data processing techniques (Steinmetz et al., 2018), it is

now easy to obtain many dozens or even hundreds of single-unit activities simultaneously.

However, it poses challenges to analyze and make sense of the large array of heterogeneous

responses. This problem can be dealt with at single-neuron level or at population level. A

common approach at single-neuron level is to classify neurons into artificially defined cat-

egories, such as movement-responsive or sequence rank-responsive neurons. This method

is straightforward but subject to authors’ intended framework of interpretation. One may

end up throwing the baby out with the bathwater by missing the important but unexpected

neural dynamics (Shenoy et al., 2013). Alternative to single-neuron level analyses, the ac-

tivity of neuronal populations can be treated as a whole. For example, one can ask about

correlations between neural responses and behaviors if the population activity can be used

to predict behavioral variables via statistical models (Musall et al., 2019). Although be-

ing more quantitative, it shares a similar spirit to the artificial categorization of neuronal

responses in the sense that both rely on prior hypotheses. On the other hand, unsuper-

vised dimensionality reduction methods, such as principal component analysis (PCA) and

its variants (e.g. Liu et al. (2014); Kobak et al. (2016); Williams et al. (2018)), are agnostic

to experimental hypotheses and can be used to discover dominant dynamics in population

activity. The present study combines both single-neuron and population level analyses to

provide a consistent and complementary account of neural coding across cortical regions.

Furthermore, we will take the best of both hypothesis-driven decoding and unsupervised

analysis to reveal the nature of major dynamics in each region.

71



4.2 Methods

The use of mice, surgical procedures, behavioral task control, instrumentation, behavioral

training procedures, and common analysis methods are described in Chapter 1.5.

4.2.1 Electrophysiology

Two types of silicon probe were used to record extracellular potentials. One (H3, Cambridge

Neurotech) had a single shank with 64 electrodes evenly spaced at 20 µm intervals. The

other (H2, Cambridge Neurotech) had two shanks separated by 250 µm, where each shank

had 32 electrodes evenly spaced with 25 µm intervals. Before each insertion, the tips of the

silicon probe were dipped in either DiI (saturated) or DiD (5-10 mg/mL) ethanol solution and

allowed to dry. Probe insertions were either vertical or at 40° from the vertical line depending

on the anatomy of the recorded region and surgical accessibility. Once fully inserted, the

brain was covered with a layer of 1.5% agarose and ACSF, and was left to settle for ∼10

minutes prior to recording. Based on the depth of the probe tip, the angle of penetration,

and the position of these sites, the location of units could be determined. Units recorded

outside the target structure were excluded from analysis.

Extracellular voltages were amplified and digitized at 30 kHz via an RHD2164 amplifier

board and acquired by an RHD2000 system (Intan Technologies). No filtering was performed

at the data acquisition stage. Kilosort (Pachitariu et al., 2016) was used for initial spike

clustering. We configured Kilosort to highpass filter the input voltage time series at 300

Hz. The automatic clustering results were manually curated in Phy for putative single-unit

isolation. We noticed a previously reported issue of Phy double counting a small fraction of

spikes (with exact same timestamps) after manually merging certain clusters, thus duplicated

spike times in a cluster were post-hoc fixed to keep only one.

Cluster quality was quantified using two metrics (Figure 4.1a-c,e). The first was the

percentage of inter-spike intervals (ISI) violating the refractory period (RPV). We set 2.5
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Figure 4.1: Quality control for spike sorting
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Figure 4.1: Quality control for spike sorting

(a) Contamination rates and refractory period violation rates of all recorded single- (green) and
multi-units (black). The shaded region shows the thresholds for assignment as multi- vs single-
unit.

(b) CDF of contamination rate including single- (green) and multi-units (gray).

(c) Same as (b) but for refractory period violation rate.

(d) The number of single- (green) and multi-units (black) recorded in each session, grouped by
brain area.

(e) ISI histograms of randomly selected single-units. Refractory period violation rates (RPV) and
contamination rates (Con) are labeled on the top (in percent).

ms as the duration of the refractory period and used 1% as the RPV threshold above which

clusters were regarded as multi-units. It has been argued that RPV does not represent an

estimate of false alarm rate of contaminated spikes (Hill et al., 2011; Navratilova et al., 2016)

since units with low spike rates tend to have lower RPV while high spike rate units tend to

show higher RPV even if they are contaminated with the same percentage of false positive

spikes. Therefore, we estimated the contamination rate based on the reported method (Hill

et al., 2011). A modification was that we computed a cluster’s mean spike rate from periods

where the spike rate was greater than 0.5 spikes/s rather than from an entire recording

session. As a result, the mean spike rate reflected more about neuronal excitability than

task involvement. Any clusters with more than 15% contamination rate were regarded as

multi-units. Combining these two criteria in fact classified less single-units than using a

single, though more stringent, RPV of 0.5%. A low RPV can fail potentially well isolated

fast spiking interneurons whose ISIs can frequently be shorter than the set threshold.

4.2.2 Histology

Mice were perfused transcardially with PBS followed by 4% PFA in 0.1 M PB. The tissue

was fixed in 4% PFA at least overnight. The brain was then suspended in 4% agarose in

PBS. A vibratome (HM 650V, Thermo Scientific) cut coronal sections of 100 m that were

mounted and subsequently imaged on a fluorescence microscope (BX41, Olympus). Images
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showing DiI and DiD fluorescence were collected in order to recover the location of silicon

probe penetrations.

4.2.3 Trial selection and alignment

Due to individual variability, different mice tended to lick at slightly different rates within

lick bouts. The same mice might also perform a bit faster in one sequence direction than the

other. Even in a given direction, one might start faster and then slow down a little, or slower

first and faster later. When aligning trials from heterogeneous sources, a 10% difference in

lick rate, for instance, will result in a complete mismatch (reversed phase) of lick cycle after

only 5 licks. Therefore, prior to the analyses that are sensitive to inconsistent lick rates,

we linearly stretched or shrunk inter-lick intervals (ILIs) within each lick bout to a constant

value of 0.154 s (i.e. 6.5 licks/s), which is around the overall mean. The timestamps of

licks used to compute ILIs were contact onsets for touches or the time at Lmax for missed

licks. A lick bout was operationally defined as a series of consecutive licks in which every

ILI must be shorter than 1.5 × the median of all ILIs in the entire behavioral session. For

ease of programming, we compensatorily scaled the time between the last lick of a trial and

the start of the next trial to maintain an unchanged global trial time. Original time series,

including spike rates and L’, were obtained prior to temporal alignment. After alignment,

the behavioral and neural time series were resampled uniformly at 400 samples/s.

After temporal alignment, we used a custom clustering algorithm to find a group of

trials with the most similar sequence performance. First, all trials of a given sequence in

a behavioral session were collected and a time window of interest was determined. For

sigle-neuron analyses, we used the same time windows as the corresponding peri-event time

histograms (PETH). For analyses related to population decoding during sequence execution,

we used -1 to 1 s from the 4th (middle) touch. For analyses during consumption period,

we used -0.5 to 1 s from the first lick touching water. The duration of a time window is

denoted as T . Second, for each trial, a feature vector was constructed which included 7×T
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lick onset times and 7×T touch onset times within the time window. Insufficient timestamps

were padded with zeros. Finally, pairwise euclidean distances were computed among feature

vectors of all candidate trials and we chose a subset of N trials with the lowest average

pairwise distance, i.e. those that have the most similar lick and touch times. The number N

was set to 1/3 of available candidate trials with a minimal limit of N = 10 trials. We used

this relatively low fraction mainly to handle the greater behavioral variability in sequences

with backtracking. To handle trial-to-trial variability in sequence initiation time (defined as

the interval from the cue onset to first touch onset), which was not captured in our feature

vectors, prior to clustering we limited trials to those with sequence initiation time less than

1 second.

4.2.4 PETH, NNMF and t-SNE

Spike rates were computed by temporal binning (bin size: 2.5 ms) of spike times followed by

smoothing (15 ms SD Gaussian kernel). The smooth PETHs were computed by averaging

spike rates across trials. Each unit has 6 PETHs: 3 time windows (for sequence initiation,

mid-sequence and sequence termination) each in 2 standard sequences (left to right and right

to left). We excluded inactive units whose maximal spike rate across the 6 PETHs was less

than 10 spikes/s. For the rest, we normalized PETHs of each unit to this maximal spike rate.

To construct inputs to NNMF and t-SNE, the 6 PETHs of each unit were downsampled from

2.5 ms per sample to 25 ms per sample and were concatenated along time to form a single

feature vector.

NNMF was performed using the MATLAB function “nnmf” with default options. We

empirically chose to compute 10 clusters as too few clusters tend to merge response patterns

tuned to adjacent stages of sequences, whereas too many clusters provided little help in

extracting the major response patterns from the data. NNMF is a close relative of principal

component analysis (PCA) that has gained increasing popularity for processing neural data.

The algorithm finds a small number of activity patterns (equivalent to principal components
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in PCA) along with a set of weights for each neuron, so that the original PETHs can be

best reconstructed by weighted sums of those activity patterns. As a result, a small number

of activity patterns (or dimensions) is usually able to capture the main structure of the

original PETHs, and a neuron’s weights quantifies the degree to which its activity reflects

each pattern. In the context of clustering, each pattern describes representative activity

of a cluster, and the pattern with the greatest weight for a neuron determines its cluster

membership (Figure 4.9).

t-SNE is a nonlinear dimensionality reduction method. We used the MATLAB “tsne”

function with customized options (’Algorithm’, ’exact’, ’Distance’, ’cosine’, ’NumDimen-

sions’, 2, ’Perplexity’, 50, ’Standardize’, false) to find a 2-D embedding of the feature vectors

(Figure 4.8a). t-SNE per se does not cluster data. Therefore, we fitted Gaussian mixture

models with various numbers of components and used BIC to determine the optimal number

of clusters (Figure 4.8b). Since the t-SNE results can be sensitive to initial conditions, we

repeated the computation with 50 different seeds of a random number generator and ob-

tained a median cluster number of 8 (Figure 4.8c). The results shown are from the first run

with 8 clusters.

4.2.5 Linear model and PCA

In each linear regression, the predictors were normalized spike rates of simultaneously recorded

units and the response was one of the five behavioral variables (L, L’, θ, D/TP or τ). Pre-

dictors and responses were sampled at 400 Hz and were not averaged across trials. PCA was

performed using the same normalized spike rates.

Both single- and multi-units were included. To obtain normalized spike rates, we divided

the original spike rate by the maximum spike rate or 5 Hz, whichever was greater. We adopted

this “soft” normalization technique (Russo et al., 2018) to prevent weakly firing units from

contributing as much variance as actively firing units. Note that this normalization was only

necessary for PCA and did not affect the goodness of fit, R2, of linear models.
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L, L’ and θ were directly available at 400 samples/s. However, these variables had values

only when the tongue was outside of the mouth. Therefore, samples without observed values

were either set to zero (for L) or excluded from regression (for L’ and θ). D was defined as 1

if the sequence was from right to left and 2 if left to right. τ simply took sample timestamps

as its values. In Chapter 5, TP was the same as D but defined based on the upcoming

sequence.

Predicting single responses with dozens of predictors is prone to overfitting. Therefore,

we chose the elastic-net variant of linear regression (using MATLAB function “lasso” with

‘Alpha’ set to 0.1), which penalizes big coefficients for redundant or uninformative predictors.

A parameter λ controls the strength of this penalty. To find the best λ, we configured the

“lasso” function to compute 10-fold cross-validated mean squared error (cvMSE) of the fit

for a series of λ values. The smallest cvMSE indicates the best generalization, i.e. the least

overfit. We conservatively chose the largest λ value such that the cvMSE was within one

standard error of the minimum cvMSE. For each model, we derived the R2 from this cvMSE.

Each of the 5 regressions resulted in a vector of coefficients comprising one coefficient

for each unit, and a constant. Each coefficient vector and constant was used to predict or

decode the corresponding behavioral variable from a vector (or, for multiple time points, a

matrix) of population spike rates. We did not perform additional cross-validation in decoding

because (1) 30% of the decoding for standard sequences (0.5 to 0.8 s in Chapter 4 and -1.3

to -1 s in Chapter 5) was from new data; (2) all decoding in backtracking sequences and

during consumption period was from new data; and (3) the model has been proven the

best generalization via cross-validation when selecting λ. The term “coefficient vector” and

“coding axis” are used interchangeably.

The percent variance explained (VE) by principal components was simply derived from

the singular values. To compute VE by each coding axis, we first obtained its unit vec-

tor and projected population spike rates onto it. The variance of the projected values is

Var(explained). The total variance, Var(total), of the population activity is the sum of
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variance of all units. Finally, VE equals Var(explained) / Var(total) × 100%.

4.2.6 Canonical correlation

In each session, we computed the trial-averaged neural trajectories in the five dimensional

coding subspace and trajectories in the PC subspace from standard sequences (-0.5 to 0.8 s

from 4th touch onset; right to left and left to right trajectories were concatenated). Canon-

ical correlations were computed using MATLAB “canoncorr” function between trajectory

matrices with the same number of dimensions. N correlation coefficients (r) quantified the

correlation between the activity in each pair of the N dimensions after transformation. The

average r across the N values reflected the overall alignment between the two transformed

trajectories.

4.3 Results

4.3.1 Single-unit Responses Tile Sequence Progression

We used silicon probes to record from multiple brain regions from both hemispheres (Figure

4.2) during the task and obtained a total of 1312 single-units and 284 multi-units (Methods;

Figure 4.1) from 51 recording sessions. Perievent time histograms (PETHs) of single-unit

spiking (Figures 4.3 - 4.6) exhibited a wide variety of patterns prior, during, and after

sequence execution.

To discover the main themes of single neuron level encoding in an unsupervised way, we

pooled neurons from all brain regions and clustered them based on their PETHs using non-

negative matrix factorization (NNMF, a technique closely related to principal component

analysis, or PCA, and K-means clustering; Methods). We chose NNMF for its simplicity as

a linear technique, its lack of an orthogonality constraint (present in PCA), and its duality

as both a dimensionality reduction and clustering method.

We computed 10 clusters of PETHs (Figure 4.3 - 4.7). Cluster #1 neurons showed high
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Figure 4.2: Silicon probe recording

Top left, silicon probe recording during the sequence licking task. Top right, histologically verified
locations of silicon probe recordings. Recordings were made in both hemispheres but are illustrated
for one. The plotted coordinates were randomly jittered by ± 0.05 mm to avoid visual overlap.
Bottom, example sections showing the dye-labeled probe tracks. DiI and DiD were used in different
penetrations.

activity outside sequence execution. Cluster #2 showed transient activation at sequence

initiation. In contrast to the first two, all other clusters exhibited directional selectivity at

specific stages, temporally tiling the behavioral sequences. Interestingly, neurons in clus-

ters #9 and #10 reached peak activation when licking sequences stopped. Our finding of

recurring PETH motifs was not due to our use of the specific NNMF method or the chosen

number of clusters, as a different method yielded consistent results (Methods; Figure 4.8).

Across NNMF clusters, activity of many neurons was smoothly modulated over hundreds of

milliseconds; others, especially common in M1TJ and S1TJ, showed rapid modulation with

individual licks. None of the clusters was biased to represent a small minority of neurons

(Figure 4.9). However, the different cortical regions harbored different proportions of the 10
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Figure 4.3: Responses of ALM neurons during behavioral sequences
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Figure 4.4: Responses of M1TJ neurons during behavioral sequences
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Figure 4.5: Responses of S1TJ neurons during behavioral sequences
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Figure 4.3: Responses of ALM neurons during behavioral sequences

(a) Responses of three simultaneously recorded ALM neurons aligned with right to left (top) or left
to right (bottom) licking sequences at initiation (left), mid-sequence (middle) and termination
(right; defined as the onset of the last consummatory lick). For each sequence direction, the
first row shows rasters of lick times (touches in black and misses in gray) from 10 selected trials
(Methods). Stacked below are spike rasters and the corresponding PETHs from the same 10
trials for each example neuron.

(b) Normalized PETHs of all ALM neurons plotted as heatmaps. Neurons are grouped together by
functional clusters (Results) and labeled by color bands. Time zero for each period is marked
by the vertical lines and is consistent with (a).

Figure 4.4: Responses of M1TJ neurons during behavioral sequences

(a) Responses of three simultaneously recorded M1TJ neurons aligned with right to left (top) or left
to right (bottom) licking sequences at initiation (left), mid-sequence (middle) and termination
(right; defined as the onset of the last consummatory lick). For each sequence direction, the
first row shows rasters of lick times (touches in black and misses in gray) from 10 selected trials
(Methods). Stacked below are spike rasters and the corresponding PETHs from the same 10
trials for each example neuron.

(b) Normalized PETHs of all M1TJ neurons plotted as heatmaps. Neurons are grouped together
by functional clusters (Results) and labeled by color bands. Time zero for each period is
marked by the vertical lines and is consistent with (a).

Figure 4.5: Responses of S1TJ neurons during behavioral sequences

(a) Responses of three simultaneously recorded S1TJ neurons aligned with right to left (top) or left
to right (bottom) licking sequences at initiation (left), mid-sequence (middle) and termination
(right; defined as the onset of the last consummatory lick). For each sequence direction, the
first row shows rasters of lick times (touches in black and misses in gray) from 10 selected trials
(Methods). Stacked below are spike rasters and the corresponding PETHs from the same 10
trials for each example neuron.

(b) Normalized PETHs of all S1TJ neurons plotted as heatmaps. Neurons are grouped together by
functional clusters (Results) and labeled by color bands. Time zero for each period is marked
by the vertical lines and is consistent with (a).
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Figure 4.6: Responses of S1BF neurons during behavioral sequences

Normalized PETHs of all S1BF neurons plotted as heatmaps. Neurons are grouped together by
functional clusters and labeled by color bands. Time zero for each period is marked by the vertical
lines.

clusters. In contrast to ALM, M1TJ and S1TJ, the 7 clusters from #2 through #8 made

up only 1/3 of all S1BF neurons (Figure 4.6). With neurons pooled from all regions, dif-

ferent cortical depths contained similar proportions of clusters (Figure 4.10a). Although the

cluster proportions in individual regions could differ by cortical depth (e.g. cluster #2 units

appeared less in S1TJ than in ALM or M1TJ), it is unclear whether or not this was due to

an insufficient number of neurons once subdivided by depths and clusters (Figure 4.10b).

In sum, we observed both variety and commonality at the level of single-neuron responses.

However, do patterns of activity arising from these single-unit responses encode behavioral

variables important for sequence control?
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Figure 4.7: Mean responses of NNMF clusters

NNMF components that represent each of the ten PETH clusters. Right to left (blue) and left
to right (red) activities (mean ± 95% bootstrap confidence interval) are overlaid together. The
vertical lines are located at time zero in each period. The height of the lines represents the scale of
normalized neuronal activity from 0 to 1.
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Figure 4.8: Clustering neuronal responses using t-SNE and Gaussian mixture
models

(a) Two-dimensional embedding of neuronal PETHs via t-SNE.

(b) Nine clusters were fitted using a Gaussian mixture model.

(c) Distribution of the number of clusters computed with 50 different random number seeds.

(d) Mean responses for each of the ten PETH clusters. Right to left (blue) and left to right (red)
activities (mean ± 95% bootstrap confidence interval) are overlaid together. The vertical
lines are located at time zero in each period. The height of the lines represents the scale of
normalized neuronal activity from 0 to 1.
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Figure 4.10: Distributions of functional clusters by cortical depth

(a) Proportions of neurons (n = 1312 in total) from different clusters at different cortical depths.
Some clusters were grouped together (e.g. 3 and 4) since they fired around the same time but
only differed in direction selectivity.

(b) Similar to (a) but broken down for ALM (n = 334), M1TJ (n = 237) and S1TJ (n = 118).
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4.3.2 Hierarchical Population Coding of Behavioral Variables across

Cortical Areas

In our sequence licking task, the brain needs to encode instantaneous tongue length (L)

and angle (θ), presumably both for motor output and sensory feedback. The encoding of

velocity (L’) could also be used to indirectly control tongue position. However, encoding

only instantaneous kinematics is not enough, as mice need to string individual licks into

sequences. Sequences in one direction also require a different organization of licks compared

with sequences in the other direction. One way to organize a sequence is to have a slowly

varying encoding of expected target position, regardless of the presence or absence of a lick

at a given moment in time. Another, mutually non-exclusive, way is to separately encode

sequence direction (D) and relative sequence time (τ). The variable τ can also serve as a

proxy for sequence progress or “distance to goal”. The five behavioral variables, L, L’, θ, D

and τ , were all recorded (or derived) with a temporal resolution of 2.5 ms (Figure 4.14 and

4.15). Conveniently, any pair of these variables is uncorrelated (Figure 4.11). Therefore,

being able to encode one is of little or no help to encode any other.

Linear models, though simple, are powerful methods to uncover information encoded by
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Figure 4.11: Behavioral variables are uncorrelated

Absolute mean pairwise Pearson’s correlation coefficients among the five behavioral variables. (n
= 35 sessions)
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Figure 4.12: Single-trial decoding of behavioral variables in ALM

Single-trial decoding of the five behavioral variables (rows; black traces) from 58 simultaneously
recorded ALM units in a right to left (left) and a left to right (right) sequence.

a population of neurons (Kriegeskorte and Douglas, 2019). For each recording session, we

performed separate linear regressions (Methods) to obtain unit weights (and a constant) for

each of the five behavioral variables, such that a weighted sum of spike rates from simul-

taneously recorded units (31 ± 14 units; mean ± SD) plus the constant best predicted the

value of a behavioral variable. We used cross-validated R2 values to quantify how well the

recorded population of neurons encoded each behavioral variable. Importantly, we used only

90



0
1
2
3

R² = .45

-100

0

100
R² = .31

-20
0

20
R² = .62

RL

LR

R² = .29

-.5 0 .5
-.5

0

.5

R² = .15

-.5 0 .5

L 
(m

m
)

D
 (A

U
)

τ (
AU

)
L'

 (m
m

/s
)

θ 
(˚)

S1TJ single-trial decoding (n = 29 units)

Right to Left Left to Right

Time from 4th (Mid) touch onset (s)

Figure 4.13: Single-trial decoding of behavioral variables in S1TJ

Single-trial decoding of the five behavioral variables (rows; black traces) from 29 simultaneously
recorded S1TJ units in a right to left (left) and a left to right (right) sequence.

data from standard sequences to fit the models, but used these same models to decode both

standard and backtracking sequences. The five behavioral variables could be decoded from

population activity even for single trials (example from ALM is shown in Figure 4.12 and

S1TJ in Figure 4.13).

Despite our observation that ALM inhibition uniquely produced a deficit in maintaining

L during sequences, neuronal populations in this area showed weak encoding of instantaneous
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Figure 4.14: ALM and M1TJ population decoding of behavioral variables

(a) The five recorded (or derived) behavioral variables averaged across trials (n = 2684 trials; mean
± 99% bootstrap confidence interval) with standard sequences (solid lines) or backtracking
sequences (dashed lines), each of which is either right to left (blue) or left to right (red). Time
along the x-axis is aligned to the fourth lick in the sequence. Time points where more than
80% of trials did not have observations are not plotted.

(b) Decoding of the five behavioral variables (rows) from populations recorded in ALM and M1TJ
(columns). Cross-validated R2 for each region and variable is given (mean ± SD; ALM, n =
13 recordings; M1TJ, n = 9 recordings). Same plotting conventions as in (a).

L and L’ (Figure 4.14 and 4.16). In contrast, the encoding was much stronger in M1TJ and

S1TJ. This suggests that ALM may control L indirectly over longer timescales via a signal to

other brain regions, or is simply permissive for control of L. We consider the latter possibility

unlikely because stimulation of ALM drives licking (Komiyama et al., 2010; Li et al., 2015;
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Figure 4.15: S1TJ and S1BF population decoding of behavioral variables

(a) The five recorded (or derived) behavioral variables averaged across trials (n = 2684 trials; mean
± 99% bootstrap confidence interval) with standard sequences (solid lines) or backtracking
sequences (dashed lines), each of which is either right to left (blue) or left to right (red). Time
along the x-axis is aligned to the fourth lick in the sequence. Time points where more than
80% of trials did not have observations are not plotted.

(b) Decoding of the five behavioral variables (rows) from populations recorded in S1TJ and S1BF
(columns). Cross-validated R2 for each region and variable is given (mean ± SD; S1TJ, n = 8
recordings; S1BF, n = 5 recordings). Same plotting conventions as in (a).

Allen et al., 2017). Our previous results showed that the pattern of L and L’ of individual

licks are the same regardless of sequence direction or whether or not mice were relocating a

port during backtracking sequences (Figure 2.4a). The overlapping decoded L and L’ traces

for M1TJ and S1TJ are consistent with this behavioral invariance.
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Figure 4.16: Goodness of fit across cortical regions

Goodness of fit for linear models that predict each of the five behavioral variables, quantified by
cross-validated R2. Each plot symbol shows one recording session.

ALM, M1TJ and S1TJ, but not S1BF, all showed strong encoding of θ (Figure 4.14, 4.15,

and 4.16). When detecting backtracking, mice licked back to a previous angle to relocate

the port and then progressed through the rest of the sequence. The opposing deflections in

the decoded θ from backtracking trials (Figure 4.14 and 4.15; dashed curves for θ) matched

this behavior. The traces of decoded θ in M1TJ and S1TJ contained rhythmic fluctuations

that were absent in ALM, despite similar overall levels of encoding of θ (R2 values). These

fluctuations indicate that M1TJ and S1TJ encoded θ in a more instantaneous manner,

whereas ALM encoded θ in a continuously modulated manner that may provide a control

signal for the intended lick angle or represent the position of the target port.

Higher-level cortical regions are in part defined by the presence of more abstract (or

latent) representations of sensory, motor and cognitive variables. Compared with L, L’ and

θ, which describe the kinematics of individual licks, sequence direction (D) and relative se-

quence time (τ) describe more abstract motor variables. In ALM we found the strongest

encoding of both D and τ (Figure 4.14 and 4.16). Encoding of D and τ became progres-

sively weaker in M1TJ, S1TJ, and S1BF, respectively. Overall, these results reveal a neural

coding scheme with increasing levels of abstraction across S1TJ, M1TJ and ALM during the

execution of flexible sensorimotor sequences.

94



4.3.3 Coding of Behavioral Variables for Sequence Generation Dom-

inates Cortical Activity Patterns

Good decoding may come from a small fraction of informative units rather than dominant

activity patterns across a population. More generally, we wondered whether the coding

axes (i.e. coefficient vectors) of the five behavioral variables captured the dominant activity

in the neural space, or were only related to minor components leaving the main dynamics

unexplained. To determine this requires comparing the similarity between activity patterns

captured by the coding axes and the dominant patterns in population activity identified in

an unsupervised manner. In each recording session, we obtained neural trajectories in the

coding subspaces (the subspaces spanned by coding axes) via linear decoding and trajectories

in principal component (PC) subspaces (the subspaces spanned by the first few PCs) via

PCA. Trajectories in PC subspaces depict dominant patterns in population activity but the

PCs per se need not have any behavioral relevance. To see if neural trajectories in the

coding and the PC subspaces were the same except for a change (rotation and/or scaling) in

reference frame, we used canonical correlation (Methods) to find the linear transformation

of the two trajectories such that they were maximally correlated.

After transformation, trajectories of the ALM population in the subspace of the top

three PCs very well aligned (Figure 4.17a) and correlated (Figure 4.17b; group 2 in ALM)

with the trajectories in the subspace encoding θ, D, and τ . This indicates that the most

dominant neural activity patterns in the ALM population in fact encoded θ, D and τ .

Since ALM minimally encoded L and L’, including these to the coding subspaces decreased

the correlation with PC trajectories (Figure 4.17b; group 1 and 3 in ALM). The decoded

trajectories and PC trajectories in M1TJ and S1TJ also showed strong correlation but only

when the coding subspaces included L and L’.

Across regions, the sum of variance explained (VE) by the five coding axes reached about

half of that by the top five PCs (Methods; Figure 4.17d). The five coding axes were largely

orthogonal among each other (Figure 4.17c). This indicates that they not only captured
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Figure 4.17: Coding of behavioral variables for sequence generation dominates
cortical activity patterns

(a) Neural trajectories from ALM (mean; n = 13 recordings) during standard right to left (blue)
and left to right (red) sequences (linked by dashed lines). Arrows indicate the direction of
time. The decoded trajectories (darker thick curves) are overlaid with the trajectories (lighter
thick curves) in the space of the top 3 PCs but linearly transformed to align with the decoded
ones. A projection of these trajectories is shown in the D- plane with thinner and lighter
curves.

(b) Mean canonical correlation coefficients (r) of each neural population (gray trace) across three
conditions. The average mean r values for each condition are shown in black (ALM, n = 13
recordings; M1TJ, n = 9 recordings; S1TJ, n = 8 recordings). ∗ p < 0.001, not significant
otherwise, paired two-tailed permutation test.

(c) Absolute pairwise cosine values among coding axes (mean; n = 35 recordings).

(d) Total percent variance explained (VE) by the first five principal components (left in each
region) versus that by the five coding axes (right in each region) during sequence execution.
Lighter lines show individual recording sessions and thicker lines show the means.
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dominant neural dynamics but also did so efficiently with little redundancy.

4.4 Discussion

Individual neurons exhibit heterogeneous responses during sequence execution. We resisted

to group neurons into categories based on artificially defined behavioral events (e.g. cue-

responsive, left lick-preferred, or water-responsive neurons). There are many ways a neuron

can respond to an event. For instance, a “cue-responsive” neuron can be transiently acti-

vated or inhibited, switched on or off, or modulated with a delay. Furthermore, it can be

hard to deal with correlated behavioral events, such as auditory cue versus sequence initi-

ation. Therefore, in order to reduce these interpretational biases, neuronal responses were

algorithmically clustered in unsupervised ways based on the similarity among their PETHs

without any behavioral labels. Then, we post-hoc interpret the functional implications of

each cluster to the extent allowed by the task design.

Most of the neurons across ALM, M1TJ and S1TJ show selectivity to lick angle, many in

conjunction to sequence direction. Neurons that are less discriminative respond at sequence

initiation or throughout the period of execution. These responses not only temporally tile

over the span of sequence execution but also tile differently in different sequences. The

tiling is not an artifact that arises from random noise in the PETHs because 1) we excluded

inactive neurons to avoid low signal-to-noise ratio responses and 2) the NNMF clustering

was designed to capture patterns that best account for (or explain the greatest variance in)

the population dynamics. Activities can tile a sequence with sparse code where neurons tend

to fire precisely and exclusively to specific movements, or with dense code where responses

tend to span several related movements at varying levels. In the high vocal center (HVC) of

songbirds, neuronal activities tile a song with sharply and precisely fired spikes to specific

syllables (Hahnloser et al., 2002). In contrast, the tiling in mice’s licking sequences shows a

much denser coding strategy which is similar to those observed in primate (e.g. Georgopoulos
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et al. (1986)). The density of coding reflects a series of computational tradeoffs. Dense code

allows the same number neurons to store more information and to be more robust against

perturbations. However, representations in sparse code can be easily recombined to form

new sequences (Ganguli and Sompolinsky, 2012; Bengio et al., 2013). The coding density

may largely be constrained by the nature of the neural circuits, but can also be changed as

a result of learning (Cao et al., 2015). It remains to be seen how the cortical representations

change as mice gradually acquire the sequence behaviors through learning.

The seemingly continuous tiling from relatively heterogeneous neuronal responses res-

onates with a theory stating that most of the neurons are not made to directly control

motor outputs, instead they work together in a dynamical system to support the unfolding

of memorized patterns where only part of the patterns is transformed to output (Shenoy

et al., 2013). Through decoding analyses, we reveal that neuronal populations in S1TJ,

M1TJ and ALM encode behavioral variables with increasing levels of abstraction. The three

variables (θ, D and τ) strongly encoded in ALM are not correlated with instantaneous kine-

matics of tongue motion, but reflect the need to keep track of the target position, lick angle

update, and sequence progress. To uniquely represent a behavioral state at a moment within

a given sequence, it is however sufficient to either encode θ or encode both D and τ . This ap-

parent redundancy may serve a computational role from the dynamical systems perspective

on motor control (Shenoy et al., 2013). Each point in the state space of a smooth dynamical

system is associated with a unique trajectory (Strogatz, 2001). Thus, if the system needs

to produce two licking sequences, the two trajectories must be kept adequately separated so

that they do not intersect in the presence of noise and thereby turn one sequence into the

other (Russo et al., 2018). Encoding all three variables avoids trajectories crossing at the

middle lick and maximizes the distance of separation (Figure 4.17a).
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Chapter 5

Reward Modulation and

Cross-sequence Memory in ALM

5.1 Introduction

Sequence behaviors are composed of individual movements. It has been shown in the last

Chapter (and reviewed in Chapter 1.2.1) that the brain contains not only signals to drive

instantaneous movements but also signals about the context that determines proper sequenc-

ing. When multiple subsequences are organized into a higher level sequence, the state at the

end of a subsequence must be persisted (and transformed) to correctly start the next sub-

sequence. Most of the learned behavioral sequences are goal-oriented. Therefore, a natural

way to inform the sequencing (though not always sufficient) is to keep track of a distance

from the current behavioral state to the goal.

There are several formulations or related concepts for the distance to goal. The most

normative account comes from reinforcement learning (RL) theories (Sutton and Barto,

2018). In this context, what measures the distance to goal is reward expectation, or value.

An agent can learn a value function that maps the current behavioral state to its value

by discounting the final reward given its delay in time and uncertainty. Once the reward is
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achieved, there is no longer anything to expect and the reward expectation goes to zero. Such

a value function can be learned via reward prediction errors signaled by the dopaminergic

neurons in VTA and substantia nigra pars compacta (Watabe-Uchida et al., 2017) and acting

upon the motor circuits to induce learning (Doya, 2000). Sometimes, the distance to goal

can be simply reduced to the duration of time before obtaining it. For example, monkeys

(Mita et al., 2009), rodents (Aronov et al., 2017) or artificial neural network-based agents

(Deverett et al., 2019) have been trained in interval timing tasks where subjects needed to

produce a delayed response by specific amounts of time. In these cases, a representation of

time is sufficient to guide the motor production. However, although the time representation

is accounted for by the temporal discounting in most RL algorithms, it should not be affected

by a change in reward uncertainty.

Tasks for interval timing are closely related to motor preparation. The mouse ALM has

recently become a focus for studying the circuit mechanisms of motor preparatory activity

that link sensory cues to specific delayed motor responses (reviewed in Chapter 1.3.3). In

a task where a stimulus and a response were separated by a delay, ALM neurons exhibited

ramping activities encoding the future lick direction during the delay period (Guo et al., 2014;

Li et al., 2016; Inagaki et al., 2019). Although preparatory activity in motor preparation

has been relatively well-studied, it is not known whether similar mechanisms are playing a

role in high level sequence organization where the information at the end of one subsequence

persists to and instructs the next.

5.2 Results

5.2.1 Reward Modulates Dominant Activity Patterns in ALM

The coding axis of τ was identified by fitting models between neural activity and relative

sequence time. However, if τ faithfully represents time, the downward deflection of traces

from backtracking sequences (Figure 4.14b) should not appear, as time goes on regardless
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Figure 5.1: Reward modulation of activity in ALM

of what the animals do. Therefore, the patterns suggest a representation of a “distance to

goal.” In the context of the motor sequence, does the goal represent the initial arrival at the

last port position, or the delivery of the water droplet, or finishing water consumption, etc?

In ALM, we found single neurons (Figure 5.1a) that fired actively during sequence execu-

tion but abruptly decreased their firing at the time when the tongue touched water droplets.

Mice continued to emit ∼5 consummatory licks (Figure 5.1b) with similar, if not more

strongly modulated, kinematics and lick force (Figure 5.1c). We decoded behavioral vari-

ables around the consumption period using linear models fitted during sequence execution

(i.e. without data from the consumption period). The τ decoded from ALM populations
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Figure 5.1: Reward modulation of activity in ALM

(a) Responses of two simultaneously recorded ALM neurons (#1 and #2) aligned at the first lick
(specifically the middle of a tongue-out period) that touched water reward. For each sequence
direction, shown at top are rasters of lick times (touches in black and misses in gray) and the
duration of water delivery (blue) from 20 selected trials (Methods). Stacked below are spike
rasters and the corresponding PETHs from the same 20 trials for each example neuron.

(b) The probability of licking (i.e. tongue-out) as a function of time. Licks are sequentially indexed
with respect to the first lick (#0) touching the water.

(c) Patterns of kinematics and force for single licks around the first lick (#0) touching water (n
= 25289 trials; mean ± 95% bootstrap confidence interval). The duration of individual licks
was normalized. The total force (Ftotal) is the vector sum of vertical and lateral forces.

(d) Decoding of τ , D and θ from neuronal populations recorded in ALM (mean ± 99% bootstrap
confidence interval; n = 13 recordings) in right to left (blue) or left to right (red) trials around
the consumption period.

(e) Similar to (d) but decoding θ from S1TJ (n = 8 recordings).

(f) The difference between the decoded θ traces in right to left versus left to right trials (mean ±
99% bootstrap confidence interval; ALM, n = 13 recordings; M1TJ, n = 9 recordings; S1TJ,
n = 8 recordings).

(Figure 5.1d; top) immediately decreased around the first contact (∼0 s) with water and

diminished (∼0.5 s) before a noticeable decrease in lick production. This suggests that τ car-

ried a reward expectation signal that smoothly increased as mice approached water delivery

regardless of sequence direction or lick angle, but was suppressed by a delay of progress when

backtracking occurred, and terminated at the time when the tongue detected water, despite

continued licking movements. Curiously, the D coding (Figure 5.1d; middle) followed a sim-

ilar time course as τ , although the implication of an interaction between sequence direction

and reward is unclear.

The θ coding in ALM during the consumption period exhibited a more complex time

course (Figure 5.1d, bottom). A moderate reduction in the separation of decoded θ in the

two sequence directions occurred once the tongue touched the water. However, it remained

separated toward the end of the lick bout. In contrast, the overall separation in θ coding

from S1TJ (Figure 5.1e,f) and M1TJ (Figure 5.1f) was not altered by the detection of water,

and the amplitude of rhythmic fluctuations was consistent with individual patterns of licking
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force (compare S1TJ and M1TJ traces in Figure 5.1f with the Ftotal in Figure 5.1c). Overall,

our results show that reward-related modulation is a prevalent feature in ALM but not S1TJ

or M1TJ coding.

5.2.2 ALM Encodes Upcoming Sequences

Sequences with opposite directions were performed alternatively across trials (Figure 5.2a).

Mice performed the task in darkness. Hairs and whiskers around the mouth were trimmed

short to avoid contact with the port. Therefore, there was no external cue indicating which

side a mouse should start a sequence. Nevertheless, expert mice were usually able to initiate

sequences from the correct side without exploring the other (Figure 5.2b). This suggests that

the information about target position (TP ) was maintained internally during ITIs. Brain

regions maintaining such information may be important in organizing individual sequences
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Figure 5.2: ALM neurons encode sequences across trials
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Figure 5.2: ALM neurons encode sequences across trials

(a) Depiction of sequences performed by a mouse in alternating directions across 14 consecutive
trials. Trial onsets are marked by yellow lines. Port positions shown in the black trace are
overlaid with touch onsets (dots).

(b) Probability distributions of θshoot (left) and Lmax (right) for the first 3 licks at the start of
a sequence (n = 8 mice; mean ± SD). The negative y-axis points to the side at which the
port is located. The CDF (8 individual mice in gray and the mean in black) of the maximal
θshoot explored before touching the port (at the side of negative θ). The blue line shows the
probability of successfully locating the port without exploring beyond the midline.

(c) Top, rasters of two example units which had persistent and target position (TP ) selective firing
during the 14 consecutive trials in (a). Bottom, normalized and smoothed (0.25 s SD Gaussian
kernel) spike rates of the two units.

(d) Decoded instantaneous TP (dark trace) from 58 simultaneously recorded units in ALM, over-
laid with normalized port position (light trace).

together to form a higher level sequence.

In ALM recordings, we found simultaneously recorded units that fired persistently to

specific TP during ITI (Figure 5.2c). A linear model fitted using data within 1 s before

the cue onset showed smooth population decoding of TP across the span of many trials

(Figure 5.2d). On average, ALM populations showed stronger encoding of TP (Figure 5.3a,b)

compared to other regions, although overall it was weaker than either the encoding of D or θ

during sequence execution. Interestingly, none of the regions, including ALM, encoded time

or a distance to trial start (Figure 5.3c), perhaps because our ITI contained an exponential

portion (Methods) whose flat hazard function made time to trial start unpredictable (Inagaki

et al., 2019).

At the beginning of a sequence, D and θ both matched the preceding TP . Given that D

and θ were encoded independently (i.e. in orthogonal neuronal subspaces) (Figure 4.17c), we

wondered whether the coding of TP was more relevant to later D or θ, or neither. We used

linear models fitted during the ITI to decode from neural activity during sequence execution.

The resulting traces from two sequence directions crossed at the mid-sequence (Figure 5.3d).

This revealed that TP coding reflects a persistent encoding of intended tongue angle in the

absence of licks.
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Figure 5.3: Coding of upcoming sequences in ALM

(a) Decoding of TP from ALM (mean ± 99% bootstrap confidence interval) before upcoming right
to left trials (blue) or left to right trials (red). Cross-validated R2 is shown (mean ± SD; n =
13 sessions).

(b) Goodness of fit for linear models that predict TP during ITIs, quantified by cross-validated
R2.

(c) Same as (b) but for τ .

(d) Using the same linear models in (Figure 5.2d) to decode TP during sequence execution. The
decoded TP was averaged across trials (mean ± 99% bootstrap confidence interval) with
standard sequences (solid lines) or backtracking sequences (dashed lines), each of which is
either right to left (blue) or left to right (red).

5.3 Discussion

Premotor regions in the cerebral cortex are known to encode latent variables that are not

directly correlated with specific motor outputs (Chapter 1.2.1 and 4). However, there has

not been a unified view on the nature of these signals and how they come to exist.

The three main components of neural dynamics in ALM are target angle (θ), sequence

direction (D) and sequence progress (τ) which are all subject to reward-related modulation,

especially for τ . The changes in their activities are largely or partly independent from

instantaneous licking kinematics and forces. The reward expectation-like signals in τ are

consistent with a recent finding that ALM neurons ramp up activity as mice run towards a
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reward zone (Chabrol et al., 2019), and are compatible with the ramping activities of ALM

neurons observed in working memory tasks (Inagaki et al., 2019). Linking latent activities to

an interplay between motor and reward representations is particularly attractive. It not only

accounts for the phenomenology of observed activity patterns but also provides explanations

as to how they can be acquired through learning.

To establish this link in the sequence licking behavior, additional experimental evidence

and guidance from theories are needed. Although we show that single-neuron spiking and

the population coding of τ drop at the water delivery, it is not clear whether this drop is

triggered externally by the sensation of water or is generated internally due to the end of

an expected reward time. To tie this loose end, one may look at trials with omitted water

reward and see when the activity stops. In addition to tying loose ends, new insights may

come from observing how neural representations evolve during learning and how the changes

can be related to rewards.

Neurons in the mouse medial prefrontal cortex (mPFC) have been shown to encode

working memory (Liu et al., 2014) and carry action values across trials (Bari et al., 2019).

Here, we show that neurons in ALM bridge subsequences during ITIs by transforming last

sequence direction to the lick angle of an upcoming sequence. It is not known whether

mPFC is also involved in organizing sensorimotor sequences and what is its relationship

with ALM. Functional brain imaging and perturbation experiments in humans suggest that

the rostrolateral PFC mediates higher level sequence structure whereas the premotor cortex

is only involved in subsequences (Desrochers et al., 2015b). Perhaps in mice, the functional

cortical network may go beyond ALM to other prefrontal regions which mediate contextual

information at longer timescales and with higher levels of abstraction.
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Chapter 6

Conclusions and Perspectives

6.1 Main Conclusions

This thesis aims to understand how the brain generates and controls sensorimotor sequences.

We show that mice can learn to perform flexible feedback- and memory-guided movements

composed of individual licks that are organized into distinct sequences. Mice used their

tongue to sequentially reach a set of predefined targets with remarkable speed and accuracy.

When the target “backtracked” to a prior position unexpectedly, mice used tactile feedback

to modify the ongoing sequence and quickly relocate the target. Mice alternated between

two sequences across trials in the absence of external cues. This type of flexible feedback

control, although common in daily life, differs from typical cerebellum based sensorimotor

adaptation, where movements are fine tuned based on sensory prediction errors (Bastian,

2006; Shadmehr et al., 2010). The necessity of sensory feedback for ongoing execution also

distinguishes our task from those involving repetitive or non-dexterous movement sequences

(Jin and Costa, 2010; Kawai et al., 2015).

Closed-loop optogenetic inhibition and population single-unit electrophysiological record-

ings from multiple brain areas allowed us to identify three main cortical regions involved

in controlling the sensorimotor sequences. The tongue premotor region (anterior lateral
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motor cortex, ALM) was critical in initiating a sequence and controlling intended tongue

angle smoothly across a series of individual licks. ALM neurons encoded sequence direction,

progress toward the reward that signaled sequence completion, and intended tongue angle for

upcoming sequences during the inter-trial interval, supporting a memory for how sequences

were ordered within the behavioral session. In contrast, activity in the tongue/jaw region of

the primary motor cortex (M1TJ) strongly encoded instantaneous lick angle, tongue length

and tongue velocity. Tongue/jaw primary somatosensory cortex (S1TJ) activity encoded

tongue angle, length and velocity, and its inhibition randomized lick angles, suggesting a

proprioceptive role for these signals in S1TJ. Termination of licking depended on activity in

multiple cortical regions.

Overall, our results reveal a functional sensorimotor cortical network that allows mice to

use the tongue to perform complex and flexible motor sequences.

6.2 Sequence Licking Behavior in Mice

Eight years ago, I was in an international neuroscience meeting and heard a group of principal

investigators with their wine glasses in hand ridiculing how mice were “blind” and how

insensible it was to study vision in mice. Nowadays, studies of mouse vision have taken a large

part of such meetings (perhaps even a bit overrepresented). The utility of a model organism

is a multiplication between the biological functions the species exhibits and the experimental

tools available for it. In the case of mouse vision, new studies have yet challenged the notion

that mice only have very primitive and crude visual processing capabilities compared with

primates’ (Busse, 2018). However, it was the breakthrough in the available tools such as

genetics-assisted circuit dissection and two-photon functional imaging during behaviors that

opened up new possibilities of studying the circuit mechanisms of visual processing (e.g.

Goard and Dan (2009); Li et al. (2012); Smith et al. (2013)) and general brain functions

based on vision (e.g. Keller et al. (2012); Fiser et al. (2016); Zmarz and Keller (2016);
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Leinweber et al. (2017)). Most of the experimental tools that benefit the studies of mouse

vision equally apply to studies for motor control. However, is motor control in rodents

qualitatively comparable to that in primates, or are rodents fundamentally “crippled” by

primate standards?

Here, I want to distinguish two concepts - dexterity and (for the lack of a better word)

complexity. We consider dexterity in terms of the degrees of freedom of a movement and

how much speed and accuracy has to be traded off (Franklin and Wolpert, 2011). From

recent adaptations of several primate motor tasks to rodents (Guo et al., 2015; Panigrahi

et al., 2015; Mathis et al., 2017; Galiñanes et al., 2018), we have to admit that the dexterity

of limb, paw, or saccadic movements in rodents is inferior to the primate counterparts.

However, rodents are highly tactile species and use rich orofacial behaviors to interact with

the environment (Diamond et al., 2008). Therefore, we may need to reconsider what dexterity

means for the control of whiskers, tongue or jaw movements. Complexity refers to the

organizing structure and cognitive demands of a behavior. Primates are capable of planning

future movements, organizing primitive movements into more complex compositions, flexibly

reconfiguring existing motor programs, and abstractly generalizing one learned sensorimotor

pattern to another. It was not clear whether rodents are able to achieve behaviors with such

complexity.

Through the novel task developed in this thesis, we found that mice exhibited impres-

sive dexterity in tongue movements (especially the speed) and a remarkable ability to learn

complex licking sequences. The sequence structure within a trial and the alternation of dif-

ferent sequences allow investigation of additional dimensions of motor control beyond simple

stimulus-response contingencies (Crochet et al., 2019) or repetitive movement sequences (Jin

and Costa, 2010). Mice were able to incorporate arbitrarily defined new transitions into the

existing repertoire of learned sequences, and to quickly decide whether, and how, to change

an ongoing motor program based on tactile feedback. These feedback-driven alterations in-

volved complete reversals of direction and reorganization of the motor sequence. This novel
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sequence licking task reveals previously unknown potential of the sensorimotor capabilities

in mice and, I hope, will launch various new research directions.

6.3 A Functional Hierarchy for Sequence Generation

and Control

Ongoing performance in our task, even in well-trained mice, required activity in the motor

cortex. To perform a sequence of directed licks, the nervous system must generate motor

commands to lengthen the tongue and modulate its angle. Optogenetic inhibition of ALM

impaired both the length of each lick and the ability to direct licks away from the midline.

These results partly support recent work showing that inhibition of ALM impairs aspects of

tongue kinematics in a cued-licking task (Bollu et al., 2019). Electrophysiological recordings

in ALM revealed strong encoding of θ but surprisingly not L or L’ (which can indirectly

produce L). This suggests that ALM may control L indirectly over longer timescales via a

signal to other cortical or subcortical regions. In contrast to the rhythmically fluctuating

θ trajectories decoded from M1TJ and S1TJ populations, ALM populations encoded an

intended θ that varied smoothly over time. Our data do not rule out that ALM may also

encode an intended L, or target distance. In our task mice used similar lick lengths across

different port positions and we thus cannot distinguish signals for intended L versus task

engagement. A task requiring mice to lick at different distances may help to resolve this

question.

Precise motor outputs in skilled behaviors typically rely on sensory feedback (Scott et al.,

2015; Franklin and Wolpert, 2011). Optogenetic inhibition of S1TJ produced distinct motor

deficits from those observed with ALM inhibition. With S1TJ inhibition, mice could direct

licks laterally to the normal extent and with normal length. However, lick angles became

randomized and mice could no longer perform the correct sequences. Interestingly, neurons

in S1TJ not only encoded θ, but also L and L’. This suggests that the system either does
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not need sensory feedback about tongue length to guide the licking sequence, presumably

because the required lick lengths were always the same and could in principle be controlled in

open-loop, or that the inhibited L and L’ signals in S1TJ could be compensated by redundant

information in other brain regions.

Performing different sequences in our task not only required precise control of single licks

but also the appropriate sequencing of different licks. Our data reveal encoding and control

of behavior at multiple levels of abstraction across cortical areas. Zebra finch birdsong,

in which syllables are organized into sequences to form songs, has been a powerful model

for dissecting neural control over motor sequences and has revealed a specialized circuit

for hierarchical motor control (Fee and Scharff, 2010). In primates, control of movements

is distributed across multiple primary and premotor areas defined cytoarchitecturally and

functionally. Medial premotor areas including the supplementary motor area (SMA) and pre-

SMA play a prominent role in controlling the sequential organization of movements, while M1

activity may also be involved in sequence organization but in general is more closely related

to imminent and ongoing movements (Tanji and Shima, 1994; Shima and Tanji, 2000; Lu

and Ashe, 2005). While different cortical areas show functional distinctions regarding the

level of abstraction of behavioral variables encoded, multiple somatomotor cortical areas

contain corticospinal neurons and thus have the potential to exert fairly direct control of

muscles. In rodents, the organization of motor areas and their functional relationships are

so far less clear. Our results show a functional organization of somatomotor areas that

reflects encoding and control of task-related behavioral variables with increasing levels of

abstraction, with S1TJ and M1TJ activity more tightly linked to instantaneous kinematics,

and ALM to variables at the sequence level, specifically a smooth representation of intended

lick angle (θ), sequence direction (D), and distance to reward (τ).

Inability to stop an ongoing movement sequence can be as devastating as the inability to

initiate one. When we optogenetically inhibited M1B at water consumption, mice showed

difficulty in terminating an ongoing lick bout. This continued licking was not due to failure
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of the tongue to reach the port to retrieve water. It is also unlikely that inhibition prevented

mice from sensing the water because: 1) cortical representations of water taste can be found

in gustatory cortex (Stapleton, 2006; Accolla et al., 2007), which we did not inhibit; 2)

inhibiting any region in the anterior dorsal cortex not just somatosensory cortex, induced

a similar deficit in sequence termination; and 3) decreasing the stimulus light intensity by

half in ALM and S1TJ resulted in stronger deficits, not weaker. These results suggest that

multiple anterior cortices play a role in active termination of an ongoing sequence, perhaps

via convergence of activity on a downstream target such as the basal ganglia circuits that

are critical for both starting and stopping movement sequences (Jin and Costa, 2010).

Prior work showed that ALM holds working memory or motor preparation signals for up-

coming lick direction in delayed response tasks, bridging the sensory-to-motor transformation

(reviewed in Chapter 1.3.3). Consistent with these results, we first found that optogenetic

inhibition of ALM at cue onset strongly impaired the initiation of licking sequences. Before

the go cue, ALM populations persistently encoded the upcoming sequence throughout the

ITI. Furthermore, this signal is closely related to θ, but not D, suggesting that it represents

the target position rather than a target sequence direction, despite the two being correlated

at sequence initiation. Unlike previous tasks, our task does not have an explicit sensory

event indicating the side on which to initiate a delayed sequence. However, the last port

touch in a trial could be considered to serve as the “sensory event” and the location of

the first lick in the next trial as the “response”. Thus, our findings generalize the forms of

delayed sensory-to-motor transformation involving ALM and provide insights into how the

brain solves a sequence of sequences.

6.4 Computational Modeling of Sequence Licking

A common way to understand a neural circuit is either explicitly or implicitly through a

functional diagram where, for instance, region A activates region B that feedbacks on A
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which in turn disinhibits C and etc. Diagrams with such distinct nodes and fixed topology

are certainly unable to account for the dynamics in a heterogenous and plastic brain, but

can at best superficially describe the snapshot of an operating state. Physical sciences in the

past few centuries have had great successes in explaining nature using the rules of change

rather than describing how things are at a particular moment. In neuroscience, a superior

model should be one that specifies how the substrates of the nervous system change during

learning.

Directly measuring changes in neural circuits can be hard in behaving animals, but one

may infer the rules of change by combining steady-state measurements with theories of

learning. In the present study, we found that sequence progress (τ) exhibited properties of

a reward expectation signal, and D and θ also showed reward-related modulations. This

is consistent with recent work showing reward-related activity in ALM that depends on

output from the cerebellar dentate nucleus (Chabrol et al., 2019). Putting these findings

into the context of reinforcement learning (RL) frameworks (see Chapter 5.1), one can ask

what circuit architectures, behavioral objectives, and learning rules can give rise to these

observations (Richards et al., 2019).

Recent progress in modeling behaviors using deep neural networks (DNN) have provided

great insights in, for example, the generation and utilities of place- and grid-cell representa-

tions (Banino et al., 2018), a gradient of meta-learning across brain regions (Botvinick et al.,

2019), and a distributional code for value in VTA neurons (Dabney et al., 2020). Model-

ing cognitive tasks does not require sophisticated simulations of task environments because

the behavioral inputs and outputs can be highly symbolic and abstracted (e.g. Bari et al.

(2019)). In contrast, a realistic task environment must be simulated along with DNNs if the

research of interest also involves sensory processing and motor control. This may be partly

why DNN modeling for sensorimotor control has received relatively less attention (but see

Chapter 1.2.3 for a few examples). The sequence licking task gives us excellent opportunities

to model the neural computation from one end to the other. It is simple in terms of the fewer
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degrees of freedom for motor output and low-dimensional sensory feedback. Meanwhile, it

is complex enough in terms of the behavioral features involved, including the hierarchical

sequence structure, the need for a memory of latent states, and the flexible motor program-

ming based on sensory feedback. The Appendix III describes a simulator developed for

the sequence licking task, which can interface with an agent powered by various artificial

intelligence algorithms. This establishes the foundation for future neural network modeling.

6.5 Error Detection and Motor Branching

One of the most interesting open questions is how mice switch from standard to backtracking

sequences based on the missing tactile feedback. Mechanisms that allow sensory feedback

to integrate with unfolding motor programs is a long-standing and active area of research

(Evarts and Tanji, 1976; Heindorf et al., 2018; Pruszynski et al., 2011; Scott et al., 2015;

Stavisky et al., 2017). We can break down this process into two steps. Firstly, the nervous

system must detect the need for a change and signal an error, presumably by comparing

expected sensory inputs with the actual sensory feedback. Secondly, the sensory error signal

is used to change the motor outputs in specific ways.

Generally speaking, the second step is better understood than the first. It is well-known

that the climbing fibers from inferior olive neurons send error signals to the Purkinje cells in

the cerebellar cortex and cause adaptive changes in motor outputs to minimize the sensory

errors. However, this kind of error-minimizing adaptation occurs slowly over repeated trials

(Bastian, 2006; Shadmehr et al., 2010), and is qualitatively different from rapid and flexible

switching among distinct paths of action (Telgen et al., 2014; Krakauer et al., 2019). The

basal ganglia-thalamocortical loop is thought to play an important role in movement selection

(Jueptner and Weiller, 1998; Gurney et al., 2001). Interestingly, basal ganglia neurons are

activated more when subjects attend to sensory stimuli (Kropotov and Etlinger, 1999). This

suggests possible integrations between sensory and motor signals in voluntary actions.
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It remains a mystery regarding where and how the sensory error signals are computed

in the first place. Psychological theories (Norman and Shallice, 1986; Botvinick and Plaut,

2004; Cooper and Shallice, 2006) have proposed a supervisory controller which monitors

automatic or procedural behaviors, handles exceptions, and keeps track of progress toward

a goal. A lapse in supervised control may lead to the automatic execution of non-desired

action. Many human functional imaging and non-human primate neurophysiological studies

have identified task-related error signals in anterior cingulate cortex (ACC) (Desrochers

et al., 2016). The predictive coding theory (Rao and Ballard, 1999; Bastos et al., 2012) and

the popularization of single-cell calcium imaging in mice have motivated the discovery of

error-encoding neurons across various sensory cortical regions (Keller et al., 2012; Makino

and Komiyama, 2015; Fiser et al., 2016; Zmarz and Keller, 2016; Leinweber et al., 2017;

Schneider et al., 2018). Specific findings have been briefly reviewed in Chapter 1.2.2. We

still do not know how these error signals emerge and whether these neurons are responsible

for informing the motor centers to change actions. However, finding such neurons can provide

“anchor points” for following studies to expand from. Once the problem can be reduced to

sensory processing and sensorimotor transformation, we will be able to take advantage of

existing conceptual and experimental frameworks and to link a wealth of past literature on

these subjects.

6.6 Coda

Together, our results from behavior, population electrophysiology and optogenetics allowed

us to define a functional network within mouse sensory and motor cortices that governs

execution of flexible, feedback-driven sensorimotor sequences.
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Appendix I: Satellites Behavioral

Control System

Modern behavioral tasks require automated control and data acquisition to handle the in-

creased complexity of task design, the precision of delivering stimulus and recording re-

sponses, and the increased scale of experiments. A behavioral system can be divided into

three parts. First, a program stored in a computer or a microcontroller specifies the logic

of a task. Second, instructions from the program control electrical circuits and devices to

physically interact with subjects. Third, data of these interactions are recorded and stored

in specific formats. In the early days, scientists had to build each of these from scratch and

customly assemble a complete system. Some systems were designed in ways very specific to

the tasks of interest, whereas others were designed with greater abstraction that reflected

general operating principles of many different tasks. The latter evolved to become standard-

ized behavioral control systems for the field to adopt and build upon. However, stronger

standardization often comes with the cost of reduced flexibility and greater dependency on

the developers’ maintenance. Overly abstract system design also increases the users’ learning

cost. Therefore, the question is how a system can balance standardization and flexibility.

Although standardization and flexibility generally go against each other, they are not in

a “zero-sum” tradeoff. Efficient standards can allow for more flexibility given the same level

of complexity and abstraction. On the other hand, the popularization of hobbyist electronics

and programming tools have significantly lowered the cost for even a non-professional to build
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a system from scratch. Therefore, the need for using extra standards has been decreased.

The Satellites behavioral control system developed in this thesis attempts to find a new

balance between standardization and flexibility. The most unique (perhaps paradoxical)

feature of this system is that it is entirely optional for implementing a behavioral task; it

just makes implementing a task a lot easier and more reliable. The backbone of this system

is based on the open-source platform called Arduino, which has been well-supported by a

large community for more than a decade and is still improving. The Satellites library only

provides standardized ways to handle communications (wired or wireless), manage the time

flow, execute probabilistic control, synchronize devices, and etc. The Satellite Shield expands

the input and output capabilities of the microcontroller with integrated output amplifiers,

contact detection circuits, and wireless connection interfaces. Lastly, the SatellitesViewer

provides a general-purpose graphical user interface (GUI) for users to send commands to

and record data from the hardware. The app is also able to manage a network of controllers

and computers for large scale behavioral training.

7.1 Satellites Library for Arduino

The Arduino platform has been widely adopted from high school science projects to pro-

fessional engineering laboratories. Programming Arduino is easy to learn but can be hard

to perfect. The code can get complicated and error prone when a user needs to deal with

complex timing control, communication, synchronization, or several of them at the same

time. The Satellites C++ library provides a collection of simple-to-use methods under the

Satellites class that can streamline these processes. Additional companion libraries were de-

veloped as add-ons for more specialized purposes. The following is an overview of different

modules in the Satellites class as well as other companion classes. For more details please

refer to the code examples and other documentation.
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7.1.1 Communication Protocol

Simple Arduino programs for task control are often written in a hardcoded way where pa-

rameters (e.g. reward duration, trial probability, lickport coordinates) are stored in the flash

and cannot be changed by user input when the program is executing. Allowing users or

external devices to modify the program on the fly provides significantly more flexibility for

task control and should be a basic feature for a general-purpose system.

The communication part of Satellites library implements a specific, yet common, mes-

saging convention for sending and receiving interpretable strings. Each message received by

a device needs to have a format in “CmdName,123,456,789,...”. “CmdName” is a string of

letters which indicates what command it is. ”123”, “456” and “789” are parameters asso-

ciated with this command. There can be as many parameters as you need or none at all.

Components of this message are separated by delimiters (commas “,” in this example).

When a computer sends a command in this format to Arduino, the command can be

read by a user defined reader function in which the parameters are unloaded (getIndex and

getValue) and interpreted one by one based on the command name (getCmdName). This

reader function can be called explicitly in users’ code, or implicitly when the task is put on

hold using specifically designed methods for time control.

7.1.2 Time Control

Time control is key for structuring events in a behavioral task. The simplest is a delay

after one event and before the next. Other time control may depend on feedback from

subjects’ responses. A task can be halted indefinitely or up to a time limited until the

subject triggers a specific input. Conversely, a delay can be renewed every time the subject

triggers a specific input. The Satellites class has three methods for each of these cases -

delay, delayUntil, and delayContinue. Different from typical custom time control code, these

methods will repetitively call the reader function when the program is waiting. In this way,

the program can concurrently handle incoming user commands when the task is on hold
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but temporarily hold back those commands when executing time critical operations such as

delivering stimulus.

7.1.3 Utilities and Companion Libraries

It is common for a behavioral task to have non-deterministic components. For example, one

of three different stimuli can be randomly chosen given certain probabilities. Or, a reward is

omitted in one out of ten times. In these cases, a user can use the “choose” method to do the

random sampling. Another type of randomness involves drawing a value from a probability

distribution (sometimes capped by minimal and/or maximal values). The Interval class is

designed for such sampling.

Other libraries were developed for specific tasks rather than for general use. The Zaber

motor library allows users to use an essential set of high level APIs to drive the linear stages

(up to two axes per instance). It was developed before the company Zaber released their

official library. The advantage is the simplicity of use, whereas the main disadvantage is the

lack of compatibility to certain types of motor and potentially weaker reliability (though we

have not yet tested how reliable the official library is). The ManyStepper and ManyVibMotor

classes were developed for minimalist control of barebone stepper motors (without dedicated

driver) and vibratory DC motors, respectively.

7.2 Satellite Shield

A microcontroller is only an integrated circuit (IC), or a piece of silicon chip, that provides

input and output capabilities and is responsible for executing a program. It is analogous to

our central nervous system. To make this chip functional, it has to be hooked up to other

peripheral circuits and ICs for physical interfaces (e.g. headers, ports), power regulation,

signal conditioning, circuit protection, and etc. This collection is usually put on a single

printed circuit board (PCB) and is called a development board. Commonly found devel-
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opment boards include Arduino Uno, MEGA, and Teensy series. To continue our analogy,

a development board is like a complete nervous system - central plus peripheral. However,

nothing meaningful can be done before an individual has muscles, skin, eyes and so on.

Similarly, additional circuits and devices need to be connected to a development board for

controlling motors, driving displays, receiving Wifi data, and etc. Many of these appli-

cations are commonly needed and have standardized circuit solutions. These circuits are

made into modules that can be used as off-the-shelf add-ons to development boards. In

the Arduino world, those modules, in the form of PCBs, are called shields because they are

typically stacked on top of (thus “shielding”) a development board. Following the same idea,

the Satellite Shield was developed for the Teensy series development boards. The Satellite

Shield addresses several general needs in behavioral control including driving high current

actuators, detecting contact responses, and data communication.

7.2.1 Digital Output Amplification

Microcontrollers are designed to process signals with low voltage and low current. There-

fore, the signals must be amplified in order to operate power hungry devices. The Satellite

Board provides ten digital output amplification (sometimes called relay) channels that can

be optionally connected to ten pins on Teensy via jumpers.

The output voltages are determined by the power supplies to the amplifiers (Darlington

transistor arrays, ULN2801A). The ten channels are separated into two banks of five. Each

bank can either be supplied by the 5V that also powers the development board or by a

separate supply connected to the power ports (VS1 or VS2). The amplifiers can take up

to 50V of voltage supply but in practice they should operate well below that limit (e.g. <

30V). The output current is determined by the demand of external circuits and the maximal

output current, whichever is lower. Six of the ten channels (T3 to T5 and T20 to T23)

support up to 1 A of current and the rest four up to 500 mA.

It is necessary to clarify a few issues about the amplified outputs. Imagine a light bulb
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being powered by a battery (or any DC source) and we want to control it by adding a switch.

The switch can be added either on the positive side or the negative side. An amplifier in the

Satellites Board acts just like a switch. Importantly, this switch is located on the negative

(ground) side of the device being powered. That is why each output port has the same plus

sign which is always connected to the positive terminal of voltage supply, but differently

labeled minus sign. The numbers next to the minus signs indicate which Teensy pin controls

the switch. As a result, when the switch is off, the minus terminals are floating and the

voltage can have arbitrary values. A common mistake is to assume they have zero volt (i.e.

connected to ground).

7.2.2 Contact Detection

Contacts, such as button pressing, screen tapping, and licking, is a common form of in-

teraction between a subject and a behavioral system. In contrast to mechanical buttons,

non-mechanical contact transducers have the advantages of flexible form factors, ease of in-

tegration, and long lifespan. There are three popular solutions for non-mechanical contact

detection used in behavioral systems. The first is conductive contact detection where a sub-

ject acts as a mechanical switch that opens (no touch) or closes (with touch) the detection

circuit. The second is capacitive detection which is based on the changing capacitance as an

object contacts the subjects (or vice versa). The third is via strain transducers that measure

tiny deformation caused by contacts.

The Satellite Board offers two channels of conductive contact detection. The general

principle of operation is similar to previous systems (Svoboda lab, HHMI Janelia Research

Campus; Slotnick 2009). A subject is connected to a high potential and the conductive

object being touched is connected to a signal input (L0 or L1). The power for this detection

circuit can be separately supplied by an isolated source (VB+ and VB-; B stands for battery

though any isolated source will work). Any mechanical switch has electrical bouncing issues

when a contact is weak and unstable. To handle bouncing during loose touches, each channel
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has a built-in variable RC filter with a time constant from 0 to 50 ms.

7.2.3 Communication Interfaces

In addition to the serial ports directly available from Teensy development board, the Satellite

Board provides two interfaces for wireless communication. One can connect to an ESP8266

Wifi module or other modules with compatible pinout. The other can connect to a XBee

serial interface board.

7.3 SatellitesViewer

Figure 7.1: Main window of SatellitesViewer

Four channels were created in which two are currently enabled. The currently selected channel is
”teensy”.

SatellitesViewer is a general-purpose app for serial and UDP/IP communication. It
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is developed using AppDesigner from MATLAB (MathWorks) and runs in the MATLAB

environment. One can use it to simply communicate with a serial device (e.g. Arduino),

or to talk with another computer over a local network, or to deploy multiple messaging

topologies involving serial/Wifi/LAN interfaces. This app streamlines communications with

easily customizable GUI (e.g. by editing an Excel spreadsheet). Its support of user functions

makes online visualization and feedback control possible by basic MATLAB programming.

The following explains the main concepts of operation.

7.3.1 Channel

SatellitesViewer uses the idea of Channel to manage a complete message flow based on a set

of related connections. Users can create an arbitrary number of Channels. Each Channel

has its independent configuration, input/output control, and logging, and can be accessed

in the ”Current Channel” panel. A Channel can be configured to one of three modes below.

Standalone mode

It is the simplest mode in which the computer connects to a device via a serial port (just

like the Serial Monitor in Arduino IDE). However, one can, for example, create multiple

Channels in this mode to control separate serial devices simultaneously. See ”XBee API”

section for advanced use of serial communication.

Server mode

This mode sets up a serial connection as in Standalone mode but also broadcasts messages

received from this serial connection to one or more client computers in the local network

(via UDP/IP). In the opposite direction, messages received from client computers will be

relayed back to the serial device. One needs to provide the IP addresses and ports of client

computers to send messages out and the port of the local computer to receive messages.
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Figure 7.2: Adding or configuring a channel

Client mode

No serial connection is involved in this mode. Instead, the Channel sends and receives

messages with a server computer on the network, thus can remotely control a serial device

connected to the server. One needs to specify the IP address and port of the server computer

to send messages out and the port of the local computer to receive messages. See ”Client-

Client communication” section for an alternative use.

Turn Channel on/off

In the ”Current Channel” panel, checking the Enable checkbox turns the current Channel

on; unchecking turns it off. When turned off, a Channel has no actual connection and no

computing resource is taken. See ”Performance note” for more details on app performance
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in different conditions.

7.3.2 Receiving Messages

Logging

Each Channel has its own communication log and a dedicated window for display. Operations

such as saving and emptying logs can be accessed in the ”Current Channel” panel. The saved

log is a text file where each line is a message. More options about logging can be found in

a Channel’s configuration window. A simulator allows users to see how different options

preprocess a message string.

Figure 7.3: Log window of a channel

The incoming messages are preceded by ”<-” and the outgping commands by ”->”.
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User function

One can write custom MATLAB functions to process incoming messages and achieve capa-

bilities such as online visualization, closed-loop control, or even email notification. A user

function takes one input argument and is called every time the Channel receives a mes-

sage. This input argument is an object of type UserFuncModel which contains all available

information and functionalities at your disposal. Please see example user functions in the

”private” folder and documentation of UserFuncModel class for more details.

Figure 7.4: Online visualization of behavior using user function

This plot shows a trial in the sequence licking task. The magenta bar indicates the auditory cue.
The blue bar indicates water reward delivery. Asterisks indicate lick onsets. Green triangles show
when, and to where, the lickport was actuated upon each lick.

7.3.3 Sending Messages

Dialog

Messages can be sent in a Channel’s log window just like that in Serial Monitor and many

other messaging apps.
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Quick commands

A user may have some frequently used commands to control a device and do not want to

type them again and again. In the Quick Commands tab, one can input commonly used

commands in individual boxes and send any of them by a click. Note that quick commands

only send messages to the currently selected Channel.

Figure 7.5: Quick Commands tab

Clicking a ”->” button sends the command out.

Command groups

Quick commands are limited by the number of boxes, uniform layout, and lack of explanation.

Command groups allow users to generate GUI with a large number of organized and well

labeled custom commands. It converts content in Excel spreadsheets to buttons, textboxes

and descriptive labels. Clicking a button sends a command and its values out using a format
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specified by Satellites communication protocol. Playing with the example Excel file will help

to understand the conventions. Like quick commands, command groups only send messages

to the currently selected Channel.

Figure 7.6: Example command groups

7.3.4 Save and Load Settings

Users can save all app settings to a MAT file using the ”Save settings” button. This file can

be loaded later to restore the state of the app. Please note that the following information

is not considered as part of app settings: 1) messages in log, 2) log file name textbox and

append time checkbox, 3) command groups, and 4) data in user functions.
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7.3.5 Advanced Topics

XBee API mode

In addition to commonly used transparent serial communication, SatellitesViewer also sup-

ports a simplified version of XBee API mode allowing users to wirelessly communicate with

one or more serial devices.
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Appendix II: Optical Strain and Force

Sensors

According to Newton’s third law, the force exerted equals the force experienced. Being

able to measure forces one exerts on an object not only tells us information carried by the

motor command but also the resulting tactile feedback. Measuring forces directly is not easy.

Most methods instead measure the strain (or deformation) in a material and then convert it

into force based on known relationships. For example, a resistive force sensor relies on the

change in a material’s electrical resistance when deformed by external force. Piezoelectric

sensors produce electric charges as the material deforms. Mechanical force gauges use a

material’s mechanical, instead of electrical, properties to relate strains to forces. The optical

strain/force sensors developed in this thesis are in effect mechanical. The optical part does

not mean it derives forces by measuring changes in a material’s optical properties as a result

of deformation. Instead, the optical components, photointerrupters, are used to measure

displacement of the mechanical part with high spatial (submicron) and temporal (megahertz)

resolution.

8.1 Mechanical Design

The core of this system is an optical sensor block. There are three mutually perpendicular

channels inside the block. Two channels house photointerrupters (GP1S094HCZ0F, Sharp)
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whose position can be manually adjusted by turning their corresponding rail screws. The

third channel allows an object, such as a rod, to pass through. The object normally blocks

about half of the light received by a photointerrupter, keeping the output voltage in the mid-

dle of the measurement range. Forces that cause relative displacements between the object

and the photointerrupter change the amount of light being blocked thus changing the output

voltage. Each photointerrupter can detect displacements in one dimension. When the two

photointerrupters are both aligned on the object, they can detect the object’s displacements

in two perpendicular directions.

For the lickport sensors used in this thesis, the stainless steel lick tube is the target

object. It is fixed on one end to form a cantilever. Mice licked the other free end, producing

a small displacement (< 0.1 mm at the tip for 5 mN) of the tube. Two photointerrupters

placed perpendicular to the tube (Figure) convert the vertical and horizontal components of

displacement into voltage signals. Pushing the tip down caused the cantilever to block more

light at the vertical sensor and thereby decreased the output voltage; conversely, less force

applied at the tip resulted in increased voltage. For the horizontal sensor, pushing the tube

to the left or right decreased or increased the voltage output, respectively.

The optical force sensors can have different structural configurations based on the desired

dynamic range and constraints in form factors. For example, to detect the body movement

of mice, we yoked the mouse tube onto a cantilever going through the same type of sensor

block. However, the forces exerted by the whole body is much larger than the force of licking.

To avoid signal saturation, the displacement of the cantilever must be a lot smaller given

the same amount of force (the displacement-response relationship of photointerrupters is

fixed). There are two easy ways to achieve this - increasing the rigidity of the cantilever and

reducing the mechanical advantage (e.g. length of the lever arm from the mouse tube) of

force application. One can do the opposite to reduce the dynamic range and increase the

sensitivity. For example, it was possible to detect the bending force of a single hair or a

gentle air blow against the cantilever.
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So far, all the structural parts of the sensor blocks were made by 3D printers (Ultimaker

3+) using PLA plastics as the material. The printers and the material do not offer high

accuracy, or low systematic bias (typically < 200 µm with 0.4 mm nozzle or < 100 µm

with 0.25 mm nozzle). To obtain the desired dimensions, one may need to empirically

find the systematic bias by iteratively tweaking the dimensions in design. Although quite

inconvenient, this is an addressable issue and usually takes one-time (or once in a while) effort

as long as the printer remains stable. A bigger problem however is using plastic materials

such as PLA to make parts that hold the object going through the sensor block. When a

plastic material is deformed beyond a certain limit, it does not fully restore to the original

shape after the force is removed. This is a material property called plasticity, not surprisingly.

As a result, applying large forces back and forth will produce hysteresis in output signals,

making any fixed force-voltage relationship invalid. The best way to address this issue is

to replace plastic with metallic materials. Alternatively, one can keep the possible forces

within a range where plasticity is negligible (e.g. the lickport case). The sensor block is a

static structure during operation and does not bear a changing force. Therefore, there is

little concern making it with plastics.

8.2 Signal Conditioning and Calibration

The receiver side of a photointerrupter is a phototransistor. The amount of light received

by the photointerrupter is proportional to the amount of current (I) that can flow through

it. To convert the current to voltage, a resistor (R) is put in series with the phototransistor.

The voltage across that resistor is VR = I × R = U × R/(R + RT ), where U is the supply

voltage and RT is the effective resistance of the phototransistor. Since both R and the RT

contribute to the total resistance, if R is too small, VR will be close to zero even if all the

light passes through; if R is too big, VR will be quite high even if all the light is blocked.

The ideal case is to choose an appropriate R so that the minimal VR is close to zero and the
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max VR is close to the supply voltage U .

Figure 8.7: Perch signal conditioning board

On the signal conditioning board (Figure 8.7), R is a potentiometer with an adjustable

resistance from 0 to 100kΩ. To find the best R, one first fully unblock the light and adjust the

potentiometer so that the output signal VR just starts to asymptote toward the supply volt-

age. Then fully block the light and adjust the potentiometer so that VR starts to asymptote

toward zero volt. The idea is to maximize the dynamic range of VR. These adjustments must

be made for every new photointerrupters due to their slightly variable electrical properties.

If one finds it impossible to achieve a wide dynamic range or the output voltage is erratic,

the phototransistor may have been damaged (e.g. due to excessive heat during soldering).

The signal conditioning board has four identical channels. Each channel can be set in

one of two output modes, direct output or amplified output. Direct output directly outputs

VR, the voltage across R. However, this output has high output impedance and is prone to

slow response time and ghosting. Amplified output first passes VR to an op-amp used as an

input buffer which then sends out signals with low output impedance.
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In order to convert the output voltage to force, we need to experimentally calibrate their

relationship. By design, the force and the output voltage follow a near linear relationship

within a range of forces. To find this range, we measured the voltages (relative to baseline)

with different weights added to the object. In the case of lickport sensors, this was achieved

by hanging a centrifuge tube at the tip of the lickport and adding different amounts of water

in it while recording the voltage response. Excellent linearity (R2 = 0.9999) was achieved

up to > 20 mN (Figure).
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Appendix III: Sequence Licking Task

Simulator

Research on reinforcement learning (RL) algorithms in artificial intelligence (AI) fields

started by investigating how an algorithm performs in a specific and usually very simple

task. However, real world RL agents including humans and mice are able to accomplish a

variety of complex tasks using the same brains. To really say an RL algorithm has, or re-

flects, any “intelligence”, one needs to benchmark it on different tasks and see if it is capable

and versatile. One of the major breakthroughs in recent years was the development of DQN

which shows human-level performance in many of the Atari 2600 games (Mnih et al., 2013,

2015). Aside from the successful integration of deep neural networks, one of the authors

commented 1 (as I summarize) that the simulation of games has been key to the develop-

ment as it offered a standardized benchmark directly comparable to human performance

and covers a range of cognitive demands. Sharing similar spirits, the Psychlab was devel-

oped to simulate the laboratory environments in which human subjects or monkeys perform

various vision-based tasks found in the literature of behavioral and cognitive neuroscience

(Leibo et al., 2018). OpenAI gym is another platform that offers a standardized arena for

simulating various control tasks (Brockman et al., 2016). Neuroscience research benefits

from well-designed behavioral paradigms, and a collection of these have greatly advanced

our understanding of the nervous system. Similarly, AI and computational neuroscience can
1Aug 19 2019. Episode 3: Life is like a game. DeepMind: The Podcast. https://deepmind.com/blog/

article/podcast-episode-3-life-is-like-a-game
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benefit by simulating and studying how artificial agents perform a collection of behavioral

tasks (Botvinick et al., 2019; Yang et al., 2019).

The OpenAI gym focuses on simulating tasks that involve RL in episodic settings. As

the name suggests, it allows the community to contribute tasks (or “environments”) to the

platform by implementing a standard set of application programming interfaces (API). An

environment can be formalized as a partial observable Markov decision process (POMDP)

where an agent makes an (usually incomplete) observation about the state of the environ-

ment, receives rewards or punishments if present, and in response outputs an action which

may change the state of the environment. The incompleteness of observation may require

an agent to produce different actions to the same observation via inference. This feature is

present in the sequence licking task. For example, mice were able to remember where the

lickport was left in the previous trial and initiate the next sequence from the correct sides

although the auditory go-cue was always the same.

To simulate the sequence licking task, a Python class called QuantalPursuit was devel-

oped as an environment for OpenAI gym. (The name bears the history of the behavioral

task development where mice were expected to follow, rather than drive, a moving lickport.)

This environment implements the main interfaces such as reset, step, observe, act, render,

and close. A custom Space class defines the specs of the observation vector and provides

several utility methods including random sampling, normalization. The simulator has all

the parameters used in the real task, such as port positions, port sequences, duration of

water delay, cue duration, etc. The forces of touch feedback (Fvert and Flat) are modeled

to be proportional to the indentation (in mm) that the port goes into the tongue in each

dimension. To implement the physical constraints of tongue motions, the tongue is not al-

lowed to go beyond certain spatial limits (e.g. -60° and 60° for angle and 5.5 mm for length).

The acceleration and deceleration of angle and length is also capped. Reward is controlled

by four parameters. The first is the reward magnitude of water reward. The second is the

cost of time. The other two impose cost when an agent extends the tongue long and wide,
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respectively.

By changing the task parameters, one can make a simple licking task, a task developed

in this thesis, or tasks with more complex sequence organization. As a proof of principle,

here shows an agent with tabular Q-learning algorithm learned to perform a simple licking

task in response to the cue (Figure 9.8).

Figure 9.8: A snapshot of an performing agent

The agent is facing to the right, extending the ”tongue” (black stem showing only its medial axis)
out to reach the tip of the lickport (green star). The ”tongue” has a width of 2 mm (not plotted)
and is therefore touching the port. This produces a reaction force (blue arrow) pointing backward
in the direction of contact and in proportion to the indentation.
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