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Abstract

My thesis work is centered around the development of R software packages

for analyzing RNA sequencing (RNA-seq) and ChIP sequencing (ChIP-seq)

high throughput genomic data. Chapter 2 describes the derfinder Biocon-

ductor package which implements the DER Finder approach for identifying

differentially expressed regions with RNA-seq data in an annotation-agnostic

manner. Chapter 3 shows how derfinder can be applied to ChIP-seq data to

identify differentially bounded regions. Chapter 4 describes the regionReport

Bioconductor package for producing HTML or PDF reports from region-based

genomic analyses, such as the derfinder analyses described in the previous

chapters.
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Chapter 1

Introduction

This thesis work is part of a larger collective effort to address the public

health problem presented by neuropsychiatric disorders. This thesis work will

lead to improving our understanding of the genomic data and will generate

hypothesis, which will then be further analyzed by the team of scientists at

the Lieber Institute for Brain Development as well as other institutions. This

work is part of the team effort to improve the health and quality of life of

individuals with neuropsychiatric disorders.

The goal of this thesis work is to develop statistical methods and software

that enable researchers to differentiate the sources of variation observed in

RNA-seq while minimizing the dependance on known annotation. This will

allow researchers to correct for technological variation and study the biological

variation driving their phenotype of interest. Then apply these methods to

further our understanding of neuropsychiatric disorders using the Lieber

Institute for Brain Development human brains collection (> 1000 samples).

To accomplish this goal, this thesis work was jointly supervised by Jeffrey
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T. Leek from the Johns Hopkins Bloomberg School of Public Health Depart-

ment of Biostatistics and Andrew E. Jaffe from the Lieber Institute for Brain

Development. This work resulted in several R packages which are all part

of the Bioconductor project [1], which means that the software is very well

documented, regularly tested, and easy to install by R users.

1.1 derfinder applied to RNA-seq data

Differential expression analysis of RNA sequencing (RNA-seq) data typically

relies on reconstructing transcripts or counting reads that overlap known gene

structures. In under to better understand the human brain, transcriptome anal-

ysis provides fundamental insight into development and disease. However,

this type of analysis typically relies on the existing annotation which might

not be complete in some situations, particularly for less studied organisms.

As a complement to typical transcriptome analysis pipelines, the DER

Finder statistical approach seeks to identify contiguous regions of the genome

showing differential expression signal at single base-pair resolution [2]. DER

Finder does not rely on existing annotation or potentially incomplete tran-

scriptome, thus allowing researchers to further study tissues like the human

brain. Chapter 2 describes the derfinder R package that implements the DER

Finder approach [3] with visualizations created with the derfinderPlot [4]

package. We used it with data generated by the Lieber Institute for Brain

Development and determined that the human brain transcriptome annotation

is incomplete [5].
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1.2 derfinder applied to ChIP-seq data

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) exper-

iments identify regions of the genome with binding signal for a protein of

interest. When multiple samples are collected for different conditions, treat-

ments or other covariates, researchers will ask if there is differential binding

between these conditions. The current strategies for answering this question

rely on merging peaks from the different samples which can lead to un-wanted

issues. These strategies do not take into account the variability across samples

when merging peaks. Chapter 3 shows how derfinder can be used with

ChIP-seq data to identify differentially bound regions. We illustrate this ap-

plication using data from the EpiMap study [6] for histone marks H3K4me3

and H3K27ac from the anterior cingulate cortex and dorsolateral prefrontal

complex of the human brain.

1.3 Interactive region based reports with
regionReport

Many analyses of genomic data result in regions along the genome that as-

sociate with a covariate of interest. These genomic regions can result from

identifying differentially bound peaks from ChIP-seq data, identifying differ-

entially methylated regions (DMRs) from DNA methylation data, derfinder

analyses, among other analysis pipelines. The genomic regions themselves are

commonly stored in a GRanges object from GenomicRanges [7] and have some

common properties such as p-values associated with each region. Chapter
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4 describes the regionReport [8] R package for creating interactive HTML

reports for region-based genomic analyses. These reports are useful for ex-

ploring results and can be shared with collaborators. regionReport can also

be used to explore DESeq2 [9] and edgeR-robust [10] results, which are among

the most widely used differential expression software packages.
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2.1 Abstract

Background Differential expression analysis of RNA sequencing (RNA-seq)

data typically relies on reconstructing transcripts or counting reads that over-

lap known gene structures. We previously introduced an intermediate statis-

tical approach called differentially expressed region (DER) finder that seeks

to identify contiguous regions of the genome showing differential expres-

sion signal at single base resolution without relying on existing annotation or

potentially inaccurate transcript assembly.

Results

We present the derfinder software that improves our annotation-agnostic

approach to RNA-seq analysis by: (1) implementing a computationally effi-

cient bump-hunting approach to identify DERs which permits genome-scale

analyses in a large number of samples, (2) introducing a flexible statistical

modeling framework, including multi-group and time-course analyses and (3)

introducing a new set of data visualizations for expressed region analysis. We

apply this approach to public RNA-seq data from the Genotype-Tissue Expres-

sion (GTEx) project and BrainSpan project to show that derfinder permits the

analysis of hundreds of samples at base resolution in R, identifies expression

outside of known gene boundaries and can be used to visualize expressed

regions at base-resolution. In simulations our base resolution approaches

enable discovery in the presence of incomplete annotation and is nearly as

powerful as feature-level methods when the annotation is complete.

8



Conclusions derfinder analysis using expressed region-level and sin-

gle base-level approaches provides a compromise between full transcript

reconstruction and feature-level analysis. The package is available from

Bioconductor at www.bioconductor.org/packages/derfinder.

Keywords RNA sequencing, differential expression analysis, coverage,

gene annotation, gene expression.

2.2 Introduction

The increased flexibility of RNA sequencing (RNA-seq) has made it possible

to characterize the transcriptomes of a diverse range of experimental systems,

including human tissues [1, 2, 3], cell lines [4, 5] and model organisms [6, 7].

The goal of many experiments involves identifying differential expression

with respect to disease, development, or treatment. In experiments using

RNA-seq, RNA is sequenced to generate short “reads” (36-200+ base pairs).

These reads are aligned to a reference genome, and this alignment information

is used to quantify the transcriptional activity of both annotated (present in

databases like Ensembl) and novel transcripts and genes.

The ability to quantitatively measure expression levels in regions not pre-

viously annotated in gene databases, particularly in tissues or cell types that

are difficult to ascertain, is one key advantage of RNA-seq over hybridization-

based assays like microarray technologies. As complicated transcript struc-

tures are difficult to completely characterize using short read sequencing

technologies [8], the most mature statistical methods used for RNA-seq analy-

sis rely on existing annotation for defining regions of interest - such as genes
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or exons - and counting reads that overlap those regions [9]. These counts are

then used as measures of gene expression abundance for downstream differ-

ential expression analysis [10, 11, 12, 13, 14, 15, 16, 17, 18]. Unfortunately, the

gene annotation may be incorrect or incomplete, which can affect downstream

modeling of the number of reads that cross these defined features.

We previously proposed an alternative statistical model for finding dif-

ferentially expressed regions (DERs) that first identifies regions that show

differential expression signal and then annotates these regions using previ-

ously annotated genomic features [19]. This analysis framework first proposed

using coverage tracks (i.e. the number of reads aligned to each base in the

genome) to identify differential expression signal at each individual base and

merges adjacent bases with similar signal into candidate regions. However,

the software for our first version was limited to small sample sizes, the abil-

ity to interrogate targeted genomic loci, and comparisons between only two

groups.

Here we expand the DER finder framework to permit the analysis of

larger sample sizes with more flexible statistical models across the genome.

This paper introduces a comprehensive software package called derfinder

built upon base-resolution analysis, which performs coverage calculation,

preprocessing, statistical modeling, region annotation and data visualization.

This software permits differential expression analysis at both the single base

level, resulting in direct calculation of DERs [20], and a feature summarization

we introduce here call "expressed region" (ER)-level analysis. We show that ER

analysis allows us to perform base resolution analysis on larger scale RNA-seq
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data sets using the BrainSpan project [21] http://developinghumanbrain.org

and Genotype-Tissue Expression (GTEx) project data [3] to demonstrate that

derfinder can identify differential expression signal in regions outside of

known annotation without assembly. We use these DERs to illustrate the

post-discovery annotation capabilities of derfinder and label each DER as

exonic, intronic, intergenic or some combination of those labels. We show

that some of these DERs we identify are outside of annotated protein coding

regions and would not have been identified using gene or exon counting

approaches.

In the GTEx data, we identify differentially expressed regions (DERs) that

differentiate heart (left ventricle), testis and liver tissues for 8 subjects. There

are many potential reasons for this observed intronic expression including

intron retention, background levels of mis-transcription, or incomplete protein-

coding annotation. A subset of these strictly intronic ERs are associated with

tissue differences, even conditional on the expression of the nearest annotated

protein-coding region. However, we point out that intronic expression may be

artifactual and it our package permits visualization and discovery of potential

expression artifacts not possible with other packages.

Finally, using simulated differentially expressed transcripts, we demon-

strate that when transcript annotation is correct, derfinder is nearly as power-

ful as exon-count based approaches with statistical tests performed by limma

[16] (or DESeq2 [14], edgeR-robust [13]) and ballgown [22] after summarizing

the information using Rsubread [13] and StringTie [23] respectively. Finally,

we also demonstrate that when annotation is incomplete, derfinder can be
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substantially more powerful than methods that rely on a complete annotation.

2.3 Materials & Methods

2.3.1 Overview of R Implementation

We chose to implement derfinder entirely in the R statistical environment

www.R-project.org/. Our software includes upstream pre-processing of BAM

and/or BigWig files into base-resolution coverage. At this stage the user can

choose to summarize the base resolution coverage into feature-level counts

and apply popular feature-level RNA-seq differential expression analysis tools

like DESeq2 [14], edgeR-robust [13], limma [16, 15] and voom [17].

derfinder can be used to identify regions of differential expression ag-

nostic to existing annotation (Figure 4.1). This can be done with either the

expressed regions (ER)-level or single base-level approaches, described in

detail in the following subsection and Supplementary Section 2.12.1. The

resulting regions can then be visualized to identify novel regions and filter

out potential artifacts.

After differential expression analysis, derfinder can plot DERs using base-

resolution coverage data by accessing the raw reads within differentially

expressed regions for posthoc analysis like clustering and sensitivity analyses.

We have also created a lightweight annotation function for quickly annotat-

ing DERs based on existing transcriptome annotation, including the UCSC

knownGene hg19, Ensembl p12, and Gencode v19 databases as well as newer

versions.
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Vignettes with detailed instructions and examples are available through the

Bioconductor pages for derfinder and derfinderPlot. The main functions for

the expressed region and single base-level approaches are further described

in Supplementary Section 2.11.1.

2.3.2 Expressed region level analysis

In the expressed region approach, we compute the mean coverage for all base

pairs from all the samples and filter out those below a user specified cutoff.

Contiguous bases passing this filtering step are then considered a candidate

region (Figure 2.2A). Then for each sample, we sum the base-level coverage

for each such region in order to create an expression matrix with one row

per region and one column per sample. This matrix can then be used with

feature-level RNA-seq differential expression analysis tools.

2.3.3 Annotation and “Genomic State” Objects

We have implemented a “genomic state” framework to efficiently annotate

and summarize resulting regions, which assigns each base in the genome

to exactly one state: exonic, intronic, or intergenic, based on any existing or

user-defined annotation (e.g. UCSC, Ensembl, Gencode). At each base, we

prioritize exon > intron > unannotated across all annotated transcripts.

Overlapping exons of different lengths belonging to different transcripts

are reduced into a single “exonic” region, while retaining merged transcript

annotations. We have a second implementation that further defines promot-

ers and divides exonic regions into coding and untranslated regions (UTRs)
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which may be useful for the user to more specifically annotate regions - this

implementation prioritizes coding exon > UTR > promoter > intron > unan-

notated.

2.3.4 Data Processing for Results in Main Manuscript

2.3.4.1 BrainSpan data

BigWig files for all 487 samples across 16 brain regions were downloaded

from the BrainSpan website [21]. The samples for HSB169.A1C, HSB168.V1C

and HSB168.DFC were dropped due to quality issues. Based on exploratory

analyses the coverage was assumed to be reads-per-million mapped reads in

this data set. We set the coverage filter to 0.25 for both the single base-level

and ER-level derfinder approaches. Since the coverage is already adjusted to

reads per million mapped reads we did not include a library size adjustment

term in the single base-level derfinder analysis (see Supplementary Section

2.12.1 for details on this adjustment term). The details for the single base-level

derfinder analysis are described further in Supplementary Section 2.12.2. For

the ER-level approach we only considered regions longer than 5 base-pairs.

We sought to identify differences in expression across brain region (neocor-

tical regions: DFC, VFC, MFC, OFC, M1C, S1C, IPC, A1C, STC, ITC, V1C and

non-neocortical regions: HIP, AMY, STR, MD, and CBC) and developmental

stage (fetal versus postnatal). We therefore fit the following region-by-stage

interaction alternative model, which included main effects for fetal versus

postnatal (binary) and categorical brain region variable (15 region indicators,
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relative to A1C), and interaction terms for each brain region and developmen-

tal stage. This resulted in a total of 32 terms in the model (intercept; 16 main ef-

fects, 15 interaction terms). In equation (2.1), yij is the scaled log2 coverage for

the expressed region i and sample j. That is, yij = log2

(
mean coverageij + 1

)
.

The model is completed by an intercept term αi, a indicator variable for fetal

status βi, m indicators variables γ for the brain region, and m interaction vari-

ables ζ between fetal status and brain region. The term ϵij represents residual

error.

yij = αi + βiFetalj +
m

∑
q=1

γiqRegionjq +
m

∑
q=1

ζiqFetalj ∗ Regionjq + ϵij (2.1)

We compared the above model to an intercept-only model using the lmFit

function from limma [16, 15]. The p-values for the ER-level DERs were adjusted

via the Bonferroni method and those with adjusted p-values less than 0.05

were determined to be significant. We then calculated the mean coverage for

each significant expressed region DERs in each sample, resulting in a mean

coverage matrix (DERs by samples), and we performed principal component

analysis (PCA) on this log2-transformed matrix (after adding an offset of 1).

Once the DERs were identified, we identified which of them overlap EN-

CODE blacklisted regions of the genome [4] using the file at

hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/

wgEncodeDacMapabilityConsensusExcludable.bed.gz. For identifying which

DERs overlap lincRNAs we used EnsDb.Hsapiens.v75 [24], which can also be

used for a variety of transcript types. We then performed the gene ontology
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analysis for the DERs using GOstats [25] using as background all genes that

are within 5 kb of an ER.

2.3.4.2 GTEx data

We selected samples from individuals that had data from heart (left ventricle),

liver and testis tissues with RIN values greater than 7. 8 subjects matched

this criteria and we selected only 1 sample if their tissue was analyzed more

than once, leaving us with 24 samples. The data was aligned using Rail-RNA

[26] version 0.2.1 with the code as described at github.com/nellore/runs. We

created a normalized mean BigWig file for these 4 samples adjusted for library

sizes of 40 million reads. We then identified the ERs using a cutoff of 5 using

the function railMatrix from derfinder version 1.5.19.

For each expressed region greater than 9bp, we assigned its annotation

status by using a genomic state object created with the Ensembl GRCh38.p5

database. We then performed principal component analysis (PCA) on the

log2-transformed matrix (after adding an offset of 1) separately for strictly

exonic and strictly intronic ERs. Using limma [16, 15] functions lmFit, ebayes

we fit an intercept-only null model and an alternative model with coefficients

for tissue differences. For each ER we calculated a F-statistic and determined

whether it was differentially expressed by tissue using a Bonferroni adjusted

p-value cutoff of 0.05.

For the conditional expression analysis, we found the nearest exonic ER for

each intronic ER using the distanceToNearest function from GenomicRanges
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[27]. For each intronic ER we fitted two linear regression models for the log2-

transformed coverage matrix (after adding an offset of 1). For the alternative

model we used as covariates two tissue indicator variables (Heart as the

reference) and the coverage from the nearest stricly exonic ER as shown in

Equation (2.2) for ER i and sample j. For the null model we only used the

coverage from the nearest exonic ER. We calculated an F-statistic using the

anova function that tests whether β1i or β2i are equal to 0 and used a Bonferroni

adjusted p-value cutoff of 0.05 to identify which intronic ERs had differential

expression adjusting for the coverage at the nearest exonic ER.

yij = αi + β1iTestisj + β2iLiverj + γiExonicCoveragej + ϵij (2.2)

2.3.4.3 Simulated data

We simulated 100 bp paired-end reads (250bp fragments, sd = 25) with

polyester [28] for two groups with five samples per group from human

chromosome 17 with uniform error rate of 0.005 and replicated this process

three times. One sixth of the transcripts were set to have higher expression

(2x) in group 2, a sixth to have lower expression in group 2 (1/2x) and the re-

maining two thirds to be equally expressed in both groups. Given a RNA-seq

experiment with 40 million paired-end reads, assuming that all transcripts

are equally expressed we would expect 1,989,247 of them to be from chro-

mosome 17 based on the length of all exons using the known transcripts

UCSC knownGene hg19 annotation. We used this information and the tran-

script length to assign the number of reads per transcript in chromosome
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17 and generated the number of reads with the NB function from polyester

with mean µ and size (see stats::rnbinom function in R) equal to 1
3 µ. This

resulted in an average of 2,073,682 paired-end reads per sample. For each

simulation replicate, paired-end reads were aligned to to the hg19 reference

genome using HISAT version 0.1.6-beta [29] and Rail-RNA version 0.2.2b [26].

We created a GTF file using all known transcripts from chromosome 17 as well

as one with 20% of the transcripts missing (8.28% of exons missing). Using

these two GTF files we performed transcript quantification with StringTie

version 1.2.1 [23] as well as exon counting allowing multiple overlaps with the

featureCounts function from Rsubread version 1.21.4 [13]. ERs were deter-

mined with derfinder version 1.5.19 functions regionMatrix and railMatrix

respectively from the HISAT BAM and Rail-RNA BigWig output using a mean

cutoff of 5 for libraries adjusted to 80 million single-end reads. Count matrices

resulting from featureCounts and derfinder were analyzed with limma [16],

DESeq2 [14] and edgeR-robust [18] controlling the FDR at 5% and testing for dif-

ferences between the two groups of samples. We used ballgown version 2.2.0

[22] to perform differential expression tests using coverage at the transcript

and exon levels, controlling the FDR at 5%.

The 3900 transcripts from chromosome 17 are composed in total by 39,338

exons (15,033 unique). To avoid ambiguous truth assignments, we used only

the 3,868 that overlap only 1 transcript and assigned the truth status based

on whether that transcript was set to have a high or low expression on group

2 for the replication replicate under evaluation. We assessed the different

pipelines by checking if these 3,868 exons overlapped at least one differentially
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expressed unit: exons (featureCounts and ballgown), transcripts (ballgown),

and ERs (derfinder) respectively. We then calculated the empirical power,

false discovery rate and false positive rate.

2.4 Results

2.4.1 Overview of the derfinder package

The derfinder package includes functions for several stages in the analysis of

data from an RNA-sequencing experiment (Figure 4.1).

First, derfinder includes functions for pre-processing coverage data from

BAM files or bigWig coverage files. The base-level coverage data for multiple

samples can be loaded and filtered since most bases will show zero or very

low coverage across most samples. Then, the software allows for definition

of contiguous regions that show average coverage levels above a certain

threshold. These expressed regions are non-overlapping subsets of the genome

that can then be counted to arrive at a matrix with an expression value for

each region in each sample. Alternatively, the software provides options for

counting exons or genes for use in more standard analysis pipelines.

Next, derfinder can be used to perform statistical tests on the region level

expression matrix. These tests can be carried out using any standard package

for differential expression of RNA-seq data including edgeR [10, 12], DESeq

[11], DESeq2 [14], or limma-voom [17].

derfinder can then be used to annotate the differentially expressed regions

(DERs). We have developed functions that label each region according to
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Figure 2.1: An overview of the derfinder suite The derfinder software package
includes functions for processing and normalizing coverage per sample, performing
statistical tests to identify differentially expressed regions, labeling those regions with
known annotation, and visualizing the results across groups.
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whether it falls entirely in a previously annotated protein coding exon (exonic),

entirely inside a previously annotated intronic region (intronic), or outside of

any previously annotated gene (intragenic). The software also will report any

region that overlaps any combination of those types of regions.

Finally, data from an expressed region analysis can be visualized using

different visualization approaches. While region-level summaries can be plot-

ted versus known phenotypes, derfinder also provides functions to plot base

resolution coverage tracks for multiple samples, labeled with color according

to phenotype.

We now provide more detail on each of these steps.

2.4.2 Finding expressed regions

The first step in a derfinder analysis is to identify expressed regions. Reads

should be aligned using any splicing aware alignment tool such as TopHat2

[30], HISAT [29] or Rail-RNA [26].

Base resolution coverage information can be read directly from the BAM

files that are produced by most alignment software [30, 29, 26]. This process

can be parallelized across multiple cores to reduce computational time. An

alternative is to read bigWig [31] coverage files. Recent alignment software

such as Rail-RNA [26] produces these files directly, or they can be created using

samtools [32] or produced using the derfinder package. Reading bigWig files

can produce significant computational and memory advantages over reading

from BAM files.

The coverage information represents the number of reads that covers each

21



genomic base in each sample. derfinder first filters out bases that show low

levels of expression across all samples. Since most genomic bases are not

expressed, this filtering step can reduce the number of bases that must be

analyzed by up to 90%, reducing both CPU and memory usage. We originally

proposed performing a statistical test for every base in the genome [19] and

this approach is still supported by the derfinder package for backwards

compatibility (Supplementary Section 2.11.3).

Figure 2.2: Finding regions via expressed region-level approach on chromosome 5
with BrainSpan data set. A Mean coverage with segments passing the mean cutoff
(0.25) marked as regions. B Raw coverage curves superimposed with the candidate
regions. Coverage curves are colored by brain region and developmental stage (NCX:
Neocortex: Non-NCX: Non-neocortex, CBC: cerebellum, F: fetal, P: postnatal). C
Known exons (dark blue) and introns (light blue) by strand for genes and subsequent
transcripts in the locus. The DERs best support the GABRA6 transcript with a red star,
indicating the presence of a differentially expressed transcript.
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Here we focus on a new approach based on the bump-hunting method-

ology for region level genomic analysis [33] (Figure 2.2). This approach first

calculates expressed regions (ERs) across the set of observed samples. For

each base, the average, potentially library size-adjusted, coverage is calculated

across all samples in the data set. This generates a vector of (normalized) mean

level expression measurements across the genome. Then an average-coverage

cutoff is applied to this mean coverage vector to identify bases that show

minimum levels of expression. An expressed region is any contiguous set of

bases that has expression above the mean expression cutoff.

The next step is to count the number of reads (including fractions of reads)

that overlap each expressed region. As we have pointed out previously [19]

that counting expression in genes and exons is complicated by overlapping

annotation. Expressed regions are non-overlapping, so this means that each

read can be unambiguously assigned to the appropriate region.

2.4.3 Expressed region level statistical tests

The result of the expressed region (ER) step is a coverage matrix with each

row corresponding to one ER and each column corresponding to one sample.

This count matrix can then be analyzed using statistical models that have been

developed for gene or exon counts such as limma [16, 15], voom [17], edgeR-

robust [18], and DESeq2 [14]. We emphasize that unlike other feature-level

counting approaches, our approach is annotation-agnostic: ERs are defined

empirically using the observed sample data and coverage threshold. So if

there is sufficient expression in a region outside of previously annotated genes
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it will be quantified and analyzed with our approach.

2.4.4 Visualizing differentially expressed regions

After statistical modeling, derfinder produces a set of DERs with summary

statistics per region. They are stored as a GRanges object [27] and can be

visualized with a range of packages from the Bioconductor suite. We have

also developed several visualization tools specific to the derfinder approach.

These plots can be made at different levels of summarization. First, the

derfinder and derfinderPlot packages provide a range of visualizations of

coverage tracks at single base resolution. These plots can be used to identify

coverage patterns that may diverge from annotated protein-coding regions.

For example, using the GTEx example we can visualize genes that have

consistently high intronic expression as shown in Figure 2.3. We show several

examples of genes known to be functionally important in heart - LBD3 and

MYOZ2 (Figure 2.3A,B) [34, 35], and liver - HGD and UPB1 (Figure 2.3C,D) [36,

37]. The coverage profiles can provide additional insight into transcription,

and well as potential technical artifacts, beyond the level of annotated genes,

exons and transcripts, which we include in our base-resolution plots.

DERs can be grouped into larger regions by distance, which can be useful

to identify potentially systematic artifacts such as coverage dips (Figure 2.4),

perhaps due to sequence composition. Visualizing the base-level coverage

for a set of nearby candidate DERs can reveal patterns that explain why one

DER is sometimes fragmented into two or more shorter DERs. Coverage dips

(Figure 2.4), spikes and data quality in general can affect the borders of the
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Figure 2.3: Coverage plots for the average coverage levels for the GTEx example.
Average coverage profile for heart (blue), liver (red), and testis (green) from the GTEx
example near genes: A LDB3, B MYOZ2, C HGD, and D UPB1.

candidate DERs. Some artifacts can be discarded, like candidate DERs inside

repetitive regions. Base-pairs inside repetitive regions available in repeat

masker tracks can be flagged and filtered out from the analysis. Other known

potentially problematic regions of the genome, like those with extreme GC

content or mappability issues can also be filtered out, either before identifying

candidate DERs or post-hoc.
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Figure 2.4: Example of a coverage dip. Mean coverage per group for the BrainSpan
data set for a region that results in two DERs for a single exon due to a coverage dip.
The genome segment shown corresponds to the DERs cluster ranked 15th in terms of
overall signal by the single base-level approach applied to the BrainSpan data set.

2.4.5 Annotating differentially expressed regions

The DERs can be annotated to their nearest gene or known feature using

bumphunter [33]. The basic approach is to overlap DERs genomic coordi-

nates with the genomic coordinates of known genomic features. By default,

derfinder labels each identified region as exonic, intronic, intragenic or some

combination of those three labels.

A region may overlap multiple genomic features (say an exon and the

adjacent intron). Using this information candidate DERs can further be com-

pared to known gene annotation tables (Methods Section 2.3.3) to identify
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potentially novel transcription events. Using this information, visualizations

of specific loci for overlap with annotation can be made with derfinderPlot.

The regions can be exported to CSV files or other file formats for followup

and downstream analyses. We have also developed a complementary R

package for creating reproducible reports incorporating the annotation and

visualization steps of the derfinder pipeline called regionReport [38].

2.4.6 Application: large-scale expression analysis at base res-
olution

We used derfinder to detect regions that were differentially expressed across

the lifespan in the human brain. We applied derfinder to the BrainSpan

RNA-seq coverage data (Methods Section 2.3.4.1), a publicly available data set

consisting of 484 postmortem samples across 16 brain regions from 40 unique

individuals that collectively span the full course of human brain development

[21]. We used the expressed region approach described above for this analysis.

For comparison we applied the single-based resolution approach previously

utilized on independent dorsolateral prefrontal cortex RNA-seq data [20]

(Supplementary Section 2.11.4).

We identified 174,610 ERs across the 484 samples with mean across-sample

normalized coverage > 0.25, which constituted 34.57 megabases of expressed

sequence. The majority (81.7%) of these ERs were labeled as strictly exonic

while only a small subset (5.4%) were strictly non-exonic by Ensembl annota-

tion. These ERs largely distinguished the fetal and postnatal samples using

PCA - the first principal component explained 40.6% of the variance of the

mean coverage levels and separated these developmental stages across all
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brain regions. This separation was consistent regardless of the annotation

status of the DERs including in the strictly intronic regions (Figure 2.5 and

Supplementary Figure 2.9). The separation between brain regions in intronic

regions may be due to noisy or incorrect splicing [39] or may be due to missing

annotation [19] or mistaken sequencing of pre-mRNA. The base resolution

visualizations available as part of derfinder and derfinderPlot make it pos-

sible to explore to determine if it is biology or artifacts driving these expression

differences.

The PCA plots also appear to show patterns consistent with potential

artifacts such as batch effects [40] ( Figure 2.5). Regardless, the new ER

approach we present here provides options for analysts who wish to discover

patterns of expression outside of known annotation on hundreds of samples -

an analysis of this scope and scale was unfeasible with earlier versions of our

single base resolution software [19].

Using statistical models where expression levels were associated with

developmental stage (fetal versus postnatal) and/or brain region (Methods

Section 2.3.4.1), we found that 129,278 ERs (74%) were differentially expressed

by brain region and/or developmental stage at the ER-level controlling the

family-wise error rate (FWER) at < 5% via Bonferroni correction. We con-

trolled the FWER instead of the FDR due to the expected large effects between

the developmental stages and/or brain regions. The 129,278 ER-level DERs

overlapped a total of 17,525 Ensembl genes (13,016 with gene symbols), repre-

senting a large portion of the known transcriptome. Of the significant ER-level

DERs, 93,355 (72.2%) overlapped at least 1 significant single base-level DER
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Figure 2.5: Principal components analysis reveals clusters of samples in the
BrainSpan data set. (Left) First two principal components (PCs) with samples colored
by sample type (F: Fetal or P: Postnatal) and shape given by brain region using only
the strictly intronic expressed regions (ERs). Analysis of other subsets of ERs produce
similar results (Supplementary Figure 2.9). (Right) Boxplots for PCs 1 and 2 by brain
region (NCX: neocortex, HIP: hippocampus, AMY: amygdala, STR: striatum, MD:
thalamus, CBC: cerebellum) and sample type with non-neocortex brain decomposed
into its specific regions. Using the single base-level approach (Supplementary Figure
2.10) produces similar results as shown in Supplementary Figure 2.11.

(Supplementary Section 2.11.4). Lack of overlap results from almost half

(45.2%) of single base-level DERs having an average coverage lower than the

expression cutoff determining ERs (0.25). For example, there was high expres-

sion only in the samples from a few brain regions, or only one development

period. Decreasing the cutoff that defines the ERs from 0.25 to 0.1 results in a

larger number of regions (217,085) that have a higher proportion of non-exonic

sequence (12.1%), suggesting that the choice of this expression cutoff requires

some initial exploratory data analysis as shown in Supplementary Section

2.11.5.
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We highlight the utility of the ER-level analysis (using the original 0.25

cutoff) to identify regions differentially expressed within subsets of the data

by analyzing brain regions within a single developmental period. We identi-

fied 1,170 ERs that were differentially expressed comparing striatum versus

hippocampus samples in the fetal developmental stage. These DERs mapped

to 293 unique genes. Genes more highly expressed in the striatum include

ARPP-21, previously shown to localize in the basal ganglia [41], and dopamine

receptor genes DRD1 and DRD2 [42]. Genes more highly expressed in the

hippocampus in fetal life were strongly enriched for neurodevelopmental

genes including FZD7 [43], ZBTB18 [44], and NEUROD1 [45]. The ER-level

analysis therefore permits subgroup analysis without the need to rerun the

full derfinder single base-level pipeline - another improvement over previous

versions of single base resolution analysis software [19].

DERs are non-standard in the sense that they don’t necessarily match with

known exons. Depending on the application, you might interested in filtering

out DERs that overlap problematic regions of the genome. This can be done

prior to defining the ERs or once the candidate DERs have been identified. In

the BrainSpan application, only 0.086% of the 129,278 DERs overlap ENCODE

blacklisted regions [4] and 1.58% overlap lincRNAs. Similarly one can check if

the DERs overlap other known features of interest. The genes overlapped by

the DERs are enriched for gene ontology terms such as neuron differentiation

(GO:0030182, p-value 4.13e-15), neurogenesis (GO:0022008, p-value 4.62e-14)

and neuron projection development (GO:0031175, p-value 1.4e-12) among other

terms associated to neuronal development.
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2.4.7 Identification of expressed regions that differentiate tis-
sues using a subset of the GTEx data

Figure 2.6: GTEx expressed regions analysis using 24 samples from the heart (left
ventricle), liver and testis for 8 subjects. A expressed regions (longer than 9 bp) over-
lapping known annotation based on GRGh38.p5 (hg38). 72.6% of the ERs only overlap
known exons (strictly exonic) while 10.4% only overlap known introns (strictly in-
tronic). B First two principal components (PCs) with samples colored by sample
type (red: liver, blue: heart, green: testis) using only the strictly exonic ERs. C First
two PCs with samples colored by sample type using only only the strictly intronic
ERs. The sign change of the second principal component is simply a rotation and the
results are consistent between the strictly exonic and strictly intronic ERs.

We selected a subset of subjects from the GTEx project [3] that had RNA-seq

data from heart (left ventricle), liver and testis, specifically the eight subjects

with samples that had RNA Integrity Numbers (RINs) greater than 7, given

RIN’s impact on transcript quantification [46]. Using only one sequencing

library from each subject aligned with Rail-RNA [26], we applied the ER-level

derfinder approach with a cutoff of 5 normalized reads (after normalizing

coverage to libraries of 40 million reads). We found a total of 163,674 ERs

with lengths greater than 9 base-pairs. Figure 2.6A shows that 118,795 (72.6%)

of the ERs only overlapped known exonic regions of the genome using the

Ensembl GRCh38.p5 database [47].
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we performed PCA on the log2 adjusted coverage matrix using just the

118,795 strictly exonic ERs (Figure 2.6B). Here the first two PCs explain 56.8%

and 21.6% of the variance respectively and show three distinct clusters of

samples that correspond to the tissue of the sample. We found that the

16,985 (10.4%) ERs (Figure 2.6A) that only overlap annotated introns can also

differentiate tissues using PCA, as shown in Figure 2.6C. The total percent

of variance explained by the first two principal components is slightly lower

(44.4% + 26.6% = 71% versus 56.8% + 21.6% = 78.4%) when using only the

strictly intronic ERs versus the strictly exonic ERs. This may represent a

different biological signal and/or potentially noisy splicing (as in Figure 2.3B).

but we use this example to illustrate the potential to use derfinder to explore

regions outside of known annotation.

Using limma [16, 15] to test for differential expression between tissues

(Methods Section 2.3.4.2) we found that 42,880 (36.1%) of the strictly exonic

ERs and 4,401 (25.9%) of the strictly intronic ERs were differentially expressed

(FWER of 5% via Bonferroni correction). Overall 59,776 (36.5%) of the ERs were

differentially expressed between tissues. Given the similar global patterns

of expression between annotated and unannotated ERs, we considered the

scenario that the strictly intronic ERs were differentially expressed between

tissues in the same pattern as the nearest exonic ERs due to possible run-off

transcription events. To assess this scenario we fitted a conditional regression

for each strictly intronic ER adjusting for the coverage of the nearest strictly

exonic ER. 749 (4.4%) of the strictly intronic ERs differentiate tissues while

adjusting for the coverage at the nearest exonic ER at a FWER of 5%. Figure
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Figure 2.7: Differential expression on strictly intronic expressed regions adjusting
for expression on the nearest strictly exonic ER. Boxplots (A and C) and region
coverage plots (B and D) for two strictly intronic ERs showing differential expression
signal adjusting for the nearest exonic ER. Boxplots show the log2 adjusted coverage
for the strictly intronic ERs by tissue with the corresponding boxplot for the nearest
strictly exonic ERs. The p-value shown is for the differential expression between
tissues on the intronic ERs conditional on the expression values for the nearest exonic
ERs. The distance to the nearest strictly exonic ER and the gene symbol are shown
below. The region coverage plots are centered at the strictly intronic ER with the
neighboring 2kb and 5kb for C and D respectively. A,B Expression on the exonic ER is
fairly similar between the groups but different on the intronic ER. C,D Expression on
the exonic ER has an increasing pattern from heart to liver to testis but has a different
pattern on the intronic ER.

2.7A,B shows an example where the expression is similar between tissues in

the nearest exonic ER but there is a clear tissue difference in the intronic ER

with testis having higher expression than the other two tissues. Figure 2.7C,D

shows different patterns between the intronic and exonic ERs where in the ex-

onic ER the expression is lowest in the heart, higher in liver and slightly higher

at the testis. However in the intronic ER, liver is the tissue that has the lowest
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expression. These results suggest that expression at unannotated sequence

could have biological relevance beyond local annotated exonic sequence.

2.4.8 Simulation results

We lastly performed a simulation study to evaluate the statistical properties

of derfinder with and without complete annotation. To compare derfinder

against feature-level alternatives, we simulated reads for 2 groups, 10 samples

in total (5 per group) with 1
6 of the transcripts having higher and 1

6 lower

expression in group 2 versus group 1 at fold changes of 2x and 1
2x respectively.

Reads were simulated from chromosome 17 using polyester [28] with the

total number of reads matching the expected number given paired-end library

with 40 million reads (Methods Section 2.3.4.3). We used HISAT [29] to align

the simulated reads and summarized them using either featureCounts from

the Rsubread package [13] or StringTie [23] and performed the statistical

tests on the resulting coverage matrices using limma and ballgown [22] re-

spectively. We performed the ballgown statistical test at the exon-level as

well as the transcript-level. We performed the feature-level analyses using

the complete annotation and with an annotation set missing 20% randomly

selected transcripts (8.28% unique exons missing). We then used derfinder to

find the ERs from the same HISAT alignments as well as from Rail-RNA [26]

output and performed the statistical test with limma. For all statistical tests we

controlled the FDR at 5% and we repeated the simulation three times.

Table 2.1 shows the range of the empirical power, false positive rate (FPR)
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and false discovery rate (FDR) for all these methods based on the three sim-

ulation replicates. derfinder’s expressed region approach resulted in over-

lapping empirical power ranges to the exon-level methods that are supplied

the complete annotation. The exon-level methods had a 18% to 27% loss in

power when using the incomplete annotation set compared to the complete

set even though only 8.28% of the unique exons were missing. derfinder,

being annotation-agnostic, does not rely on having the complete annotation

but did show increased FPR and FDR compared to the exon-level methods.

We recommend performing sensitivity analyses of the cutoff parameter used

for defining ERs or the FDR control in the statistical method used to determine

which ERs are differentially expressed (i.e. DERs). Transcript-level analyses

had the lowest FPR and FDR but also the lowest power. Note that we only

performed transcript expression quantification with StringTie and did not

use the data to determine new transcripts. Doing so resulted in a much larger

transcript set than originally present in the data: 3,900 in the original set

versus 15,920 (average for the three replicates using the complete annotation).

Supplementary Section 2.11.6.1 shows the results when using DEseq2 or

edgeR-robust for performing the statistical tests. Figure 2.8 shows the mean

empirical power against the observed FDR for the different combinations of

methods when controlling the FDR at 1%, 5%, 10%, 15% and 20%. Results

with derfinder are among the set with the highest empirical power, at the

cost of a higher observed FDR than what was controlled for.

Identifying ERs uses computational resources and runs in similar time

to summarization steps required for the exon-level pipelines used in this
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Figure 2.8: Mean empirical power versus observed False Discovery Rate (FDR)
across the 3 simulation replicates for a combination of statistical and summary
methods. For FDR cutoffs of 1, 5, 10, 15 and 20% the mean empirical power and FDR
across the 3 simulation replicates is displayed for the combination of statistical method
(ballgown at exon or transcript level, limma, DESeq2, edgeR-robust) the summary
method (derfinder, featureCounts (fC), StringTie (sT)) and whether the annotation
used was complete or not (complete, incomplete).

simulation (Supplementary Section 2.11.6.2) and is the fastest when using

BigWig files such as those produced by Rail-RNA. These results suggest that

the derfinder approach performs well when differentially expressed features

overlap known annotation and appear in unannotated regions of the genome.

If you are only interested in studying known regions, other methods have

better FDR control than derfinder as shown in Figure 2.8.
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2.5 Discussion

Here we introduced the derfinder statistical software for performing genome-

scale annotation-agnostic RNA-seq differential expression analysis. This ap-

proach utilizes coverage-level information to identify differentially expression

regions (DERs) at the expressed region or single base-levels, and then gener-

ates useful summary statistics, visualizations and reports to further inspect

and validate candidate regions.

The reduced dependence on the transcriptome annotation permits the

discovery of novel regulated transcriptional activity, such as the expression

of intronic or intergenic sequences, which we highlight in publicly available

RNA-seq data and our previous derfinder application [20]. As shown with

a subset of GTEx, strictly intronic ERs can differentiate tissues when adjust-

ing for the expression from the nearest exonic expressed region, suggesting

that some intronic DERs may represent signal beyond run-off transcription.

Furthermore, the structure of DERs across a given gene can permit the direct

identification of differentially expressed transcripts (e.g. Figure 2.2C), provid-

ing useful information for biologists running validation experiments. Lastly,

this software and statistical approach may be useful for RNA-seq studies on

less well-studies species, where transcript annotation is especially likely to be

incomplete.

The software pipeline, starting with BAM or BigWig files, and ending with

lists of DERs, reports, and visualizations, runs at comparable speeds to exist-

ing RNA-seq analysis software. Given the appropriate computing resources,

derfinder can scale to analyze studies with several hundred samples. For
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such large studies, it will be important to correct for batch effects and po-

tentially expand derfinder’s statistical model for base-level covariates. This

approach provides a powerful intermediate analysis approach that combines

the benefits of feature counting and transcript assembly to identify differential

expression without relying on existing gene annotation.

2.6 Competing interests

The authors declare that they have no competing interests.

2.7 Funding

JTL was supported by NIH Grant 1R01GM105705, LCT was supported by Con-

sejo Nacional de Ciencia y Tecnología México 351535, and AEJ was supported

by 1R21MH109956.

2.8 Author’s contributions

AEJ, JTL, RAI conceived the software. LCT wrote the software under the

supervision of JTL and AEJ. LCT analyzed the data with the supervision of

JTL and AEJ. AN, CW and BL helped with the GTEx data analysis. All authors

contributed to writing the paper.

39



2.9 Acknowledgments

The Genotype-Tissue Expression (GTEx) Project was supported by the Com-

mon Fund of the Office of the Director of the National Institutes of Health.

Additional funds were provided by the NCI, NHGRI, NHLBI, NIDA, NIMH,

and NINDS. Donors were enrolled at Biospecimen Source Sites funded by

NCI/SAIC-Frederick, Inc. (SAIC-F) subcontracts to the National Disease Re-

search Interchange (10XS170), Roswell Park Cancer Institute (10XS171), and

Science Care, Inc. (X10S172). The Laboratory, Data Analysis, and Coordinat-

ing Center (LDACC) was funded through a contract (HHSN268201000029C)

to The Broad Institute, Inc. Biorepository operations were funded through an

SAIC-F subcontract to Van Andel Institute (10ST1035). Additional data reposi-

tory and project management were provided by SAIC-F (HHSN261200800001E).

The raw data (sequencing reads and phenotype data) used for the analyses

described in this manuscript were obtained from SRA accession number

phs000424.v6.p1 on 10/07/2015.

2.10 Additional Files

The derfinder vignettes detail how to use the software and its infrastruc-

ture. The latest versions are available at www.bioconductor.org/packages/

derfinder.

The Supplementary Methods and Results describe in more detail the R im-

plementation, the single base-level approach, and the analysis of the BrainSpan

data set with the single base-level approach. Supplementary file 1 contains the
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identified candidate single base-level DERs in CSV format (gzip compressed)

for the BrainSpan data set.

The code and log files detailing the versions of the software used for all

the analyses described in this paper is available at the Supplementary Website:

leekgroup.github.io/derSupplement.
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Supplementary Methods and Results

This document describes R implementation details of derfinder, the single

base-level approach, and results from applying the single base-level approach

to the BrainSpan data set. It also includes the simulation results when perform-

ing the statistical tests using edgeR-robust [13] or DESeq2 [14] instead of limma

[16].

2.11 Supplementary Results

2.11.1 R implementation

The derfinder package can be used for different types of analyses such as

DER finding (single base-level and ER-level approaches) as well as creating

a feature counts matrix. The overall relationship between these functions is

shown in section Flow charts subsection DER analysis flow chart of the derfinder

users guide vignette available at www.bioconductor.org/packages/derfinder.

For the single base-level approach, the main function is analyzeChr()

which makes it easier for users to run this type of analysis. This function is a

wrapper for other functions available in derfinder, as can be seen section Flow

charts subsection analyzeChr() flow chart of the derfinder users guide vignette.

It splits the data, calculates the F-statistics, identifies the null regions, and

annotates them.

The expressed regions (ERs) approach is described in section Flow charts

subsection regionMatrix() flow chart of the derfinder users guide vignette. This

type of analysis requires fewer functions, as the user only needs to load the
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data and then identify the ERs with the regionMatrix() function. The re-

gionMatrix() flow chart shows which other functions are internally used by

regionMatrix() that filter the coverage by using a mean cutoff, identify the re-

gions, and produce the region-level count matrix. The function railMatrix()

is optimized for identifying ERs from BigWig files, specially those created

with Rail-RNA (DOI: 10.1101/019067).

2.11.2 Differential expression in the developing human brain
via expressed region-level analysis

Figure 2.9 complements Figure 2.5 with the results of performing principal

component analysis of ERs found in the BrainSpan data set given the known

annotated elements they overlap with. The results are consistent regardless of

the type of ERs under study.

2.11.3 Single base-level statistical test

A single base-level resolution analysis in derfinder starts with read align-

ment and coverage calculation as done in the ER-level approach. Next, a

standard differential expression analysis is performed at each base by com-

paring nested null and alternative linear models using an F-statistic. The

statistical models may include adjustments for confounders such as library

size [48], demographic variables, and batch effects [40].

Once an F-statistic is calculated at each base, we identify differentially

expressed regions (DERs) using a “bump hunting” approach [33]. First we
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Figure 2.9: Principal components analysis reveals clusters of samples in the
BrainSpan data set. First two principal components (PCs) with samples colored
by sample type (F: Fetal or P: Postnatal) and shape given by brain region using all ERs
(top left), strictly exonic ERs (top right), ERs overlapping exons and introns (bottom
left) and strictly intergenic ERs (bottom right).

find candidate DERs by identifying regions of the genome where the base-

level F-statistics pass a genome-wide threshold (Figure 2.10 with BrainSpan

data set, see Supplementary Section 2.12.1). We then calculate a summary

statistic for each candidate region based on the length of the region and the
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size of the statistics within the region. To evaluate the statistical significance

of these candidate regions, we permute the sample labels and recompute

candidate regions and summary statistics. The result is a region-level p-value,

which can be adjusted to control the family-wise error rate. Alternatively, the

region-level p-values can be adjusted for multiple testing using standard false

discovery rate techniques [49, 50].

2.11.4 Differential expression in the developing human brain
via single base-level analysis

At the single base-level, we identified 113,691 genome-wide significant DERs

(FWER < 5%) with the same statistical models used with the ER-level analysis

described in the main text. These resulting single base-level DERs largely

distinguished the fetal and postnatal samples representing the first principal

component and 49.4% of the variance of the mean coverage levels within

the DERs (Figure 2.11). The most significant DERs map to genes previously

implicated in development, and contained many of the DERs we previously

identified in the frontal cortex in 36 independent subjects [20]. For example,

59% of our previously published 50,650 developmental DERs (and 72.6% in the

10,000 most significant) in the frontal cortex overlapped these DERs identified

in the BrainSpan data set. The potential lack of overlap may be explained by

unmodeled artifacts as there appear to be clusters in the principal components

calculated on the base resolution data (Figure 2.11, left panel).

While the majority (68.1%) of single base-level DERs overlap exclusively

exonic sequence using Ensembl database v75, we find that a fraction (22.2%)
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Figure 2.10: Finding DERs on chromosome 3 with BrainSpan data set using six
groups: Neocortical regions (NCX: DFC, VFC, MFC, OFC, M1C, S1C, IPC, A1C, STC,
ITC, V1C), Non-neocortical regions (NonNCX: HIP, AMY, STR, MD), and cerebellum
(CBC) split by whether the sample is from a fetal (F) or postnatal (P) subject. A
Boxplots for three specific bases. B F-statistics curve with regions passing the F-stat
cutoff marked as candidate DERs. C Raw coverage curves superimposed with the
candidate DERs. D Known exons (dark blue) and introns (light blue) by strand. The
third DER matches the shorter version of the second exon shown in the Tx track.
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Figure 2.11: Principal components analysis reveals clusters of samples in the
BrainSpan data set. (Left) First two principal components (PCs) with samples col-
ored by sample type (F: Fetal or P: Postnatal) and shape given by brain region. (Right)
Boxplots for PCs 1 and 2 by brain region (NCX: neocortex, HIP: hippocampus, AMY:
amygdala, STR: striatum, MD: thalamus, CBC: cerebellum) and sample type with
non-neocortex brain decomposed into its specific regions.

of the single base-level DERs map to sequence previously annotated as non-

exonic (e.g. solely intronic or intergenic). The proportion of exonic sequence is

higher than our previous analyses in the frontal cortex [20]. When the single

base-level DERs are stratified by brain region and developmental period

with the highest expression levels (Table 2.2), we find the highest degree of

unannotated regulation in the cerebellum, the brain region with the largest

degree of region-specific genes in a previous analyses [51]. The majority of

DERs, regardless of their annotation, are most highly expressed in fetal life,

particularly within the neocortex, hippocampus, and amygdala. Non-exonic

expression might be due to incomplete transcript annotation in reference

databases, background expression, or previously undetected artifacts.
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Table 2.2: Classification of single base-level DERs in the BrainSpan project. For each
statistically significant DER, we identified the developmental period and region with
the highest average expression levels, stratified by annotation relative to the Ensembl
gene database. NCX: neocortex, HIP: hippocampus, AMY: amygdala, STR: striatum,
MD: thalamus, CBC: cerebellum. Region assignment is prioritized by exon > intron
> intergenic.

Group Exonic Intergenic Intronic Total

NCX Fetal 15583 1946 1196 18725
Postnatal 2750 882 415 4047

HIP Fetal 12511 889 523 13923
Postnatal 1021 237 144 1402

AMY Fetal 14705 1178 727 16610
Postnatal 1193 229 167 1589

STR Fetal 6952 1706 1199 9857
Postnatal 4734 1060 905 6699

MD Fetal 4671 890 431 5992
Postnatal 2922 425 348 3695

CBC Fetal 9984 1815 1118 12917
Postnatal 11382 2932 3921 18235

2.11.5 Exploratory analysis of the cutoff used for the expressed
regions-level analysis in the developing human brain

The cutoff used in the expressed regions-level derfinder analysis impacts

how many ERs are found (Figure 2.12A), their length in base pairs (width,

Figure 2.12B). It can also affect the percent of the known annotation that at

least overlaps one ER (Figure 2.12C) and conversely the percent of ERs that

overlap at least one known exon (Figure 2.12D). Figure 2.12 shows the effect

of the cutoff used with the BrainSpan data set for a range of cutoffs from 0.025

to 0.5 in increments of 0.025. Note that this data set was already normalized

to a library size of 1 million reads. We recommend choosing a cutoff in the
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elbow of these curves. In Section 2.4.6 we present the results for cutoffs 0.1

and 0.25 which are at the beginning and the end of the elbow, respectively.
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Figure 2.12: Exploratory analysis of the expressed regions cutoff used for the
BrainSpan data set. A Relationship between number of ERs of at least 6 base-pairs in
length against the cutoff used in Figure 2.2A. B Distribution of the width of the ERs
for each cutoff summarized by quantiles in 10% increments and log10 transformed. C
Percent of ENSEMBL v75 exons overlapping at least one ER by cutoff. D Percent of
ERs overlapping at least one ENSEMBL v75 exon by cutoff.
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2.11.6 Simulation analysis

2.11.6.1 Simulation results with DESeq2 or edgeR-robust

Table 2.3 shows the empirical power, false positive rate (FPR) and false discov-

ery rate (FDR) for the different analysis pipelines that result in a count matrix

which we analyzed with DESeq2 [14] or edgeR-robust [18] while controlling

the FDR to 5%. The observed power for edgeR-robust is slightly higher than

the corresponding results using DESeq2 [14]. The observed FPR and FDR with

edgeR-robust are higher than in the DESeq2 results, with overlapping ranges

for the derfinder analyses and non-overlapping ones when summarizing the

data with featureCounts [13].

2.11.6.2 Timing and computational resources used

Table 2.4 shows a summary of the computational resources used for the

different pipelines used in the simulation as well as the time for running them.

In general, the maximum memory per core is low (most are below 3.2 GB)

regardless of the analysis step. The exception is alignment with Rail-RNA

because of how our computing cluster measures memory usage: it artificially

increases when processes spawn shared-many sub-processes by counting

more than once the memory used by shared objects. Time-wise all analysis

steps except for alignment take only 11 minutes at most. Notably, the ER-level

approach is much faster with Rail-RNA output than with HISAT output. This is

because derfinder can load the data much faster from BigWig files than from

BAM alignment files and the railMatrix has been optimized for the BigWig

files that Rail-RNA produces. In this particular simulation, Rail-RNA is slower
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than HISAT for aligning reads, but this is expected since Rail-RNA is better

suited at analyzing larger data sets in the cloud and decreasing false positives

when determining new splice junctions. This is reflected on Table 2.1 and 2.3

with slightly reduced FPR and FDR when using Rail-RNA compared to HISAT.

The timing results for each computing job are available in the Supplementary

Website.

Table 2.4: Summary of computing resources required for each analysis step for the
different simulation pipelines. This table shows the maximum memory (GB) per
core, the time in minutes to run the analysis with all jobs running sequentially and
the maximum number of cores used in any step of the simulation analysis for the
different pipelines. Note that the ERs (H), the feature-level counts and ballgown
pipelines rely on HISAT alignments. Rail-RNA is abbreviated as (R).

Max memory
by core (GB)

Time
(minutes)

Peak
cores

Pipeline Analysis step

(2.8-3.1) (2.1-3.2) 10 ER-level (R) Align prep
(32.8-39.1) (137.6-218.4) 10 ER-level (R) Align
(3.2-3.2) (47.2-72.1) 40 HISAT Align
(1.4-1.4) (1.5-1.5) 1 ER-level (R) Summarize
(0.6-0.6) (1.3-1.9) 1 ER-level (R) Statistical tests
(0.8-0.8) (5-7) 4 ER-level (H) Summarize
(0.6-0.6) (1.5-1.9) 1 ER-level (H) Statistical tests
(2.2-2.2) (1.6-1.6) 8 Feature

counts
Summarize

(0.6-0.6) (3.7-5.3) 2 Feature
counts

Statistical tests

(2.1-2.1) (8.7-11) 80 StringTie
Ballgown

Summarize

(0.7-0.7) (0.7-0.8) 2 StringTie
Ballgown

Statistical tests
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2.12 Supplementary Methods

2.12.1 single base-level derfinder

The single base-level approach implemented in derfinder requires two mod-

els. The alternative model (3.2) contains an intercept, the primary covariate

of interest, and optionally adjustment variables. The primary variable can be

as simple as a case-control variable or a more complicated model including

smoothing functions (e.g. splines) over time. The adjustment variables can

include a library size normalization factor for raw data and optionally other

potential confounders like age, sex, and batch variables. There are differ-

ent library size normalization factors you can consider using and derfinder

implements a version in the sampleDepth function based on Paulson et. al

[52].

yij = αi +
n

∑
p=1

βipXjp +
m

∑
q=1

γiqZjq + ϵij (2.3)

In both models yij is the scaled log2 base-level coverage for genomic po-

sition i and sample j. That is, yij = log2

(
coverageij + scaling factor

)
. The

model is completed by the n group effects fii, m adjustment variable effects fli

and potentially correlated measurement error ϵ. The null model (3.1) is nested

within model (3.2) and contains only the intercept and adjustment variables.

yij = αi +
m

∑
q=1

γiqZjq + ϵij (2.4)

derfinder uses a fixed design matrix, testing the same hypothesis at every
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base. This permits fast vectorized differential expression analysis. At each base

we compute a moderated F-statistic [16] of the form in equation (2.5), where

RSS0i and RSS1i are the residual sum of squares of the null and alternative

models for base i. Furthermore, df0 and df1 are the degrees of freedom for the

null (3.1) and alternative (3.2) models respectively, n is the number of samples,

and an offset can be used for smaller experiments to shrink large F-statistics

that may be driven by few biological replicates that cluster tightly.

Fi =
(RSS0i − RSS1i)/(df1 − df0)

offset + (RSS1i/(n − df1))
(2.5)

We then perform “bump hunting” adapted to Rle objects in order to

identify candidate DERs, Rk. Candidate DERs are defined as contiguous

sets of bases where Fi > T for a fixed threshold T. We then calculate an “area”

statistic for each candidate DER which is the sum of the F-statistics above the

threshold within the region: Sk = ∑j∈Rk
Fj (Figure 2.10B). We have previously

applied this approach to identify local differentially and variably methylated

regions and more long range changes in methylation [33, 53, 54]. One key

difference compared to previous implementations in DNA methylation data is

that we do not explicitly smooth the F-statistics, allowing for precise discovery

of intron-exon boundaries in the data (Figure 2.10C).

Permutation analysis generates statistical significance for each of these

candidate DERs by permuting the sample labels, re-calculating the F-statistics,

identifying null candidate regions and region-level statistics in this permuted

data set, and then calculating empirical p-values and/or directly estimating

the family-wise error rate (FWER) [33]. Alternatively, the empirical p-values
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can be adjusted to control the false discovery rate (FDR) via qvalue [49].

2.12.2 Data Processing: BrainSpan data

For the single base-level analysis, we used a scaling factor of 1 and chose the

F-statistic cutoff T such that P(F > T) = 10−6. We used the same alternative

model described for the expressed region analysis in the main text. We com-

pared the alternative model to an intercept-only model, and identified DERs

using the single base-level analysis. We then calculated the mean coverage for

each significant single base-level DERs in each sample, resulting in a mean

coverage matrix (DERs by samples), and we performed principal component

analysis (PCA) on this log2-transformed matrix (after adding an offset of 1),

which were subsequently plotted in Figure 2.11.
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3.1 Abstract

Background
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Chromatin immunoprecipitation followed by sequencing (ChIP-seq) ex-

periments identify regions of the genome with binding signal for a protein of

interest. When multiple samples are collected for different conditions, treat-

ments or other covariates, researchers will ask if there is differential binding

between these conditions. The current strategies for answering this question

rely on merging peaks from the different samples which can lead to un-wanted

issues. These strategies do not take into account the variability across samples

when merging peaks.

Results

Here we show that the Bioconductor package derfinder can be used to

identify differentially bound peaks using ChIP-seq data, bypassing the peak

calling step. The software is flexible, annotation-agnostic and takes into

account the variability across all samples in determining differentially bound

peaks. We illustrate the approach using ChIP-seq data from the EpiMap study

for histone marks H3K4me3 and H3K27ac from the human brain. We identify

differentially bound peaks associated with cell type, brain region and/or age

at time of death. We show that most of the differentially bound peaks are

associated with cell type, although some are also associated with technical

covariates. We compare our approach to results from DiffBind, one of the

most widely used software for differential binding analysis.

Conclusions

derfinder can be successfully used to identify differentially bound peaks

using ChIP-seq data. This approach solves the merging peaks problem where

you have to choose between analyzing wide peaks or peak summits.
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The package is available at www.bioconductor.org/packages/derfinder.

Keywords ChIP sequencing, differential binding analysis, ChIP-seq, ATAC-

seq, ChIP-exo, DNase-seq.

3.2 Introduction

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the

main assay used to identify regions of the genome where a given protein of

interest binds to the genome. For example ChIP-seq can be used with transcrip-

tion factors to identify transcription factor binding sites. ChIP-seq experiments

nowadays are widely used as the technology has benefited from decreased

sequencing costs. These experiments typically produce high-throughput short

sequence reads for samples of interest as well as control input samples. The

control input samples can be used by peak caller software to adjust for po-

tential noise from the immunoprecipitation step. Model-based Analysis for

ChIP-seq (MACS) [1] is one of the most commonly used peak callers and is

among the best as evaluated with different metrics [2].

ChIP-seq experiments can be used to identify differential binding peaks

between two conditions or more complicated designs. The analysis pipeline

for determining differential binding peaks typically begins by using a peak-

caller such as MACS [1] for each sample (Figure 3.1A). Once the peaks for

each sample have been identified, the next step is to merge them to build a

consensus peak set (Figure 3.1B) using custom scripts or software such as

DiffBind [3, 4], diffReps [5], among others [6]. A count matrix based on this

consensus peak set is then constructed in a similar process to how RNA-seq
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count matrices are created. Then this count matrix is analyzed with software

for differential expression analysis such as DESeq2 [7]. Alternatively, window

based analyses are possible with software such as csaw [8].
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call peaks
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Figure 3.1: Current strategy for identifying differentially bound peaks between
two conditions. (A) A peak-caller is used independently for each sample from both
groups to identify peaks. (B) The peaks from all samples are merged to determine
a common set across all samples. (C) For each merged peak, a statistical test is per-
formed to determine whether the peak is differentially bound between the conditions.

The current strategy for identifying differentially bound peaks does not

take into account the variability across samples for determining peaks. This

strategy also ignores the variability among samples when merging. The

merging step is performed by sequentially identifying which unique peaks

overlap with each other (Figure 3.2A). These can lead to wide consensus

peaks as shown in Figure 3.2B for the consensus peak with the highest fold
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change that increased over time for time-course ChIP-seq experiment [9]. This

widening effect can be limited by identifying the base-pair with the highest

coverage among all samples called summit in DiffBind [3] and using only a

fixed window size surrounding this peak.
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Figure 3.2: Merging peaks by overlaps can lead to wide peaks. (A) Peaks are
merged sequentially by finding other peaks than overlap them, which can lead
to two non-overlapping peaks being merged into the same merged peak. (B) Example
of a wide merged peak with strong coverage support in the middle region of the peak
and low support on the ends. Samples are colored by age group.

Here we show that derfinder [10] can be used to directly identify the

differentially bound peaks with minor alterations to the pipeline used for

RNA-seq data as shown in Figure 3.3. We illustrate our proposed strategy

using ChIP-seq samples for histone marks H3K4me4 and H3K27ac from the

human brain. Using derfinder for identifying differentially bound peaks

skips the traditional peak calling step.

The differentially bound peaks (dbPeaks) identified with derfinder have

differential binding signal support for all bases, which is not necessarily true
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for current strategies (Figure 3.2B). Furthermore, by calculating F-statistics

derfinder does take into account the sample variability across each base-

pair when determining the dbPeaks. The proposed strategy does not rely on

input samples since it does not identify peaks per sample. Strategies that rely

on input samples can be noisy since many input samples show anomalous

signal in some regions. This problem can be addressed using software such

as GreyListChIP [11]. While derfinder is not a peak caller, given several

replicate input runs derfinder could be used to identify differential binding

between samples and input for peak calling.

3.3 Results

3.3.1 Finding differentially bound peaks with derfinder

The DER Finder methodology [12] was initially designed to identify differen-

tially expressed regions with RNA-seq data without relying on annotation.

derfinder [10] implements this method in two approaches. The single base-

level approach is based on calculating F-statistics at every single base-pair

of the genome where enough input signal is available. It aims to find sharp

boundaries which is a desired feature given the nature of RNA-seq data. We

modified the single base-level approach for ChIP-seq data, and in general any

genomic data type where the regions of interest do not have sharp boundaries.

First, we define two models: an alternative and a null model. Using

these models we calculate F-statistics at every base as shown in Figure 3.3A

which take into account the sample variability. This results in a F-statistic

curve along the genome as shown in Figure 3.3B. With RNA-seq data, we

67



would then determine differentially expressed regions at that point using

a global cutoff based on the distribution of the F-statistics. For ChIP-seq

data, we perform a smoothing step to the F-statistic curve as shown in Figure

3.3C. We then determine the differentially bound peaks using a global cutoff.

Once the differentially bound peaks (dbPeaks) have been identified, we can

identify where the dbPeaks are located in the genome and visualize them

using derfinderPlot [13] as shown in Figure 3.3D-F.

derfinder is very flexible and can identify differentially bound peaks

using different models. It can be used for time-course ChIP-seq experiments

and does not rely on input samples for determining the differentially bound

peaks. Technical details are described in Methods Section 3.5.1.

3.3.2 Differentially bound peaks for histone marks H3K4me3
and H3K27ac in the human brain

To illustrate our approach for identifying differentially bound peaks with

derfinder, we used 62 and 57 ChIP-seq samples from the EpiMap study [14]

for histone marks H3K4me3 and H3K27ac, respectively. Using fluorescence-

activated cell sorting, 31 and 28 of the samples were determined to be negative

for the NeuN antibody, respectively for H3K4me3 and H3K27ac. For both

histone marks, 29 of the samples are from anterior cingulate cortex (ACC) with

the remaining samples extracted from the dorsolateral prefrontal complex

(DLPFC). Details are shown in Table 3.1 and Supplementary Methods 3.10.

For each histone mark, we used derfinder’s single base-level approach

to identify differentially bound peaks (dbPeaks) for the 8 groups given by
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Figure 3.3: Identification of differentially bound peaks with derfinder. A Boxplots
of the coverage for 4 consecutive bases with the F-statistic for difference between
the 8 groups. B F-statistic curve across a window of chromosome 1. C Smoothed
F-statistic curve across the same window. Regions above the cutoff are labeled as
candidate differentially bound peaks (dbPeaks). D Raw sample coverage plots with
candidate dbPeaks highlighted. E Known gene and F transcripts for this window
of chromosome 1. Known exons (dark blue) and introns (light blue) are shown by
strand. The data is from the H3K4me3 histone mark.
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Table 3.1: Sample information from the EpiMap study for histone marks H3K4me3
and H3K27ac. Further information about these samples is available at Supplementary
Methods 3.10.

Histone
mark

Brain
region

NeuN
antibody

Number of
samples

H3K4me3 ACC negative 14
positive 15

DLPFC negative 17
positive 16

H3K27ac ACC negative 14
positive 15

DLPFC negative 14
positive 14

cell type, brain region, and age at time of death. We smoothed the F-statistics

using a window of 300 base-pairs. We then identified the set of candidate

dbPeaks with a family-wise error rate (FWER) adjusted p-value less than

0.05. This resulted in 29,939 and 204,026 dbPeaks for H3K4me3 and H3K27ac

histone marks with median lengths of 1,292 and 1,135 base-pairs, respectively.

The minimum and maximum lengths in base-pairs are 182 and 24,598 for

H3K4me3 and 141 and 65,971 for H3K27ac.

The dbPeaks for these histone marks overlap in different ways Ensembl

v75 [15]’s features as shown in Figure 3.4. For the histone mark H3K4me3,

the dbPeaks overlapping known exons and introns are the most frequent

group (33%, Figure 3.4A) and span 20.5 mega base-pairs (mb) of the genome

representing 38.95% of all bases spanned by these dbPeaks. For H3K27ac,

most of the dbPeaks overlap exclusively known intronic regions (51.1%, Figure

3.4B) and in total the dbPeaks cover a much larger portion of the genome:

347.9 versus 52.6 mb. For both histone marks, dbPeaks that overlap all types
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of features show an increase in percent of the total by length of the genome

spanned with respect to the total number of peaks (1.42 and 2.67 fold change).

This is expected since the peaks have to be long to cover all three types of

features.

H3K4me3 dbPeaks overlap with Ensembl v75

exon intergenic

intron
0

7295
24.4%
9.2 mb

5126
17.1%
5.7 mb

0

420
1.2%

0.5 mb

9886
33%

20.5 mb

1232
4.1%

1.8 mb

5980
20%

14.9 mb

H3K27ac dbPeaks overlap with Ensembl v75

exon intergenic

intron
0

104321
51.1%

155.6 mb

54976
27%

74 mb

0

2503
1.3%

2.9 mb

33903
16.6%

89.3 mb

2884
1.4%

5.8 mb

5439
2.7%

20.2 mb

(A) (B)

Figure 3.4: Overlap between differentially bound peaks for H3K4me3 and
H3K27ac marks and Ensembl v75 features. Overlaps are shown in venn diagrams
for (A) H3K4me3 and (B) H3K27ac differentially bound peaks (dbPeaks) by cell type,
brain region or age at death. Percent of dbPeaks and total mega base-pairs spanned
are shown below the number of dbPeaks.

3.3.2.1 Characterization of differentially bound peaks by modeled covari-
ates

For each of histone marks we calculated a count matrix summarizing the

base-level information as described in Methods Section 3.5.2. Using this log2-

transformed matrix, we fit a linear model to using an intercept term and one

of the main covariates: brain region, cell type, or age at death (continuous).

For each covariate we identified the dbPeaks that are significantly associated
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(FWER < 0.05) with the covariate. 89.2% and 94.5% of the dbPeaks are only

associated with cell type for H3K4me3 and H3K27ac (Figure 3.9).
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Figure 3.5: Boxplots showing the first principal component for dbPeaks with sig-
nificant associations with a modeled covariate. (A) H3K4me and (B) H3K27ac db-
Peaks associated with brain region (1), cell type (2) and age at death (3). ACC samples
are shown in blue, DLPFC samples in green. NeuN- samples are shown with circles,
NeuN+ samples with squares. Darker colors and lighter colors are used for sam-
ples below and above the median age at time of death, respectively. The number of
dbPeaks for each principal component analysis is given in Figure 3.9.

For the dbPeaks associated with each of the modeled covariates (brain

region, cell type, age at death), we performed a principal component analysis

using the log2-transformed matrix. For H3K4me3, the first principal com-

ponent (PC) explains at least 67.8% of the variance (Figure 3.5A) while the

equivalent analysis for H3K27ac showed that the first PC explains at most
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60% of the variance (Figure 3.5B). For age at death, this drop can be explained

by a decrease in the percent of dbPeaks strictly associated with age at death

between H3K4me3 and H3K27ac (Figure 3.9). When performing the principal

component analysis with all dbPeaks, the first PC explains 77.9% and 58.8% of

the variance for H3K4me3 and H3K27ac dbPeaks and is markedly associated

with cell type.

3.3.2.2 Example differentially bound peaks highlight problems with the
current strategy for merging peaks

Figure 3.6: Coverage plots for average coverage levels for differentially bound
peaks. (A) The sixth strongest H3K4me3 dbPeak and (B) second strongest H3K27ac
dbPeak associated with cell type. (C) and (D) are two other H3K4me3 dbPeaks that
show differences by cell type. Lines are colored by group with NeuN- samples shown
in lighter colors. ACC and DLPFC abbreviated as A and D, NeuN- and NeuN+ as N-
and N+, and below or above the median age at time of death as - and +, respectively.

The strong association with cell type is remarkable when visually exploring
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the resulting dbPeaks as shown in Figure 3.6. For example, the dbPeak with

the sixth strongest association with cell type for H3K4me3 shown in Figure

3.6A and it overlaps RGAG1, a gene that has been associated to non-syndromic

X-linked intellectual disability [16]. The H3K27ac dbPeak shown in Figure 3.6B

overlaps SLC1A3, a gene that encodes a high affinity glutamate transporter

family known to be important for astrocytes [17].

In Figure 3.6 the mean coverage for all groups by cell type is very similar.

In Figure 3.6A the NeuN+ samples compose a coverage curve with multiple

summits and would likely be broken into different consensus peaks when

using DiffBind with the summits argument to control the widening effect of

the merging step. This could be a problem and it shows that with the current

strategy for identify differentially bound peaks an arbitrary choice leads to

either wide consensus peaks (Figure 3.2B), or to splitting peaks.

3.3.2.3 Variation in the differentially bound peaks

We produced a similar figure to Figure 3C from Geuvadis RNA-seq analysis

[18] and reproduced in Figure 3 of the Rail-RNA software paper [19]. For each

histone mark, we used the log2-transformed count matrix and fit a model

for each dbPeak with the 3 modeled covariates (brain region, cell type, age

at death) as well as 12 other covariates, some of which are biological (BMI,

sex) and some of which are technical such as flowcell batch and total mapped

reads. Figure 3.7 shows the percent of variance explained for all the dbPeaks

by each of these 15 covariates and the residual variation.

In contrast to the Geuvadis RNA-seq data [18, 19], residual variation is
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Figure 3.7: Boxplots of percentage of variation explained by the 3 modeled covari-
ates, 12 other covariates, and residual variation. Boxplots for (A) H3K4me3 and (B)
H3K27ac dbPeaks.

not the most important factor. This is expected since we are only analyzing

regions of the genome that showed differential binding by brain region, cell

type and/or age at death. For both histone marks, cell type explains most of

the variance and it does so more strongly for H3K4me3. Notably, the total

number of mapped reads explains more of the variability than brain region and

age at death. This effect is weaker for H3K27ac, whose samples were prepared

such that around 80 million uniquely mapping reads would be generated

versus 40 million H3K4me3. However, the effect of the individual, flowcell

batch and library batch covariates is stronger for H3K27ac than H3K4me3.

Overall, the technical covariates are more closely clustered in H3K27ac than

in H3K4me (Figure 3.11).
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In the Rail-RNA re-analysis, the figure did not show differences by annota-

tion features. Figure 3.10 shows the equivalent annotation breakdown, and

while most the picture is similar across annotation features there is a difference

in the percent of variance explained by the total mapped reads. This difference

is most marked when focusing on the dbPeaks overlapping only known exons

and introns.
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Figure 3.8: Scatterplots between the total coverage (log2) and un-modeled covari-
ates. (A) H3K4me3 dbPeak from Figure 3.6C has the third strongest association with
post-mortem interval (PMI). (B) H3K4me3 dbPeak from Figure 3.6D has the fifth
strongest association with total mapped reads. The -log10 Bonferroni adjusted p-value
for adding PMI or total mapped reads to a model accounting for brain region, cell
type and age at death is shown. Colors and shapes are as described in Figure 3.5.

For each dbPeak and each of the 12 un-modeled covariates, we sequentially

fit a model testing the contribution of the un-modeled covariate against a null

model with brain region, cell type and age at death. We FWER adjusted the

resulting p-values and for each of the un-modeled covariates we identified

the set of dbPeaks significantly associated with said covariate (FWER < 0.05)
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controlling for brain region, cell type and age at death. Figure 3.8 shows two

H3K4me3 dbPeaks that are associated with post-mortem interval (PMI, Figure

3.8A) and the total number of mapped reads (Figure 3.8B); the -log10 p-value

is shown in each panel. These two dbPeaks overlap STAP2 associated with

T-cells [20] and LRIG1 that has been linked to inhibition of cancer cell growth

[21]. These dbPeaks are associated with cell type as shown in Figure 3.6C and

D, respectively. Notably, the cell type association is clear in Figure 3.8B with

no apparent interaction with the total number of mapped reads.

3.3.3 Comparison with DiffBind derived differentially bound
peaks

For each histone mark, we identified peaks using MACS [1] and performed the

differential binding analysis using DiffBind while controlling the FWER at

5% as described in Methods Section 3.5.4. We focused on DiffBind since it

is the most widely currently used software for differential binding analysis

and is one of the best performers for studies with biological replicates [6]. For

H3K4me3, 100,326 (70.6%) peaks were present in at least 2 samples (including

the input sample) out of 142,102 peaks. The corresponding number of peaks

for H3K27ac are 402,932 (71.2%) out of 565,787.

We ran the DiffBind analysis twice: once without restricting the analysis

to peak summits, and the second with 500 base-pair summits. The summit

windows significantly associated with cell type (FWER < 0.05) overlap 91.7%

and 92.95% of the time the differentially bound peaks as identified without re-

stricting DiffBind’s analysis to the peak summits for H3K4me3 and H3K27ac

respectively. The inverse is similar (92.16% and 95.17%), thus the DiffBind
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results are highly consistent regardless of how consensus peaks are derived.

We explored whether the candidate dbPeaks derived from derfinder and

DiffBind overlapped or not, alternating which set was used as the query

(reference) and which one was used as the target as shown in Table 3.2. For

H3K4me3 90.88% of the DiffBind consensus peaks derived without using

summits (wide peaks) overlap at least one candidate dbPeak from derfinder

(94.17% for H3K27ac). Thus most DiffBind consensus peaks are tested for

differential binding in both methods. However, the inverse is not true as only

47.15% of the candidate H3K4me3 derfinder dbPeaks overlap a peak tested

with DiffBind (42.12% for H3K27ac). These percents drop of when comparing

against the peak summits as expected by the fact that the peak summits are

mostly 500 base-pairs long.

When considering the significant dbPeaks (FWER < 0.05) from both meth-

ods, only 30.33% of DiffBind’s wide significant dbPeaks for H3K4me3 overlap

derfinder’s significant dbPeaks (37.56% for H3k27ac). This can be explained

by the fact that DiffBind labels as significant 69.4% and 76.8% of the consensus

wide peaks while derfinder determined that 5.7% and 4.6% of the candidate

peaks were significantly differentially bound for H3K4me3 and H3K27ac.

Thus derfinder is more conservative in which candidate peaks are identified

as differentially bound. The reciprocal comparison shows that 76.53% and

75.23% of derfinder’s dbPeaks overlap a DiffBind wide dbPeak for these his-

tone marks. These percents drop when comparing against DiffBind’s summit

dbPeaks.

We created 1 kilo base-pairs (kb) non-overlapping windows along the
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Table 3.3: Percent of 1 kb windows of the genome overlapping differentially
bound peaks. Percent of genome windows (1 kb each) that overlap at least one
dbPeak using derfinder or DiffBind. All candidates dbPeaks are shown first, then
the dbPeaks that are significant at FWER < 5%.

Histone
mark

Significant
derfinder

DiffBind
no summits

DiffBind
with summits

H3K4me3 No 8.95 6.6 4.57
Yes 2.56 4.68 3.25

H3K27ac No 39.89 25.98 16.47
Yes 15.6 21.42 13

genome and calculated the percent of them that overlap a candidate dbPeak

as well as dbPeaks from all three methods as shown in Table 3.3. The results

show that derfinder considers candidate peaks in a larger percent of these 1

kb windows than DiffBind. When considering only the significant dbPeaks,

the percent of 1 kb windows overlapping derfinder dbPeaks is comparable

to the percent of windows with DiffBind’s summit dbPeaks and smaller

than DiffBind’s wide peaks. This is result is consistent with the widening

effect from merging peaks and the property of derfinder’s dbPeaks that all

base-pairs have differential binding signal.

3.4 Conclusions

Here we illustrated how derfinder [10] can be used to identify differentially

bound peaks (dbPeaks) using ChIP-seq data. This strategy for identifying

dbPeaks resolves the widening effect produced by merging peaks and the

limitations of focusing the analysis on peak summits. The dbPeaks identified

with derfinder have signal in all base-pairs which might not be the case for
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peaks derived from the currently available methods. This could lead to a

reduction in false positives in downstream analyses by avoiding regions of

the genome with low differential binding signal.

Using data from the EpiMap study [14] we showed how to identify dbPeaks

for more than 2 groups. We identified dbPeaks for histone marks H3K4me3

and H3K27ac based on 8 groups given by brain region, cell type and age at

time of death. These dbPeaks are mostly associated with cell type (NeuN

negative or positive) as it explains most of the variation in these peaks fol-

lowed by technical covariates. The overall residual variation is smaller than

in the Geuvadis RNA-seq experiment [18] due to how the dbPeaks are selected

versus using all genes. In a comparison with DiffBind [3] we showed that

derfinder is more conservative yet derfinder leads to similar percent of the

genome overlapping dbPeaks when compared against the merging strategy

that focuses on peak summits.

derfinder is flexible, annotation-agnostic and can be used for a wide vari-

ety of models, including time-course analyses and for more than 2 conditions.

derfinder can be used for both sharp and wide ChIP enrichment and defines

the regions based on the data at hand, but could be used for pre-defined

regions thus making it more versatile than most available methods for dif-

ferential binding analysis [6]. The core derfinder functionality is similar for

RNA-seq and ChIP-seq analyses, which could be an advantage for users ana-

lyzing both types of data sources. With the changes we made to derfinder

for ChIP-seq data we believe that it can be used for determining regions that

have differential signal between two or more conditions with genomic assays
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such as ATAC-seq, ChIP-exo, DNase-seq [22], among others. Note that no

input samples are needed for derfinder and that it can be used with bigWig

coverage files instead of BAM files.

3.5 Methods

3.5.1 Changes in derfinder for ChIP-seq data

In order for derfinder [10] to allow smoothing of the F-statistics, we changed

the findRegions() code. The new version of this function has additional

parameters to control how to perform the smoothing. By default, when

smoothing is used in derfinder, the smoothing is performed with the func-

tion locfitByCluster() from the bumphunter package [23]. We recommend

setting the minNum and minInSpan arguments to the read length and the bpSpan

argument to the expected peak size. Note that smoothing is disabled by de-

fault for backward compatibility with RNA-seq users.

3.5.2 Identification of dbPeaks from the EpiMap study with
derfinder

We downloaded the BAM files and sample phenotype data provided by

EpiMap [14]. We adjusted the coverage of each sample based on the total

number of mapped reads to libraries of 80 million base-pairs. For each histone

mark, we calculated F-statistics for the base-pairs that had at least one sample

with coverage greater or equal to 10 reads. The F-statistics are derived from an

intercept-only null model (3.1) for where yij corresponds to the log2 adjusted
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coverage for base-pair i of sample j with an offset factor of 32.

yij = αi + ϵij (3.1)

For the alternative model (3.2), we used a model with covariates for the

brain region (reference: ACC), cell type (reference: NeuN-), and age at time of

death.

yij = αi + βi1BrainRegionj + βi2CellTypej + βi3AgeAtDeathj + ϵij (3.2)

The F-statistics were smoothed with locfitByCluster() with arguments

minNum = 100, minInSpan = 100 and bpSpan = 300. The global F-statistic cutoff

used corresponds to a p-value of 0.01, candidate peaks were clustered using

maxClusterGap = 3000, and a total of 100 permutations were used to determine

family-wise error rate (FWER) adjusted p-values. A cutoff of 0.05 was used

to determine the differentially bound peaks. Results were first explored with

reports created with regionReport [24].

3.5.3 Analysis of dbPeaks identified with derfinder

We determined the overlap between significant dbPeaks for each histone mark

and Ensembl v75 [15] features using derfinder [10] as shown in Figure 3.4.

For each histone mark, we calculated the total coverage divided by the

read length for each significant dbPeak in each sample, resulting in a count

matrix (dbPeaks by samples). We log2-transformed this matrix (after adding
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an offset of 1) and selected only the dbPeaks with a FWER adjusted p-value

less than 0.05.

For each significant dbPeak we calculated the Bonferroni adjusted p-value

from adding brain region, cell type, or age at death (continuous) as a covariate

to an intercept-only model using the log2-transformed matrix for the corre-

sponding histone mark. The dbPeaks that associated (FWER < 0.05) with

these three covariates are shown in Figure 3.9 and were used in three separate

principal component analysis (PCA) as shown in Figure 3.5. Venn diagrams

were created by modifying code from limma [25].

Similarly, for each significant dbPeak we calculated the Bonferroni adjusted

p-value from adding one of the 12 other covariates shown in Figure 3.7 to

a model with the three main covariates. The resulting Bonferroni adjusted

p-values were used for clustering these 12 un-modeled covariates (Figure

3.11). We made coverage plots with derfinderPlot [13] and scatterplots with

ggplot2 [26] for the top 50 dbPeaks that are associated (FWER < 0.05) with

each of the 15 covariates. Some of them are highlighted in Figures 3.6 and 3.8.

We also performed a joint model with all 15 covariates using the log2-

transformed matrix for each significant dbPeak. We calculated the percent of

variance explained by each covariate and summarized the results in boxplots

as displayed in Figure 3.7.

3.5.4 Identification of dbPeaks with DiffBind

Peaks were called with MACS version 2.1.0 [1] for each sample using the cor-

responding input sample for the cell type analyzed. MACS was used with
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arguments --tsize = 100, -bw = 230. For each histone mark we merged the

peaks using DiffBind [3] with argument minOverlap = 2 and using the input

sample for the corresponding cell type. Differential binding between cell types

was determined using DESeq2 [7] as implemented in DiffBind. All consensus

peaks were retrieved using the argument th = 1 in the dba.report() function.

The resulting p-values were Bonferroni adjusted to control the FWER and a

cutoff of 0.05 was used to determine the differentially bound peaks. For the

DiffBind analysis that controlled the widening effect produced by merging

peaks, we used the argument summits = 250 in the function dba.count().

Genome tiles were created using using GenomicRanges [27] and this same

package was used to overlap derfinder and DiffBind results.
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Supplementary Methods and Results

3.9 Supplementary Results

Figure 3.9 shows whether the significant dbPeaks for each histone mark are

associated (FWER < 0.05) with brain region, cell type, or age at death. No-

tably, 89.2% and 94.5% of the dbPeaks are only associated with cell type for

H3K4me3 and H3K27ac.

H3K4me3 dbPeaks by main covariates

Brain region Cell type

Age at death
1499

778

26705
89.2%

882

15

2

58

0

H3K27ac dbPeaks by main covariates

Brain region Cell type

Age at death
2833

1359

193768
94.5%

4596

422

43

989

16

(A) (B)

Figure 3.9: Differentially bound peaks for H3K4me3 and H3K27ac marks clas-
sified by the modeled covariates. (A) H3K4me3 and (B) H3K27ac dbPeaks. All
dbPeaks by covariate were used in Figure 3.5.

Figure 3.10 shows the decomposition of Figure 3.7 by Ensembl v75 features

shown on Figure 3.4. Interestingly, the dbPeaks that only overlap exonic and

intronic sequences (Figure 3.10, row 4) show an increase percent of variation

explained by the total mapped reads.

Figure 3.11 shows the relationship between the 12 un-modeled covariates
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Figure 3.10: Boxplots of percentage of variation explained by the 3 modeled covari-
ates, 12 other covariates, and residual variation by annotation. (A) H3K4me3 and
(B) H3K27ac dbPeaks overlapping Ensembl v75 strictly exonic (1), strictly intronic (2),
strictly intergenic (3), or exonic and intronic (4) features. The number of dbPeaks per
annotation feature are as given in Figure 3.4.

when controlling for brain region, cell type and age at death as clustered by

correlation between the -log10 Bonferroni adjusted p-values. For both marks,

height, weight, sex and BMI are clustered together as well as individual id

and library batch. The technical covariates are overall more closely related in

H3K27ac than in H3K4me3.

3.10 Supplementary Methods

The following paragraph summarizes the sample information from the EpiMap

study [14].

Samples for the EpiMap study come from the National Institute of Mental
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Figure 3.11: Hierarchical clustering of the 12 un-modeled covariates. Clustering of
the -log10 Bonferroni adjusted p-values for the 12 un-modeled covariates compared
sequentially to a model with brain region, cell type and age shown for (A) H3K4me3
and (B) H3K27ac dbPeaks.

Health (NIMH) Human Brain Collection Core (HBCC)

http://www.nimh.nih.gov/labs-at-nimh/research-areas/research-support-services/

hbcc/human-brain-collection-core-hbcc.shtml. The human brain speci-

mens were collected in the Section on Neuropathology of the Clinical Brain

Disorders Branch at NIMH. Samples were dissected at the HBCC and shipped

to the Ichan School of Medicine - Mt Sinai for sample preparation. Samples

for the EpiMap study were dissected from a combination of right and left

hemisphere of fresh frozen coronal slabs cut at autopsy from the dorsolat-

eral prefrontal cortex (DLPFC) and the anterior cingulate cortex (ACC) from

Brodmann areas 9_10 and 24_32 respectively. For nuclei isolation the mouse

monoclonal antibody (clone A60) against neuronal marker NeuN (Millipore,

MAB377X) was used. Immuno-tagging with NeuN antibody conjugated to
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AlexaFluor 488 allowed for sorting of the nuclei into 2 fractions: NeuN+ (neu-

ronal) nuclei and NeuN- (non-neuronal) nuclei, using fluorescence-activated

cell sorting (FACS). Chromatin immunoprecipitation (ChIP) assays for hi-

stone marks H3K4me3 and H3K27ac were carried out using Native ChIP.

Micrococal Nuclease (MNase) (Sigma, N3755) treatment was used to digest

chromatin into mononucleosomes. The following antibodies were used for

chromatin pull-down: anti-H3K4me3 (Cell Signaling, Cat # 9751BC, lot 7) and

anti-H3K27ac (Active Motif, Cat# 39133, Lot # 01613007). Agilent Bioanalyzer,

Qubit concentration measurement and pQCR were used to quality control

the ChIP results. For sequencing, libraries were prepared in batches of 8

samples using KAPA Hyper Prep Kit and BIOO Scientific Adapters. After

each step, DNA was purified using AMPure beads (SPRI select) and final

library size selection (200-350 bp) was performed using Pippin Prep. Libraries

were barcoded based on the sequencing randomization scheme to allow for

multiplexing. The presence of the main library product (275 bp) and the ab-

sence of adapter dimer (125 bp) was confirmed using Agilent Bioanalyzer as a

quality control step. Libraries were sequenced with the goal that 40 millions of

uniquely mapped paired end reads for H3K4me3 and 80 millions of uniquely

mapped paired end reads for H3K27ac. Therefore, samples were sequenced

in batches of 8 (for H3K4me3) or 4 (for H3K27ac) per lane of the Illumina flow

cell. A pool of 4 or 8 barcoded libraries were layered on a random selection

of one of the eight lanes of the Illumina flow cell. One-hundred base pair

paired-end reads were obtained on a HiSeq 2500 in the Mount Sinai Genomics

core facility. Paired FASTQ files were aligned to the Human Genome (HG19)

with BWA mem (version 0.7.8). Picard (version 1.112) MarkDups was used
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to mark duplicates in the bam fies and multi-mapped reads and improperly

paired reads were filtered out with samtools view -f 2 -F 2828 -q 1

(version 1.1).
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4.1 Abstract

regionReport is an R package for generating detailed interactive reports from

region-level genomic analyses as well as feature-level RNA-seq results. The
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reports include quality-control checks, an overview of the results, an interac-

tive table of the genomic regions or features of interest and reproducibility

information. regionReport provides specialized reports for exploring DESeq2,

edgeR or derfinder differential expression analyses results. regionReport

is also flexible and can easily be expanded with report templates for other

analysis pipelines.

Keywords: Report, Interactive, Reproducibility, Genomics, Sequencing,

ChIP-seq, RNA-seq, Methylation, Software.

4.2 Introduction

Many analyses of genomic data result in regions along the genome that as-

sociate with a covariate of interest. These genomic regions can result from

identifying differentially bound peaks from ChIP-seq data [1], identifying

differentially methylated regions (DMRs) from DNA methylation data [2],

performing base-resolution differential expression analyses using RNA se-

quencing data [3, 4], among other analysis pipelines. The genomic regions

themselves are commonly stored in a GRanges object from GenomicRanges [5]

when working with R or the BED file format on the UCSC Genome Browser

[6]. Other information on these regions, for example summary statistics on

the magnitude of effects and statistical significance, also provide useful infor-

mation and can be stored as metadata in GRanges objects. The usage of R in

genomics is increasingly common due to the usefulness and popularity of the

Bioconductor project [7], and in the latest release (version 3.3) 300 unique pack-

ages use GenomicRanges for many workflows, demonstrating the widespread
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utility of identifying and summarizing characteristics of genomic regions.

Bioconductor is particularly strong for differential expression analyses,

with 206 packages using the Differential Expression BiocView. RNA-seq

data is commonly used to perform feature-level analyses at either the tran-

script, gene or exon levels with Bioconductor packages DESeq2 [8] and edgeR

[9, 10, 11], among others. The features can also be expressed regions identified

in an annotation-agnostic procedure by derfinder [3]. In an exploratory data

analysis of DESeq2 or edgeR results it is common to create a set of plots in order

to identify potentially problematic samples or features. For example, in such

a exploratory analysis it is common to use a dimension reduction technique

such as principal component analysis to determine if samples are clustering by

group or another variable of interest. This type of plot is useful for detecting

artifacts, such as mislabeling of samples.

Here we introduce regionReport which allows users to explore genomic

regions of interest, derfinder, DESeq2, and edgeR results through interactive

stand-alone HTML reports that can be shared with collaborators. These re-

ports are flexible enough to display plots and quality control checks within

a given experiment, but can easily be expanded to include custom visual-

izations or text describing the main conclusions of the exploratory analysis.

The resulting HTML report emphasizes reproducibility of analyses [12] by

including all the R code without obstructing the resulting plots and tables.

Alternatively, static PDF reports can be generated and easily shared among

collaborators. We envision regionReport will provide a useful tool for explor-

ing and sharing genomic region-based, DESeq2 and edgeR results from high
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chr  start end   strand  p-value
chr1 1000  2000  +       0.9

chr2 5000  8000  -       0.001

chr3 2468  2668  +       0.051

.    .     .     .       .

.    .     .     .       .

.    .     .     .       .

chrX 6000  6300  +       0.009

chrX 6500  6800  -       0.5

Genomic workflow: 

identify regions
renderReport

(A) default (B) custom

(C) derfinderReport

(D) DESeq2Report (E) edgeReport
Create HTML/PDF 

report

Figure 4.1: regionReport overview. Example region input, the appropriate
regionReport function to use, and menu of the resulting report for: (A) the gen-
eral use case, (B) a customized report, (C) derfinder results, (D) DESeq2 results and
(E) edgeR results.

throughput genomics experiments.

4.3 Methods

4.3.1 Implementation

The package includes R Markdown templates which are processed using

rmarkdown [13] and knitr [14] to produce HTML or PDF reports. HTML

reports can be styled using knitrBootstrap [15] or with rmarkdown templates

that include interactive features. The regionReport package generates a report

that includes a series of plots for checking the quality of the results and an

interactive table of with the best regions or features. Each element of the report
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(A)

(B) Clickable buttons:

show/hide code

Figure 4.2: Interactively display the code for each table/figure in the report. (A) View
by default and (B) after clicking on the "code" toggle for a section in the report. The
HTML reports include a toggle to hide/show all the R code.

has a brief explanation, although actual interpretation of the results is dataset-

and workflow-dependent. To facilitate navigation a menu is included, which

is useful for users interested in a particular section of the report. Figure 4.1A

shows the menu of the general report for a set of regions with associated p-

values. The code for each plot or table is hidden by default and can be shown

by clicking on the "code" button as shown in Figure 4.2. Further customization

of the reports can be done by providing custom code, changing the default

plots, or by modifying the R Markdown templates included in regionReport.
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4.3.2 General region report

4.3.2.1 Quality checks

This section of the report includes a variety of quality control steps which help

the user determine whether the results are sensible. The quality control steps

explore:

• P-values, Q-values, and FWER adjusted p-values

• Region width

• Region area: sum of single-base level statistics (if available)

• Mean coverage or other score variables (if available)

A combination of density plots and numerical summaries are used in these

quality checks. If there are statistically significant regions, the distributions

are compared between all regions and the significant ones. For example, the

distribution region widths might have a high density of small values for the

global results, but shifted towards higher values for the subset of significant

regions as shown in Figure 4.3.

4.3.2.2 Genomic overview

The report includes plots to visualize the location of all the regions as well

as the significant ones. Differences between them can reveal location biases.

The nearest known annotation feature for each region is summarized and

visually inspected in the report. This type of plot can be useful to quickly

check whether significant regions are concentrated in a chromosome or in an
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Figure 4.3: Distribution of region widths for all regions in the derfinder use case ex-
ample with the BrainSpan dataset. The top figure shows the region width distribution
for all regions while the bottom one shows it only for the significant regions. One line
is is shown per chromosome in each of the plots.
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Figure 4.4: Genomic overview of the annotation type for the significant regions in the
derfinder use case example with the Hippo dataset.
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annotation type. For example, Figure 4.4 shows the annotation information

for the significant regions with most regions contained inside genes, which is

expected with RNA-seq data.

4.3.2.3 Best regions

An interactive table with the top regions (500 by default) is included in this

section as shown in Figure 4.5A. This allows the user to sort the region in-

formation according to their preferred ranking option. For example, lowest

p-value, longest width, chromosome, nearest annotation feature, etc. The table

also allows the user to search and subset it interactively as shown in Figure

4.5B. A common use case is when the user wants to check if any of the regions

are near a known gene of their interest.

4.3.2.4 Reproducibility

At the end of the report, detailed information is provided on how the analysis

was performed. This includes the actual function call to generate the report,

the path where the report was generated, time spent, and the detailed R session

information including package versions of all the dependencies. An example

is shown in Figure 4.6 with the R package information truncated.

The R code for generating the plots and tables in the report is included in

the report itself, thus allowing users to manually reproduce any section of the

report, customize them, or simply change the graphical parameters to their

liking.
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(A)

(B)

Figure 4.5: Interactive table with results for the top regions in the general use case
example using bumphunter results. The interactive table can (A) show all the top
regions or (B) a subset of the results by using the search box. The table can also be
sorted by each of the different columns.
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...

Figure 4.6: Reproducibility section for a report using DESeq2 results. The reproducibil-
ity information includes the actual function call used to generate the report, the path
where the report was generated, the time it took to create the report, details about the
R session information, and the pandoc version used for rendering the HTML report.
For reports based on DESeq2 results, the version used to perform the differential
expression analysis and cutoff used are also displayed. Note that DESeq2 version used
for the analysis and for the report might differ.
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4.3.2.5 Customization

regionReport allows users to customize the reports to their liking. This can

be done in different ways depending on the amount of customization the

user is looking for. Several plots are made with ggplot2 and the user might

want to change the default theme, for example to a black and white theme

as shown in the function call in Figure 4.6. Another user might be interested

in adding code that creates more plots than the ones included by default in

the report. For example, the user might be interested in adding a MA and a

PCA plot to the default report. This can be done via the customCode argument

which results in new sections added to the menu as shown in Figure 4.1B

compared to Figure 4.1A. Further customization can be achieved by modifying

the templates included in regionReport and using the template argument.

4.3.3 derfinder report

When exploring derfinder results from the single base-level approach, for

each of the best 100 (default) DERs a plot showing the coverage per sample is

included in the report. These plots allow the user to visualize the differences

identified by derfinder along known exons, introns and isoforms. The plots

are created using derfinderPlot [16].

Due to the intrinsic variability in RNA-seq coverage data or mapping

artifacts, in situations where there are two candidate DERs that are relatively

close there might be reasons to consider them a single candidate DER and

its important to visualize them. This tailored report groups candidate DERs

into clusters based on a distance cutoff. After ranking them by their area, for
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Figure 4.7: Example region cluster plot for the derfinder use case example with the
BrainSpan dataset. Coverage curves are shown for each sample colored by their group
membership. Mean coverage curves by group, differentially expressed regions (DERs)
and known transcripts are shown in the remaining tracks.

the top 20 (default) clusters it plots tracks with the coverage by sample, the

mean coverage by group, the identified candidate DERs colored by whether

they are statistically significant, and known alternative transcripts as shown

in Figure 4.7. Figure 4.1C shows the main categories of the report generated

from a richer region dataset than in the general case.

4.3.4 DESeq2 and edgeR reports

Feature-level differential expression analyses result in a set of features (genes,

exons) with a p-value for each feature. To perform such analyses, some pheno-

type information about the samples is usually available. With this information,

you can explore the raw data to identify potentially problematic samples using

principal component analysis and sample distance plots. You can also explore
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Figure 4.8: Interactive table for top features from the DESeq2 use case example.
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the results and check the features marked as differentially expressed with MA

plots and a histogram of the p-values distribution. regionReport provides

a template that allows you to create all these plots easily for DESeq2 results

(Figure 4.1D). It has similar components to the region-level reports such as an

interactive table for the top features as shown in Figure 4.8, but also highlights

specific exploratory plots for this type of results. regionReport can also be

used for edgeR results (Figure 4.1E) resulting in very similar reports given the

internal implementation. The only difference is that reports for edgeR results

include sections for visualizing the biological coefficient of variation and the

multidimensional scaling plot of distances between feature expression profiles.

See the use cases for example reports from DESeq2 and edgeR results.

4.3.5 Operation

4.3.5.1 Installation

regionReport and required dependencies can be easily installed from Biocon-

ductor with the following commands:

source("http://bioconductor.org/biocLite.R")

biocLite("regionReport")

4.3.5.2 Input

To generate the report, the user first has to identify the regions of interest

according to their analysis workflow. For example, by performing bum-

phunting to identify DMRs with bumphunter. The report is then created using

renderReport() which is the main function in this package as shown in Figure
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4.1A,B.

For the derfinder use case, the derfinderReport() function creates the

recommended report that includes visualizations of the coverage information

for the best regions and clusters of regions. Similarly DESeq2Report() and

edgeReport() create reports for DESeq2 and edgeR results, respectively.

4.3.5.3 Output

A small example can be generated using:

example("renderReport", "regionReport", ask=FALSE)

The resulting HTML file will open in the users default browser when using

R in an interactive session. Note that alternative output formats such as PDF

files can also be generated, although they are not as dynamic and interactive

as the HTML format.

4.4 Use Cases

The supplementary website contains reports using DiffBind, bumphunter,

derfinder, DESeq2, and edgeR results. The derfinder use case is illustrated

with datasets described previously [3] which a moderately sized dataset (25

samples) and a large dataset with 484 samples. We encourage you to explore

the following example reports:

• general HTML report example using bumphunter results:

leekgroup.github.io/regionReportSupp/bumphunter-example/index.

html,
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• customized general HTML report using DiffBind results with histograms

instead of density plots:

leekgroup.github.io/regionReportSupp/DiffBind-example/index.html,

• DESeq2 HTML and PDF reports:

leekgroup.github.io/regionReportSupp/DESeq2-example/index.html,

leekgroup.github.io/regionReportSupp/DESeq2-example/DESeq2Report.

pdf,

• edgeR HTML and PDF reports using the custom ggplot2 theme

theme_linedraw():

leekgroup.github.io/regionReportSupp/edgeR-example/index.html,

leekgroup.github.io/regionReportSupp/edgeR-example/edgeReport.

pdf,

• edgeR-robust HTML report:

leekgroup.github.io/regionReportSupp/edgeR-robust-example/index.

html,

• HTML report using derfinder results with the BrainSpan dataset (484

samples) and styled with knitrBootstrap:

leekgroup.github.io/regionReportSupp/brainspan/basicExploration.

html,

• HTML report using derfinder results with the Hippo dataset (25 sam-

ples) and styled with knitrBootstrap:

leekgroup.github.io/regionReportSupp/hippo/basicExploration.html.
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4.5 Summary

regionReport creates interactive reports from a set of regions and can be used

in a wide range of genomic analyses. Reports generated with regionReport

can easily be extended to include further quality checks and interpretation

of the results specific to the dataset under study. These shareable documents

are very powerful when exploring different parameter values of an analysis

workflow or applying the same method to a wide variety of datasets. The

reports allow users to visually check the quality of the results, explore the

properties of the genomic regions under study, and inspect the best regions

and interactively explore them.

Furthermore, regionReport promotes reproducibility of data exploration

and analysis. Each report provides R code that can be used as the starting

point for other analyses within a dataset. regionReport provides a flexible

output for exploring and sharing results from high throughput genomics

experiments.

4.6 Software availability

4.6.1 Sofware access

regionReport is freely available via Bioconductor at bioconductor.org/packages/

regionReport.

The supplementary website leekgroup.github.io/regionReportSupp/ hosts

the code and output for generating all the use cases described. Versions of all

software used are included in the reports.
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4.6.2 Latest source code

The latest source code is available at via GitHub at github.com/leekgroup/

regionReport. However, we highly recommend users to install regionReport

directly from Bioconductor at bioconductor.org/packages/regionReport.
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Chapter 5

Discussion and Conclusion

This thesis demonstrates that the DER Finder approach [1] can be applied to

differential expression and differential binding analyses with the derfinder

package [2] using RNA-seq and ChIP-seq data respectively. derfinder pro-

vides a complementary option to the feature counting and transcriptome

assembly strategies. It has been already used to identify changes in the human

brain transcriptome over the human lifespan [3]. derfinder also works with

alignments from Rail-RNA [4] and expect that it will become widely used

in the future. In particular, we are already working on creating an updated

ReCount resource [5] which should be valuable to the research community.

regionReport [6] is based on the newest technologies in the R community

and is part of a growing community of packages that are designed for the

end user to explore results from complicated pipelines. regionReport is very

flexible and customizable, which we believe will make it more attractive to

different groups of users.

All the software we created is regularly tested, well documented and

freely available as part of the Bioconductor project [7]. This speaks in favor
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of the quality of the software and is our latest contribution to this thriving

community.
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