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Abstract 

 
 Quantitative social scientists assume their model fit is appropriate to the data, 

especially the theoretical distribution of choice.  However, researchers spend less time 

justifying the standard error specification.  This step is critical as a misspecification of the 

standard error can lead to an incorrect interpretation of the independent variables, or 

parameters, of the model.  Because researchers derive further research agendas and policy 

implications directly from the significance of their results, a misspecification of the 

standard error has large real world ramifications.  This research, therefore, examines the 

validity of typically applied standard error techniques in Poisson and Negative Binomial 

regression in a case study framework, such as the observed information matrix, outer 

product of the gradient, clustering, nonparametric bootstrapping, and the jackknife 

procedure.  A dataset of 2005 to 2011 state-based pro-/neutral and anti-immigration 

legislation is employed.  In order to assess the validity of these standard error techniques 

I sample from the fitted conditional Poisson or Negative Binomial model to create a 

Monte Carlo (MC) simulation, which yields an estimate of the ‘true’ standard error.  A 

relative error calculation then compares the commonly utilized standard error techniques 

to the MC ‘true’ standard error.  The results indicate that the observed information matrix 

performs particularly well for small sample sizes.  The jackknife procedure also performs 

quite well.  Results for the nonparametric bootstrap, however, vary tremendously across 

iterations.  Though the conclusions of this research are unlikely to generalize to other 

datasets, the approach taken may easily be adapted to other situations and other model 

formulations in which researchers are concerned with which standard error method to use.  

I include sample Stata code to illustrate the approach. 
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Introduction 

 This research investigates the validity of commonly used standard error 

techniques in Poisson and Negative Binomial modeling.  Using a publicly available 

dataset from the National Conference of State Legislatures, I create a dataset of pro-

/neutral immigrant legislation passed per U.S. state per year from 2005 to 2011 and 

another dataset across the same time period, likewise, for anti-immigrant legislation.  

Conditioning on state level data, such as the state unemployment rate and the foreign-

born population, I fit the Poisson and Negative Binomial distributions to the immigrant 

legislation data.  I use a Monte Carlo simulation (MC), in which the counts of pro-

/neutral (or anti-) immigrant legislation are randomly generated from the fitted 

conditional Poisson (or Negative Binomial) distribution, to obtain a good approximation 

to the true standard errors.  I then compare such common standard error techniques as the 

observed information matrix and jackknife to the MC approximation.  I calculate the 

relative error of each method in reference to the MC approximation, which provides an 

assessment of the validity of each of these methods.  This work aims to inform 

researchers of the strengths and weaknesses of the most commonly applied standard error 

techniques and increases the rigor of hypothesis testing in the social sciences. 
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Conceptualization 

 Quantitative social scientists rely on statistical programs to analyze their data.  

They assume their model fit is appropriate to the data, especially the theoretical 

distribution of choice.  However, researchers spend less time justifying the standard error 

specification.  This step is critical as the calculation of the standard error dictates whether 

independent variables are considered significant.  A misspecification of the standard error 

can lead to an incorrect interpretation of the independent variables, or parameters, of the 

model. 

 An example of a parallel threat to validity helps illustrate the issue.  Consider the 

omitted variable bias in which significance is incorrectly assigned to an independent 

variable.  For instance, an increase in the number of deaths from swimming is incorrectly 

attributed to an increase in the number of children eating ice cream.  The omitted 

mechanism is time of year – in the summer months in which public pools are opened, 

children are out of school, and hotter temperatures abound, there is greater ice cream 

consumption and more opportunity to swim.  Without knowledge of this omitted variable, 

researchers could incorrectly infer that consuming ice cream increases the risk of 

drowning. 

 Similarly, a misspecification of the standard errors can lead to incorrect inferences.  

If the true magnitude of the standard error is under-specified, then researchers will 

misinterpret results by concluding unimportant parameters to be significantly influential.  

Because researchers derive further research agendas and policy implications directly from 

the significance of their results, a misspecification of the standard error has large real 

world ramifications. 
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 To reduce this threat to validity, researchers may relax their standard error 

assumptions through such techniques as robust standard errors.  For a further discussion 

of robust standard errors, see Eicker (1967), White (1980a), and Angrist & Pischke 

(2009).  However, too often researchers do not question the appropriateness of the 

standard error techniques employed in their research. 

 This research aims to inform social scientists in this capacity.  More specifically, 

it examines the validity of typically applied standard error techniques in Poisson and 

Negative Binomial regression in a case study framework.  The most commonly used 

standard error specification is the observed information matrix (oim), which is the default 

technique in Stata.  The oim is a sample-based version of Fisher Information derived 

from the negative of the second derivative of the log likelihood function (Efron & 

Hinkley 1978).  Other common techniques include robust standard errors, a means to 

relax standard error specifications to handle model misspecifications (Angrist & Pischke 

2009), the outer product of the gradient, clustering (e.g. by state or by year for immigrant 

legislation), a nonparametric bootstrap in which the model is run a number of 

predetermined times by resampling observations with replacement from the actual data, 

and jackknife.  In the jackknife specification one observation at a time is removed from 

the model, the model is run with n-1 observations, and results are averaged across the n 

models. 

 In order to assess the validity of these standard error techniques, I create a ‘true’ 

standard error.  I sample from the fitted conditional Poisson (or Negative Binomial) 

model to create a Monte Carlo simulation, which yields an estimate of the true standard 

error when the model specification is taken as ‘ground-truth’ for the population of 
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interest.1  Using a relative error calculation that compares commonly used standard error 

techniques to the MC ‘true’ standard error, I assess to what extent the typical standard 

error techniques under or overestimate the ‘true’ standard error.  While I focus on a 

specific example, the conclusions of this research are unlikely to generalize to other 

datasets.  Still, the approach taken may easily be adapted to other situations and other 

model formulations in which researchers are concerned with which standard error method 

to use.2 

 In the next section, I describe the data, the theoretical distributions that are fit to 

the data, and modeling strategies.  I then discuss the calculation of the various common 

standard error specifications.  Finally, I discuss the steps taken to create the MC 

simulation and the relative error calculation. 

 

Research Design 

Data 

Dependent Variables 

 To examine the validity of commonly applied standard error techniques I utilize a 

pre-existing source of state-based immigrant-relevant legislation hosted by the National 

Conference of State Legislatures (NCSL).  The NCSL annually compiles a list of 

immigrant-relevant legislation passed by each state since 2005.  It is publicly available 

(see: http://www.ncsl.org/research/immigration/state-laws-related-to-immigration-and-

                                                
1 The model specifications are based upon the specification of the pooled and panel Poisson and Negative 
binomial models in Stata.  For details, see the poisson and nbreg entries in Stata’s Base Reference Manual, 
Release 12 and the xtpoisson and xtnbreg entries in the Longitudinal-Data/Panel-Data Reference Manual, 
Release 12. 
2 As a starting point, I provide some of the relevant Stata code in Appendices A and B. 
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immigrants.aspx).3  Each law passed between 2005 and 2011 is rated as either anti-

immigrant or pro-/neutral.  The categories are mutually exclusive and exhaustive.  The 

counts of each type of law for each state per year are compiled, which yields a measure of 

the amount of anti-immigrant legislation and pro-/neutral immigrant legislation passed in 

each state in each year. 

 While the data includes information for all fifty states, I focus on the forty-eight 

contiguous states.  With seven years of information, the dataset consists of 336 

observations.  The mean number of pro-/neutral immigration laws passed per state per 

year is 1.44, with a standard deviation of 1.96, and maximum of 12.  The mean, standard 

deviation, and maximum for anti-immigrant legislation are 1.13, 1.57, and 11, 

respectively.  Because legislation is count data, and legislation is not required to be 

passed in each year, the minimum for both pro-/neutral and anti-immigrant legislation is 

0. 

 

Independent Variables 

 There are sixteen independent variables, or parameters, in the models.  First, I 

include measures per year of the immigrant population in a state.  These data come from 

the American Community Survey.  The American Community Survey contains 

information on a state’s number and proportion immigrant.  I also include state-level 

unemployment, which comes from the Bureau of Labor Statistics. 

                                                
3 The current Immigration Enactments Database on the National Conference of State Legislatures website 
only contains enacted laws from 2008 to 2013.  The organization has chosen to take down results for 2005, 
2006, and 2007.  For these years, please contact the NCSL directly. 
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 Political party affiliation of the state house, senate, and governor come from The 

Book of the States, an annual periodical published by The Council of State Governments.  

This book contains information on the number of Republican, Democrat, Independent 

and other political party affiliation members of each state’s legislature.  While almost 

every legislature is bicameral, with both a House and Senate, Nebraska is unicameral, 

with a sole legislative body.  Because the Book of the States includes counts of the Party 

affiliation of members in each part of the legislature, I am able to determine if Democrats 

or Republicans have a majority in the House, the Senate, and, cumulatively, the entire 

legislature, or if neither party is dominant.  The Book of the States also includes the 

political party affiliation of the Governor, the Executive branch of the government. 

 I include dummy variables for whether the state shares a border with Mexico (a 

Southern border state), the state shares a border with Canada (a Northern border state), or 

if slavery was previously legalized within the state.  I include binary variables to capture 

region of country (Northeast, South, Midwest, West) with Northeast the omitted category.  

Finally, I include year fixed effects to account for unobserved yearly shocks in the 

incidence of immigrant legislation, such as the ebb and flow of national interest in 

immigration reform. 

 

Modeling Strategies 

 For both Pro-/Neutral and Anti-Immigrant legislation I examine Poisson and 

Negative Binomial modeling, treating the data, in turn, as both pooled and panel.  These 

three sets of two (Pro-Neutral and Anti-; Poisson and Negative Binomial; pooled and 

panel) yield eight different models in total – four for Pro-/Neutral Immigrant legislation 
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and four for Anti-Immigrant legislation.   I assess the validity of the common standard 

error specifications available for each of these eight models.4 

 

Pooled Poisson 

 The Poisson distribution is used to model incidents of an event.  For instance, the 

number of gold medals won by the Netherlands speed skating team in the 2014 Sochi 

Olympics.  It is more appropriate than ordinary least squares regression when analyzing 

count data because ordinary least squares assumes the data is unbounded, ( , )−∞ +∞  

(Gardner, Mulvey, & Shaw 1995; Osgood 2000).  Count data, instead consists of whole 

numbers greater or equal to zero,[0, )∞ , which violates the unbounded assumption in 

OLS regression. 

The Poisson distribution is defined by a single parameter, λ , which is both the 

mean and the variance of the distribution.  The distribution, , measures 

the number of events, n, that occur over a period of time. 

 

Pooled Negative Binomial 

 The requirement in the Poisson distribution that  represents both the mean and 

the variance is a strict assumption often violated in real world data.  If the variance is 

substantially larger than the mean in the observed data even after conditioning on 

parameters, a.k.a. ‘overdispersion,’ the negative binomial distribution can be used as an 

alternative means to model the data. 

                                                
4 I attempt to conduct the relative error calculations for each of these models.  However, as discussed later 
in the paper, not all assessments were possible due to data limitations. 

λ



 

 8 

The Negative Binomial distribution has two parameters, p and r, where p is the 

probability that the incidence occurs and r is the dispersion parameter, accounting for the 

variance exceeding the mean.  Formally, the negative binomial distribution has 

probability mass function of the form 

 
1

[ ] (1 )r y ry
P Y y p p

y r
−−⎛ ⎞

= = −⎜ ⎟−⎝ ⎠
 , 

equivalently 
 

( )[ ] (1 ) .
! ( )

r yy rP Y y p p
y r
Γ +

= = −
Γ  
 

 The mean of the negative binomial distribution in terms of its parameters may be 

written as (1 )p r
p
− .  I can denote this quantity by λ . 

 The variance may be written as .  As r approaches infinity the 

variance converges to .  In this situation,  has the same meaning for both the 

Negative Binomial and Poisson distributions.  Therefore, the negative binomial 

distribution is a more general form of the Poisson distribution that allows for randomness 

in the rate of events.  Subsequently, to say that a random variable, Y, has a negative 

binomial distribution, I will use the notation Y ~NB (λ , ), where λ  is the mean 

parameter and  is the overdispersion parameter.   

 

Panel Poisson 

 Pooled data assumes that the observations are independent and identically 

distributed (i.i.d.).  This is incorrect for the immigrant legislative database because there 

is a relationship across years within states.  Of the 336 observations, there are seven years 

λ λ
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of data for each of the forty-eight contiguous United States.  As an example, the 

virulently anti-immigrant sentiment exhibited in Alabama’s 2011 law HB 56 is likely to 

be consistent across years, making the state more likely to pass anti- and less likely to 

pass pro-/neutral immigrant legislation than would be expected if each state-year 

observation were independent.  Moreover, a state that passes an immigrant law in a given 

year has less need to pass a similar law the next year because laws often do not expire.  A 

particularly productive immigrant legislative year should lead to relative lulls in 

subsequent years. 

 Due to the correlation in laws across years, i.e. the nested structure of state-year 

within state, the data is more appropriately modeled as panel data (rather than pooled).  I 

therefore fit a panel Poisson model.5  Formally, . 

 

Panel Negative Binomial 

 The benefits to using the Negative Binomial distribution are the same whether the 

data is modeled as pooled or panel.  In order to account for the potential of 

overdispersion, I fit a panel data Negative Binomial model. 

 

                                                
5 A special type of the Poisson panel model is the Poisson Process.  Fitting a Poisson Process with rate 
>0 to the data is an appropriate technique if: (1) no events have occurred at time t=0; (2) the independent 
increment assumption is valid.  This assumes that the number of events in a given period is not correlated 
with the number of events in previous or later periods.  The immigrant legislative data does not fit this 
assumption; (3) the stationary increment assumption is not violated.  Stationary increments assume that the 
number of events in a given period of time only depends on the length of time and not the position of the 
period within a timeline.  This assumption also does not hold with the immigrant legislation data; and (4) 
the probability of the number of events occurring in a given time period is equal to the Poisson distribution 

with parameter , time t, and events n, i.e. , where the number of 
events are counted in increments of t, rather than pooled together. 
 

λ

λ
P[N(s t) − N(s) n]

e−λt (λt)n

n!
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Modeling of Observed Data 

I model state-based immigrant-relevant legislation in the 2005 to 2011 time 

period as four model types: (1) Pooled cross-sectional count data through the Poisson 

distribution; (2) Pooled cross-sectional count data through the Negative Binomial 

distribution; (3) Poisson panel data with random effects; and (4) Negative Binomial panel 

data with random effects.  Pro-/neutral and anti-immigrant state-year legislation are the 

two dependent variables.  By using two separate dependent variables, I lower the threat to 

validity that my findings are an artifact of the particular data. 

To illustrate the modeling strategy, I describe the model technique for the panel 

Poisson model (Model 3).  The number of laws passed for state i in time period t is .  

Iit  is the percent immigrant in a state-year, Pit  the political party of the state-year,  the 

state unemployment rate in a given year, Ri the region of country, Si a vector of time-

constant variables including if the state is a Northern border state or a Southern border 

state, and  a vector of indicator variables for year.   In the expression below ci  is the 

random effects term.  Model 4 includes the same parameters but applies the data to the 

Negative Binomial distribution instead.  Models 1 and 2 specify the same parameters, but 

do not include a time element.  

 

has a Poisson distribution with parameter where log

  (3) 
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Analytic Strategies 

 I compare commonly used standard error specifications to the Monte Carlo 

simulation’s standard error approximations.  The Monte Carlo simulation generates 

synthetic data from each of the four model specifications (M1 through M4) to obtain 

good approximations to the true standard errors.  I discuss the steps taken to create 

synthetic data for each of the model specifications. 

 

Pooled Poisson 

 For brevity, I bundle the variables (i.e. parameters), represented by 𝐼! ,𝑃! ,𝑈! ,𝑅! , 𝑆! 

and  𝑉!, into the vector  𝑋!.  In the pooled Poisson model, I then 

assume  𝑌!|𝑋!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛  (𝜆!) where log 𝜆!   is a linear function of the covariates.  That is, 

conditioning on the independent variables, the number of pro-/neutral (or anti-) 

immigrant related laws passed by a state in each year from 2005 to 2011 are distributed 

as a Poisson random variable. 

 Given the observed data, I use Stata’s predict command with the count option to 

predict the number of laws passed for each state in each year.  Each predicted count 

represents the expected value of the mean and variance of the Poisson distribution for that 

state-year for the fitted model.  In other words, I obtain the conditional expectation of the 

Poisson distribution for all 336 state-year observations, 𝜆!. 

 To generate the synthetic data from these models and arrive at the Monte Carlo 

approximation to the true standard errors, I run the following set of steps (Steps 1-3) one 

thousand times. 
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1.  First, I use a Poisson random data generator with 𝜆! as the parameter.  This yields 

randomly generated counts of immigrant legislation,  𝑌!, for all 336 observations. 

 

2.  Second, I fit the randomly generated counts into a Poisson regression model, where 

𝑌!|𝑋!   has a Poisson distribution with parameter  𝜆!   where log  𝜆! = 𝐵! + 𝐵!𝐼! + 𝐵!𝑃! +

𝐵!𝑈! + 𝐵!𝑅! + 𝐵!𝑆! + 𝐵!𝑉!  (5) 

The independent variables are defined in the same way as Model 3 above. 

 

3.  Third, Model 5 yields coefficients, 𝐵!, for each parameter.  I save these values for 

each of the thousand iterations. 

 

 I then implement a subsequent set of steps to analyze the validity of commonly 

implemented standard error techniques.  These steps are described below. 

 

4.  I combine the 𝐵! into a new dataset that has one thousand observations.  Each of the 

observations contains the vector of 𝐵 from one of the thousand iterations of the Monte 

Carlo simulation. 

 

5.  I then calculate the standard error between these values and the observed values from 

the original regression equation (Model 1) that contains the observed immigrant 

legislation counts.  This yields the Monte Carlo standard error approximation, 𝑆𝐸!,!, for 
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each independent variable.  I call this the ‘true’ standard error.  Formally, for parameter p 

and iteration i, 

 

𝑆𝐸!,! = 𝛽!" − 𝛽!
!!"""

!!! /1000   (6) 

 

6.  In order to compare the MC ‘true’ standard error to the standard error specifications 

most commonly utilized, I next obtain standard error estimates for each of the available 

standard error techniques pre-programmed in Stata. In pooled Poisson modeling there are 

seven available options: the observed information matrix (oim), robust standard errors, 

cluster (I cluster separately by state and by year), the outer product of the gradient (opg), 

a nonparametric bootstrap, and a jackknife procedure.  Each of these standard error 

specifications is obtained by extracting the requisite information post-estimation from a 

pooled Poisson regression equation that specifies the relevant standard error.  These 

models all resemble Model 1, except that the standard error specification varies.  Once 

these standard error specifications are obtained, I am then able to judge the individual 

performance of each parameter as compared to their true standard error through the 

calculation of a relative error measure. 

 However, I am interested in the overall performance of the standard error, not the 

performance of the standard error for each parameter.  I therefore create a summary 

measure that captures the relative error in the entire model for the commonly utilized 

standard error procedures as compared to the MC standard error.  To do this, I average 

the relative error of each parameter.  I do this for all seven of Stata’s preprogrammed 
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specifications.  Formally, the relative error (RE) for Stata standard error specification j 

with parameter p is 

 

𝑅𝐸! =

!"!,!!!"!,!
!"!,!

!"
!!!

!"
  (7) 

 

This yields a measure that may be used to evaluate how well each pre-programmed 

standard error specification performs in pooled Poisson modeling as compared to the true 

standard error.  I perform the entire sequence of steps (Steps 1-6) both for pro-/neutral 

and anti-immigrant legislation. 

 For each of the two types of immigrant legislation I also evaluate the performance 

of the standard error specifications for varying sample sizes.  While the sample consists 

of 336 observations, I decrease the sample size in half to 168 observations and increase it 

two-fold (672), three-fold (1008), and five-fold (1680) to examine whether the best 

performing common standard error specification changes with the reduction or increase 

of the sample size.  When the sample size is reduced, I do so by randomly dropping 168 

observations.6  For the analyses that require a sample size increase, I increase the sample 

by generating random counts of pro-neutral (or anti-) immigrant legislation with the same 

procedures used in Steps (1-3).  Therefore, the independent variables’ values remain the 

same for each state-year, but the counts of immigrant legislation vary.  For example, in 

the 672 observation data, there are two instances of New Mexico in 2005, 2006, and 

through to 2011.  The unemployment rate for both 2005 observations of New Mexico is 

the same, but the predicted number of immigrant legislation (pro-/neutral or anti-) differs.  

                                                
6 I randomly selected a seed order in Stata for this. 
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Pooled Negative Binomial 

 I fit the Negative Binomial distribution to the data.  There are also seven standard 

error specifications applicable for the legislative data in Stata’s negative binomial 

regression – oim, robust, opg, nonparametric bootstrap, jackknife, cluster state, and 

cluster year.  I run one thousand iterations of the synthetic data and then the subsequent 

steps necessary to obtain the relative error results for each of the seven standard error 

specifications.  In this way the steps taken to obtain the results are strikingly similar to 

the pooled Poisson model specification outlined above. 

 What differs is how the parameter(s) of the theoretical distribution are obtained.  

That is, the parameter(s) of the distribution from which the random counts of legislative 

immigration are generated in the Monte Carlo simulation. 

 The negative binomial has two parameters, but these parameters may be 

represented in different forms.  For instance, the mean 𝜇  and the variance (𝜎!) can 

define the negative binomial distribution, but so too can the parameters r (here the inverse 

of the overdispersion parameter) and p (here the probability of failure for a given trial), as 

discussed above, where 𝜇 = !!! !
!

 and 𝜎! = !!! !
!!

.  Solving in terms of r and p, 

𝑟 = !!

!!!!
 and 𝑝 = !

!!
.  Solving back for the variance, 𝜎! = 𝜇 + !!

!
. 

 The mean is derived directly from the model, just as in the pooled Poisson case.  

Here the conditional distribution of the state-year incidence of pro-neutral (or anti-) 

immigration laws is defined as 

𝑌! 𝑋!~𝑁𝐵  (𝑒 !!!!"!   ,𝛼 .   The predicted counts for each state-year therefore represent 𝜇. 



 

 17 

 The pooled negative binomial model reports an estimate of the overdispersion 

parameter, here denoted as α .  Because r may also be defined as the inverse of this 

parameter, r is also equal to 1/𝛼. 

 Using the predicted values of 𝜇 and deriving r from !
!
, I obtain the variance of the 

negative binomial distribution.  With the mean and variance, I then derive p, as per the 

equation above. 

 With values of r and p, I have the parameters necessary to generate new negative 

binomial random variables for each of the thousand iterations of the Monte Carlo 

simulation.7  As discussed, all subsequent steps to derive the relative error results are the 

same as those in the pooled Poisson modeling (Steps 3-6 in the previous section). 

 

Panel Poisson 

 Due to the nested structure of the data (state-year within state), I also model the 

immigrant legislation data as panel rather than pooled.  Formally, 

𝑌!"|𝑋!"~𝑃𝑜𝑖𝑠  (𝑒 !!!!"#! !!!), where 𝑒!! represents a random state effect.  It is assumed to 

be independent and identically distributed (i.i.d.) and derived from a gamma distribution 

with a mean of one and a variance of alpha, where alpha is estimated directly from the 

data.8 

 The steps necessary to derive the relative error results change slightly when 

estimating the data as panel Poisson rather than pooled Poisson. 

 

                                                
7 Using the rnbinomial command.  While there are multiple ways to define the parameters of the negative 
binomial distribution, and therefore multiple ways to sample from it, Stata specifies the negative binomial 
according to the specifications discussed above.  Proof is available upon request. 
8 The xtpoisson command reports an estimate of alpha in the output. 
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1.  Similar to the pooled models, I derive predicted counts of the number of pro-/neutral 

(or anti-) immigrant legislation passed in a given state in a given year.9 

 

2.  Unlike in the pooled specification, a random state effect, 𝑒!!, must be incorporated 

into the random generation of Poisson data.  The random state effect is assumed to be 

gamma distributed with mean 1.10  The gamma distribution is defined by two parameters, 

the shape (k) and scale (l) parameters.  The mean and variance of the gamma distribution 

are defined in terms of the shape and scale parameters by  𝜇 = 𝑘 ∗ 𝑙 and 𝜎! = 𝑘 ∗ 𝑙!.  As 

𝜇 = 1 and 𝜎! = 𝛼, where alpha is estimated directly from the data, solving for k and l 

yields 𝑘 = 1/𝛼 and 𝑙 = 𝛼.  These two parameters are required to draw random data from 

the gamma distribution in Stata.  I draw gamma random variables for each state to model 

a state random effect. 

 

3.  To incorporate the generated state random effect into the model, the Poisson 

parameter is multiplied by the state random effect. 

 

4.  I generate Poisson random variables using the new legislative counts derived in Step 3 

as the parameter of the Poisson distribution. 

 

5.  These randomly generated counts are fit to a panel Poisson regression model, 

  𝑌!"~𝑃𝑜𝑖𝑠  (𝑒!!!!!!!"!!!!!"!!!!!"!!!!!!!!!!!!!!!)  (8) 

 

                                                
9 I use the predict, nu0 command in Stata to obtain the predicted counts. 
10 As discussed in Stata’s xt manual for Poisson panel regression.  See the xtpoisson entry. 
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 Steps 2-5 are run for each of the thousand iterations of the Monte Carlo 

simulation.  I then follow the same procedure discussed in Steps 3-6 of the pooled 

Poisson case to derive the relative error results.  However, in panel data (either Poisson or 

Negative Binomial) the only standard error specifications available are the observed 

information matrix, nonparametric bootstrap, and jackknife.  Due to the random nature of 

the nonparametric bootstrap standard error specification, I create five separate sets of 

nonparametric bootstrap results to compare against the MC approximation.  I do this both 

for the panel Poisson and for the Negative Binomial model types. 

 

Panel Negative Binomial 

 The panel Negative Binomial modeling type is the most intricate of the four.  In 

fact, although I utilize a Negative Binomial model for the Monte Carlo simulation, the 

procedure calls for the use of Poisson random variables rather than Negative Binomial 

random variables to generate the immigration law counts.11  Formally, 

 

𝑌!"|𝑋!"~𝑃𝑜𝑖𝑠(𝛾!") (9)12 

 

𝛾!"~Γ(𝜆!" , 𝛿!), where log 𝜆!" is the linear expression of the covariates, 𝛿! is the random 

state component, and Γ denotes the gamma distribution. (10)13 

                                                
11 I do this, following the discussion in Stata’s xt manual.  For further information, see the Methods and 
formulas section for the xtnbreg command. 
12 I replace all values of 𝛾!" that are less than .00001 with a value of .00001.  I do this because otherwise the 
generation of Poisson random variables yields missing values, at least through the use of Stata’s rpoisson 
command. 
13 The gamma distribution is unable to account for values of zero in either of its parameters.  Because 𝜆!", 
the observed number of laws passed, does contain zero values, the random draws from the gamma 
distribution yield missing data.  To deal with this issue, I substitute the state-year observations with a value 
of 0 with a randomly generated value from a uniform distribution that ranges from .4 to .6. 
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 !
!!!!

~𝐵𝑒𝑡𝑎(𝑟, 𝑠), where r and s are estimated directly from the data. (11) 

 

 Working backwards from equation 11 to equation 9, I obtain randomly generated 

estimates of Negative Binomial data.  These values are used in a Negative Binomial 

panel data regression equation with random effects to obtain parameters for each 

independent variable. 

 This entire sequence of steps is implemented one thousand times, creating the 

Monte Carlo creation of synthetic data.  I then follow Steps 3-6 from the pooled Poisson 

section to derive the relative error results. 

 

Results 

Pooled Results 

 Table 1 reports the pooled pro-/neutral immigrant legislation relative error results 

for the observed information matrix, robust standard error, outer product of the gradient, 

state and year clustering, nonparametric bootstrap, and jackknife.  Table 2 reports results 

of the pooled anti-immigrant legislation analyses. 

 In the original data (336 observations), the observed information matrix 

outperforms the other standard error specifications in pooled Poisson and pooled 

Negative Binomial models, for both Pro-/Neutral and Anti-Immigrant Legislation.  For 

instance, the 2nd column in the left panel of Table 1 describes results from the pooled 

Poisson modeling of pro-/neutral immigration legislation for the normal sized data.  The 

relative error of the observed information matrix is .021, which is smaller than the next 
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closest relative error of .196 (the outer product of the gradient).  Indeed, the observed 

information matrix performs best in three of these four model types as well when the 

sample size is reduced in half.  The exception is for the negative binomial model of anti-

immigrant legislation (1/2 size sample, right panel of Table 2), where all techniques 

(other than clustering by state or year) perform better than the OIM. 

 When the sample size is increased to two times, three times, or five times the 

actual size in the pooled Poisson models (left panels of Tables 1 and 2), the jackknife 

performs either best (four times) or second best (two times) for both pro-/neutral and anti-

immigration laws.  As an example, the relative error of the jackknife for the twofold 

sample (672 observations) in the left panel of Table 1 is .204, smaller than the oim’s .226.  

The observed information matrix, in fact, is consistently outperformed by a number of the 

other techniques, including robust standard errors. 

 

Table 1. Pooled pro-/neutral immigrant legislation relative error results 

 
 

Table 2. Pooled anti-immigrant legislation relative error results 

 

 

Standard'Error'Specification 1/2'size Normal 2x 3x 5x 1/2'size Normal 2x 3x 5x
Observed(Information(Matrix 0.044 0.021 0.226 0.281 0.311 0.125 0.031 0.150 0.141 0.191
Robust 0.298 0.308 0.208 0.270 0.275 0.179 0.071 0.171 0.168 0.225
Outer(Product(of(the(Gradient 0.240 0.196 0.298 0.301 0.344 0.179 0.101 0.171 0.152 0.172
Nonparametric(Bootstrap 0.417 0.427 0.196 0.304 0.279 0.234 0.106 0.213 0.199 0.209

Pro;'and'Neutral'Immigration'Laws
Negative'BinomialPoisson

Jackknife 0.467 0.413 0.204 0.265 0.272 0.199 0.112 0.151 0.154 0.210
Cluster(State 0.462 0.543 0.226 0.338 0.391 0.267 0.183 0.207 0.196 0.232
Cluster(Year 0.466 0.499 0.542 0.536 0.478 0.427 0.422 0.548 0.457 0.509
N 168 336 672 1008 1680 168 336 672 1008 1680

Standard'Error'Specification 1/2'size Normal 2x 3x 5x 1/2'size Normal 2x 3x 5x
Observed(Information(Matrix 0.167 0.043 0.276 0.403 0.302 0.285 0.038 0.145 0.150 0.227
Robust 0.190 0.159 0.197 0.340 0.284 0.281 0.051 0.153 0.151 0.201
Outer(Product(of(the(Gradient 0.212 0.144 0.322 0.447 0.310 0.223 0.089 0.181 0.137 0.238
Nonparametric(Bootstrap 1.317 0.170 0.211 0.379 0.321 0.218 0.186 0.146 0.163 0.244

Anti;Immigration'Laws
Negative'BinomialPoisson

Jackknife 0.260 0.262 0.185 0.322 0.276 0.197 0.067 0.133 0.129 0.190
Cluster(State 0.386 0.405 0.266 0.320 0.311 0.317 0.219 0.189 0.215 0.276
Cluster(Year 0.451 0.560 0.563 0.585 0.574 0.493 0.490 0.392 0.438 0.497
N 168 336 672 1008 1680 168 336 672 1008 1680
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 There is not a consistent pattern across the pooled Negative Binomial results 

when the sample size is increased (right panels of Tables 1 and 2).  For Pro-/neutral 

immigrant legislation, the observed information matrix continues to perform best (Table 

1, right panel).  For example, the relative error for the oim in the triple-sized sample 

is .141 for pro-/neutral immigrant laws.  The next closest is the outer product of the 

gradient, with a relative error of 152.  That said, the outer product of the gradient, 

performs best when the sample size increases to five times the actual sample size.  In 

contrast, for the anti-immigration data, the jackknife performs best across all three 

increased sample sizes. 

 To summarize, the observed information matrix performs best in the original 

sample size and reduced sample size across both model types and both sets of data.  

When the sample size increases, the jackknife technique performs particularly well, 

especially in pooled Poisson data. 

 

Panel Results 

 The Poisson and Negative Binomial panel data analyses compare the observed 

information matrix, nonparametric bootstrap, and jackknife to the Monte Carlo 

approximation for pro-/neutral immigrant legislation and anti-immigrant legislation.  Due 

to the random nature of the nonparametric bootstrap, these results are averaged across 

five independent iterations.  Results are reported in Table 3. 

 While I attempted to perform the analyses described above for panel Poisson and 

panel Negative Models with Pro-/Neutral and Anti-immigration legislation, I experienced 

a great amount of difficulty with the Negative Binomial panel modeling.  In fact, I could 
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not perform the Monte Carlo simulation under the Negative Binomial specification when 

I cut the sample size in half for either Pro-/Neutral or Anti-immigrant legislation.  Nor 

did the procedure run with the regular sample size for anti-immigrant legislation.  More 

specifically, at a relatively early point within the one thousand iterations of the Monte 

Carlo simulation the model would fail to converge.  Attempts to skip a single bad run and 

proceed with further iterations were unsuccessful - a random number of iterations later 

the procedure also failed to converge.  Multiple attempts all yielded the same results. 

 At the same time, the relative error comparisons are contingent on comparing the 

commonly used standard error specifications to the MC approximation.  The 

nonparametric bootstrap, a common technique easily applied in Stata, did not converge 

for the regular sample size, two times the sample size, or three times the sample size for 

the pro-/neutral data for the Negative Binomial model.  It did not converge for the anti-

immigrant legislation for two times, three times, or five times the regular sample size, 

either.  In fact, the only panel Negative Binomial model in which I was able to compare 

the commonly used standard error techniques to the MC approximation was for five 

times the regular sample size in the pro-/neutral data.  I therefore do not report the results 

for the panel Negative Binomial model and focus solely on the results for the panel 

Poisson model.  Also note that the MC simulation did not run for the one half sample size 

for either the pro-/neutral or anti-immigrant legislation datasets in the panel Poisson 

models. 
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Table 3. Panel Poisson immigrant legislation relative error results 

 

 In both data types the observed information matrix performs better than the 

average of the five nonparametric bootstraps or the jackknife for the regular data size.  It 

also performs better when the sample size is doubled.  For instance, the relative error for 

the oim in the right panel of Table 3 for the double-size data is .167, which is better than 

the relative error of the bootstrap average at .193 or the jackknife relative error of .179. 

 The jackknife procedure, on the other hand, performs best three of the four times 

when the sample size is increased to three or five times the regular size.  The relative 

error of the jackknife for the five-fold sample for pro/neutral immigration laws is .287 

(left panel of Table 3) whereas the oim is .292.  When the sample size is tripled the 

relative errors are .250 and .251 for the jackknife and oim specifications, respectively.  

Although these differences are not large, the outperformance of the jackknife parallels the 

results in the pooled specification. 

 Finally, there is a great amount of variability in the relative error of the 

nonparametric bootstrap procedure.  This is to be expected as the nonparametric 

bootstrap by definition contains a random component. 

 

Standard'Error'Specification 1/2'size Normal 2x 3x 5x Normal 1/2'size 2x 3x 5x
True%Standard%Error
Observed%Information%Matrix N/A 0.173 0.185 0.251 0.292 N/A 0.211 0.167 0.253 0.305
Nonparametric%Bootstrap%(1) N/A 0.301 0.200 0.249 0.308 N/A 0.200 0.146 0.279 0.364
Nonparametric%Bootstrap%(2) N/A 0.201 0.174 0.235 0.313 N/A 0.251 0.195 0.262 0.311
Nonparametric%Bootstrap%(3) N/A 0.243 0.232 0.288 0.269 N/A 0.243 0.227 0.265 0.327
Nonparametric%Bootstrap%(4) N/A 0.245 0.241 0.277 0.318 N/A 0.266 0.177 0.264 0.349
Nonparametric%Bootstrap%(5) N/A 0.273 0.200 0.283 0.292 N/A 0.219 0.219 0.292 0.334
Bootstrap%Average N/A 0.253 0.210 0.267 0.300 N/A 0.236 0.193 0.272 0.337
Jackknife N/A 0.207 0.201 0.250 0.287 N/A 0.217 0.179 0.245 0.317
N 168 336 672 1008 1680 168 336 672 1008 1680

Poisson
Pro;'and'Neutral'Immigration'Laws Anti;Immigration'Laws

Poisson
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Discussion 

 In this research I evaluate the accuracy of commonly used standard error 

techniques.  While researchers often describe the logic behind the derivation of their 

model fit, the validity of the standard error specification is less commonly questioned.  I 

analyze real world count data of pro-/neutral and anti-immigrant legislation laws to assess 

the validity of standard error techniques.  I do so by comparing these techniques to a 

Monte Carlo simulation of synthetic data. 

 I find that the observed information matrix, which is the default standard error 

technique in Stata, does an excellent job approximating the true standard error, especially 

with small sample sizes.  With only 336 observations and sixteen covariates, the data is 

stretched thin, especially for panel data specifications with only 48 level-2 observations.  

At this size and a ½ sample size the observed information matrix performs best.  The 

jackknife method performs particularly well also, especially in large sample sizes.  In fact, 

the jackknife outperforms the oim when the sample is doubled, tripled, or multiplied 

fivefold. 

 

Conclusions 

Methodological Contributions 

 This research contributes in two key ways.  First, it describes a method in which 

the validity of standard errors may be tested.  By describing the steps necessary to create 

a Monte Carlo simulation for pooled and panel Poisson and Negative Binomial modeling, 

and then outlining the relative error assessments, I provide researchers a means in which 

to evaluate the validity of the standard errors in their own research. 
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 Second, the findings suggest that the jackknife performs especially well.  Both in 

pooled data, with a plethora of techniques to choose from, and in panel data, where the 

options are more limited, the jackknife procedure stands out as a good approximation to 

the ‘true’ standard error.  Researchers interested in testing alternative standard error 

specifications should begin with the jackknife. 

 

Implications 

 The goal of this research is to inform social scientists as to the validity of 

commonly used standard error techniques.  The observed information matrix performs 

particularly well, even in small sample sizes.  This finding should give researchers 

additional confidence in their model fit of count data. 

 At the same time, the variability associated with the nonparametric bootstrap 

technique (as described in Table 3), should caution researchers from concluding results 

based upon a single run of any model specified with nonparametric bootstrap standard 

errors.  Instead, if the nonparametric bootstrap technique is of theoretical interest for the 

research project, results should be averaged across a number of iterations. 

 Finally, the jackknife method should be considered a viable alternative to other 

standard error specifications if researchers are interested in conducting sensitivity checks. 

 

Limitations 

 The size of the dataset is of potential concern.  Although I increase the sample 

size to evaluate the results under larger samples in which the data is less strained, I only 

vary the counts of immigration laws.  I do not randomly vary the covariates.  For instance, 
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I do not randomly select a state’s foreign-born percentage.  This may restrict the 

variability of the increased samples.  At the same time, several of the covariates overlap.  

In future work the number of covariates should be reduced to eliminate multicollinearity 

concerns.  This may help the nonconvergence issue that prevented the analysis of the 

panel Negative Binomial data and panel Poisson model of the ½ sample. 

 Although I conduct analyses on two separate datasets  - pro/neutral and anti-

immigrant legislation, these datasets are not entirely independent as states that pass one 

law type should be less likely to pass the other.  To further evaluate the validity of 

standard error techniques in count data, independent datasets of larger size should be 

utilized. 
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Appendix A. Monte Carlo Simulation 

 I include an example of the Stata code for generating the Monte Carlo simulation.  
The example is taken from the panel Poisson case of pro/neutral immigrant legislation. 
 
 
*====================================================================== 
 
cd "~/Documents/Johns Hopkins/AMS/AMS Master's Paper/Stata/bootstrap/" 
 
log using bootstrap_xt_poisson_positivelaws.log, replace 
 
clear 
clear matrix 
*set mem 300m 
 
set pagesize 300 
set more off, permanently 
 
 
 
*====================================================================== 
use bootstrap-prep 
 
sort stateid year 
xtset stateid year 
xtsum stateid year plawcount plaws party slavestate sbstate nbstate 
region percentfb  unemp 
 
*preserve 
d 
codebook id 
keep id stateid year state plaws alaws tlaws ulaws tres pres ares 
plawcount alawcount tlawcount /// 
party dem repub mixedother region northeast south midwest west 
slavestate sbstate nbstate percentfb unemp /// 
governor house senate year* /// 
mt mp ma /// 
pp pa pt /// 
nbp nbp_r nbp_p /// 
nba nba_r nbp_p /// 
nbt nbt_r nbt_p /// 
xtpp xtpa xtpt /// 
xtnbp xtnbp_r xtnbp_p /// 
xtnba xtnba_r xtnba_p /// 
xtnbt xtnbt_r xtnbt_p 
 
 
global Year year2 year3 year4 year5 year6 year7 
d $Year 
poisson plaws slavestate sbstate nbstate repub mixedother south midwest 
west percentfb unemp $Year 
est store p 
nbreg plaws slavestate sbstate nbstate repub mixedother south midwest 
west percentfb unemp $Year 
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est store nb 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, irr re vce(oim) 
est store xtp 
xtnbreg plaws slavestate sbstate nbstate repub mixedother south midwest 
west percentfb unemp $Year, irr re vce(oim) 
est store xtnb 
 
est table p nb xtp xtnb 
est stats p nb xtp xtnb 
 
 
 
 
*====================================================================== 
*XT Poisson parameter estimation for pro/neutral legislation 
*====================================================================== 
*Begin with xtpp  
*but need to incorporate random effects component into the POISSON 
panel data parametric bootstrap 
 
*Steps: 
 
*1. Fit model to actual data 
*   predict Y-hat's. i.e. the predicted counts (e.g. xtpp, xtpa) 
 
*2. Capture alpha from the data 
 
 
*For each of the 1,000 iterations (steps 3-6): 
 
*3. Generate epsilon for each state 
*   where epsilon ~ Gamma w/ mean 1 and variance = alpha = 1/theta 
*   theta is calculated from the data 
 
*4. Create lambda's with multiplicative effect 
*   epsilon * Y-hat = lambda 
 
 
*5. With these I can generate Yboot, i.e. rpoisson(lambda) 
*   this gives 336 y's 
 
*6. Fit model to get Beta-boot 
 
 
 
 
*====================================================================== 
*STEPS for incorporating random effects component into the POISSON 
panel data parametric bootstrap by adding in random gamma draws 
*====================================================================== 
 
/* 
Yit | Xit ~ Poisson (Lambda-it) 
where Lambda-it = exp (Xit*B) 
in the random effects model, there is a random component that  
is derived from the gamma distributon 
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Ei ~ Gamma (1, 1/theta) 
see the technical documentation on xtpoisson 
*/ 
 
*What does a poisson distribution look like? 
d, s 
sum xtpp 
preserve 
keep xtpp plaws 
set obs 336 
gen double pois=rpoisson(xtpp) 
sum pois xtpp plaws 
restore 
 
 
/* 
 Run the entire sequence 1,000 times. 
*/ 
 
 
 
 
*1. How do I generate the predicted counts? 
d xtpp 
sum xtpp 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, irr re vce(oim) 
predict xtpp_alt, nu0 
corr xtpp xtpp_alt 
drop xtpp_alt 
 *This is how I derived xtpp 
 *There's no need to start with the predicted counts 
 
 
 
*2. Working backwards, Generate alpha, the variance of the gamma 
distribution 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, irr re vce(oim) 
 *This equation also gives me 'alpha' 
 *In stata, the standard random-effects model, v, is assumed to be 
i.i.d.  
 *such that exp(v) is gamma with mean one and variance alpha. 
 *Alpha is estimated from the data 
 *This gives us alpha 
gen alpha=e(alpha) 
tab alpha 
 
 
 
*I want random effects, epsilon, for each state 
*where epsilon ~ gamma (1, 1/theta) and 1/theta = alpha 
 
 
*Knowing the mean(1) and variance(alpha), estimate the gamma 
distribution parameters 
 *They are: alphastar and thetastar 
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 *Note: alpha and alphastar are not the same. 
 /* 
 mean = alphastar * thetastar 
 variance = alphastar * (thetastar)^2 
  
 In stata mean = 1 and variance=alpha 
 Thus, 
 we get thetastar=alpha 
 we get alphastar= 1/alpha 
 */ 
 
gen thetastar=alpha 
gen alphastar=1/alpha 
 *Now I have the parameters for the gamma distribution 
sum alphastar thetastar 
 
*A Check: 
 *Simple Model 
xtpoisson plaws 
gen testalpha=e(alpha) 
gen testtheta=1 
gen testalphastar=1/testalpha 
gen testthetastar=testalpha 
 
*for the mean: 
display testalphastar*testthetastar 
 *=1, which is what stata assumes 
 
*for the var: 
est 
display testalphastar*(testthetastar^2) 
 *=.46705086 
 *This is the same as the alpha output from the xtpoisson 
regression  
 *It is correct as the alpha output represents the variance of the 
gamma distribution 
 
 
 
 
*Steps 3-6 must be for all 1,000 iterations because of the random draw 
in step 3 
 
 
forval i=1/1000 { 
 
*3. Generate Epsilon 
* Epsilon-i ~ Gamma (1, 1/theta) 
 
 
sort stateid 
*keep if stateid!=stateid[_n-1] 
gen double epsilon`i' = rgamma(alphastar, thetastar) if 
stateid!=stateid[_n-1] 
sum epsilon`i' 
codebook epsilon`i' 
qui:list stateid epsilon`i' 
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replace epsilon`i'=epsilon`i'[_n-1] if stateid==stateid[_n-1] & 
epsilon`i'==. 
sum epsilon`i' 
codebook epsilon`i' 
*tab epsilon`i' 
qui:list stateid epsilon`i' 
 
 
*A test to see if this is correct: 
gen k=7 
gen th=.5 
*set seed 17325 
gen double test=rgamma(k, th) 
qui: tab test 
sum test 
*Is this correct? 
 *mean reported is 3.588 [will change unless set seed #] 
 *The mean from the gamma is equal to k*th 
display k*th 
 *= 3.5 
 *3.588 is close to true value of 3.5! 
 *The standard deviation reported is 1.268 [will change unless set 
seed #] 
 *The variance from the gamma is equal to k * th^2 
display sqrt(k*th*th) 
 *=1.323 
 *1.268 is close to true value of 1.323! 
drop k th test 
 
 
 
*4. Generate rescaled lambda's, rescaled by the state-level random 
effect 
* Lambda-it = exp (Xit*B) 
 
gen lambda`i' = epsilon`i' * xtpp 
sum lambda`i' 
codebook lambda`i' 
 
 
*5. Generate rpoisson using lambda 
* Yit | Xit ~ Poisson (Lambda-it) 
 
gen double rxtpp`i' = rpoisson(lambda`i') 
 sum rxtpp`i' 
 corr xtpp rxtpp`i' 
 sum plaws xtpp rxtpp`i' 
 corr plaws pp xtpp rxtpp`i' 
 
 
*6 Bootstrapping 
 
*Note: The poisson distribution only has one parameter - lambda. 
*Here it is xtpp_gamma 
 *xtpp_gamma is the parameter after I introduce random effects by 
state for the parametric bootstrap. 
 *Without this the parameter is simply xtpp 
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corr plaws plawcount 
d 
 
*A test: 
generate double rxtpp = rpoisson(lambda`i') 
xtpoisson rxtpp slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, vce(oim) 
corr rxtpp xtpp pp plaws 
xtpoisson rxtpp slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, vce(oim) 
drop rxtpp 
 
 
*preserve 
xtpoisson rxtpp`i' slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, vce(oim) 
*estimates store rpooledboot`i' 
matrix list e(b) 
display _b[_cons] 
display _b[repub] 
display _b[mixedother] 
gen constantboot=_b[_cons] 
gen repubboot= _b[repub] 
gen mixedotherboot=_b[mixedother] 
gen slavestateboot=_b[slavestate] 
gen sbstateboot=_b[sbstate] 
gen nbstateboot=_b[nbstate] 
gen southboot=_b[south] 
gen midwestboot=_b[midwest] 
gen westboot=_b[west] 
gen percentfbboot=_b[percentfb] 
gen unempboot=_b[unemp] 
gen year2boot=_b[year2] 
gen year3boot=_b[year3] 
gen year4boot=_b[year4] 
gen year5boot=_b[year5] 
gen year6boot=_b[year6] 
gen year7boot=_b[year7] 
 
d *`i' 
sum *`i' 
drop rxtpp`i' 
codebook id 
preserve 
keep if id==1 
keep id constantboot repubboot mixedotherboot slavestateboot 
sbstateboot nbstateboot southboot /// 
midwestboot westboot percentfbboot unempboot year2boot year3boot 
year4boot year5boot /// 
year6boot year7boot 
d *boot 
sum *boot 
save boot`i', replace 
*This way only have 1 observation per dataset 
restore 
drop constantboot repubboot mixedotherboot slavestateboot sbstateboot 
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nbstateboot southboot /// 
 midwestboot westboot percentfbboot unempboot year2boot year3boot 
year4boot year5boot /// 
 year6boot year7boot /// 
 epsilon`i' lambda`i' 
 *drops the created variables so that they are not stored for the 
next iteration of the loop - don't need them since already saved above 
} 
*restore 
 
d 
sum 
d, s 
save bootstrap_pre-append, replace 
 
 
 
*================== 
*appending data 
 
clear 
use boot1 
d 
sum 
codebook id 
save bootstrap-prelim, replace 
 
d 
forval j=2/1000 { 
clear 
clear matrix 
clear mata 
use bootstrap-prelim 
append using boot`j' 
 
d constant* repub* mixedother* 
sum constant* repub* mixedother* 
keep *boot id 
codebook id 
compress 
d 
save bootstrap-prelim, replace 
}  
*restore 
*A check: 
 tab1 constantboot percentfbboot year7boot 
 preserve 
 forval i=1/1000 { 
 use boot`i' 
 sum constantboot percentfbboot year7boot 
 } 
 restore 
 
sum 
sum id 
rename id idold 
gen id=[_n] 
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list id idold constant* repub* mixed* slave* sb* nb* 
drop idold 
sum *boot 
d, s 
 
save bootstrap_xt_poisson_positivelaws.dta, replace 
 
 
*====================================================================== 
*For comparison to observed XT Poisson positive/neutral data 
*====================================================================== 
clear 
cd "~/Documents/Johns Hopkins/AMS/AMS Master's Paper/Stata/bootstrap/" 
use bootstrap-prep 
 
 
poisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year 
est store m1 
poisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year, vce(oim) 
est store m2 
poisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year, vce(robust) 
est store m3 
poisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year, vce(cluster state) 
est store m4 
poisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year, vce(cluster year) 
est store m5 
poisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year, vce(opg) 
est store m6 
poisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year, vce(bootstrap) 
est store m7 
poisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year, vce(jackknife) 
est store m8 
est table m1 m2 m3 m4 m5 m6 m7 m8 
 
est table m1 m2 m3 m4 m5 m6 m7 m8, se stats(N r2 r2_a) 
 
 
ereturn display 
estimates dir 
 
xtpoisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year, re irr vce(oim) 
xtpoisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year, irr vce(bootstrap) 
xtpoisson plawcount slavestate sbstate nbstate repub mixedother south 
midwest west percentfb  unemp $Year, irr vce(jackknife) 
 
 
*================================= 
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d 
sum 
 
 
log close 
translate bootstrap_xt_poisson_positivelaws.log "~/Documents/Johns 
Hopkins/AMS/AMS Master's 
Paper/Stata/bootstrap/bootstrap_xt_poisson_positivelaws.smcl", 
linesize(79) translator(smcl2log) replace 
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Appendix B. Coding of the Analysis 

 I include an example of the Stata code for generating the relative error results of 
the various standard error specifications.  The example is taken from the panel Poisson 
case of pro/neutral immigrant legislation. 
 
 
*====================================================================== 
* Goal: 
 *Compare the standard error from the parametric bootstrap to the 
various standard error options that are 
 *pre-programmed in stata [i.e vce()] 
  *Recall that the parametric bootstrap takes 1,000 samples 
of coefficients w/ dep. var. from random draw of poisson or NB 
distribution 
  *For poisson lambda is taken as the predicted counts per 
state per year from the original data 
  *For NB defining r and p is more labor intensive 
 *Assuming the parametric bootstrap is the true value for the SE, 
which of the pre-programmed options performs closest? 
  
 *Note I am comparing the MSE for each parameter [parameter here 
is defined as the coef. for each covariate] 
 *there are 16 of these.  As the mean does not change, all the 
action in the MSE is the variance, therefore I compare SE's. 
 
*====================================================================== 
 
cd "~/Documents/Johns Hopkins/AMS/AMS Master's 
Paper/Stata/Results/xt_poisson_positive/" 
 
log using results_xt_poisson_positivelaws.log, replace 
 
clear 
clear matrix 
set mem 300m 
 
set pagesize 300 
set more off, permanently 
 
 
*====================================================================== 
*====================================================================== 
cd "~/Documents/Johns Hopkins/AMS/AMS Master's Paper/Stata/bootstrap/" 
use bootstrap-prep 
d, s 
 
append using bootstrap_xt_poisson_positivelaws 
cd "~/Documents/Johns Hopkins/AMS/AMS Master's 
Paper/Stata/Results/xt_poisson_positive/" 
d, s 
d 
sum 
drop nbregrate nbregp* nbregc* mpstate* 
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*====================================================================== 
*For comparison to observed xt poisson positive laws data 
*====================================================================== 
xtset id year 
xtsum plaws slavestate sbstate nbstate repub mixedother south midwest 
west percentfb unemp $Year 
 
global Year year2 year3 year4 year5 year6 year7 
d $Year 
 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re 
est store default_long1x 
est save default_long1x, replace 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(oim) 
est store oim_long1x 
est save oim_long1x, replace 
 
 
 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(bootstrap) 
est store bootstrap_long1x_1 
est save bootstrap_long1x_1, replace 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(bootstrap) 
est store bootstrap_long1x_2 
est save bootstrap_long1x_2, replace 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(bootstrap) 
est store bootstrap_long1x_3 
est save bootstrap_long1x_3, replace 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(bootstrap) 
est store bootstrap_long1x_4 
est save bootstrap_long1x_4, replace 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(bootstrap) 
est store bootstrap_long1x_5 
est save bootstrap_long1x_5, replace 
 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(jackknife) 
est store jackknife_long1x 
est save jackknife_long1x, replace 
est table default_long1x oim_long1x /*robust clstate clyear opg*/ 
bootstrap_long1x_1 bootstrap_long1x_2 bootstrap_long1x_3 
bootstrap_long1x_4 bootstrap_long1x_5 jackknife_long1x 
 
 
est table default_long1x oim_long1x /*robust clstate clyear opg*/ 
bootstrap_long1x_1 bootstrap_long1x_2 bootstrap_long1x_3 
bootstrap_long1x_4 bootstrap_long1x_5 jackknife_long1x, se stats(N r2 
r2_a) 
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est table default_long1x oim_long1x /*robust clstate clyear opg*/ 
bootstrap_long1x_1 bootstrap_long1x_2 bootstrap_long1x_3 
bootstrap_long1x_4 bootstrap_long1x_5 jackknife_long1x, star stats(N r2 
r2_a) 
 *coefficients are the same, the SE's are not 
est table default_long1x oim_long1x /*robust clstate clyear opg*/ 
bootstrap_long1x_1 bootstrap_long1x_2 bootstrap_long1x_3 
bootstrap_long1x_4 bootstrap_long1x_5 jackknife_long1x, p stats(N r2 
r2_a) 
 
 
ereturn display 
estimates dir 
 
 
*====================================================================== 
 
 
 
*Intentionally Blank 
 
 
 
*====================================================================== 
*Summary Statistics for bootstrapped data 
 
 
global X0 slavestate sbstate nbstate repub mixedother south midwest 
west percentfb unemp year2 year3 year4 year5 year6 year7 
 
foreach i of varlist $X0 { 
egen `i'boot_m=mean(`i'boot) 
egen `i'boot_sd=sd(`i'boot) 
gen `i'boot_v=(`i'boot_sd)^2 
egen `i'boot_std=std(`i'boot) 
} 
d *_m *_sd *_v *_std 
sum *_m *_sd *_v *_std 
 *Each standardized variable has a mean of 0 and a variance of 1 
 
*Note that each value for _m, _sd_and _v are the same for EVERY 
observation because they represent  
 *parameters of the distribution. 
*but _std varies because the observations are standardized.  They still 
vary. 
*Therefore, I can't inculde _std in the matrix. 
 
 
egen slavestateboot_m_alt=mean(slavestateboot) 
egen slavestateboot_sd_alt=sd(slavestateboot) 
gen slavestateboot_v_alt=slavestateboot_sd^2 
egen slavestateboot_std_alt=std(slavestateboot) 
sum slavestateboot_m slavestateboot_m_alt 
sum slavestateboot_sd slavestateboot_sd_alt 
sum slavestateboot_v slavestateboot_v_alt 
sum slavestateboot_std slavestateboot_std_alt 
 *The same! 
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drop *_alt 
 
 
d *boot* 
sum *boot* 
 
 
 
*========== 
*Matrix Creation for parametric bootstrapped data as compared to means 
and standard errors of regressions w/ various SE specifications 
*========== 
*Trivial Case: 
matrix dumbo = [1, 2 \3, 4] 
matrix list dumbo 
matrix drop dumbo 
 
*Grab Original Data? 
 *No! - Because are interested in estimating the coefficients, not 
the values of the observed data 
sum slavestate 
 *original data 
sum slavestateboot 
 *results from parametric bootstrap 
 
 
 
d $X0 
*1. mean 2. variance 3. sd 
foreach i of varlist $X0 { 
d `i'boot* 
sum `i'boot* 
mkmat `i'boot_m `i'boot_v `i'boot_sd if id==336, matrix(`i'_boot) 
matrix `i'_boot=`i'_boot' 
matrix list `i'_boot 
} 
 
 
global X0 slavestate sbstate nbstate repub mixedother south midwest 
west percentfb unemp year2 year3 year4 year5 year6 year7 
 *global X0 slavestate 
 
global X1 oim_long1x /*robust opg*/ bootstrap_long1x_1 
bootstrap_long1x_2 bootstrap_long1x_3 bootstrap_long1x_4 
bootstrap_long1x_5 jackknife_long1x /*state year*/ 
global X1a oim_long1x /*robust opg*/ bootstrap_long1x_1 
bootstrap_long1x_2 bootstrap_long1x_3 bootstrap_long1x_4 
bootstrap_long1x_5 jackknife_long1x 
*global X1b state year 
 *global X1 oim 
 
 
*drop m_* sd_* v_* 
*A test: 
 *1. mean 2. variance 3. sd 
foreach i in oim { 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
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midwest west percentfb unemp $Year, re vce(`i') 
est store `i'_long1x 
est save `i'_long1x, replace 
*matrix list e(b) 
matrix B=e(b) 
matrix list B 
*matrix list e(V) 
matrix V=e(V) 
matrix Var=vecdiag(V) 
matrix list Var 
 foreach j of numlist 1/1 { 
 gen m_`j'_`i'=B[1,`j'] 
 *display m_`j'_`i' 
 gen v_`j'_`i'=Var[1,`j'] 
 *display v_`j'_`i' 
 *display sqrt(v_`j'_`i') 
 gen sd_`j'_`i'=sqrt(Var[1,`j']) 
 *d *_`j'_`i' 
 *sum *_`j'_`i' 
 mkmat m_`j'_`i' v_`j'_`i' sd_`j'_`i' if id==336, matrix(`i'_`j') 
 matrix `i'_`j'=`i'_`j'' 
 matrix list `i'_`j' 
 } 
} 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(oim) 
drop m_* sd_* v_* 
 
 
 
*For vce specifications of oim robust opg bootstrap and jackknife 
 *1. mean 2. variance 3. sd 
foreach i in $X1a { 
est use `i' 
 
*matrix list e(b) 
matrix B=e(b) 
matrix list B 
 
*matrix list e(V) 
matrix V=e(V) 
matrix Var=vecdiag(V) 
matrix list Var 
 
 foreach j of numlist 1/16 { 
 
 gen m_`j'_`i'=B[1,`j'] 
 *display m_`j'_`i' 
 
 gen v_`j'_`i'=Var[1,`j'] 
 *display v_`j'_`i' 
 *display sqrt(v_`j'_`i') 
 gen sd_`j'_`i'=sqrt(Var[1,`j']) 
 
 *d *_`j'_`i' 
 *sum *_`j'_`i' 
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 mkmat m_`j'_`i' v_`j'_`i' sd_`j'_`i' if id==336, matrix(`i'_`j') 
 matrix `i'_`j'=`i'_`j'' 
 matrix list `i'_`j' 
 } 
} 
 
 
matrix dir 
 
 
foreach i in $X1 { 
matrix rename `i'_1 slavestate_`i' 
matrix rename `i'_2 sbstate_`i' 
matrix rename `i'_3 nbstate_`i' 
matrix rename `i'_4 repub_`i' 
matrix rename `i'_5 mixedother_`i' 
matrix rename `i'_6 south_`i' 
matrix rename `i'_7 midwest_`i' 
matrix rename `i'_8 west_`i' 
matrix rename `i'_9 percentfb_`i' 
matrix rename `i'_10 unemp_`i' 
matrix rename `i'_11 year2_`i' 
matrix rename `i'_12 year3_`i' 
matrix rename `i'_13 year4_`i' 
matrix rename `i'_14 year5_`i' 
matrix rename `i'_15 year6_`i' 
matrix rename `i'_16 year7_`i' 
} 
 
matrix dir 
 
 
foreach i in $X1 { 
foreach j in m v sd { 
 
rename `j'_1_`i' `j'_slavestate_`i' 
rename `j'_2_`i' `j'_sbstate_`i' 
rename `j'_3_`i' `j'_nbstate_`i' 
rename `j'_4_`i' `j'_repub_`i' 
rename `j'_5_`i' `j'_mixedother_`i' 
rename `j'_6_`i' `j'_south_`i' 
rename `j'_7_`i' `j'_midwest_`i' 
rename `j'_8_`i' `j'_west_`i' 
rename `j'_9_`i' `j'_percentfb_`i' 
rename `j'_10_`i' `j'_unemp_`i' 
rename `j'_11_`i' `j'_year2_`i' 
rename `j'_12_`i' `j'_year3_`i' 
rename `j'_13_`i' `j'_year4_`i' 
rename `j'_14_`i' `j'_year5_`i' 
rename `j'_15_`i' `j'_year6_`i' 
rename `j'_16_`i' `j'_year7_`i' 
} 
} 
d 
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*===== 
*Combine 
*A test: 
matrix llcoolj=slavestate_boot, slavestate_oim_long1x 
matrix list llcoolj 
matrix drop llcoolj 
 
 
d $X0 
foreach i in $X0 { 
matrix `i'=`i'_boot, `i'_oim_long1x, /*`i'_robust, `i'_state, `i'_year, 
`i'_opg,*/ `i'_bootstrap_long1x_1, /// 
`i'_bootstrap_long1x_2, `i'_bootstrap_long1x_3, `i'_bootstrap_long1x_4, 
`i'_bootstrap_long1x_5, `i'_jackknife_long1x 
*sum `i'boot 
matrix list `i'_boot 
*estimates 
matrix list `i'_oim_long1x 
*matrix list slavestate 
matrix rowname `i' = mean variance sd 
matrix colname `i' = samplingboot oim /*robust clstate clyear opg*/ 
bootstrap_1 bootstrap_2 bootstrap_3 bootstrap_4 bootstrap_5 jackknife 
matrix list `i' 
} 
 *The variance and sd is based off of 1,000 for the samplingboot, 
the others are from 336. 
 *However, I want to compare the SE based off of using the 
regression coef. as true theta, not just the SD of the parametric 
bootstrap 
foreach i in $X0 { 
matrix list `i' 
} 
 
*Compare the matrices to the bootstrap results and the saved regression 
results to make sure this is correct 
sum *boot_m 
sum *boot_v 
sum *boot_sd 
 
est use oim_long1x 
estimates 
 
 
estimates use bootstrap_long1x_1 
estimates 
estimates use jackknife_long1x 
estimates 
 *I checked each of these regression standard errors as compared 
to the matrices I created 
 *Looks exactly right.  Note that the point estimates don't change 
across the regression models, only the standard errors do. 
 
 
*============== 
*Comparing Standard Errors 
*============== 
 *Instead of examining the SD and var of the bootstrap, use the 
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formula: 
 
 *SE = square root ( sum of i=1 to n (each coef. for each of the 
1,000 bootstraps - coef. from normal model)^2 ) 
 
sum *boot 
 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(oim) 
*xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(robust) 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(bootstrap) 
 *notice that the coefficients don't change 
  *= I can use the coefficients from any of these to 
represent the 'true' coefficients 
 
*Proof: 
foreach i in $X0 { 
sum m_`i'_* 
} 
 *Describes the coef. for each different se specification from 
observed data 
  *Notice that the coefficients are the same 
 
matrix betas = e(b) 
matrix list betas 
 
 
*These are the existing matrices comparing the mean, variance, and sd 
for the boot and oim 
foreach i in $X0 { 
matrix list `i' 
} 
 
 
*I want to create a new matrice that has the SE of the parametric 
bootstrap and compares it to the sd of the other 
 *se specifications 
foreach i in $X0 { 
gen `i'_coef=`i'[1,2] 
} 
sum *_coef 
 *This creates a variable that has the coefficient value for each 
of the covariates 
 
 
preserve 
 
sum *boot 
keep if constantboot!=. 
 *So only do the calculation for the 1,000 bootstrap samples 
d, s 
 
foreach i in /*slavestate - used for a test run */ $X0 { 
sum `i'boot 
 *Bootstrap value - 1,000 different observations 
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codebook `i'boot 
sum `i'_coef 
 *the regression coefficient [i.e. parameter, to use Naiman's 
terminology] 
 *1 unique value 
codebook slavestate_coef 
 
*Using the formula: 
*SE = square root (1/n ( sum of i=1 to n ((each coef. for each of the 
1,000 bootstraps - coef. from normal model)^2) ) ) 
 
*Steps: 
*1. squared difference 
gen `i'_se = (`i'boot-`i'_coef )^2 
sum `i'_se 
 
*2. Sum these (sum of squares): 
egen x=total(`i'_se) 
sum `i'_se x 
 
*3. Divide by n 
replace x=x/1000 
 
*4. Take the square root 
replace x=sqrt(x) 
 
drop `i'_se 
rename x `i'_se 
sum `i'_se 
 
mkmat `i'_se if id==1000, matrix(`i'_se) 
matrix list `i'_se 
} 
 
*Combine into 1 matrix for se's of parametric bootstrap 
matrix paraboot_se = slavestate_se \ sbstate_se \ nbstate_se \ repub_se 
\ mixedother_se \ south_se \ midwest_se \ /// 
west_se \ percentfb_se \ unemp_se \ year2_se \ year3_se \ year4_se 
\ year5_se \ year6_se \ year7_se 
matrix rowname paraboot_se = slavestate nbstate sbstate repub 
mixedother south midwest west percentfb unemp year2 /// 
year3 year4 year5 year6 year7 
matrix list paraboot_se 
 
 
*Create comparison matrix for se's for all the model specifications 
matrix list slavestate 
d *oim* 
d sd_*_oim* 
sum sd_*_oim* 
 
foreach i in $X0 { 
mkmat `i'_se `i'boot_sd sd_`i'_oim_long1x /*sd_`i'_robust 
sd_`i'_clstate sd_`i'_clyear sd_`i'_opg*/ /// 
sd_`i'_bootstrap_long1x_1 sd_`i'_bootstrap_long1x_2 
sd_`i'_bootstrap_long1x_3 sd_`i'_bootstrap_long1x_4 /// 
sd_`i'_bootstrap_long1x_5 sd_`i'_jackknife_long1x /// 
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if id==1000, matrix(`i'_comparison) 
matrix list `i'_comparison 
} 
restore 
 
*Combine the matrices so all in 1 comparison matrix 
matrix comparison = slavestate_comparison \ sbstate_comparison 
\ nbstate_comparison \ repub_comparison \ mixedother_comparison 
\ south_comparison \ midwest_comparison \ /// 
west_comparison \ percentfb_comparison \ unemp_comparison 
\ year2_comparison \ year3_comparison \ year4_comparison 
\ year5_comparison \ year6_comparison \ year7_comparison 
matrix colname comparison = paraboot_mse paraboot_sd oim /*robust 
clstate clyear opg*/ bootstrap jackknife 
matrix rowname comparison = slavestate nbstate sbstate repub mixedother 
south midwest west percentfb unemp year2 /// 
year3 year4 year5 year6 year7 
matrix list comparison 
 *looks right 
 
*A check: 
matrix list paraboot_se 
 
foreach i in $X0 { 
matrix list comparison 
matrix list `i' 
} 
 
matrix list comparison 
 *Notice how close the mse is from the sd 
 *It's because the means are so close, e.g. 
 *matrix list slavestate 
 
 
*Create variables so have them 
foreach i in $X0 { 
matrix list `i'_comparison 
gen `i'_se=`i'_comparison[1,1] 
sum `i'_se 
} 
matrix list comparison 
sum *_se 
 
 
 
*But what do the SE's mean? 
 *To understand the magnitude of the effect, I must know the means 
 
*drop *_var 
foreach i in $X0 { 
gen `i'_var = (`i'_se)^2 
sum `i'_se `i'_var 
display `i'_se^2 
sum `i'boot `i'boot_m `i'_coef `i'_se `i'_var 
} 
xtpoisson plaws slavestate sbstate nbstate repub mixedother south 
midwest west percentfb unemp $Year, re vce(oim) 
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est use oim_long1x 
estimates 
 
 
d $X0 
foreach i in /*slavestate*/ $X0 { 
sum `i'_se 
matrix list `i'_se 
matrix list `i'_comparison 
 
mkmat `i'boot_m `i'_var `i'_se if id==336, matrix(`i'_se_etc_paraboot) 
matrix `i'_se_etc_paraboot=`i'_se_etc_paraboot' 
matrix list `i'_se_etc_paraboot 
 
matrix list `i'_boot 
 *Notice that the means are the same as I am using the parametric 
bootstrap means but the variance and sd or se 
 *are different because one is the SD, the other is the SE 
calculation using `i'_coef as the true theta value 
 
matrix list `i' 
 *This is the old matrix that uses the sd instead of se 
calculation 
 *It is made up of: 
matrix list `i'_boot 
matrix list `i'_oim_long1x 
 
matrix list `i'_bootstrap_long1x_1 
matrix list `i'_bootstrap_long1x_2 
matrix list `i'_bootstrap_long1x_3 
matrix list `i'_bootstrap_long1x_4 
matrix list `i'_bootstrap_long1x_5 
matrix list `i'_jackknife_long1x 
 
 
*I want to create a new matrix 
matrix `i'_final = `i'_se_etc_paraboot, `i'_oim_long1x,  /*`i'_robust, 
`i'_state, `i'_year, `i'_opg,*/ /// 
`i'_bootstrap_long1x_1, `i'_bootstrap_long1x_2, `i'_bootstrap_long1x_3, 
`i'_bootstrap_long1x_4, /// 
`i'_bootstrap_long1x_5, `i'_jackknife_long1x 
matrix list `i'_final 
matrix list `i' 
 
matrix `i'_final=`i'_final' 
matrix colname `i'_final = mean variance se 
matrix rowname `i'_final = paraboot_se oim /*robust clstate clyear 
opg*/ bootstrap_1 bootstrap_2 bootstrap_3 bootstrap_4 bootstrap_5 
jackknife 
matrix list `i'_final 
} 
 
foreach i in $X0 { 
matrix list `i'_final 
} 
 *This is KEY! 
sum *boot 
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*=== 
*And what if I want a matrix that lists only the se's? 
 *Look at the matrix comparison 
matrix list comparison 
 *This is KEY 
 
 
 
*=== 
*What about total SE for each method? 
matrix list comparison 
 
*preserve 
*keep if id==1 
 
global X1 oim_long1x /*robust clstate clyear opg*/ bootstrap_long1x_1 
bootstrap_long1x_2 /// 
bootstrap_long1x_3 bootstrap_long1x_4 bootstrap_long1x_5 
jackknife_long1x 
 
*drop *_sum 
foreach i in $X1 { 
sum  sd_*_`i' 
 
matrix list comparison 
 
gen `i'_sum= sd_slavestate_`i' + /// 
sd_sbstate_`i' + /// 
sd_nbstate_`i' + /// 
sd_repub_`i' + /// 
sd_mixedother_`i' + /// 
sd_south_`i' + /// 
sd_midwest_`i' + /// 
sd_west_`i' + /// 
sd_percentfb_`i' + /// 
sd_unemp_`i' + /// 
sd_year2_`i' + /// 
sd_year3_`i' + /// 
sd_year4_`i' + /// 
sd_year5_`i' + /// 
sd_year6_`i' + /// 
sd_year7_`i' 
sum `i'_sum 
 
display sd_slavestate_`i' + /// 
sd_sbstate_`i' + /// 
sd_nbstate_`i' + /// 
sd_repub_`i' + /// 
sd_mixedother_`i' + /// 
sd_south_`i' + /// 
sd_midwest_`i' + /// 
sd_west_`i' + /// 
sd_percentfb_`i' + /// 
sd_unemp_`i' + /// 
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sd_year2_`i' + /// 
sd_year3_`i' + /// 
sd_year4_`i' + /// 
sd_year5_`i' + /// 
sd_year6_`i' + /// 
sd_year7_`i' 
} 
 
 
*What about for the parametric bootstrap SE? 
foreach i in se { 
sum  *_`i' 
matrix list comparison 
gen `i'_sum= slavestate_`i' + /// 
sbstate_`i' + /// 
nbstate_`i' + /// 
repub_`i' + /// 
mixedother_`i' + /// 
south_`i' + /// 
midwest_`i' + /// 
west_`i' + /// 
percentfb_`i' + /// 
unemp_`i' + /// 
year2_`i' + /// 
year3_`i' + /// 
year4_`i' + /// 
year5_`i' + /// 
year6_`i' + /// 
year7_`i' 
sum `i'_sum 
 
display slavestate_`i' + /// 
sbstate_`i' + /// 
nbstate_`i' + /// 
repub_`i' + /// 
mixedother_`i' + /// 
south_`i' + /// 
midwest_`i' + /// 
west_`i' + /// 
percentfb_`i' + /// 
unemp_`i' + /// 
year2_`i' + /// 
year3_`i' + /// 
year4_`i' + /// 
year5_`i' + /// 
year6_`i' + /// 
year7_`i' 
 *looks right 
} 
 
sum *_sum 
 *This is KEY 
 
 
*=== 
*What about a standardized comparison? 
*I.e. a relative error comparison of the stata standard error technique 
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vs the true standard error? 
 *e.g. ( sigma(jack - sigma (true) ) / sigma(true) 
  *then take the absolute value 
  *then average over i [the 16 coefficients] 
 
d, s 
sum 
d 
 
d sd* 
d sd*oim* 
d sd*bootstrap* 
d sd*jackknife* 
 
 
foreach i in $X0 { 
matrix list `i'_final 
} 
matrix list comparison 
 
matrix dir 
d $X0 
foreach i in /*slavestate*/ $X0 { 
sum `i'_se 
matrix list `i'_jackknife_long1x 
matrix list `i'_se 
matrix list `i'_comparison 
matrix list `i'_se_etc_paraboot 
matrix list `i'_final 
} 
 
sum percentfb_se sd_percentfb_oim sd_percentfb* 
codebook id percentfb_se sd_percentfb_oim_long1x 
sd_percentfb_bootstrap_long1x_2 sd_percentfb_jackknife_long1x 
matrix list percentfb_final 
 
*creating a matrix for relative error 
foreach i in $X0 { 
gen x=abs( ((sd_`i'_oim_long1x - `i'_se) / `i'_se) ) 
gen y1=abs( ((sd_`i'_bootstrap_long1x_1 - `i'_se) / `i'_se) ) 
gen y2=abs( ((sd_`i'_bootstrap_long1x_2 - `i'_se) / `i'_se) ) 
gen y3=abs( ((sd_`i'_bootstrap_long1x_3 - `i'_se) / `i'_se) ) 
gen y4=abs( ((sd_`i'_bootstrap_long1x_4 - `i'_se) / `i'_se) ) 
gen y5=abs( ((sd_`i'_bootstrap_long1x_5 - `i'_se) / `i'_se) ) 
gen z=abs( ((sd_`i'_jackknife_long1x - `i'_se) / `i'_se) ) 
sum x y1 y2 y3 y4 y5 z 
mkmat x y1 y2 y3 y4 y5 z if id==1000, matrix(`i'_relativeerror) 
matrix `i'_relativeerror=`i'_relativeerror' 
matrix list `i'_relativeerror 
drop x y1 y2 y3 y4 y5 z 
} 
 
d $X0 
matrix relativeerror = slavestate_relativeerror, sbstate_relativeerror, 
nbstate_relativeerror, repub_relativeerror, mixedother_relativeerror, 
/// 
south_relativeerror, midwest_relativeerror, west_relativeerror, 
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percentfb_relativeerror, unemp_relativeerror, year2_relativeerror, /// 
year3_relativeerror, year4_relativeerror, year5_relativeerror, 
year6_relativeerror, year7_relativeerror 
matrix relativeerror=relativeerror' 
matrix colname relativeerror = oim boot_1 boot_2 boot_3 boot_4 boot_5 
jack 
matrix rowname relativeerror = slave sb nb repub mixed south midwest 
west percentfb unemp yr2 yr3 yr4 yr5 yr6 yr7 
matrix list relativeerror 
 
*Sum and then average the values 
foreach i in $X0 { 
gen x_`i'=abs( ((sd_`i'_oim_long1x - `i'_se) / `i'_se) ) 
gen y1_`i'=abs( ((sd_`i'_bootstrap_long1x_1 - `i'_se) / `i'_se) ) 
gen y2_`i'=abs( ((sd_`i'_bootstrap_long1x_2 - `i'_se) / `i'_se) ) 
gen y3_`i'=abs( ((sd_`i'_bootstrap_long1x_3 - `i'_se) / `i'_se) ) 
gen y4_`i'=abs( ((sd_`i'_bootstrap_long1x_4 - `i'_se) / `i'_se) ) 
gen y5_`i'=abs( ((sd_`i'_bootstrap_long1x_5 - `i'_se) / `i'_se) ) 
gen z_`i'=abs( ((sd_`i'_jackknife_long1x - `i'_se) / `i'_se) ) 
} 
 
foreach i in x y1 y2 y3 y4 y5 z { 
gen `i'=`i'_slavestate + `i'_sbstate + `i'_nbstate + `i'_repub + 
`i'_mixedother + `i'_south + `i'_midwest + `i'_west /// 
 + `i'_percentfb + `i'_unemp + `i'_year2 + `i'_year3 + `i'_year4 + 
`i'_year5 + `i'_year6 + `i'_year7 
replace `i'=`i'/16 
tab `i' 
 } 
rename x oim_relativeerror 
rename y1 bootstrap_1_relativeerror 
rename y2 bootstrap_2_relativeerror 
rename y3 bootstrap_3_relativeerror 
rename y4 bootstrap_4_relativeerror 
rename y5 bootstrap_5_relativeerror 
rename z jackknife_relativeerror 
sum *relativeerror 
display 2.66/16 
 *looks right 
codebook *relativeerror 
 
matrix list relativeerror 
mkmat oim_relativeerror bootstrap_1_relativeerror 
bootstrap_2_relativeerror bootstrap_3_relativeerror /// 
bootstrap_4_relativeerror bootstrap_5_relativeerror 
jackknife_relativeerror if id==1000, matrix(relativeerror_final) 
matrix colname relativeerror_final = oim boot_1 boot_2 boot_3 boot_4 
boot_5 jack 
matrix rowname relativeerror_final = relativeerror 
matrix list relativeerror_final 
 *KEY 
 
*OIM looks like it is best for xt_poisson_positive 
 
 
 
*====================================================================== 
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*Data Analysis Techniques 
*====================================================================== 
 
 *1. SE comparisons 
 matrix list comparison 
  *I also have comparison of mean, sd, var - not as important 
 foreach i in $X0 { 
 matrix list `i' 
 }  
 *2. boxplot of variance of 1,000 samples w/ mean of predicted 
   *not very useful 
 *3. hist of variance of 1,000 samples w/ mean of predicted 
   *not very useful 
 *4. dotplot 
  *SE's - best 
  *variances 
   *also useful but stick with SE's 
  *means - don't need 
 
 
*====================================================================== 
*Ranking of SE techniques(again) 
 
matrix list comparison 
sum *_sum 
 
 
 
*====================================================================== 
d 
sum 
d, s 
 
save results_xt_poisson_positivelaws.dta, replace 
 
log close 
translate results_xt_poisson_positivelaws.log "~/Documents/Johns 
Hopkins/AMS/AMS Master's 
Paper/Stata/Results/xt_poisson_positive/results_xt_poisson_positivelaws
.smcl", linesize(79) translator(smcl2log) replace 
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