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Abstract

Measurement reliability is crucial for the research of functional connectivity

data in the context of pursuing more reproducible research. Unfortunately, the

utility of traditional reliability measures, such as the intraclass correlation coef-

ficient, is limited given the size and complexity of functional connectivity data.

In recent work, novel reliability measures have been introduced in the context

where a set of subjects are measured twice or more, including: fingerprint-

ing, rank sums, and generalizations of the intraclass correlation coefficient.

However, the relationships between, and the best practices among these mea-

sures remains largely unknown. In this thesis, we consider a novel reliability

measure, discriminability. We show that it is deterministically linked with

the correlation coefficient under univariate random effect models, and has

desired property of optimal accuracy for inferential tasks using multivariate

measurements. Additionally, we propose a universal framework of reliability

test based on permutations of the statistics.The power of permutation tests

derived from these measures are compared numerically under Gaussian and

non-Gaussian settings, with and without simulated batch effects. Motivated

by both theoretical and empirical results, we provide methodological rec-

ommendations for each benchmark setting to serve as a resource for future
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analyses. We investigate the Poisson and Gaussian approximations of the tests

so that the computational cost is reduced. We demonstrate possible follow-up

research using reliability tests via applications on the Human Connectome

Project functional connectivity data. We believe these results will play an

important role towards improving reproducibility not only for functional con-

nectivity, but also in fields such as functional magnetic resonance imaging in

general, genomics, pharmacology, and more. Lastly, we illustrate the potential

of functional connectivity as a source of causal biomarkers with an example

of analyzing the trial data for an aphasia treatment.
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Chapter 1

Introduction

The reproducibility crisis is a concern in many scientific domains (Baker,

2016; Open Science Collaboration and others, 2015), including and perhaps

especially the field of functional neuroimaging (Button et al., 2013), where

noise, an absence of replicability, site variation, and inter- and intra-scanner

variation are known issues. Behind the crises, measurement reliability plays a

crucial role. In addition to data consistency being conceptually fundamental

for results (Bennett and Miller, 2010), reliability is used as a key tool to detect

likely irreproducible findings and statistical errors. For example, a recent

outcry over issues in repeated use of data in the field of cognitive neuroscience

(Vul et al., 2009) relied on absence of the required reliability as proof of the

issue. Some have also argued that the misinterpretation of reliability can

result in false confidence in a study’s reproducibility and subsequently lead

to the neglect of important design issues (Turner et al., 2018). A thorough

investigation and accurate interpretation of measurement reliability is crucial

for a better understanding of existing issues of reproducibility and working

towards better future practices.
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Functional connectivity (FC) is a recently developed data type derived

from resting-state functional magnetic resonance imaging (rs-fMRI) (Van Den

Heuvel and Pol, 2010). Functional MRI records blood-oxygen-level-dependent

(BOLD) time series from small regions of the brain. In contrast, rs-fMRI

does so while a subject is at rest in the scanner considering simultaneous

synchronous behavior. Despite the promising prospect of non-invasively

measuring functional brain connectivity in vivo, FC raises questions of data

quality by its nature. Since the synchronous fluctuations are evaluated by

second order statistics (usually correlations or network-based graph metrics),

FC is potentially noisier than other fMRI data, which already involves complex

acquisition and processing choices. Resting state correlations are particularly

sensitive to biological confounds, in contrast to task based fMRI, where the

confound is often not correlated with the task. Variability can be induced

by changes in physiological and cognitive status of a subject, within a single

scan session or between two sessions that are hour, days, or months apart. In

addition, common practices in the field can raise questions in data quality too

(Zuo and Xing, 2014; Jiang et al., 2015). For example, auto-correlations in the

BOLD time series might violate independence and parametric assumptions in

correlation analyses. Averaging the time series over a large region may involve

voxels with low functional homogeneity and introduce spurious variability. It

is also a concern when, as is typical, a number of reasonable preprocessing

options are available that produce highly variable measurement outcomes.

Processing choices can be particularly difficult to generalize across studies,

since target measurements can be on different scales or formed with a different

data reduction strategy (seed-to-voxels, voxel-by-voxel, region-by-region, etc.).
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In all of these scenarios, understanding measurement reliability of FC is a

prerequisite for any meaningful scientific discovery or clinical application.

The evaluation of reliability is crucial, not only because of the varying qual-

ity of correlation-based FC measurements (Noble, Scheinost, and Constable,

2019), but also for its broader implications. Some examples include: i. select-

ing best practices for data acquisition and preprocessing (Pervaiz et al., 2019),

ii. identifying FC biomarkers (Gabrieli, Ghosh, and Whitfield-Gabrieli, 2015;

Castellanos et al., 2013; Kelly et al., 2012), iii. optimizing FC-based prediction

models (Svaldi et al., 2019), and iv. evaluating the accuracy of multi-class

prediction algorithms (Zheng, Achanta, and Benjamini, 2018).

To avoid ambiguity, measurement reliability is defined as consistency or

similarity across technical replicates of a measurement. We restrict the use

of the term without assuming one of the replicates is the correct, true mea-

surement. The same definition is often referred to as test-retest reliability,

reliability, repeatability, or the reproducibility of a measurement procedure,

where the consistency of repeated measurements is being emphasized (Müller

and Büttner, 1994). However, caution should be taken that the general con-

cepts of reliability and reproducibility are often applied beyond the definition

of repeated measurements’ consistency, depending on the actual context. Gen-

eral reviews of the concept of research reproducibility, with comparison to

replicability can be found: in Goodman, Fanelli, and Ioannidis, 2016 and Patil,

Peng, and Leek, 2016. Reviews of the general reliability of fMRI can be found

in Bennett and Miller, 2010 and Fröhner et al., 2017, where emphasis was put

on the reliability of results, not necessarily restricted to measurement. For

3



example, popular cluster-overlap-based reliability measures, such as the Dice

coefficient and Jaccard index, are designed specifically for the consistency of

the inferential results. Moreover, a rich literature exists for other related, but

distinct, types of reliability, such as inter-rater reliability (an overview can be

found Gwet, 2014). A similar issue in fMRI is in inter-site, inter-scanner or

inter-technologist reliability, which is not discussed in detail herein, but the

measures discussed in this thesis can be applied. In summary, we selectively

focus on the evaluation of measurement reliability, as a crucial starting point

for evaluating measurement validity.

FC raises new challenges for reliability evaluation. For example, the intr-

aclass correlation coefficient (ICC) is a commonly used metric for test-retest

reliability. However, the ICC is limited in several ways when applied for FC

data. First, it was developed for univariate data, and there is no consensus

on how one should synthesize multiple ICC’s over each dimension of the

measurement, or for measurements with different dimensions. The definition

and inference of ICC is based on a relatively strict parametric analysis of vari-

ance (ANOVA) model assuming separability and additivity. Often, Gaussian

assumptions are applied for inference, an assumption that is suspect in fMRI

studies. Ideally, an objective reliability measure, preferably non-parametric

and able to accommodate varying data dimensions, is needed.

Recently, several novel reliability measures have been proposed, including

fingerprinting, which is based on the idea of subject identification (Finn et al.,

2015; Finn et al., 2017; Wang et al., 2018), rank sums (Airan et al., 2016), and

the image intraclass correlation coefficient (I2C2) (Shou et al., 2013), which is

4



a generalization of the classical univariate ICC. Unlike univariate methods,

such as ICC, these newly proposed methods can handle high-dimensional

imaging data and computationally scale. By building the measures on ranks

transformations, the nonparametric methods (fingerprinting, rank sums) are

robust to model violations.

However, the relations between, and the best practices among, these meth-

ods remains largely unknown. Furthermore, clear relationships in interpre-

tations and performance are lacking. Thus, often less effective or robust

measures of FC measurement quality are being used, potentially leading to

worse study practices, worse processing pipelines and sub-optimal application

of FC-based prediction algorithms.

In Chapter 2, we particularly focus on discriminability (Bridgeford et al.,

2019), a new data quality measure. We argue that discriminability is in fact

a measure of reliability. It is defined upon a general repeated measurement

model that is free of parametric assumptions, yet remains deterministically

linked to ICC for univariate measurement, when ANOVA assumptions are

met. The flexibility of the general repeated measurement model also allows us

to investigate the mathematical relationships of discriminability with all other

multivariate reliability measures. These analytical results give the first insights

into the relationships between the recently proposed reliability measures.

In Chapter 3, we propose a framework of permutation testing specifically

designed for discovering the evidence for the existence of measurement re-

liability. Thus, the aforementioned reliability measures can be numerically

5



compared in the terms of their ability to detect significance in such permuta-

tion tests. To summarize, our results illustrate the general power advantages

of discriminability when compared to other nonparametric methods, and its

robustness advantages against the violation of Gaussian assumptions, when

compared to parametric methods. Of course, parametric methods may be

more powerful when distributional assumptions are satisfied. In addition,the

rank sum method shows additional robustness against mean shift batch effects

compared to discriminability. Moreover, we give Poisson or normal approx-

imations for the permutation tests of fingerprinting or rank-based statistics,

respectively. This allows power analysis for large samples and reduces the

computational cost for the scenarios when the tests are performed in large

batches. However, in Chapter 4, we note that evidence beyond the test result is

desirable for assessing reliability. We focus on fingerprinting in this example,

where both the individual score and approximation of the permutation distri-

bution are available. The results highlight that covariates can be associated

with the individual estimates of reliability and require further investigation.

Although not being one of the common targets of interventions, FC has

potential in both investigating treatment mechanisms and promoting per-

sonalized medicines in clinical trials. In Chapter 5, we will demonstrate the

opportunities of application and methodological development with an exam-

ple from a randomized trial of primary progressive aphasia (PPA) patients

and transcranial direct current stimulation (tDCS) treatments. However, while

this and other applications of resting state fMRI being suggest its potential as

a biomarker (Finn et al., 2015; Rosenberg et al., 2016), precaution should be
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taken based on the lessons learned from the study of its reliability.
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Chapter 2

Measurement Reliability Measures

2.1 Review of Existing Measurement Reliability Mea-
sures

In this section, we define and investigate several measures of data reliability

under associated statistical models. Notably, we define the measures as pop-

ulation quantities for statistical inference. We subsequently give the natural

sample estimators for each.

2.1.1 Intraclass Correlation Coefficients

We consider two types of intraclass correlations, ICC and I2C2 (Shou et al.,

2013). Without modifications, ICC is designed for evaluating the reliability for

one dimensional measurements, such as expert ratings or composite mental

health scores. It can also be utilized in various ways for multivariate mea-

surements, for example, by averaging ICCs over each of the dimensions or by

counting percentage of dimensions that pass a threshold on ICC. However, for
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the latter scenario there is no consensus on the best practice, and the interpreta-

tion is subjective based on the researcher’s choices. ICC can be generalized to

higher dimensions, provided a multivariate model that decomposes variation

into a sum of intra- and inter-subject levels and a definition of the fraction

of variation that is inter-subject. I2C2, is one such generalization of ICC for

multivariate settings that was designed for high dimensional settings.

Other generalizations of ICC are outside the setting of interest for this

thesis. For example, intraclass correlations can also be defined under various

two-way ANOVA models (Shrout and Fleiss, 1979), which are suitable for the

evaluation of inter-rater reliability or internal consistency. However, these

measures are not relevant for the evaluation of test-retest reliability (Rousson,

Gasser, and Seifert, 2002; Bruton, Conway, and Holgate, 2000). Other popular

reliability measures, such as variations on the Alpha and Kappa statistics

are not covered, for the same reason of being less relevant to the study of

test-retest reliability.

To elaborate on models, for ICC, suppose that we have n subjects, each

with s measurements. A univariate Analysis of Variance (ANOVA) model

with Gaussian random effects is specified as:

xit = µ + µi + eit, (2.1)

where µi
iid∼N

(︂
0, σ2

µ

)︂
and eit

iid∼N
(︁
0, σ2)︁ are mutually independent.

For l-dimensional measurements, (2.1) is generated as Multivariate Analy-

sis of Variance (MANOVA) with Gaussian random effects:

xxxit = µµµ +µµµi + eeeit, (2.2)
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where µµµi
iid∼ Nl

(︁
000, ΣΣΣµµµ

)︁
, eeeit

iid∼ Nl(000, ΣΣΣ), independently. All the vectors are l-

dimensional.

In the univariate case (2.1), ICC is defined as:

λ = corr(xit, xit′) =
σ2

µ

σ2
µ + σ2 ,

for all t′ ̸= t. Assuming the measurements of a same subject form a class, then

xit and xit′ are both from the i-th class, hence the name "intra-class".

For the multivariate case (2.2), a popular generalization of ICC using matrix

determinants is

Λ =
det(ΣΣΣµ)

det(ΣΣΣ) + det(ΣΣΣµ)
,

commonly known as Wilks’ lambda (Λ). Using matrix traces, the generaliza-

tion becomes

Λtr =
tr(ΣΣΣµ)

tr(ΣΣΣ) + tr(ΣΣΣµ)
.

This reliability measure is particularly useful for high-dimensional imaging

settings and was utilized in the the image intraclass correlation coefficient

(I2C2) (Shou et al., 2013). Recall that the trace of the covariance matrix captures

the total variability of the random quantity of interest. Then, Λtr intuitively

represents the fraction of the variability in the observed data xxxit due to the

subject effect µµµi.

It is well known that an estimator for ICC is

λ̂ =
MSB − MSW

MSB + (s − 1) · MSW
, (2.3)
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where the means square between and within subjects are

MSB =

(︄
n

∑
i=1

s(x̄i. − x̄..)
2

)︄
/ (n − 1) ,

MSW =

(︄
n

∑
i=1

s

∑
t=1

(xit − x̄..)
2 −

n

∑
i=1

s(x̄i. − x̄..)
2

)︄
/ (ns − n) .

In addition, the F statistic is defined as

F =
MSB

MSW
.

It follows that λ̂ = (F − 1)(F − 1 + s), which is a non-decreasing function of

the F statistic given s ≥ 2.

I2C2 was estimated using a hierarchical generalization on principal com-

ponents called multilevel functional principal components analysis (MFPCA)

(Di et al., 2009). The MFPCA algorithm utilizes a moment based approach

to separate variability into inter- and intra-subject components in a method

similar to Henderson’s equations in mixed models (Henderson et al., 1959).

Singular value decomposition tricks can be used to make calculations tractable

in higher dimensions (Zipunnikov et al., 2011). In principle, other multivariate

approaches can be used to estimate Λtr and Λ. For example, it would be a

straightforward change in I2C2 to estimate Λ instead of Λtr. In addition, latent

Gaussian models (Chib and Greenberg, 1998) can extend these approaches to

binary data and graphs (Yue et al., 2015).

One of the commonly discussed properties of ICC is its relation with the

optimal correlation between two univariate outcomes (Vul et al., 2009; Bennett
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and Miller, 2010; Zuo and Xing, 2014). It states:

corr
(︂

x1
it, x2

it

)︂
= corr

(︂
µ1

i , µ2
i

)︂√︂
ICC(x1

it) · ICC(x2
it),

where x1
it and x2

it follow the ANOVA model respectively, without the require-

ment of Gaussian distributions.

2.1.2 Fingerprinting

As its name suggests, fingerprinting is the idea of matching subjects to them-

selves in repeated measurements where errors could potential occur by mis-

matches with other subjects (Wang et al., 2018). The count or proportion

of matches for a matching scheme represents an intuitive summary of data

reliability. This measure has become especially popular in neuroimaging due

to a few highly visible articles (Anderson et al., 2011; Finn et al., 2015; Xu et al.,

2016).

We first formalize the idea of a population-level fingerprinting measure

for repeated measurements. It is assumed that each subject is measured twice,

and that the measurement is possibly multivariate. Then each subject, i, at

time point, t, has measurement, xxxit, i = 1, . . . , n, t = 1, 2. Suppose there exists

a distance metric, δ(·, ·), defined between measurements, δi,1,2 = δ(xxxi1, xxxi2),

and δi,i′,1,2 = δ(xxxi1, xxxi′2). Define the population level fingerprint index as:

Findex = P
(︁
δi,1,2 < δi,i′,1,2; ∀ i′ ̸= i

)︁
, (2.4)

where the probability is calculated over a random sample of n subjects. This

is the population probability that a random subject matches themselves over
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any other in the sample.

Implicitly, such a measure is defined under a much more flexible model.

For (2.4) to be a meaningful population quantity, it is only required that

the resulted Findex is equal for all i’s, which covers the (M)ANOVA models

(2.1) and (2.2) with Gaussian random effects as special cases. However, the

relationship between ICC and the fingerprinting index is unknown.

The natural estimate of (2.4) is the proportion of correct matches in a group

of subjects. This requires assuming a matching strategy, such as whether

matching is done with or without replacement (Wang et al., 2018). Almost

all fingerprint index studies use matching with replacements as follows. The

total number of correct matches (with replacement) is:

Tn =
n

∑
i=1

I{δi,1,2<δi,i′ ,1,2; ∀ i′ ̸=i}, (2.5)

where I{·} is the indicator function. Then, the fingerprint index estimator is

simply the proportion of correct matches:

F̂index =
Tn

n
. (2.6)

2.1.3 Rank Sums

In the test-retest setting with s = 2, the fingerprint statistic can be generalized

as a Mann-Whitney style statistic. Instead of counting the events where xxxi2 is

the closest to xxxi1 among all other xxxi′2 with i′ ̸= i, consider calculating the rank.

Formally, the rank sum statistic is defined by summing up rii’s, the rank of

δi,1,2 among all δi,i′,1,2 with i′ ̸= i. Assuming that there are no ties (or the max
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ranks are assigned) then the rank sum statistic is defined as:

Rn =
n

∑
i=1

rii =
n

∑
i=1

∑
i′ ̸=i

I{δi,1,2<δi,i′ ,1,2}. (2.7)

Notice that I{δi,1,2<δi,i′ ,1,2; ∀ i′ ̸=i} = I{rii=1}; thus the ranks are sufficient for

determining the fingerprint index. Of course, the fingerprinting statistic ig-

nores the information contained in ranks, other than the number of the ranks

equal to 1 within subjects. Thus, it may seem obvious that the rank sum statis-

tic is superior to the fingerprint statistic in some sense. However, it should

also be noted that the rank sum statistic lacks an intuitive relationship with

a population quantity, like the fingerprint statistic does with the fingerprint

index. In addition, both the fingerprint and rank sum statistics lack an obvi-

ous generalization for repeated measurements, as they were developed on

compared paired measurements.

2.2 Discriminability as a Reliability Measure

In this section, we will formally define the concept of discriminability under a

flexible model of repeated measurements. We will then prove that discrim-

inability is indeed a reliability measure, as it is deterministically related to

ICC when the Gaussian ANOVA assumptions are met. Notably, an optimal

accuracy property of discriminability in the Bayes error rate is applicable for

multivariate measurements (Bridgeford et al., 2019), whereas this property

has only been shown under univariate measurements for ICC. We will also in-

vestigate the relation between discriminability and the other aforementioned

measures with the goal of increasing interpretability across studies when
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using different reliability measures.

2.2.1 General Model of Repeated Measurements

Let vvvi ∈ VVV be a true physical property of interest for subject i. Without the

ability to directly observe vvvi, we instead observe wwwit = fϕ(vvvi, t), for some

random measurement process fϕ : VVV × T → WWW , where ϕ ∈ ΦΦΦ characterizes

the measurement process, and wwwit ∈ WWW is the observed measurement of

property vvvi. As fϕ is a random process, the index, t ∈ T, is used to emphasize

that the observation vvvi using process fϕ may differ across repeated trials,

typically performed sequentially in time.

In many settings, the measurement process may suffer from known or

unknown confounds created in the process of measurement. For example,

when taking a magnetic resonance image (MRI) of a brain, the MRI may be

corrupted by motion (movement) or signal intensity artifacts. The observed

data, wwwit, may therefore be unsuitable for direct inference, and instead is

pre-processed via the random process gψ : WWW → XXX to reduce measurement

confounds. Here, ψ ∈ ΨΨΨ characterizes the pre-processing procedure chosen,

such as motion or other artifact correction in our MRI example. We define

xxxit = gψ ◦ fϕ(vvvi, t) as the pre-processed measurement of vvvi for subject i from

measurement index t. Let δ : XXX ×XXX → R≥0 be a distance metric. Simplified

notations such as δi,t,t′ = δ(xxxit, xxxit′) and δi,i′,t,t′′ = δ(xxxit, xxxi′t′′) can be used in

characterizing the reliability.

Measurement reliability can be considered as a function of the combination

of an acquisition procedure, ϕ, and a chosen pre-processing procedure, ψ. Of
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course, it can be defined exclusively for a subset of the data generating proce-

dure. For instance, when the data has already been collected, the researchers

may only be able to manipulate pre-processing, ψ and not acquisition, ϕ, pro-

cedures. Then, one intended use of the reliability measure is to optimize over

those aspects of the measurement process the researcher is able to manipulate:

ψ∗ = arg maxψ∈ΨΨΨ u(ψ), where u is an unspecified reliability measure.

Throughout the rest of the chapter, we may analyze the nonparametric

measures under the following additive noise model in order to maintain

tractability:

xxxit = vvvi + ϵϵϵit (2.8)

where ϵϵϵit
ind∼ fϵ, and var(ϵϵϵit) < ∞ with E[ϵϵϵit] = ccc. Such modeling still contains

(M)ANOVA scenarios as special cases and is free of parametric assumptions,

where the fingerprinting index and the discriminability are both well-defined.

2.2.2 Definition of Discriminability

If the measurement procedure is effective, we would anticipate that our physi-

cal property of interest for any subject i, vvvi, would differ from that of another

subject i′, vvvi′ . Thus, an intuitive notion of reliability would expect that subjects

would be more similar to themselves than to other subjects. Specifically, we

would expect in a good measurement that xxxit is more similar to xxxit′ (a repeated

measurement on subject i) than to xxxi′t′′ (a measurement on subject i′ at time

t′′).
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Discriminability is defined as:

D(ψ, ϕ) = P(δi,t,t′ < δi,i′,t,t′′). (2.9)

Similar to the fingerprinting index, discriminability is well defined as long

as D(ψ, ϕ) is equal for all i, i′, t, t′, t′′ (such that i ̸= i′, t ̸= t′). That is, this

definition assumes that discriminability does not depend on the specific sub-

jects and measurements being considered. This can be considered a form of

exchangeability. Subsequently, we consider models that are consistent with

this definition in the Gaussian (M)ANOVA models (2.1), (2.2). One could

consider a form of population averaged discriminability if D does depend on

subjects. However, this is outside of the scope of this thesis.

To estimate discriminability, assume that for each individual, i, we have s

repeated measurements. Sample discriminability is then defined as:

D̂ =

n
∑

i=1

s
∑

t=1
∑

t′ ̸=t
∑

i′ ̸=i

s
∑

t′′=1
I{δi,t,t′<δi,i′ ,t,t′′}

n · s · (s − 1) · (n − 1) · s
, (2.10)

where n is the total number of subjects. Then D̂ represents the fraction of

observations where xxxit is more similar to xxxit′ than to the measurement xxxi′t′′

of another subject i′, for all pair of subjects i ̸= i′ and all pairs of time points

t ̸= t′.

Under the additive noise model (2.8), it can be proven that D̂ is unbiased

and consistent for discriminability.
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Unbiasedness and Consistency of D̂

Assume that for each individual i, we have s repeated measurements. We

define the local discriminability:

D̂n
i,t,t′ =

∑
i′ ̸=i

s
∑

t′′=1
I{δi,t,t′<δi,i′ ,t,t′′}

s · (n − 1)
(2.11)

where I{·} is the indicator function, and n is the total number of subjects.

Then D̂i,t,t′ represents the fraction of observations from other subjects that

are more distant from xxxit than xxxit′ , or a local estimate of the discriminability

for individual i between measurements t and t′. The sample discriminability

estimator is:

D̂n =

n
∑

i=1

s
∑

t=1
∑

t′ ̸=t
D̂i,t,t′

n · s · (s − 1)
, (2.12)

where Di,t,t′ is the local discriminability. We establish first the unbiasedness

for the local discriminability, under the additive noise setting (2.8):

xxxit = vvvi + ϵϵϵit,

where ϵϵϵit fϵ, and var(ϵϵϵit) < ∞ with E[ϵit] = c. That is, our additive noise can

be characterized by bounded variance and fixed expectation, and our noise is

independent across subjects.

Lemma 2.2.2.1 (local discriminability is unbiased for discriminability). For

fixed n:

E
[︂

D̂n
i,t,t′

]︂
= D; (2.13)
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that is, the local discriminability is unbiased for the true discriminability.

Proof.

E
[︂

D̂n
i,t,t′

]︂
= E

⎡⎢⎢⎢⎣
∑

i′ ̸=i

s
∑

t′′=1
I{δi,t,t′<δi,i′ ,t,t′′}

s · (n − 1)

⎤⎥⎥⎥⎦

=

∑
i′ ̸=i

s
∑

t′′=1
E
[︂
I{δi,t,t′<δi,i′ ,t,t′′}

]︂
s · (n − 1)

=

∑
i′ ̸=i

s
∑

t′′=1
P(δi,t,t′ < δi,i′,t,t′′)

s · (n − 1)

=

∑
i′ ̸=i

s
∑

t′′=1
D

s · (n − 1)

=
s · (n − 1) · D

s · (n − 1)

= D

Without knowledge of the distribution of xxxit, we can instead estimate the

discriminability via D̂(ϕ, ψ), the observed sample discriminability. Consider

the additive noise case. Recall that D̂n ≡ D̂n(ϕ, ψ), the sample discriminability

for a fixed number of individuals n. We consider the following two lemmas:
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Lemma 2.2.2.2 (Unbiasedness of Sample Discriminability). For fixed n:

E
[︁
D̂n
]︁
= D,

that is, the sample discriminability is an unbiased estimate of discriminability.

Proof. The proof of this lemma is a rather trivial application of the result in

Lemma (2.2.2.1).

Recall that sample discriminability is as-defined in Equation (2.12). Then:

E
[︁
D̂n
]︁
= E

⎡⎢⎢⎢⎣
n
∑

i=1

s
∑

t=1
∑

t′ ̸=t
D̂i,t,t′

n · s · (s − 1)

⎤⎥⎥⎥⎦

=

n
∑

i=1

s
∑

t=1
∑

t′ ̸=t
E
[︂

D̂n
i,t,t′

]︂
n · s · (s − 1)

=

n
∑

i=1

s
∑

t=1
∑

t′ ̸=t
D

n · s · (s − 1)
Lemma (2.2.2.1)

=
n · s · (s − 1) · D

n · s · (s − 1)

= D

Lemma 2.2.2.3 (Consistency of Sample Discriminability). As n → ∞:

D̂n
P−−−→

n→∞
D.

That is, the sample discriminability is a consistent estimate of discriminability.
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Proof. Recall that Chebyshev’s inequality gives:

P
(︁⃓⃓

D̂n − E
[︁
D̂n
]︁⃓⃓

≥ ϵ
)︁
= P

(︁⃓⃓
D̂n − D

⃓⃓
≥ ϵ

)︁
D̂n

i,t,t′ is unbiased

≤
var
(︁

D̂n
)︁

ϵ2

To show convergence in probability, it suffices to show that var
(︁

D̂n
)︁
−−−→
n→∞

0.

Then:

var
(︁

D̂n
)︁
= var

⎛⎜⎜⎜⎝
n
∑

i=1

s
∑

t=1
∑

t′ ̸=t
D̂n

i,t,t′

n · s · (s − 1)

⎞⎟⎟⎟⎠

=
1

m2
∗

var

(︄
n

∑
i=1

s

∑
t=1

∑
t′ ̸=t

∑
i′ ̸=i

s

∑
t′′=1

I{δi,t,t′<δi,i′ ,t,t′′}

)︄

=
1

m2
∗

∑
i,i′,t,t′,t′′

∑
j,j′,r,r′,r′′

cov
(︃

I{δi,t,t′<δi,i′ ,t,t′′}, I{︂
δj,r,r′<δj,j′ ,r,r′′

}︂)︃,

where m∗ = n · s · (s − 1) · (n − 1) · s.

Note that there are, in total, m2
∗ covariance terms in the sums. For each

term, by Cauchy-Schwarz:⃓⃓⃓⃓
cov
(︃

I{δi,t,t′<δi,i′ ,t,t′′}, I{︂
δi,t,t′<δi,j′ ,t,r′′

}︂)︃⃓⃓⃓⃓ ≤ √︄var
(︂

I{δi,t,t′<δi,i′ ,t,t′′}
)︂
· var

(︃
I{︂

δi,t,t′<δi,j′ ,t,r′′
}︂)︃

≤
√︃

1
4
· 1

4
=

1
4

.

Furthermore, note that I{δi,t,t′<δi,i′ ,t,t′′} = f (xxxi,t, xxxi,t′ , xxxi′,t′′). Under the assump-

tion of between-subject independence, then I{δi,t,t′<δi,i′ ,t,t′′} ⊥⊥ g
(︂

xxxi′′,q : i′′ ̸= i, i′
)︂

,
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as it will be independent of any function g(·) of subjects other than i and i′.

Then as long as {i, i′} ∩ {j, j′} = ∅, we have I{δi,t,t′<δi,i′ ,t,t′′} ⊥⊥ I{︂
δj,r,r′<δj,j′ ,r,r′′

}︂.

Under the assumption that ∀ i, ni = s, we have m∗ = ns2(s − 1)(n − 1). Then

there are (n − 2)s2(s − 1)(n − 3) combinations of j, j′, r, r′, r′′ that will pro-

duce covariances taking values of 0, and m∗ − (n − 2)s(s − 1)(n − 3)s =

(4n − 6) · s2 · (s − 1) combinations that may be non-zero. Then:

var
(︁

D̂n
)︁
=

1
m2

∗
∑

i,i′,t,t′,t′′
∑

j,j′,r,r′,r′′
cov
(︃

I{δi,t,t′<δi,i′ ,t,t′′}, I{︂
δj,r,r′<δj,j′ ,r,r′′

}︂)︃

≤ ∑i,i′,t,t′,t′′(4n − 6)s2(s − 1)
4m2

∗

=
(4n − 6)s2(s − 1)

4ns2(s − 1)(n − 1)

=
4n − 6

4n(n − 1)

<
1
n
−−−→
n→∞

0.

2.2.3 Discriminability is Deterministically Linked with ICC

Interestingly, under the ANOVA model (2.1), discriminability is determin-

istically linked to ICC. It is relatively easy to argue and instructive on the

relationship between these constructs, and therefore we present the argument

here. Considering a Euclidean distance as the metric, discriminability (D) is:

D = P(|xit − xit′ | < |xit − xi′t′′ |)
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= P(|eit − eit′ | < |µi − µi′ + eit − eit′′ |)

de f
= P(|A| < |B|)

for i ̸= i′, t ̸= t′. Then (A, B)t follows a joint normal distribution, with mean

vector 0 and covariance matrix
(︂

2σ2 σ2

σ2 2σ2
µ+2σ2

)︂
. Hence:

D = 1 −
arctan

(︃√
σ2(3σ2+4σ2

µ)

σ2
µ

)︃
π

=
1
2
+

1
π

arctan

(︄
ICC√︁

(1 − ICC)(ICC + 3)

)︄
.

(2.14)

Therefore, D and ICC are deterministically linked with a non-decreasing trans-

formation under the ANOVA model with Gaussian random effects. Figure 2.1

shows a plot of the non-linear relationship. For an ICC of roughly 0.68, the

two measures are equal, with discriminability being smaller for ICCs larger

than 0.68 and larger for ICCs lower. It is perhaps useful to let D∗ = 2D − 1 to

transform discriminability to range between 0 to 1, similar to ICC.

Recall, the optimal correlation between two univariate measurements is

equal to a non-decreasing function of the ICC of each of the measurement.

Since discriminability is deterministically linked to ICC via a strictly increasing

function, this property also holds for discriminability.

Another scenario where the reliability measure may become critical is in

the prediction problem with multivariate predictors. Under this scenario, the

optimal prediction error in terms of the Bayes error rate of a classification task

can be bounded by a decreasing function of discriminability of the multivariate

predictors (Bridgeford et al., 2019). Thus, it is interesting to note that ICC

inherits this property exactly, as it holds for any one-to-one transformation of
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Figure 2.1: The relation between discriminability and ICC under the ANOVA model
with Gaussian random effects. See Section 2.2.3.
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discriminability.

2.2.4 Relation with Other Reliability Measures

2.2.4.1 Fingerprinting

In a test-retest setting, where the fingerprint index is defined, it can ve proved

that the fingerprint index has the following relationship with the discrim-

inability, D,

Findex = ρD + (1 − ρ)Dn−1,

as long as the correlation, ρ
de f
= corr(I{δi,1,2<δi,i′ ,1,2}, I{δi,1,2<δi,i′′ ,1,2}), is non-

negative for i′, i′′ ̸= i.

The non-negativity condition can be checked with simulation or numerical

integrals when a parametric model is posited. For example, it holds under the

Gaussian ANOVA model, (2.1), where the correlation, ρ, is positive for all of

the simulated values of σ2 and σ2
µ between 0 and 100.

Assuming non-negativity of ρ, the fingerprint index decreases to a limit

of ρD, as the sample size, n, increases. However, the diminishing term,

(1 − ρ)Dn−1, may not be negligible with large enough D and small enough

n. This illustrates the fact that the fingerprint index may not be invariant for

different sample sizes that are below 10 to 15, even when discriminability is

constant.
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2.2.4.2 Rank Sums

Discriminability has no direct relationship with fingerprinting, which is a

function of the distance rank matrix. However, interestingly, sample discrim-

inability can be rewritten as a function of a form of rank sums. This suggest

that discriminability retains the rank information that the fingerprint index

discards. Below we demonstrate this relationship.

Denote the n by n inter-measurement distance sub-matrix as DDDt,t′ =

(δi,i′,t,t′)i,i′=1,...,n. Let the combined n · s by n · s distance matrix be DDD =(︂
DDDt,t′

)︂
t,t′=1,...,s

, which consists of s by s blocks where the (t, t′) block is DDDt,t′ .

Let rt,t′
i,i′ denote the ranking within rows in the combined distance matrix

DDD = (δi,i′,t,t′). We assign the maximum ranks for ties.

Another consistent estimator of discriminability in the rank form is

D̃ =
n2s2(s − 1)− ∑s

t=1 ∑t′ ̸=t ∑n
i=1 rtt′

ii
ns(s − 1)(n − 1)s

(2.15)

or D̃ − s−2
2(n−1)s , where

0 ≤ D̃ − D̂ ≤ s − 2
2(n − 1)s

. (2.16)

Equality is taken in (2.16) when no tie exists between δt,t′
i,i and δt,t′′

i,i for all

i ∈ {1, . . . , n}, t ∈ {1, . . . s}, t′ ̸∈ {t}, t′′ ̸∈ {t, t′}. Therefore we have that

D̃ and D̃ − s−2
2(n−1)s are also consistent estimators for discriminability. In fact

D̂ = D̃ − s−2
2(n−1)s when assuming continuous measurements with no ties in

distance ranking. This representation highlights the close relationship between

discriminability and rank sums.
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In fact, the specific form of the rank sum statistic, (2.7), can be transformed

to another estimator of discriminability. In a test-retest setting with s = 2,

instead of ranking the combined distance matrix, DDD, let rij be the rank of δ1,2
i,j

among δ1,2
i,1 , . . . , δ1,2

i,n , which ranks the row of the inter-measurement distance

sub-matrix DDD1,2. If ties occur, the max ranks are assigned.

This transformation of the rank sum statistic, Rn, forms an unbiased and

consistent estimator of D:

D̂rs =
∑n

i=1(n − rii)

n(n − 1)
=

n2 − Rn

n(n − 1)
. (2.17)

If there exist multiple measurements for each subject, for all the pairs of

distinct t1 and t2, the rank sum statistic and estimation can be calculated

between the t1-th measurements and the t2-th measurement. Comparing to D̂

and D̃, the rank sum statistic does not involve any ranking information from

the diagonal blocks in the combined distance matrix, DDDt,t, t = 1, . . . , s,. This

may result in a larger standard error for estimation and a lower power for

inference using the rank sums. However, it provides some robustness against

mean shift batch effects, as demonstrated in Section 3.2.3.

2.2.4.3 I2C2

Under the l-dimensional MANOVA model specified in (2.2), again considering

a Euclidean distance metric, discriminability becomes:

D = P(||xxxit − xxxit′ || − ||xxxit − xxxi′t′′ || < 0)

= P(||eeeit − eeeit′ || − ||eeeit − eeei′t′′ +µµµi −µµµi′ || < 0)
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de f
= P(||AAA|| − ||BBB|| < 0),

where A and B are jointly multivariate normal with means 0, variances 2ΣΣΣ

and 2ΣΣΣ + 2ΣΣΣµµµ, respectively, and covariance, ΣΣΣ. Note that Z
de f
= AAAtAAA − BBBtBBB is

an indefinite quadratic form of the vector (AAAt BBBt)t (around a matrix whose

block diagonal entries are an identity matrix and the negative of an identity

matrix). Thus, Z can be decomposed as a linear combination of independent

χ2 variables (Provost and Rudiuk, 1996):

Z D
=

r

∑
u=1

λuUu −
r+w

∑
u=r+1

λ′
uUu, (2.18)

where λ1, . . . , λr are the positive eigenvalues of
(︃

2ΣΣΣ −ΣΣΣ
ΣΣΣ −2ΣΣΣ − 2ΣΣΣµµµ

)︃
,

λ′
r+1, . . . , λ′

r+w are the absolute values of the negative eigenvalues of(︃
2ΣΣΣ −ΣΣΣ
ΣΣΣ −2ΣΣΣ − 2ΣΣΣµµµ

)︃
, U1, . . . , Ur+w are IID χ2 variables with degrees of free-

dom being 1.

Although this does not result in a deterministic link between D and I2C2, it

can be shown that there exist approximations matching the first two moments

of ∑r
u=1 λuUu and ∑r+w

u=r+1 λ′
uUu. Furthermore, the approximation of D can

be bounded by two non-decreasing functions of I2C2 (Appendix 2.2.4.3).

Specifically, the resulting discriminability approximation has the form of a

CDF value of an F-distribution,

D = P(Z ≤ 0) ≈ F
F
(︃

V2
1

W1
,

V2
2

W2

)︃ (︃V2

V1

)︃
, (2.19)

where V1, W1 (or V2, W2) are the sum and the sum of squares of the absolute val-

ues of the positive (or negative) eigenvalues. Moreover, when V1, W1, V2, W2
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Figure 2.2: Non-decreasing bounds of the discriminability approximation (2.19) using
functions of I2C2 under the MANOVA model with random Gaussian effects. The
dispersion measures, defined as V2

1 /W1 and V2
2 /W2, are fixed at 10 or 30. The upper

(red) and lower (blue) bounds are color coded, respectively. The dispersion 10
scenario is plotted with solid lines whereas the dispersion 30 scenario is plotted with
dashed lines. V1, W1 (or V2, W2) are the sum and the sum of squares of the positive
(or negative) eigenvalues from the distributional decomposition (2.18). See Section
2.2.4.3.

are constant, the approximation is bounded by a non-decreasing interval of

I2C2 (Figure 2.2):

F
F
(︃

V2
1

W1
,

V2
2

W2

)︃ ( f1(Λtr)) ≤ F
F
(︃

V2
1

W1
,

V2
2

W2

)︃ (︃V2

V1

)︃
≤ F

F
(︃

V2
1

W1
,

V2
2

W2

)︃ ( f2(Λtr)) ,

where f1(v) = 1 + v/(1 − v) and f2(v) = 1 + (4/3) · v/(1 − v) are both

non-decreasing functions.
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Appendix: Discriminability and I2C2

We will give the approximation and then prove the non-decreasing bounds in

Section 2.2.4.3.

Applying the Satterthwaite approximation that matches the first two mo-

ments (Yuan and Bentler, 2010), we have ∑r
u=1 λuUu

D≈ g1χ2
h1

and ∑r+w
u=r+1 λ′

uUu
D≈

g2χ2
h2

, where g1 =
(︁
∑r

u=1 λ2
u
)︁

/ (∑r
u=1 λu), h1 = (∑r

u=1 λu)
2 /
(︁
∑r

u=1 λ2
u
)︁
, g2 =(︁

∑r+w
u=r+1 λ′2

u
)︁

/
(︁
∑r+w

u=r+1 λ′
u
)︁
, h2 =

(︁
∑r+w

u=r+1 λ′
u
)︁2 /

(︁
∑r+w

u=r+1 λ′2
u
)︁
. Let V1 =

∑r
u=1 λu = h1g1, W1 = ∑r

u=1 λ2
u, V2 = ∑r+w

u=r+1 λ′
u = h2g2, W2 = ∑r+w

u=r+1 λ′2
u .

Thus:

D = P(Z ≤ 0) ≈ P

(︄
g1χ2

h1

g2χ2
h2

≤ 1

)︄

= P

(︄
χ2

h1
/h1

χ2
h2

/h2
≤ h2g2

h1g1

)︄

= F
F
(︃

V2
1

W1
,

V2
2

W2

)︃ (︃V2

V1

)︃
.

Here,
χ2

h1
/h1

χ2
h2

/h2
follows F distribution with degrees of freedom h1 =

V2
1

W1
, h2 =

V2
2

W2
.

Now we derive the non-decreasing bounds. Note that HHH
de f
=

(︃
2ΣΣΣ −ΣΣΣ
ΣΣΣ −2ΣΣΣ − 2ΣΣΣµµµ

)︃
=(︃

2ΣΣΣ ΣΣΣ
ΣΣΣ 2ΣΣΣ + 2ΣΣΣµµµ

)︃(︃
III 000
000 −III

)︃
de f
= PPPMMM is congruent to MMM =

(︃
III 000
000 −III

)︃
since

PPP is symmetric and positive definite. By Sylvester’s law of inertia (Sylvester,

1852) we have r = w = l, i.e. the numbers of positive and negative eigenvalues

of HHH are both l.

Denote the sums of positive or negative eigenvalues of the matrix HHH as
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σ+(HHH) or σ−(HHH), respectively. We will apply the monotonicity of σ±(HHH) =

σ±(MMMPPP) (Lieb and Siedentop, 1991) for the following statements (Appendix

2.2.4.3):

Lemma 2.2.4.1 (Monotonicity of Sums of Positive or Negative Eigenvalues).

tr(
3
2

ΣΣΣ + 2ΣΣΣµµµ) ≤ |σ−(HHH)| = V2 ≤ tr(2ΣΣΣ + 2ΣΣΣµµµ) (2.20)

tr(
3
2

ΣΣΣ) ≤ σ+(HHH) = V1 ≤ tr(2ΣΣΣ). (2.21)

Proof. For (2.20), note that PPP −
(︃

000 000
000 2ΣΣΣµµµ + vΣΣΣ

)︃
=

(︃
2 1
1 2 − v

)︃
⊗ΣΣΣ is posi-

tive definite for all v ∈ (0, 3/2). Therefore

|σ−(MMMPPP)| ≥ |σ−(MMM
(︃

000 000
000 2ΣΣΣµµµ + vΣΣΣ

)︃
)|

for all v ∈ (0, 3/2). Finally,

|σ−(MMMPPP)| ≥ lim
v→ 3

2

|σ−(MMM
(︃

000 000
000 2ΣΣΣµµµ + vΣΣΣ

)︃
)| = tr

3
2

ΣΣΣ + 2ΣΣΣµµµ.

Meanwhile
(︃

vΣΣΣ ΣΣΣ
000 2ΣΣΣµµµ + vΣΣΣ

)︃
− PPP =

(︃
v − 2 0
−1 v − 2

)︃
⊗ΣΣΣ is positive defi-

nite for all v > 2. Similarly,

tr(2ΣΣΣµµµ + 2ΣΣΣ) = lim
v→2

|σ−(MMM
(︃

vΣΣΣ ΣΣΣ
000 2ΣΣΣµµµ + vΣΣΣ

)︃
)| ≥ |σ−(MMMPPP)|.

To get (2.21) from (2.20), note V1 − V2 = tr(HHH) = tr(−2ΣΣΣµµµ).

Therefore,

V2

V1
= 1 +

2tr(ΣΣΣµµµ)

V1
∈
(︃

1 +
tr(ΣΣΣµµµ)

tr(ΣΣΣ)
, 1 +

4
3
·

tr(ΣΣΣµµµ)

tr(ΣΣΣ)

)︃
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=

(︃
f1(

tr(ΣΣΣµµµ)

tr(ΣΣΣ) + tr(ΣΣΣµµµ)
), f2(

tr(ΣΣΣµµµ)

tr(ΣΣΣ) + tr(ΣΣΣµµµ)
)

)︃
,

where f1(v) = 1 + v/(1 − v) and f2(v) = 1 + (4/3) · v/(1 − v) are both

non-decreasing functions.

If l = 2, by the monotonicity of F distribution (Ghosh, 1973) we have

bounds for the approximation (2.19):

FF(2,1)

(︃
f1(

tr(ΣΣΣµµµ)

tr(ΣΣΣ) + tr(ΣΣΣµµµ)
)

)︃
≤ FF(2,1)

(︃
V2

V1

)︃
≤F

F
(︃

V2
1

W1
,

V2
2

W2

)︃ (︃V2

V1

)︃

≤FF(1,2)

(︃
f2(

tr(ΣΣΣµµµ)

tr(ΣΣΣ) + tr(ΣΣΣµµµ)
)

)︃
,

where f1, f2, FF(2,1), FF(1,2) are all non-decreasing functions.

For l ≥ 3, when the dispersion measures V2
1 /W1 and V2

2 /W2 remain

constants (in fact 1 ≤ V2
j /Wj ≤ l for j = 1, 2 by the property of l1 and l2

norms), the approximation of D in (2.19) is bounded by a non-decreasing

interval of I2C2 (Figure 2.2):

F
F
(︃

V2
1

W1
,

V2
2

W2

)︃ (︃ f1(
tr(ΣΣΣµµµ)

tr(ΣΣΣ) + tr(ΣΣΣµµµ)
)

)︃
≤F

F
(︃

V2
1

W1
,

V2
2

W2

)︃ (︃V2

V1

)︃

≤F
F
(︃

V2
1

W1
,

V2
2

W2

)︃ (︃ f2(
tr(ΣΣΣµµµ)

tr(ΣΣΣ) + tr(ΣΣΣµµµ)
)

)︃
.
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Chapter 3

Permutation Tests

3.1 General Framework of Reliability Tests

In fingerprinting studies, one attempts to match a subject’s first session image

with their second, in a blinded fashion, in a group of twice measured subjects.

The number or percentage of correct matches is reported as the statistic. Under

the hypothesis of exchangeability of the subject labels, the number or percent

of matches can be analyzed relative to a reference permutation distribution

to establish evidence of reliability, or lack thereof. Such practice is bolstered

by novel applications (Finn et al., 2015; Airan et al., 2016) and large scale

replication studies (Zuo et al., 2014; Van Essen et al., 2013) as well as general

interest in fMRI reproducibility (Choe et al., 2017; Poldrack and Poline, 2015;

Choe et al., 2015; Landman et al., 2011; Griffanti et al., 2016; Shou et al.,

2013; Aron, Gluck, and Poldrack, 2006). Despite the simplicity and increasing

popularity of such matching and inference procedures, the soundness of the

statistical tests, the power, and the factors impacting the test are unstudied.
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Essentially, similar permutations tests for extreme large values can be con-

ducted using any one of the reliability statistics described in Section 2.1. Such

permutation tests are constructed based on a distributional exchangeability

null hypothesis on the permuted statistics. That is, under the null, the dis-

tribution of the reliability statistic is assumed to be invariant against some

permutation of the subject labels. For repeated measurements with multiple

time points, the subject labels are permuted within each of the time points.

In practice, non-parametric approximations of the test statistic distribution

under the null can be achieved by actually permuting the observed sample.

In fact, to perform the test, Monte Carlo resampling (Good, 2013) is used

to reduce the computational burden of looping over each of the possible

permutations, which can be up to (n!)s scenarios for n subjects measured at s

time points. Exploiting the approximated null distribution, the test rejects the

null when the observed value of the reliability statistic is more extreme than

one would have expected under the null given significance level.

The additive noise setting (2.8) for the general model of repeated measure-

ments, xxxit ⊥⊥ vvvi implies xxxit = ϵϵϵit, guarantees exchangeability of any reliability

statistics defined in the previous sections. Thus, if the associated model is

correctly specified, rejection in the permutation test using any of the afore-

mentioned statistics implies the existence of dependence between a subject’s

unobserved true subject-specific effect, vvvi, and its observed measurement, xxxit.

Therefore, permutation tests with the weaker null of exchangeability are con-

ducted for the purpose of confirming reliability. The resulting test significance

provides evidence against no reliability, where the measurement reveals no
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information on differences in subject specific effects.

The general properties of these reliability statistics under different model

settings other than the ANOVA model may be less mathematically clear. In Sec-

tion 3.2 we present numerical results, including deviations from the ANOVA

model. In Section 3.3, we discuss the potentials of parametric approximations

for fingerprinting and rank sums.

3.2 Simulation on Hypothesis Testing Power

3.2.1 Univariate ANOVA Simulations

We first evaluate the estimation and testing power performance under the

ANOVA model (2.1) or when its Gaussian assumptions are violated. t = 1, 2.

σ2 = 5, σ2
µ = 3. The number of subjects, n, ranges from 5 to 40.

In addition to the correct Gaussian model, consider the following lognor-

mal misspecification:

µi
d∼ log-N

(︂
0, σ2

µ

)︂
; log(µi)

d∼N
(︂

0, σ2
µ

)︂
,

eit
d∼ log-N

(︂
0, σ2

)︂
; log(eit)

d∼N
(︂

0, σ2
)︂

,

where we still define ICC = var(µi)/(var(µi) + var(eit)), but now var(eit) =

(exp(σ2)− 1) · exp(σ2). Note that the relation between discriminability and

ICC does not hold in this setting.

For 1, 000 iterations, estimates of discriminability (using D̃ in the Equation

2.15), the rank sum estimator (D̂rs in Equation 2.17), estimations of ICC using

one-way ANOVA, estimations of the fingerprint index (using F̂index in the
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Equation 2.6) were recorded and compared to their theoretical true values (for

discriminability and ICC) or its simulated average value (for the fingerprint

index, with 10, 000 simulations).

Within each iteration, we also conducted permutation tests against ex-

changeability, each with 200 Monte Carlo simulations, using the previously

mentioned estimators. F-tests using the ICC F-statistics were also conducted.

The proportion of rejections (power curves) by iterations were plotted.

When the parametric assumption is satisfied, all estimators are distributed

around their true values (Figure 3.1). Note that the distribution of the finger-

print index is skewed. In addition, a higher fingerprinting index estimation

with fewer subjects does not imply better reliability, compared the lower esti-

mation with more subjects. Of note, the true ICC and discriminability remain

constant as sample size increases in the simulation setup. Thus, insofar as

these measures summarize reliability, this emphasizes that the fingerprint

index is not directly comparable across sample sizes. In terms of the testing

power, as we expected, tests using statistics associated with the ICC produce

higher power, as the Gaussian model is correctly specified. The discrim-

inability estimator using the whole combined ranking matrix shows slight

advantage in power compared to the rank sum estimator, which only uses rank

sums within a submatrix of the combined distance matrix. Lastly, switching

to fingerprinting results in a loss in testing power.

We repeated the simulation in an otherwise similar setting where nor-

mality does not hold: var(µi) = (exp(σ2
µ) − 1) · exp(σ2

µ) ≈ 383, var(eij) =

(exp(σ2)− 1) · exp(σ2) ≈ 21878, and ICC is around 0.017. Because of model

42



Figure 3.1: ANOVA simulations when the Gaussian assumption is satisfied (left) or
violated with logarithm transformations (right). Simulated distributions of estimators
are plotted on the top, including the discriminability estimation (using the estimator D̃
or the rank sum version D̂rs), the fingerprint index estimation, and the ICC estimation.
Simulated permutation test powers are plotted on the bottom, where solid lines and
dotted lines represent nonparametric and parametric statistics, respectively. σ2 = 5.
σ2

µ = 3. n ranges from 5 to 40. 1, 000 iterations in total. See Section 3.2.1.
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misspecification, ICC is overestimated with relatively large variation. As for

testing power, the discriminability estimator, rank sum and the fingerprint

index estimator outperform, due to their nonparametric framework, which

does not rely on Gaussian assumptions. D̃ again has higher power than

D̂rs for including more ranking information. F̂index has a loss in power over

disciminability or rank sums, but is now better than the tests using parametric

estimations of ICC or F-statistics.

3.2.2 MANOVA Simulations

Next, we consider the MANOVA model (2.2) and a similar misspecification

with element-wise log-transformations on the subject mean vectors, µµµi, and

the noise vectors, eeeit. t = 1, 2. n ranges from 5 to 40.

We simulated data with ΣΣΣ = σ2QQQ, ΣΣΣµµµ = σ2
µQQQ, and QQQ = III(1 − ρ) + 111111tρ

(an l × l exchangeable correlation matrix, with off diagonals ρ). Then I2C2

becomes:
tr ΣΣΣµ

tr ΣΣΣµµµ + tr ΣΣΣ
=

σ2
µ

σ2
µ + σ2 .

Let σ2 = 5, σ2
µ = 3, ρ = 0.5, l = 10. For 1, 000 iterations, the estimations and the

permutation test (each performed with 200 Monte Carlo simulations) power

were compared for discriminability, the rank sum estimator of discriminability,

the fingerprint index, the sample ICC, λ̂, calculated with the first principal

components from the measurements, and I2C2.

When the Gaussin assumption is satisfied, I2C2 outperforms other statis-

tics, and most statistics produce higher testing power compared to the finger-

print index (by a large margin Figure 3.2). Note that the strategy of conducting
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PCA before ICC also shows advantage over discriminability in power when

the sample size is as small as 5, but power converges with larger sample sizes.

When normality is violated, the nonparametric statistics (discriminability,

rank sums, and fingerprinting) outperform the parametric methods in power

with any sample sizes greater than 10. The discriminability estimator provides

the best power under the multivariate lognormal assumptions.

3.2.3 Batch Effects

Consider the ANOVA model (2.1) where each subject is remeasured for s

times, s > 2. We evaluate two types of batch effects, mean shifts and scaling

factors (Johnson, Li, and Rabinovic, 2007).

For the mean shifts, we replace the subject means, µi’s, with the batch

specific means µit’s defined as:

µi1
d∼N

(︂
0, σ2

µ

)︂
,

µit = µi1 + t, t = 2, . . . , s.

Without loss of generality, consider the first batch as a reference batch, where

µi1’s follow the same distribution as the previous µi’s. For the t-th batch, there

exists a mean shift, t, from the reference batch for all subjects. The scaling

effects are applied on the noise variances as:

ei1
d∼N

(︂
0, σ2

)︂
,

eit
d∼N

(︂
0, tσ2

)︂
, t = 2, . . . , s.

45



Figure 3.2: MANOVA simulations when the Gaussian assumption is satisfied (left) or
violated with element-wise logarithm transformations (right). Simulated distributions
of estimators are plotted on the top, including the discriminability estimation (using
the estimator D̃ or the rank sum version D̂rs), the fingerprint index, and the I2C2.
Simulated permutation test powers are plotted on the bottom, where solid lines and
dotted lines represent nonparametric and parametric statistics, respectively. σ2 = 5.
σ2

µ = 3, ρ = 0.5, l = 10. n ranges from 5 to 40. 1, 000 iterations in total. See Section
3.2.2.
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At each time point t = 2, . . . , s, two strategies of evaluating the reliability

were considered. First, we first considered the first and the t-th batches (two

stages) and secondly we used all measurements up to the t-th time point.

For the first strategy, the discriminability estimator and its rank sum alter-

native are used without modification. For the second strategy, we calculated D̃

as usual (all stages) but averaged out the D̂rs’s over all the pairs of distinct time

points (all pairs), as described in Section (2.2.4). In addition, we also averaged

D̃ and D̂rs, respectively, for all the pairs of time points between the first and

the rest, up to the t-th (all pairs from initial). In total, six types of estimators

were considered.

We simulated s = 15 batches in total with σ2 = 3, σ2
µ = 5 and let the

number of subjects, n, range from 5 to 40. For 1, 000 iterations, the estimations

and the permutation test (each with 200 Monte Carlo iterations) power of the

six estimators described above are plotted.

For the mean shift only batch effects, the rank sum estimator outperforms

discriminability in power with the highest power achieved using all time point

pairs (Figure 3.3). The estimation from rank sums is also closer to the batch-

effect-free true discriminability, 0.625. The rank sum method may benefit from

the fact that, whenever t = t′′, it avoids averaging over indicators

I{δi,t,t′<δi,i′ ,t,t′′} = I{|(t−t′)+(eit−eit′ )|<|(µit−µi′t)+(eit−ei′t)|},

where the batch difference, (t − t′), if larger enough, may force the indicator

to be 0 with high probability, regardless of the true batch-effect-free discrim-

inability level. For example, for the all pairs from initial scenario, rank sums
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Figure 3.3: Simulations for mean shifts (left), scaling (middle), and no batch effect
(right). Simulated distributions of the discriminability estimators (D̃ and D̂rs) are
plotted on the top, including six estimation strategies (Section 3.2.3). Simulated
permutation test powers are plotted on the bottom, where solid lines and dotted
lines represent the discriminability (D̃) based and the rank sum (D̂rs) based strategies,
respectively. s = 15, σ2 = 3, σ2

µ = 5. The number of subjects is n = 20. 1, 000 iterations
are conducted for each scenario.

outperform discriminability by a huge margin, since batch differences become

larger when later batches are compared to the reference batch.

For the scaling only batch effects, discriminability now outperforms rank

sums, regardless of the strategy used. (Using all time points produces the

highest power.) This is similar to the case with no batch effects, where having

more repeated measurements increases testing power, and the advantage of

discriminability over rank sums and the advantage of using all time points

are attained.
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3.2.4 Discussion

One of our major findings is the relationship between discriminability, ICC or

I2C2 on the population level. Note this is different from the non-decreasing

relation between ICC estimation and the F statistic, which guarantees the

same ordering and power in the permutation test. The fact that ICC and I2C2

may still have higher power when parametric assumptions are satisfied hints

the potential of improving the current discriminability estimation. Another

potential improvement is the approximation (2.19) of the weighted sum of χ2’s,

as it tends to underestimate D with larger within measurement correlations

(Figure 3.4). But, even with the current approximation the error is within

0.1 and the non-decreasing relation holds true in the simulations with larger

ρ values. Other limitation includes the lack of analysis for the fixed effect,

while we focus on the random effect models for cleaner illustration. Lastly, in

practice dissimilarity (pseudo)distances such as one minus Pearson correlation

may be applied instead of the Euclidean distance; this does not impact testing

results if measurements are standardized with mean 0 and variance 1, and if

measurements are non-negatively correlated.

On the other hand, the relation we found with rank sums and fingerprint-

ing is between the testing statistics; based on the simulations we argue that

the discriminability should be preferred in practice unless there exist concerns

about mean shift batch effects.
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Figure 3.4: Relation between discriminability and I2C2 with smaller (ρ = 0.1, left)
or larger (ρ = 0.5, right) within measurement correlation. The Gaussian MANOVA
model in Section 3.2.2 is assumed with l = 10, n = 20, s = 2. Covariance matrices, ΣΣΣ
and ΣΣΣµ, are proportional to a matrix with diagonals being 1 and off-diagonals being ρ.
Small circles are the simulated (1, 000 iterations) true discriminability with σ2

µ = 100
and σ2 ranging from 3 to 300. This shows error of the approximation (2.19) is within
0.1 and the non-decreasing relation holds true even with larger ρ value.
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3.3 Approximations

3.3.1 Fingerprinting

We will demonstrate that, including a slight deviation (matching with re-

placement) from the type of fingerprinting described in Section 3.1 (matching

without replacement), the generated permutation distribution can be well

approximated by a Poisson(1). Throughout this section, we will focus on the

number of total correct matches (2.5), Tn, as the test statistic.

Before getting to the details of approximating the permutation distribu-

tions, we need to define the matching procedure and the exchangeability

hypothesis explicitly.

Matching Mechanics

The most common form of matching tries to match one measurement, say

the second, to the first. Let δij = δ(xxxi1, xxxj2) be the distance between subject i

on occasion 1 and subject j on occasion 2 given observation xxxit, i = 1, · · · , n,

t = 1, 2. Let mi be the subject label of the best match for subject i. Of course,

the term “best” is in reference to a matching strategy and we will use mi

generically regardless of which strategy was used. As an example strategy,

consider, mi = argminj δij. Under this scheme, subjects on occasion 2 can be

matched multiple times if they are the best match for more than one subject.

Because of this, we call this strategy matching with replacement (or MWR).

A matrix form is an often preferable method to represent the data. Let

BBB be a matrix with a 1 in position i, j if subject i on sampling occasion 1
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Table 3.1: Example resampling matrix from matching with replacement. Here the
statistic value is 3.

Time 2
Time 1 1 2 3 4 Total

1 0 1 0 0 1
2 0 1 0 0 1
3 0 0 1 0 1
4 0 0 0 1 1

Total 0 2 1 1 4

is best matched with subject j on occasion 2. That is, BBB = [bij]i,j where

bij = I{mi = j} where I{a = j} is an indicator that returns 1 if a = j and

0 otherwise. It is interesting to note that matrices of these forms are exactly

bootstrap resampling matrices. Table 3.1 gives an example for n = 4. Recall

that the first row, (0, 1, 0, 0), implies that among the occasion 2 measurements,

subject 2’s is the best match for the occasion 1 measurement of subject 1. The

second row, (0, 1, 0, 0), implies subject 2’s occasion 2 measurement is correctly

matched to the subject’s occasion 1 measurement. Thus, in this case, subject

2’s occasion 2 measurements are matched twice, for both subject 1 and subject

2 on occasion 1. The standard statistic measurement agreement is the number

of correct matches (the trace of BBB, tr(BBB)). In our example, the statistic value

would be 3.

Alternatively, one could match without replacement (or MWOR). That is,

find the best permutation of subjects on the second occasion to match up with

the first. As an example, let ΓΓΓ be the collection of n× 1 vectors of permutations

of the integers 1, . . . , n. Then consider

MMM = (m1 . . . mn)
′ = argminπππ∈ΓΓΓ

n

∑
i=1

δiπi .

52



Table 3.2: Example resampling matrix from matching without replacement. Here the
statistic value is 2.

Time 2
Time 1 1 2 3 4 Total

1 0 1 0 0 1
2 1 0 0 0 1
3 0 0 1 0 1
4 0 0 0 1 1

Total 1 1 1 1 4

The Hungarian algorithm allows that this optimization can be performed

in polynomial time (Pentico, 2007). This is a harder optimization problem,

because the optimization is conducted simultaneously and not sequentially,

as in the matching with replacement. It is possible to have a non-unique best

match. However, given the size and noise of neuroimaging, data the best

match is usually unique for the best permutation. If this result is put into a

matrix with bij = I{mi = j}, then BBB is a permutation matrix (a 0,1 matrix with

row and column totals all equal to one). Again, the relevant statistic is the

trace. Table 3.2 shows an example with n = 4 that has statistic value equal to

2.

Inference

Permutation-based inference is the norm in this area. One typically repeatedly

permutes the subject labels at occasion 2 and re-performs the matching at each

iteration to obtain a null distribution. Given the dimension of the characteris-

tics being matched on, it is typical for no ties to exist in the δij, so that the best

matches are all unique at each iteration.
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This permutation test is motivated by an implicit exchangeability assump-

tion. That is, the underlying null distribution of the statistic is the same for

any permutation. Alternatively, the null hypotheses can be developed under

stronger iid sampling assumptions.

One of our main results in this section is to show that under nearly all

sampling strategies the null distribution of the test statistic is well approxi-

mated by a Poisson with a mean of one. The implication of this result is both

simple and widespread: the use of the permutation test is unnecessary, as

the null hypothesis will be rejected under the same conditions, when tr(BBB)

is larger than 3 or 4, say, depending on the desired Type I error rate. Thus,

computation time and costs can be systematically reduced using this simple,

slightly unexpected, but powerful statistical result. Below we provide details

on the implicit assumptions associated with the permutation test and the

interpretation given these results.

Exchangeability and the Null Hypothesis

A difficult task in permutation tests is strictly defining the null hypothesis

under consideration. We focus on exchangeability as perhaps the most general

and useful form of the null hypothesis in this setting. This hypothesis is

defined as irrelevance of the labels in the form of an identical distribution

being obtained under permutations. We formalize the concepts below.

Recall that xxxit is the l dimensional feature vector of subject i on occasion

t where i = 1, · · · , n and t = 1, 2. Denote XXX(t) as the l × n data matrix

for occasion t = 1, 2 with columns xxx1t, · · · , xxxnt. Let XXX = [XXX(1), XXX(2)] be the
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l × 2n combined data matrix with columns xxx11, xxx21, · · · , xxxn1, xxx12, xxx22, · · · , xxxn2.

Let XXX = xxx be the observed data. Recall also, in MWR, the best match for

subject i’s occasion 1 image is mi = argminj δ(xxxi1, xxxj2). In MWOR, the best

match for subject i’s occasion 1 image is mi, where MMM = (m1, · · · , mn)′ =

argminπππ∈ΓΓΓ ∑n
i=1 δiπi = argminπππ∈ΓΓΓ ∑n

i=1 d(xxxi1, xxxπi2), ΓΓΓ is the collection of per-

mutation vectors of (1, · · · , n)′. In both scenarios, the test statistic is defined

as T(xxx) = ∑n
i=1 I{mi = i}, the number of correct matches.

The exchangeable null hypothesis, HE, is defined as the invariant distri-

bution of test statistic when permuting the labels of occasion 2 images. That

is,

P{T(XXX) = t} = P{T(XXXPPP) = t}

for all t ∈ {0, · · · , n}, PPP ∈ P , where P is the collection of n × n permutation

matrices, XXXPPP = {XXX(1), XXX(2)PPP} is the n× 2 data matrix obtained after permuting

occasion 2 labels.

Exact Permutation Tests

Following Hoeffding, 1952, under HE, the permutation test can be executed to

have an exact α type I error rate if a randomized test function is defined as:

ϕ(xxx) =

⎧⎪⎨⎪⎩
1, T(xxx) > T(k)(xxx)
a(xxx), T(xxx) = T(k)(xxx)
0, T(xxx) < T(k)(xxx)

.

Here, ϕ(xxx) is the probability of rejecting the null given observation XXX = xxx.

The variables, T(k)(xxx), for k = 1, . . . , n! is the ordered list of all permuted test

statistics. The index k determines the closest quantile less than or equal to
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α of the permuted test statistics level, i.e. k = n! − ⌊n!α⌋ where ⌊·⌋ is the

floor function. This is equivalently, the inverse, F̂−1(1 − α), of the distribution

function of the permuted test statistics:

F̂(t) =
1
n! ∑

PPP∈P
I{T(xxxPPP) ≤ t}.

A randomized test with exact level α occurs if one rejects HE when ϕ(xxx) is 1, i.e.

the test statistic lies strictly in the upper α area of the permutation distribution,

fails to reject when ϕ(xxx) is 0, and rejects with probability a(xxx) otherwise. In

the latter case, a uniform random variable is simulated and the test is rejected

if it is less than a(xxx).

Hoeffding, 1952 showed that a(xxx) defined as {n!α− M+(xxx)}/M0(xxx) yields

an α level randomized test. Here, M+(xxx) and M0(xxx) are the counts of per-

muted statistics larger than or equal to T(k), respectively. These are for-

mally defined as: M+(xxx) = |{j ∈ {1, · · · , n!} : T(j)(xxx) > T(k)(www)}| and

M0(xxx) = |{j ∈ {1, · · · , n!} : T(j)(xxx) = T(k)(xxx)}|.

Since having an ancillary coin flip determine rejection is not desirable, the

more conservative non-randomized test simply uses the non-randomized test

function:

ϕ′(xxx) =

{︄
1, T(xxx) > T(k)(xxx)
0, T(xxx) ≤ T(k)(xxx)

.

This yields a test with a type I error rate guaranteed to be less than α, though

cannot yield an exact α level test, except in rare cases, such as when n!α is an

integer.

Note that with the matrix representation we have T(xxx) = tr(BBB) as the total

number of correct matches and hence T(xxxPPP) = tr(BBBPPP) = tr(PPPBBB) is the total
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number of correct matches after permuting occasion 2 labels according to

some PPP ∈ P . Therefore an alternative expression for permutation distribution

function is:

F̂(t) =
1
n! ∑

PPP∈P
I{tr(PPPBBB) ≤ t},

the CDF from the traces of all the row permutations of BBB.

Thus, the CDF arising from placing equal (discrete uniform) probability on

all permutations is derived equivalently from permuting either the occasion

1 or occasion 2 labels. Suppose ΠΠΠ is uniformly distributed over P . Then

F̂(t) = P{tr(ΠΠΠBBB) = t}.

Poisson Approximation for MWOR

In matching without replacement, each occasion 1 image is matched to a

distinct occasion 2 image. This implies each column and row of BBB sums to 1, as

BBB is a permutation matrix, since the vector of matches is a permuted version

of (1, · · · , n)′. In this case, permuting occasion 1 labels and then calculating

tr(ΠΠΠBBB) is equivalent to shuffling a batch of ordered cards and counting the

number of cards still in its original order, which follows Montmort’s matching

distribution (Barton, 1958). Hence

P{tr(ΠΠΠBBB) = t} =
1
t!

n−t

∑
j=0

(−1)j

j!
.

As n goes to infinity, for any fixed t, P{tr(ΠΠΠBBB) = t} → 1/(t!) ·∑∞
j=0(−1)j/(j!) =

exp(−1)/(t!) and tr(ΠΠΠBBB) converges to a Poisson(1) distribution.

This is the distribution of correct matches under permutations, famously

originally derived in a letter between Montmort and Nicolaus Bernoulli. This
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distribution and matching setting is often used in probability courses to il-

lustrate the law of total probability. It is interesting to note that the Poisson

approximation has an upper 95th percentile of 3, 99th percentile of 4 and 99.9th

percentile of 5. Therefore, relatively few matches need be made to reject this

null hypothesis and that number is fairly static with n, since convergence

occurs quite quickly. The reason the p-value is robust to large changes in

n is because although the number of possible matches increases with n, the

probability of a match decreases in a balanced way.

Poisson Approximation for MWR

Suppose we observed combined data matrix XXX = xxx and its representation

matrix BBB in a matching with replacement process. Each occasion 1 image will

be matched to exactly one occasion 2 image whereas some occasion 2 images

may get matched multiple times and some occasion 2 images may not get

matched at all. In this case the sum of any row of BBB will still be 1 but column

sums of BBB can vary.

Without loss of generality, suppose only the column sums of first k columns

of BBB are nonzero. Denote the column sums as c1, · · · , ck. Then ∑k
i=1 ci = n. For

h ⊂ {1, · · · , k}, denote the size of h as |h|. By the inclusion-exclusion formula

we have (see Appendix in Section 3.3.1)

P{T(ΠΠΠBBB) = t} = ∑
u∈{h⊂{1,··· ,k}:|h|=t}

k−t

∑
s=0

(−1)s

∑
v∈{J⊂{1,··· ,k}\u:|J|=s}

(︄
∏
i∈u

ci

)︄(︄
∏
j∈v

cj

)︄
(n − t − s)!

n!
.
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When k = n and c1 = · · · = cn = 1, the distribution coincides with the

matching without replacement distribution:

P{T(ΠΠΠBBB) = t} =

(︃
n
t

)︃ n−t

∑
s=0

(−1)s
(︃

n − t
s

)︃
(n − t − s)!

n!
,

=
n−t

∑
s=0

(−1)s 1
s!t!

.

Via Stein-Chen’s method (see Appendix in Section 3.3.1), the total variation

between T(ΠB) and a Poisson(1) for matching with replacement is:

dTV {T(ΠΠΠBBB), Poisson(1)} =
1

n − 1
+

(n − 2)
n2(n − 1)

k

∑
i=1

c2
i ,

≤ 1
n − 1

+
n − 2
n − 1

∑k
i=1 Cci

n2 ,

=
1

n − 1
+

n − 2
n − 1

C
n

,

where C is the number of matches of the occasion 2 image with the most

matches, that is, C = maxi∈{1,··· ,k} ci. Thus the permutation distribution will

be approximated by a Poisson(1) if C is small and n is large. Specifically,

C/n → 0 as n → ∞ is sufficient for the distribution of T(ΠΠΠBBB) to converge to a

Poisson(1).

Appendix: Inclusion-Exclusion Formula for MWR

For matching with replacement, the matching matrix B will have one 1 on each

row but rank(B) could be smaller than n. For example, if the first two occasion

1 images are all matched to the first occasion 2 image. Than by permuting the

occasion 1 labels, it is impossible to have b22 = 1.
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Assume rank(B) = k, which means k of the occasion 2 images are matched,

each with one or more occasion 1 images. We calculate p1, p2, ..., pk the propor-

tion of occasion 1 images that are matched to those occasion 2 images. Then

∑k
i=1 pi = 1. Note that matching without replacement becomes a special case

with k = n and pi = 1/n for all i.

Without loss of generality, suppose only the column sums of first k columns

of B are nonzero. Denote the column sums as c1, · · · , ck. Then ∑k
i=1 ci = n.

Recall that Π has a discrete uniform distribution over P . Let Ai = {ci = i}

be the event that subject i gets the correct match after permuting the occasion

1 labels. For h ⊂ {1, · · · , k}, let Bh = ∩i∈h Ai = {∀ i ∈ h, ci = i} be the event

that all the subjects within h get correct matches and denote the size of h as

|h|. By the inclusion-exclusion formula we have

P(T(ΠB) = 0) = 1 − P(∪k
i=1Ai)

= 1 −
k

∑
l=1

(−1)l−1 ∑
v∈{J⊂{1,··· ,k}:|J|=l}

P(∩j∈v Aj)

= 1 −
k

∑
l=1

(−1)l−1 ∑
v∈{J⊂{1,··· ,k}:|J|=l}

(∏
j∈v

cj)
(n − l)!

n!

=
k

∑
l=0

(−1)l ∑
v∈{J⊂{1,··· ,k}:|J|=l}

(∏
j∈v

cj)
(n − l)!

n!

Furthermore, let B(−h) be a copy of the matching matrix B with the rows and

columns having their orders in h deleted and denote Πl as a random matrix
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with discrete uniform distribution over the collection of l × l permutation

matrices. We have

P(T(ΠB) = t) = ∑
u∈{h⊂{1,··· ,k}:|h|=t}

P(Bu)P(T(ΠB) = t|Bu)

= ∑
u∈{h⊂{1,··· ,k}:|h|=t}

P(Bu)P(T(Πn−tB(−u)) = 0)

= ∑
u∈{h⊂{1,··· ,k}:|h|=t}

{︄
(∏

i∈u
ci)

(n − t)!
n!

}︄
⎧⎨⎩k−t

∑
s=0

(−1)s ∑
v∈{J⊂{1,··· ,k}\u:|J|=s}

(∏
j∈v

cj)
(n − t − s)!
(n − t)!

⎫⎬⎭
= ∑

u∈{h⊂{1,··· ,k}:|h|=t}

k−t

∑
s=0

(−1)s ∑
v∈{J⊂{1,··· ,k}\u:|J|=s}

(∏
i∈u

ci)(∏
j∈v

cj)
(n − t − s)!

n!
.

When k = n and c1 = · · · = cn = 1, the distribution coincides with the

matching without replacement distribution

P(T(ΠB) = t) =
(︃

n
t

)︃ n−t

∑
s=0

(−1)s
(︃

n − t
s

)︃
(n − t − s)!

n!

=
n−t

∑
s=0

(−1)s 1
s!t!

The Poisson(1) approximation could be achieved heuristically for small t

and many ci = 1 if the rank of B keeps increasing with a certain rate as n → ∞:
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P(T(ΠB) = t) = ∑
u∈{h⊂{1,··· ,k}:|h|=t}

k−t

∑
s=0

(−1)s ∑
v∈{J⊂{1,··· ,k}\u:|J|=s}

(∏
i∈u

ci)(∏
j∈v

cj)
(n − t − s)!

n!

≈ ∑
u∈{h⊂{1,··· ,k}:|h|=t}

k−t

∑
s=0

(−1)s ∑
v∈{J⊂{1,··· ,k}\u:|J|=s}

(n − t − s)!
n!

=

(︃
k
t

)︃ k−t

∑
s=0

(︃
k − t

s

)︃
(−1)s (n − t − s)!

n!

=
k−t

∑
s=0

(−1)s k!
(k − t)!t!

(k − t)!
(k − t − s)!s!

(n − t − s)!
n!

=
k−t

∑
s=0

(−1)s

t!s!
k!
n!

(n − t − s)!
(k − t − s)!

≈
k−t

∑
s=0

(−1)s

t!s!

→ e−1

t!
as k → ∞

= FU(l)

where U ∼ Poisson(1).

Stein-Chen Method for Poisson(1) Approximation

For matching without replacement, again we assume the first k ≤ n occasion

2 images get paired after matching with replacement (where some occasion

2 images are paired with more than one occasion 1 images; and only those k

occasion 2 images are possible to get paired again after a row permutation).
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We have ci the number of occasion 1 images paired to the i-th occasion 2 image.

Then c1 + ... + ck = n.

Let Xi be the order of the occasion 2 image paired to the i-th occasion

1 image after a row permutation of B. Ii = 1Xi=i. Then T(ΠB) = ∑k
i=1 Ii.

E[Ii] = ci/n, var(Ii) = ci(n − ci)/n2, cov(Ii, Ij) = E[Ii Ij]− E[Ii]E[Ij] = P(Ii =

1)P(Ij = 1|Ii = 1)− cicj/n2 = ci/n · cj/(n − 1)− cicj/n2 = cicj/(n2(n − 1)).

Let S = ∑k
i=1 Ii = T(ΠB). By Stein-Chen’s method (see Theorem 8.1 in

DEY, 2014) we have:

dTV(S, Poisson(1)) ≤ var(S)− 1 + 2
k

∑
i=1

(E[Ii])
2

= ∑
i ̸=j

cov(Ii, Ij) +
k

∑
i=1

var(Ii)− 1 + 2
k

∑
i=1

(E[Ii])
2

= ∑
i ̸=j

cicj

n2(n − 1)
+

k

∑
i=1

ci(n − ci)

n2 − 1 + 2
k

∑
i=1

c2
i

n2

=
(c1 + ... + ck)

2

n2(n − 1)
− ∑k

i=1 c2
i

n2(n − 1)
+ 1 −

k

∑
i=1

c2
i

n2 − 1 + 2
k

∑
i=1

c2
i

n2

=
1

n − 1
− ∑k

i=1 c2
i

n2(n − 1)
+

∑k
i=1 c2

i
n2

=
1

n − 1
+

(n − 2)
n2(n − 1)

k

∑
i=1

c2
i

To check the result:

Let c1 = ... = c13 = 4 then we get bound 21/221 as the Montmort’s Preize
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Problem (see Example 8.3 in DEY, 2014).

Let k = n and c1 = ... = cn = 1 (or equivalently we assume matching

without replacement). Then the above just becomes 2/n, another known

bound for the Montmort’s hat matching problem (Chatterjee, Diaconis, and

Meckes, 2005).

For our HCP dataset in Chapter 4, with n = 466 subjects the calculated

bound is 0.0063.

3.3.2 Rank Sums

In this section, we discuss the approximation of permutation tests using rank

sum statistics. Following the similar notations as Section 3.3.1, suppose each

subject is measured twice and that xxxit denotes the t-th measurement of subject

i, where i = 1, . . . , n and t = 1, 2. For simplicity, we denote XXXt = (xxx1t, . . . , xxxnt)

as the t-th combined measurement from all subjects and XXX as the collection

of all measurements, if there is no ambiguity within the context. Let RRR = [rij]

be the rank matrix, which records the exact ranks within each row instead of

only the matches in the matching matrix, BBB. Again we assume there is no tie.

Then the trace of RRR is the rank sum statistic (2.7).

Denote the diagonals of the permuted rank matrix as D1, . . . , Dn. Then

marginally each Di follows discrete uniform distribution over {1, . . . , n}, but

correlation may exist between the diagonals. Specifically, we have that

cov(Di, Dj) =
(n + 1)2

4(n − 1)
−

∑n
k=1 rikrjk

n(n − 1)
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and

var

(︄
n

∑
i=1

Di

)︄
=

n2(n + 1)(2n + 1)
6(n − 1)

− ∑n
k=1 s2

k
n(n − 1)

de f
= σ2,

where sk is the sum over the k-th column of the rank matrix, R (see Appendix

in Section 3.3.2). Therefore, the following approximation matches the permu-

tation distribution up to the first two moments:

n

∑
i=1

Di
D≈ N

(︃
n(n + 1)

2
, σ2
)︃

. (3.1)

Note that the minimum of the permutation distribution variance, σ2, is 0,

which is achieved when rows of R are repeated. Approximation matching

higher moments is also possible.

Denote W = ∑n
i=1 Di. Under regularity conditions, we may have another

normal approximation

W − n(n+1)
2√︂

n2(n+1)
12

D→ N(0, 1) (3.2)

assuming sk converges to n(n+ 1)/2 for all k with high probabilities. However,

the general sufficient conditions for (3.2) are not pursued in this thesis.

Appendix: Rank Sums Covariances

Denote the diagonals of the permuted rank matrix as D1, . . . , Dn. Then

marginally each Di follows discrete uniform distribution over {1, . . . , n}, but

correlation may exist between the diagonals.

Specifically, we have that

var(Di) =
n2 − 1

12
,
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cov(Di, Dj) = E(DiDj)− E(Di)E(Dj)

=
1

n(n − 1)

(︄
n

∑
k=1

∑
l ̸=k

rikrjl

)︄
− (n + 1)2

4

=
1

n(n − 1)

(︄
n

∑
k=1

n

∑
l=1

rikrjl −
n

∑
k=1

rikrjk

)︄
− (n + 1)2

4

=
1

n(n − 1)

(︄
(

n

∑
k=1

rik)(
n

∑
l=1

rjl)−
n

∑
k=1

rikrjk

)︄
− (n + 1)2

4

=
1

n(n − 1)

(︄
n2(n + 1)2

4
−

n

∑
k=1

rikrjk

)︄
− (n + 1)2

4

=
(n + 1)2

4(n − 1)
−

∑n
k=1 rikrjk

n(n − 1)

and

var

(︄
n

∑
i=1

Di

)︄
=

n

∑
i=1

var(Di) + ∑
i ̸=j

cov(Di, Dj)

=
n(n2 − 1)

12
+

n(n + 1)2

4
− 1

n(n − 1)

n

∑
i=1

∑
j ̸=i

n

∑
k=1

rikrjk

=
n(n + 1)(2n + 1)

6
− 1

n(n − 1)

n

∑
i=1

n

∑
k=1

∑
j ̸=i

rikrjk

=
n(n + 1)(2n + 1)

6
− 1

n(n − 1)

n

∑
i=1

n

∑
k=1

rik(sk − rik)

=
n(n + 1)(2n + 1)

6
− 1

n(n − 1)

n

∑
i=1

n

∑
k=1

riksk +
1

n(n − 1)

n

∑
i=1

n

∑
k=1

r2
ik

=
n(n + 1)(2n + 1)

6
· (1 + 1

n − 1
)− 1

n(n − 1)

n

∑
k=1

s2
k
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=
n2(n + 1)(2n + 1)

6(n − 1)
− ∑n

k=1 s2
k

n(n − 1)
,

where sk is the sum over the k-th column of the rank matrix, R. Note that the

minimum variance is 0, which is achieved when rows of R are repeated.
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Chapter 4

Covariate Analysis for
Fingerprinting on HCP Data

It should be noted that the population-level fingerprinting index and dis-

criminability are well defined only if there exists homogeneity among the

probabilities in (2.4) and (2.9). Such assumptions are met implicitly under the

(M)ANOVA models. However, it has not been studied how other factors may

impact the reliability statistics when heterogeneity exists.

In this chapter, we will take fingerprinting as an example to demonstrate

that various covariates may impact the test statistic. For fingerprinting, natu-

rally we can use matching as an estimate for the potentially heterogeneous

probabilities (2.4) for all i’s, so that the covariate analysis can follow. We

not only showed that demographic factors such as age may be marginally

associated with the individual reliability scores (Section 4.1), but also found

that strong covariate structures such as twins or siblings can construct rela-

tively large overall reliability score across completely distinct groups of people

(Section 4.2). In the latter case, the reliability score can be understood as a

similarity score, which shows the potential of applying reliability measures in
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heritability analysis.

The Poisson(1) approximation for fingerprinting also allows the voxel-

wise fingerprinting tests at a low computational cost. The results illustrate

different patterns of reliability across the brain (Section 4.3). It also shows that

heterogeneity may exist across different elements from a measurement vector

for the reliability score of a high-dimensional measurements.

For the Human Connectome Project (HCP) dataset, 466 participants (273

females, age 22 to 36), each with two separated resting state fMRI sessions

on consecutive Day 1 and Day 2, were included from the HCP (Van Essen

et al., 2013) S500 release. Preprocessing was conducted following the minimal

preprocessing pipelines (Glasser et al., 2013). For each participant, the rs-fMRI

scan with the left-to-right phase encoding direction in each session was used

so that we had 932 scans in total for matching.

The atlas with 268 nodes partitioned into eight networks defined with

the Shen’s functional parcellation method on the independent health controls

(Shen et al., 2013; Finn et al., 2015) was applied to each rs-fMRI image. The

measurement vector xxxit for subject i on the first (t = 1) or the last (t = 2) visit

was taken as the upper triangular of the Pearson correlation (z transformed)

matrix calculated for all the nodes using their time series during the corre-

sponding scan. The distance, δ(·, ·), was defined as one minus the Pearson

correlation between the two feature vectors.
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4.1 Covariates Associated with Matching

In this section, we will focus on using if a subject is correctly matched (1 for

yes, 0 for no) as an example of individual reliability scores. Potentially, similar

scores can be calculated for discriminability and rank sums too.

On the HCP dataset, matching with replacement on the 466 participants

resulted in 350 people (75.11%) getting matched to themselves. Let 1 repre-

sent that a subject got correctly matched and 0 otherwise. Using a logistic

regression model, we regressed the matches against demographic covariates,

including years of education, age, sex, race (having levels “Asian/Native

Hawaiian/Other Pacific Islander”, “Black or African American”, “White”,

“More than one” and “Unknown or Not Reported”; “Asian/Native Hawai-

ian/Other Pacific Islander” as the baseline), income and whether the partic-

ipant is still in school. Two variables were marginally interesting: age with

estimated odds ratio 1.06, 90% CI [1.01, 1.12], Wald z statistic 1.80 and p-value

0.073; the race category for black or African American, having an estimated

odds ratio 0.15, 90% CI [0.02, 0.94], Wald z statistic −1.70 and p-value 0.088.

Though these variables show weak evidence for associations with matching,

recall that the ages, ranging from 22 to 36 on the HCP dataset, were all healthy

and younger.

We further investigated if any similarity in terms of resting state connectiv-

ity existed among people with the same age and race category. Within each

iteration, from each of the 208 families we randomly selected one subject so

that no sibling structure existed. We then partitioned the 208 subjects by age

and race categories. We randomly chose 20 combinations of age and race
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categories that contained more than one subject in the 208 samples. From

subjects with each of the selected age and race combination, we then randomly

chose an ordered pair of subjects. For the first subject of a pair we took the

measurement of the first experiment session and for the second subject we

took that of the second experiment session. We then conducted matching

with replacement on the two groups of 20 measurements, now having totally

distinct participants on the two session. After 1,000 iterations the empirical

distribution was plotted for the total matches with an empirical distribution

from the previous iid Poisson(1) samples as comparison. From Figure 4.1

a slight right shift from the Poisson(1) was observed for the age and race

matched simulated samples with a proportion of rejecting the null at level 0.05

in the Poisson tests being 6.3%, which was larger than that in the Poisson(1)

samples as 1.4% and probability 1.9% of being greater than 3 for Poisson(1)

distribution; these were substantially smaller than those in the dizygotic twins

(54.1%) or non-twin siblings (54.2%) (see Section 4.2).

4.2 Matching for Comparing Connectome Similar-
ities Between Twins or Non-Twin Siblings

Our HCP dataset included 53 families with monozygotic (MZ) twins and

other 24 families with dizygotic (DZ) twins, all verified by genotyping. There

were another 68 families with genotyping data available that had at least two

siblings but no twins (NotTwin), which added up to 157 non-twin siblings.

Within each iteration, from each of the three types of families above (MZ,

DZ or NotTwin), we randomly selected 20 families. Then from each of the
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Figure 4.1: The simulated distribution of the total number of matches when matching
two groups of distinct people (each of size 20) who were randomly selected from
different families and were matched in age and race in the HCP dataset (see Section
4.1). Matching with replacement was conducted. The empirical distribution of a
Poisson(1) random variable after 1,000 iterations was also plotted as comparison.

selected families, we randomly chose an ordered pair of twins (for families

with MZ and DZ twins) or non-twin siblings (for families with no twins but

at least two siblings and with genotyping data available). We also randomly

selected 20 ordered pairs of subjects from all the 466 participants (labeled

Random).

For each selected ordered pairs, we took the measurement of the first

experiment session for the first subject and that of the second experiment

session for the second subject. Then for each of the four scenarios (MZ, DZ,

NotTwin and Random), we had two groups of 20 measurements from totally
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distinct subjects.

If different levels of similarities between siblings existed, then the distribu-

tions of the total number of matches for siblings could diverge not only from

that when siblings were no closer than random people and the exchangeability

assumption held, i.e. a Poisson(1) distribution, but between those of different

sibling types as well.

After 1,000 iterations the empirical distributions were plotted (Figure 4.2).

An empirical distribution of 1,000 iid Poisson(1) samples was also plotted as

comparison. We observed similar distributions for DZ twins and non-twin

(NotTwin) siblings, with the proportions of rejecting the null at level 5% being

54.1% and 54.2% respectively. But for MZ samples the numbers of matches

were greater than 3 in all iterations, meaning the proportion of rejection is

100%. These results could also be seen as supportive evidence in terms of the

brain connectivity for the genetic assumption that MZ twins having greater

similarity than DZ twins or non-twin siblings, which were all closer than

random pairings.

Such matching experiments between distinct subjects demonstrated how

the fingerprint test when specially designed can serve as a test for the existence

of similarity among people with certain social or genetic relations. According

to the experiment results, the power of such a test could be relatively low

(around 50% for the level of similarity between DZ twins or non-twin siblings)

or very high (close to 100% for the level of similarity between MZ twins)

for brain connectivity measurements depending on the (usually unspecified)
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alternative hypothesis. The empirical distributions of the test statistic demon-

strated a way of comparing the levels of brain connectome similarities for

different genetic or social relations.

Figure 4.2: The simulated distributions of the total number of matches when matching
two groups of distinct people (each of size 20) from the HCP dataset. For each person
selected in the first group, there was another monozygotic twin/dizygotic twin/non-
twin sibling/random person in the second group for the MZ/DZ/NotTwin/Random
scenarios, respectively (see Section 4.2). Matching with replacement was conducted.
The empirical distribution of a Poisson(1) random variable after 1,000 iterations is
also plotted as comparison.
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4.3 Brain Maps of Identifying Pairs of Nodes by
Network

Consider evaluating how well a single pair of nodes can identify people by

conducting matching with replacement with only the single inter-node z-

transformed correlations. Since the measurements are one dimensional we

use the absolute difference as distance and randomly choose a match when

ties appear. We use the Poisson approximation to the number of matches. An

FDR adjustment follows for multiple testing. The Poisson approximation is

useful in this setting, as the number of matching experiments grows with the

order of the number of nodes squared.

On the HCP dataset using the sample of 466, 106 identifying pairs of nodes

were discovered out of 35, 778 = (268
2 ) pairs (268 nodes). The total matches on

those identifying pairs ranged from 7 to 10.

For simplicity, we combined the eight networks into five and then counted

the identifying pairs between the following five combined networks: FP (the

combination of Medial Frontal and Frontoparietal networks), DMN (Default

mode network), SC (Subcortical-cerebellum network), Motor (Motor network)

and Visual (the combination of Visual I, Visual II and Visual Association

networks). FP was the network with most identifying pairs (20).

We further conducted matching with replacement only using the pairs

between any two selected networks. It led to similar results that the identi-

fication rate on FP was the highest (90.6%). The 20 identifying pairs within

the FP network are visualized (see Figure 4.3) on the ICBM 152 template

brain (Mazziotta et al., 2001) with the rgl and misc3d packages in R (Adler,
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Table 4.1: Numbers of the identifying pairs between the five combined networks on
the HCP dataset (see Section 4.3). The pairs of nodes were selected by the Poisson
approximated permutation test on the total matches from matching with replacement
using only the z transformed correlations between each single pair.

FP DMN SC Motor Visual
FP 20 6 14 11 9

DMN 1 3 3 4
SC 6 6 5

Motor 2 10
Visual 4

Table 4.2: Identification rates (in %) from matching with replacement using only the
z transformed correlations of the pairs between the five combined networks on the
HCP dataset (see Section 4.3).

FP DMN SC Motor Visual
FP 90.6 80.7 70.0 61.2 66.7

DMN 50.0 56.7 33.7 45.5
SC 44.6 45.7 53.6

Motor 42.3 45.7
Visual 58.8

Murdoch, and others, 2018; Feng and Tierney, 2008; Muschelli, Sweeney, and

Crainiceanu, 2014).

The matching performance over individual nodes mirrors neuroscientific

intuition that frontal networks are more idiosyncratic and personal, while

motor and visual networks are more common across individuals.

4.4 Discussion

In this chapter we conducted different covariate analyses for the matching

permutation tests with so-called fMRI fingerprinting. We found that, regard-

less of the matching strategy, the tests results in a Poisson(1) null distribution
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Figure 4.3: The 20 identifying pairs of nodes within the FP network visualized on
the ICBM 152 brain template (see Section 4.3). Nodes were labeled by their orders
on the atlas and were plotted at the center. Pairs of nodes were colored from blue
to red depending on the number of matches when matching with replacement was
conducted with only the z transformed correlations between each single pair.

for the number of correct matches (Section 3.3.1). Thus, one can compare the

number of matches to the relevant upper quantile of a Poisson(1) without

further computing. This is particularly useful for studies of individual brain

locations, or pairs of locations. In these settings, the lack of need for calculat-

ing a permutation based null distribution dramatically reduces computing

time. In addition, the high power of the test mitigates the need for elaborate
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multiple comparison procedures and simpler more conservative variations

would likely suffice.

While nearly any reasonable permutation and matching strategy yields

a Poisson(1) null distribution for the number of correct matches, there are

differences between the strategies. For example, matching with replacement

yields a different answer whether occasion 1 or 2 is used as the reference

group. In addition, poor matching without replacement strategies can be

dependent on the original subject ordering. Matching with replacement more

easily generalizes to multiple measurements per subject.

The exchangeability test was seen to be very highly powered and sensitive

to assumptions towards a greater propensity to reject. Most notably, any

correlation of the measurement with a demographic or clustering variable

will aid in matching. This is intuitive. If one had pairs of outfits from several

people and had to match them up in the absence of the owners, the task

would be much harder if everyone was the same size, gender, etc. This has

implications for the use of fingerprinting as a measure of reproducibility. For

example, it is well known that resting state fMRI data changes with age. For

the same experimental protocol measures of reproducibility would change

depending on the age variation of the study subjects.

When there exist potential covariate or clustering variables, a study of

matching performance and its associations is necessary. We suggest the use of

logistic regression on whether or not subjects were correctly matched for this

task.

Subject identification is also an incomplete measure of the performance of
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a metric. It is worth remembering that ones actual fingerprint itself is a very

good identifier, but is otherwise biologically meaningless, whereas gender,

sex, medication usage, etc. are all poor subject identifiers but scientifically

useful.

The HCP data included twins and it interesting that matching performance

followed the appropriate order (from best performance): self, monozygotic

twin, dizygotic twin, non-twin sibling and stranger. Among the basic demo-

graphics, age, education and race showed some association with matching

performance. Various numeric experiments showed that one can obtain a more

significant result by making the distribution of the significant demographics

more variable, even when matching to strangers.

The final analysis considered all pairs of regions separately. It was primar-

ily frontal cortical regions that were the most fingerprint-like (i.e. idiosyn-

cratic). This mirrors both intuition and general results in this area. Intuition

would suggest, for example, that intra-motor or intra-visual, connections

would be similar across a collection of typical subjects simply because of the

consistency of motor and visual function.
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Chapter 5

Clinical Applications of Functional
Connectivity

As the evidence from measurement reliability (Bridgeford et al., 2019) and

fingerprinting (Finn et al., 2015; Rosenberg et al., 2016) analyses suggest, FC

has potentials of a reliable measurement of brain functional characteristics

and a new source of functional biomarkers. In this chapter, we will discuss

a real data example where FC is applied in the discovery of the biomarkers

associated with a causal quantity of interest. This highlights the prospect of FC

applications in various aspects of trial data analysis, such as treatment effect

heterogeneity, dynamic treatment regimes, and precision medicine. Future

directions, common issues, and precautions are also discussed.

5.1 Causal Biomarkers Discovery in a PPA Trial

Transcranial direct current stimulation (tDCS)—weak electrical current passed

over the scalp into the brain—has been shown to benefit language performance

in primary progressive aphasia (PPA) (Baker, Rorden, and Fridriksson, 2010;
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Chrysikou and Hamilton, 2011; Fiori et al., 2011; Fridriksson et al., 2011; Kang

et al., 2011; Marangolo et al., 2011; Monti et al., 2008). In this study, tDCS

showed a significant effect on a behavioral outcome called semantic fluency.

We are now further interested in if any language related FC baselines are

predictive for the potentially heterogeneous tDCS effects. These predictors are

biomarkers associated with the individual causal effects and are of importance

for the precision health purposes.

5.1.1 Data

5.1.1.1 Participants and Overall Design

Thirty-six individuals with primary progressive aphasia participated in this

study (17 female): 14 with logopenic variant PPA (lvPPA), 13 with non-fluent

variant PPA (nfvPPA), and 9 with semantic variant PPA (svPPA). All were

right-handed, native English speakers, between 50 and 80 years old, and

diagnosed based on clinical assessment, neuropsychological and language

testing, and MRI. Informed consent was obtained from participants or their

spouses (for those with comprehension deficits), and all data were acquired

in compliance with the Johns Hopkins Hospital Institutional Review Board.

Figure 5.1 shows the participants recruited and their randomization to tDCS or

sham. Each PPA variant group was matched by sex, age, education, years post

onset of symptoms, and overall Frontotemporal Dementia Clinical Dementia

Rating score (FTD-CDR) and language severity measures (Tables 5.1, 5.2).

A within-subjects crossover design with two experimental conditions was
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Figure 5.1: Participants recruited and randomization to tDCS or sham.
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Table 5.1: Means (standard deviations) of demographics grouped by first-phase con-
dition (n=36). *Fisher’s exact test used. **F(1, 26) reported. FTD-CDR, Frontotemporal
Dementia Clinical Dementia Rating Scale sum of boxes (Knopman et al., 2008). F,
female; M, male. L, logopenic; N, nonfluent; S semantic.

tDCS first sham first F(1, 34) p-value
Sex 9 F, 9 M 8 F, 10 M * 1.000

Variant 7 L, 6 N, 5 S 7 L, 7 N, 4 S * 0.500
Age (years) 66.17 (7.49) 69.72 (5.42) 2.66 0.113

Years post symptom onset 5.17 (3.40) 4.72 (2.55) 0.20 0.660
Language severity (FTD-CDR) 1.92 (0.90) 1.83 (0.71) 0.10 0.759

Total severity (FTD-CDR) 6.89 (4.53) 7.53 (4.66) 0.17 0.679
Sessions in phase 1 12.72 (2.11) 11.06 (1.63) 7.05 0.012
Sessions in phase 2 10.64 (3.05) 10.94 (1.35) 0.65** 0.427

Table 5.2: Means (standard deviations) of demographics grouped by PPA variant
(n=36). *Fisher’s exact test used. **F(2, 25) reported. FTD-CDR, Frontotemporal
Dementia Clinical Rating Scale sum of boxes (Knopman et al., 2008). F, female; M,
male. s, sham; t, tDCS.

lvPPA nfvPPA svPPA F(2,33) p-value
Sex 7 F, 7 M 5 F, 8 M 5 F, 4 M * 0.800

First-period condition 7 s, 7 t 7 s, 6 t 4 s, 5 t * 1.000
Age (years) 66.29 (8.11) 69.77 (6.00) 67.89 (4.96) 0.91 0.412

Years post symptom onset 4.82 (3.33) 4.65 (2.66) 5.56 (3.08) 0.25 0.780
Language severity (FTD-CDR) 1.57 (0.83) 2.04 (0.72) 2.11 (0.78) 1.76 0.188

Total FTD-CDR 6.18 (3.76) 7.85 (4.19) 7.89 (6.17) 0.57 0.571
Sessions in phase 1 11.93 (2.02) 11.85 (1.91) 11.89 (2.47) 0.01 0.990
Sessions in phase 2 9.57 (4.35) 9.08 (4.17) 10.44 (3.61) 0.21** 0.812

used: speech-language therapy plus anodal tDCS over the left IFG, and speech-

language therapy plus sham tDCS. Each condition lasted approximately 12

daily sessions, consecutive except for weekend breaks; the two phases were

separated by a 2-month wash-out period. Evaluations—consisting of a set of

treated and untreated items of the same task, as well as extensive neuropsy-

chological and neurolinguistic assessments—occurred immediately before,

immediately after, two weeks after, and two months after each treatment phase.

Both participants and examiners were blind to the experimental condition.
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5.1.1.2 Methods of tDCS

Each daily therapy session lasted one hour. For both tDCS and sham condi-

tions, two 2-inch x 2-inch, non-metallic, conductive, rubber electrodes covered

with saline-soaked sponges were placed over the right cheek (cathodal elec-

trode) and the left inferior frontal gyrus centered at F7 of the Homan EEG

10-20 electrode position (anodal electrode). The electrodes were hooked up to

a Soterix 1x1 Clinical Trials device, which elicited a tingling sensation on the

scalp as it ramped up within 30 seconds, to deliver a weak current at an inten-

sity of 2 mA per minute (estimated current density 0.04 mA/cm2; estimated

total charge 0.048 C/cm2). In the tDCS condition, current was delivered for

20 minutes for a daily maximum of 40 mA; in the sham condition, current

ramped up to 2 mA and immediately ramped down to elicit the same tingling

sensation and thus blind the participant to his treatment condition. Stimula-

tion started at the beginning of each therapy session and lasted for 20 min

whereas language therapy continued for a full session, i.e., 20-25 additional

minutes. Twice during each session, participants rated their level of pain with

the Wong-Baker FACES Pain Rating Scale (www.WongBakerFACES.org).

5.1.1.3 Language Intervention

The written language intervention protocol was based on studies that have

successfully treated written language production. We adapted the basic design

of a spell-study-spell procedure (Rapp and Glucroft, 2009) to an oral and

written naming paradigm (Beeson and Egnor, 2006).

During each treatment session, each participant was shown a picture on the
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computer, and asked to orally name the object or action and then write it down.

Object stimuli sets were chosen from the Philadelphia Naming Test (PNT) and

actions from the International Picture Naming Project (Szekely et al., 2004).

If the participant could not name the picture, he was asked to provide three

properties of the item (what it is, what it does, etc.) to check and reinforce

semantic knowledge, as in semantic feature analysis treatment (Beeson and

Egnor, 2006). If he made an error, he was given corrective feedback and

repeated opportunities to correctly say the object or action name. If he still

could not name the word, he was provided with the correct word. If the

patient wrote the word incorrectly, the clinician would provide a model of

the correct spelling in a spell-study-spell procedure, rehearsing the letters

one-by-one in a letter-by-letter manner and reinforcing learning by copying.

Repetition has been shown to have synergetic effects for both oral and written

naming (Beeson and Egnor, 2006).

Trained and untrained sets (10-30 words depending on each participant’s

severity level) were matched in length and frequency. Evaluations were

administered before, immediately after, 2 weeks after, and 2 months after

each treatment period. Percentage of correct letters was determined based

on a scoring system evaluating the accuracy of each letter, accounting for

deletions, additions, substitutions, and movements of letters. A second judge

scored each letter, and any discrepancies were resolved later with discussion

to generate a consensus score. Then the sum was divided by the total letters

possible. To evaluate whether therapy gains generalized to the naming and

spelling of other words, untrained words were presented at all evaluation
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points.

5.1.1.4 Language and Cognitive Assessment

Participants were also evaluated with a series of standardized language and

cognitive assessments. Sham and tDCS groups were matched in language

and cognitive scores in each task at baseline. For the semantic fluency task,

participants were instructed to name as many fruits, animals, and vegetables

as possible, administered separately in the order listed here, in one minute

per category (Benton et al., 1994). Scores used in the present analysis were

calculated by adding the number of words generated in all three categories.

Performance was assessed before, immediately after, two weeks after, and two

months after each phase.

5.1.1.5 Imaging Acquisition and Preprocessing

Of the 36 participants, 29 had magnetic resonance imaging (MRI) scans—five

were severely claustrophobic and two had pacemakers. MRI scans took place

at the Kennedy Krieger Institute at Johns Hopkins University. Magnetization-

prepared rapid acquisition gradient echo (MPRAGE) and resting-state func-

tional MRI (rs-fMRI) scans were acquired before treatment on a 3-Tesla Philips

Achieva MRI scanner with a 32-channel head coil. T1-weighted MPRAGE

sequence acquisition involved the following parameters: a scan time of 6 min-

utes (150 slices); isotropic 1-mm voxel size; flip angle of 8◦; SENSE acceleration

factor of 2; TR/TE = 8/3.7 milliseconds (ms). rs-fMRI acquisition involved the

following parameters: scan time of 9 minutes (210 time-point acquisitions);

slice thickness of 3 mm; in-plane resolution of 3.3x3.3 mm2; flip angle of 75;
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SENSE acceleration factor of 2; SPIR for fat suppression; TR/TE = 2500/30

ms.

MPRAGE images were segmented into 238 regions of interest (ROIs) using

MRICloud, a multi-atlas based, automated image parcellation approach, using

a multi-atlas fusion label algorithm (MALF) and large deformation diffeomor-

phic metric mapping (LDDMM) (Mori et al., 2016; Tang et al., 2013). Prepro-

cessing involved standard routines from the SPM connectivity toolbox for

coregistration, motion, and slice timing correction; physiological nuisance cor-

rection using CompCor (Behzadi et al., 2007); and motion and intensity TR out-

lier rejection using “ART” (https://www.nitrc.org/projects/artifact_detect/).

To correct for motion, ART detected outliers and a motion matrix was gener-

ated; these were used in combination with the physiological nuisance matrix

in the deconvolution regression for the remaining TRs.

rs-fMRI scans were preprocessed using MRICloud and coregistered with

MPRAGE scans into the same anatomical space (native space); then 78 of

the ROIs were parcellated on the rs-fMRI scans. Average time courses for

the voxels in each ROI were normalized, and correlations between ROI pairs

were calculated and normalized with the Fisher z-transformation. Of the 78

ROIs, 13 were predefined as language-network ROIs: the left and right pars

opercularis, pars orbitalis, and pars triangularis of the inferior frontal gyrus

(IFG_opercularis_L, IFG_opercularis_R, IFG_orbitalis_L, IFG_orbitalis_R,

IFG_triangularis_L, IFG_triangularis_R), left middle temporal gyrus (MTG_L),

left supramarginal gyrus (SMG_L), left superior temporal gyrus (STG_L), left

inferior temporal gyrus (ITG_L), left fusiform gyrus (FuG_L), pole of the left
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middle temporal gyrus (MTG_L_pole) and pole of the left superior temporal

gyrus (STG_L_pole). Analyses involved the 78 pairs between these 13 ROIs

exclusively.

5.1.2 Unbiased Transformations and Causal Biomarkers

For this analysis, we focus on the first-phase data and the period from before to

after the intervention only, in order to avoid any possible impact of carryover

and to maximize the number of available samples. The primary behavioral

outcome, Y, is the change of semantic fluency scores from the baseline. The

assignment of tDCS is denoted as T, which is valued as 1 for tDCS and 0 for

sham. Let XXX = (X1, X2, . . . , Xl)
t be a vector of baseline factors, such as the

demographics or the FC baselines.

Suppose that {Y(t) : t ∈ {0, 1}} is the collection of counterfactual out-

comes for the two treatment arms, and the observed data is

OOO = (XXXt, T, Y(T))t.

It is assumed that Y = Y(t) so long as T = t, for t = 0, 1. The randomization

guarantees that Y ⊥ T|XXX. We also have that for each possible value, xxx, we

have P(T = 1|XXX = xxx) > 0. Therefore, the average treatment effect (ATE),

E[Y(1)− Y(0)] is identifiable.

It would be of interest to investigate the following conditional average

treatment effect (CATE)

E[Y(1)− Y(0)|XXX],
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which captures the potential heterogeneity in the tDCS effect on Y. How-

ever, only half of the subjects are observed for Y(1) or Y(0). Therefore, a

transformation Y∗(·) : OOOi ↦→ Y∗(OOOi) that satisfies

E[Y∗(O)|XXX] = E[Y1 − Y0|XXX]
de f
= m(XXX) (5.1)

is desired given an IID sample, O1, . . . , On. Here, the unbiased transformation,

Y∗(OOOi)’s, maintains the correct conditional expectation structure, but is fully

observed for each subject.

Jackknife pseudovalues (Equation (11.14) in Chapter 11, Efron and Tibshi-

rani, 1994) result the following expression for ATE,

Y Jackkni f e
i =

YiTi

e
− Yi(1 − Ti)

1 − e
, (5.2)

where e is plugged in as the treatment assignment probability, 0.5. Then

Y Jackkni f e
i satisfies the unbiasedness condition (5.1). The unbiased transforma-

tions for data censoring in general have been discussed in Rubin and Laan,

2006 but are not in the scope of this thesis.

In the following section, we will focus on the discovery of linear predic-

tors for the Jackknife pseudovalues, Y Jackkni f e
i . Since the conditional expec-

tations of Y Jackkni f e
i remain the same as the CATE, i.e. E

[︂
Y Jackkni f e

i |XXXi

]︂
=

E[Y(1)i − Y(0)i|XXXi] given any set of baseline factors, XXXi, the selected fac-

tors are also the predictors for the unobservable individual tDCS effects,

Y(1)i − Y(0)i. These predictors are the biomarkers of interest that are associ-

ated with the potentially heterogeneous causal effects.
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5.1.3 Predictor Selection

Jackknife pseudovalues were calculated as (5.2) for each individual. Selection

of the linear predictors was conducted based on the leave-one-out cross vali-

dated (LOOCV) predictive R-squared. At each step of the forward selection, a

threshold of 0.1 on the R-squared increase was applied to stop the selection

procedure, otherwise the variable with the largest R-squared increase was

selected. The predictive R-squared and the root mean squared error (RMSE)

of the current step, as well as the increase in predictive R-squared compared

to the last step, are reported for each round of the variable selection.

Predictor selection was conducted for two sets of variables: the non-

imaging factors (baseline semantic fluency, PPA variant, number of treat-

ment sessions, sex, age, years post onset of symptoms, and total FTD-CDR

severity and language severity measures) and the imaging factors (Fisher-z

transformed correlations between the prespecified 13 language ROIs of the

baseline rs-fMRI). For the second task, to handle missingness in the base-

line resting-state functional connectivity data, an inverse propensity score

weighting (IPW) method was applied. Propensity scores were estimated using

logistic regression with the imaging missingness and all non-imaging factors.

The inverse propensity scores were then used as weights; each least square

fitting using all subjects in the aforementioned variable selection procedure

was replaced with weighted linear regression on the complete cases. The se-

lection criteria based on LOOCV predictive R-squared increase for predicting

pseudovalues remained the same.
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5.1.4 Results

Baseline FC of two ROI pairs were confirmed to be predictive with the 0.1

threshold on R-squared increase: the left STG : left MTG pole and left IFG

opercularis : left IFG triangularis (Table 5.3; Figure 5.3). These two factors

constructed a linear prediction model with LOOCV predictive R-squared

being 0.416 and RMSE being 6.78. Coefficients of this model were shown in

Table 5.4; higher initial connectivity on these pairs is associated with higher

CATE. In addition, we monitored the changes of R-squared increases in each

round of variable selection (Figure 5.2). Note that in the first round three other

imaging predictors provided R-squared increases greater than 0.1, but they

were not selected because the Left STG : Left MTG pole had been selected for

providing a larger R-squared increase.

Table 5.3: Imaging factors for individual tDCS effect prediction. Predictiveness was
evaluated by the LOOCV (predictive) R2.

Accumulated R2 R2 increase RMSE
Null Model 0 0 8.496
Left STG : Left MTG pole 0.307 0.307 7.389
Left IFG opercularis : Left IFG triangularis 0.416 0.109 6.782

Table 5.4: The linear prediction model for individual tDCS effects with the two
selected imaging factors.

Estimate SE t(21) p
Intercept -10.97 3.79 -2.89 0.009
Left STG : Left MTG pole 30.84 7.67 4.02 0.001
Left IFG opercularis : Left IFG triangularis 14.09 5.02 2.80 0.011

No non-imaging factor was confirmed to be predictive of the individual
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Figure 5.2: Predictive imaging factors and the increases of predictive R-squared for
individual tDCS effects. Solid lines represent the selected factors in each round,
whereas dotted lines represent the factors that were not selected but also provided
over 0.1 increase of predictive R-squared in the first round.
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Figure 5.3: Visualization of the selected predictive imaging factors for individual tDCS
effects. The positions of the nodes are the average centers of each ROI from the cohort.
ROI pairs are plotted and connected if predictiveness of the baseline connectivity is
confirmed. Thickness of the edge and the scale of the edge color represent on average
how much extra potential semantic fluency score increase one would expect for tDCS
compared to sham, with 0.01 higher baseline Fisher z-transformed connectivity.
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tDCS effect with the predictive R-squared increment thresholded at 0.1. Over-

all FTD-CDR and belonging to the nfvPPA group each provided around 0.05

increases in predictive R-squared and resulted in an accumulated predictive

R-squared of 0.10, which hints at potential predictiveness for the individual

tDCS effect (Table 5.5).

Table 5.5: Non-imaging factors for individual tDCS effect prediction.

Accumulated R2 R2 increase RMSE
Null Model 0 0 8.360
Overall FTD-CDR 0.044 0.044 8.407
Having nfvPPA 0.098 0.054 8.166

5.2 Discussion

We conducted screening of FC biomarkers for the potentially heterogeneous

causal effects. Essentially, we selected factors based on their predictiveness

for the unbiased transformations described in Section 5.1.2, where each trans-

formed outcome maintains the same conditional expectation as the CATE of

each individual. Note that the predictiveness of the imaging predictors was

evaluated without adjusting for the demographic factors. We did so in order

to have a chance to compare the predictiveness of the final models generated

by the imaging and non-imaging factors. Such comparison (Table 5.3 and

Table 5.5) shows that the accumulated predictive R-squared (0.416 vs 0.098) is

higher and the RMSE (6.782 vs 8.166) is lower in the imaging factor model. We

argue that such evidence implies that the FC biomarkers provide additional

information of individual characteristics compared to the non-imaging factors

and have potential importance for precision health purposes.
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Chapter 6

Conclusions

This thesis focused on the reliability and application of resting state fMRI

functional connectivity measures. We particularly focused on the general

problem of measurement reliability. In an analysis of relationships between a

series of recently proposed reliability measures, we focused on discriminability

and investigated how it is related with other measures. The results show that

inter-study interpretability changes when different reliability measures are

used as measures of reliability.

We first confirmed that population discriminability is a reliability measure

by showing that it is deterministically linked with the classical univariate

reliability measure, ICC, under an assumed true univariate ANOVA model.

The non-decreasing transformation of ICC to discriminability (Equation 2.14;

Figure 2.1) allows for better interpretation and comparison between studies

conducted with either one. Under MANOVA models, the relationship is not

deterministic, but the non-decreasing link in general maintains via an approx-

imation of the discriminability bounded by two non-decreasing functions of

I2C2 (Figure 2.2).
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We also showed that, under mild conditions, the population fingerprint

index converges to a fixed proportion of discriminability, which depends

on a positive correlation of corr(I{δi,1,2<δi,i′ ,1,2}, I{δi,1,2<δi,i′ ,1,2}). This correlation

can be estimated, as long as the distance matrix generated from the repeated

measured data is available. Therefore the instability the fingerprint index with

small samples can be detected by estimating its limit.

We argued that a form of the rank sum statistic, (2.7), can be directly

transformed into a discriminability statistic, (2.17). Moreover, there exists

another consistent discriminability estimator, (2.15), as a function of the sum

of ranks. Interestingly, this alternate estimator reduces the computational

complexity for calculating discriminability. Potentially, the approximation for

the rank sum statistic may be generalized for discriminability, an interesting

avenue for future work.

For the evaluation of all aforementioned measures in the terms of simulated

power in the reliability test, the results showed that I2C2 or ICC outperformed

all others when parametric assumptions were met. However, discriminability

or any other non-parametric measures are preferable when Gaussian assump-

tions were violated. The rank sum statistic can be superior to discriminability

with the existence of strong batch effects and small numbers of repeated mea-

surements. Such benefits disappear when more measurements are included

in the calculation of discriminability.

In addition, we showed that permutation-based reliability tests result in a

Poisson(1) limiting permutation distribution when fingerprinting is applied.

We approximated the rank sum permutation distribution up to the second
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moments with normal distributions.

Admittedly, such tests can be impacted by clustering or demographic

factors to various extents. An association analysis can be follow the matching

results to investigate these properties. Covariates with strong effects, such as

MZ twin status generated relatively high reliability across completely distinct

groups of people. Here, an interesting consequence of this investigation was

the study of heritability of multivariate brain connectomes using reliability

measures. In the future, the individual discriminability scores can also be

applied for such association studies. In fact, a follow-up study focusing on

these issues is warranted, since the violation of homogeneity can result in

violation of the model assumptions for measures, such as fingerprinting and

discriminability.

Lastly, we demonstrated in a real data example that the FC data can be

applied in a clinical setting, where precision health decisions are of concern.

The FC data showed potential as a more informative personal characteristic.

However, precaution should be taken that the level of reliability can still vary

across different brain networks and locations, as network analysis illustrated

in Section 5.3. A high whole brain reliability level does not guarantee reliable

or consistent measurements on all subnetworks.

Major challenges of FC applications come from the data dimensionality,

the limit of domain knowledge, and the expense of rsfRMI studies. In fact,

dimensionality is of greater concern in FC analysis, since an upper-right vector

of l by l correlation matrix has a length of ( l
2). Thus, the rate of comparisons

increases at the order of l2, as opposes to l for task-based analysis. The
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consequence is that a small number of additional ROIs can dramatically

increase the FC dimension. High reliability alone cannot guarantee the validity

and reproducibility of a small sample study, and it is especially true when we

take into account the loss of power due to multiple testing. Except for larger

sample sizes, such challenge calls for effective and data-adaptive methods

that better utilize the strong correlations within the FC data.
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