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1 Introduction 
 

2 Literature on spatial cognition often reports gender differences [1, 2]. Males 
 

3 typically perform better in tasks involving mental rotation, three- 
 

4 dimensional figures, spatial orientation and maze navigation [3, 4], whereas 
 

5 females are better at episodic memory tasks such as object location [5]. 
 

6 Many factors have been proposed for the gender differences found in 
 

7 visuospatial processing including behavioural, neuroanatomical substrates, 
 

8 hormonal and environmental [2, 6–9]. Despite these reasons, cognitive 
 

9 processes sensitive to gender are restricted mainly to visuospatial or 
 

10 linguistic features [10]. 
 

11 One aspect of gender differences not yet investigated in detail concerns 
 

12 visuospatial planning. Planning is a fundamental cognitive function 
 

13 frequently employed in common daily activities such as preparing meals, 
 

14 housekeeping, managing financial matters and so on. It requires the 
 

15 cooperation between several cognitive processes including strategy 
 

16 formation, coordination of mental functions, recognition of goal attainment 
 

17 and storage of representations. These guide movement from the “initial 
 

18 state” to the “end state” of a desired goal. When circumstances demand an 
 

19 immediate solution, pressure and speed can be associated with this and can 
 

20 be overcome with rational planning, in which spatial orientation and 
 

21 optimisation strategies are essential for obtaining the best solution. Many 
 

22 studies [11] have shown that flexible coordination between mean-ends 
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23 analysis and cognitive abilities can favour the emergence of an 
 

24 “opportunistic behavioural” approach, referred to as an “accuracy–effort 
 

25 trade-off” [12] between competing decision-making strategies. 
 

26 Planning seems to be based on the principle of “cognitive saving”, inducing 
 

27 people to employ simple schemes to minimize the cognitive resources 
 

28 required to achieve the result. According to this principle, several studies 
 

29 [11, 13, 14] have shown that human planning is based on cognitive 
 

30 heuristics. These are defined as behavioural schemas that can approximate 
 

31 the correct solution, thereby requiring less cognitive resources than a 
 

32 complete algorithmic process. Planning behaviour, by means of heuristics, 
 

33 generates a strategy, which is a determined series of actions that guides the 
 

34 subject through realisation to the solution of the problem [15]. The 
 

35 application of a heuristic is not intended to be an exclusively automatic 
 

36 process; rather people evaluate the efficiency of an action by comparing the 
 

37 actual and future states of being, as performed by a feed forward process 
 

38 [16]. Visuospatial planning tasks represent a subset of planning problems, in 
 

39 which the items to be organised are described by visuospatial properties 
 

40 such as position, whereas other characteristics (nature, attractiveness, 
 

41 information) are irrelevant to the task. Examples of planning tasks in which 
 

42 the visuospatial component is secondary (or not required at all) for 
 

43 accomplishing the task are meal preparation [17], the towers of Hanoi and 
 

44 London (in which items must be shifted to pass from an initial state to a goal 
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45 state) [18] and puzzles such as the missionaries and cannibals puzzle [19]. 
 

46 An example of visuospatial planning exists in maze-like tasks, in which 
 

47 people have to organise a path through a series of locations. This is heavily 
 

48 determined by the spatial relationships between the targets. 
 

49 Previous studies on maze navigation have reported contradictory data on the 
 

50 type of navigation strategy employed by females and males. For example, 
 

51 Saucier and colleagues reported that females rely predominantly on 
 

52 landmark cues, whereas males use both geometric and landmark cues [20]. 
 

53 Lawton and Kallai [21] later found that females show a greater tendency to 
 

54 use landmarks and relative directions, whereas males use more cardinal 
 

55 directions and distances, a pattern that has been replicated cross-culturally. 
 

56 Recently, Mueller and colleagues suggested that women employ a strategy 
 

57 based on memory, whereas males use spatial relationships [22]. Besides 
 

58 these few studies, little attention has been paid to identifying how 
 

59 performance and strategy might be qualitatively different between males 
 

60 and females. 
 

61 Gender differences in the optimisation and selection of spatial strategies 
 

62 lead to different behavioural performances. The problem lies in finding a 
 

63 suitable task that allows for these processes to be measured. One potential 
 

64 solution might be to evaluate the involvement of visuospatial planning 
 

65 abilities in a simulated environment using the Maps test, which is thought to 
 

66 represent an abstract version of an everyday task. The computerised Maps 
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67 test [23], which represents an open version of the travelling salesperson 
 

68 problem (TSP) [24], has been used to assess visuospatial planning. 
 

69 Participants are required to minimize the total travel time and distance 
 

70 among a number of locations [25, 26]. The TSP has been considered a 
 

71 reliable tool for investigating planning behaviour because it requires 
 

72 subjects to spontaneously generate a strategy, optimising the order of 
 

73 locations with the aim of extracting a satisfactory path in a modelling space 
 

74 without any spatial constraints [27]. In turn, the Maps task requires a 
 

75 considerable and strong relationship between central and peripheral 
 

76 processes, promoting a fundamental interaction of perceptual, 
 

77 representational and executive components in the achievement of the final 
 

78 goal [28]. These properties allow both genders to adopt, spontaneously (but 
 

79 differently), several cognitive heuristics to optimise the path length. From 
 

80 previous data obtained by visuospatial TSP-based tasks, such as the Maps 
 

81 test and the City Map test [29–31], behavioural data indicated the presence 
 

82 of three distinct spatially-based heuristics generating solving strategies and 
 

83 showed that subjects often change heuristics when executing the plan [29]. 
 

84 The Maps paradigm has also been applied to explore differences between 
 

85 genders. Bisiacchi and colleagues [32], for example, considered only the 
 

86 execution time and pure length of the trajectories, finding that both males 
 

87 and females achieved all sub-goals using a limited number of moves, with 
 

88 males faster in programming and executing the task. 
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89 Other tests attempting to investigate planning processes are the Multiple 
 

90 Errands [33, 34] and Virtual Errands tests [35]. In these, participants are 
 

91 faced with a list of tasks to be accomplished in a local shopping centre. The 
 

92 task consists of finding an efficient route by considering both spatial and 
 

93 timing constraints. Although these tests examined the impairment of single 
 

94 mechanisms of planning, they were not used to investigate gender 
 

95 differences within the executive functioning context. Our intention was to 
 

96 reduce the gap between gender studies and visuospatial planning analysis by 
 

97 increasing knowledge and improving understanding in both fields of study. 
 

98 Moreover, the investigation of oculomotor variables during the “plan 
 

99 execution” process can provide insight into gender differences in the area of 
 

100 planning behaviour. Eye tracking, for example, allows the investigation of 
 

101 different visual scanning paths when males and females attend to a task by 
 

102 computing vertical and horizontal movements during saccades or during the 
 

103 evaluation of a region of interest within a fixation. It is well known that eye 
 

104 movement behaviour changes according to the level of mental activity in 
 

105 which an individual is engaged [36]. Moreover, eye movements are related 
 

106 to the amount of actively processed material and represent a physiological 
 

107 index of cognitive resource, memory and task demand [37, 38]. A recent 
 

108 study by Mueller and colleagues [22] attempted to specify the visual 
 

109 correlates underlying gender differences in spatial navigation using eye 
 

110 tracking methodology. These researchers examined eye movements and 
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111 physiological correlates of memory to compare visual scanning of spatial 
 

112 orientation using a virtual analogue of the Morris Water Maze task. 
 

113 Although the behavioural data replicated previous findings of an improved 
 

114 spatial performance for males, they also found that males consistently 
 

115 explored more space earlier than females. These findings were also 
 

116 supported by the fact that for females a significant positive correlation 
 

117 emerged between pupil diameter (indicative of higher working memory 
 

118 load) and performance efficiency despite the longer fixation durations 
 

119 associated with poorer performance in both genders. Combining the Maps 
 

120 Test with an eye movement tracking device while measuring the mental 
 

121 workload required by males and females and disentangling the cognitive 
 

122 strategies used in the accomplishment of the task could contribute to the 
 

123 literature. 
 

124 This study aimed to explore: (1) the level of cognitive processing at which 
 

125 gender differences in visuospatial navigation occur; (2) whether eye 
 

126 movements add further insight into the explanation of gender differences; 
 

127 and (3) whether gender differences influence the choice of cognitive 
 

128 strategies and the employment of “opportunistic behaviour”. The data 
 

129 collected will help describe planning process characteristics for genders, 
 

130 thereby increasing knowledge about the way males and females deal with 
 

131 

 

132 

2D maps. 
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133 Methods 
 

134 Performance times, qualitative measure of strategies and eye movement 
 

135 behaviour (namely fixation number (NFix) and the fixation ratio (FR)) were 
 

136 used to investigate both behavioural and oculomotor variables. On the basis 
 

137 of Hayes-Roth and Hayes-Roth heterarchical architecture [11], it is 
 

138 reasonable to expect that both genders employ an “opportunistic planning 
 

139 behaviour”, in which they modify their ongoing plans with online 
 

140 adjustments. According to previous research, people produce incomplete 
 

141 plans at the beginning of a route and continuously make decisions along the 
 

142 trajectory of task execution. In turn, with time and length constraints, gender 
 

143 differences in visuospatial planning might be associated with using different 
 

144 cognitive strategies during the task. Moreover, men enjoy a partial 
 

145 advantage over women in performance execution and optimisation ability 
 

146 when priority is given to the length path despite similar preplanning times. 
 

147 This been widely found in literature, but the reasons behind this result are 
 

148 still a matter of debate. The analysis of eye movements can provide 
 

149 significant information on the visual exploration of an environment 
 

150 represented from a survey point of view. If males exhibit an advantage in 
 

151 behavioural performance and strategy selection, they are also expected to 
 

152 produce less eye movements than females. This result implies that males 
 

153 need less information to produce a representation/elaboration of the scene, 
 

154 which also explains why males produce lower execution times than females. 
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155 
 

156 Participants 
 

157 Thirty subjects (15 males, mean age = 24.40, SD = 3.34), students from the 
 

158 University of Padua, participated in the experiment in return for course 
 

159 credits. Participants were found to be strongly right-handed according to the 
 

160 Edinburgh Handedness Inventory [39]. All had normal or corrected to 
 

161 normal vision with no history of neurological or psychiatric disease. 
 

162 Because of errors in eye movement data collection, three subjects were 
 

163 excluded from analysis, thereby obtaining an overall sample of 27 
 

164 participants (13 males, mean age = 24.18, SD = 2.89). Informed consent was 
 

165 obtained from all participants. The experiment was approved by the ethics 
 

166 committee of the Department of General Psychology of the University of 
 

167 

 

168 

Padua. 

 

169 Apparatus 
 

170 The Maps test 
 

171 ------------------------ Place Figure 1 around here ------------------------------- 
 

172 Each trial of the Maps task presented a fictitious map of a number of 
 

173 buildings blocks set out on a grid of seven vertical and five horizontal roads 
 

174 (see Figure 1). The Maps test was composed of 30 visuospatial problem- 
 

175 solving tasks; each of these situations was composed of seven sub-goals 
 

176 (green-coloured circles placed at different intersections between the roads) 
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177 plus the final goal. Moreover, a blue square at the top left-hand corner 
 

178 indicated the starting point and a red square at the bottom right-hand corner 
 

179 represented the final goal. Starting at the top-left corner, subjects were asked 
 

180 to move the silhouette (by pressing the arrow keys) to pass over each sub- 
 

181 goal to reach the final goal located at the bottom-right corner. Subjects were 
 

182 instructed to find the shortest route in the shortest time. A blue line showed 
 

183 the step made at every movement of the silhouette, resulting in a feedback 
 

184 of the followed trajectory. 
 

185 A reaction time task was administered as an additional task of the Maps test 
 

186 to calculate the planning index (PI; see further details on behavioural testing 
 

187 section). A sequence of 25 stimuli measured the individual ability in the 
 

188 pressing of the four possible arrow keys (4-choice RT). A sound with a 
 

189 duration of 150 ms and frequency of 432 Hz was followed by a pre-stimulus 
 

190 consisting of a human silhouette that appeared in the middle of the screen 
 

191 within an interval between 200 and 1000 ms. A green circle would then 
 

192 appear in one of four positions (up, down, left or right), displaced five 
 

193 ocular degrees with respect to the silhouette. Subjects had to press the arrow 
 

194 

 

195 

key as fast as possible to move the silhouette to get to the circle. 

 

196 Eye movement tracking 
 

197 Eye position and movements were measured in real time using an infrared 
 

198 video-based system (Viewpoint™ Eye Tracker, Arrington Research, Inc). 



10  

 

 

199 Gaze position was determined by analysing eye position (collected at a 
 

200 sampling frequency of 30 Hz). The system recorded horizontal (x) and 
 

201 vertical (y) pupil positions with a monocular eye tracker camera. Calibration 
 

202 and drift correction of the position signal were defined before starting the 
 

203 

 

204 

experimental session and repeated during the experiment as necessary. 

 

205 Procedure 
 

206 The study was performed in a quiet and windowless room with the lights off 
 

207 during behavioural testing. Subjects sat on a comfortable chair in front of a 
 

208 PC screen positioned at 45 cm from their eyes. Subjects were tested in one 
 

209 session lasting approximately 30 minutes. First, the sequence of 4-choice 
 

210 RT was presented. Task instructions for the Maps test were then displayed 
 

211 on the screen, and two practice maps were presented to let participants 
 

212 familiarise themselves with the task. Participants were then prompted to 
 

213 begin, and a randomised sequence of 30 Maps was presented separated by a 
 

214 

 

215 

10 s inter-trial interval. 

 

216 Behavioural testing 
 

217 The computerised test automatically recorded information about the timing 
 

218 and the sequence of errands achieved by the subject. For each trial of the 
 

219 Maps test, the following measures were collected: preplanning time, 
 

220 execution time, each intermediate time and number of key presses between 
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221 every couple of sub-goals (eight couples, originating the independent 
 

222 variable location) and sub-goals achievement order. 
 

223 Preplanning time is the time between the appearance of the sub-goals and 
 

224 the subject’s first movement. It can be considered the time that subjects use 
 

225 to collect information on the situation and begin solving the task by 
 

226 preparing a provisional plan. Execution time is the time taken for the subject 
 

227 to execute the task, that is, between the first movement made and the 
 

228 attainment of the final sub-goal (execution time excludes preplanning time). 
 

229 Given that movements in the Maps test are segmented into steps (where 
 

230 each step corresponds to an arrow key press), a modification of the 
 

231 optimisation index proposed by Graham and collaborators [40] was used. 
 

232 Accordingly, StepPAO indicates the percentage of steps made by the 
 

233 subjects that are above the minimum number of steps required to execute 
 

234 the tour [29]. In the Maps test, StepPAO is a measure based on the total 
 

235 number of steps needed to complete the tour rather than the total tour length. 
 

236 For each solution Xi made by a participant i of a map X, StepPAO is 
 

237 

 

238 

calculated as follows: 

 

239 

 

240 

StepPAO(X) = [Total Steps (Xi) – Optimal Steps(X)]/ Optimal Steps(X) 

 

241 The optimal steps were calculated with an exhaustive search algorithm for 
 

242 each map. The more the StepPAO of a tour Xi approximates to 0, the more 
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243 the corresponding trajectory is close to the optimal solution. This measure 
 

244 was considered a reliable index of quality of the performance on a TSP- 
 

245 based task in spatial terms (completing the time measures), and has been 
 

246 repeatedly found as very low in humans [41, 42]. 
 

247 Furthermore, the PI was considered an estimate of the cognitive effort 
 

248 devoted by the subjects to plan the route step-by-step [28]. This index was 
 

249 created to obtain a succession of measures, each one filtered by the relative 
 

250 distance of the sub-goals in the situation and the subjects’ skills in key 
 

251 pressing. It consisted of an array of eight measures calculated as follows. 
 

252 The intermediate time between each sub-goal of the trajectory was divided 
 

253 by the corresponding intermediate number of moves, and was then divided 
 

254 by the 4-choice RT obtained by each subject. 
 

255 The sub-goals achievement order was analysed using a procedure based on 
 

256 the detection of heuristics and strategies (which emerged from the 
 

257 combination of heuristics). 
 

258 To detect the presence of a heuristic, four algorithms were run, each one 
 

259 corresponding to a heuristic. As in a previous study by Basso et al. [29], the 
 

260 analysed heuristics were: (1) a cluster heuristic (all the locations are 
 

261 separated into distinct clusters, then afterwards all locations within the same 
 

262 cluster are achieved before proceeding with the next cluster [43]); (2) a 
 

263 nearest neighbour heuristic (the next location to achieve is the closest one 
 

264 from the actual location [44]); and (3) two directional heuristics 
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265 corresponding to the vertical and horizontal directions (starting from a 
 

266 border position, the next locations are achieved following an orientation 
 

267 (horizontal or vertical) and a direction (up or down for vertical direction, left 
 

268 or right for horizontal direction) [23]. Other kinds of heuristics could have 
 

269 described the performance of the participants; however, given the spatial 
 

270 constraints of this task (i.e., the regular grid, the limited number of streets) 
 

271 this list was sufficiently appropriate [25] and feasible [23] to represent 
 

272 human performance on the open version of the TSP. 
 

273 For each sub-goal of each path, each algorithm detected whether the criteria 
 

274 for its attribution were satisfied (for a complete description of the algorithms 
 

275 see [28]). If this check returned a positive value for at least three successive 
 

276 sub-goals within the path, then the corresponding heuristic was attributed to 
 

277 that section of the path. Thus, each heuristic could result in one of the three 
 

278 following patterns: (1) attributed to the whole path, (2) attributed to only a 
 

279 part of it; or (3) not attributed at all in that path. All the heuristics could be 
 

280 attributed either to the whole path, or to a part of it, except the cluster 
 

281 heuristic; given that it divides the whole space into sectors, it can only be 
 

282 used for the whole path. A certain part of the path could be representative of 
 

283 more than one heuristic at a time, a case that cannot be avoided because it is 
 

284 usually present in real life. 
 

285 At the end of the mechanism of heuristic attribution, the resulting pattern for 
 

286 each path generated one of these three types of strategy: (1) one or more 
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287 heuristics were attributed to the whole path (from the beginning to the end 
 

288 of the path: constant strategy); (2) heuristics were used for only a part of the 
 

289 path but covered the whole path when taken together (strategy with changes 
 

290 of heuristic, also named flexible strategy); or (3) the four algorithms did not 
 

291 indicate any heuristic or combination of heuristics which could cover the 
 

292 

 

293 

whole path (no strategy). 

 

294 Eye tracking testing 
 

295 Data from the eye tracker was analysed through a custom-made code written 
 

296 in Matlab (Version 7.0). As for the PI, eight measures of NFix, one for each 
 

297 sub-goal, were obtained. An eye movement was considered a fixation when 
 

298 the gaze resided inside a 1.5 degree field for a time greater than 170 msec. 
 

299 First, we evaluated the relative vertical and horizontal gaze movement 
 

300 vectors for each sampling point by selecting x and y positions at time = n 
 

301 and time = n + 1. By summing eye position vectors, we obtained the eye 
 

302 shift between each sampling point. To avoid eye movement effects related 
 

303 to speed in visuospatial processing, we calculated the FR. As for the PI, the 
 

304 FR was calculated for each sub-goal and was the ratio between the time 
 

305 spent on fixations divided by the steps needed to move between a sub-goal 
 

306 and the next one. Compared with NFix, the FR was not influenced by 
 

307 individual differences in either the quality of execution or optimisation 
 

308 level. Trials, containing either blinking or eye movements, occurring off 
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309 screen [45] as well as data 60 ms before and 60 ms after such an artefact 
 

310 

 

311 

were also discarded (overall mean = 15%). 

 

312 Data analysis 
 

313 The following variables were used for the analysis. The array of values 
 

314 included the PI (behavioural measures calculated for each sub-goal of each 
 

315 path), NFix (frequencies of eye movements, obtained for each sub-goal of 
 

316 each path) and FR (values of eye movements, calculated for each sub-goal 
 

317 of each path). Single behavioural measures included preplanning time, 
 

318 execution time, StepPAO (the value calculated from comparing to the 
 

319 norm), strategy (given by the combination of heuristics) and four heuristics: 
 

320 direction right (r), direction down (d), cluster (c) and nearest neighbour (n). 
 

321 Given their structure, in analysing the PI, NFix and FR the variable 
 

322 'location' was used to separate the effects of each segment of the path. 
 

323 To test the hypothesis that males and females differ in the use of cognitive 
 

324 strategies, differences in 'gender' were first investigated using a chi-square 
 

325 analysis on the frequency of paths attributed to each 'strategy'. The no- 
 

326 strategy was excluded because it was expected to provide too little data to 
 

327 perform a reliable analysis. Differences in gender in the preference of 
 

328 heuristics were assessed through a series of chi-square tests comparing 
 

329 gender on the frequencies of the values of heuristics (used for the whole 
 

330 path or only for a part of it), either separated for the four heuristics or 
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331 comparing them. Preplanning time, execution time and StepPAO underwent 
 

332 a mixed ANOVA with gender as a between-subjects variable and type of 
 

333 strategy (two levels: constant and with-changes strategy) as a within- 
 

334 subjects variable. Because the choice of a particular strategy can produce 
 

335 differences in the performance, the PI and eye tracking data were split 
 

336 according to the strategy factor. Thus, a mixed ANOVA analysis was 
 

337 performed with gender as a between-subjects factor (two levels) and 
 

338 strategy and location (2 × 8 levels) as within-subjects factors on the three 
 

339 dependent measures the PI, NFix and FR. To specifically evaluate the 
 

340 impact of gender and strategy on each measure, we performed additional 
 

341 post-hoc analysis (Bonferroni corrections with the alpha error threshold set 
 

342 at 0.05) on the PI, NFix and FR for each location. Given that these measures 
 

343 are composed of an array of values, a general evaluation was unsuitable for 
 

344 catching the presence of single differences in specific items. 
 

345 

 

346 

According to recent APA norms, partial eta-squared values (indicated with 

the symbol η
2
) were added to each F-value, whereas standard error means 

347 

 

348 

were provided for each mean value. 

 

349 Results 
 

350 Behavioural tests 
 

351 The chi-square test showed a relationship between gender and type of 
 

352 strategy (χ²(2) = 14.105, p < 0.001; see Figure 2). Males employed roughly 
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353 the same number of constant (51%) and with-changes (46%) strategies 
 

354 despite females prominently using constant strategies (64%) over strategies 
 

355 with changes (33%). 
 

356 --------------------------- Place Figure 2 around here ------------------------------ 
 

357 The analysis of the heuristics evidenced that the two genders have different 
 

358 

 

359 

 

360 

preferences in the use of heuristics. Males were likely to choose direction 

right heuristic (χ
2
(3) = 51.897; p < 0.001), whereas females preferred both 

directional heuristics (χ
2
(3) = 71.809; p < 0.001). 

361 Chi-square analysis was also applied to evidence distinctions in gender for 
 

362 each heuristic, split for the two strategies. Differences because of gender 
 

363 were noticed only when people used a constant strategy (restricted to cluster 
 

364 and direction right heuristics; see Table 1). 
 

365 --------------------------- Place Table 1 around here ------------------------------ 
 

366 

 

367 

The mixed ANOVA analysis revealed that preplanning time was not 

significantly different between males and females (F1,26 = 0.011; η
2 

< 0.01; 

368 
 

369 

Figure 3a). Conversely, a significant effect of the strategy factor was found 

on preplanning time (F1,26 = 5.140; p < 0.01; η
2 

= 0.17) and showed that the 

370 time spent to plan a constant strategy was significantly shorter than the 
 

371 amount of time needed when a subject used a strategy with changes (Table 
 

372 

 

373 

 

374 

2). No interaction was found between the gender and strategy factors on 

preplanning time (F2,26 = 3.081; n.s.; η
2 

= 0.11). Considering the execution 

time, a main effect because of both gender (F1,26 = 53.260; p < 0.001; η
2 

= 
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375 0.68) and strategies (F2,26 = 29.400; p < 0.001; η
2 

= 0.54) was found, 
 

376 showing significantly lower values for males than females in the execution 
 

377 of the paths. However, execution time was lower when subjects employed 
 

378 

 

379 

constant strategies. No interaction was found between gender and strategy 

factors on execution time (F2,26 = 2.031; n.s; η
2 

= 0.08.). 

380 --------------------------- Place Table 2 around here ------------------------------ 
 

381 

 

382 

The analyses of StepPAO showed significant differences in both gender 

(F1,26 = 8.294; p < 0.01; η
2 

= 0.25) and strategies (F2,26 = 5.555; p < .05; η
2 

= 

383 0.18) factors (Figure 3b). Males produced shorter paths, whereas females 
 

384 employed a higher number of steps. Moreover, a higher optimisation 
 

385 performance resulted when participants implemented a strategy with 
 

386 changes rather than a constant strategy. A marginally different interaction 
 

387 

 

388 

was found between gender and strategy on StepPAO (F2,26 = 3.913; p = 

0.06; η
2 

= 0.16). The pairwise post-hoc analysis (Bonferroni corrected for 

389 multiple comparisons, alpha threshold = 0.01) revealed a significant 
 

390 difference for females in the optimisation performance when a constant 
 

391 strategy was implemented. 
 

392 

 

393 

The mixed ANOVA with gender, strategy and location as factors revealed a 

main effect of gender on the PI (F1,26 = 6.649; p < 0.05; η
2 

= 0.21). 

394 Specifically, the amount of cognitive resources that females needed to 
 

395 

 

396 

execute the paths was higher than that of males. Moreover, a main effect of 

both strategy and location on the PI was found (F1,26 = 18.892; p < 0.01; η
2 

= 
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397 0.43 and F7,26 = 19.494; p < 0.01; η
2 

= 0.44 respectively). PI values were 
 

398 higher for the strategy with changes, whereas both first and last values were 
 

399 

 

400 

 

401 

 

402 

lower than the central ones, which were constant. A gender × strategy 

interaction was marginally significant (F7,26 = 4.145; p = 0.05; η
2 

= 0.14), 

whereas gender × location (F7,26 = 0.364; η
2 

= 0.01) and three-way gender × 

strategy × location (F7,26 = 0.644; η
2 

= 0.03) interactions were not. The post- 
 

403 hoc analysis evidenced that gender differences were present only in the 
 

404 

 

405 

second half of the path (Figure 3a). 

 

406 Eye movement results 
 

407 

 

408 

The mixed ANOVA revealed the significant effect of gender on NFix (F1,26 

= 22.570; p < 0.01, η
2 

= 0.47). Post-hoc analysis showed that females 
 

409 needed a significantly higher number of fixations than males (1.504 ± 0.050 
 

410 vs. males 1.163 ± 0.052. A main effect of both strategy (F1,26 = 5.534; p < 
 

411 

 

412 

.05) and location on NFix (F7,26 = 3.130; p < 0.01) was found, but the low 

eta-squared values (η
2 

= 0.18 and η
2 

= 0.11 respectively) indicated that the 

413 effects were weak. Post-hoc comparisons showed that participants made a 
 

414 higher number of fixations using a strategy with changes rather than a 
 

415 constant strategy (1.283 ± 0.032 vs. 1.383 ± 0.050). 
 

416 

 

417 

The strategy × location interaction reported a significant effect (F1,26 = 

3.730; p < 0.05, η
2 

= 0.13). The post-hoc comparison showed that, within 

418 the constant strategy, only the sixth value was significantly higher than the 
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419 others, whereas the fifth and sixth values were higher than the last one in the 
 

420 

 

421 

 

422 

strategy with changes. Interactions between gender and strategy (F1,26 = 

3.125; η
2 

= 0.11), gender and location (F7,26 = 0.320; η
2 

= 0.01) and gender 

× strategy × location (F1,26 = 1.209; η
2 

= 0.06) were not significant. 
 

423 However, planned post-hoc comparisons showed that, in the females sample 
 

424 only, NFix was higher for the strategy with changes (Figure 3b). 
 

425 

 

426 

The results on the FR revealed a main effect because of gender (F1,26 = 

9.735; p < 0.01, η
2 

= 0.28). Females (mean = 0.474 ± 0.023) showed higher 

427 

 

428 

 

429 

FR values than males (mean = 0.371 ± 0.024). Moreover, a main effect of 

location (F7,26 = 27.052; p < 0.01; η
2 

= 0.52) but not strategy (F1,26 = 0.006; 

η
2 

< 0.01) was observed. The post-hoc comparison on location replicated 

430 the pattern shown for the PI, with the first and last values lower than the 
 

431 central ones. Although the other interactions failed to achieve a significant 
 

432 value, the planned post-hoc comparisons showed interesting significant 
 

433 effects. Genders were significantly different in locations 1, 2, 5, 6 and 8 
 

434 

 

435 

(Figure 3c). 

 

436 Discussion 
 

437 The results of this study have supported previous findings that males tend to 
 

438 have an advantage over women with regard to visuospatial skills [1, 46]. 
 

439 Moreover, new insights have been achieved using the several measures 
 

440 collected with the Maps test. The analysis of heuristics and strategies 
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441 suggests that the difference between genders exists because of the 
 

442 considerable use of flexible strategies by males compared with females, who 
 

443 often employ strategies based on a heuristic that is constantly used 
 

444 throughout the pathway. The general preference for directional heuristics, 
 

445 substantially replicated in both genders, is characterised by the constraint of 
 

446 the 2D environment of the Maps task, which was made of horizontal and 
 

447 vertical streets. Because no statistical gender difference was found in 
 

448 preplanning time, it might be suggested that the difference in strategy 
 

449 selection is unrelated to this phase. The initial processing stage (including 
 

450 representation of the environment and the first sketch of the plan) is unlikely 
 

451 to be different between genders. By contrast, the faster execution times and 
 

452 higher optimisation levels achieved by males strongly imply that the 
 

453 differences found occurred during the execution of the task rather than in 
 

454 the preplanning phase. This pattern of behavioural data points towards a 
 

455 difference between genders because of their differences in the control and 
 

456 management of strategies. 
 

457 Previous literature [29] has suggested that the choice to use more flexible 
 

458 strategies is preferable because it allows a greater number of possibilities in 
 

459 the determination of the trajectory, although the selection and execution of a 
 

460 constant strategy still allows the attainment of a satisfactory solution. 
 

461 According to our results, males seem to be capable of reconsidering and 
 

462 managing their previous choices and, consequently, can change their 
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463 heuristic when the current one is no longer suitable for achieving the desired 
 

464 goal. Conversely, females tend not to change the initial plan. They instead 
 

465 apply a schema of a resolution chosen from a set of candidates – the one 
 

466 which best fits from a perceptual basis. We might consider female 
 

467 navigation as egocentric navigation [47, 48], which is probably based on the 
 

468 detection of anchor points (i.e., landmarks), as suggested by Sandstrom and 
 

469 colleagues [49]. In the case of the Maps task, the concept of “egocentric 
 

470 perspective” should not be intended as the correspondence between the 
 

471 position of the actor in the real space and his/her representation on a map. 
 

472 However, according to Witkin [50], a continuum exists between egocentric 
 

473 and heterocentric perspectives. An egocentric strategy concerns the 
 

474 assumption of an internal reference, minimizing the attention to external 
 

475 stimuli. By contrast, a heterocentred strategy is based on an interaction 
 

476 between internal aims and elements retrieved from the environment. 
 

477 Females' general preference for egocentric strategies has recently been 
 

478 found by Chen and colleagues [51] using a terrestrial/2D task (similar to the 
 

479 one used in this study) where participants had to find a specific object 
 

480 located at the bottom of a virtual aquarium. The performance of the female 
 

481 sample in the you-are-here (YAH) condition was poor compared with males 
 

482 in the same condition, and compared with their own performance in the 
 

483 guide sign condition. 



23  

 

 

484 On the basis of these findings, it can be hypothesised that females are likely 
 

485 to perform worse than males in spatial orientation because they tend not to 
 

486 prefer configurational strategies, or because they cannot easily switch their 
 

487 strategy according to the information retrieved from the environment. These 
 

488 differences might concern components such as the “actual navigation or 
 

489 imagined map scanning”, which Coluccia and Louse state are “less efficient 
 

490 during an orientation task” [2]. 
 

491 We further hypothesised that gender differences in the PI and eye 
 

492 movements could be explained by the different planning methods employed 
 

493 by the two genders. The results obtained from the PI and FR supported this 
 

494 hypothesis. The two measures (which are higher in women for most of the 
 

495 pathway) suggest that gender differences influence the whole path 
 

496 implementation until the final goal is achieved. The examination of eye 
 

497 movements evidenced a reciprocal confirmation: the number of fixations 
 

498 follows the same trend as the PI. Furthermore, the FR result provides 
 

499 substantial proof of the reliability of the PI. Given that the PI and the ocular 
 

500 measures are considered indices of cognitive effort, higher values in each 
 

501 measure for females strongly suggest they need more cognitive resources to 
 

502 solve the task. 
 

503 The higher NFix in females could be because of poorer performance during 
 

504 execution. Thus, it is reasonable to expect on average more fixations in 
 

505 females than in males. Even though this might be a plausible assumption, 
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506 analysis of the FR denies this possibility. Because the FR was specifically 
 

507 developed to be insensitive to the intermediate steps the difference between 
 

508 genders is likely to be caused by different planning abilities. 
 

509 Although the optimisation level is different for the two genders, females' 
 

510 StepPAO values demonstrate they are capable of performing well. 
 

511 Furthermore, when females used strategies with switches between heuristics 
 

512 there were no gender differences in the optimisation level. This result 
 

513 suggests that the difference in female performance completely exclude 
 

514 explanations based on a lack of knowledge or use of heuristics. The low 
 

515 performance of females might be because of either a lower ability to create 
 

516 optimised plans (including switches and combinations of heuristics) or 
 

517 realise the plan, as compared to males. However, this experiment did not 
 

518 distinguish between the contribution of planning and more general executive 
 

519 processes and it remains an area in need of further exploration. Nonetheless, 
 

520 considering the trade-off between performance and cost, females appear to 
 

521 be more conservative (aiming to reduce costs), whereas males tend to 
 

522 maximize gain in both areas. 
 

523 This proposes another possibility when considering gender differences in 
 

524 risk-taking behaviour [52]. Males of various ages have been generally found 
 

525 to take more risks than females in several activities. In particular, females 
 

526 are less confident in assuming risks, and this led them to show higher results 
 

527 in the Iowa Gambling task and the Betting task, as assessed by d’Acremont 
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528 and Van der Linden [53]. Given that the preference for a constant strategy 
 

529 can be indicative of conservative behaviour (because the change of 
 

530 heuristics implies abandoning the previous plan for a new one) a common 
 

531 process might underlie both risk-taking behaviour and strategy choice. The 
 

532 assumption could seem speculative, but the similarities between the two 
 

533 aspects of decision-making behaviour have been hypothesised to originate 
 

534 from an evolutionary system of self-protection [54] or a stronger 
 

535 psychophysiological reaction to emotional stimuli [55]. 
 

536 Confusion remains as to whether gender differences occur in risk-taking 
 

537 behaviour or because of a lower tendency to create complex plans (as well 
 

538 as in the motor implementation or in the processing of visual stimuli). A 
 

539 deeper exploration of both the perceptual properties of the environment and 
 

540 the instructions of the task would be helpful to disentangle what “cognitive 
 

541 effort” means in this case, that is, whether gender differences during the 
 

542 execution of the plan are because of different representations of the 
 

543 environment/task, the efficacy of the control process or the inhibitory 
 

544 process that allows switching between heuristics. In fact, the strong route- 
 

545 perspective provided by the Maps task might have strengthened the notion 
 

546 that the difference is down to gender. The level of abstraction required to 
 

547 take the first-person perspective [56], adopting the human silhouette as the 
 

548 “me” moving into an environment, is strictly related to the means of 
 

549 representing the locations into the egocentric/allocentric continuum [57]. 
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550 Research using the YAH maps has shown how the presence of landmarks 
 

551 can be modulated by the alignment of the map to the observer [58]. Thus, 
 

552 genders can manipulate differently the perceptual data provided by the 2D 
 

553 representation of the environment and the ability to easily control the frame 
 

554 of reference. This could be a crucial factor in the emergence of a difference 
 

555 in performance between males and females. This hypothesis has been 
 

556 recently verified by Chen and collaborators [51] in their research 
 

557 investigating way-finding tasks. Males (using more allocentric strategies) 
 

558 showed better navigational performances than females (who used more 
 

559 egocentric strategies). But when females were supplied with the appropriate 
 

560 support (i.e., guide signs), gender differences were eliminated. 
 

561 In conclusion, this research is the first attempt to explore gender differences 
 

562 in the field of errand-planning behaviour by using the Maps test in 
 

563 conjunction with oculomotor measures. Our findings confirm that a trade- 
 

564 off between execution time and optimisation exists because of the human 
 

565 tendency towards an opportunistic planning approach. Gender differences 
 

566 modulate this concept. Our results confirm that a continuous planning 
 

567 process is spontaneously implemented by both genders, but males are more 
 

568 able to make adjustments to the initial plan. According to Mueller and 
 

569 colleagues [22], the investigation of oculometric correlates underlying 
 

570 differential male and female performances in spatial tasks has provided 
 

571 substantial confirmation of the hypotheses on gender peculiarities in the 
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572 field of errand-planning behaviour. Although the origins of these differences 
 

573 remain partially unknown, this paper provides additional evidence for the 
 

574 peculiarities of genders in planning behaviour. People dynamically adapt 
 

575 their choices to the environment, but within this visuospatial task males are 
 

576 

 

577 

more skilful in adjusting previously made decisions. 
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Captions 

 

731 Table 1. 
 

732 Number of used heuristics, separated for Strategy (K=constant strategy; 
 

733 wC=strategy with changes) and Gender. On rows are represented the 4 types 
 

734 of heuristics (R=direction right, D=direction down, C=cluster, N=nearest 
 

735 neighbor), while in columns frequencies are separated for the heuristic use 
 

736 in the whole path or only for a part of it. The Chi-square analysis represents 
 

737 the differences between the two genders: asterisks indicate a p<0.01, while 
 

738 plus signs indicate a p<0.05. Cluster heuristic is not present within the 
 

739 

 

740 

flexible strategies, since it can be attributed only to the whole path. 

 

741 Table 2. 
 

742 Means (+ S.E.M. in brackets) are represented separately for both genders 
 

743 during Preplanning Time (sec.), Execution Time (sec.) and StepPAO 
 

744 

 

745 

(steps), depending on the two kinds of strategies used by subjects. 

 

746 Figure 1. 
 

747 An example taken from the Maps task. The square in the upper left corner 
 

748 represents the starting point, the square in the lower right corner represents 
 

749 

 

750 

the end point, and the light circles represent the subgoals. 
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751 Figure 2. 
 

752 Percentage of each type of strategy used by subjects on the total number of 
 

753 paths presented. The percentages represent the amount of strategies used by 
 

754 the subjects based on the absence of a strategy (light grey bars), based on a 
 

755 constant heuristic (grey bars) and based on changes between heuristics 
 

756 (black bars), with respect to the total number of paths performed by the 
 

757 

 

758 

participants. 

 

759 Figure 3. 
 

760 In each of the graphs, data from the male group is represented by light lines 
 

761 and data from the female group by dark lines. Mean values (+S.E.M.) are 
 

762 separated for Gender (males: black colored lines; females: grey colored 
 

763 lines) and for Strategy (constant strategy: solid lines; flexible strategy: 
 

764 dotted lines), representing the three following measures: 
 

765 a) Planning Index (PI); b) Number of fixations (Nfix); and c) Fixation Ratio 
 

766 

 

767 

(FR). 

 

768 Keywords: Gender differences; Visuo-spatial planning, Navigation; 
 

769 Strategy; Optimization; Eye movements 
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Table 1 
 

 
 Used for the whole path Used for a part of the path 

 males females  males females  

 K wC K wC χ
2 

K wC K wC χ
2 

R 153 21 125 14 .310 26 150 21 125 .010 

D 20 4 128 0 21.910
*
 31 165 27 137 .028 

C 133 90 127 56 4.156
+
 / / / / / 

N 43 10 40 5 1.130 75 85 54 65 .062 

Total 349 125 420 75  132 400 102 327  
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Table 2 

 

 
Males Females 

 
Constant 

With 

changes 
Constant 

With 

changes 

Preplanning 

Time 
1.21 (0.15) 1.24 (0.19) 1.07 (0.14) 1.33 (0.19) 

Execution Time 5.65 (0.23) 6.18 (0.27) 7.80 (0.22) 8.71 (0.26) 

StepPAO 0.08 (0.01) 0.07 (0.01) 0.14 (0.01) 0.10 (0.01) 



 

Agure1 
Click here to do\vnloOO high resolution imsge 

 

 

http://ees.elsevier.com/bbr/download.aspx?id=87626&amp;guid=01145d1c-fadf-4d8a-88a5-cc173d6a072a&amp;scheme=1


 

 
 

3% 3% 
 

 

 
 

Agure2 
Click here to do\vnloOO high resolution imsge 

 
 
 
 

100% 
 

90% 
 

80% 
 

70% 
 

60% 
 

50% 
 

40% 
 

30% 
 

20% 
 

10% 
 

0% 

Males Females 

http://ees.elsevier.com/bbr/download.aspx?id=87623&amp;guid=cecc78af-dcb8-49a6-9fd8-160705fc4674&amp;scheme=1


 

 
 

 
 

 
 

• 
' ·.. • 

' 

Agure3 
Click here to do\vnloOO h.igh resolution.1msge 

 

a 
 

 

 

 

 

 

 

 

1.2 
 

1.0 
 
 
 
 
 
 
 
 

1.2 
 

 
1.0 

0.8  

0.6 
 

 

 

 

 

 

 

 

O.B 

 

 

0.4 
 
 
 

0.2 

4 5 6 7 8 

 

c 

 

 

o.o '--;---2 ---3; --4 --s - =------ - 
6 7 8 

http://ees.elsevier.com/bbr/download.aspx?id=87624&amp;guid=835bc5e6-5220-4712-a98d-297062e44db2&amp;scheme=1

