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Abstract

This thesis studies clustering problems on data streams, specifically with applications to

metric spaces that are either non-Euclidean or of high-dimensionality. The algorithms

are introduced to approximate minima of the k-median function, although they can be

used to find approximate minima of many other functions are shown in Part I.

In Part I, we introduce the first analysis of the effect of stream order on the space

required to solve k-median. We use this to forge a connection to random-order streams

and provide an optimal O(nk)-time algorithm for k-median in the RAM model. In Part

II, we provide a nearly optimal algorithm to maintain a coreset for k-median. Specifically

for the case of k-means, we introduce the first coreset to be simultaneously independent of

both the dimension and the input size. This gives the first sublinear size coreset for high-

dimensional sparse data. In Part III, we apply our techniques to streams where points

may be deleted as well as inserted, and construct the first coreset for high-dimensional

spaces.
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Introduction

This thesis is comprised of three main parts/chapters, which are now summarized.

Part I: In the streaming model, the order of the stream can significantly affect the

difficulty of a problem. A t-semirandom stream was introduced as an interpolation be-

tween random-order (t = 1) and adversarial-order (t = n) streams where an adversary

intercepts a random-order stream and can delay up to t elements at a time. IITK Sub-

linear Open Problem #15 asks to find algorithms whose performance degrades smoothly

as t increases. We show that the celebrated online facility location algorithm achieves an

expected competitive ratio of O( log t

log log t
). We present a matching lower bound that any

randomized algorithm has an expected competitive ratio of Ω( log t

log log t
).

We use this result to construct an O(1)-approximate streaming algorithm for k-median

clustering that stores O(k log t) points and has O(k log t) worst-case update time. Our

technique generalizes to any dissimilarity measure that satisfies a weak triangle inequal-

ity, including k-means, M -estimators, and ℓp norms. The special case t = 1 yields an

optimal O(k) space algorithm for random-order streams as well as an optimal O(nk) time

algorithm in the RAM model, closing a long line of research on this problem.

Part II: Let P be a set (called points), Q be a set (called queries) and a function

f : P ×Q → [0,∞) (called cost). For an error parameter ǫ > 0, a set S ⊆ P with a weight

function w : P → [0,∞) is an ǫ-coreset if
∑

s∈S w(s)f(s, q) approximates
∑

p∈P f(p, q)

up to a multiplicative factor of 1 ± ǫ for every given query q ∈ Q. Coresets are used to

solve fundamental problems in machine learning of streaming and distributed data.

We construct coresets for the k-means clustering of n input points, both in an arbitrary

metric space and d-dimensional Euclidean space. For Euclidean space, we present the first

coreset whose size is simultaneously independent of both d and n. In particular, this is

the first coreset of size o(n) for a stream of n sparse points in a d ≥ n dimensional space

(e.g. adjacency matrices of graphs). We also provide the first generalizations of such

coresets for handling outliers. For arbitrary metric spaces, we improve the dependence

on k to k log k and present a matching lower bound.

For M -estimator clustering (special cases include the well-known k-median and k-
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means clustering), we introduce a new technique for converting an offline coreset con-

struction to the streaming setting. Our method yields streaming coreset algorithms re-

quiring the storage of O(S + k log n) points, where S is the size of the offline coreset.

In comparison, the previous state-of-the-art was the merge-and-reduce technique that

required O(S log2a+1 n) points, where a is the exponent in the offline construction’s de-

pendence on ǫ−1. For example, combining our offline and streaming results, we produce

a streaming metric k-means coreset algorithm using O(ǫ−2k log k log n) points of storage.

The previous state-of-the-art required O(ǫ−4k log k log6 n) points.

Part III: We present data streaming algorithms for the k-median problem in high-

dimensional dynamic geometric data streams, i.e. streams allowing both insertions and

deletions of points from a discrete Euclidean space {1, 2, . . .∆}d. Our algorithms use

kǫ−2poly(d log∆) space/time and maintain with high probability a small weighted set

of points (a coreset) such that for every set of k centers the cost of the coreset (1 + ǫ)-

approximates the cost of the streamed point set. We also provide algorithms that guar-

antee only positive weights in the coreset with additional logarithmic factors in the space

and time complexities. We can use this positively-weighted coreset to compute a (1+ ǫ)-

approximation for the k-median problem by any efficient offline k-median algorithm. All

previous algorithms for computing a (1+ǫ)-approximation for the k-median problem over

dynamic data streams required space and time exponential in d. Our algorithms can be

generalized to metric spaces of bounded doubling dimension.
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Part I

Clustering Under Different Stream

Orders
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1.1 Introduction

One of the fundamental theoretical questions in the streaming model is to understand

how the stream order impacts computation. In the adversarial-order model, results must

hold under any order, whereas in the random-order model the order is selected uniformly

at random. The order of the stream can strongly affect the resources required to solve a

problem. For example, for streams of n integers where the stream may be read sequentially

multiple times, determining the median using polylogarithmic space requires Θ( log n
log log n

)

passes in adversarial-order [32, 17] but only Θ(log log n) passes in random-order [16, 7].

As demonstrated by the median problem, there can be an exponential gap in the

resources required for random-order and adversarial-order streams. To interpolate between

these two extremes, Guha and McGregor introduced two notions of semirandom-order

where the adversary has limited power.

Definition 1 (t-semirandom order, [16]). A t-bounded adversary1 can permute a stream

p1, . . . , pn to the stream pσ(1), . . . , pσ(n) with any permutation σ that satisfies |{j ∈ [n] :

j < i and σ(j) > σ(i)}| < t for every i ∈ [n]. A stream is in t-semirandom order if it is

generated by a t-bounded adversary acting on a random-order stream.

Definition 2 (ǫ-generated random order, [17]). Let µ be the uniform distribution over all

permutations of n elements. A stream of n points arrives in ǫ-generated random-order if

the permutation is drawn from a distribution ν such that ||µ− ν||1 ≤ 2ǫ.

These models capture the notion of an adversary with limited power and establish a

spectrum of semirandom orders to intermediate between the fully random and fully

adversarial cases. IITK Sublinear Open Problem #15 [26] asks:

How do these notions relate to each other? Can we develop algorithms

whose performance degrades smoothly as the stream ordering becomes “less-

1Our definition of t-bounded actually corresponds to (t− 1)-bounded as introduced in [16]. This turns
out to be more natural and avoids writing t + 1 in all our bounds.
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random” using either definition? For a given application, which notion is more

appropriate?

We respond to the first question by showing that no non-trivial relations hold between

these models. One can verify that ǫ = 0 and t = 0 correspond to random-order, and that

ǫ = 1 and t = n correspond to adversarial-order. However, we show that these models

are incomparable in the sense that an ǫ-generated adversary requires ǫ > 1− 2−Ω(n) to

simulate the action of a t-bounded adversary for any t > 1, and that a t-bounded adversary

requires t > n/2 to simulate the action of an ǫ-generated adversary for any ǫ ≥ 2−Ω(n).

We answer the second question by proving matching bounds for the online facility

location problem that show the performance degrades smoothly as t increases. These are

the first bounds for semirandom streams that match at all values of t. Previous results

matched only for t sufficiently small. For example, the result of [16] shows how to return

the median in O(log log n) passes when t = O(
√

n). However, for a constant c < 1 the

algorithm is only guaranteed to terminate in O(n) passes when t = Ω(nc). In comparison,

even at t = n there are polylogarithmic-space algorithms that return the median in only

O(log n/ log log n) passes [32].

Our results provide evidence that t-bounded adversarial-order is a viable model of

semirandomness. We address the third question by complementing our positive results for

the t-semirandom model with an argument showing that the ǫ-generated random order

model is uninteresting for a wide class of problems. A more complete discussion of IITK

Open Question #15 is included in Section 1.6.

1.1.1 Our Contributions

We present results for online facility location and a large class of clustering problems. In

Section 1.3, we provide a novel analysis that the online facility location algorithm of [30]

is O( log t
log log t

)-competitive in expectation. Adapting Meyerson’s original argument for a

t-bounded adversary is possible but results in an O(t) expected competitive ratio. We

introduce a different analysis that permits this exponential improvement. We complement
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this result by presenting a matching lower bound in Section 1.4 that any randomized

algorithm for online facility location is Ω( log t
log log t

)-competitive in expectation. See Table 1.1

for a comparison with existing results.

In Section 1.5, we present a streaming algorithm for clustering using any function that

satisfies a weak triangle inequality (this includes k-median, k-means, M -estimators, and

ℓp norms). Our algorithm stores O(k log t) points and has O(k log t) worst-case update

time. As shown in Table 1.2, we match the state-of-the-art for adversarial-order streams

and provide the first results for all t < n. We remark that our algorithm respects sparsity

by only storing a weighted subset of the input. Another notable property of our clustering

algorithm is that it is oblivious to the actual values of k and t. The algorithm takes an

input value m, and the output is valid as long as m = Ω(k log t). This may be useful for

practical applications where the number of clusters or power of the adversary is unknown.

For example, if the data exhibits a hierarchical structure than the resolution of the result

(measured by k) degrades smoothly as the power of the adversary increases.

The special case t = 1 yields the first result for clustering on random-order streams.

In the RAM model where we can shuffle the input into random order in linear time, this

implies an optimal O(nk) time algorithm and closes a long line of research on the problem.

As a blackbox used by our clustering algorithm, we present a method to compress a

weighted set of n distinct points to a weighted set of n+k
2

distinct points in linear time

while incurring less than twice the optimal cost of clustering to k points. Our algorithm,

based on 2-coloring a nearest neighbor graph, is presented in Section 1.5.2 as it may be of

independent interest.

Regime Upper Bound Source Lower Bound Source

t = 1 O(1) [30] Ω(1) Trivial

1 ≤ t ≤ n O
(

log t
log log t

)

⋆⋆ Ω
(

log t
log log t

)

⋆⋆

t = n O
(

log n
log log n

)

[14] Ω
(

log n
log log n

)

[14]

Table 1.1: Expected competitive ratio for online facility location. Upper bounds apply to
the algorithm of [30]. Lower bounds apply to any randomized algorithm.
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Regime Space Source

t = 1 O(k) ⋆⋆

1 ≤ t ≤ n O(k log t) ⋆⋆

t = n O(k log n) [14]

Table 1.2: Space complexity (measured in weighted points) of algorithms for metric
k-median and k-means in the streaming model.

1.1.2 Prior Work

Random-Order Streams: There has been an increasing interest to design algorithms

for data streams that arrive in random-order, and in recent years the model has become

quite popular. Random-order streams have been considered for problems including rank

selection [32, 19, 27], frequency moments [3], entropy [20], submodular maximization [31],

and graph matching [25, 24, 12]. Lower bounds that hold even under the assumption of

random-order have been developed using multi-party communication complexity [8, 6, 7,

15]. Semirandom-order streams, in both the t-bounded and ǫ-generated models, have been

considered for rank selection [16, 17]. The stochastic streaming model, which takes the

random-order assumption a step further by assuming that stream elements are independent

samples from an unknown distribution, has also attracted attention [18, 33, 11]. The

stochastic streaming model is strictly easier than the random-order model since any

stochastic stream is automatically in random-order.

Online Facility Location: The study of online facility location was initiated by Mey-

erson [30]. He provided a simple randomized algorithm and proved that for random-

order streams it is O(1)-competitive in expectation. Later, Fotakis [14] showed that for

adversarial-order streams any randomized algorithm has an expected competitive ratio of

Ω(log n/ log log n) and proved that Meyerson’s randomized algorithm achieves this bound;

he also presented a novel deterministic algorithm that achieves this bound. For Euclidean

space, a simple and practical deterministic algorithm was provided by [2].
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Streaming Metric k-median and k-means Clustering: The streaming k-median

and k-means problems have only been considered in the adversarial-order model. These

problems are well-studied; here we mention only the metric space results that achieved an

improvement in the space bound over the previous state-of-the-art. The first streaming

solution computed a 2O(1/r)-approximation for any r ∈ (0, 1) and stored O(nr/r) points [21].

Later, an algorithm storing only O(k log2 n) points was provided [9]. The current state-

of-the-art O(1)-approximation stores O(k log n) points [5]. A variety of other results are

known for Euclidean space.

Runtime Source

O(n2 log n) [23]

O(nk log k) [22]

O(n2) [28]

O(nk + n log n + k2 log2 n) [29]

O(nk + n1/2k3/2 log2 n log3/2 k) [10]

O(nk) ⋆⋆

Ω(nk) [29]

Table 1.3: Results for metric k-median in the RAM model

RAM-Model Metric k-median and k-means Clustering: The history of fast O(1)-

approximations2 in the RAM model is summarized in Table 1.3, omitting results that

do not improve the runtime for any value of k. These results for k-median generalize

to k-means with a larger constant in the approximation ratio. We conclude this line of

research with an optimal O(nk) time algorithm, matching the Ω(nk) time lower bound for

any randomized algorithm [29]. We remark that there exists an O(nk) time algorithm for

k-means in Euclidean space [1], but it relies on the principal axis theorem and therefore

does not generalize to k-median or to other metric spaces.

2Most of the results shown in Table 1.3 actually output O(k) centers instead of exactly k. However,
we observe that the result of [28] implies that any solution of O(k) centers can be converted to a solution
of exactly k centers in O(k2) time.
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1.2 Preliminaries

Let (X , d) be a metric space. In the facility location problem with parameter f > 0

(called the facility cost), we are given a set3 A ⊂ X called demands. The problem is

to compute a set B ⊂ X called facilities and to connect each demand to a facility. To

connect demand a to facility b, we incur cost d(a, b). We also incur cost f for each facility

opened. The objective is to compute B such that the total cost is minimized. Defining

COST(A, B) =
∑

a∈A minb∈B d(a, b), the total cost is |B|f +COST(A, B) by connecting each

demand to the nearest facility.

In online facility location, we receive A as a stream of points. When point p arrives,

we may open a facility (incurring facility cost f) and then must connect p to a facility

(incurring connection cost). Observe that if we open a facility at the location of p, there

is no connection cost. The problem is online because the decisions to open a facility and

connect p are irrevocable, meaning that a facility can never be closed and that p cannot

be reconnected if a closer facility opens later.

For the k-median problem, there is no facility cost but the number of facilities (here

called centers) is fixed at k. The goal is to compute a set B that minimizes the total

cost COST(A, B). When the input arrives as a stream, we seek to design algorithms that

require a minimal amount of memory.

Definition 3 (Optimal Cost). Let A be a set and let k ≥ 1. OPTk(A) is defined as the

minimum of COST(A, B) where B ⊂ X ranges over all sets of k points.

The optimal cost for k-median is OPTk(A). For facility location, the optimal cost is the

minimum kf + OPTk(A) where k ranges over all positive integers. An α-approximation is

a solution with cost at most α times the optimum.

A t-semirandom stream is the result of a random-order stream that has been intercepted

by a t-bounded adversary (see Definition 1). Imagine that the stream of elements is a deck

of cards, initially shuffled into random order. The adversary draws cards into his hand

3We use the word “set” to actually mean “multiset”. Multisets may contain multiple copies of the
same element.
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Figure 1.1: Example of a 3-
bounded adversary acting on a
stream. Each step is shown on
a different row. The shaded
box represents the memory of
the adversary. The adversary
must send an element to the
algorithm before receiving the
next element.

from the deck. He may give any card from his hand to the algorithm. The restriction is

that he can have at most t cards in his hand at any time. This means that if he has a

full hand of t cards, he cannot draw a new card until giving one to the algorithm. See

Figure 1.1 for an example.

1.3 Online Facility Location

The algorithm of Meyerson [30] is simple and elegant. Let f > 0 be the facility cost

parameter. When a point p arrives, let δ(p) be the distance between p and the nearest

facility. With probability min(1, δ(p)/f), we open a facility at p and pay facility cost f .

Otherwise, we connect p to the nearest facility and pay connection cost δ(p). We write

OFL to refer to this algorithm.

Theorem 1. Let r > 1 and h ∈ N such that rh ≥ 4t, and let k be a positive integer. If

OFL(f) runs on a t-semirandom stream S, the facility cost and connection cost incurred

by OFL(f) are each less than (r + 3)OPTk(S) + (h + 2)fk in expectation.

Proof. Partition S into k optimal clusters {X�}�∈[k] so that OPTk(S) =
∑

�∈[k] OPT1(X�).

Consider the centers {c�}�∈[k] such that COST(X�, c�) = OPT1(X�). Lemmas 1, 2, and 6

bound the expected connection cost and expected facility cost on each X� by (r +

3)OPT1(X�) + (h + 2)f . We obtain the result by summing over all � ∈ [k].

We now provide the results used in the proof of Theorem 1. Let X ⊂ S be a set of n

points. Given a center point c, define A = COST(X, c) and a = A/n. We partition X into

10



three pieces as follows:

G = {x ∈ X : d(x, c) ≤ 2a}

M = {x ∈ X : 2a < d(x, c) ≤ 2rha}

B = {x ∈ X : d(x, c) > 2rha}

Defining AZ = COST(Z, c) for any set Z, we decompose A = AG + AM + AB.

Fact 1. In any order, the expected connection cost of a set Z incurred before a facility

opens in Z is less than f .

Proof. For convenience we normalize to f = 1. Let (z1, . . . , zm) be the order of Z. Define

xj = min(1, δ(zj)). There is a probability of xj that point zj opens as a facility; otherwise

zj incurs connection cost xj.

Let Ei denote the expected connection cost before a facility is opened when OFL is run

on the suffix (zi, zi+1, . . . , zm). For 1 ≤ i ≤ j ≤ m define P j
i =

∏j
ℓ=i(1− xℓ). Observe that

Ei =
∑m

j=i xjP
j
i . We seek to prove that E1 < 1.

We write the recursive formula Ei = (1− xi)(xi + Ei+1). Observe that Em ≤ 1/4, with

the maximum occurring when xm = 1/2. Assuming inductively that Ei+1 < 1, observe

that Ei = (1− xi)(xi + Ei+1) < 1− x2
i ≤ 1. We conclude that E1 < 1.

Observe that δ(p) can be used to simultaneously bound both the expected connection

cost and the expected facility cost. We use this in Lemmas 1-6 to bound both types of

cost with the same argument.

Lemma 1. In any order, the expected connection cost and expected facility cost of G are

each at most f + AG + 2a|G|.

Proof. By Fact 1, the expected connection cost of points in G before a facility opens in G

is less than f . The facility cost is exactly f when the first facility opens in G. After a

facility has opened in G, we may bound δ(g) ≤ d(g, c) + 2a for any g ∈ G by the triangle

inequality. The result follows by summing over all g ∈ G.

The proof of the next lemma is similar to the previous.
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Lemma 2. In any order, the expected connection cost and expected facility cost of M are

each at most hf + (r + 1)AM .

Proof. We partition M into h parts, defining Mj = {x ∈ X : 2rj−1a < d(x, c) ≤ 2rja} for

j ∈ {1, . . . , h}. By Fact 1, the expected connection cost of points in Mj before a facility

opens in Mj is less than f . The facility cost of Mj is exactly f when the first facility opens

in Mj. After a facility opens in Mj, we may bound δ(m) ≤ d(m, c) + 2rja ≤ (r + 1)d(m, c)

for each m ∈ Mj by the triangle inequality. The result follows by summing over all

m ∈M .

Fixing an order, let α′
i be the expected connection cost of the ith point of G. For

i ∈ {1, . . . , |G|}, define αi = min1≤j≤i α′
j. For i ∈ {0, . . . , |G|}, let βi be the number of

points in B that arrive after exactly i points of G have arrived.

Lemma 3. In any order, the expected connection cost and expected facility cost of B are

each at most AB + 2a|B|+ fβ0 +
∑|G|

i=1 αiβi.

Proof. The first β0 points of B incur cost at most fβ0 trivially. If a point b arrives after a

point g, then δ(b) ≤ d(b, c) + 2a + δ(g) by the triangle inequality. Hence for a point b that

arrives after i points of G, taking expectations and then the minimum over the i preceding

points of G shows that E[δ(b)] ≤ d(b, c) + 2a + αi. The result follows by summing over all

b ∈ B.

The remainder of the proof will depend on the assumption of t-semirandom order. For

precision, we continue to use E[·] for expectation over the randomness used by OFL and

introduce E [·] for expectation over the randomness of the stream order. Let β′
i be the

number of points in B that occur after exactly i points of G in the initial random-order

stream before being intercepted by the adversary. Since the adversary may hold at most t

points, if the adversary has received t + i points of G then the algorithm has received at

least i points of G. This provides the relation β0 + . . . + βi ≤ β′
0 + . . . + β′

i+t−1 for every

i ≥ 0. We can view β′
i as the number of balls in the ith bin when we randomly drop |B|

balls into |G|+ 1 bins.

12



Observe that f > α1 ≥ α2 ≥ . . . ≥ α|G|. The adversary’s optimal strategy against

our bound in Lemma 3 is to delay points in G as long as possible. We therefore identify

the worst-case bound β0 = β′
0 + . . . + β′

t−1 and βi = β′
i+t−1 for every i ≥ 1. We rewrite

fβ0 +
∑|G|

i=1 αiβi = f
∑t−1

j=0 β′
j +

∑|G|
i=1 αiβ

′
i+t−1.

The difficulty is that αi and βi are dependent random variables. Although they cannot

affect each other directly, both αi and βi depend on the prefix of the stream ending on

the ith point of G. To overcome this, we split the sum into two pieces and for each piece

we find an upper bound on either αi or βi that holds independently of the prefix.

The next lemma quantifies the intuition that if many points of G have arrived then

there must be a facility very close to G. This bound suffices after a constant fraction of G

has arrived.

Lemma 4. In t-semirandom order,
∑|G|

i=⌈|G|/2⌉+1 E [αiβi] < f ln(2)/4t.

Proof. Let µ(g) be the indicator random variable that no facility is open in G after g

is processed. Let G′ be the set of i points of G that have arrived. Fact 1 implies that

∑

g∈G E[δ(g)µ(g)] < f . Thus there must be some g ∈ G′ such that E[δ(g)µ(g)] < f/i.

Since αi = ming∈G′ E[δ(g)µ(g)], we bound αi < f/i.

By Markov’s inequality |B| < n
2rh ≤ n

8t
and |G| ≥ ⌈n

2
⌉. Then E [βi] = E [β′

i+t−1] =

|B|
|G|+1

< 1
4t

which implies E [αiβi] < E [(f/i)βi] < f
4ti

. The result follows since
∑|G|

i=⌈|G|/2⌉+1
1
i

<

ln(2).

If we drop |B| balls into |G|+ 1 bins and condition on the number of balls in i of the

bins, the expected number of balls in any other bin is at most that of dropping |B| balls

into |G| − i + 1 bins. This bound blows up towards the end of the stream but suffices for

the first half.

Lemma 5. In t-semirandom order,
∑⌈|G|/2⌉

i=1 E [αiβi] < f ln(3)/2t

Proof. Let P (i) denote the order of the prefix of the stream ending on the ith point of

G. Observe that E [β′
i|P (i)] ≤ |B|

|G|−i+1
with the maximum occurring when β′

j = 0 for all

j ∈ {0, . . . , i− 1}. This implies h(i) := maxP (i) E [βi|P (i)] ≤ |B|
|G|−t−i+2

.
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By causality, points that arrive after the ith point of G do not affect αi. Therefore αi

is a constant when P (i) is fixed. We can now separate

E [αiβi] = EP (i)[E [αiβi|P (i)]]

= EP (i)[E [αi|P (i)] · E [βi|P (i)]

≤ EP (i)[E [αi|P (i)] · h(i)]

= h(i)EP (i)[E [αi|P (i)]]

= h(i)E [αi]

We have the restraint
∑|G|

i=1 E [αi] < f by Fact 1. Since h(i) is increasing, the

sum
∑⌈|G|/2⌉

i=1 h(i)E [αi] is maximized when αi = f
⌈|G|/2⌉

for i ≤ ⌈|G|/2⌉. We bound

∑⌈|G|/2⌉
i=1 E [αiβi] ≤

∑⌈|G|/2⌉
i=1

f
⌈|G|/2⌉

|B|
|G|−t−i+2

. By Markov’s inequality |B|
⌈|G|/2⌉

< 1
2t

. We may

assume that t < n
8

since otherwise B = ∅ and there is nothing to show. We conclude by

∑⌈|G|/2⌉
i=1

1
|G|−t−i+2

=
∑|G|−t+1

y=⌊|G|/2⌋−t+2
1
y

< ln
(

|G|−t+1
⌊|G|/2⌋−t+1

)

< ln(3).

We can now provide a bound for B that holds for t-semirandom order streams.

Lemma 6. In t-semirandom order, the expected connection cost and expected facility cost

of B are each less than AB + 2a|B|+ f .

Proof. We substitute the bounds of Lemmas 4 and 5 into Lemma 3. The last part

is to bound for the worst-case adversary E [β0] =
∑t−1

k=0 E [β′
j] ≤ 1

4
and observe that

ln(18) < 3.

1.3.1 Application to Online Facility Location

Our main result for online facility location is now a simple corollary of Theorem 1. As

shown in the Section 1.5, Theorem 1 yields results for both online facility location and

k-median clustering by applying the theorem with different choices of r and h.

Corollary 1. On a t-semirandom order stream, OFL is (2 + o(1))
(

log
2

t
log

2
log

2
t

)

-competitive

in expectation.
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Proof. Let C be an optimal facility set for S. Define k = |C| and observe that OPTk(S)

is the connection cost associated with the optimal solution with facility set C. The

optimal cost for the facility location problem is then kf + OPTk(S). For any ǫ > 0, set

r = (1 + ǫ) log
2

t
log

2
log

2
t

and h = ⌈r⌉. Observe that rh ≥ 4t for all t greater than some function

of ǫ. Applying Theorem 1 to S with these values of r, h, and k shows that the total

expected cost is at most 2(r + 3)(kf + OPTk(S)). This implies the result since 3 < ǫr by

taking t sufficiently large.

Remark on Aspect Ratio: Suppose that we are working in a metric space of aspect

ratio4 ∆. Setting rh ≥ ∆ instead of rh ≥ 4t, observe in the proof of Theorem 1 that

B = ∅. This yields a bound of (r + 3)OPTk(S) + (h + 1)kf on both the expected facility

cost and expected connection cost. We may therefore replace t with min(t, ∆) in our

results. This justifies the lower bound in the following section being constructed in a

metric space of aspect ratio t. Our upper and lower bounds match for all choices of t and

∆ by substituting min(t, ∆) for t.

1.4 Lower Bound

We present a lower bound on the expected competitive ratio of any randomized algorithm

for the online facility location problem. The bound holds even when the algorithm can

open a facility at any location in the metric space. The proof works by constructing a

sequence of points that converge to the location of an optimal facility. At each step, there

are enough possible locations of the optimal facility that no algorithm can guess (except

with negligible probability) the correct location until it is too late.

Theorem 2. On a t-semirandom order stream for t ≥ 4, every randomized algorithm for

online facility location has an expected competitive ratio of at least 1
3
⌈ log

2
t

log
2

log
2

t
⌉.

4The aspect ratio of a metric space is the ratio between the maximum and minimum non-zero distance
between points.
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We will construct a family of inputs and show that any deterministic algorithm has at

least a certain competitive ratio when run on an input selected uniformly at random from

this family. The result immediately extends to randomized algorithms by Yao’s principle.

The Metric Space: Define m := ⌈ log
2

t
log

2
log

2
t
⌉, h := m − 1, and D := f/h. Let z be a

positive integer. The points of the metric space are the nodes of a complete z-ary tree of

depth h. This means that the root is at depth 0 and leaves are at depth h. The distance

between a node at depth i and any of its z children is Dm−i −Dm−i−1. The distance

between other nodes is obtained by summing the distances of the shortest path between

them.

The Family of Inputs: The family of inputs is enumerated by the hz possible strings

of h numbers in {1, . . . , z}. We now describe how to construct the input associated with

(b1, . . . , bh) ∈ {1, . . . , z}h. Define x0 to be the root. Recursively define xi to be the bth
i

child of xi−1. For i ∈ {1, . . . , h}, place mi points at node xi. We let the input size be

n for any n ≥ t. Since
∑h

i=1 mi < t ≤ n, there will be some remaining points. Place

all remaining points at the root. The randomized input is to select a member from this

family of zh inputs uniformly at random.

The Optimal Cost: The optimal cost of the input associated with the string (b1, . . . , bh)

is at most the cost of the solution that places facilities at the root and at xr, connecting

all non-root points to xr. The distance between xi and xr is
∑h−1

j=i (Dm−j −Dm−j−1) =

Dm−i−Dm−h < Dm−i. Therefore the optimal cost is less than 2f +
∑h

i=1 mi(Dm−i) = 3f

for every input the the family.

The t-Bounded Adversary’s Strategy: There are
∑h

i=1 mi < t points not located at

the root. This implies that regardless of the order that the points are sent, a t-bounded

adversary can deterministically ensure that points arrive in non-decreasing order of depth.

The adversary does this by simply sending along any elements at the root while storing
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the at most t other elements until they are ready to be sent in non-decreasing order of

depth. We consider this arrival order.

The Algorithm’s Optimal Strategy: We define a cost scheme for the algorithm that

is strictly less than the original cost (therefore any lower bound in this easier scheme

is valid for the original problem). This greatly simplifies the analysis by allowing us to

isolate an optimal strategy.

Suppose that if a facility is open at certain node, then the connection cost of a point

at any ancestor5 node is zero. With this modification, we can define an optimal strategy

when a point arrives. If there is an open facility at any descendant node, then connect

this point with zero cost. Otherwise, open a facility with cost f at any descendant leaf

node and then connect with zero cost.

If there is no open facility at a descendant node, the second option is optimal since

the nearest facility cannot be closer than the parent node. The parent node is at distance

Dm−(i−1) −Dm−i = fm−i. The algorithm, aware of the family of inputs, knows that a

total of mi points are coming at this node. This means that the total connection cost from

this node would be at least f . Therefore it is optimal to pay f and open a new facility.

Given that we will open a new facility, placing it at a descendant leaf node is optimal

because it minimizes the connection cost of future points in the stream. Without loss of

generality, we have our deterministic algorithm always open at the descendant leaf node

obtained by moving down the first child of each node in the path from the current node.

The Algorithm’s Expected Cost: Using the algorithm’s strategy defined above, one

can see that the algorithm incurs zero connection cost. For the input associated with

(b1, . . . , bh), the number of facilities besides the root is just the number of bi not equal to 1.

The probability that bi 6= 1 is 1− 1
z
. The expected total cost is then (1− 1

z
)h + 1. Using

sufficiently large z shows that it is not possible to achieve expected cost below h + 1.

5If node a is contained in the subtree of node b, we say that a is a descendant of b and that b is an
ancestor of a.
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The competitive ratio is therefore at least (h + 1)/3 = 1
3
⌈ log

2
t

log
2

log
2

t
⌉ as desired. The result

extends to randomized algorithms by Yao’s principle.

1.5 k-Median Clustering on Streams

In this section, we present a O(1)-approximation streaming algorithm for k-median

clustering that stores O(k log t) points and has O(k log t) worst-case update time. The

extension to other functions is sketched in Section 1.5.1. Our algorithm is based on the

doubling algorithm of [9]. Among our innovations is a subroutine B(X, k) that permits us

to improve the update time and approximation ratio of the original algorithm. B(X, k) is

described in Section 1.5.2 and comes with the following guarantee:

Theorem 3. For a weighted set X of n distinct points, suppose that the nearest neighbor

in X has already been computed for each x ∈ X. Given an integer k ≥ 1, the algorithm

B(X, k) terminates in O(n) time and outputs a pair (Z, λ) such that Z is a weighted set

of at most ⌊n+k
2
⌋ points and λ = COST(X, Z) < 2OPTk(X).

Throughout this section, as in Theorem 3, we overload notation by writing COST(A, B)

where B is a weighted set (with total weight equal to that of A). Recall that for an

unweighted set B, the function COST(A, B) denotes the minimum connection cost of

connecting the demand set A to the facility set B where each facility can service an

unlimited number of demands. When B is a weighted set, we let COST(A, B) denote the

minimum connection cost under the restraint that each facility must service exactly its

weight in demands.

We now present Algorithm 1 to maintain a set Ψ which we show can determine a

O(1)-approximation to the k-median clustering of the stream. Observe that the main

loop of Lines 3-15 always begins with |Ψ| ≤ 29m, which ensures by Theorem 3 that the

while-loop of Lines 7-15 always begins with |Ψ| ≤ 15m.

Lemma 7. Except between Lines 4 and 5, COST(P, Ψ) < 20L.
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Algorithm 1 Input: integer m ≥ 1, a stream of points P
1: L← 0
2: Ψ← the first 29m points of P
3: loop

4: (Ψ, λ)← B(Ψ, m)
5: L← max(10L, λ/3)
6: COST← 0
7: while |Ψ| < 29m and COST < 14L do

8: p← next point of P
9: y ← arg miny′∈Ψ d(p, y′)

10: u← uniform random in (0, 1)
11: if uL < m d(p, y) then

12: Ψ← Ψ ∪ {p}
13: else

14: w(y)← w(y) + 1
15: COST← COST + d(p, y)

Proof. The variable COST is an upper bound on the increase of COST(P, Ψ) during the

current instance of the while-loop. Since COST increases by at most L
m

in each iteration,

the termination condition of Line 7 ensures that COST < 15L. It remains to show that

the cost when the while-loop began was at most 5L. Let us recursively assume that when

the previous while-loop began, the cost was at most 5L′ where L′ was the previous value

of L′. During that instance, less than 15L′ cost was incurred. On Line 4, exactly λ cost

was incurred. We may bound λ ≤ 3L and L′ ≤ L/10 by Line 5. Therefore the total cost

is 5L′ + 15L′ + λ ≤ 5L as desired.

The next lemma addresses a subtle issue that only arises for 1 < t < n. Observe that

any segment of a random-order (t = 1) stream is in random-order, and that any segment

of an adversarial-order (t = n) stream is in adversarial-order. However, a segment of a

t-semirandom order stream for 1 < t < n is not necessarily in t-semirandom order (or even

in 2t-semirandom order) because the adversary may have as many as t points in storage

when the segment begins. Instead, we analyze a segment as two separate t-semirandom

streams, one coming from the adversary’s storage and the other as those points that the

adversary has not yet received.

Lemma 8. Assume that m ≥ k(4 + ⌈log2 t⌉). Whenever the while-loop of Lines 7-15
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terminates, OPTk(P ) > L with probability 1
2
.

Proof. Observe that the while-loop runs OFL with facility cost f = L
m

. Setting r = 2

and h = ⌈log2(4t)⌉, apply Theorem 1 and plug in the value for f . This shows that on a

t-semirandom stream, OFL incurs less than 5OPTk(P ) + L in expected connection cost and

opens less than m(1 + 5OPTk(P )/L) facilities in expectation. Observe that this bound

holds for the points of P even when P is interlaced with points from another stream.

For a segment P of the t-semirandom stream, let P1 be the adversary’s storage at the

beginning of the segment and let P2 be all other points. Applying the previous argument

twice, we see that on this segment OFL incurs less than 5OPTk(P ) + 2L in expected

connection cost and opens less than m(2 + 5OPTk(P )/L) facilities in expectation. The

terms involving OPTk(P ) did not double since OPTk(P1) + OPTk(P2) ≤ OPTk(P ). With

probability at least 1
2
, the cost and number of facilities are most twice these bounds by

Markov’s inequality.

Suppose that OPTk(P ) ≤ L. Then with probability at least 1
2
, the while-loop incurs

less than 14L cost and opens less than 14m facilities. Since the while-loop begins with

|Ψ| ≤ 15m, the termination condition means that either 14L cost was incurred or 14m

facilities were opened. We conclude with probability at least 1
2

that OPTk(P ) > L when

the while-loop terminates.

For correctness of the algorithm, the result of the preceding lemma only needs to

hold for the most recent termination of the while-loop. We therefore apply it only once,

avoiding a factor of O(log n) in the space bound that would result from applying the

lemma at each loop iteration.

After processing a point, Algorithm 1 waits on Line 8 for the next point. We now

extend the previous lemma to hold on this line, and therefore after each point has been

processed.

Lemma 9. Assume that m ≥ k(4 + ⌈log2 t⌉). On Line 8, L < 14 OPTk(P ) with probability

1
2
.
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Proof. Let L′ and Ψ′ be the states of L and Ψ at the beginning of the current iteration

of the main loop. We condition upon the event that OPTk(P ) > L′, which occurs with

probability at least 1
2

by Lemma 8. From Line 5 we infer that either L = 10L′ or

3L = λ = COST(Ψ′, Ψ).

In the case that L = 10L′, then the result is immediate. Otherwise, 3L = COST(Ψ′, Ψ) <

2OPTm(Ψ′) by the guarantee of B(X, k). We have OPTm(Ψ′) ≤ OPTk(Ψ′) since m ≥ k by

assumption. Applying the triangle inequality to each point of Ψ′, we get OPTk(Ψ′) ≤

OPTk(P ) + COST(P, Ψ′). We have that COST(P, Ψ′) < 20L′ < 20OPTk(P ), where the first

inequality is by Lemma 7 and the second inequality is the event we have conditioned upon.

Therefore L < 14OPTk(P ). This result holds regardless of how many iterations of the

while-loop have occurred since OPTk(P ) is non-decreasing as points are added to P .

We now state our main theorem for clustering. Amplifying the probability of success

is simple; run ⌈log2
1
δ
⌉ independent instances of Algorithm 1 in parallel and return the Ψ

from an instance with minimal L.

Theorem 4. Algorithm 1 with parameter m can be implemented to run in O(m) worst-

case update time and store O(m) points. Suppose that the input stream P of n points

arrives in t-semirandom order. If m ≥ k(4 + ⌈log2 t⌉), then with probability at least 1
2

the

set Ψ maintained by the algorithm satisfies COST(P, Ψ) ≤ O(1) · OPTk(P ).

Proof. Combining Lemmas 7 and 9 shows that COST(P, Ψ) < 280 OPTk(P ). It is immediate

from the pseudocode that the storage is less than 29m points. As for the update time,

each iteration of the while-loop requires O(m) time. By Theorem 3, if the nearest neighbor

function for Ψ has been computed then Line 4 terminates in O(m) time. We must show

how to ensure with O(m) worst-case update time that the nearest neighbor function for

Ψ has been computed before each time that Line 4 is executed.

Given the nearest neighbor function π for a set of n points, observe that we can insert

a point into the set and update π in O(n) time. Beginning with the nearest neighbor

function π of the first two points of Ψ, we simply update π with the next three points
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of Ψ each time one point is received from the stream. The while-loop runs at least 14m

times before each time that Line 4 executes. Therefore the nearest neighbor function for

all of Ψ is guaranteed to have been computed by the time the while-loop terminates.

By tweaking parameters and refining the analysis, one can improve the guarantee to

COST(P, Ψ) < 3OPTk(P ) (in particular, the space blows up as the constant approaches

2). It is well-known that if COST(P, Ψ) ≤ αOPTk(P ) then any γ-approximation of Ψ is

a (α(γ + 1) + α)-approximation of P [9]. Therefore Theorem 4 implies that Ψ carries

enough information to determine a O(1)-approximation of P . Our constant α ≤ 3 does

not guarantee a particularly low approximation ratio. However, Algorithm 1 can be used

as a building block for a more accurate solution. Using the technique introduced in Part

II, we can use Algorithm 1 to maintain an ǫ-coreset which carries enough information to

determine a (1 + ǫ)-approximation6 for any ǫ > 0. This technique essentially converts the

constant in the approximation factor into a constant in the size of the coreset. The only

space required in addition to Algorithm 1 is the space needed to store the ǫ-coreset. As an

example, for k-median in R
d, coresets of size O(ǫ−2kd) are known [13], implying that our

result can be used to determine a (1 + ǫ)-approximation using O(ǫ−2kd + k log t) space.

As a corollary to Theorem 4, we obtain an O(nk)-time approximation algorithm for

the RAM model. In light of the Ω(nk) time lower bound of [29], the runtime is optimal.

Corollary 2. Given a set P of n points, there exists an algorithm that outputs a O(1)-

approximation to the k-median clustering of P with probability 1− δ in time O(nk log 1
δ
).

Proof. Shuffle P in O(n) time. Set m = 4k and run Algorithm 1 in O(nk) time followed

by the offline algorithm of [29] in O(k2) time to obtain by Theorem 4 a set C of k points

such that COST(P, C) ≤ O(1) · OPTk(P ) with probability at least 1
2
. Repeat this ⌈log2

1
δ
⌉

times and output the solution of minimal cost.

6An efficiently computed solution will have a larger approximation factor. Both the k-median and
k-means problem are MAX-SNP Hard for all k ≥ 2. See the related work section of [4] for a survey of
hardness results.
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1.5.1 Extension to Other Functions

We have assumed that we are in a metric space (X , d) but we can weaken this assumption.

Suppose that throughout our results we replace the metric with an arbitrary symmetric

positive-definite function D : X × X → [0,∞). If D satisfies the triangle inequality, then

D is a metric and our result for k-median applies directly. However, suppose that D just

satisfies a weak triangle inequality for some β ≥ 1:

D(a, c) ≤ β(D(a, b) + D(b, c)) for all a, b, c ∈ X

All of our proofs go through with larger constants. The bound in Theorem 4 generalizes

to (h + 1 + β)fk + β(r + 3β)OPTk(S) and the guarantee of the B(X, k) routine of the

next subsection generalizes to COST(X, Z) < 2βOPTk(X). For any function D satisfying a

constant β value, our results for both online facility location and clustering carry through

with larger constants. An example application is that our results generalize to ℓp norms.

Another important case is k-means that corresponds to D(x, y) = d(x, y)2.

Recall that the maximum likelihood estimator for the mean µ of Gaussian data Q

is the µ̂ that minimizes
∑

q∈Q d(q, µ̂)2. To handle outliers more robustly, the statistics

community introduced M -estimators which generalize maximum likelihood estimation

by minimizing
∑

q∈Q ρ(d(q, µ̂)) for some positive-definite function ρ : [0,∞)→ [0,∞). An

M -estimator along with a positive integer k defines a clustering problem to find a set

C of k points that minimizes
∑

q∈Q minc∈C ρ(d(q, c)). Observe that we recover k-means

for ρ(x) = x2 and k-median for ρ(x) = x. The convergence and robustness properties of

M -estimators have been well-studied, but we also observe that the function D = ρ ◦ d

usually satisfies a weak triangle inequality for a very low β value. Evidently we can let

β be any value such that ρ(c) ≤ β(ρ(a) + ρ(b)) for all a, b, c ≥ 0 such that c ≤ a + b. In

Table 1.4 we have calculated tight β values for the most commonly used M -estimators .

These results imply that O(k log t) space suffices to approximate M -estimators on a

data stream. We remind the reader that we can use the technique that will be introduced
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Estimator ρ function β

Linear ρ(x) = x 1

Gaussian ρ(x) = x2 2

Huber ρ(x) =







x2 if x < 1

2x− 1 if x ≥ 1
2

Cauchy ρ(x) = log(1 + x2) 2

Tukey ρ(x) =







1− (1− x2)3 if x < 1

1 if x ≥ 1
2

Table 1.4: List of the most common M -estimators. The last column is redundant since
the β value can be directly calculated from the ρ function. All of these estimators are
actually a parameterized family by scaling ρ(x) to c1ρ(c2x) for c1, c2 > 0, but we choose
only a single representative since the β value is unchanged.

in Part II to maintain an ǫ-coreset which permits a (1 + ǫ)-approximation to the optimal

M -estimator.

1.5.2 The B(X, k) Routine

We present a deterministic algorithm B that accepts a weighted set A of n distinct points

along with a positive integer k and returns a weighted set Z of ⌊n+k
2
⌋ distinct points such

that COST(A, Z) < 2OPTk(A). If the nearest neighbor graph on A has been computed,

then B terminates in O(n) time.

In what follows, there must be a way to order the points of A. This is necessary for a

technical detail that comes up in Lemma 10; we need a consistent way to break ties. In

practice, this can simply be the order that the algorithm loops through the points of A.

Definition 4. The function π : A→ A is defined such that π(a) = arg minx∈A\{a} d(a, x).

If there is more than one point x that minimizes d(x, a), break ties by selecting the x that

is greatest according to the order of A.

We use π to define a graph as follows:

Definition 5. Let A be a weighted set. The directed graph G(A, π) has the points of A
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as vertices. For each vertex a, there is exactly one directed edge leaving a and pointing to

π(a).

G(A, π) possesses a special structure of not containing any cycles of length greater

than 2.

Lemma 10. The graph G(A, π) contains cycles only of length 2.

Proof. Let {a1, . . . , as} be a cycle such that for each 1 ≤ i ≤ s we have π(ai) = ai+1

(additions should be interpreted modulo s). We will show that s = 2.

By definition of π, it must be that d(ai, ai+1) ≤ d(ai−1, ai) since π(ai) = ai+1. Then we

have d(a1, a2) ≤ . . . ≤ d(as, a1) ≤ d(a1, a2) and the chain of inequalities implies equality.

Let at be the element of the cycle that is greatest according to the ordering of A. Since at

and at+2 are equidistant from at+1, the criterion for breaking ties in Definition 4 ensures

that π(at+1) = at. Since π(at+1) = at+2, it must be that t + 2 = t and so s = 2.

In light of Lemma 10, let us consider the structure of the directed graph (A, π).

Removing the edges in length-2 cycles, we are left with a forest (a collection of trees

directed to the root). Considering the full graph along with these 2-cycles, we see that

each component is a pair of trees whose roots are coupled. This forest of “bi-trees” can

be 2-colored, and the following lemma shows that we can do this efficiently.

Lemma 11. Given the function π, the graph G(A, π) can be 2-colored in O(m) time.

Proof. We say that π(a) is the parent of a, and that a is the child of π(a). Each vertex

has exactly one parent, and the edges point to the parent. For each point a ∈ A, we store

a pointer to its parent as well as a list of pointers to its children. Given the function π,

this can be accomplished in O(n) time.

As reasoned above, the graph can be partitioned into bi-tree components. We use the

following iterative procedure until all vertices have been colored: (1) Select any uncolored

vertex; (2) Walk along the edges until reaching the two roots; (3) Color each root a

different color; (4) Recursively color each child vertex the opposite color than its parent.

25



For Step 2, we will know we have located the roots when we return to the vertex we

just left. This process (of moving from a to π(a) until reaching the root) terminates in

time proportional to the depth of the tree. Therefore a total of O(n) time is spent during

Step 2 over all iterations of this procedure.

For Step 4, finding a child takes O(1) time since we have stored a list of children with

each vertex. Therefore a total of O(n) time is spent during Step 4 over all iterations of

this procedure.

We will need the following technical lemma to bound COST(A, Z). Recall that OPTk(A)

is defined using centers from anywhere in the metric space X . The lemma says that if we

restrict to centers from A itself, then the optimal cost increases by less than a factor of

two.

Lemma 12. Let OPTk(A) denote the minimum of COST(A, B) where B ⊂ A ranges over

all sets of k points. Then OPTk(A) < 2OPTk(A).

Proof. Let C ⊂ X be a set of k points such that COST(A, C) = OPTk(A). For each

c ∈ C, let c′ be the closest point of A to c. Any element a ∈ A that was connected

to c can be instead connected to c′ with a cost of d(a, c′) ≤ d(a, c) + d(c, c′) ≤ 2d(a, c)

since d(c, c′) ≤ d(c, a). Moreover, the cost of this cluster increased by strictly less

than factor of two since if c /∈ A the cost decreased for a = c′ and if c ∈ A the cost

stayed the same. Define C ′ = {c′}c∈C . Then C ′ ⊂ A is a set of k points such that

OPTk(A) ≤ COST(A, C ′) < 2COST(A, C) = 2OPTk(A).

The B(X, k) algorithm is presented in the next theorem. The basic idea is to 2-color

G(A, π) and then eliminate one of the colors by relocating those points to their image

under π. Since π maps each point to a point of the opposite color, this transformation

increases the weights of one color while completely eliminating the other.

Theorem 5. Let A be a weighted set of n distinct points. Assume that π has been

computed for A. In O(n) time, we can compute a weighted set Z of at most ⌊n+k
2
⌋ distinct

points such that COST(A, Z) < 2OPTk(A).
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Figure 1.2: A 2-colored bi-tree of the near-
est neighbor graph G(A, π). Algorithm
B(A, k) removes all blue points by moving
the weight of each blue point to the red
point to which it points.

Proof. Let the function w : A → N map each point of A to its weight. By Lemma 11,

we 2-color A in O(n) time. Let A1 and A2 be the partition of A into the two colors

after removing the k points with the top values of w(a)d(a, π(a)). Let |At| be the larger

component (by number of points) and note that |At| ≥ �n−k
2

�.

Build Z from A as follows: for each a ∈ At, increment w(π(a)) by w(a) and delete a.

This procedure terminates in O(n) time. By definition of a 2-coloring, π(a) /∈ At for every

element a ∈ At, and so Z contains n − |At| ≤ �n+k
2

� weighted points.

Observe that COST(A, Z) =
∑

a∈At
w(a)d(a, π(a)). The optimal k-median solution of

A using points from A involves moving n − k points of A by at least the distance to the

nearest neighbor, so
∑

a∈A1∪A2
w(a)d(a, π(a)) ≤ OPTk(A) and so COST(A, Z) ≤ OPTk(A).

This completes the proof since Lemma 12 guarantees OPTk(A) < 2OPTk(A).

To complete the guarantee of Theorem 3, observe that we can return the exact value

of COST(A, Z) in O(n) time.

1.6 Discussion of Models for Semirandom Order

IITK Open Problem #15 addresses computational models of semirandom-order for streams

and asks how the models of t-bounded adversarial order and ε-generated random order

relate to each other [26]. One can verify that ε = 0 like t = 0 is equivalent to random-order

and that ε = 1 like t = n is equivalent to adversarial-order. However, we demonstrate in

the following two lemmas that no other relations hold between these models.

Lemma 13. To simulate the t-bounded adversarial order model for any t > 1, the
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ǫ-generated order model requires ǫ ≥ 1− 2−n/2.

Proof. Let the stream consist of elements {1, . . . , n}. Let χ(i) denote the identity of the

ith element in the initial random-order stream. For any t ≥ 2, a t-bounded adversary can

ensure that χ(2i−1) < χ(2i) for all 1 ≤ i ≤ n
2
. Let Ai be the event that χ(2i−1) < χ(2i).

In random-order, observe that P (Ai) = 1
2

and that the {Ai}n/2
i=1 are mutually independent.

Therefore the uniform distribution µ assigns probability mass 1 − (1
2
)n/2 to the orders

satisfying χ(2i−1) > χ(2i) for some 1 ≤ i ≤ n
2
. Any distribution ν that assigns probability

mass 1 to ∩n/2
i=1Ai must satisfy ||µ− ν||1 ≥ 2(1− 2−n/2)

Lemma 14. To simulate the ǫ-generated order model for any ǫ ≥ 2−n/10, the t-bounded

adversarial order model requires t > n/2.

Proof. Let X be a subset of r elements. In random-order, let A be the event at at least

one element of X arrives among the first βn elements. Pµ(A) ≥ 1− (1− β)r, so we can

create a distribution ν such that Pν(A) = 1 and ||µ− ν||1 ≤ 2(1− β)r.

In the t-bounded adversarial order model, elements are sent in random-order but

intercepted by an adversary who manipulates the order that elements arrive for the

algorithm. Observe that an element among the last n−t
2

to be sent cannot be among the

first n−t
2

to arrive. If r ≤ n−t
2

then with positive probability all elements of X are among

the last n−t
2

to be sent. Therefore if βn ≤ n−t
2

we have P (A) < 1. Setting r = βn, this

necessitates that t > (1 − 2β)n whenever ǫ ≥ (1 − β)βn. The result follows by setting

β = 1
4
.

Our matching bounds for online facility location show a non-trivial degradation

of performance in the t-bounded adversarial-order model that smooothly interpolates

between random-order and adversarial-order. This supports the claim that t-bounded

adversarial-order is a viable model of semi-randomness. In contrast, it is trivial to show

matching bounds of Θ(1 + ǫ log n
log log n

) in the ǫ-generated model. More generally, any bound

in expectation which is Θ(f) in random-order and Θ(g) in adversarial-order implies a

Θ(f + ǫg) bound in the ǫ-generated model. As a result, the ǫ-generated model is not
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interesting for a wide class of problems. This class is rather large since any Θ(f log 1
δ
)

bound with probability 1− δ implies a Θ(f) bound in expectation.

We conclude with an open question:

Open Question: Given an adversarial-order bound of O(f(n)), all the results in this

paper present a bound of O(f(t)) for t-bounded adversarial order, showing a smooth

degradation as t increases. However, some problems exhibit a sharp phase transition. For

example, the size of the largest component in an Erdős-Rényi graph ER(n, p) jumps from

O(log n) to Ω(n) around p ∼ 1/n. In the t-bounded adversarial order model, is it always

the case that bounds degrade smoothly as t increases? Alternatively, do problems exist

that exhibit a sharp jump in some quantity of interest (i.e. time, space, or approximation

factor) when t increases by only a constant factor around some value?
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Part II

Nearly Optimal Coresets on

Insertion-Only Streams
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In the algorithmic field of computer science, we usually have an optimization problem

at hand and a state-of-the-art or a straight-forward exhaustive search algorithm that

solves it. The challenge is then to suggest a new algorithm with a better running time,

storage or other feature. A different and less traditional approach is to use data reduction,

which is a compression of the input data in some sense, and to run the (possibly inefficient)

existing algorithm on the compressed data. In this case, the problem of solving the

problem at hand reduced to the computing a problem-dependent compression such that:

1. an existing algorithm that solves the optimization problem on the original (com-

plete) data, will yield a good approximate solution for the original data when ap-

plied on the compressed data.

2. The time and space needed for constructing the compression and running the op-

timization algorithm on the coreset will be better than simply solving the problem

on the complete data.

There are many approaches for obtaining such a provable data reduction for different

problems and from different fields, such as using uniform sampling, random projections

(i.e., the Johnson-Lindenstrauss Lemma), compressed sensing, sketches or PCA.

In this part of the thesis (Part III), we focus on a specific type of a reduced data set,

called coreset (or core-set) that was originated in computational geometry, but now ap-

plied in other fields such as computer vision and machine learning. This part is organized

into basic sections: results for maintaining coresets over data streams (Section 2.2) and

results for offline coresets (Sections 2.3-2.5). We briefly introduce both of these topics

the remainder of this section. Many of our results, along with comparison to prior works,

are summarized in Table 2.5 in Section 2.1.

In the Appendix A (Section 7) we summarize the merge-and-reduce technique that is

used in previous approaches [12, 27, 26, 1, 19]. In the Appendix B (Section 8) we provide

an alternative framework that generalizes our main result (Theorem 2.2.1), applying to

a wide-array of constructions although giving a weaker bound.
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2.0.1 Streaming Results

In the streaming model of computation, the input arrives sequentially. This differs from

the standard model where the algorithm is given free access to the entire input. Given a

memory that is linear in the size of the input, these models are evidently equivalent; there-

fore the goal of a streaming algorithm is to perform the computation using a sublinear

amount of memory.

Our stream consists of n elements p1, . . . , pn. In the streaming model (or more specif-

ically the insertion-only streaming model, since points that arrive will never be deleted),

we attempt to compute our solution using o(n) memory. Sometimes the algorithm will

be allowed to pass over the stream multiple times, resulting in another parameter called

the number of passes. All of our algorithms use polylog(n) memory and require only a

single pass.

Prior to the current work, the merge-and-reduce technique due to Har-Peled and

Mazumdar [27] and Bentley and Sax [7] was used to maintain a coreset on an insertion-

only stream. For a summary of this technique, see Section 2.6 in the Appendix. In

this part, we introduce an alternative technique that reduces the multiplicative overhead

from log2a+1 n to log n (here, a is the offline construction’s dependence on 1/ǫ). While our

method is not as general as merge-and-reduce (it requires that the function in question

satisfies more than just the “merge” and “reduce” properties, defined in Section 2.6), it

is general enough to apply to all M -estimators. For the special case of our coreset offline

construction forM -estimators (introduced in Section 2.5), we use a more tailored method

that causes this to be log n additive overhead. Therefore our streaming space complexity

matches our offline space complexity, both of which improve upon the state-of-the-art.

The offline coreset construction of [19] has the following structure: first, a bicriterion

approximation is computed. Second, points are sampled according a distribution that

depends only on the distances between points of the input and their assigned bicriterion

centers. This suggests a two-pass streaming algorithm (which we later combine into a

single pass): in the first pass, construct a bicriterion using an algorithm such as [9]. In
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the second pass, sample according to the bicriterion found in the first pass. This provides

a two-pass algorithm for a coreset using O(ǫ−2k log k log n)-space. Our contribution is

showing how these two passes can be combined into a single-pass. Using the algorithm

of [9] to output O(k log n) centers at any time, we show that this is sufficient to carry out

the sampling (originally in the second pass) in parallel without re-reading the stream.

Our main lemma (Lemma 2.2.7) shows that the bicriterion, rather than just providing

“central” points to concentrate the sampling, actually can be thought of as a proof of

the importance of points for the coreset (technically, a bound on the “sensitivity” that

we define at the beginning of Section 2.2). Moreover, the importance of points is non-

increasing as the stream progresses, so we can maintain a sample in the streaming setting

without using any additional space.

2.0.2 Offline Results

The name coreset was suggested by Agarwal, Har-Peled, and Varadarajan in [2] as a small

subset S of points for a given input set P , such that any shape from a given family that

covers S will also cover P , after expanding the shape by a factor of (1+ ε). In particular,

the smallest shape that covers S will be a good approximation for the smallest shape

that covers P . For approximating different cost functions, e.g. the sum of distances to a

given shape, we expect that the total weight of the sample will be similar to the number

n of input points. Hence, in their seminal work [27], Har-Peled and Mazumdar used

multiplicative weights for each point in S, such that the weighted sum of distances from

S to a given shape from the family will approximate its sum of distances from the original

data. In [27] each shape in the family was actually a set of k points, and the application

was the classic k-means problem.

In this part, we are given an input set P (called points), a family (set)Q of items, called

queries and a function f : P → [0,∞) that is called a cost function. A coreset is then a

subset S of P , that is associated with a non-negative weight function u : S → [0,∞) such

that, for every given query q ∈ Q, the sum of original costs
∑

p∈P f(p, q) is approximated
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by the weighted sum
∑

p∈S u(p)f(p, q) of costs in S up to a multiplicative factor, i.e.,

(1− ε)
∑

p∈P

f(p, q) ≤
∑

p∈S

u(p)f(p, q) ≤ (1 + ε)
∑

p∈P

f(p, q)

While our framework is general we demonstrate it on the k-means problem and its

variant. There are at least three reasons for this: (i) This is a fundamental problem

in both computer science and machine learning, (ii) This is probably the most common

clustering technique that used in practice, (iii) Many other clustering and non-clustering

problems can be reduced to k-means; e.g. Mixture of Gaussians, Bregman Clustering,

or DP-means [18, 33, 5]. In this context we suggest offline coreset constructions for k-

clustering queries, that can be constructed in a streaming fashion using our streaming

approach, and are:

• of size linear in k (for d > log k) and arbitrary metric space of dimension d. Current

coresets that are subset of the input have size at least cubic in k [30]. This is by

reducing the total sensitivity to O(1) without introducing negative weights that

might be conditioned on the queries as in [19].

• of size independent of d for the Euclidean case of k-means (squared distances). This

is particular useful for sparse input set of points where d ≥ n, such as in adjacency

matrices of graphs, document-term, or image-object matrices. Recent coreset for

sparse k-means of [6] is of size exponential in 1/ε and thus turn to O(n) when used

when the merge-and-reduce tree (where ε is replaced by O(ε/ log(n)). The result

of [20] for k-means is exponential in k/ε and fails with constant probability, so also

cannot be used with streaming. Another result of [20] suggests a coreset type set

for k-means of size O(k/ε) but which is based on projections that loss the sparsity

of the data. Similar sparsity loss occurs with other projection-type compression

methods e.g. in [15]. Nevertheless, we use the technique in [20] to bound the

dimension of the k-means problem by O(k/ε).
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• of size independent of d for the Euclidean case, and non-squared distances, using

weak coresets. These coresets can be used to approximates the optimal solution,

but not every set of k centers. Unlike the weak coresets in [19, 17], we can use any

existing heuristic on these coresets, as explained in Section 2.5.1.

• Robust to outliers. This is since the general pseudo-metric definition we used (in-

spired by [21], supportm-estimators which is a tool for handling outliers [38]. Unlike

in [21] our coresets are linear (and not exponential) in k, and also independent of

n (and not logarithmic in n).

2.1 Related Work

The following table summarizes previous work along with our current results. By far, the

most widely-studied problems in this class have been the k-median and k-means functions.

In general, the extension to arbitrary M -estimators is non-trivial; the first such result

was [21]. Our approach naturally lends itself to this extension. M -estimators are highly

important for noisy data or data with outliers. As one example, Huber’s estimator is

widely used in the statistics community [25, 29]. It was written that “this estimator is

so satisfactory that it has been recommended for almost all situations” [40]. Our results

work not only for Huber’s estimator but for all M -estimators, such as the Cauchy and

Tukey biweight functions which are also well-used functions.

Note that in the below table, Õ notation is used to write in terms of d, ǫ, k, and log n

(therefore hiding factors of log log n but not log n).

Framework. A generic framework for coreset construction was suggested in [19]. The

main technique is a reduction from coreset to ε-approximations, that can be computed

using non-uniform sampling. The distribution of the sampling is based on the importance

of each point (in some well defined sense), and the size of the coreset depends on the sum

of these importance levels. This term of importance appeared in the literature as leverage
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Problem Offline Size Streaming Size Paper

Euclidean k-means O(kǫ−d log n) O(kǫ−d logd+2 n) [27]

Euclidean k-means O(k3ǫ−(d+1)) O(k3ǫ−(d+1) logd+2 n) [26]
Euclidean k-means O(dk2ǫ−2 log n) O(dk2ǫ−2 log8 n) [12]
Euclidean k-means O(dk log kǫ−4) O(dk log kǫ−4 log5 n) [19]

Euclidean k-means Õ((d/ǫ)O(d)k log n) Õ((d/ǫ)O(d)k logO(d) n) [1]
Euclidean k-means O(ǫ−2k log kmin(k/ǫ, d)) O(ǫ−2k log kmin(k

ǫ
, d) + k log n) **

Metric k-means O(ǫ−2k2 log2 n) O(ǫ−2k2 log8 n) [13]
Metric k-means O(ǫ−4k log k log n) O(ǫ−4k log k log6 n) [19]
Metric k-means O(ǫ−2k log k log n) O(ǫ−2k log k log n) **

Euclidean k-median Õ(dk2ǫ−2 log n) O(dk2ǫ−2 log8 n) [12]

Euclidean k-median O(kǫ−d log n) O(kǫ−d logd+2 n) [27]

Euclidean k-median O(k2ǫ−d) O(k2ǫ−(d) logd+1 n) [26]
Euclidean k-median O(dǫ−2k log k) O(dǫ−2k log k log3 n) [19]
Euclidean k-median O(dǫ−2k log k) O(dǫ−2k log k + k log n) **
Metric k-median O(k2ǫ−2 log2 n) O(k2ǫ−2 log8 n) [12]
Metric k-median O(ǫ−2k log k log n) O(ǫ−2k log k log4 n) [19]
Metric k-median O(ǫ−2k log k log n) O(ǫ−2k log k log n) **

Euclidean M -estimator O(ǫ−2kO(k)d2 log2 n) O(ǫ−2kO(k)d2 log5 n) [21]
Euclidean M -estimator O(dǫ−2k log k) O(dǫ−2k log k + k log n) **
Metric M -estimator O(ǫ−2kO(k) log4 n) O(ǫ−2kO(k) log7 n) [21]
Metric M -estimator O(ǫ−2k log k log n) O(ǫ−2k log k log n) **

Table 2.5: Summary of Related Work on Coresets

score (in the context of low-rank approximation, see [36] and references therein), or, for

the case of k-clustering, sensitivity [30]. The proof of many previous coreset constructions

were significantly simplified by using this framework, and maybe more importantly, the

size of these coresets was sometimes significantly reduced; see [19] for references. Many

of these coresets size can be further improve by our improved framework, as explained

below.

The size of the coreset in [19] depends quadratically on the sum of sensitivities, called

total sensitivity [30]. In this part, we reduce the size of the coreset that are constructed

by this framework to be only near-linear (t log t) in the total sensitivity t. In addition,

we generalize and significantly simplify the notation and results from this framework.

k-means. In the k-means problem we wish to compute a set k of centers (points)

in some metric space, such that the sum of squared distances to the input points is
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minimized, where each input point is assigned to its nearest center. The corresponding

coreset is a positively weighted subset of points that approximates this cost to every given

set of k centers. First deterministic coresets of size exponential in d were first suggested

by Har-Peled and Mazumdar in [27]. The first coreset construction of size polynomial in

d was suggested by Ke-Chen in [12] using several sets of uniform sampling.

The state-of-the-art is the result of Schulman and Langberg [30] who suggested a

coreset of size O(d2k3/ε2) for k-means in the Euclidean case based on non-uniform sam-

pling. The distribution is similar to the distribution in [17] over the input points, however

in [17] the goal was to have weaker version coresets that can be used to solve the optimal

solution, but are of size independent of d.

Some kind of coreset for k-means of size near-linear in k was suggested in [19]. How-

ever, unlike the definition of this part, the multiplicative weights of some of the points

in this coreset were (i) negative, and (ii) depends on the query, i.e., instead of a weight

w(p) > 0 for an input point p, as in this part, the weight is w(p, C) ∈ R where C is

the set of queries. While exhaustive search was suggested to compute a PTAS for the

coreset, it is not clear how to compute existing algorithms or heuristics (what is actually

done in practice) on such a coreset. On the contrary, generalizing an existing approxima-

tion algorithm for the k-means problem to handle positively weights is easy, and public

implementations are not hard to find (e.g. in Matlab and Python).

k-mean for handling outliers. Coresets for k-means and its variants that handle

outliers via m-estimators were suggested in [21], and also inspired this part of the thesis.

The size of these coresets is exponential in k and also depend on logn. For comparison, we

suggest similar coreset of size near-linear in k, and independent of n. PTAS for handling

exactly m-outliers was suggested in [11] but with no coreset or streaming version.

Streaming. The metric results of [12, 19] and Euclidean results of [12, 27, 26, 19]

that rely on merge-and-reduce have already been mentioned. A summary of these results

appears in the tables below. For the specific case of Euclidean space, a more diverse set
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of stronger results is known. In particular, coreset constructions are known that do not

begin with a bicriterion solution, and whose streaming variant does not rely on merge-

and-reduce [1]. With the additional assumption in Euclidean space that the points lie

on a discrete grid {1, . . . ,∆}d, alternative techniques are known for k-means and other

problems, even when the stream allows the deletion of points [22].

2.2 Streaming Algorithm

We present a streaming algorithm for constructing a coreset for metric k-means clustering

that requires the storage of O(ǫ−2k log n) points. The previous state-of-the-art [19] re-

quired the storage of O(ǫ−4k log k log6 n) points. In this section we assume the correctness

of our offline algorithm, which is proven in Section 2.5.

More generally, our technique works for M -estimators, a general class of clustering

objectives that includes the well-known k-median and k-means functions as special cases.

Other special cases include the Cauchy functions, the Tukey functions, and the Lp norms.

Our method combines a streaming bicriterion algorithm [9] and a batch coreset construc-

tion [19] to create a streaming coreset algorithm. The space requirements are combined

addivitely, therefore ensuring no overhead.

The streaming algorithm of [9] provides a bicriterion solution using O(k log n) space.

Our new offline construction of Section 2.5 requires O(ǫ−2k log k log n) space. There-

fore our main theorem yields a streaming algorithm that combines these spaces addi-

tively, therefore requiring O(ǫ−2k log k log n) space while maintaining a coreset for k-

means clustering. The previous state-of-the-art framework that works for the metric

variant (other methods are known to improve upon this for the special case of Euclidean

space) was the merge-and-reduce technique [7] that yields a streaming algorithm requir-

ing O(ǫ−4k log k log6 n) space, incurring an overhead of Θ(log5 n) over the offline coreset

size. In comparison, our framework incurs no overhead. The additional improvement in

our space is due the improved offline construction given in Sections 5-7.
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We now state our main theorem. The result is stated in full generality: the k-median

clustering in a ρ-metric space (see Definition 2.5.1). Note that metric k-means clustering

corresponds to setting ρ = 2. Also, the probability of success 1 − δ typically has one of

two meanings: that the construction succeeds at the end of the stream (a weaker result),

or that the construction succeeds at every intermediate point of the stream (a stronger

result). Our theorem gives the stronger result, maintaining a valid coreset at every point

of the stream.

Theorem 2.2.1 (Main Theorem). There exists an insertion-only streaming algorithm

that maintains a (k, ǫ)-coreset for k-median clustering in a ρ-metric space, requires the

storage of O(ρ2ǫ−2k log(ρk) log(n) log(1/δ)) points, has poly(k, log n, ρ, ǫ, log(1/δ)) worst-

case update time, and succeeds at every point of the stream with probability 1− δ.

Our method can be applied to the coreset constructions of [27, 26, 12, 19] with a

multiplicative overhead of O(log n). Our second theorem is a more generally applicable

technique; it applies to all constructions that first compute a bicriterion solution and then

sample points according to the bicriterion solution. The constructions of [27, 26, 12, 19]

follow this outline, and we are unaware of any constructions which do not. The theorem

yields immediate corollaries as well as reducing certain streaming coreset problems to

that of constructing an offline coreset.

Theorem 2.2.2. Given an offline algorithm that constructs a (k, ǫ)-coreset consisting of

S = S(n, k, ǫ, δ) points with probability 1 − δ by sampling points based on a bicriterion

solution, there exists a streaming algorithm requiring the storage of O(S log n) points that

maintains a (k, ǫ)-coreset on an insertion-only stream.

Proof Sketch. The known offline coreset constructions start with a bicriterion solution

of O(k) points. We modify the algorithm of [9] to output O(k log n) centers; this is

trivial since the final step of the algorithm of [9] is to take the O(k log n) centers stored in

memory and reduce them to exactly k centers to provide a solution. Our first modification

to the original algorithm is thus to simply remove this final step, but we must also
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keep a datastructure storing log(1/ǫ) intermediate states of these O(k log n) centers. See

Section 2.7 for a precise description of our modification and the sampling method, applied

to the construction of [19] as an example (but equally applicable to [27, 26, 12]). As the

high-level idea, since the bicriterion given to the offline construction consists of O(k log n)

centers instead of exactly k, the number of additional points taken in the coreset increases

by a factor of O(log n).

Two important corollaries include:

1. Using the result of [19], we obtain a streaming algorithm that maintains a (k, ǫ)-

coreset with negative weights for metric k-median requiring the storage ofO(ǫ−2k log n)

points.

2. Given a O(k ·poly(ǫ, log n, log(1/δ))) point (k, ǫ)-coreset, we would obtain a stream-

ing algorithm that maintains a (k, ǫ)-coreset (with only positive weights) for metric

k-median requiring the storage of O(k · poly(ǫ, log n, log(1/δ))) points. This differs

from Theorem 2.2.1 in that the dependence on k is linear instead of O(k log k).

2.2.1 Definitions

We begin by defining a ρ-metric space, which is defined in full as Definition 2.5.1. Briefly,

let X be a set. If D : X × X → [0,∞) is a symmetric function such that for every

x, z ∈ X we have that D(x, z) ≤ ρ(D(x, y) + D(y, z)) for every y ∈ X, when we call

(X,D) a ρ-metric space. Note that this is a weakening of the triangle inequality, and at

ρ = 1 we recover the definition of a metric space. All M -estimators can be re-cast for

a certain constant value of ρ, and k-means is obtained with ρ = 2. This generality is

therefore useful and working in this language allows us to naturally generalize our results

to any M -estimator.

The k-median problem is, given an input set P and an integer k ≥ 1, to find a set C
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of k points that minimizes:
∑

p∈P

min
c∈C

D(p, c)

We use OPTk(P ) to denote this minimal value. As this is NP-Hard to compute, we settle

for an approximation. The notion of a bicriterion approximation is well-known; we state

a definition that suits our needs while also fitting into the definition of previous works.

Definition 2.2.3 ((α, β)-approximation). An (α, β)-approximation for the k-median clus-

tering of a multiset P is a map π : P → B for some set B such that
∑

p∈P w(p)D(p, π(p)) ≤

αOPTk(P ) and |B| ≤ βk.

We now define a coreset:

Definition 2.2.4 ((k, ǫ)-coreset). A (k, ǫ)-coreset of a multiset P is a weighted set

(S, v) with non-negative weight function v such that for every Z ∈ X k we have (1 −

ǫ)
∑

p∈P D(p, Z) ≤
∑

s∈S v(s)D(s, Z) ≤ (1 + ǫ)
∑

p∈P D(p, Z).

Coresets with arbitrary weight functions (i.e. with negative weights allowed) have been

considered [FL11, etc]. However, computing approximate solutions on these coresets in

polynomial-time remains a challenge, so we restrict our definition to non-negative weight

functions. This ensures that an approximate solution can be quickly produced. This

implies a PTAS for Euclidean space and a polynomial-time 2γ(1 + ǫ)-approximation for

general metric spaces (where γ is the best polynomial-time approximation factor for the

problem in the batch setting). This factor of 2γ(1 + ǫ) is well-known in the literature,

see [10, 9, 24] for details.

2.2.2 Constant-Approximation Algorithm

Let Pi denote the prefix of the stream {p1, . . . , pi}. The entire stream is then Pn. Consider

the moment when the first i points have arrived, meaning that the prefix Pi is the current

set of arrived points. The algorithm A of [9] provides an (O(1), O(log n))-approximation

of Pi in the following sense. Define f0 : ∅ → ∅ as the null map, and define Bi = image(fi).
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Upon receiving point pi, algorithm A defines a map fi : Bi−1 ∪ {pi} → Bi. We define

πi : Pi → Bi by πi(pj) = fi(fi−1(. . . (fj(pj)) . . .)) for each 1 ≤ j ≤ i. These mappings

have an essential gaurantee stated in the following lemma.

Theorem 2.2.5 ([9]). For every 1 ≤ i ≤ n, after receiving Pi, Algorithm A(k, n, δ)

defines a function fi such that with probability 1− δ, using the above definition of πi, the

bound
∑

p∈Pi
D(p, πi(p)) ≤ αOPTk(Pi) holds. The algorithm deterministically requires the

storage of O(k(log n+ log(1/δ))) points.

2.2.3 Offline Coreset Construction

We briefly describe the offline coreset construction. The proof of correctness can be found

in Sections 2.4 and 2.5. It is this construction that we will maintain in the streaming

setting.

The sensitivity of a point p ∈ P is defined as:

s(p) = max
Z∈Xk

D(p, Z)
∑

q∈P D(q, Z)

Notice that 0 ≤ s(p) ≤ 1. We give an upper bound s′(p) ∈ [s(p), 1]. Define the total

sensitivity t =
∑

p∈P s(p). Likewise, we give an upper bound t′ ≥ t where t′ =
∑

p∈P s
′(p)

and will show that t = O(k). The sampling probability distribution at point p is set

to s′(p)/t′. We take an i.i.d. sample from P of size m for any m ≥ ct′ǫ−2(log n log t′ +

log(1/δ)) where c is a constant.

Let R be the union of these m i.i.d. samples, and then define a weight function

v : R → [0,∞) where v(r) = (|R|s′(r))−1. It is proven as one of our main theorems

(Theorem 2.5.6) that the weighted set (R, v) is a (k, ǫ)-coreset for P .

2.2.4 Bounding the Sensitivity

Consider the prefix Pi which is the input after the first i points have arrived. Using

Algorithm A we obtain an (α, β)-approximation πi where α = O(1) and β = O(log n).
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Recall that Bi is the image of this approximation, i.e. Bi = image(πi(Pi)).

Running an offline (γ, λ)-approximation algorithm on Bi, we obtain a multiset Ci of

at most λk distinct points. Let p′ denote the element of Ci nearest to πi(p) (this is the

element of Ci that p gets mapped to when we pass from Pi → Bi → Ci). The following

lemma implies that
∑

p∈P w(p)D(p, p′) ≤ ᾱOPT(P ) where ᾱ = ρα+2ρ2γ(α+1). This is an

observation used widely in the literature [10, 9], but we include a proof for completeness.

Lemma 2.2.6. Let B be a (α, β)-approximation of P , and let C be a (γ, λ)-approximation

of B. Then C is a (ρα + 2ρ2γ(α + 1), λ)-approximation of A.

Proof. Let π : P → B be the (α, β)-approximation of P and let t : B → C be the

(γ, λ)-approximation of B. In the following, all sums will be taken over all p ∈ P . The

hypotheses state that
∑
D(p, π(p)) ≤ αOPT(P ) and

∑
D(π(p), t(π(p))) ≤ γOPT(B). Let

P ∗ be an optimal clustering of P , that is
∑
D(p, P ∗) = OPT(P ). Then 1

2
OPT(B) ≤

∑
D(π(p), P ∗) ≤ ρ

∑
(D(π(p), p) +D(p, P ∗)) ≤ ρ(α + 1)OPT(P ). The factor of 1

2
comes

from the fact that OPT(B) is defined using centers restricted to B (see [24] for details).

We now write
∑
D(p, t(π(p))) ≤ ρ

∑
(D(p, π(p)) + D(π(p), t(π(p)))) ≤ (ρα + 2ρ2γ(α +

1))OPT(P ) as desired.

We now prove the following lemma which gives us our sampling probability s′(p).

Recall that for the construction to succeed, the sampling probability s′(p) must be at

least the sensitivity s(p) (defined in the previous subsection). Since we focus on a single

iteration, we drop subscripts and write C = Ci and P = Pi. Let p 7→ p′ be an (ᾱ, λ)-

approximation of P . Define P (p) = {q ∈ P : q′ = p′} to be the cluster containing

p.

Lemma 2.2.7. Let the map p 7→ p′ define an (ᾱ, λ)-approximation for the k-median

clustering of P . For every point p ∈ P :

s(p) ≤
ρᾱD(p, p′)
∑

q∈P D(q, q′)
+
ρ2(ᾱ + 1)

|P (p)|
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Proof. For an arbitrary Z ∈ X k we need to provide a uniform bound for

D(p, Z)
∑

q∈P D(q, Z)
≤

ρD(p, p′)
∑

q∈P D(q, Z)
+

ρD(p′, Z)
∑

q∈P D(q, Z)

≤
ᾱρD(p, p′)
∑

q∈P D(q, q′)
+

ρD(p′, Z)
∑

q∈P D(q, Z)

(2.1)

where the second inequality holds because
∑

q∈P D(q, q′) ≤ ᾱOPT(P ) ≤
∑

q∈P D(q, Z).

To bound the last term, recall that q′ = p′ for all q ∈ P (p) so:

D(p′, Z)|P (p)| =
∑

q∈P (p)

D(p′, Z) =
∑

q∈P (p)

D(q′, Z)

≤ ρ
∑

q∈P (p)

(D(q′, q) +D(q, Z))

≤ ρ
∑

q∈P

D(q′, q) + ρ
∑

q∈P (p)

D(q, Z)

≤ ρᾱ
∑

q∈P

D(q, Z) + ρ
∑

q∈P (p)

D(q, Z)

≤ ρ(ᾱ + 1)
∑

q∈P

D(q, Z)

Dividing by |P (p)|
∑

q∈P D(q, Z) gives

D(p′, Z)
∑

q∈P D(q, Z)
≤
ρ(ᾱ + 1)

|P (p)|

Substituting this in (2.24) yields the desired result.

We therefore define our upper bound s′(p) as in the lemma. An immediate but

extremely important consequence of Lemma 2.2.7 is that t′ =
∑

p∈P s
′(p) = ρᾱ+ ρ2(ᾱ+

1)k ≤ 3ρ2ᾱk. This can be seen by directly summing the formula given in the lemma.

2.2.5 Streaming Algorithm

We now state Algorithm 1, which we then prove maintains a coreset. To use Lemma 2.2.7

to determine s′(p), we will compute the cluster sizes |P (p)| and estimate the clustering
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cost
∑

q∈P D(q, q′). We must bound the clustering cost from below because we need an

upper-bound of s(p). On Line 9, L is an estimate of the cost of clustering P to the centers

C. On Line 4, c is the absolute constant used in Theorem 2.5.6.

Algorithm 1: Input: stream of n points in a ρ-metric space, ǫ > 0, k ∈ N, maximum
failure probability δ > 0

1 Initilization:

2 R← ∅
3 t′ ← ρᾱ + ρ2(ᾱ + 1)k
4 x← 2cǫ−2(log n log t′ + log(1/δ))
5 Initialize A(k, n, δ)
6 Update Process: after receiving pi
7 (Bi, fi)← A.update(pi)
8 C ← an (γ, λ)-approximation of Bi

9 L← D(pi, C) + ᾱ−1(1 + ǫ)−1
∑

r∈R v(r)D(r, C)
10 for r ∈ R do

11 πi(s)← fi(πi−1(r))

12 z(r)← ρᾱD(p,p′)
L

+ ρ2(ᾱ+1)
|P (p)|

13 s′(r)← min(s′(r), z(r))

14 for r ∈ R do

15 if u(r) > xs′(r) then
16 Delete r from R

17 u(pi)← uniform random from [0, 1)
18 if u(pi) ≤ xs′(pi) then
19 Add pi to R
20 πi(pi)← fi(pi)

21 Query Process:

22 for each r ∈ R do

23 v(r)← (|R|s′(r))−1

Algorithm 1 outputs (R, v) such that point p is sampled with probability xs′(p) where

x is defined on Line 4. For each p that has arrived, the value of s′(p) is non-increasing

(notice that it is defined as the minimum of itself and a new value on Line 13), so it is

possible to maintain this in the streaming setting since once the deletion condition on

Line 15 becomes satisfied, it remains satisfied forever.

We now proceed with the proof of Theorem 1. Since the probability of storing point

p is xs′(p), the expected space of Algorithm 1 is xt′. By Lemma 2.2.7 that implies

t′ ≤ 3ρ2ᾱk, we then bound the expected space as 2cǫ−2(log n log t + log(1/δ))(3ρ2ᾱk).
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Simplifying notation by defining an absolute constant c̃ (a function of c and ᾱ), we write

this expected space as c̃ρ2ǫ−2k log(ρk) log n log(1/δ). By a Chernoff bound, the high-

probability gaurantee follows by replacing c̃ with 2c̃.

Proof of Theorem 1. The proof of Theorem 1 can be divided into the following pieces:

1. For correctness (to satisfy the bound given in Lemma 2.2.7, we must show that

L ≤
∑

p∈Pi
D(p, p′). For space, it is important that L is not too small. In particular,

the space grows as 1/L. We show that L is a ǫ-approximation of the true cost.

2. The value of |P (p)| can be computed exactly for every p. This is needed on Line 12.

3. The construction of Algorithm 1 that samples p with probability xs′(p) can be

processed to be identical to the offline construction of Subsection 2.2.3 that takes an

i.i.d. sample of size xt′ from the distribution where p is given sampling probability

s′(p)/t′.

1: To lower bound the clustering cost, inductively assume that we have a (k, ǫ)-coreset

Si−1 of Pi−1. Note that pi is a (k, ǫ)-coreset of itself (in fact a (k, 0)-coreset of itself),

so Si−1 ∪ {pi} is a (k, ǫ)-coreset of Pi. Let L be the cost of clustering Si−1 ∪ {pi} to C.

Therefore the cost of clustering Pi to C is in the interval [(1− ǫ)L, (1 + ǫ)L]. Recall that

the upper bound on s(p) from Lemma 2.2.7 is:

ρᾱD(p, p′)
∑

q∈P D(q, q′)
+
ρ2(ᾱ + 1)

|P (p)|

By using L in place of the true cost
∑

p∈Pi
D(p, p′) for defining s′(p), the value of t′ =

∑
p∈Pi

s′(p) increases to at most ρᾱ
(
1+ǫ
1−ǫ

)
+ ρ2(ᾱ + 1)λk = O(ρ4k). Here there is no

dependence on ǫ since we assume ǫ ≤ 1/2, so 1+ǫ
1−ǫ

is bounded by an absolute constant.

2: Computing |P (p)| is straightforward. Define w(b) = |{p ∈ P : π(p) = b}| and then

let h : B → C be the (γ, λ)-approximate clustering. Then |P (p)| =
∑

b∈h−1(p′)w(b).

3: In Algorithm 1, we sample point p with probability s′(p) to maintain a set M of

non-deterministic size. We now argue that this can be converted to the desired coreset,
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where an i.i.d. sample of size m is taken from the distribution s′/t′. First, by a Chernoff

bound, |R| ≥ E[|R|]/2 with probability 1 − exp(−E[|R|]/8). Since E[|R|] = xt′ =

(2cǫ−2 log(ρk) log n log(1/δ)) · (ρᾱ+ρ2(ᾱ+1)k) = Ω(log(n)), we have that |R| ≥ E[|R|]/2

with probability 1−O(1/n). Then by the union bound, this inequality holds true at each

of the n iterations of receiving a point throughout the entire stream. Recall that for the

offline coreset construction outlined in Subsection 2.2.3 to hold, we need an i.i.d. sample

of at least m = ct′ǫ−2(log n log t′ + log(1/δ)). By Lemma 2.2.7 t′ = ρᾱ + ρ2(ᾱ + 1)k,

and so by plugging in values we see that E[|R|] = xt′ ≥ 2m. Having that |R| ≥ m with

probability 1−O(1/n), it is well-known (see [16] for example) that this can be converted

to the required i.i.d. sample.

2.3 Preliminaries for Offline Coreset Construction

2.3.1 Query space

In our framework, as in [19], we are given a finite input set P of items that are called

points, a (usually infinite) set Q of items that are called queries, and a cost function f

that maps each pair of a point in P and a query in Q to a real number f(p, q). The cost

of the set P to this query is the sum over all the costs,

f̄(P, q) :=
∑

p∈P

f(p, q).

More generally, each input point might be given a multiplicative weight w(p), and the

overall cost of each point is then reweighed, so that

f̄(P,w, q) =
∑

p∈P

w(p)f(p, q).
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The tuple (P,w, f,Q) is thus define our input problem and we call it a query space. In

the case that the points are unweighted we can simply define w(p) = 1 for every p ∈ P .

However, for the following sections (but not in later sections), we assume that the

weights in w are non-negative. We might also assume that w is a distribution vector,

i.e., that its weights sum to one and thus represent a distribution. The cost f̄(P,w, q) is

then the expected value of f(p, q) for a point that is sampled at random from P . For the

unweighted case we thus have w(p) = 1/n for each point, and

f̄(P,w, q) =
1

n

∑

p∈P

f(p, q)

is the average cost per point. The cost function f is usually also scaled as will be explained

later, to have values f(p, q) between 0 and 1, or −1 to 1.

Example 1: Consider the following problem where the input is a set P of n points in

R
d. Given a ball B = B(c, r) of radius r that is centered in c ∈ R

d, we wish to compute

the fraction of input points that are covered by this ball, |P∩B|

|P |
. More generally, the query

is a set of k balls, and we wish to compute the fraction of points in P that are covered by

the union of these balls. In this case, each input point p ∈ P has a weight w(p) = 1/n,

the set Q of queries is the union over every k balls in R
d,

Q =
{
B(c1, r1) ∪ · · · ∪B(ck, rk) | ∀i ∈ [k] : ci ∈ R

d, ri ≥ 0
}
, (2.2)

and the cost f(p, q) for a query q = {B1 ∪ · · · ∪Bk} ∈ Q is either 1/n if p is inside one

of the balls of q, and 0 otherwise. The overall cost f̄(P,w, q) =
∑

p∈P f(p, q) is thus the

fraction of points of P that are covered by the union of these k balls.

The motivation of defining query spaces is usually to solve some related optimization

problem, such as the query q that minimizes the cost f̄(P,w, q). In this case, the require-

ment to approximate every query in Q is too strong, and we may want to approximate

only the optimal query in some sense. To this end, we may wish to replace the set Q

by a function that assigns a different set of queries Q(S) for each subset S of P . For
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the correctness of our results, we require that this function Q will be monotonic in the

following sense: if T is a subset of S then Q(T ) must be a subset of Q(S). If we wish to

have a single set Q(P ) of queries as above, we can simply define Q(S) := Q(P ) for every

subset S of P , so that the desired monotonic property will hold.

Example 2: For the set Q in (2.2), define Q(S) to be the set of balls in R
d such that

the center of each ball is a point in S. More generally, we can require that the center of

each ball will be spanned by (i.e., linear combination of) at most 10 points from S.

We now conclude with the formal definitions for the above discussion.

Definition 2.3.1 (weighted set). Let S be a subset of some set P and w : P → R be a

function. The pair (S,w) is called a weighted set. If
∑

p∈P w(p) = 1 and w(p) ≥ 0 for

every p ∈ P then w is called a distribution.

Definition 2.3.2 (query space). [19]. Let Q be a function that maps every set S ⊆ P

to a corresponding set Q(S) called queries, such that Q(T ) ⊆ Q(S) for every T ⊆ S. Let

f : P ×Q(P )→ R be a cost function. The tuple (P,w,Q, f) is called a query space. We

denote the cost of a query q ∈ Q(P ) by

f(P,w, q) :=
∑

p∈P

w(p)f(p, q).

Instead of using weights (or non-uniform distribution) we can define g(p, q) = n ·

w(p)f(p, q) and u(p) = 1/n for every p ∈ P , i.e., a uniform distribution, to get the same

expectation

g(P, u, q) = f(P,w, q) =
∑

p∈P

w(p)f(p, q).

However, when we try to approximate this expected value e.g. using uniform or non-

uniform sampling, bounds such as the Hoeffding bound implies that the size of the sample

depends on the range of the function f or g, but not on their corresponding distribution

(weights). Since we can assign many pairs of distributions and functions that yield the

same expected value g(P, u, q), f(P,w, q) and so on, the natural question is what pair
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will minimize the range of the corresponding function?

In the next sections we develop tools that aim to answer this question.

2.3.2 (ε, ν)-Approximation

Consider the query space (P,w,Q, f) in Example 1 for k = 1, and suppose that we wish

to compute a set S ⊆ P , such that, for every given ball B, the fraction of points in P

that are covered by B, are approximately the same as the fraction of the points that are

covered in S, up to a given small additive percentage error ε > 0. That is, for every ball

B,
∣
∣
∣
∣
|P ∩ B|

|P |
−
|S ∩ B|

|S|

∣
∣
∣
∣ ≤ ε.

By defining the weight u(p) = 1/|S| for every p ∈ S, this implies that for every query

(ball) q = B,

∣
∣f̄(P,w, q)− f̄(S, u, q)

∣
∣ =

∣
∣
∣
∣
∣

∑

p∈P

1

|P |
· f(p, q)−

∑

p∈S

1

|S|
· f(p, q)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
|P ∩ B|

|P |
−
|S ∩B|

|S|

∣
∣
∣
∣ ≤ ε.

A weighted set (S, u) that satisfies the last inequality for every query q ∈ Q(S) is called an

ε-approximation for the query space (P,w, f,Q). Note that the above example assumes

that the maximum answer to a query q is f(p, q) ≤ 1. Otherwise, the error guaranteed

by an ε-approximation for a query q is εmaxp∈P |f(p, q)|.

The above inequalities implies that if a ball covers a fraction of at least ε points from

P (i.e., at least εn points), then it must cover at least one point of P . If we only ask for

this (weaker) property from S then S is called an ε-net. To obtain the new results of this

paper, we use a tool that generalizes the notion of ε-approximation and ε-net, but less

common in the literature, and is known as (ε, ν)-approximation [31].

By letting a = f̄(P,w, q) and b = f̄(S, u, q), an ε-approximation implies that |a−b| ≤ ε

for every query q, and ε-net implies that b > 0 if a ≥ ε. Following [32], we define below a

distance function that maps a positive real |a− b|ν for each pair of positive real numbers
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a and b. A specific value ν will imply |a− b|ν ≤ ε, i.e., that S is an ε-approximation, and

a different value of ν will imply that S is an ε-net for P . This is formalized as follows.

Definition 2.3.3 ((ε, ν)-approximation [32]). Let ν > 0. For every a, b ≥ 0, we define

the distance function

|a− b|ν =
|a− b|

a+ b+ ν
.

Let (P,w,Q, f) be a query space such that w is a distribution and f(p, q) ∈ [0, 1] for every

p ∈ P and q ∈ Q(p). For ε > 0, a weighted set (S, u) is an (ε, ν)-approximation for this

query space, if for every q ∈ Q(S) we have

∣
∣f(P,w, q)− f(S, u, q)

∣
∣
ν
≤ ε. (2.3)

Corollary 2.3.4 ( [32, 28]). Let a, b ≥ 0 and τ, ν > 0 such that |a− b|ν ≤ τ . Let ε > 0.

Then

(i) (ε-sample/approximation). If τ = ε/4 and ν = 1/4 then

|a− b| ≤ ε.

(ii) (ε-net). If τ = 1/4 and ν = ε then

(a ≥ ε ⇒ b > 0).

(iii) (Relative ε-approximation). Put µ > 0. If ν = µ/2 and τ = ε/9 then

(1) a ≥ µ ⇒ (1− ε)a ≤ b ≤ (1 + ε)a.

(2) a < µ ⇒ b ≤ (1 + ε)µ.
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2.3.3 Constructing ε-Approximations

Unlike the notion of coresets in the next section, the idea of ε-approximations is known for

decades [39, 34]. In particular, unlike coresets, ε-approximations and (ε, ν)-approximations

in general, can be constructed using simple uniform random sampling of the points. The

size of the sample depends linearly on the complexity of the queries in the sense soon to

be defined in this section.

Intuitively, and in most practical cases, including the examples in this thesis, this

complexity is roughly the number of parameters that are needed to define a single query.

For example, a ball in R
d can be defined by d+1 parameters: its center c ∈ R

d, which is

defined using d numbers and the radius r > 0 which is an additional number. A query of

k balls is similarly defined by k(d + 1) parameters. However, by the set theory we have

|R| = |Rm| for every integer c ≥ 1, which means that we can encode every m integers to

a single integer. We can thus always reduce the number of parameters that are needed

to define a query from m to 1 by redefining our cost function f and re-encoding the set

of queries.

There are also natural examples of query spaces whose cost function f is defined by

one parameter, but the size of the sampling needed for obtaining an ε-approximation is

unbounded, e.g., the query space where f(p, q) = sign(sin(pq)) and P = Q = R
d, where

sign(x) = 1 if x > 0 and 0 otherwise. Hence, a more involved definition of complexity is

needed as follows.

While the number of subsets from a given set of n points is 2n, its can be easily verified

that the number of subsets that can be covered by a ball in R
d is roughly nO(d). The

exponent O(d) is called the VC-dimension of the family of balls in R
d. The following

definition is a simple generalization by [19] for query spaces where the query set is a

function and not a single set. The original definition of pseudo-dimension can be found

e.g. in [32] and is very similar to the definition of VC-dimension given by [39] as well as

many other similar measures for the complexity of a family of shapes.
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Definition 2.3.5 (dimension [19]). For a query space (P,w,Q, f) and r ∈ [0,∞) we

define

range(q, r) = {p ∈ P | w(p) · f(p, q) ≤ r} .

The dimension of (P,w,Q, f) is the smallest integer d such that for every S ⊆ P we have

∣
∣ {range(q, r) | q ∈ Q(S), r ∈ [0,∞)}

∣
∣ ≤

(
|S|

d

)d

.

The main motivation of the above definition, is that it tells us how many samples we

need to take uniformly at random from the input set P , to get an (ε, ν)-approximation

(S, u) as follows. The original and famous version for the theorem below is by [35] and

the bound was improves and proven to be optimal by [32]. Both versions are for the case

of a constant function Q (i.e., a set of queries or ranges). In [19] it was shown that the

same bounds hold for the case where Q is a function, which is used e.g. to construct

coresets of size independent of the dimension of the input points as will be shown later.

Theorem 2.3.6 ([32, 19]). Let (P,w,Q, f) be a query space of dimension d such that w

is a distribution and f : P → [0, 1], and let ε, δ, ν > 0. Let S be a random sample from

P , where every point p ∈ P is sampled i.i.d. with probability w(p). Let u be a uniform

distribution over S, i.e., u(p) = 1
|S|

for every p ∈ S. Then there is a constant c > 0 such

that if

|S| ≥
c

ε2ν

(

d log

(
1

ν

)

+ log

(
1

δ

))

then, with probability at least 1− δ, (S, u) is an (ε, ν)-approximation for the query space

(P,w,Q, f).
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2.4 Improved Coreset Framework

2.4.1 Improved (ε, ν)-approximations

In this section we show the first technical result of this part: that the additive error

εmaxp∈P |f(p, q)| in (2.3) can be replaced by ε, and the assumption
∑

i=1wi = 1 in

Theorem 2.3.6 can be removed. The condition for this to work is that the total importance

value t, as defined below, is small. More precisely, the required sample size will be

near-linear with t. Also, the uniform sampling in Theorem 2.3.6 will be replaced by non-

uniform sampling with a distribution that is proportional to the importance of each point.

This result is essentially a generalization and significant simplification of the framework

in [19] that used ε-approximations for constructing coresets. Maybe more importantly:

using the idea of (ε, ν)-approximations we are able to show that the sample size is near

linear in t while in [19] it is quadratic in t. For some applications, such an improvement

means turning a theoretical result into a practical result, especially when t is close to
√
n.

We define the importance of a point as the maximum absolute weighted cost w(p)f(p, q)

of a point p, over all the possible queries q, i.e,

s(p) := w(p) max
q∈Q(P )

f(p, q),

and hope that this sum is small (say, constant or log n), in other words, that not all the

points are very important. More precisely, if the sum t =
∑

p∈P s(p) of these costs is 1,

then we prove below that a new query space (P,w′, Q, f ′) can be constructed, such that

an (ε, ν)-approximation (S, u) for the new query space would imply

∣
∣f(P,w, q)− f(S, u, q)

∣
∣
ν
≤ ε. (2.4)

That is, the additive error in (2.3) is reduced as desired.

The new query space (P,w′, Q, f ′) is essentially a re-scaling of the original weights

by their importance, w′(p) = s(p). To make sure that the cost of each query will still
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be the same, we need to define f ′ such that w(p)f(p, q) = w′(p)f ′(p, q). This implies

f ′(p, q) := w(p)f(p, q)/s(p). While the new cost f̄ ′(P,w′, q) is the same as the old one

f̄(P,w, q) for every query q, the maximum value of |f ′(p, q)| is 1, by definition of s(p),

even if |f(p, q)| is arbitrarily large. Hence, the additive error ε|f ′(p, q)| in (2.3) reduced

to ε in (2.4).

More generally, an (ε, ν/t)-approximation for (P,w′, Q, f ′) would yield (2.4). Using

the uniform sample construction of Theorem 2.3.6, this implies that to get (2.4) we need

to increase the sample size by a factor that is nearly linear in t.

A crucial difference between (2.12) and 2.3 is that w is not necessarily a distribution

and its weights are unbounded.

Theorem 2.4.1. Let

• (P,w,Q, f) be a query space where f and w are non-negative functions.

• s : P → (0,∞) such that s(p) ≥ w(p)maxq∈Q(P ) f(p, q).

• t =
∑

p∈P s(p).

• w′ : P → (0, 1] be a distribution such that w′(p) := s(p)/t.

• f ′ : P ×Q(P )→ [0, 1] be defined as f ′(p, q) :=
w(p)f(p, q)

s(p)
.

• (S, u) be an (ε, ν/t)-approximation for (P,w′, Q, f ′).

• u′(p) = u(p) · w(p)
w′(p)

for every p ∈ S.

Then for every q ∈ Q(S),

|f(P,w, q)− f(S, u′, q)|ν ≤ ε. (2.5)
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Proof. Put q ∈ Q(S).

|f(P,w, q)− f(S, u′, q)|ν =

∣
∣
∣
∣
∣

∑

p∈P

w(p)f(p, q)−
∑

p∈S

u(p)w(p)
s(p)
t

· f(p, q)

∣
∣
∣
∣
∣
ν

(2.6)

=

∣
∣
∣
∣
∣
t
∑

p∈P

s(p)

t
· w(p) ·

f(p, q)

s(p)
− t
∑

p∈S

u(p) · w(p) ·
f(p, q)

s(p)

∣
∣
∣
∣
∣
ν

=

∣
∣
∣
∣
∣
t
∑

p∈P

w′(p) · f ′(p, q)− t
∑

p∈S

u(p) · f ′(p, q)

∣
∣
∣
∣
∣
ν

(2.7)

=

∣
∣
∣
∣
∣

∑

p∈P

w′(p) · f ′(p, q)−
∑

p∈S

u(p) · f ′(p, q)

∣
∣
∣
∣
∣
ν/t

(2.8)

≤ ε, (2.9)

where (2.6) is by the definition of u′, (2.7) is by the definition of f ′, (2.8) follows since

for every t > 0 and a, b ≥ 0,

|ta− tb|ν =
|ta− tb|

ta+ tb+ ν
=

|a− b|

a+ b+ ν/t
= |a− b|ν/t, (2.10)

and (2.9) is by (2.3) and the definition of S in the sixth bullet of the statement.

Corollary 2.4.2. Let

• (P,w,Q, f) be a query space where w is a non-negative function and f : P×Q(P )→

[a, b] for a, b ∈ R where a 6= b.

• f(p,⊥) := b for every p ∈ P .

• Q′(S) = Q(S) ∪ {⊥} for every S ⊆ P .

• s : P → (0,∞) such that s(p) ≥ w(p)maxq∈Q(P )

(
f(p,q)−a

b−a
+ 1
)

• t =
∑

p∈P s(p).

• w′ : P → (0, 1] be a distribution such that w′(p) := s(p)/t.

• f ′ : P ×Q′(P )→ [0, 1] be defined as f ′(p, q) :=
w(p)(g(p, q)− a)

(b− a)s(p)
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• (S, u) be an (ε/(4(b− a)), 1/(4t))-approximation for (P,w′, Q′, f ′) and ε ∈ (0, 1).

• u′(p) = u(p) · w(p)
w′(p)

for every p ∈ S.

Then for every q ∈ Q(S),

|f(P,w, q)− f(S, u′, q)| ≤ ε+
ε|a|

b− a
. (2.11)

Moreover,

|
∑

p∈P

w(p)−
∑

p∈S

u′(p)| ≤
ε

b− a
.

Proof. Let g : p×Q′(P )→ [0, 1] such that g(p, q) = f(p,q)−a
b−a

. By letting ν = 1/4, τ = ε/4

and replacing Q with Q′ in Theorem 2.4.1 and Corollary2.3.4 we obtain that for every

q ∈ Q′(S) we have

|g(P,w, q)− g(S, u′, q)| ≤ ε/(b− a). (2.12)

Hence, for every q ∈ Q′(S),

|
∑

p∈P

w(p) ·
f(p, q)− a

b− a
−
∑

p∈S

u′(p) ·
f(p, q)− a

b− a
| ≤ ε/(b− a). (2.13)

For the special case q = ⊥, where f(p, q) = b for every p ∈ P , we obtain

∣
∣
∣
∣
∣

∑

p∈P

w(p)−
∑

p∈S

u′(p)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∑

p∈P

w(p) ·
f(p, q)− a

b− a
−
∑

p∈S

u′(p) ·
f(p, q)− a

b− a

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

p∈P

w(p)g(p, q)−
∑

p∈S

u′(p)g(p, q)

∣
∣
∣
∣
∣

= |g(P,w, q)− g(S, u′, q)| ≤ ε/(b− a).

(2.14)
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We thus have, for every q ∈ Q(S),

|f(P,w, q)− f(S, u′, q)| = |
∑

p∈P

w(p)f(p, q)−
∑

p∈S

u′(p) · f(p, q)|

= (b− a)|
∑

p∈P

w(p)
f(p, q)− a

b− a
−
∑

p∈S

u′(p)
f(p, q)− a

b− a
+
∑

p∈P

a(w(p)− u′(p))

b− a
|

≤ (b− a)|
∑

p∈P

w(p)
f(p, q)− a

b− a
−
∑

p∈S

u′(p)
f(p, q)− a

b− a
|+ |a| · |

∑

p∈P

(w(p)− u′(p))| (2.15)

≤ ε+
|a|ε

b− a
, (2.16)

where (2.15) is by the triangle inequality, and (2.16) is by (2.13) and (2.14).

Plugging Theorem 2.3.6 in Theorem 2.4.2 yields our main technical result that would

imply smaller coresets in the next sections.

Theorem 2.4.3. Let (P,w,Q, f) be a query space of dimension d and s, t be defined as

in Theorem 2.4.2. Let ε > 0 and δ ∈ (0, 1). Let S be a random sample where every point

p ∈ P is sampled i.i.d. from P with probability s(p)/t. Assign a weight u′(p) = tw(p)
s(p)·|S|

for

every p ∈ S. There is a constant c > 0 such that if

|S| ≥
ct(b− a)2

ε2

(

d log t+ log

(
1

δ

))

,

then, with probability at least 1− δ,

|f(P,w, q)− f(S, u′, q)| ≤ ε,

and

|
∑

p∈P

w(p)−
∑

p∈S

u′(p)| ≤
ε

b− a
.

Proof. By Corollary2.4.2, it suffices to prove that (S, u′) is an (ε/(4(b−a)), 1/4t)-approximation

for (P,w′, Q, f ′). Indeed, since
∑

p∈P w
′(p) = 1 and S is a random sample where p ∈ P

is sampled with probability w′(p) = s(p)/t, the weighted set (S, u) is, with probability at

58



least 1 − δ, an (ε/(4(b − a)), 1/(4t))-approximation for (P,w′, Q, f ′) by Theorem 2.3.6,

for choosing a sufficiently large constant c > 0.

While Theorem 2.3.6 suggests to construct an ε-approximation simply by taking a

uniform random sample from P , Theorem 2.4.3 requires us to take non-uniform sample

where the distribution is defined by the importance s(·). Bounding these importances

such that the sum t =
∑

p∈P s(p) of importances will be small raise a new optimization

problem that, as we will see in the next sections, might be not easy at all to solve. So

what did we gain by proving Theorem 2.3.6 (or the framework of [19] in general)?

Most of the existing papers for constructing coresets essentially had to bound the

total importance of the related problem anyway. However, without Theorem 2.3.6, their

proofs also had to deal with complicated terms that involved ε and include sophisticated

probability arguments. Essentially each paper had to re-prove in some sense the very

involved proofs in [39, 32] that were researched for decades, as well as the mathematics

behind the usage of Definition 2.3.3. Beside the complicated proofs, the final bounds,

the dependency on ε and δ, as well as the coreset construction algorithm, were usually

sub-optimal compared to Theorem 2.3.6. On the contrary, bounding the total importance

allows us to focus on a deterministic results (no δ involved) and the terms s(p) can be

approximated up to constant factors (and not (1 + ε)-factors). This is demonstrated in

Section 2.5.

2.4.2 Improved Coreset Framework

While the result in the previous section can be used to improve the quality of (ε, ν)-

approximation in general, its main motivation is to construct the more recent type of

data structures that is sometimes called coresets.

As explained in Theorem 2.3.6, ε-approximation and (ε, ν)-approximation in general,

can be easily computed using uniform random sampling. While ε-approximations are

useful for hitting sets, where we wish to know how much points are covered by a set of
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shapes, they are less relevant for shape fitting, where we wish to approximate the sum

of distances of the input points to a given query shape or model. The main reason is

that in shape fitting the maximum contribution of a point to the overall cost (sum of

covered points) is bounded by 1, while in general its distance to the shape is unbounded.

Using the notation of the previous section: the importance of each point is the same, so

Theorem 2.4.3 yields uniform sample S and the same error as Theorem 2.3.6.

Example: In the Euclidean k-means problem the input is a set P of n points in R
d.

For simplicity, assume that the set is unweighted, that is w(p) = 1/n for every p ∈ P . A

query in this context is a set of points (centers) in R
d so Q(P ) is the family (set) of k balls

in R
d. We denote the squared Euclidean distance from a point p ∈ P to a center c ∈ R

d

by D(p, c) = ‖p− c‖22. The distance from p to its closest center in C = {c1, · · · , ck} is

then

D(p, C) := min
c∈C

D(p, c) = min
c∈C
‖p− c‖22 .

By defining g(p, C) = D(p, C) we obtain the query space (P,w, g,Q), where ḡ(P,w,C)

is the average squared distances to a given (query) set C of k centers. Our goal is

to compute a weighted subset (S, u) such that ḡ(P,w,C) will approximate the average

squared distances ḡ(S, u, C) for every set of centers.

Suppose that (S, u) is an ε-approximation of (P,w,Q, g). Then

|ḡ(P,w,C)− ḡ(S, u, C)| ≤ εmax
p∈P

g(p, C). (2.17)

That is, ∣
∣
∣
∣
∣

1

n

∑

p∈P

D(p, C)−
∑

p∈P

u(p)D(p, C)

∣
∣
∣
∣
∣
≤ εmax

p∈P
D(p, C). (2.18)

In other words, the additive error depends on the maximum distance between a point to

a given center, which can be arbitrary large, unless we assume, say, that both the input

points and centers are inside the unit cube. Theorem 2.4.3 would not improve this bound

by itself, since the importance of each point, maxc∈Q(P )D(p, C) is unbounded.

60



In this section we wish to compute a weighted subset (S, u) that will approximate the

average distance ḡ(P,w,C) for every query, up to a multiplicative factor of 1± ε without

further assumptions. Such a set is sometimes called a coreset as follows.

Definition 2.4.4 (ε-coreset). For an error parameter ε ∈ (0, 1), the weighted set (S, u)

is an ε-coreset for the query space (P,w,Q, g) if S ⊆ P and for every q ∈ Q(S),

(1− ε)ḡ(P,w, q) ≤ ḡ(S, u, q) ≤ (1 + ε)ḡ(P,w, q).

An equivalent definition of an ε-coreset, is that the additive error εmaxp∈P g(p, C)

in (2.17) is replaced by εḡ(P,w, q). That is, for every q ∈ Q(S)

|ḡ(P,w, q)− ḡ(S, u, q)| ≤ εḡ(P,w, q).

ε-coreset implies that not only the average, but also the sum of squared distances (or

sum of costs, in general) are preserved up to 1± ε. Note also that simply multiplying the

weight of each point in S by (1− ε) would yield a one sided error,

ḡ(P,w, q) ≤ ḡ(S, u, q)| ≤
1 + ε

1− ε
· ḡ(P,w, q) = 1 +

2ε

1− ε
· ḡ(P,w).

If we assume in addition that ε ∈ (0, 1− 2/c) for some c > 2, then 1− ε ≥ 2/c and thus

ḡ(P,w, q) ≤ ḡ(S, u, q)| ≤ (1 + cε)ḡ(P,w).

Hence, an ε/c-coreset (S, u) implies,

ḡ(P,w, q) ≤ ḡ(S, u, q) ≤ (1 + ε)ḡ(P,w, q). (2.19)

For example, if ε ∈ (0, 1/2), then an (ε/4)-coreset would yield (2.19), by substituting

c = 4.
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The main observation for getting the desired multiplicative approximation is that a

multiplicative approximation of εḡ(P,w, q), can be turned into an additive approximation

of ε by replacing g(p, q) with its scaled version

f(p, q) =
g(p, q)

ḡ(P,w, q)
.

To get a coreset for g as in (2.19), it suffices to have an ε-approximation for f . In addition,

for many problems, while the importance s(p) of a point in p is unbounded with respect

to g, it is bounded with respect to f . We formalize this observation as follows.

Corollary 2.4.5. Let (P,w,Q, g) be a query space for some non-negative function g, and

define f : P ×Q(P )→ R such that for every p ∈ P and q ∈ Q(P ) we have

f(p, q) =
g(p, q)

ḡ(P,w, q)
.

Let (S, u′) be a

(
ε

4
,
1

4t

)

-approximation for (P,w′, Q, f ′) as defined in Theorem 2.4.1.

Then (S, u′) is an ε-coreset for (P,w,Q, g), i.e., for every q ∈ Q(S)

|ḡ(P,w, q)− ḡ(S, u, q)| ≤ εḡ(P,w, q).

Proof. Put q ∈ Q(S), τ = ε/4 and ν = 1/4. Applying Theorem 2.4.1 with ν yields

|f̄(P,w, q)− f̄(S, u′, q)|ν ≤ τ.

Since f̄(P,w, q) = 1, this implies

∣
∣
∣
∣1−

ḡ(S, u′, q)

ḡ(P,w, q)

∣
∣
∣
∣
ν

= |f̄(P,w, q)− f̄(S, u′, q)|ν ≤ τ.
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Substituting a = 1, and b = f̄(S, u′, q) in Corollary 2.3.4(i) yields

∣
∣
∣
∣1−

ḡ(S, u′, q)

ḡ(P,w, q)

∣
∣
∣
∣ ≤ ε.

Multiplying by ḡ(P,w, q) yields an ε-coreset as

|ḡ(P,w, q)− ḡ(S, u′, q)| ≤ εḡ(P,w, q).

Combining Corollary 2.4.5 and Theorem 2.3.6 yields the following theorem.

Theorem 2.4.6. Let (P,w,Q, g) be a query space, where g is a non-negative function.

Let s : P → (0,∞) such that

s(p) ≥ max
q∈Q(P )

w(p)g(p, q)
∑

p∈P w(p)g(p, q)
,

and t =
∑

p∈P s(p). Let d be the dimension of (P,w′, Q, f ′) as defined in Theorem 2.4.5.

Let c ≥ 1 be a sufficiently large constant, and let S be a random sample of

|S| ≥
ct

ε2

(

d log t+ log

(
1

δ

))

points from P , such that for every p ∈ P and q ∈ S we have p = q with probability s(p)/t.

Let u′(p) = t·w(p)
s(p)|S|

for every p ∈ S. Then, with probability at least 1 − δ, (S, u′) is an

ε-coreset for (P,w,Q, g), i.e.,

∀Q ∈ Q(S) : (1− ε)g(P,w, q) ≤ g(S, u′, q) ≤ (1 + ε)g(P,w, q).
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2.5 Application: Smaller and Generalized Coreset

for k-Means

Definition 2.5.1 (ρ-metric space). Let X be a set, and D : X2 → [0,∞) be a function.

Let ρ > 0. The pair (X,D) is a ρ-metric space if for every (x, y, z) ∈ X3 we have

D(x, z) ≤ ρ(D(x, y) +D(y, z)).

For C ⊆ X we denote D(x, C) := minc∈C D(x, c) assuming that such minimum exists.

Moreover, for ε > 0, the pair (X,D) is a (φ, ε)-metric space if for every (x, y, z) ∈ X3

we have

|D(x, z)−D(y, z)| ≤ φD(x, y) + εD(y, z)). (2.20)

Note that for every x, y ∈ X, and a center cy ∈ C that is closest to y, we have

D(x, C) = min
c∈C

D(x, c) ≤ D(x, cy) ≤ ρ(D(x, y)+D(y, cy)) = ρ(D(x, y)+D(y, C)). (2.21)

Similarly,

D(x, C)−D(y, C) ≤ D(x, cy)−D(y, cy) ≤ φD(x, y) + εD(y, cy) = φD(x, y) + εD(y, C),

(2.22)

where the first and last inequality is by the definition of D(x, C) and cy, and the second

inequality is by (2.20). Switching x and y yieldsD(y, C)−D(x, C) ≤ φD(x, y)+εD(x, C).

Hence,

|D(x, C)−D(y, C)| = max {D(x, C)−D(y, C), D(y, C)−D(x, C)}

≤ φD(x, y) + εmax {D(x, C), D(y, C)} .
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Since D(x, C) ≤ (1 + ε)D(y, C) + φD(x, y) by (2.30),

2φD(x, c) < |D(x, C)−D(y, C)| ≤ φD(x, y) + εmax {(1 + ε)D(y, C) + φD(x, y), D(y, C)}

≤ (ε+ φ)D(x, y) + ε(2 + ε)D(y, C).

A simple way to decide whether (D,X) is indeed a ρ-metric space is to use the

following bound, known as Log-Log Lipschitz, that is usually easier to compute. The

following lemma is very similar to [21, Lemma 2.1], where in the proof of (i) the constant

4 that appeared there is replaced here by 1/ε.

Lemma 2.5.2 (Lemma 2.1(ii) in [21]). Let D̃ : [0,∞) → [0,∞) be a monotonic non-

decreasing function that satisfies the following (Log-Log Lipschitz) condition: there is

r > 0 such that for every x > 0 and ∆ > 1 we have

D̃(∆x) ≤ ∆rD̃(x).

Let (X, dist) be a metric space, and let D(x, y) = D̃(dist(x, y)) for every x, y ∈ X. Then

(X,D) is a ρ-metric space for ρ = max {2r−1, 1}, and a (φ, ε)-metric space for every

ε ∈ (0, 1) and φ = (r/ε)r.

For example, consider a metric space (X, dist) and the function D̃(x) = x2 that

corresponds to the squared distance D(p, q) = D̃(dist(p, q)) = (dist(p, q))2. Note that

(X,D) is not a metric space since the triangle inequality does not hold. However, for

every x > 0 and ∆ > 1

D̃(x∆) = (x∆)2 = ∆2x2 = ∆2D̃(x).

Hence, by Lemma 2.5.2 r = 2, ρ = 2r−1 = 2, (D,X) is a 2-metric space and a (φ, ε)-metric

space for φ = (2/ε)2.

To compute a coreset for a problem we need to decide what are the important points,

or more formally, to use Theorem 2.4.6 we need to bound the importance s(p) of each
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point p ∈ P . To do this, we usually need to solve another optimization problem that is

usually related to computing the query with the minimal cost. For example, the bound

of importance of a point in the k-mean problem, as will be defined later, is based on the

optimal solution for the k-means problem. Unfortunately, this optimization problem is

usually hard and the main motivation for constructing the coreset in the first place.

There are two leeways from this chicken-and-egg problem:

(i) Use the merge-and-reduce approach that reduces the problem of computing a coreset

for a large set of n items to the problem of computing coresets for n
2|S|

small weighted

(core)sets. Each input coreset 2|S| is reduced to a coreset of |S| and merged with

another such coreset, where 2|S| is the minimum size of input set that can be

reduced to half using the given coreset construction. In this case, if this coreset

construction takes time f(|S|) than, since there are such O(n) constructions, the

overall running time will then be O(n) · f(|S|).

(ii) For problems such as k-means, it is NP-hard to compute the optimal solution, even

for a small set of n = O(k) points. Instead of computing an optimal solution,

usually a constant factor approximation suffices for computing the importance of

each point. Since for many problems such an approximation is also unknown or too

slow to compute, (α, β)-approximation, (or bi-criteria, or bicriterion), can be used

instead as explained below.

Suppose that the optimal solution for the k-means problem on a set is OPTk. That

is, there is a set C of k centers whose cost (sum of squared distances to the input points

of P ) is OPTk, and there is no such set of smaller cost. Then a set C̃ is called an

α-approximation if its cost is at most α · OPT . However, for many problems, even a

rougher approximation would do: instead of using k centers to approximate OPTk by a

factor of α, we use βk centers, where each input point may be assigned for the nearest

center. Note that the cost is still compared to OPTk and not to OPTβk. We define

(α, β)-approximation formally below. For our purposes later, we generalize this common
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definition of (α, β)-approximation, and allow a point to be assigned to a different center

than its nearest one, as long as the overall cost is small.

Definition 2.5.3 ((α, β)-approximation.). Let (X,D) be a ρ-metric space, and k ≥ 1 be

an integer. Let (P,w,Q, g) be a query space such that P ⊆ X, Q(P ) = {C ⊆ X | |C| ≤ k},

and g : P ×Q(P ) be a function such that

g(p, C) = D(p, C) := min
c∈C

D(p, c). (2.23)

Let α, β ≥ 0, B ⊆ X such that |B| ≤ βk and B : P → B such that

∑

p∈P

w(p)g(p, {B(p)}) ≤ α min
q∈Q(P )

ḡ(P,w, q).

Then B is called an (α, β)-approximation for (P,w,Q, g).

For every b ∈ B, we denote by Pb = {p ∈ P | B(p) = b} the points that are mapped

to the center b. We also denote p′ = B(p) for every p ∈ P .

One of the main tools in our novel streaming algorithm is also a technique to update

an (α, β)-approximation. However, due to memory limitations, our streaming algorithm

cannot attach each point to its nearest center, but still the distances to the approximated

centers is bounded. We thus generalize the definition of an (α, β)-approximation, which

is usually a set B of size βk, to a function B : P → B that assigns each input point to a

(not necessarily closest) center in B, while the overall cost is still bounded.

Since an (α, β)-approximation yields a weaker result compared to a PTAS or α-

approximation, it can usually be computed very quickly. Indeed, a very general framework

for constructing (α, β)-approximation to any query space with a small VC-dimension is

suggested in [19] where α = 1 + ε and β = O(log n).

Reducing (α, β)-approximation to an α = O(1) approximation. The size of

the coreset usually depends on α and β. However, if they are reasonably small (e.g.

polynomial in log n), we can reduce the approximation factor and number of centers in
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few phases as follows: (i) Compute an (α, β)-approximation for small (but maybe not

constant) α and β. (ii) Compute an ε-coreset for ε = 1/2 using this approximation.

(iii) Compute an O(1) factor approximation on the coreset. Since the coreset is small,

such an approximation algorithm can run inefficiently, say, in polynomial time if the

coreset is of size (log n)O(1). The resulting O(1) approximation for the coreset is also an

O(1) approximation for the original set, by the definition of the ε = 1/2 coreset. (iv)

Recompute the coreset for the complete (original) data using the O(1) approximation

instead of the (α, β)-approximation to obtain a coreset of size independent of both n and

d.

Algorithm 2: Coreset(P,w,B,m)

Input: A weighted set (P,w) where P ⊆ X and (D,X) is a ρ-metric space,
(α, β)-approximation B : P → B,
and sample size m ≥ 1.

Output: A pair (S, u) that satisfies Theorem 2.5.6.

1 for each b ∈ B do

2 Set Pb ← {p ∈ P | B(p) = b}
3 for each b ∈ B and p ∈ Pb do

Set Prob(p)←
w(p)D(p,B(p))

2
∑

q∈P w(q)D(q,B(q))
+

w(p)

2|B|
∑

q∈Pb
w(q)

.

4 Pick a sample S of at least m points from P such that for each q ∈ S and p ∈ P
we have q = p with probability Prob(p).

5 for each p ∈ P do

6 Set u(p)← w(p)
|S|·Prob(p)

.

7 Set u(p)← 0 for each p ∈ P \ S. /* Used only in the analysis. */

99 return (S, u)

Assumption 2.5.4. In what follows we assume that:

• P is a set that is contained in X where (X,D) is a ρ-metric space and (φ, ε)-metric

space as defined in (2.5.1).

• (P,w,Q, g) is a query space as defined in (2.23).

• dk denotes the dimension of f ′ as defined in Corollary 2.4.6.
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• c is a sufficiently large constant that can be determined from the proofs of the the-

orems.

• B is an (α, β)-approximation for (P,w,Q, g) as in Definition 2.5.3.

• We are given an error parameter ε ∈ (0, 1).

• We are given a maximum probability of failure δ ∈ (0, 1).

We begin with the following claim, that is a simplified and generalized version of a

similar claim in [30].

Lemma 2.5.5. For every b ∈ B, and p ∈ Pb have

w(p)D(p, C)
∑

q∈P w(q)D(q, C)
≤

ραw(p)D(p, p′)
∑

q∈P w(q)D(q, q′)
+

ρ2(α + 1)
∑

q∈Pb
w(q)

.

Proof. Put p ∈ P and b ∈ B such that p ∈ Pb. We need to bound

w(p)D(p, C)
∑

q∈P w(q)D(q, C)
≤

ρw(p)D(p, p′)
∑

q∈P w(q)D(q, C)
+

ρw(p)D(p′, C)
∑

q∈P w(q)D(q, C)

≤
αρw(p)D(p, p′)
∑

q∈P w(q)D(q, q′)
+

ρw(p)D(p′, C)
∑

q∈P w(q)D(q, C)
,

(2.24)

where the first inequality holds by (2.21), and the second inequality holds since B is an

(α, β)-approximation.

To bound the last term, we sum the inequality D(p′, C) ≤ ρ(D(p′, q) +D(q, C)) over

every q ∈ Pb to obtain

D(p′, C)
∑

q∈Pb

w(q) =
∑

q∈Pb

w(q)D(p′, C) ≤
∑

q∈Pb

w(q) · ρ(D(p′, q) +D(q, C))

= ρ
∑

q∈Pb

w(q)D(q′, q) + ρ
∑

q∈Pb

w(q)D(q, C)

≤ ρα
∑

q∈Pb

w(q)D(q, C) + ρ
∑

q∈Pb

w(q)D(q, C)

≤ ρ(α + 1)
∑

q∈P

w(q)D(q, C).
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Dividing by
∑

q∈Pb
w(q) ·

∑
q∈P w(q)D(q, C) yields

D(p′, C)
∑

q∈P w(q)D(q, C)
≤

ρ(α + 1)
∑

q∈Pb
w(q)

.

Substituting this in (2.24) yields the desired result

w(p)D(p, C)
∑

q∈P w(q)D(q, C)
≤

ραw(p)D(p, p′)
∑

q∈P w(q)D(q, q′)
+

ρ2(α + 1)
∑

q∈Pb
w(q)

.

Our first theorem suggests a coreset for k-means of size near-quadratic in k and

quadratic in ε, based on our improved framework and last lemma. Existing work [30] for

obtaining such coresets with only positive weights requires size cubic in k.

Theorem 2.5.6. Under Assumption 2.5.4, let t = k ·ρ2(α+1)β. Let (S, u) be the output

of a call to algorithm Coreset(P,w,B,m), where

m ≥
ct

ε2

(

dk log t+ log

(
1

δ

))

.

Then, with probability at least 1− δ, (S, u) is an ε-coreset of size m for (P,w,Q, g).

Proof. Let f : P → [0,∞) such that for every C ∈ Q(P ),

f(p, C) =
D(p, C)

∑
q∈P w(q)D(q, C)

,

and define

s(p) =
ραw(p)D(p, p′)
∑

q∈P w(q)D(q, q′)
+

ρ2(α + 1)
∑

q∈Pb
w(q)

.

By Lemma 2.5.5,

∑

p∈P

max
C∈Q(P )

w(p)|f(p, C)| =
∑

b∈B

∑

p∈Pb

max
C∈Q(P )

w(p)f(p, C) ≤
∑

b∈B

∑

p∈Pb

s(p)

= ρα + |B| · ρ2(α + 1) = ρ(α + |B|α + |B|) ∈ O(ρ2(α + 1)βk).
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Applying Theorem 2.4.6 with the query space (P,w,Q, g) then yields the desired

bound.

Our second theorem in this section suggests a coreset for k-means of size near-linear

in k by combining new observations with our improved framework.

Theorem 2.5.7. Under Assumption 2.5.4, let (S, u) be the output of a call to algorithm

Coreset(P,w,B,m), where

m ≥
c(φ2α2)

ε2

(

dk + log

(
1

δ

))

+
c(1 + ψ2 + α2φ2)

ε2

(

d+ log

(
|B|

δ

))

Then, with probability at least 1− δ, (S, u) is an ε-coreset of size m for (P,w,Q, g).

Proof. We use the notaion and varialbles of algorithm Coreset(P,w,B,m). For b ∈ B

and p ∈ Pb let p
′ = b and v(p) = w(p)− u(p). To prove that S is an ε-coreset we need to

prove that

|
∑

p∈P

w(p)D(p, C)−
∑

p∈S

u(p)D(p, C)| ≤ ε
∑

p∈P

w(p)D(p, C).

Using v(p) and dividing by
∑

p∈P u(p)D(p, C), it suffices thus to prove that

|
∑

p∈P v(p)D(p, C)|
∑

p∈P w(p)D(p, C)
≤ ε. (2.25)

Without loss of generality, we assume that
∑

p∈P w(p) = 1, otherwise we divide each

weight by this sum.

71



Let H ⊆ P and C ∈ Q. We first observe that

∣
∣
∣
∣
∣

∑

p∈P

v(p)D(p, C)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

p∈H

v(p)(D(p, C)−D(p′, C)) +
∑

p∈P

v(p)D(p′, C) +
∑

p∈P\H

v(p)(D(p, C)−D(p′, C))

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

∑

p∈H

v(p)(D(p, C)−D(p′, C))

∣
∣
∣
∣
∣

(2.26)

+

∣
∣
∣
∣
∣

∑

p∈P

v(p)D(p′, C)

∣
∣
∣
∣
∣

(2.27)

+

∣
∣
∣
∣
∣
∣

∑

p∈P\H

v(p)(D(p, C)−D(p′, C))

∣
∣
∣
∣
∣
∣
. (2.28)

To bound (2.25), we will prove that, with probability at least 1 − cδ, each of the

expressions (2.26), (2.27) and (2.28) is bounded as desired, after defining

H =

{

p ∈ P |
w(p) · |D(p, C)−D(p′, C)|

2
∑

q∈P w(q)D(q, C)
≤ 2φαProb(p)

}

.

Bound on (2.26): Let

h(p, C) =






(D(p,C)−D(p′,C))
2
∑

q∈P w(q)D(q,C)
p ∈ H

0 p 6∈ H,

b = 2φα, and a = −b. We have for every p ∈ P ,,

w(p) ·
h(p, q)− a

b− a
+ w(p) =

w(p)h(p, q)

2b
+

3w(p)

2
≤ Prob(p) +

3w(p)

2

Substituting f = h, s(p) = Prob(p) + 3w(p)/2, t = 1+ 3/2, and u = u′ in Theorem 2.4.3

yields that with probability at least 1− δ we have

∀C ∈ Q : |h̄(P,w,C)− h̄(S, u, C)| ≤ ε.
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Substituting the definition of h in this inequality yields the desired bound on (2.26),

∣
∣
∣
∑

p∈H v(p) · (D(p, C)−D(p′, C))
∣
∣
∣

∑
q∈P w(q)D(q, C)

=

∣
∣
∣
∣
∣

∑

p∈H

v(p)h(p, C)

∣
∣
∣
∣
∣
= |h̄(P,w, q)− h̄(S, u, q)| ≤ ε.

Bound on (2.27) :

∣
∣
∣
∑

p∈P v(p)D(p′, C)
∣
∣
∣

∑
p∈P w(p)D(p, C)

=

∣
∣
∣
∑

b∈B

∑
p∈Pb

v(p)D(p′, C)
∣
∣
∣

∑
p∈P w(p)D(p, C)

≤
∑

b∈B

∣
∣
∣
∑

p∈Pb
v(p)D(p′, C)

∣
∣
∣

∑
p∈P w(p)D(p, C)

=
∑

b∈B

∑
p∈Pb

w(p)D(p′, C)
∑

p∈P w(p)D(p, C)
·

∣
∣
∣
∑

p∈Pb
v(p)D(p′, C)

∣
∣
∣

∑
p∈Pb

w(p)D(p′, C)

=
∑

b∈B

∑
p∈Pb

w(p)D(p′, C)
∑

p∈P w(p)D(p, C)
·

∣
∣
∣
∑

p∈Pb
v(p)

∣
∣
∣

∑
p∈Pb

w(p)
.

We first bound the rightmost term in the last inequality. Let I(p, b) = 1/
∑

q∈Pb
w(q)

if p ∈ Pb and I(p, b) = 0 otherwise. We have for every p ∈ Pb

w(p)I(p, b) ≤
w(p)

∑
q∈Pb

w(q)
≤ 2|B|Prob(p).

Hence,
∑

p∈P w(p)I(p, b) ≤ 2|B|. Each point in S is sampled with probability propor-

tional to 2|B|Prob(p), and

|S| = m ≥
ck(t+ β)

ε2

(

d log t+ log(βk) + log

(
1

δ

))

∈ Ω(1) ·
2|B|(1 + ψ + αφ)2

ε2

(

log(2|B|) + log

(
|B|

δ

))

.

Using this, we substitute the query space (P,w, {b} , I) whose dimension is d = 1,

s(p) = 2|B|Prob(p), t = 2|B|, b = 1, a = 0 and replace δ by δ/|B|, and ε with ε′ =

ε/(ρ(1 + α)) in Theorem 2.4.3 to obtain that, for a sufficiently large constant c, with

probability at least 1− δ/|B|,

|Ī(P,w, {b})− Ī(S, u, {b})| ≤ ε′.
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Hence, ∣
∣
∣
∣
∣

∑
p∈Pb

v(p)
∑

q∈Pb
w(q)

∣
∣
∣
∣
∣
= |Ī(P,w, b)− Ī(S, u, b)| ≤ ε′ =

ε

ρ(1 + α)
. (2.29)

By the union bound, with probability at least 1 − δ, the last inequality holds for every

b ∈ B simultaneously. In what follows we assume that this event indeed occurs.

Substituting x = p′ and y = p in (2.30) yields

D(p′, C) ≤ ρ(D(p, C) +D(p, p′)). (2.30)

Hence,

∑

b∈B

∑

q∈Pb

w(q)D(b, C) =
∑

p∈P

w(p)D(p′, C)

≤ ρ
∑

p∈P

w(p)D(p, C) + ρ
∑

p∈P

w(p)D(p, p′) (2.31)

≤ ρ
∑

p∈P

w(p)D(p, C) + αρ
∑

p∈P

w(p)D(p, C) (2.32)

= ρ(1 + α)
∑

p∈P

w(p)D(p, C),

where (2.31) is by (2.30), and (2.32) is since B corresponds to an (α, β)-approximation.

This bounds (2.27) as

∑

b∈B

∑
q∈Pb

w(q)D(b, C)
∑

r∈P w(r)D(r, C)
≤
ρ(1 + α)

∑
p∈P w(p)D(p, C)

∑
r∈P w(r)D(r, C)

= ρ(1 + α).

Bound on (2.28): For p ∈ Pb \H we have

|D(p, C)−D(p′, C)| ≤ φD(p, b) + ψD(b, C) ≤ (1− ψ/ε)|D(p, C)−D(p′, C)|+ ψD(b, C),
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where the first inequality is by (2.30), and the last one is since p 6∈ H. Subtracting

(1− ψ/ε)|D(p, C)−D(p′, C)| from the last inequality yields

|D(p, C)−D(p′, C)| ≤ εD(p′, C) = εD(b, C).

Hence

∣
∣
∣
∑

p∈P\H v(p) · (D(p, C)−D(b, C))
∣
∣
∣

∑
q∈P w(q)D(b, C)

≤

∑
p∈P\H(w(p) + u(p)) · |D(p, C)−D(b, C)|

∑
q∈Pb

w(q)D(b, C)

≤ cψ ≤ ε′

(2.33)

We also have,

∑
p∈P u(p)∑
q∈Pb

w(q)
= 1+

(∑
p∈P u(p)∑
q∈Pb

w(q)
− 1

)

≤ 1+

∣
∣
∣
∣
∣

∑
p∈P u(p)∑
q∈P w(q)

− 1

∣
∣
∣
∣
∣
= 1+

∣
∣
∣
∣
∣

∑
p∈P v(p)∑
q∈P w(q)

∣
∣
∣
∣
∣
≤ 1+ε′,

where the first inequality is the triangle inequality and the last one is by (2.29).

Combining the last inequality and (2.33) bounds (2.28) by

∣
∣
∣
∑

p∈Pb
v(p) · (D(p, C)−D(b, C))

∣
∣
∣

∑
q∈Pb

w(q)D(b, C)
≤ 2ψ(2 + ε′) ≤ 6ε′ =

6ε

2 + αφ
. (2.34)

Bounding (2.25): By plugging the bounds (2.26), (2.27) and (2.28) above in (19)

we bound (2.25) with probability at least 1−O(δ), as

∣
∣
∣
∑

p∈P v(p)D(p, C)
∣
∣
∣

∑
q∈P w(q)D(q, C)

≤ ε+ (1 + ε+ αφ)
(
ε+ 2ε(2 + ε)

)
∈ O(ε(1 + αφ)).

Replacing ε with ε/c, and δ with δ/c in the above proof then proves the theorem.
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The values of ρ and φ. Algorithm 2 can be applied to compute a coreset for any given

variant of the k-means/median problem given a set P and a ρ or (ρ, ε)-metric (X,D). The

only difference is the size of the required coreset. The parameters ρ and φ can usually be

computed easily using Lemma 2.5.2. For example, in the case of distances to the power

of r ≥ 1, the value of ρ is roughly 2r and the value of φ is roughly εr. For most common

m-estimators the values are similar, when r is some constant.

The values of α and β can be α = β = O(1) for k-means and all its variants, by using

the generic algorithm for computing (α, β)-approximation in [19] with α = β = O(log n),

and then use the technique for reducing α and β. For bounding the approximation of the

bi-criteria approximation in [19] only the pseudo-dimension of the problem is required,

which is usually easy to compute as explained below.

Dimension d. Unlike the total sensitivity t, the dimension d for numerous problems

was already computed in many papers in computational geometry and machine learning

(in the context of PAC learning). This includes reductions and connections to similar

notions such as the shattering dimension or the VC-dimension of a set. General techniques

for computing the dimension of a set based on number of parameters to define a query,

or number of operations that are needed to answer a query can be found in the book [4].

Dimension of the k-means problem and its variants. Note that, unlike sensitiv-

ity, the dimension is less dependent on the exact type of distance function. For example,

using Euclidean distance or Euclidean distance to the power of 3 as a variant for the

k-means clustering problem does not change the dimension. This is because set of ranges

for both of these problems is the same: subsets of the input points that can be covered

by k balls. It is easy to compute the dimension for the k-means problem (the query space

(P,w,Q, g), as well as the modified query space for the function f . These bounds can be

found in [19]. In addition, [19] provide a simple reduction that shows that the dimension

for k centers is the same as the dimension of 1 center multiplied by k.
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In short, for the Euclidean space, the dimension of the k-means/median problem is

O(dk), and for metric spaces (graph) the dimension is O(k log n).

Smaller coreset for k-means queries. Consider the k-means queries in R
d, i.e., the

cost is the sum of squared distances
∑

p∈P D(p, C) over every point in P to its nearest

center in a given set C of k points in R
d. It was proven that projecting P onto an

O(k/ε)-dimensional subspace that minimizes its sum of squared distances, known as the

low-rank approximation of P , would preserve this sum, to any set of k centers, up to a

factor of 1± ε. This is in some sense an ε-coreset for P of size n and that is not subset of

the input, but of low-dimensionality. In particular, this result implies that there is a set

of centers (known as centroid set [26]) that is contained in a O(k/ε)-dimensional space,

such that every set of k centers in R
d can be replaced by a set of k centers in the centroid

set, that would yield the same cost up to a factor of 1 ± ε. In particular, this implies

that the dimension of the k-means problem can be reduced to O(k/ε) instead of dk, i.e.,

independent of d. Combining this result with ours yields the first coreset for k-means of

size independent of d that is subset of the input (in particular, preserve the sparsity of

the input points) that also supports streaming.

Weak coresets of size independent of d. For the non-Euclidean case or non-

squared distances it seems that it is impossible to obtain coreset of size independent of d.

However, coreset as defined above (sometimes called strong coreset) approximates every

query in the set of queries, while the main application and motivation for constructing

coreset is to compute the optimal query or its approximation. A weak coreset is a small

set that can be used to give such an approximation. The exact definition of weak coreset

also changes from paper to paper. In particular, a weak coreset for k-means was suggested

in [17]. However, to extract the approximated solution from the coreset we must run an

exhaustive search and cannot use existing algorithms or heuristics as in the case of strong

coreset.

In this thesis, following [19], we use a simple and general definition of weak coreset,
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that is also more practical. Instead of defining a unique (static, global) set Q of queries,

we define Q to be a function that maps every subset (potential coreset) S of P to a set

of queries. A weak coreset S needs only to approximate the queries in Q(S). It turns

out that for many case the (generalized definition) of dimension for such a query space is

much smaller compared to the traditional case where Q(S) = Q(P ) is the same for every

subset S ⊆ P .

To be able to use this property in our existing proofs, we require a monotonicity

property: that the set Q(T ) of queries that are assigned to a subset T ⊂ S must be

contained in Q(S). If we can prove that for every S ⊆ P , the set Q(S) contains a (1+ ε)-

approximation to both the optimal solution of S and P , then we can extract such an

approximation from S. For k-means, k-median and their variants, it was proven in [37]

that the optimal k-centers of a set S can be approximated by such a set that is spanned

by O(k/ε) points in S. By defining Q(S) to be the union of the optimal center of P , with

all the centers that are spanned by O(k/ε) points in S, we get that S is a weak coreset.

Note that the definition of Q can be explicit (without knowing the optimal center of P )

and is needed only to bound its dimension as in Definition 2.3.5.

Extracting a (1 + ε)-approximation from the coreset. It was proven in [19] that

for problems such as k-median such weak coresets have dimension O(k/ε), i.e., indepen-

dent of d. Unlike [19], we suggest here a very simple way to extract the approximated

solution from the coreset: compute the weighted coreset (S, u) (of size independent of d)

as defined in Algorithm 2, and then use any given algorithm to compute a (1+ε) approx-

imation set C of k centers on the coreset (or any other trusted heuristic that we hope

computes such a set C). Since C is not necessarily spanned by few points in S, it may not

be a good approximation for the original set P and we should not return it. However,the

proof in [37] is constructive and shows a near-linear time algorithm that using such an

approximated solution set C, we can compute another (1+O(ε))-approximation C ′ that

has the additional property that C ′ is spanned by O(k/ε) points in S. Hence, C ′ is both
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a near-optimal solution to S and in Q(S), so it must be a (1 + ε)-approximation for the

optimal solution of P .

2.6 Appendix A: Merge and Reduce Tree

We now briefly introduce the previous technique for maintaining coresets in the streaming

setting due to Har-Peled and Mazumdar [27] and Bentley and Sax [7]. In this method,

a merge-and-reduce tree is built by using an offline coreset construction as a blackbox.

Previously merge-and-reduce was the only known technique for building a streaming

coreset for metric k-median, and it relies solely on the following two properties:

1. Merge: The union of (k, ǫ)-coresets is a (k, ǫ)-coreset.

2. Reduce: A (k, ǫ)-coreset of a (k, δ)-coreset is a (k, ǫ+ δ)-coreset.

The merge-and-reduce tree works as follows. There are buckets Bi for i ≥ 0. In each

step, the bucket B0 takes in a segment of O(1) points from the stream. Then the tree

works like counting in binary: whenever buckets B0 to Bi−1 are full, these i buckets are

merged and then reduced by taking a (k, ǫ
logn

)-coreset and storing the result in Bi.

Let s be the space of offline construction, which depends on ǫ as ǫ−a. At the end of

the stream, O(log n) buckets have been used and each bucket uses O(s loga n) space; this

incurs a multiplicative overhead of Θ(loga+1 n) in the storage requirement. The second

factor comes from using the accuracy parameter ǫ
logn

, which is necessary by Property 2

since the construction will be compounded O(log n) times. Due to this compounding, the

runtime is multiplied by a factor of O(log n).

2.7 Appendix B: General Streaming Reduction

We present a general technique for converting an offline coreset construction to a stream-

ing coreset construction with O(log n) overhead. Given a ρ-metric space (X,D) (recall

79



Definition 2.5.1), we build a query space (P,w, g,Q) in the same way as in Definition 2.5.3:

Q(P ) = {C ⊆ X | |C| ≤ k} and g(p, C) = D(p, C) := minc∈C D(p, c). Here k is a positive

integer that denotes how many centers may be used for the clustering.

Our bicriterion algorithm is an adjustment to the algorithms of [9] and [CCF] with

the following important difference: our bicriterion is online, so we do not delete and

reassign centers as is [9]. This “online” property is critical for the algorithm to work and

is one of the main technical ideas. Although a fully online bicriterion can require linear

space, we maintain a division of the stream P into a prefix R and a suffix P \ R such

that our bicriterion is online on the suffix P \R and the prefix R can be largely ignored.

To maintain this property of being online for the suffix, we incur only a modest space

increase from O(k log n) to O(log(1
ǫ
)k log n).

After having an online bicriterion (it is further explained below why this property is

essential), the offline coreset algorithms perform non-uniform sampling procedure with

carefully chosen probabilities that are defined by the bicriterion. Equipped with our new

bicriterion algorithm, implementing the sampling procedure is rather straightforward

computation which is explained in Section 2.7.2. As a result, we can implement any

sampling-based coreset algorithm for k-median without merge-and-reduce and in one

pass. As such it is applicable to several coreset constructions (such as k-means and other

M -estimators). In addition, we believe that our methods will work with other objective

functions as well such as (k, j)-subspace, and we hope that future work will investigate

these directions.

Many clustering algorithms [10, 24, 9] maintain a weighted set (B, u) of points (which

are selected using a facility-location algorithm). Upon arrival of an update (p, w(p)) from

the stream, this update is added to the set by u(p)← u(p) + w(p).

In these algorithms, only a single operation is performed on (B, u) which we call

MOVE. For two points p, p′ ∈ B with weights u(p) and u(p′), the function MOVE(p, p′)

does the following: u(p′)← u(p′)+u(p) and u(p)← 0. This essentially moves the weight

at location p to the location of p′. The motivation for building (B, u) will be compression;

80



(B, u) will be maintained over the stream P in such a way that |B| = O(log |P |).

Throughout this section, we will assume for ease of exposition that each point in

the stream is from a distinct location. This simplifies the analysis, allowing B to take

only a single value for each input point. The algorithm works for general inputs without

modification, requiring only a more careful notation for the analysis. Additionally, we

state the algorithm for unweighted input (where w(p) = 1 for all p ∈ P ) and the parameter

n is defined as |P |. We still include w(p) throughout the algorithm and analysis, as the

analysis generalizes to weighted inputs where the parameter n is replaced by the sum of

all weights (after normalizing the minimally weighted point to 1).

2.7.1 An Algorithm for building a coreset

First, let us describe how the algorithm of [9] works. We will modify this algorithm as

part of our coreset construction. In this summary, we alter the presentation from that

of [9] to more fluidly transition to our modified version but the algorithm remains the

same. [9] operates in phases i ≥ 1. This means that the algorithm maintains a phase

number i (used internally by the algorithm), beginning in phase i = 1. As the stream

arrives, the algorithm may decide to increment the phase number. Let (Ri, wi) denote

the prefix of the input received before the end of phase i, and let OPTk(Ri) denote the

minimal value of ḡ(Ri, wi, C) over every C ∈ Q. When phase i+1 begins, a value Li+1 is

declared on Line 27 as a lower-bound for the current value of OPTk(Ri+1). The algorithm

has computed (Mi, ui), which we inductively assume is a bicriterion approximation for

Ri (more precisely, a map B : Ri →Mi such that ∪p∈Ri
(B(p), w(p)) = (Mi, ui). However,

to maintain polylogarithmic-space the algorithm pushes (Mi, ui) to the beginning of the

stream and restarts the bicriterion construction. This means that the algorithm, at this

point, restarts by viewing the stream as (P,w − wi + ui) (i.e. replacing (Ri, wi) with

(Mi, ui)). Continuing in this way, the algorithm maintains a bicriterion (Mi+1, ui+1) for

(Ri+1, wi+1−wi+ui) (which is also a bicriterion for (Ri+1, wi+1) by Theorem 2.7.2) until

the next phase change is triggered.
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Figure 2.3: A bicriterion approximation. Although connections are not optimal, the sum
of all connections costs is O(OPT).

Now we explain our modifications to [9] (see Algorithm 3). The first step is that the

bicriterion our algorithm builds must be determined “online” in the following sense: upon

receiving a point (x, w(x)), the value of B(x) must be determined (and never be altered)

before receiving the next point from the stream.

This generalization is necessary for the following reason. Suppose we connect an

element p to a center b1. Later in the stream, we open a new center b2 that becomes

the closest center to p. However, using polylogarithmic space, we have already deleted b1

and/or p from memory and the state of our algorithm is identical to the case where b1

remains the closest center to p. Therefore the connections must be immutable, and this

results in non-optimal connections.

Definition 2.7.1. An online [α, β]-bicriterion is an algorithm that maintains a bicrite-

rion (B, t) over a stream X, and operates online in the following sense. Upon arrival

of each point p, it is immediately decided whether p is added to B, and then t(p) is

determined. Both of these decisions are permanent.

Upon receiving an update (p, w(p)) from the stream, the algorithm may call MOVE(p, p′)

for the nearest p′ ∈ B to p. In the analysis we use the function B : P → B that maps

each point p to its immediate location after this initial move (either p itself, or p′). If

future moves are performed on p, this does not change the value B(p). B is not stored by

the algorithm due to space constraints; only the value of B(p) for the most recent point

p is used by the algorithm, and older values are used in the analysis only. We will show

that B is a (O(1), O(log n))-approximation that allows us to maintain a coreset over the
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stream.

We now state Algorithm 3. φ and γ are constants (dependent on ρ) used in the

analysis that are defined as in [9]. Each point has a flag that is either raised or lowered

(given by the Flag function). All points have their flag initially lowered, given on Line

1. A lowered flag shows that the point is being read for the first time (being received

from the stream), and a raised flag shows that the point is being re-read by the algorithm

(having been stored in memory).

On Line 22, (Mi, ui) is the weighted set (B, u) as it exists at the end of phase i. We

define the cost of MOVE(p, p′) to be w(p)D(p, p′). The value Ki is therefore the total cost

of all moves performed in phase i.

At a phase change, the set (B, u) is pushed onto the beginning of the stream with

all points having a raised flag. This means that during the next |B| iterations of the

outer-loop where a point (x, w(x)) is received we actually receive a point from memory.

We continue to process the stream after these |B| points are read.

The following theorem summarizes the guarantees of this algorithm. We note that,

as stated, the algorithm’s runtime of O(nk log n) is not correct - in fact the number of

phases may be arbitrarily large. However, using the same technique as detailed in Section

3.3 of [9] the number of phases can be bounded to O( n
k logn

) while requiring O(k2 log2 n)

time per phase.

Theorem 2.7.2 ([9]). Let Algorithm 3 process a stream (P,w) of at most n points. Let

Ri denote the prefix of the stream received before the end of phase i, and let Ki and Li

be their final values from the algorithm (which are never modified after phase i). With

probability at least 1− 1
n
, the following statements all hold after processing each point:

1.
∑

iKi ≤
ρφγ
φ−ρ

OPTk(Ri)

2. The total runtime is O(nk log n)

3. For every phase i, Li ≤ OPTk(Ri) ≤ φLi ≤ Li+1
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Algorithm 3: Input: integer k, ρ-metric space (X,D), stream (P,w) of n weighted
points from (X,D). Output: B(x) after receiving each point x, and a weighted set
(Mi, ui) after each phase i ≥ 1

1 Flag(x) = 0 for all x ∈ P
2 L1 ← minimum D(x, y) for any x, y in the first k distinct points
3 i← 1
4 K1 ← 0
5 B ← ∅
6 u(x)← 0 for all x
7 for each point (x, w(x)) received do

8 u(x)← u(x) + w(x)
9 y ← argminy∈QD(x, y) (break ties arbitrarily)

10 I ← 1 with probability min{ w(x)D(x,y)
Li/k(1+log

2
n)
, 1}, otherwise I ← 0

11 if I then

12 if Flag(x) = 0 then

13 B(x)← x

14 B ← B ∪ {x}

15 else

16 Ki ← Ki + w(x)D(x, y)
17 u(y)← u(y) + u(x) /* Step 1 of MOVE(x, y) */

18 u(x)← 0 /* Step 2 of MOVE(x, y) */

19 if Flag(x) = 0 then

20 B(x)← y

21 if Ki > γLi or |B| > (γ − 1)(1 + log2 n)k then

22 (Mi, ui)← (B, u)
23 Flag(b)← 1 for all b ∈ B
24 Push (B, u) onto the stream (P,w) before the next point to read
25 B ← ∅
26 u(x)← 0 for all x
27 Li+1 ← φLi

28 q ← 0
29 Ki+1 ← 0
30 i← i+ 1
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4. At the execution of Line 22, Mi consists of O(k log n) points

Part 1 of the preceding theorem, which bounds the total cost of all moves performed

by the algorithm, also serves as an upper bound on the Earth-Mover distance between

the stream (P,w) and the maintained set (B, u).

Definition 2.7.3 (Earth-Mover Distance). Let (A,wA) and (B,wB) be weighted sets in

(X,D). Morever, let them be of equal weight in the sense that Σa∈Aw(a) = Σb∈Bw(b).

Define a “movement” from (A,wA) to (B,wB) to be a weighted set (Y, v) in (X ×

X,D) such that ∪(a,b)∈Y (a, v(a, b)) = (A,wA) and ∪(a,b)∈Y (b, v(a, b)) = (B,wB). Then

dEM(A,wA, B, wB) is the minimum of Σ(a,b)∈Y v((a, b))D(a, b) over all movements Y from

(A,wA) to (B,wB).

Another way to view the preceding definition is in terms of probability distributions.

Over all joint distributions over A×B with marginal distributions (A,wA) and (B,wB),

we seek the minimum possible cost (as defined) for any such joint distribution.

From now on we will write a weighted set A instead of (A,wA) when the meaning

is clear. If we start with a set A0 and apply n operations of MOVE until it becomes the

set An, we can provide an upper-bound for dEM(A0, An) by summing dEM(Ai, Ai+1) for

0 ≤ i < n. This is a direct application of the triangle inequality. And if Ai+1 is obtained

from Ai by applying MOVE(p, p′), then dEM(Ai, Ai+1) = D(p, p′)w(p), the cost of this

move.

The Earth-Mover distance is important for clustering problems for the following rea-

son. For any weighted sets (P,w) and (B, u) and query C, |ḡ(P,w,C) − ḡ(B, u, C)| ≤

dEM(P,w,B, u). This is immediate from a repeated application of the triangle-inequality

(proofs are found in Theorem 2.3 of [24] as well as in [10, 9, 23]).

Theorem 2.7.4. There exists an algorithm stores O(log
(
1
ǫ

)
k log n) points and main-

tains for every prefix (R,w′) of the stream (P,w): (1) a weighted set (M,u) such that

dEM(M,u,R,w′) ≤ ǫOPTk(R), and (2) a (O(1), O(log(1
ǫ
) log n))-bicriterion B for (R,w′).
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Morever, this bicriterion B is computed online in the sense that B(x) is determined upon

receiving x from the stream.

Proof. The algorithm will consist of running Algorithm 3 and storing certain information

for the λ most recent phases (where λ depends on ǫ).

Let i be the current phase number, and let (R,w′) be the points received so far. We

remind the reader that when the meaning is clear we suppress notation and write R for

the weighted set (R,w′), and likewise for (M,u). Define λ = 2+⌈logφ(
ργ

(φ−ρ)ǫ
)⌉. The prefix

R and the setM in the statement of the theorem will be Ri−λ andMi−λ. To upper bound

dEM(R,M), which by definition is the minimum cost of any movement from R to M, we

note that one movement is the set of moves carried out by the algorithm through phase

i − λ, whose cost is
∑i−λ

j=1Kj. Part 1 of Theorem 2.7.2 then shows that dEM(R,M) ≤

Σi−λ
j=1Kj ≤

ρφγ
φ−ρ

OPTk(Ri−λ). Combining Statements 3 and 4 of the theorem shows that

OPTk(Ri−λ) ≤ φ1−λ
OPTk(R). Therefore dEM(R,M) ≤ ρφγ

φ−ρ
φ1−λ

OPTk(R) ≤ ǫOPTk(R) as

desired.

As for the second statement of the theorem, the algorithm defines the map B and we

are currently interested in the restriction of B to R \Ri−λ. B maps to at most O(k log n)

points per phase - this is guaranteed by Statement 5 (a direct result the termination con-

dition on Line 17). Over the last λ phases, this then maps to O(λk log n) = O((1
ǫ
)k log n)

points. Therefore we have that β = O((1
ǫ
) log n). And the value of α is immediate from

Statement 1 of Theorem 2.7.2, since B incurs only a subset of the costs as Kj (the subset

that comes from the new portion of the stream Rj \Rj−1).

As a final note, we do not store B(P ) in memory (it may be linear in space). For

algorithms in the following sections it is only required to know it’s value for the most

recent point received; previous values are used only in the analysis.

2.7.2 Maintaining a coreset over the stream

In the previous section, we presented an algorithm that maintains an (α, β)-approximation

of the stream (this is given by the function B : P → B). In this section we show how

86



we can use this approximation to carry out the coreset construction of Algorithm 2 on

an insertion-only stream. In the offline construction, a sample S of m points is taken

from X according to a distribution where point p sampled with probability depending

on D(p,B(p)), |B|, and nB(p) (the total weight of points connected to the center B(p),

which is written as Σq∈Pb
w(q) where b = B(p)) - the specific formula for the probability

written below (and comes from Line 3 of Algorithm 2). All three of these quantities can

easily be maintained over the stream using Algorithm 4 since B is online (i.e. B(p) never

changes).

Prob(p) =
w(p)D(p,B(p))

2
∑

q∈P w(q)D(q,B(q))
+

w(p)

2|B|
∑

q∈Pb
w(q)

Upon receiving a point p, we assign r(p) a uniform random number in the interval

(0, 1). This is the threshold for keeping p in our sample S - we keep the point p if and only

if r(p) < Prob(p). For each point p, Prob(p) is non-increasing as the stream progresses

(this is immediate from the formula and from the fact that clusters never decrease in

size since B is online). Therefore after receiving point p, we update Prob(s) for each

s ∈ S and delete any such s that drop below their threshold: r(s) ≥ Prob(s). Once a

point crosses the threshold, it may be deleted since Prob(s) is non-increasing and so it

will remain below the threshold at all future times. In this way, the construction exactly

matches the output as if the offline Algorithm 2 had been used.

Algorithm 4: Input: integer k, ρ-metric space (X,D), stream P of points n from
(X,D), online bicriterion B, sample size m ≥ 1. Output: a coreset S

1 S ← ∅
2 for each point p that arrives do

3 Assign r(p) a uniform random in (0, 1)
4 S ← S ∪ {p}
5 Compute Prob(p) according to Line 3 of Algorithm 2
6 for each point s ∈ S do

7 Update Prob(s)
8 if Prob(s) ≤ r(s) then
9 Delete s from S

10 Update u(s) according to Line 6 of Algorithm 2
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Algorithm 3 provides the function B and a weighted set Mi−λ. Beginning in phase

i−λ, we will begin running Algorithm 4. This outputs the sample S for phases i−λ+1

until the current phase i. The following theorem shows that Mi−λ∪Si is a coreset for the

stream. Of course, we need to do this construction for each of the λ = O(log(1
ǫ
)) most

recent phases, so the space gets multiplied by this factor.

We return to definition 2.5.2 of an r Log-Log Lipschitz function D̃. Given a met-

ric space (X, dist), the space (X,D) where D = D̃(dist) is a ρ-metric space for ρ =

max{2r−1, 1}. It is well-known that most M -estimators can be recast as a Log-Log Lips-

chitz function for a low constant value of r. For example, k-means has r = 2.

Theorem 2.7.5. There exists a single-pass streaming algorithm requiring O(ǫ−O(1)k log n(log n+

log k + log 1
δ
)) space that maintains a (k, ǫ)-coreset for the k-median clustering of an r-

Log-Log-Lipschitz function D̃ on a stream of at most n elements with probability at least

1− δ.

Proof. Running Algorithm 2 (producing the Mi) and Algorithm 3 (producing the Si) in

parallel, we will show that Mi−λ ∪ Si is the desired coreset of the stream.

We already have by Theorem 2.7.4 that dEM(Mi−λ, Ri−λ) ≤ ǫOPTk(P ) ≤ ǫḡ(P,w,C)

for any set C of size k. Also, by Theorem 2.5.6 we have the Si is an (k, ǫ)-coreset

for P \ Ri−λ. This is because (in the statement of Theorem 2.5.6) we are required to

carry out the construction of Algorithm 2 using m ≥ ck(t+β)
ε2

(
d log t+ log(βk) + log

(
1
δ

))

where t = α/φ. It was shown in Lemma 2.5.2 that φ = (ǫ/r)r. We are using the

(O(1), O(log(1
ǫ
) log n))-approximation B, and in [19] it is shown that d = O(log n) for

k-median in a ρ-metric space. So therefore the minimal possible value of m that satis-

fies the hypotheses of the theorem is O(k(ǫ
−r+logn)

ε2

(
log n log ǫ−r + log(k log n) + log

(
1
δ

))
).

Simplifying notation, this is O(ǫ−O(1)k log n(log n+ log k + log 1
δ
)).

We write COST(A,C) to denote ḡ(A,wA, C) to simplify notation; by A ∪ B we mean

(A ∪ B,wA + wB). Taking the union, we get that |COST(P,C) − COST(Mi−λ ∪ Si, C)| ≤

|COST(Ri−λ, C)− COST(Mi−λ, C)|+ |COST(P \Ri−λ, C)− COST(Si, C)|. The first term is

upper-bounded by the Earth-Mover distance, and the second term is upper-bounded by
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ǫ since Si is a (k, ǫ)-coreset for P \ Ri−λ. So therefore Mi−λ ∪ Si is a 2ǫ-coreset for the

stream P , and the proof is complete after rescaling ǫ.

The previous theorem has, as special cases, streaming coresets for k-median, k-means,

Lp, Cauchy estimators, Tukey estimators, etc. This the first algorithm that does not use

merge-and-reduce for building coresets over streams for any of these problems. Moreover,

the constant in the exponent for ǫ is small, for the example of k-median the ǫ dependence

is ǫ−3 log(1/ǫ).
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Part III

High-Dimensional Euclidean

Coresets for Insertion-Deletion

Streams

90



3.1 Introduction

The analysis of very large data sets is still a big challenge. Particularly, when we would

like to obtain information from data sets that occur in the form of a data stream like, for

example, streams of updates to a data base system, internet traffic and measurements

of scientific experiments in astro- or particle physics (e.g. [50]). In such scenarios it is

difficult and sometimes even impossible to store the data. Therefore, we need algorithms

that process the data sequentially and maintain a summary of the data using space much

smaller than the size of the stream. Such algorithms are often called streaming algorithms

(for more introduction on streaming algorithms, please refer to [52]).

One fundamental technique in data analysis is clustering. The idea is to group data

into clusters such that data inside the same cluster is similar and data in different clus-

ters is different. Center based clustering algorithms also provide for each cluster a cluster

center, which may act as a representative of the cluster. Often data is represented as

vectors in R
d and similarity between data points is often measured by the Euclidean dis-

tance. Clustering has many applications ranging from data compression to unsupervised

learning.

In this part of the thesis, we are interested in clustering problems over dynamic data

streams, i.e. data streams that consist of updates, for example, to a database. Our

stream consists of insert and delete operations of points from {1, . . . ,∆}d. We assume

that the stream is consistent, i.e. there are no deletions of points that are not in the

point set and no insertions of points that are already in the point set. We consider the

k-median clustering problem, which for a given a set of points P ⊆ R
d asks to compute a

set C of k points that minimizes the sum of distances of the input points to their nearest

points in C.

3.1.1 Our Results

We develop the first (1+ǫ)-approximation algorithm for the k-median clustering problem

in dynamic data streams that uses space polynomial in the dimension of the data. To our
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best knowledge, all previous algorithms required space exponentially in the dimension.

Formally, our main theorem states,

Theorem 3.1.1 (Main Theorem). Fix ǫ ∈ (0, 1/2), positive integers k and ∆, Al-

gorithm 1 makes a single pass over the dynamic streaming point set P ⊂ [∆]d, out-

puts a weighted set S, such that with probability at least 0.99, S is an ǫ-coreset for k-

median of size O (kd4L4/ǫ2), where L = log∆. The algorithm uses Õ (kd7L7/ǫ2) bits

in the worst case, processes each update in time Õ(dL2) and outputs the coreset in time

poly(d, k, L, 1/ǫ) after one pass of the stream.

The theorem is restated in Theorem 3.3.6 and the proof is presented in Section 3.3.3.

The coreset we constructed may contain negatively weighted points. Thus näıve offline

algorithms do not apply directly to finding k-clustering solutions on the coreset. We also

provide an alternative approach that output only non-negatively weighted coreset. The

new algorithm is slightly more complicated. The space complexity and coreset size is

slightly worse than the one with negative weights but still polynomial in d, 1/ǫ and log∆

and optimal in k up to polylogk factor.

Theorem 3.1.2 (Alternative Results). Fix ǫ ∈ (0, 1/2), positive integers k and ∆, Al-

gorithm 6 makes a single pass over the streaming point set P ⊂ [∆]d, outputs a weighted

set S with non-negative weights for each point, such that with probability at least 0.99, S

is an ǫ-coreset for k-median of size Õ (kd4L4/ǫ2). The algorithm uses Õ (kd8L8/ǫ2)bits

in the worst case. For each update of the input, the algorithm needs poly(d, 1/ǫ, L, log k)

time to process and outputs the coreset in time poly(d, k, L, 1/ǫ) after one pass of the

stream.

The theorem is restated in Theorem 3.4.3 in Section 3.4 and the proof is presented

therein. Both approaches can be easily extended to maintain a coreset for a general

metric space.

3.1.2 Our Techniques

From a high level, both algorithms can be viewed as a combination of the ideas introduced

by Frahling and Sohler [31] with the coreset construction by Chen [17].
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To explain our high-level idea, we first summarize the idea of Chen [17]. In their

construction, they first obtain a (α, β)-bi-criterion solution. Namely find a set of at most

αk centers such that the k-median cost to these αk centers is at most βOPT, where OPT

is the optimal cost for a k-median solution. Around each of the αk points, they build

logarithmically many concentric ring regions and sample points from these rings. Inside

each ring, the distance from a point to its center is upper and lower bounded. Thus

the contribution to the optimal cost from the points of this ring is lower bounded by

the number of points times the inner diameter of the ring. To be more precise, their

construction requires a partition of Õ(αk) sets of the original data points satisfying the

following property: for the partition P1, P2, . . . , Pk′ ,
∑

i |Pi|diam(Pi) . βOPT. They

then sample a set of points from each part to estimate the cost of an arbitrary k-set from

[∆]d up to O(ǫ|Pi|diam(Pi)/β) additive error. Combining the samples of the k′ parts, this

gives an additive error of at most ǫOPT and therefore an ǫ-coreset.

The first difficulty in generalizing the construction of Chen to dynamic streams is that

it depends on first computing approximate centers, which seems at first glance to require

two passes. Surprisingly (since we would like to be polynomial in d), we can resolve this

difficulty using a grid-based construction. The grid structure can be viewed as a (2d)-ary

tree of cells. The root level of the tree is a single cell containing the entire set of points.

Going down a level through the tree, each parent cell is split evenly into 2d subcells. Thus

in total there are log2 ∆ grid levels. Each cell of the finest level contains at most a single

point.

Without using any information of a pre-computed (α, β)-bi-criterion solution to the

k-median problem, as it does in [17], our first idea (similar to the idea used in [44]) is to

use a randomly shifted grid (i.e. shift each coordinate of the cell of the root level by a

random value r, where r is uniformly chosen from {1, 2, . . .∆}, and redefine the tree by

splitting cells into 2d subcells recursively). We show that with high probability, in each

level, at most Õ(k) cells are close to (or containing) a center of an optimal solution to the

k-median. For the remaining cells, we show that each of them cannot contain too many

points, since otherwise they would contribute too much to the cost of the optimal solution

93



(since each point in these cells is far away from each of the optimal centers). We call the

cells containing too many points in a level heavy cells. The immediate non-heavy children

of the heavy cells form a partition of the entire point sets (i.e. the cells that are not heavy,

but have heavy parents). Let C1, C2, . . . , Ck′ be these cells, and we can immediately show

that
∑

i |Ci|diam(Ci) ≤ βOPT for some β = O(d3/2). If we can identify the heavy cells

(e.g. use heavy hitter algorithms), and sample points from their immediate non-heavy

children in a dynamic stream, we will obtain a construction similar to Chen [17].

Our second idea allows us to significantly reduce space requirements and also allows

us to do the sampling more easily. For each point p, the cells containing it form a path

on the grid tree. We write each point as a telescope sum as the cell centers on the path

of the point ( recall that the grids of each level are nested and the c0 is the root of the

tree). For example, let c0, c1, . . . , cL be the cell centers of the path, where cL = p, and

define 0 to be the zero vector. Then p = cL − cL−1 + cL−1 − cL−2 . . .+ c0 − 0+ 0. In this

way, we can represent the distance from a point to a set of points as the distance of cell

centers to that set of points. For example, let Z ⊂ [∆]d be a set of points, and d(p, Z)

be the distance from p to the closest point in Z. Then d(p, Z) = d(cL, Z)− d(cL−1, Z) +

d(cL−1, Z) − d(cL−2, Z) + . . . + d(0, Z). Thus we can decompose the cost a set Z into

L+ 2 levels: the cost in level l ∈ [0, L] is
∑

p d(c
l
p, Z)− d(cl−1

p , Z), where c
p
l is the center

of the cell containing p in level l and the cost in the (−1)-st level is |P |d(0, Z), where P

is the entire points set. Since |d(clp, Z)−d(cl−1
p , Z)| is bounded by the cell diameter of the

level, we can sample points from the non-heavy cells of the entire level, and guarantee

that the cost of that level is well-approximated. Notice that (a) we do not need to sample

Õ(k) points from every part of the partition, thus we save a k factor on the space and

(b) we do not need to sample the actual points, but only an estimation of the number of

points in each cell, thus the sampling becomes much easier (there is no need to store the

sampled points).

In the above construction, we are able to obtain a coreset, but the weights can be

negative due the the telescope sum. It is not easy find an offline k-median algorithm

to output the solutions from a negatively-weighted coreset. To remove the negative
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weights, we need to adjust the weights of cells. But the cells with a small number

of points (compared to the heavy cells) are problematic – the sampling-based empirical

estimations of the number of points in them has too much error to be adjusted.

In our second construction, we are able to remove all the negative weights. The major

difference is that we introduce a cut-off on the telescope sum. For example, d(p, Z) =

d(cLp , Z) − d(c
l(p)
p , Z) + d(c

l(p)
p ) − d(c

l(p)−1
p ) + . . . + d(0, Z) where l(p) is a cutoff level of

point p such that the cell containing p in level l(p) is heavy but no longer heavy in level

l(p) + 1. We then sample point p with some probability defined according to l(p). In

other words, we only sample points from heavy cells and not from non-heavy ones. Since

a heavy cell contains enough points, the sampling-based estimation of the number of

points is accurate enough and thus allows us to adjust them to be all positive.

Finally, to handle the insertion and deletions, we use a F2-heavy hitter algorithm to

identify the heavy cells. We use pseudo-random hash functions (e.g. Nisan’s construction

[54, 42] or k-wise independent hash functions) to do the sampling and use a K-Set data

structure [32] to store the sampled points in the dynamic stream.

3.1.3 Related Work

There is a rich history in studies of geometric problems in streaming model. Among

these problems some excellent examples are: approximating the diameter of a point

set [22, 43], approximately maitain the convex hull [20, 40], the min-volume bounding

box [8, 9], maintain ǫ-nets and ǫ-approximations of a data stream [3]. Clustering problem

is another interesting and popular geometric problem studied in streaming model. There

has been a lot of works on clustering data streams for the k-median and k-means problem

based on coresets [39, 38, 17, 26, 27, 25]. Additionally [10, 34, 51] studied the problem in

the more general metric space. The currently best known algorithm for k-median problem

in this setting is an O(1)-approximation using O(kpolylogn) space [13]. However, all of

the above methods do not work for dynamic streams.

The most relevant works to ours are those by Indyk [44], Indyk & Price [45] and

Frahling & Sohler [31]. Indyk [44] introduced the model for dynamic geometric data
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streamings. He studied algorithms for (the weight of) minimum weighted matching, min-

imum bichromatic matching and minimum spanning tree and k-median clustering. He

gave a exhaustive search (1 + ǫ) approximation algorithm for k-median and a (α, β)-bi-

criterion approximation algorithm. Indyk & Price [45] studied the problem of sparse re-

covery under Earth Mover Distance. They show a novel connection between EMD/EMD

sparse recovery problem to k-median clustering problem on a two dimensional grid. The

most related work to current one is Frahling & Sohler [31], who develop a streaming

(1 + ǫ)-approximation algorithms for k-median as well as other problems over dynamic

geometric data streams. All previous constructions for higher dimensional grid require

space exponential in the dimension d.

3.2 Preliminaries

For integer a ≤ b, we denote [a] := {1, 2, . . . , a} and [a, b] := {a, a + 1, . . . , b} for integer

intervals. We will consider a point set P from the Euclidean space {1, . . . ,∆}d. Without

loss of generality, we always assume ∆ is of the form 2L for some integer L, since otherwise

we can always pad ∆ without loss of a factor more than 2. Our streaming algorithm

will process insertions and deletions of points from this space. We study the k-median

problem, which is to minimize cost(P,Z) =
∑

p∈P d(p, Z) among all sets Z of k centers

from R
d and where d(p, q) denotes the Euclidean distance between p and q and d(p, Z)

for a set of points Z denotes the distance of p to the closest point in Z. The following

definition is from [39].

Definition 3.2.1. Let P ⊆ [∆]d be a point set. A small weighted set S is called an

ǫ-coreset for the k-median problem, if for every set of k centers Z ⊂ [∆]d we have 1

(1− ǫ) · cost(P,Z) ≤ cost(S, Z) ≤ (1 + ǫ) · cost(P,Z),

where cost(S, Z) :=
∑

s∈S wt(s)d(s, Z) and wt(s) is the weight of point s ∈ S.

1For simplicity of the presentation, we define the coreset for all sets of k centers Z ⊂ [∆]d, but it can
be generalized to all sets of k centers Z ⊂ R

d with an additional polylog(1/ǫ) factor in the space. We
discuss this point further in Section 3.6.
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Through out Part III, we assume parameters ǫ, ρ, δ,∈ (0, 1
2
) unless otherwise specified.

For our algorithms and constructions we define a nested grid with L levels, in the following

manner.

Definition of grids Let v = (v1, . . . , vd) be a vector chosen uniformly at random from

[0,∆ − 1]d. Partition the space {1, . . . ,∆}d into a regular Cartesian grid G0 with side-

length ∆ and translated so that a vertex of this grid falls on v. Each cell of this grid can

be expressed as [v1 + n1∆, v1 + (n1 + 1)∆) × . . . × [vd + nd∆, vd + (nd + 1)∆) for some

(n1, . . . , nd) ∈ Z
d. For i ≥ 1, define the regular grid Gi as the grid with side-length ∆/2i

aligned such that each cell of Gi−1 contains 2d cells of Gi. The finest grid is GL where

L = ⌈log2 ∆⌉; the cells of this grid therefore have side-length at most 1 and thus contain

at most a single input point. Each grid forms a partition of the point-set S. There is a

d-ary tree such that each vertex at depth i corresponds to a cell in Gi, and this vertex

has 2d children which are the cells of Gi+1 that it contains. For convenience, we define

G−1 as the entire dataset and it contains a single cell C−1. For each cell C, we also treat

it as a subset of the input points (i.e. C ∩ P ) if there is no confusion.

We denote Z∗ ⊂ [∆]d as the optimal solution for k-median and OPT as the optimal

cost for Z∗. The proof of the following lemma is delayed to Section 3.7.

Lemma 3.2.2. Fix a set Z ⊂ [∆]d, then with probability at least 1 − ρ, for every level

i ∈ [0, L], the number of cells that satisfy d(C, Z) ≤ ∆/(2i+1d) is at most e|Z|(L+ 1)/ρ.

3.2.1 Outline

In Section 3.3, we introduce the coreset with negative weights. In Section 3.4, we intro-

duce a modified construction with all positive weights. Section 3.6 comes with the final

remarks.

3.3 Generally Weighted Coreset

In this section, we present our generally weighted coreset construction. In Section 3.3.1,

we introduce the telescope sum representation of a point p and the coreset framework.
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In Section 3.3.2, we illustrate our coreset framework with an offline construction. In

Section 3.3.3 we present an one pass streaming algorithm that implements our coreset

framework.

3.3.1 The Telescope Sum and Coreset Framework

Our first technical idea is to write each point as a telescope sum. We may interpret

this sum as replacing a single point by a set of points in the following way. Each term

(p − q) of the sum can be viewed as a pair of points p and q, where p has weight 1 and

q has weight −1. The purpose of this construction is that the contribution of each term

(p − q) (or the corresponding two points) is bounded. This can be later exploited when

we introduce and analyze our sampling procedure.

We now start to define the telescope sum, which will relate to our nested grids. For

each C ∈ Gi, denote c(C) (or simply c) as its center. For each point p ∈ P , define C(p, i)

as the cell that contains p in Gi, and cip is the center of C(p, i). Then we can write

p = c−1
p +

L∑

i=0

cip − ci−1
p .

where we set c−1
p = 0 (we also call this the cell center of the (−1)-st level for convenience).

The purpose of this can be seen when we consider the distance of p to an arbitrary k-

centers Z ⊂ [∆]d, we can write the cost of a single point p, as

d(p, Z) = d(c−1
p , Z) +

L∑

i=0

d(cip, Z)− d(ci−1
p , Z).

Note that cLp = p since the cells of GL contain a single point. Thus the cost of the entire

set cost(P,Z) can be written as,

L∑

i=0

∑

p∈P

d(cip, Z)− d(ci−1
p , Z) +

∑

p∈P

d(c−1
p , Z). (3.1)

As one can see, we transform the cost defined using the original set of points to the
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“cost” defined using cell centers. To estimate the cost, it remains to estimate each of

the terms,
∑

p∈P d(cip, Z) − d(ci−1
p , Z) for i ∈ [0, L] and

∑
p∈P d(c−1

p , Z). In other words,

assign weights to each of the centers of the grid cells. For i ∈ [0, L], and a cell C ∈ Gi,

denote CP as the parent cell of C in grid Gi−1. Thus we can rewrite the cost term as

follows,

cost(Gi, Z) :=
∑

p∈P

d(cip, Z)− d(ci−1
p , Z)

=
∑

C∈Gi

∑

p∈C

d(c(C), Z)− d(c(CP ), Z)

=
∑

C∈Gi

|C|
[
d(c(C), Z)− d(c(CP ), Z)

]

=
∑

C∈Gi

|C|d(c(C), Z)

−
∑

C′∈Gi−1

∑

C∈Gi:C⊂C′

|C|d(c(C ′), Z). (3.2)

For i = −1, we denote cost(G−1, Z) = |P |d(c−1
p , Z). Then this leads to our following

coreset construction framework.

Generally Weighted Construction The coreset S in the construction is composed by

a weighted subset of centers of grid cells. The procedure of the construction is to assign

some (integer) value to each cell center. For instance, maintain a integer valued function

|̂ · | on cells (using small amount of space). |̂C| is called the value of the cell C. Let c be

the center of C, then the weight for c is

wt(c) = |̂C| −
∑

C′:C′∈Gi+1,C′⊂C

|̂C ′|. (3.3)

And for the L-th grid GL, the weight for each cell C is just |̂C|. Note that there might be

negative weights for some cells.

As a näıve example, we set |̂C| := |C| as the exact number of points of a cell C.

Then we would expect the cells in every level except those in GL have weight 0. In other

words, we stored the entire point set as the coreset. As we will show, if we allow |̂C| as
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an approximation of |C| up to additive error, we can compress the number of non-zero

weighted centers to be a smaller number.

Definition 3.3.1. Given a grid structure, and a real valued function |̂ · | on the set of

cells. We define a function ĉost : [∆]d × G → R as follows, for i ∈ [0, L] and Z ⊂ [∆]d,

ĉost(Gi, Z) :=
∑

C∈Gi

|̂C|d(c(C), Z)

−
∑

C′∈Gi−1

∑

C∈Gi:C⊂C′

|̂C| · d(c(C ′), Z), (3.4)

and ĉost(G−1, Z) = |̂C−1|d(0, Z), where C−1 is the cell in G−1 containing the entire set of

points.

Lemma 3.3.2. Fix an integer valued function |̂ · | on the set of cells and parameter

0 < ǫ < 1
2
. Let S be the set of all cell centers with weights assigned by Equation (3.3).

If |̂C−1| = |P | (recall that C−1 is the first cell containing the entire dataset) and for any

Z ⊂ [∆]d with |Z| ≤ k and i ∈ [0, L]

∣
∣
∣cost(Gi, Z)− ĉost(Gi, Z)

∣
∣
∣ ≤

ǫOPT

L+ 1
,

then S is an ǫ-coreset for k-median.

Proof. Given an arbitrary set of centers Z ⊂ [∆]d,

cost(S,Z) =
∑

s∈S

wt(s)d(s, Z)

=
∑

i∈[0,L]

∑

C∈Gi

d(c(C), Z)
(
|̂C| −

∑

C
′:C′

∈Gi+1

C
′
⊂C

|̂C′|
)

+ |P |d(0, Z)

=
∑

i∈[0,L]

[ ∑

C∈Gi

|̂C|d(c(C), Z)−
∑

C
′
∈Gi−1

C∈Gi:C⊂C
′

|̂C|d(c(C′), Z)
]

+ |P |d(0, Z) =
∑

i∈[0,L]

ĉost(Gi, Z).

It follows that |cost(S, Z)− cost(P,Z)| ≤ ǫOPT.
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3.3.2 An Offline Construction

In this section, we assume we have (10, 10)-bi-criterion approximation to k-median. Let

Z ′ = {z′1, z
′

2, . . . , z
′

10k} be the centers and o is the cost satisfying OPT ≤ o ≤ 10OPT. This

can be done using [41]. We will show how we construct the coreset base on the framework

described in the last section.

An Offline Construction For each point in level G−1, we sample it with probability

π−1 = 1 (i.e. count the number of points exactly) and set |̂C−1| := |P |. For each level

i ∈ [0, L], we pick the set of all cells C satisfying d(C, Z ′) ≤ W/(2d), where W is the

side length of C. Denote the set of these cells as CZ′ . We count the number of points in

each of these cells exactly, and set |̂C| := |C|. For the points in the rest of cells, for each

i ∈ [0, L], we sample the points with probability

πi = min

(
200(L+ 1)2∆d2

2iǫ2o
ln

2(L+ 1)∆kd

ρ
, 1

)

(3.5)

uniformly and independently. Denote Si as the set of sampled points at level i. For each

C 6∈ CZ′ , set

|̂C| := |Si ∩ C|/πi.

Then, from the bottom level to the top level, we assign the weight to the cell centers of

each of the cells and their parent cells with non-zero |̂C| using (3.3). Denote S as the

coreset, which contains the set of cell centers of non-zero weight.

Theorem 3.3.3. Fix ǫ, ρ ∈ (0, 1/2), then with probability at least 1 − 8ρ, the offline

construction S is an ǫ-coreset for k-median and that

|S| = O

(
d4kL4

ǫ2
log

1

ρ
+

kL2

ρ

)

.

Proof of Theorem 3.3.3. By definition |̂C−1| = |P |, it is suffice to show that with proba-

bility at least 1− 4ρ, for every i ∈ [0, L] and every k-set Z ⊂ [∆]d,

∣
∣
∣ĉost(Gi, Z)− cost(Gi, Z)

∣
∣
∣ ≤ ǫOPT/(L+ 1).
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It follows from Lemma 3.3.2 that, S is an ǫ-coreset.

Let Si be the sampled points of level i. Fix a k-set Z ⊂ [∆]d, for each i ∈ [0, L],

by equation (3.2), we have that, ĉost(Gi, Z) =
∑

C∈CZ′
|̂C|
(
d(c(C), Z)− d(c(CP ), Z)

)
+

∑
p∈Si

(d(cip, Z) − d(ci−1
p , Z)))/πi. Note that E(ĉost(Gi, Z)) = cost(Gi, Z). The first term

contributes 0 to the difference ĉost(Gi, Z)− cost(Gi, Z) since each |̂C| is exact. It remains

to bound the error contribution from the second part. Denote A2 =
∑

p∈Si
(d(cip, Z) −

d(ci−1
p , Z)))/πi. Recall that Z ′ is the centers of the bi-criterion solution and CZ′ is the

set of cells with distance less than W/(2d) to Z ′, where W is the side-length of a cell.

Let A be event that |CZ′ | ≤ e|Z ′|(L + 1)2/ρ = O(kL2/ρ). By Lemma 3.2.2, A hap-

pens with probability at least 1 − ρ. Conditioning on A happening, for each point

p ∈ C /∈ CZ′ , we have that d(p, Z ′) ≥ diam(C)/(2d3/2). Therefore,
∑

p∈C /∈CZ
diam(C) ≤

(2d3/2)
∑

p∈C /∈CZ
d(p, Z ′) ≤ 20d3/2OPT. By Lemma 3.3.4, with probability at least 1 −

ρ
(L+1)∆kd , |A2 − E(A2)| ≤

ǫOPT
L+1

. Since there are at most ∆kd many different k-sets from

[∆]d, thus, for a fixed i ∈ [0, L] with probability at least 1− ρ
L+1

, for all k-sets Z ⊂ [∆]d,
∣
∣
∣ĉost(Gi, Z)− cost(Gi, Z)

∣
∣
∣ ≤ ǫOPT/(L+1). By the union bound, with probability at least

1− 4ρ, S is the desired coreset.

It remains to bound the size of S. Conditioning on A happening, then |CZ′ | =

O(kL2/ρ). For each level i, since each point from cells C 6∈ CZ′ contributes at least

∆/(2i+1d) to the bi-criterion solution, there are at most O(2iOPTd/∆) points in cells

not in CZ′ . By a Chernoff bound, with probability at least 1 − ρ/(L + 1), the number

of points sampled from cells C 6∈ CZ′ of level i is upper bounded by O(d4kL3 log 1
ρ
/ǫ2).

Thus for all levels, with probability at least 1 − ρ, the number of points sampled is

upper bounded by O(d4kL4 log 1
ρ
/ǫ2), which is also an upper bound of the number of cells

occupied by sampled points. Now we bound the number of non-zero weighted centers.

In the coreset construction, if a cell center has non-zero weight, then either itself or

one of its children cells has non-zero assigned value |̂C|. Thus the number of non-zero

weigted centers is upper bound by 2 times the number of non-zero valued cells. Thus

|S| = O(d4kL4 log 1
ρ
/ǫ2 + kL2

ρ
).
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Lemma 3.3.4. Fix ǫ, ρ ∈ (0, 1/2), if a set of cells C from grid Gi satisfies
∑

C∈C |C|diam(C) ≤

βOPT for some β ≥ 2ǫ/(3(L + 1)), let S be a set of independent samples from the point

set ∪{C ∈ C} with probability

πi ≥ min
(

3a(L+1)2∆
√

dβ
2iǫ2o

ln 2∆kd(L+1)
ρ

, 1
)

where 0 < o ≤ aOPT for some a > 0, then for a fixed set Z ⊂ [∆]d, with probability at

least 1− ρ/((L+ 1)∆kd),

∣
∣
∑

p∈S

(d(cip, Z)− d(ci−1
p , Z))/πi−

∑

p∈∪{C∈C}

(d(cip, Z)− d(ci−1
p , Z))

∣
∣ ≤

ǫOPT

L+ 1
.

The proof is a straightforward application of Bernstein inequality. It is presented in

Section 3.7.

3.3.3 The Streaming Algorithm

For the streaming algorithm, the first challenge is that we do not know the actual value of

OPT, neither do we have an (α, β)-bi-criterion solution. To handle this, we will show that

we do not need an actual set of centers of an approximate solution, and that a conceptual

optimal solution suffices. We will guess logarithmically many values for OPT to do the

sampling. We re-run the algorithm in parallel for each guess of OPT.

The second challenge is that we cannot guarantee the sum
∑

C∈Gi
diam(C) to be upper

bounded by βOPT as required in Lemma 3.3.4. We will show that we can split the set

of cells into two parts. The first part satisfies the property that
∑

C
|C|diam(C) ≤ βOPT

for some parameter β. The second part satisfies that |C|diam(C) ≥ aOPT/k for some

constant a.

For the first part, we use a similar sampling procedure as we did in the offline case.

The challenge here is that there might be too many points sampled when the algorithm

is midway through the stream, and these points may be deleted later in the stream. To
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handle this case, we use a data structure called K-Set structure with parameter k [32].

We will insert (with deletions) a multiset of points M ⊂ [N ] into the K-Set. The data

structure processes each stream operation in O(log(k/δ)) time. At each point of time,

it supports an operation RETRSET, that with probability at least 1− δ either returns the

set of items of M or returns Fail. Further, if the number of distinct items |M | is at

most k, then RETRSET returns M with probability at least 1 − δ. The space used by

the K-Set data structure is O(k(log |M | + logN) log(k/δ). The K-Set construction also

returns the frequency of each stored points upon the RETRSET operation.

For the second part, we call these cells heavy. We first upper bound the number of

heavy cells by αk for some α > 1. We use a heavy hitter algorithm HEAVY-HITTER to

retrieve an approximation to the number of points in these cells. The guarantee is given in

the following theorem. In an insertion-deletion stream, it may that although the stream

has arbitrary large length, at any moment a much smaller number of elements are active

(that is, inserted and not yet deleted). We define the size of a stream to be the maximum

number of active elements at any point of the stream.

Theorem 3.3.5 ([47] Theorem 2). Fix ǫ, δ ∈ (0, 1/2). Given a stream (of insertions

and deletions) of size m consisting of items from universe [n], there exists an algorithm

HEAVY-HITTER(n, k, ǫ, δ) that makes a single pass over the stream and outputs a set of

pairs H. With probability at least 1− δ, the following holds,

(1) for each (i, f̂i) ∈ H, f 2
i ≥

∑n
j=1 f

2
j /k − ǫ2

∑n
j=k+1 f

2
j ;

(2) if for any i ∈ [n] and f 2
i ≥

∑n
j=1 f

2
j /k + ǫ2

∑n
j=k+1 f

2
j , then (i, f̂i) ∈ H;

(3) for each (i, f̂i) ∈ H, |f̂i − fi| ≤ ǫ
√∑n

j=k+1 f
2
j .

The algorithm uses O
(
(k + 1

ǫ2
) log n

δ
logm

)
bits of space, O(log n) update time and O(k+

1/ǫ2)polylog(n) query time.

Thus, using HEAVY-HITTER, we are guaranteed that the error of the number of points

in heavy cells is upper bounded by ǫ times the number of points in the non-heavy cells.

The first heavy hitter algorithm that achieves an l2 guarantee is by [11], who has the

same space and update time as that of the above algorithm. However the update time is

slow, i.e. O(n log n) time to output the set of heavy hitters.
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Lastly, we will use fully independent random hash function to sample the points. We

will use Nissan’s pseudorandom generator to de-randomize the hash functions by the

method of [42]. Our main theorem for this section is as follows. The formal proof of this

theorem is postponed to Section 3.8.

Theorem 3.3.6 (Main Theorem). Fix ǫ, ρ ∈ (0, 1/2), positive integers k and ∆, Algo-

rithm 1 makes a single pass over the streaming point set P ⊂ [∆]d, outputs a weighted

set S, such that with probability at least 1 − ρ, S is an ǫ-coreset for k-median of size

O
(

d4L4k
ǫ2

+ L2k
ρ

)
, where L = log∆. The algorithm uses

O

[

k

((
d7L7

ǫ2
+

d3L5

ρ

)

log
dkL

ρǫ
+

d5L6

ǫ2ρ

)]

bits in the worst case, processes each update in time O
(
dL2 log dkL

ρǫ

)
and outputs the

coreset in time poly(d, k, L, 1/ǫ) after one pass of the stream.

3.4 Positively Weighted Coreset

In this section, we will introduce a modification to our previous coreset construction,

which leads to a coreset with all positively weighted points. The full algorithm and

proofs are postponed to Section 3.9. We present the main steps in this section.

The high level idea is as follows. When considering the estimate of the number of

points in a cell, the estimate is only accurate when it truly contains a large number of

points. However, in the construction of the previous section, we sample from each cell of

each level, even though some of the cells contain a single point. For those cells, we cannot

adjust their weights from negative to positive, since doing so would introduce large error.

In this section, we introduce an ending level to each point. In other words, the number

of points of a cell is estimated by sampling only if it contains many points. Thus, the

estimates will be accurate enough and allow us to rectify the weights to be all positive.
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Algorithm 1 CoreSet(S, k, ρ, ǫ): construct a ǫ-coreset for dynamic stream S.

Initization:
Initialize a grid structure;
O ← {1, 2, 4, . . . ,

√
d∆d+1};

L← ⌈log∆⌉;

πi(o)← min
(

3(L+1)2∆d2

2iǫ2o
ln 2∆kd(L+1)

ρ
, 1
)
;

K ← (2+e)(L+1)k
ρ

+ 24d4(L+1)3k
ǫ2

ln 1
ρ
,

ǫ′ ←
(
ǫ
√

ρ
8(2+e)2kd3(L+1)3

)
; m← 0;

For each o ∈ O and i ∈ [0, L], construct fully independent hash function ho,i : [∆]d →
{0, 1} with Prho,i

(ho,i[q] = 1) = πi(o);
Initialize K-Set instances KSo,i with error probability ρ/(L+ 1), size parameter K;
Initialize HEAVY-HITTER(∆d, (e + 2)(L + 1)k/ρ, ǫ′, ρ/(L + 1)) instances,
HH0, HH1, . . . , HHL, one for a level;
Update (S):
for each update (op, q) ∈ S:

/*op ∈ {Insert, Delete}*/
m← m± 1; /*Insert: +1, Delete:−1*/
for each i ∈ [0, L]:

ciq ← the center of the cell contains q at level i;
HHi.update(op, c

i
q);

for each o ∈ [O]:
if ho,i(q) == 1:

KSo,i.update(op, c
i
q);

Query:
Let o∗ be the smallest o such that no instance of KSo,0, KSo,1, . . . , KSo,L returns Fail;
R← {};
for i = −1 to L:

for each cell center c in level i:
Let C be the cell containing c;
if i = -1 :

f ← m;
else:

f ← GetFreq(c, HHi, KSo∗,i, πi(o
∗));

if i < L:
g ←

∑
C′⊂C:C′∈Gi+1

GetFreq (c(C′), HHi+1, KSo∗i+1, πi(o
∗));

Assign weight f − g to c;
if f − g 6= 0:

R← R ∪ {c};

else:
Assign weight f to c;
if f 6= 0:

R← R ∪ {c};
return R.
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Algorithm 2 GetFreq(e, HH, KS, πi): retrieve the correct freuquency of cell center e, given
the instance of HEAVY-HITTER and K-set.
fS(e)← the frequency of e returned by HH;
fK(e)← the frequency of e returned by KS;
k′ ← (e+ 2)(L+ 1)k/ρ;
F ← the set of top-k′ heavy hitters returned by HEAVY-HITTER;
if e ∈ F :

return fS(e);
else:

return fK(e)/πi.

3.4.1 Reformulation of the Telescope Sum

Definition 3.4.1. A heavy cell identification scheme H is a map H : G → {heavy, non-

heavy} such that, h(C−1) =heavy and for cell C ∈ Gi for i ∈ [0, L]

1. if |C| ≥ 2iρdOPT
k(L+1)∆

then H(C) = heavy;

2. If H(C) = non-heavy, then H(C ′) = non-heavy for every subsell C ′ of C.

3. For every cell C in level L, H(C) = non-heavy.

4. For each i ∈ [0, L], |{C ∈ Gi : H(C) = heavy}| ≤ λ1kL
ρ

, where λ1 ≤ 10 is a positive

universal constant.

The output for a cell not specified by the above conditions can be arbitrary. We call a cell

heavy if it is identified heavy by H. Note that a heavy cell does not necessarily contain a

large number of points, but the total number of these cells is always bounded.

In the sequel, heavy cells are defined by an arbitrary fixed identification scheme unless

otherwise specified.

Definition 3.4.2. Fix a heavy cell identification scheme H. For level i ∈ [−1, L], let

C(p, i) ∈ Gi be the cell in Gi containing p. The ending level l(p) of a point p ∈ P is the

largest level i such that H(C(p, i)) =heavy, and H(C(p, i+ 1)) =non-heavy.

Note that the ending level is uniquely defined if a heavy cell identification scheme is

fixed. We now rewrite the telescope sum for p as follows,

p =

l(p)∑

i=0

(
cip − ci−1

p

)
+ cLp − cl(p)p ,

where c−1
p = 0 and cLp = p. For arbitrary k-centers Z ⊂ [∆]d, we write, d(p, Z) =
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∑l(p)
i=0

(
d(cip, Z)− d(ci−1

p , Z)
)
+ d(cLp , Z)− d(c

l(p)
p , Z) + d(0, Z) .

3.4.2 The New Construction (with arbitrary weights)

For these heavy cells, we use HEAVY-HITTER algorithms to obtain accurate estimates of

the number of points in these cells, thus providing a heavy cell identification scheme. For

the non-heavy cells, we only need to sample points from the bottom level, GL, but with

a different probability for points with different ending levels.

We now describe the new construction. This essentially has the same gaurantee as

the simpler construction from the previous section, however the benefit here is that (as

shown in the next subsection) it can be modified to output only positive weights. In the

following paragraph, the estimations |̂C| are given as a blackbox. In proposition 3.9.9 we

specify the conditions these estimations must satisfy.

Non-Negatively Weighted Construction Fix an arbitrary heavy cell identification

scheme H. Let Pl be all the points with ending level l(p) = l. For each heavy cell C, let

|̂C| be an estimation of number of points of |C|, we also call |̂C| the value of cell C. For

each non-heavy cell C ′, let |̂C ′| = 0. Let S be a set samples of P constructed as follows:

S = S−1 ∪ S0 ∪ S1,∪ . . . ∪ SL, where Sl is a set of i.i.d samples from Pl with probability

πl. Here πl for l ∈ [−1, L] is redefined as πl =

min
(
λ3d2∆L2

2lǫ2o
log
(
2L∆dk

ρ

)
+ λ4d2kL3∆

2iǫ2ρo
log 30kL2

ρ2
, 1
)

where λ3 > 0 and λ4 > 0 are universal constants. Our coreset S is composed by all

the sampled points in S and the cell centers of heavy cells, with each point p assigned a

weight 1/πl(p) and for each cell center c of a heavy cell C ∈ Gi, the weight is,

wt(c) = |̂C| −
∑

C
′:C′

∈Gi+1,C
′
⊂C,

C
′ is heavy

|̂C′| −
|Si ∩ C|

πi
. (3.6)

For each non-heavy cell C except for those in the bottom level, wt(c(C)) = 0. The weight

of each point from S is the value of the corresponding cell in the bottom level.
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3.4.3 Ensuring Non-Negative Weights

We now provide a procedure to rectify all the weights for the coreset constructed in the

last sub-section. The idea is similar to the method used in [45]. The procedure is shown

in Algorithm 3.4.3. After this procedure, there will be no negative weights in the coreset

outputs.

Algorithm 3 RectifyWeights
(
|̂C1|, |̂C2| . . . , |̂Ck′ |, S

)
: input the estimates of number of

points in each cell and the weighted sampled points, output a weighted coreset with
non-negative weights.

for i = −1 to L:

for each heavy cell C center in Gi:
if wt(C) < 0:

Decrease the value of the children heavy cells in level Gi+1 and sampled points
Si arbitrarily by total |wt(C)| amount, such that for each children cell C ′ ∈ Gi+1,

|̂C ′| is non-negative, and for each sampled point p ∈ Si, the weight is non-
negative.

return Rectified Coreset

Theorem 3.4.3. Fix ǫ, ρ ∈ (0, 1/2), positive integers k and ∆, Algorithm 6 makes a

single pass over the streaming point set P ⊂ [∆]d, outputs a weighted set S with non-

negative weights for each point, such that with probability at least 0.99, S is an ǫ-coreset

for k-median of size

O
[
d3L4k
ǫ2

(
d+ 1

ρ log
kL
ρ

)]

where L = log∆. The algorithm uses

O
[
d7L7k
ǫ2

(
ρdL+ L

ρ log
2 dkL

ρǫ

)
log2 dkL

ρǫ

]

bits in the worst case. For each update of the input, the algorithm needs poly (d, 1/ǫ, L, log k)

time to process and outputs the coreset in time poly(d, k, L, 1/ǫ, 1/ρ, log k) after one pass

of the stream.

3.5 Experiments

We illustrate our construction using an offline construction on Gaussian mixture data in

R
2. As shown in Figure 3.5 in Section 3.10, we randomly generated 65536 points from
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R
2, then rounded the points to a grid of size ∆ = 512. Our coreset uses log2 ∆+ 2 = 11

levels of grids. The storage in each level is very sparse. As shown in Figure 3.4(a), only 90

points are stored in total. We compared the 1-median costs estimated using the coreset

and the dataset, the resulting difference is very small, as illustrated in Figure 3.4(b).

(a) (b)

Figure 3.4: (a) The layer structure of the coreset. Cells with more weight are shaded
darker. (b) The relative error of a 1-median cost function. Using only 90 points, the
global maximum error was under 10%.

3.6 Concluding Remark

We develop algorithms that make a single pass over the dynamic stream and output, with

high probability, a coreset for the original k-median problem. Both the space complexity

and the size of the coreset are polynomially dependent on d, whereas the only previous

known bounds are exponential in d. We constructed our coreset for the possible solutions

in discrete space [∆]d, but it is easy to modify the coreset to be a coreset in continuous

space [0,∆]d (note that we still require the input dataset to be from a discrete space).

The way to do this is by modifying the sampling probability πi in the algorithm, i.e.

replacing the factor of ln(Ω(∆kdL/ρ)) to ln(Ω((∆/ǫ)kdL/ρ)). Then any k-set from [0,∆]d

can be rounded to the closest k-set in [∆/ǫ]d and the cost only differs by a (1± ǫ) factor

while the space bound changes only by a polylog(1/ǫ) factor. Lastly, we remark that the

coreset scheme can be easily modified to other metric spaces, e.g. the lp metric. The

space bound depends on the doubling dimension of the metric.

As shown in our experiments, a 2D implementation using our framework is very
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efficient. We believe that a high-dimensional implementation will be efficient as well. We

leave the full implementation as a future project.

3.7 Proofs of Section 3.3

Proof of Lemma 3.2.2. Fix an i and consider a grid Gi. For each center zj, denoteXj,α the

indicator random variable for the event that the distance to the boundary in dimension

α of grid Gi is at most ∆/(2i+1d). Since in each dimension, if the center is close to a

boundary, it contributes a factor at most 2 to the total number of close cells. It follows

that the number of cells that have distance at most ∆/(2i+1d) to zj is at most,

N = 2
∑d

α=1 Xj,α .

Defining Yj,α = 2Xj,α , we obtain,

E[N ] = E

[
d∏

α=1

Yj,α

]

=
d∏

α=1

E[Yj,α].

We have that Pr[Xj,α = 1] ≤ 1/d and so we get,

E[Yj,α] ≤ E [1 +Xj,α] = 1 + E[Xj,α] ≤ 1 + 1/d.

Thus E(N) =
∏d

α=1 E[Yj,α] ≤ (1 + 1/d)d ≤ e. Thus the expected number of center cells

is at most (1 + 1/d)d|Z| ≤ e|Z|. By Markov’s inequality, the probability that we have

more than e|Z|(L+1)/ρ center cells in each grid is at most ρ/(L+1). By a union bound,

the probability that in any grid we have more than e|Z|(L+ 1)/ρ center cells is at most

ρ.

Proof of Lemma 3.3.4. Let L′ = L + 1. Note that for each point p ∈ P , |d(cip, Z) −

d(ci−1
p , Z)| ≤ ∆

√
d/2i. Denote Â =

∑
p∈S(d(c

i
p, Z)−d(c

i+1
p , Z))/πi andA =

∑
p∈∪{C∈C}

(d(cip, Z)−
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d(ci+1
p , Z)). We have that E(Â) = A. Let

Xp := Ip∈S(d(c
i
p, Z)− d(ci+1

p , Z))/πi,

where Ip∈S is the indicator function that p ∈ S. Then we have that V ar(Xp) ≤ ∆2d/(4iπi)

and b := maxp |Xp| ≤ ∆
√
d/(2iπi). By Bernstein’s inequality,

Pr
[
|Â− A| > t

]
≤ 2e

−
t2

2|P |∆2d/(4iπi)+2bt/3

≤ 2e
−

3×2i−1t2πi

(βOPT+ t
3)∆

√

d
. (3.7)

By setting t = ǫOPT/L′, we have that

Pr

[

|Â− A| >
ǫOPT

L′

]

≤ 2e− ln 2L′∆dk

ρ ≤
ρ

L′∆dk
. (3.8)

Thus with probability 1−ρ/(L′∆dk), Â is an ǫOPT/L′ additive approximation to the sum
∑

p∈P d(cip, Z)− d(ci+1
p , Z).

3.8 Proof of Theorem 3.3.6

Before we prove this theorem, we first present Lemma 3.8.1 and Lemma 3.8.2. In Algo-

rithm 1, for each level i ∈ [0, L], let Hi be the set of cells in Gi whose frequencies are

returned by HEAVY-HITTER in the RetrieveFrequency procedure. For each C ∈ Hi, let

|̂C| be the returned frequency of C. Let H ′

i be the set of cells in Gi whose frequencies

are returned by a K-set in the RetrieveFrequency procedure. Then Hi and H ′

i are

complements in Gi.

Lemma 3.8.1. Let L′ = L + 1. Fix ǫ, ρ ∈ (0, 1/2). Let Z∗ ⊂ [∆]d be a set of optimal

k-centers for the k-median problem of the input point set. For each i ∈ [0, L], if at most

ekL′/ρ cells C in Gi satisfy d(C, Z∗) ≤ ∆/(2i+1d), then with probability 1 − ρ/L′, the

following two statements hold:

1.
∣
∣
∣
∑

C∈Hi
(|̂C| − |C|)

(
d(c(C), Z)− d(c(CP ), Z)

)∣∣
∣ ≤ ǫOPT

2L′ for every Z ⊂ [∆]d.
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2.
∑

C∈H′

i
|C|diam(C) ≤ βOPT for β = 3d3/2

Proof of Lemma 3.8.1. Let L′ = L+ 1. Fix a value i ∈ [0, L] and then W = ∆/2i is the

width of a cell in Gi. Since at most ekL′/ρ cells in Gi satisfy d(C, Z∗) ≤ W/(2d), then of

the remaining cells, at most 2kL′/ρ cells can contain more than ρdOPT/(WkL′) points.

This is because each such cells contribute at least ρdOPT
WkL′

W
2d

= ρOPT
2kL′ to the cost which

sums to OPT. Therefore, at most (e + 2)L′k/ρ cells contain more than ρdOPT/(WkL′)

points.

The number of cells in grid Gi is at most N = (1 + 2i)d (and perhaps as few as 2id,

depending on the random vector v), so HEAVY-HITTER receives cells of at most N types.

Enumerating all cells C ∈ Gi such that |Cj| ≥ |Cj+1|, define fj = |Cj|. Algorithm 1

sets k′ = (e + 2)L′k/ρ, and the additive error of the estimator of fi of HEAVY-HITTER is

given by ǫ′
√∑N

j=k′+1 f
2
j . We know that for all j > k′ the value fj ≤ ρdOPT/(WkL′).

Moreover, the sum
∑N

j=k′+1 fj ≤ 2dOPT/W because each point is at distance at least

W/(2d) to a point of Z∗. Under these two restraints, the grouping of maximal error is

with fj = ρdOPT/(WkL′) for k′ < j ≤ k′ + 2kL′/ρ and fj = 0 for j > k′ + 2kL′/ρ. Then

the additive error becomes ǫ′
√

2ρ/(kL′)dOPT/W .

The error from a single cell Cj is at most |fj− f̂j|
√
dW , and HEAVY-HITTER gaurantees

with probability 1 − δ that |fj − f̂j| ≤ ǫ′
√
2ρ/(kL′)dOPT/W for every j. Therefore to

ensure total error over all k′ cells is bounded by ǫOPT/(2L′), we set ǫ′ ≤ ǫ
√

ρ
8(2+e)2kd3L′3 .

Setting δ = ρ/L′, the above bound holds with probability at least 1− ρ/L′.

For the second claim, we must bound
∑

C∈H′

i
|C|. Hi consists of the top k′ cells

when ordered by value of f̂j. This may differ from the top k′ cells when ordered

by value of fj, but if j and j′ change orders between these two orderings then |fj −

fj′ | ≤ 2ǫ′
√

2ρ/(kL′)dOPT/W . Since the sum may swap up to k′ indices, the differ-

ence is bounded by 2k′ǫ′
√

2ρ/(kL′)dOPT/W . By setting ǫ′ ≤
√

ρ
8(2+e)2dkL′ , we can en-

sure that the difference is at most dOPT/W . We know that
∑N

j=k′+1 fj ≤ 2dOPT/W ,

and so
∑

C∈H′

i
|C| ≤ 3dOPT/W . For all cells C ∈ Gi, diam(C) =

√
dW . Therefore

∑
C∈H′

i
|C|diam(C) ≤ 3d3/2OPT.
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Lemma 3.8.2. Let L′ = L+1. In Algorithm 1, fixing ǫ, ρ ∈ (0, 1/2), o ∈ O and i ∈ [0, L],

if OPT/2 ≤ o ≤ OPT, then with probability 1 − ρ/(L′∆kd), at most (2+e)L′k
ρ

+ 24d4L′3k
ǫ2

ln 1
ρ

cells of Gi contain a point of Si,o.

Proof. Similar to the proof of Lemma 3.8.1, there are at most k′ = (2+ e)L′k/ρ cells C in

Gi that satisfy |C| ≥ ρdOPT/(Wk) and/or d(C, Z∗) ≤ W/(2d). Considering the other cells,

together they contain at most 2dOPT/W points. So by a Chernoff bound, with probability

1 − ρ/(L′∆kd) at most O(2dπi,oOPT/(Wρ)) ≤ 24d4L′3k ln 1
ρ
/ǫ2 points are sampled. The

claim follows since each non-empty cell must contain at least one point.

Proof of Theorem 3.3.6. Let L′ = L + 1. W.l.o.g. we assume ρ ≥ ∆−d, since otherwise

we store the entire set of points and the theorem is proved. By Lemma 3.2.2, with

probability at least 1 − ρ, for every level i ∈ [0, L], at most ekL′/ρ cells C in Gi satisfy

d(C,Z∗) ≤ ∆/(2i+1d). Conditioning on this event, we will show 1) in the query phase,

if o∗ ≤ OPT, then with probability at least 1 − 4ρ, S is the desired coreset; 2) there

exists o ≤ OPT in the guesses O = {1, 2, 4, . . . ,∆d+1} such that with probability 1 − 4ρ,

none of the K-set structures return Nil. 1) and 2) guarantee the correctness of the

algorithm. Note that one can always rescale ρ to ρ/9 to achieve the correct probability

bound. Finally, we will bound the space, update time and query time of the algorithm.

To show 1), we first note that the coreset size is at most O(KL) as desired. Then by

Lemma 3.3.2, we only need to show that with probability at least 1 − 4ρ, for any k-set

Z ⊂ [∆]d and any level i ∈ [−1, L],

|cost(Gi, Z)− ĉost(Gi, Z)| ≤
ǫOPT

L′
,

where the value of each |̂C| is returned by RetrieveFrequency. For each level i, we

denote Ci as the set of cells that gets frequency from a HEAVY-HITTER instances in the

RetrieveFrequency procedure, and Si = {p ∈ C : C 6∈ Ci, ho∗,i(p) = 1} be the set of

points sampled in the rest of cells. Since KSo∗,i does not return Fail, then for each
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C ∈ Gi\Ci, |̂C| = |Si ∩ C|/πi(o
∗). Fix a k-set Z ⊂ [∆]d, we rewrite the cost as,

ĉost(Gi, Z) =
∑

C∈Ci

|̂C|
(
d(c(C), Z)− d(c(CP ), Z)

)
+
∑

p∈Si

(d(cip, Z)− d(ci−1
p , Z)))/πi(o

∗),

where CP is the parent cell of C in grid Gi−1. By Lemma 3.8.1 we have that, with

probability at least 1− ρ/L′, for every Z ⊂ [∆]d,

∣
∣
∣
∣
∣

∑

C∈Ci

|̂C|
(
d(c(C), Z)− d(c(CP ), Z)

)
−
∑

C∈Ci

|C|
(
d(c(C), Z)− d(c(CP ), Z)

)
∣
∣
∣
∣
∣
≤

ǫOPT

2L′
,

and that,
∑

C∈Gi\Ci
|C|diam(C) ≤ 3d3/2OPT. Conditioning on this event, by Lemma 3.3.4,

with probability at least 1− ρ/(L′∆kd),

∣
∣
∣
∣
∣
∣

∑

p∈Si

(d(cip, Z)− d(ci−1
p , Z)))/πi −

∑

C∈Gi\Ci

|C|
(
d(c(C), Z)− d(c(CP ), Z)

)
∣
∣
∣
∣
∣
∣
≤

ǫOPT

2L′
.

By a union bound, we show with probability at least 1− 4ρ, for any k-set Z ⊂ [∆]d and

any level i ∈ [−1, L],

|cost(Gi, Z)− ĉost(Gi, Z)| ≤
ǫOPT

L′
,

as desired.

To show 2), we will consider some OPT/2 ≤ o ≤ OPT. By Lemma 3.8.2 with probablity

at least 1−ρ/∆kd, the total number of cells occupied by sample points in each level is upper

bounded by K = (2+e)L′k
ρ

+ 24d4L′3k
ǫ2

ln 1
ρ
. Thus by the guarantee of the K-Set structure,

with probability at least 1− ρ, none of the KSo,0, KSo,1 . . . , KSo,L will return Fail.

The memory requirement of the algorithm is determined by the L instances of HEAVY-HITTER and

the dL2 instances of K-set. By Theorem 3.3.5, each instance of HEAVY-HITTER requires

O
(
(k′ + 1

ǫ′2
) log N

δ
logm

)
bits of space. Here N ≤ (1 + ∆/W )d ≤ ∆d and m is the maxi-

mum number of elements active in the stream. Since we require that at most one point

exists at each location at the same time, we have that m ≤ N . The parameters are set to

k′ = (2 + e)Lk/ρ, ǫ′ =
(
ǫ
√

ρ
8(2+e)2kd3L3

)
, and δ = ρ/L. This translates to a space bound
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of O
(
dL+ log 1

ρ

)
d4L5k
ρǫ2

bits. For each K-Set data structure, it requires

O(KdL log(KL/ρ)) = O

(
d5L4k

ǫ2
+

dkL2

ρ

)

log
dkL

ǫρ

bits of space. In total, there are O(dL2) K-Set instances and thus all K-Set instances

cost O
(

d6L6k
ǫ2

+ d2kL4

ρ

)
log dkL

ǫρ
bits of space. By the same argument as in the offline

case, the last paragraph of the proof of Theorem 3.3.3, the size of the coreset is at most

O((k′ +K)L) = O(d4kL4ǫ−2 + kL2/ρ) points. Finally, to derandomize the fully random

functions, we use Nissan’s pseudorandom generator [54] in a similar way used in [42]. But

our pseudo-random bits only need to fool the sampling part of the algorithm rather than

whole algorithm. We consider an augmented streaming algorithm A that does exactly the

same as in CoreSet but with all the HEAVY-HITTER operations removed. Thus all K-set

instances will have identical distribution with the ones in algorithm CoreSet. A uses

O(KdL log(KL/ρ)) bits of space. To fool this algorithm, using Nissan’s pseudo-random

generator, the length of random seed to generate the hash functions we need is of size

O(KdL log(KL/ρ) log(|O|∆d)) = O
((

d7kL7

ǫ2
+ d3kL5

ρ

)
log dkL

ρǫ

)
. This random seed is thus

sufficient to be used in Algorithm CoreSet. Thus the total space used in the algorithm

is O
((

d7kL7

ǫ2
+ d3kL5

ρ

)
log dkL

ρǫ
+ d5kL6

ǫ2ρ

)
bits.

Regarding the update time, for the HEAVY-HITTER operations, it requiresO(L logN) =

O(dL2) time. For theK-set operations, it requires |O|LO(log(KL/ρ)) = dL2 log(dkL/(ρǫ))

time. The de-randomized hash operation takes O(dL) more time per update. The final

query time is dominated by the HEAVY-HITTER data structure, which requires poly(d, k, L, 1/ǫ)

time.

3.9 Full Construction of Positively Weighted Coreset

In this section, we will introduce a modification to our previous coreset construction,

which leads to a coreset with all positively weighted points. The high level idea is as

follows. When considering the estimate of the number of points in a cell, the estimate

is only accurate when it truly contains a large number of points. However, in the con-
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struction of the previous section, we sample from each cell of each level, even though

some of the cells contain a single point. For those cells, we cannot adjust their weights

from negative to positive, since doing so would introduce large error. In this section, we

introduce an ending level to each point. In other words, the number of points of a cell

is estimated by sampling only if it contains many points. Thus, the estimates will be

accurate enough and allow us to rectify the weights to be all positive.

This section is organized as follows. We reformulate the telescope sum in Subsec-

tion 4.1, provide a different construction (still with negative weights) in Subsection 4.2,

modify our different construction to output non-negative weights in Subsection 4.3, and

move this construction into to the streaming setting in Subsection 4.4. For simplicity of

presentation, we will use λ1, λ2, . . . to denote some fixed positive universal constants.

3.9.1 Reformulation of the Telescope Sum

Definition 3.9.1. A heavy cell identification scheme H is a map H : G → {heavy,

non-heavy} such that, h(C−1) =heavy and for cell C ∈ Gi for i ∈ [0, L]

1. if |C| ≥ 2iρdOPT
k(L+1)∆

then H(C) = heavy;

2. If H(C) = non-heavy, then H(C ′) = non-heavy for every subsell C ′ of C.

3. For every cell C in level L, H(C) = non-heavy.

4. For each i ∈ [0, L], |{C ∈ Gi : H(C) = heavy}| ≤ λ1kL
ρ

, where λ1 ≤ 10 is a positive

universal constant.

The output for a cell not specified by the above conditions can be arbitrary. We call a cell

heavy if it is identified heavy by H. Note that a heavy cell does not necessarily contain a

large number of points, but the total number of these cells is always bounded.

In the sequel, heavy cells are defined by an arbitrary fixed identification scheme unless

otherwise specified.
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Definition 3.9.2. Fix a heavy cell identification scheme H. For level i ∈ [−1, L], let

C(p, i) ∈ Gi be the cell in Gi containing p. The ending level l(p) of a point p ∈ P is the

largest level i such that H(C(p, i)) =heavy, and H(C(p, i+ 1)) =non-heavy.

Note that the ending level is uniquely defined if a heavy cell identification scheme is

fixed. We now rewrite the telescope sum for p as follows,

p =

l(p)∑

i=0

(
cip − ci−1

p

)
+ cLp − cl(p)p ,

where c−1
p = 0 and cLp = p. For arbitrary k-centers Z ⊂ [∆]d, we write,

d(p, Z) =
∑l(p)

i=0

(
d(cip, Z)− d(ci−1

p , Z)
)
+ d(cLp , Z)− d(c

l(p)
p , Z) + d(0, Z)

Let Pl be all the points with ending level l(p) = l. We now present the following

lemmas.

Lemma 3.9.3. Let Pi be the set of points with ending level i. Let Z∗ ⊂ [∆]d be a set of

optimal k-centers for the k-median problem of the input point set. Assume that for each

i ∈ [−1, L], at most ek(L+ 1)/ρ cells C in Gi satisfy d(C, Z∗) ≤ ∆/(2i+1d). Then

|Pi| ·
∆
√
d

2i
≤ λ2d

3/2
OPT,

where λ2 > 0 is a universal constant.

Before we prove this lemma, we first introduce the following lemmas to bound the

cells with a large number of points.

Lemma 3.9.4. Assume that for each i ∈ [0, L], at most ek(L+ 1)/ρ cells C in Gi satisfy

d(C, Z∗) ≤ ∆/(2i+1d). Then for any r > 0 there are at most (e+2r)k(L+1)
ρ

cells that satisfy

|C| ≥ 2iρdOPT
rk(L+1)∆

.

Proof of Lemma 3.9.4. Let L′ = L + 1. Fix a value i ∈ [0, L] and then W = ∆/2i is

the width of a cell in Gi. Since at most ekL/ρ cells in Gi satisfy d(C, Z∗) ≤ W/(2d),

then of the remaining cells, each contribute at least ρdOPT
rWkL′

W
2d

= ρOPT
2rkL′ to the cost, and

the cost of these cells is at most OPT. Therefore there can be at most 2rL′k/ρ cells
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such that d(C, Z∗) > W/(2d). Along with the at most ekL′/ρ cells (by the assumption)

such that d(C, Z∗) ≤ W/(2d), there are at most (e + 2r)L′k/ρ cells that contain at least

ρdOPT/(rWkL′) points.

Lemma 3.9.5. Assume that for each i ∈ [0, L], at most ek(L+ 1)/ρ cells C in Gi satisfy

d(C, Z∗) ≤ ∆/(2i+1d). Then for i ∈ [−1, L], the points of Pi can be partitioned to at most

k′ = 2(e+6)k(L+1)
ρ

groups, G1, G2, . . . , Gk′, such that for each j ∈ [k′], there exists a C ∈ Gi,

such that Gj ∈ C, |Gj| < 52i−1ρdOPT
k(L+1)∆

.

Proof of Lemma 3.9.5. Let L′ = L+1. For each heavy cell in Gi, if the number of points

falling into its non-heavy subcells (in Gi+1) is less than 2i−1ρdOPT
kL′∆

, we group all these

subcells into a single group. Let the groups formed this way be called type I, and by

Property 4 of Definition 3.4.1 there are at most (e+ 4)kL′/ρ type I groups.

For each of the remaining heavy cells in Gi, we group its subcells into groups such that

each group contains a number of points in the interval
[
2i−1ρdOPT

kL′∆
, 52i−1ρdOPT

kL′∆

)
. This can

be done since each non-heavy subcell contains less than 2i+1ρdOPT
kL′∆

= 42i−1ρdOPT
kL′∆

points,

and the total number of points contained in them is at least 2i−1ρdOPT
kL′∆

(otherwise we

would have formed a type I group). Let the groups formed this way be called type II. By

the assumption of of Lemma 3.9.3, at most ekL′

ρ
of these non-heavy subcells are within

distance ∆
2i+2d

from an optimal center of Z∗. Since each type II group contains at least

2i−1ρdOPT
kL′∆

points, by the same argument as in Lemma 3.9.4, the number of type II groups

further than distance ∆
2i+2d

from an optimal center is at most 8kL′

ρ
. We conclude that,

k′ ≤
(e+ 4)kL′

ρ
+

(e+ 8)kL′

ρ
.

Proof of Lemma 3.9.3. Let L′ = L+1. Fix a value i ∈ [−1, L] and then W = ∆/2i is the

upper bound of the width of a cell in Gi. Let G1, G2, . . . Gk′ be group of points satisfying

Lemma 3.9.5. Thus,
∑

p∈Pl

∆
√

d
2i
≤
∑

j∈[k′]
2i+1ρdOPT

kL′∆
· ∆

√

d
2i
≤ λ′kL′

ρ
· 2i+1ρdOPT

kL′∆
∆
√

d
2i
≤

λ2d
3/2

OPT for some universal constants λ′ and λ2.

Proof of Proposition 3.9.10. First notice that the weighted set satisfies the about condi-

tion is an ǫ-coreset. If we replace each |̂Ci| by the exact number of points in |Ci|, then the
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new weighted set is an (ǫ/2)-coreset. For each C ∈ G, let bC be the new value returned by

the algorithm, and bq is the new value of a point q ∈ S. The error of the cost introduced

is at most,

A =
L∑

i=0




∑

C∈Gi: heavy

||̂C| − bC|+
∑

p∈Si−1

∣
∣
∣
∣

(
1

πi−1

− bp

)∣
∣
∣
∣



 ∆
√
d

2i
.

By the procedure, the new value of a cell is always smaller than its original value, thus

A =
L∑

i=0




∑

C∈Gi: heavy

|̂C| − bC +
∑

p∈Si−1

(
1

πi−1

− bp

)


 ∆
√
d

2i
=

L∑

i=0

gi,

where

gi =




∑

C∈Gi:heavy

|̂C| − bC +
∑

p∈Si−1

1

πi−1

− bp



 ∆
√
d

2i
.

Let

fi =




∑

C∈Gi:heavy

∣
∣
∣|C| − |̂C|

∣
∣
∣+

∑

C′∈Gi−1:heavy

∣
∣
∣
∣
|Si−1 ∩ C

′|

πi−1

− |Pi−1 ∩ C
′|

∣
∣
∣
∣



 ∆
√
d

2i
.

Thus fi ≤ ǫOPT/L by choosing appropriate λ6. Now consider heavy cell C ∈ Gi, let

sC =
∣
∣
∣bC −

∑
C∈Gi+1:heavy

|̂C| − |Si∩C|

πi

∣
∣
∣. Then,

sC =

∣
∣
∣
∣
∣
∣
bC − |̂C|+ |̂C| − |C| −

∑

C′∈Gi+1:heavy

(|̂C ′| − |C ′|)−

(
|Si ∩ C|

πi

− |Pi ∩ C|

)
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣bC − |̂C|

∣
∣
∣+
∣
∣
∣|̂C| − |C|

∣
∣
∣+

∑

C′∈Gi+1:heavy

∣
∣
∣|̂C ′| − |C ′|

∣
∣
∣+

∣
∣
∣
∣
|Si ∩ C|

πi

− |Pi ∩ C|

∣
∣
∣
∣ . (3.9)

Then

gi =
∑

C∈Gi−1

sC
∆
√
d

2i
+




∑

p∈Si−1

1

πi−1

− bp



 ∆
√
d

2i
≤

1

2
gi−1 +

1

2
fi−1 + fi. (3.10)
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Since g−1 = f−1 = 0, thus

gi ≤ fi + 3
i−1∑

j=0

2j−ifj, and
L∑

i=0

gi ≤

L∑

i=0

fi(1 +
i∑

j=1

3

2j
) ≤ 4

L∑

i=1

fi ≤ 4ǫOPT.

Remark 3.9.6. The multiset of centers of heavy cells with each assigned a weight of the

number of points in the cell is a O(d3/2)-coreset. This can be easily seen by removing

the term of d(cLp , Z)−d(c
l(p)
p , Z) from Equation (3.9.1) together with Lemma 3.9.3, which

bounds the error introduced by this operation.

3.9.2 The New Construction (with arbitrary weights)

For these heavy cells, we use HEAVY-HITTER algorithms to obtain accurate estimates of

the number of points in these cells, thus providing a heavy cell identification scheme. For

the non-heavy cells, we only need to sample points from the bottom level, GL, but with

a different probability for points with different ending levels. We present the following

lemma that governs the correctness of sampling from the last level.

Lemma 3.9.7. If a set of points Pi ⊂ P satisfies |Pi|∆
√
d/(2i) ≤ βOPT for some β ≥

2ǫ/(3(L+ 1)), let Si be an independent sample from Pi such that p ∈ Si with probability

πi ≥ min

(
3a(L+ 1)2∆

√
dβ

2iǫ2o
ln

2∆kd(L+ 1)

ρ
, 1

)

where 0 < o ≤ aOPT for some a > 0. Then for a fixed set Z ⊂ [∆]d, with probability at

least 1−ρ/((L+1)Deltakd), |
∑

p∈Si
(d(cip, Z)−d(p, Z))/πi−

∑
p∈Pi

(d(cip, Z)−d(p, Z))| ≤

ǫOPT
L+1

.

Proof. The proof is identical to that of Lemma 3.3.4.

Lemma 3.9.8. Consider a set of sets {Pi}
L
i=0 which satisfies |Pi|∆

√
d/(2i) ≤ βρ

k(L+1)
OPT

for some β ≥ ǫ/(3(L + 1)). For each i ∈ [0, L], let Si be an independent sample from Pi

with sampling probability

πi ≥ min

(
4aβk(L+ 1)3∆

√
d

2iǫ2ρo
log

2

δ
, 1

)
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where 0 < o ≤ aOPT for some a > 0, then with probability at least 1− δ,

∣
∣
∣
∣
|Si ∩ Pi|

πi

− |Pi|

∣
∣
∣
∣
∆
√
d

2i
≤

ǫρOPT

k(L+ 1)2
.

Proof of Lemma 3.9.8. The proof is simply by Bernstein inequality. Let t = 2iǫρOPT
√

dk(L+1)2∆
,

Xp := Ip∈Si
/πi, then we have that V ar(Xp) ≤ 1/πi and b := maxp |Xp| ≤ 1/πi. By

Bernstein’s inequality, for any j ∈ [k′],

Pr

[∣
∣
∣
∣
|Pj ∩ Si|

πi

− |Pj|

∣
∣
∣
∣ > t

]

≤ 2e
−

t2

2|C|/πi+2bt/3 ≤ δ.

We now describe the new construction. This essentially has the same gaurantee as

the simpler construction from the previous section, however the benefit here is that (as

shown in the next subsection) it can be modified to output only positive weights. In the

following paragraph, the estimations |̂C| are given as a blackbox. In proposition 3.9.9 we

specify the conditions these estimations must satisfy.

Non-Negatively Weighted Construction Fix an arbitrary heavy cell identification

schemeH. Let Pl be all the points with ending level l(p) = l. For each heavy cell C, let |̂C|

be an estimation of number of points of |C|, we also call |̂C| the value of cell C. For each

non-heavy cell C ′, let |̂C ′| = 0. Let S be a set samples of P constructed as follows: S =

S−1∪S0∪S1,∪ . . .∪SL, where Sl is a set of i.i.d samples from Pl with probability πl. Here πl

for l ∈ [−1, L] is redefined as,πl = min
(

λ3d2∆L2

2lǫ2o
log
(

2L∆dk

ρ

)
+ λ4d2kL3∆

2iǫ2ρo
log 30kL2

ρ2
, 1
)
where

λ3 > 0 and λ4 > 0 are universal constants. Our coreset S is composed by all the sampled

points in S and the cell centers of heavy cells, with each point p assigned a weight 1/πl(p)

and for each cell center c of a heavy cell C ∈ Gi, the weight is,

wt(c) = |̂C| −
∑

C
′:C′

∈Gi+1,C
′
⊂C,

C
′ is heavy

|̂C ′| −
|Si ∩ C|

πi

. (3.11)

For each non-heavy cell C except for those in the bottom level, wt(c(C)) = 0. The weight

of each point from S is the value of the corresponding cell in the bottom level.

We now state the following proposition for a coreset construction, which immediately
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serves as an offline coreset construction.

Proposition 3.9.9. LetH be an arbitrary heavy cell identification scheme. Fix Ω(∆−d) ≤

ρ < 1 and for each heavy C ∈ Gi in level i, |̂C| is an estimation of number of points in

C with additive error at most ǫ
λ5Ld3/2

· 2
iρdOPT
kL∆

, where λ5 > 0 is a universal constant. Let

Sl be the set of i.i.d. samples of Pl with probability πl(o). If 0 < o ≤ OPT, then with

probability at least 1− 4ρ, for every k-set Z ⊂ [∆]d,

∣
∣
∣
∣
∣

∑

q∈S

wt(q)d(q, Z)−
∑

p∈P

d(p, Z)

∣
∣
∣
∣
∣
≤ ǫOPT.

And the coreset size |S| is

O

[
d3L4k

ǫ2

(

d+
1

ρ
log

kL

ρ

)
OPT

o

]

.

Proof of Proposition 3.9.9. Fix a k-set Z ⊂ [∆]d. First notice that,

ĉost(Z) =
∑

q∈S

wt(q)d(q, Z)

=
L−1∑

i=−1







∑

C∈Gi:C heavy





|̂C| −

∑

C
′:C′

∈Gi+1,C
′
⊂C,

C
′ is heavy

|̂C ′| −
|Si ∩ C|

πi





 d(c(C), Z) +

∑

p∈Si

d(p, Z)

πi







=
L−1∑

i=−1

[
∑

C∈Gi:C heavy

|̂C|(d(c(C), Z)− d(c(CP ), Z)) +
∑

p∈Si

d(p, Z)− d(cip, Z)

πi

]

,

(3.12)

where we denote d(c(CP
−1), Z) = 0 for convenience. Let cost(Z) =

∑
p∈P d(p, Z). Note

that we can also write the true cost of Z as

cost(Z) =
L−1∑

i=−1

[
∑

C∈Gi:C heavy

|C|(d(c(C), Z)− d(c(CP , Z))) +
∑

p∈Pi

d(p, Z)− d(cip, Z)

]

.

We have that,

ĉost(Z)− cost(Z) = A1 + A2,
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where

A1 =
L−1∑

i=−1

[
∑

C∈Gi:C heavy

(|̂C| − |C|)(d(c(C), Z)− d(c(CP , Z)))

]

and

A2 =
L−1∑

i=−1

(
∑

p∈Si

d(p, Z)− d(cip, Z)

πi

−
∑

p∈Pi

d(p, Z)− d(cip, Z)

)

.

Let Z∗ ⊂ [∆]d be a set of optimal k-centers for the k-median problem of the input

point set. By Lemma 3.2.2, with probability at most 1− ρ, for each i ∈ [0, L], if at most

ek(L + 1)/ρ cells C in Gi satisfy d(C, Z∗) ≤ ∆/(2i+1d). Conditioning on this event, we

have that, by Lemma 3.9.4 there are at most k′ = O
(

kL
ρ

)
heavy cells per level. Since for

each C ∈ Gi,
∣
∣
∣|̂C| − |C|

∣
∣
∣ ≤ ǫ

λ5Ld3/2
· 2

iρdOPT
kL∆

, by choosing appropriate constant λ5 > 0 we

have

|A1| ≤
L−1∑

i=−1

∣
∣
∣
∣
∣

∑

C∈Gi:C heavy

(|̂C| − |C|)(d(c(C), Z)− d(c(CP , Z)))

∣
∣
∣
∣
∣

≤ L · k′ ·
ǫ

λ5Ld3/2
·
2iρdOPT

kL∆
·
∆
√
d

2i
≤

ǫOPT

2
. (3.13)

For A2, let

A2i =

(
∑

p∈Si

d(p, Z)− d(cip, Z)

πi

−
∑

p∈Pi

d(p, Z)− d(cip, Z)

)

.

By Lemma 3.9.3, for each i ∈ [−1, L − 1], |Pi|∆
√
d/(2i) = λ2(d

3/2
OPT). Thus by

Lemma 3.9.7, and choosing appropriate constants, with probability at least 1−ρ/(L+ 1)∆dk,

|A2i| ≤
ǫOPT
2(L+1)

. By the union bound, with probability at least 1− ρ, for every level i, and

every k-set Z ⊂ [∆]d, |A2i| ≤
ǫOPT
2(L+1)

. Thus |A2| ≤ ǫOPT/2. In total, with probability at

least 1− 3ρ, |A1 + A2| ≤ ǫOPT for any k-set Z ⊂ [∆]d.

The coreset size is the number of heavy cells plus the number of sampled points. The

number of heavy cells is O(kL2/ρ). The expected number of sampled points per level is

at most,

|Si| = O

(
d4L3k

ǫ2
+

d3L2k

ǫ2ρ
log

(
kL

ρ

))
OPT

o
.

By a Chernoff bound, with probability at least 1 − ρ/∆dk, for every level i ∈ [0, L], the
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number of sampled points is,

|Si| ≤ O

(
d4L3k

ǫ2
+

d3L3k

ρǫ2
log

(
kL

ρ

))
OPT

o
.

Thus the size of the coreset S is,

|S| ≤ O

[
d3L4k

ǫ2

(

d+
1

ρ
log

kL

ρ

)
OPT

o

]

.

3.9.3 Ensuring Non-Negative Weights

In this section, we will provide a procedure to rectify all the weights for the coreset

constructed in the last sub-section. The idea is similar to the method used in [45]. The

procedure is shown in Algorithm 3.4.3.

Proposition 3.9.10. Let S be a weighted set constructed using the Non-Negatively Weighted

Construction, i.e. each heavy cell C has value |̂C| and the set of sampled points S =

S−1 ∪ S0 . . . ∪ SL with each point in Sl has weight 1/πl. If for each heavy cell C ∈ Gi,

||̂C| − |C|| ≤ ǫ
λ6Ld3/2

· 2
iρdOPT
kL∆

for some universal constant λ6 > 0 and for each i ∈ [−1, L]

and any k-set Z ⊂ [∆]d,

∣
∣
∣
∣
∣

∑

p∈S

wt(p)(d(cip, Z)− d(p, Z))−
∑

p∈Pi

(d(cip, Z)− d(p, Z))

∣
∣
∣
∣
∣

≤
ǫOPT

2L
,

and
∑

C∈Gi: heavy

∣
∣
∣
∣
|Si ∩ C|

πi

− |Pi ∩ C|

∣
∣
∣
∣
∆
√
d

2i
≤

ǫOPT

L
.

Then on input |̂C1|, |̂C2|, . . . , |̂Ck′ | and S, where k′ is the number of heavy cells, the coreset

output by Algorithm 3.4.3 is a (4ǫ)-coreset.

125



3.9.4 The Streaming Algorithm

Sampling From Sparse Cells

For the streaming algorithm, we can still use HEAVY-HITTER algorithms to find the heavy

cells. The major challenge is to do the sampling for each point from its ending level. We

do this using a combination of hash functions and K-Set. In Algorithm 3.9.4, we provide

a procedure that recovers the set of points from cells with a small number of points and

ignore all the heavy cells. The guarantee is,

Theorem 3.9.11. Given as input a set of dynamically updating streaming points P ⊂

[N ], a set of mutually disjoint cells C ⊂ [M ], whose union covers the region of P .

Algorithm 3.9.4 outputs all the points in cells with less than β points or output Fail.

If with the promise that at most α cells from C contain a point of P , then the algo-

rithm outputs Fail with probability at most δ. The algorithm uses O(αβ(log(Mβ) +

logN) logN log(logNαβ/δ) log(αβ/δ)) bits in the worst case.

The high level idea of this algorithm is to hash the original set of points to a universe

of smaller size. For cells with less points, the collision rate is much smaller than cells

with more points. To recover one bit of a point, we update that bit and the cell ID and

also its hash tag to the K-Set-data structure. If there are no other points with hash

values colliding with this point, the count of that point is simply 1. If this is the case,

we immediately recover the bit. By repeating the above procedure once for each bit, we

can successfully recover the set of points with no colliding hash tags. For those points

with colliding hash tags, we simply ignore them. Each point has a constant probability

to collide with another point, thus not be in the output. By running the whole procedure

O(log(αβ/ǫ)) times in parallel, we reduce the probability to roughly ǫ for each point

in cells with less than β points. To formally prove Theorem 3.9.11, we first prove the

following lemma, which is the guarantee of Algorithm 3.9.4.

Lemma 3.9.12. Given input a set of dynamically updating streaming points P ⊂ [N ],

a set of mutually disjoint cells C ⊂ [M ], whose union covers the region of P . Algo-

rithm 3.9.4 outputs a set of points in cells with less than β points or output Fail. If with
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the promise that at most α cells from C contain a point of P , then the algorithm outputs

Fail with probability at most δ. Conditioning on the event that the algorithm does not

output Fail, each point p from cell with less than β points is in the output with marginal

probability at least 0.9. The algorithm uses O(αβ(log(Mβ)+logN) logN log(logNαβ/δ))

bits in the worst case.

Proof. We prove this lemma by showing that (a) if a point p ∈ P contained in cell C,

with |C ∩P | ≤ β, then with probability at least 0.99, there are no other points p′ ∈ C ∩P

with H(p) = H(p′), (b) conditioning on the event that the algorithm does not output

Fail, then for any cell C ∈ C, if a point p ∈ C such that no other points in C ∩P has the

same hash value H(p), then p is in the output and (c) the algorithm outputs Fail with

probability at most δ. The correctness of the algorithm follows by (a), (b) and (c).

To show (a), consider any cell C ∈ C with |C| ≤ β, let p ∈ C with hash value H(p).

Since H is 2-wise independent, the expected number of other points hashed to the same

hash value H(p) is at most β/U = 1/100. By Markov’s inequality, with probability at

least 0.99, no other point in C is hashed to H(p).

To show (b), notice that if the algorithm does not output Fail, then for a given cell

C, let c be its ID, and pj be the j-th bit of point p. Then (c, h, pj) has 1 count and

(c, h, 1 − pj) has 0 count for each j ∈ [t], where t = ⌈logN⌉. Thus we can uniquely

recover each bit of point p, hence the point p.

For (c), since there are at most α cells, there are at most 2αU = O(αβ) many different

updates for each KS structure. Therefore, with probability at most δ
t
, a single KS instance

outputs Fail. By the union bound, with probability at least 1−δ, no KS instance outputs

Fail.

Finally, the space usage is dominated by the KS data structures. Since the input data

to KS is from universe [M ]× [U ]× {0, 1}, each KS structure uses space O(αβ(log(Mβ) +

logN) log(tαβ/δ)) bits of memory, the total space isO(αβ(log(Mβ)+logN) logN log(tαβ/δ)).

Proof of Theorem 3.9.11. Each instance of SparseCellsSingle fails with probability at

most δ/(4A), where A is the number independent SparseCellsSingle instances. By the

127



union bound, with probability at least 1− δ/4, none of them output Fail. Conditioning

on this event, the random bits of the hash functions of each SparseCellsSingle instance

are independent, thus by Lemma 3.9.12 a fixed point p ∈ C with |C| ≤ β is in the output

with probability at least 10− log 4αβ
δ ≤ δ/(4αβ). Since there are at most αβ points in cells

with less than β points, by the union bound we conclude that with probability at least

1− δ/4, every point in cells with less than β points is in the output set S. In sum, with

probability at least 1− δ/2, S contains all the desired points.

The other KS instance outputs Fail with probability at most δ/2. Thus if T is not

Fail, then T contains the exact number of points of each cell. If any desired point is not

in S, then |C| > |C ∩S|, we output Fail. This happens with probability at most δ under

the gaurantee of the KSstructure.

Since each SparseCellsSingle instance usesO(αβ(log(Mβ)+logN) logN log(tAαβ/δ))

bits of space, the final space of the algorithm isO(αβ(log(Mβ)+logN) logN log(tαβ/δ) log(αβ/δ)).

Algorithm 4 SparseCells(N,M,α, β, δ): input the point sets P ⊂ [N ] and set of cells
C ⊂ [M ] such that at most α cells containing a point, output the set of points in cells
with less than β points.

Let A← log 4αβ
δ
;

Let R1, R2, . . . , RA be the results of independent instances of
SparseCellsSingle(N,M,α, β, δ/(4A)) running in parallel;
Let T be the results of another parallel KS structure with space parameter α and error
δ/2 and with input as the cell IDs of points in P ; /*T returns the exact counts of
each cell*/
if any of the data structures returns Fail :

return Fail ;
Let S ← R1 ∪R2 ∪ . . . RA;
if ∃ set C ∈ T with |C| ≤ β and |C| 6= |C ∩ S|:

return Fail ;
return S ;

The Algorithm

With the construction of algorithm SparseCells, we now have all the tools for the

streaming coreset construction. The streaming algorithm is composed by O(L) levels

of HEAVY-HITTER instances, which serve as a heavy cell identifier and by O(L) levels
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Algorithm 5 SparseCellsSingle(N,M,α, β, δ): input the point sets P ⊂ [N ] and set
of cells C ⊂ [M ] such that at most α cells containing a point, output the set of points in
cells with less than β points.

Initization:
U ← 100β .
t← ⌈logN⌉;
H : [N ]→ [U ], 2-wise independent;
K-Set structures KS1, KS2, . . . KSt with space parameter 2αU and probability δ

t
;

Update(p, op): /*op ∈ {Insert, Delete}*/
c← cell ID of p;
for i ∈ [t]:

/*A point p is represented as (p1, p2, . . . , pt)*/;
pi ← the i-th bit of point p;
KSi.update((c,H(p), pi), op);

Query:

if for any i ∈ [t], KSi returns Fail:
return Fail ;

S ← ∅;
for each (c, h, p1) in the output of KS1:

if (c, h, pj) /∈ KSj for some j ∈ [t]:
/*A checking step, may not happen at all*/;

return Fail ;

Let s(c, h, pj) be the counts of (c, h, pj) in KSj;
if s(c, h, pj) = 1 and s(c, h, 1− pj) = 0 for each j ∈ [t]:

p← (p1, p2, . . . , pt);
S ← S ∪ {p};

return S

of SparseCells instances, which sample the points from their ending levels. The full

algorithm is stated in Algorithm 6. The guarantee of the algorithm is stated in the

following theorem.

Theorem 3.9.13. Fix ǫ, ρ ∈ (0, 1/2), positive integers k and ∆, Algorithm 6 makes a

single pass over the streaming point set P ⊂ [∆]d, outputs a weighted set S with non-

negative weights for each point, such that with probability at least 0.99, S is an ǫ-coreset

for k-median of size O
[
d3L4k
ǫ2

(
d+ 1

ρ
log kL

ρ

)]
, where L = log∆. The algorithm uses

O
[
d7L7k
ǫ2

(
ρdL+ 1

ρ
log2 dkL

ρǫ
(log log dkL

ρǫ
+ L)

)
log2 dkL

ρǫ

]
bits in the worst case. For each up-

date of the input, the algorithm needs poly (d, 1/ǫ, L, log k) time to process and outputs

the coreset in time poly(d, k, L, 1/ǫ, 1/ρ, log k) after one pass of the stream.
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Proof. W.l.o.g. assume ρ ≥ ∆−d, since otherwise we can store the entire set of points.

In the sequel, we will prove the theorem with parameter O(ρ) and O(ǫ). It translates to

ρ and ǫ directly by scaling and with losing at most a constant factor in space and time

bounds. By Lemma 3.2.2, with probability at least 1 − ρ, for every level i ∈ [0, L], at

most ekL/ρ cells C in Gi satisfy d(C,Z∗) ≤ ∆/(2i+1d). We condition on this event for

the following proof.

We first show that the HEAVY-HITTER instances faithfully implement a heavy cell iden-

tification scheme. First note that with probability at least 1 − ρ, all HEAVY-HITTER in-

stances succeed. Conditioning on this event for the following proof. As shown in the proof

of Lemma 3.8.1, by setting ǫ′ = ǫ
√

ρ
λ7kd3L3 and k′ = λ8kL/ρ, for appropriate positive uni-

versal constants λ7, λ8, then the additive error to each cell is at most ǫ
λ9d3/2L

· 2
idOPT
kL∆

for

some universal constant λ9, which matches the requirement of Proposition 3.9.10. For

each cell C with at least 2iρdOPT/(k(L+ 1)∆) points, by Lemma 3.9.4 it must be in the

top (e+2)k(L+1)/ρ cells. For each cell C ′ with at least 2i−1ρdOPT/(k(L+1)∆) points, it

must be in the top (e+4)k(L+1)/ρ cells. Since the additive error is ǫ
λ7d3/2(L+1)

· 2
idOPT

k(L+1)∆
≪

1
2
2idOPT
k(L+1)∆

. Thus C is in the output of the HEAVY-HITTER instances, since otherwise

|̂C| ≤ 1
2
2idOPT
k(L+1)∆

+ ǫ
λ7d3/2(L+1)

· 2
idOPT

k(L+1)∆
contradicts the error bound (by choosing sufficiently

large λ7). Thus the algorithm faithfully implements a heavy cell identification scheme.

Now we show that if there exists an o ≤ OPT such that no instance of SparseCells out-

puts Fail, then the result is a desired O(ǫ)-coreset. This follows by Proposition 3.9.9 and

Proposition 3.9.10. Then we note that the coreset size is upper bounded byO
[
d3L4k
ǫ2

(
d+ 1

ρ
log kL

ρ

)]

as desired.

Next we show that there exists an OPT/2 ≤ o∗ ≤ OPT that with probability at

least 1 − ρ, no SparseCells instance SCo∗,i outputs Fail. By Chernoff bound, with

probability at least 1 − O(ρ), as also shown in the proof of Proposition 3.9.9, per

level at most O
[
d3L4k
ǫ2

(
d+ 1

ρ
log kL

ρ

)
OPT

o

]
cells is occupied by a point. And at most

O
[
d3L2

ǫ2

(
ρd+ log kL

ρ
+ ρ

kL
log L

ρ

)]
points is sampled per light cell. Conditioned on this

fact and that each instances fails with probability at most O(ρ/(dL)), with probability

at least 1−O(ρ), no nstance SCo∗,i fails.
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Lastly, we bound the space usage and update/query time. For the HEAVY-HITTER in-

stances, the total space used is O
(
dL+ log 1

ρ

)
d4L5k
ρǫ2

bits, analogous to the proof of Theo-

rem 3.3.6. Each SparseCells instance uses space O
[
d5L4r2k

ǫ2

(
ρdL+ r2(log r+L)

ρ

)]
, where

r = log dkL
ρǫ

. The total space bound is O
[
d6L6r2k

ǫ2

(
ρdL+ r2(log r+L)

ρ

)]
bits. As a same

argument in the proof of Theorem 3.3.6, the cost of de-randomization introduce an addi-

tional dL factor. Thus, the final space bound is O
[
d7L7r2k

ǫ2

(
ρdL+ r2(log r+L)

ρ

)]
bits. The

query time and update time is similar to that of Theorem 3.3.6 thus poly
(
d, L, 1

ǫ
, 1
ρ
, k
)

and poly
(
d, L, 1

ǫ
, log k

)
.

3.10 Synthetic Dataset

Figure 3.5: 65536 points are drawn from a Gaussian Mixture distribution. The contours
illustrate the PDF function.
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Algorithm 6 PositiveCoreSet(S, k, ρ, ǫ): construct a ǫ-coreset for dynamic stream S.

Initization:
Initialize a grid structure;
O ← {1, 2, 4, . . . ,

√
d∆d+1}; L ← ⌈log∆⌉; πi(o) ←

min
(

λ3d2∆L2

2lǫ2o
log
(

2L∆dk

ρ

)
+ λ4d2kL3∆

2iǫ2ρo
log 30kL2

ρ2
, 1
)
; α ← O

[
d3L4k
ǫ2

(
d+ 1

ρ
log kL

ρ

)]
,

β ← O
[
d3L2

ǫ2

(
ρd+ log kL

ρ
+ ρ

kL
log L

ρ

)]
, ǫ′ ← ǫ

√
ρ

λ7kd3L3 ; m← 0;

For each o ∈ O and i ∈ [0, L], construct fully independent hash func-
tion ho,i : [∆]d → {0, 1} with Prho,i

(ho,i[q] = 1) = πi(o); initialize
SparseCells(∆d, (1 + 2i)d, α, β, O(ρ/(dL))) instances SCo,i;
Initialize HEAVY-HITTER(∆d, 10Lk/ρ, ǫ′, ρ/L) instances, HH0, HH1, . . . , HHL−1, one for a
level;

Update (S):
for each update (op, q) ∈ S:

/*op ∈ {Insert, Delete}*/
m← m± 1; /*Insert: +1, Delete:−1*/
for each i ∈ [0, L]:

ciq ← the center of the cell contains q at level i;
HHi.update(op, c

i
q);

for each o ∈ [O]:
if ho,i(q) == 1:

SCo,i.update(op, c
i
q);

Query:
Let o∗ be the smallest o such that no instance of SCo,0, SCo,1, . . . , SCo,L returns Fail;
S ← {};

C−1 ← the cell of the entire space [∆]d; |̂C−1| ← m;
for i ∈ [0, L− 1]:

Ci ← HHi.query().top((e+ 4)(L+ 1)k/ρ);
Remove cells C from Ci if C

P (C) 6∈ Ci−1, where C
P (C) is the parent cell of C in

level i− 1;
Bi ← SCo∗,i.query();
Si ← {p ∈ Bi : C(p, i− 1) ∈ Ci−1 AND C(p, i) 6∈ Ci};
Each point in Si receives weight 1/πi(o

∗);
S ← S ∪ Si;

k′ ←
∑

i∈[0,L] |Ci|;

Let {C1, C2, . . . Ck′} = ∪i∈[0,L]Ci ∪ {C−1} be the set of heavy cells;

Let
{
|̂C1|, |̂C2|, . . . |̂Ck′ |

}
be the estimated frequency of each cell;

R← RectifyWeights(|̂C1|, |̂C2|, . . . |̂Ck′ |, S);
return R.
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