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Abstract 

 

The process of translation of mRNAs into functional proteins by the ribosome is 

crucial to cell viability. Problems encountered by the ribosome during any of the phases 

of this process can have major deleterious effects. Although, our understanding of the 

steps of the translation have grown immensely over the years, specific questions 

regarding the complex dynamics of these processes have yet to be fully understood. In 

particular, recent studies have elucidated pauses during elongation that are caused by 

specific pairs of codons. Through the use of in vitro biochemical experiments in tandem 

with and in vivo ribosome profiling and cryo-EM structures to investigate these inhibitory 

codon pairs, we were able to demonstrate that this type of elongation stalling is mainly 

caused by slow decoding in the ribosomal A site. The mechanistic details of how the 

ribosome is rescued from stalls similar to these during elongation, as well as the similar 

processes of termination and recycling, also remain to be fully understood. Through my 

development of a single molecule fluorescence microscopy assay to investigate ribosome 

rescue, termination and recycling these dynamics can be further explored. Taken 

together, I have furthered our understanding of a particular type of elongation pause using 

an in vitro biochemical system and have expanded that system for use at the single 

molecule level to investigate the dynamic processes of translation further.   
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Chapter 1: Introduction 

 

Cell viability and function relies on the flow of genetic material from DNA to RNA 

to protein, referred to as the central dogma of biology. The process of translating the RNA 

sequence into the various proteins needed for cells to function is carried out by the 

molecular machine known as the ribosome. The ribosome is comprised at its core of RNA 

which carries out its catalytic functions and contains over 40 protein factors that allow it to 

catalyze the process of translation through three main sites known as the amino-acyl site 

(A-site), the peptidyl site (P-site) and the exit site (E-site). The ribosome requires many 

additional factors to successfully carry out translation including messenger RNAs 

(mRNAs), transfer RNAs (tRNAs) as well as other accessory protein factors. Together, 

these factors, with the ribosome at the core, ensure fidelity throughout translation to 

synthesize the functional proteins needed throughout the cell. While the function of the 

ribosome was discovered many years ago, there is a lot more we continue to learn about its 

function and how translation is regulated in cells.  

The process of translation is highly regulated and is comprised of four main steps: 

initiation, elongation, termination and recycling (Figure 1A). Translation must be 

performed with high fidelity in order for cell maintenance and viability and, as such, is 

generally conserved throughout different domains of life while there are still substantial 

differences as well. Here, I will focus on eukaryotic translation, especially in the model 

organism S. cerevisae. For proper translation to occur the ribosome, with the help of many 

protein initiation factors, is positioned with a start codon (AUG) and initiator methionine 

tRNA in the ribosomal P-site. Elongation then follows with the movement of the ribosome 
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along the mRNA transcript one codon (three nucleotides) at a time. As the ribosome moves 

along an mRNA, it coordinates the interaction of aminoacyl-tRNAs that carry a specific 

amino acid, corresponding to their cognate mRNA codons. The ribosome, with the help of 

elongation factors, catalyzes the peptidyl transfer reaction that forms peptide bonds 

between amino acids, thereby synthesizing a growing peptide chain. Elongation continues 

until the ribosome reaches a stop codon within its A-site which usually occurs at the end 

of an open reading frame (ORF) triggering translation termination. Termination is carried 

out by the factors eRF1 and eRF3 which recognize the stop codon and coordinate the 

release of the polypeptide chain, forming the functional protein. Ribosome recycling, the 

final step of translation, is primarily carried out by the protein RLI1 (ABCE1 in higher 

eukaryotes) and returns the ribosomal subunits to the free pool needed for continued 

translation of other mRNA transcripts.  

In this chapter, I will focus on the current understanding of the steps of elongation, 

termination and recycling within the translation field. I will pay particular attention to the 

problems that the ribosome can encounter during translation elongation and how these 

problems are resolved. These problems present kinetic barriers that the ribosome must 

either get through or be rescued from. I will then compare canonical termination and 

ribosome recycling to ribosome rescue that occurs when problems encountered by the 

ribosome cannot be resolved. The kinetic barriers that the ribosome faces during each 

round of translation have a large impact on overall cellular function and viability and are 

an important area of continued research.   
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Elongation 

Translation elongation begins when the first amino acid following the start codon 

is added to the peptide chain and ends when a stop codon enters the ribosomal A-site at the 

end of an ORF. This process is highly conserved between bacteria and eukaryotes and 

proceeds through three steps: tRNA decoding and accommodation into the ribosomal A-

site, peptide bond formation, and translocation (Figure 1B). Amino acids for the growing 

peptide chain are brought to the ribosome on amino-acylated tRNAs in complex with the 

highly abundant elongation factor eEF1A (EF-Tu in bacteria) and GTP1, 2. The anticodon 

stem loop of the amino-acylated tRNA is matched to the codon in the A-site in a process 

known as decoding. It is during this step that improper aa-tRNAs are rejected from the 

ribosome. Once the cognate codon-anticodon interaction is matched in the ribosomal A-

site, the GTPase eEF1A activates, hydrolyzes GTP and is subsequently released as eEF1A-

GDP from the ribosome, locking the A site tRNA into the proper position (reviewed for 

bacteria3). This process of accommodation brings the amino acid of the aa-tRNA into the 

peptidyl transferase center of the large subunit of the ribosome. The amine side chain of 

the A-site tRNA is then poised for nucleophilic attack on the aminoacyl ester linkage of 

the P-site tRNA and the growing peptide chain is moved to the tRNA in A-site of the 

ribosome (reviewed for bacteria4). As the peptide bond is being formed the ribosome 

moves into what is known as the rotated state, positioning the acceptor ends of the P and 

A site tRNAs into the E and P sites while the anticodon ends remain in the P and A sites, 

respectively (E/P and P/A hybrid states)5-7. This rotated state of the ribosome is the 

substrate for the binding of the elongation factor eEF2 in complex with GTP. The 

hydrolysis of GTP allows for ribosome translocation, moving the hybrid state tRNAs back 
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into the classical state, but now one codon further along the mRNA, placing them in the E 

and P sites of the ribosome8-12. An additional, essential, elongation factor in fungi, eEF3, 

may promote the release of the E-site tRNA13, 14. The previously named initiation factor 

5A (eIF5A), has also been shown to promote elongation through binding to the ribosomal 

E-site when it is unoccupied for long periods of time such as when the ribosome is moving 

through slowly translated sequences15. Together these steps open the A-site for the next 

round of elongation through the same steps of decoding, accommodation, and translocation 

to continue building the polypeptide.   

 

Ribosome stalling during elongation 

The translating ribosome encounters many different “roadblocks” impeding its 

progress during elongation (for an extensive review see ref16). Here, I will focus on 

impediments caused by the mRNA and tRNA substrates of the ribosome. First, to discuss 

these substrates it is important to note that, although there are 20 amino acids, there are 61 

codons that code for them. This degeneracy allows multiple codons to code for a particular 

amino acid and multiple tRNAs to bring the same amino acid to the ribosome. Some 

mRNA codon-anticodon interactions do not match perfectly through Watson-Crick base-

pairing, but instead require wobble decoding (Figure 2A)17. Wobble pairing occurs 

between the 3’ nucleotide of the mRNA codon and the 5’ nucleotide of the tRNA anticodon 

and most commonly involves a G-U wobble pair. Other wobble pairs allowed in this 

position by the ribosome include I-A, I-U and I-C, which all involve the deaminated 

guanosine nucleobase, inosine (I). Wobble decoding allows cells to express fewer than 61 

different tRNAs to decode all possible codons18, albeit more slowly than canonical Watson-
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Crick decoding19, 20. Therefore, the process of decoding can affect the rate of translation 

since mRNA codons are decoded at different rates21, 22. 

Another determinant of the rate of decoding by the ribosome is the “optimality” or 

“rarity” of a given codon23, 24. Codons are defined as optimal or rare based on where and 

how often they appear in the transcriptome. Optimal codons are used abundantly in highly 

expressed genes, where rare codons are used minimally25, 26. Correspondingly, optimal 

codons are decoded faster than their rare counterparts27, 28. Optimality also correlates with 

the copy number of tRNAs within a cell, which is used as a proxy for the expression level 

of a given tRNA29 (Figure 2B). tRNA copy number varies greatly from as few as one 

genomic copy to as many as 16 in S. cerevisae30, 31. In addition to tRNA copy number, 

tRNA sequence varies greatly between different species.32 Furthermore, the availability of 

charged tRNA within the cell also determines the rate at which it will be decoded by the 

ribosome27, 33, 34. This results from the distinct, yet related, inefficiency of tRNA 

aminoacylation by specific aminoacyl-tRNA synthetases in the cell. Uncharged tRNAs 

within the cytoplasm compete for binding within the ribosomal A-site during decoding and 

will be rejected, thereby slowing the rate of decoding35, 36. For these reasons, optimal 

codons are used frequently throughout the transcriptome, particularly in highly transcribed 

genes, to maintain a large pool of charged tRNA available for continued elongation25, 26, 29.  

As discussed above, the specific mRNA codons being translated by the ribosome 

affect the rate of elongation. Interestingly, sequential pairs of codons have been implicated 

in the rate of translation, beyond the contribution of the individual codods37, 38. A recent, 

comprehensive study in yeast used a fluorescent protein reporter to score the expression of 

a reporter containing randomized pairs of adjacent codons.39 This study identified 17 codon 
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pairs that inhibit translation (Figure 2C). They showed that these effects are different from 

those exhibited by individual codons or the amino acid being added to the peptide chain. 

Many of the inhibitory pairs identified involve wobble decoding and tRNAs with low copy 

number as described above. For many of these pairs the order of the codons mattered for 

this inhibition. This finding implies that the interaction of tRNAs with one another and the 

ribosome could play a direct role in this inhibition. Further investigation into this type of 

inhibition will further our understanding of the communication between the different sites 

of the ribosome and how exactly the ribosome handles these troublesome sequences.   

 

Termination 

The ribosome elongates through the ORF until it reaches a stop codon (UGA, UAG, 

or UAA) in its A-site, triggering translation termination (Figure 3A)40. In eukaryotes, the 

termination factor, eRF1 recognizes all three stop codons within the A-site. It is delivered 

to the ribosome by an accessory GTPase, eRF3 similar to delivery of aa-tRNAs by eEF1A 

during elongation41, 42. eRF1 is structurally similar to tRNA and contains two essential 

motifs that allow it to carry out its function in termination (Figure 3B). When eRF1 binds 

in the A-site it recognizes the stop codon through its NIKS motif (Arg-Ile-Lys-Ser) 43-45. 

Upon recognition it is thought that eRF3 then hydrolyzes GTP46, 47, positioning eRF1 into 

its activated confirmation where the catalytic GGQ (Gly-Gly-Glu) motif of eRF1 is 

positioned near the peptidyl transferase center of the large subunit48. This motif coordinates 

a water molecule as a nucleophile to attack the polypeptide chain on the P-site tRNA, 

releasing it from the tRNA and the ribosome for use in the cell, and ending the termination 

phase of translation.  
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Ribosome Rescue 

Although most ribosomes reach the stop codon at the end of an ORF, instances arise 

within cells where ribosomes stall prematurely along the ORF. Stalling can be caused by 

mRNA sequence (Figures 2B and 2C), amino acid sequence, mRNA structure, and genetic 

mutations leading to premature termination codons within an ORF, and truncated mRNAs, 

to name a few examples. In all of these cases the stalled ribosomes need to be rescued from 

the mRNA in order to return them to the free pool for continued translation throughout the 

cell (Figure 3A). This occurs through a set of complex pathways, known as ribosome 

quality control, that release the ribosomes, degrade the aberrant polypeptide, and degrade 

the problematic mRNA that led to these problems.49, 50  

The process of ribosome rescue requires the protein factors DOM34 and HBS1 in 

yeast (Pelota and HBS1L in mammalian cells) 51-53. DOM34 is structurally homologous to 

the canonical termination factor eRF1 with two key differences that highlight the different 

functions performed by these two proteins54, 55 (Figure 3B). DOM34 lacks the NIKS motif 

that recognizes the stop codon of the mRNA within the A-site of the ribosome. This allows 

DOM34 to act at all codons rather than requiring stop codons specifically for its function. 

Secondly, DOM34 lacks the catalytic GGQ motif that eRF1 has to hydrolyze the peptide 

from the P site tRNA. As an outcome, DOM34 does not release the growing polypeptide 

from the tRNA and the ribosome during the rescue process56. Despite these two important 

differences, DOM34 is thought to be delivered to the ribosome in complex with its 

accessory GTPase HBS1 and the GTP hydrolysis of HBS1 is thought to be important to 

position DOM34 correctly within the A-site of the stalled ribosome. Overall, DOM34 and 
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HBS1 act on ribosomes that encounter obstacles during translation elongation in order for 

these ribosomes to be recycled57-59 – the final step in translation discussed below.  

 

Recycling 

Following canonical termination with eRF1 and eRF3 and ribosome rescue with 

DOM34 and HBS1, the large and small subunits of the ribosome must be released from the 

mRNA to allow them to translate other mRNAs. The substrate for recycling is slightly 

different in these two cases (Figure 4A & 4B). For canonical termination, the polypeptide 

chain has been released from the P site tRNA, but the tRNA remains bound to the ribosome. 

In the rescue situation, the peptidyl tRNA is bound in the P-site of the ribosome with the 

incomplete polypeptide still attached. In both cases, the tRNA is released from the 

ribosomes and the small and large subunits from the mRNA by the action of the ATPase 

RLI (ABCE1 in mammalian cells) 60, 61. This protein shares a binding site on the ribosome 

with the termination factor eRF3 and the rescue factor HBS1 suggesting that GTP 

hydrolysis and release of these factors from the ribosome is required before RLI1 is able 

to bind45, 62. RLI1 then uses the force generated from hydrolysis of ATP to separate the 

ribosomal subunits. It is thought that RLI1 propagates this force through eRF1, pushing 

this factor into the intersubunit space and separating the large subunit of the ribosome45. 

Once the subunits are released, they are bound by initiation factors to prevent rebinding. 

ABCE1 has also been shown to bind to 40S subunits alone and it was initially identified to 

play a role in translation initiation potentially linking the end of recycling to re-initiation 

and continued cell proliferation.63-66  
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Conclusion 

Since the discovery of the ribosome and the genetic code, years of research have 

led to our current understanding of the translation process. The translation cycle is a highly 

dynamic and directional process. Much of our current understanding comes from 

measurements of bulk samples with many molecules functioning simultaneously in 

solution. These methods are still being used to examine many of the remaining questions 

in the field. Roadblocks to translation elongation and how the ribosomes are able to 

continue is currently a major area of exploration. The discovery inhibitory codon pairs 

raises questions about how these codons mediate their specific effects. Is it through the 

interactions of tRNAs on the ribosome? Are these mRNAs threaded through the ribosome 

differently than others? Moving to the end of the translation cycle, there is still much to be 

elucidated regarding the mechanisms of canonical termination, rescue and ribosome 

recycling – How are stop codons recognized as correct or premature in the context of an 

mRNA? How do the termination factors and rescue factors communicate with one another 

and with the recycling factor RLI1?  In chapter 2, I will use bulk biochemical experiments 

to further understand the translation of inhibitory codon pairs, specifically attempting to 

gain knowledge into how these different pairs are handled by the ribosome. Then, in 

chapter 3, I discuss my work to develop single molecule methods to allow further 

investigation into the specific, dynamic mechanisms of translation termination, ribosome 

rescue and recycling. Using both traditional biochemical kinetic methods as well as time 

resolved single molecule methods we hope to learn more about the highly dynamic and 

directional kinetic steps in translation elongation, termination and recycling.  
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Figure Legends  

 

Figure 1. Overview of eukaryotic translation and specific steps of translation 

elongation. (A) The process of translation begins with initiation through the coordination 

of many initiation factors (eIFs), initiator Met-tRNAiMet, and the 40S and 60S ribosomal 

subunits onto the start (AUG) codon of an mRNA. Elongation then allows for individual 

amino acids to be added to the growing polypeptide chain as the ribosome reads along the 

mRNA one codon at a time with the help of many elongation factors (eEFs). When the 

ribosome reaches a stop codon at the end of an open reading frame (ORF) translation is 

terminated and the peptide is released by the termination factors (eRFs). Finally, the 

ribosomal subunits must be recycled by the recycling factor RLI1 and returned to the 

cytoplasm for re-initiation and continued translation of other mRNA transcripts. (B) 

Translation elongation begins after the AUG start codon when next tRNA is decoded and 

accommodated into the A site of the ribosome by the help of the elongation factor eEF1A 

and GTP. Peptide transfer (PT) then occurs transferring the growing peptide chain onto the 

A site tRNA with the addition of the newest amino acid. The tRNAs on the ribosome then 

enter hybrid E-P, P-A states until the ribosome translocates to the next mRNA codon 

through the help of the elongation factors eEF2 and eEF3. This then opens the A site of the 

tRNA for the next round of elongation.  
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Figure 2. Ribosome stalling during elongation. (A) Schematic of example tRNAs 

showing canonical Watson-Crick base pairing of the tRNA anti-codon to the mRNA codon 

as well as wobble decoding when 3’ base of the mRNA codon is decoded through non-

canonical pairing with the 5’ base of the tRNA anticodon. Two common types of wobble 

decoding are shown G-U and IA. Wobble pairing is depicted by a dot while canonical 

Watson-Crick decoding is depicted as a line. (B) The use of rare codons (red) within the 

mRNA ORF can lead to slow decoding in the ribosomal A site and lead to ribosome stalling 

as compared to optimal codons (green). (C) Particular codon/tRNA pairs have been shown 

to cause ribosome stalling when in a certain arrangement (top), but are not inhibitory and 

therefore do not cause stalling in other arrangements (bottom). 
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Figure 3. Canonical translation termination versus ribosome rescue. (A) Top: 

Canonical termination begins when the ribosome reaches a stop codon within the A site. 

eRF1 recognizes the stop codon and is accommodated through the GTPase activity of its 

accessory termination factor eRF3 to coordinate peptide-hydrolysis and release the 

completely synthesized polypeptide for use in the cell. Bottom: When the ribosome 

translates to the end of a truncated message (or stalling occurs within the ORF during 

elongation – not depicted) the rescue factor DOM34 binds in the A site of the ribosome 

with its accessory GTPase HBS1 to signal for the ribosomes to be recycled and the mRNA 

and polypeptide to be degraded through downstream regulatory pathways. (B) Comparison 

of the termination factor eRF1 with the rescue factor DOM34. eRF1 contains a NIKS motif 

to specifically recognize the stop codons at the end of ORFs and a catalytic GGQ motif to 

coordinate the peptide-hydrolysis reaction. DOM34, on the other hand, lacks these motifs, 

allowing it to recognize sense codons and disabling the coordination of peptide-hydrolysis 

leaving the peptide bound to the peptidyl tRNA following rescue. 
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Figure 4. Ribosome recycling following termination or rescue. (A) Following canonical 

termination by eRF1 and eRF3 at a stop codon at the end of an ORF, the recycling factor 

RLI1 binds and uses the force generated from the hydrolysis of ATP to separate the small 

and large subunits. Altogether, termination and recycling result is a full length cleaved 

polypeptide chain, and recycled 40S and 60S ribosomal subunits for continued translation.  

(B) Following rescue by DOM34 and HBS1 on cleaved or stalled mRNAs, the recycling 

factor RLI1 binds and uses the force generated from the hydrolysis of ATP to separate the 

small and large subunits. This process results in a released peptidyl tRNA with the growing 

polypeptide still attached signaling for other regulatory processes to degrade the 

incomplete polypeptide and mRNA and allow the ribosomal subunits to be used in 

subsequent rounds of translation. 
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Chapter 2: Molecular mechanism of translational stalling by inhibitory 

codon combinations and poly(A) tracts 

 

Note: This chapter was published on BioRχiv and submitted to The EMBO Journal on 

September 2, 2019. 

 

Abstract 

 

Inhibitory codon pairs and poly(A) tracts within the translated mRNA cause 

ribosome stalling and reduce protein output. The molecular mechanisms that drive these 

stalling events, however, are still unknown. Here, we use a combination of in vitro 

biochemistry, ribosome profiling, and cryo-EM to define molecular mechanisms that lead 

to these ribosome stalls. First, we use an in vitro reconstituted yeast translation system to 

demonstrate that inhibitory codon pairs slow elongation rates which are partially rescued 

by increased tRNA concentration or by an artificial tRNA not dependent on wobble base 

pairing. Ribosome profiling data extend these observations by revealing that paused 

ribosomes with empty A sites are enriched on these sequences. Cryo-EM structures of 

stalled ribosomes provide a structural explanation for the observed effects by showing 

decoding-incompatible conformations of mRNA in the A sites of all studied stall-inducing 

sequences. Interestingly, in the case of poly(A) tracts, the inhibitory conformation of the 

mRNA in the A site involves a nucleotide stacking array. Together, these data demonstrate 

novel mRNA-induced mechanisms of translational stalling in eukaryotic ribosomes.  
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Introduction 

 

Coding sequences for proteins in any genome (the open reading frames or ORFs) 

have evolved in the context of their full mRNA transcript to be expressed at the appropriate 

level. Interestingly, synonymous codon choice has been shown to have broad impacts on 

many aspects of translation including translational efficiency 1, 2, mRNA decay 3 and 

cotranslational protein folding 4, 5. The effects on translational efficiency are primarily 

mediated through the competition of cognate and near-cognate tRNA interactions, as 

dictated by the pool of charged tRNAs available in the cell 1, 6, 7. Individual codons that are 

generally decoded by more abundant tRNAs and are associated with increased translation 

efficiency have been defined as “optimal” 8-10. Moreover, codon usage biases, codon 

context and interactions between adjacent codons have all been suggested to play a role in 

translational efficiency 11, 12, though their direct effects on elongation are still not fully 

understood.   

A recent study in yeast defined a collection of 17 specific codon pairs that caused 

a substantial down-regulation in protein output 13. For 12 of these pairs, the order of the 

codons within the pair was critical for the observed inhibition. Despite the diverse nature 

of these pairs, there were some shared features. First, the proline codon CCG and the 

arginine codon CGA appeared frequently in the collection of inhibitory pairs. The CCG 

codon is decoded by a G-U wobble base pair while the CGA codon is the sole codon in 

yeast decoded by an obligate I:A wobble pair 14. Notably, while the previous study 13 

concluded that these inhibitory codon pairs likely impacted the decoding step of elongation, 

there was little understanding of the molecular basis for these events. 
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Besides inhibitory codon pairs, poly(A) tracts represent perhaps the most abundant 

and potent stall-inducing mRNA sequence in eukarya (reviewed in 15. Translation of 

poly(A) sequences commonly occurs when ribosomes encounter an abnormal (premature) 

polyadenylation event within the ORF or when ribosomes read through a stop codon. 

Premature polyadenylation alone occurs in approximately 1% of yeast and human 

transcripts, highlighting the importance of this mechanism 16, 17. While translation of 

poly(A) tracts initially results in the synthesis of poly-lysine, long poly(A) tracts 

subsequently trigger quality control pathways that contribute to overall protein homeostasis 

18, 19. The earliest studies suggested that this stalling was caused by electrostatic interactions 

between the poly-basic nascent chain and the peptide exit tunnel of the ribosome 20. 

However, there are several lines of evidence suggesting that the stalling mechanism of 

poly(A) tracts is more complex. Interestingly, as few as two consecutive AAA codons were 

shown to cause ribosome sliding during translation in E. coli 21. Moreover, the identity of 

the basic residue-encoding codon is of particular importance for efficient stalling, as the 

CGA arginine-encoding codon is most potent in yeast 22, and AAA codons are more potent 

than AAG lysine-encoding codons at inducing translational stalling 21, 23.  

All of the inhibitory sequences described above result in partial or complete 

translational stalling in vivo. Considerable attention has been paid to the molecular 

consequences of the translating ribosomes encountering such mRNA sequences (i.e. the 

downstream quality control events that are triggered). In particular, recent work has 

suggested that ribosomal collisions with the leading, stalled ribosome are a key event that 

triggers the quality control responses that include decay of the mRNA (“No Go Decay” or 

NGD) and the nascent peptide (Ribosome-associated Quality Control or RQC) 24-26. 
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However, there has been little characterization of the molecular events on the ribosome 

that lead to such dramatic outcomes. 

Here we use a yeast in vitro reconstituted biochemical system to directly measure 

the rates of translation elongation that might be impacted by inhibitory codon pairs and 

poly(A) tracts. Use of this in vitro system allows for ready manipulation of mRNA coding 

sequence, tRNA identity and concentration, as well as ribosome composition to reveal 

defects in the individual steps of translation elongation. Together with high-resolution 

ribosome profiling, our results reveal clear defects in the decoding step as the primary 

determinant of ribosomal stalling on these inhibitory mRNA sequences. Cryo-EM 

structures of ribosome complexes stalled at these mRNA sequences reveal detailed insight 

into the molecular basis for the translational stalling. Importantly, we observe decoding-

incompetent conformations of mRNA in the A sites of all stall-inducing sequences that we 

studied, thus readily explaining the biochemically-defined decoding defects. Moreover, 

structural characterization of poly(A) stalled disomes reveals a novel disome conformation 

with both ribosomes in the POST translocation state, suggesting a role for ribosome 

collisions in promoting frameshifting. Taken together, our data reveal an mRNA-induced 

translational stalling mechanism of eukaryotic ribosomes. 

 

Results 

 

Inhibitory codon pairs slow elongation in vitro 

To examine the impact of inhibitory codon pairs on translation elongation in vitro, 

we selected pairs that most potently reduced GFP expression in the in vivo experiments 

and those that contained codons which appeared in multiple inhibitory pairs (Fig 1A) 13. 
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The strongest candidates were CGA-CGA and CGA-CCG encoding Arg-Arg and Arg-Pro, 

respectively. The arginine codon CGA is decoded by ICG tRNAArg where inosine forms a 

unique purine-purine I:A wobble pair. The proline codon CCG is found in many inhibitory 

codon pairs, likely because it is decoded by tRNA using a G-U wobble pair, UGG tRNAPro 

(Fig 1A). The prevalence of and dependency on wobble base-pairing in inhibitory codon 

pairs led Grayhack and co-workers to conclude that elongation is blocked by non-optimal 

codon-anticodon pairing at neighboring sites on the ribosome (i.e. the P and A sites). 

Furthermore, they showed that for these codon pairs, the order of the codons in the pair is 

critical; the reverse pair has little to no effect on protein output. 

To monitor synthesis of tetrapeptides containing these inhibitory codon pairs, we 

employed an in vitro reconstituted yeast translation system 27, 28. Initiation complexes (ICs) 

were assembled using ribosome subunits, [35S]-Met-tRNAiMet, and mRNAs containing an 

AUG codon, the codon pair of interest, and an additional codon encoding Phe or Lys before 

or after the pair to enhance visualization of the products by electrophoretic thin-layer 

chromatography (eTLC). Following purification, each IC was treated with puromycin (Pm) 

to release the nascent chain and determine the fraction of bound [35S]-Met-tRNAiMet that 

forms Met-Pm. Puromycin reacts with peptidyl-tRNA bound to the ribosome when the 

peptidyl-transferase center (PTC) of the large subunit is accessible and releases the 

polypeptide chain as peptidyl-puromycin. As such, this assay reports on the overall 

competence and conformation of the peptidyl-transferase center of the ICs. We consistently 

observed that ICs formed with the different mRNA transcripts formed Met-Pm products to 

a similar extent (Fig EV1A). Therefore, differences in the amount of peptide produced 
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using ICs containing different mRNA templates were not due to the efficiency of IC 

formation or to the differential ability of the programmed ribosome to make peptide bonds.  

For elongation reactions, the desired tRNAs were purified from bulk tRNA using 

biotinylated oligonucleotides 29, charged with the corresponding aminoacyl-tRNA 

synthetase, and the aminoacyl-tRNAs were pre-incubated with eEF1A and GTP to form 

ternary complexes. Ternary complexes were then mixed with purified ICs and elongation 

factors eEF2, eEF3, and eIF5A. Peptide formation was monitored by quenching time points 

of the reactions in KOH and resolving the formed products by eTLC (Fig 1A). The initial 

experiments were performed with ribosome complexes at ~2 nM and aa-tRNAs at ~12 nM, 

where both binding and catalysis contribute to the observed rate (i.e. kcat/Km conditions). 

For each inhibitory codon pair a control “optimal” IC was prepared where the non-optimal 

codons were replaced by synonymous codons that are decoded by the same tRNA, but 

without wobble base pairing. For example, the optimal codon CGC was used as a control 

for CGA because it is decoded by the same ICG tRNAArg via a pyrimidine-purine C:I pair 

with a standard Watson-Crick geometry 30 instead of a purine-purine (A:I) wobble base 

pair (Fig 1A).  

Visual examination of the reaction profiles for the inhibitory CGA-CGA codon pair 

(in red) relative to the optimal CGC-CGC codon pair (in green) reveals a clear defect in 

elongation (Fig 1B). First, the inhibitory Arg-Arg pair exhibits a significantly lower 

endpoint, with ~25% of the radiolabeled Met forming the final tetrapeptide product, 

MFRR, compared with ~45% for the optimal Arg-Arg sequence. In a similar fashion, there 

are clear elongation defects for the inhibitory Arg-Pro, CGA-CCG codon pair (in red) 

compared to the optimal CGC-CCA codon pair (in green) (Fig 1C); the inhibitory Arg-Pro 
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pair has only ~20% of the radiolabeled Met forming the final tetrapeptide product, MRPK, 

compared to ~50% for the optimal Arg-Pro sequence. As endpoint defects often suggest 

the existence of an off pathway reaction, we asked whether there were high levels of 

peptidyl-tRNA drop-off during elongation for the Arg-Arg or Arg-Pro reactions that might 

explain the observed defects. However, when we directly tested this possibility using an 

assay involving peptidyl hydrolase (Pth) that acts only on tRNAs not bound to the 

ribosome, we saw no evidence for drop off with any of the complexes (Fig EV1B, C) 28, 31.  

In addition to the endpoint defects, we also observe a reduced rate of formation of 

the final peptide product for the complexes encoding both the Arg-Arg and Arg-Pro pairs; 

in each case, the observed rates were about three-fold slower than those of their optimal 

counterparts (Fig 1B, C). For the Arg-Arg pair, where MFR and MFRR can be separately 

resolved, we see a substantial build-up of MFR intermediate peptide relative to the CGC-

CGC dicodon control (Figs 1B and EV1D). Quantification of both products (MFR and 

MFRR) of this inhibitory pair as well as elongation on a single arginine message (MFR) 

indicate that elongation through the first CGA codon is slightly slow, but that the 

subsequent elongation through the second CGA codon is the major inhibitory step (Figs 

EV1E, F).   

Together, these data reveal in vitro defects in elongation reactions on the ribosome 

resulting from two distinct inhibitory codon pairs. These observations provide strong 

evidence that the initially observed effects in vivo 13 reflect defects intrinsic to ribosome 

function rather than resulting from mRNA decay or other downstream cellular events. 
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Multiple defects in decoding caused by codon pairs 

Assuming that one likely cause of elongation slow-down may be defects in 

decoding, we asked if the inhibition arises from simple defects in the energetics of tRNA 

binding (a second order event) or instead from more downstream defects (i.e. in first order 

events) that follow including GTPase activation and accommodation 32, 33. As the initial in 

vitro experiments were performed in a kcat/Km regime, we repeated the elongation assays 

at 10-fold higher ternary complex concentrations. For Arg-Arg, we see an approximately 

2-fold rescue of the rate of the reaction with higher tRNA concentrations for the inhibitory 

pair (CGA-CGA) with only very modest changes in the rate of the reaction for the optimal 

pair (CGC-CGC) (Fig 2A, left). Similarly, for the Arg-Pro combination, we see an 

approximately 4-fold increase in the rate of the reaction with higher tRNA concentrations 

for the inhibitory pair (CGA-CCG) with only a modest, maximally 1.5-fold increase, for 

the optimal pair (CGC-CCA) (Fig 2A, right). These results suggest that tRNA binding 

contributes in part to the observed defects seen for the inhibitory pairs. Importantly, 

however, we observe that for both codon pairs (CGA-CGA and CGA-CCG), the endpoint 

defects are not overcome at high tRNA concentrations (Fig 2B). These latter data strongly 

suggest that a certain fraction of the complexes is unable to elongate independent of 

saturating levels of aminoacyl-tRNA substrate.  

Given the unusual nature of the I:A wobble base pair found in the P site after 

incorporation of the first Arg in the codon pair, we also wondered whether the substantial 

defects that we observed might be rescued with the use of a non-natural, exact match UCG 

tRNAArg as shown in vivo in the previous study 13. We expressed the non-natural tRNAArg 

on a CEN plasmid in yeast and purified it as above using a biotinylated oligonucleotide. In 
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elongation reactions performed under kcat conditions (high tRNA concentrations), this non-

natural tRNA did partially rescue the endpoint defects in the elongation reaction associated 

with the CGA-CGA codon pair (Fig 2C); these data suggest that the unusual I:A pairing in 

the P site at least partially contributes to the endpoint defects associated with these 

inhibitory codon pairs. 

 

Increased 21 nt RPFs on inhibitory pairs indicate an empty ribosomal A site 

To further investigate the molecular mechanisms of inhibition underlying the 

inhibitory codon pairs, we turned to high-resolution ribosome profiling 34. We recently 

reported that ribosome profiling using a cocktail of elongation inhibitors can trap 

ribosomes in their different functional states, distinguished by the size of ribosome 

protected footprints (RPFs). For example, when cycloheximide (CHX) and tigecycline 

(TIG) are added to yeast lysates to prevent ribosomes from translating post cell lysis, RPFs 

that are 21 nucleotides (nts) in length correspond to ribosomes in a “classical” or POST 

state waiting to decode the next aminoacyl-tRNA while RPFs that are 28 nts in length 

correspond primarily to ribosomes trapped in a “rotated” or PRE state 34. Building on an 

earlier study that showed an enrichment in ribosome density when the 17 inhibitory codon 

pairs are aligned 13, 35, we generated libraries using CHX and TIG to better distinguish the 

functional state of the paused ribosomes. In the plot shown in Fig 3A, the average ribosome 

density on 17 inhibitory codon pairs (with the first codon in the P site and second in the A 

site) is shown as a function of the RPF length on the Y-axis. We observe that while the 

density of 28 nt RFPs is fairly constant across this region, there is a large accumulation of 

21 nt RFPs at the A site codon (Fig 3A). These data indicate that for these 17 inhibitory 
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pairs, elongation inhibition is likely caused by slow decoding of the second codon of the 

inhibitory pair, resulting in an empty A site that yields shorter footprints.  

We can also look individually at the representative codon pairs studied above 

(CGA-CGA and CGA-CCG) and we see significant accumulation of 21 nt RPFs in the A 

site relative to the amount observed for their optimal counterparts (red vs. green) (Fig 3B). 

These data provide direct evidence that elongation inhibition on these codon pairs results 

from slow decoding of the second codon of the inhibitory pair. 

We also considered the possibility that for the inhibitory codon pairs, tRNAs are 

accommodated but fail to undergo peptidyl transfer, perhaps because of a misalignment in 

the active site of the 60S subunit. We observed previously that the addition of anisomycin 

(ANS), a peptidyl-transferase inhibitor, together with CHX, blocks bound tRNAs from 

forming peptide bonds such that they eventually fall out of the A site; in these libraries, 21 

nt RPFs represent two different ribosome populations, those in a pre-accommodation and 

a pre-peptidyl transfer state. Indeed, in samples prepared with CHX/ANS, we observe more 

21 nt RPFs at peptide motifs known to undergo slow peptidyl transfer 28 relative to those 

motifs or codons enriched in the CHX/TIG samples (Fig EV2A). If the chemistry of 

peptide-bond formation were slow for the inhibitory codon pairs, we would expect to see 

an increase of 21 nt RPFs at these sites in the CHX/ANS library relative to the CHX/TIG 

library. Instead, we see the same level of enrichment of 21 nt RPFs at these sites (Fig 3C, 

left), arguing that the limiting step for the inhibitory base pairs is not peptide bond 

formation. These findings are consistent with the hypothesis that certain wobble pairs 

impact the decoding center in the 40S subunit, affecting decoding or accommodation, 

rather than activities in the peptidyl-transferase center of the large subunit. For the optimal 
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codon pairs for these same amino acid sequences, no pauses are seen in either sample 

indicating that the pausing at inhibitory codons is due to the codon/tRNA pairing in the A 

site rather than to the amino acid sequence (Fig 3C, right).  

 

Loss of the ribosomal protein Asc1 inhibits elongation  

Several studies in yeast using iterated CGA codons to induce ribosome stalling have 

shown that the loss of the ribosomal protein Asc1 enables ribosomes to read through these 

inhibitory sequences 22, 36, 37; these data suggest that Asc1 is somehow involved either in 

facilitating proper decoding or in sensing and stabilizing stalled ribosomes. We asked what 

role Asc1 plays in the elongation of CGA codon pairs using our in vitro system. We first 

prepared ribosomes from an Asc1 deletion strain and produced initiation complexes 

programmed with either non-optimal (CGA-CGA) or optimal (CGC-CGC) MFRR 

mRNAs as before and compared their elongation reactions. Initiation complex formation 

and the puromycin reactivity of these complexes was indistinguishable from that of 

complexes formed with wild-type ribosomes (Fig EV3A). Elongation reactions were then 

performed as described above using ICG tRNAArg to decode the Arg codons in both 

mRNAs. We see that for both the inhibitory and optimal di-codon pair complexes, 

ribosomes lacking Asc1 elongate more slowly and reach a lower elongation endpoint (Fig 

4A). These data suggest that ribosomes lacking Asc1 have general defects in elongation. 

Elongation reactions with ICs lacking Asc1 for the CGA-CCG, Arg-Pro pair show similar 

defects (Fig EV3B). We also performed high-resolution ribosome profiling in an asc1Δ 

strain using CHX/TIG for the preparation as above 34. In this analysis, we observe a 

genome-wide increase of 21 nt RPFs, consistent with the idea that ribosomes lacking Asc1 
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broadly struggle with the tRNA decoding step of translation elongation (Fig 4B). 

Moreover, when we specifically look at the pausing signature of ribosomes at the 17 

inhibitory codon pairs, we see that the CGA-CCG and CGA-CGA codon pairs show the 

largest enrichment in 21 nt RPFs in the asc1 deletion strain compared to the wild-type 

strain (Fig 4C). Together, these data provide support for the idea that the ribosomal protein 

Asc1 makes important contributions to the tRNA selection step of translation elongation. 

 

Decoding-incompatible mRNA conformation causes to inhibitory codon pair-

mediated stalling 

To investigate the molecular basis of the inhibitory codon pairs involving the 

problematic CGA codon, we turned to structural studies of complexes stalled at CGA-CCG 

and CGA-CGA codon pairs. We used a yeast cell-free in vitro translation system in which 

we translated mRNA reporters containing the CGA-CCG or CGA-CGA inhibitory codon 

pairs. Translation extracts were prepared from yeast cells lacking Ski2p, a component of 

the 3’-5’ mRNA decay system, to enhance mRNA stability. Both mRNA reporters 

contained sequences coding for an N-terminally His8-HA-tagged truncated uL4 38 followed 

by the stalling (CGA-CCG)2 or (CGA-CGA)2 codon pairs (Appendix Figs S1A, S2A). To 

avoid capturing read-through products, the stalling sequences were followed by three 

UAA(A) stop codon quadruplets, one in each reading frame, which would lead to 

termination upon read-through. Ribosome nascent chain complexes (RNCs) were affinity 

purified using magnetic beads, separated on a sucrose density gradient and the 80S 

fractions were subjected to cryo-EM (Appendix Figs S1, S2).  
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Classification of ribosomal particles for both stalling sequences (CGA-CCG and 

CGA-CGA) revealed the most abundant classes to be programmed ribosomes in the post-

translocation state (POST state) with tRNAs in the P/P and E/E state, but not in the A site 

(Appendix Figs S3, S4). The structure of the CGA-CCG stalled ribosome was 

reconstructed to an average resolution of 2.6 Å while the CGA-CGA stalled ribosome was 

reconstructed to an average resolution of 3.2 Å (Fig EV4B, C). To compare these structures 

on a molecular level with a canonical A site tRNA decoding situation, we refined our 

previously produced structure of cycloheximide-stalled ribosomes in the pre-translocation 

state (PRE state) with A/A and P/P tRNAs to 3.1 Å with focus on the mRNA decoding in 

the A site (Figs 5A and EV4A) (Buschauer et al. 2019). Molecular models were built and 

refined for all structures allowing for an in-depth analysis (Fig 5A-I). Structural analysis 

of the CGA-CCG and the CGA-CGA stalled RNCs revealed no perturbations of the 

peptidyl-transferase center (PTC), in agreement with the puromycin reactivity of these 

stalled ribosomes (Appendix Fig S5). On the other hand, we saw a strikingly unusual 

conformation of the mRNA in the A site of these structures when compared with the 

canonical decoding situation (Fig 5A-I). 

The most striking mRNA structure is formed on the CGA-CCG reporter mRNA. In 

our 2.6 Å map, we can clearly identify the CGA-codon in the P site and the anticodon of 

ICG tRNAArg making standard Watson-Crick interactions as observed before 39 at the first 

two positions of the codon and a purine:purine A:I base pair at the wobble position (Fig 

5E). However, the first nucleotide in the A site (the C+4 of the CCG codon) is found in an 

unusual conformation that is well defined by the cryo-EM density (Fig EV5A). Compared 

to the control canonical decoding situation (Fig 5A-C), C+4 is flipped by approximately 
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95° degrees towards the wobble A:I base pair in the P site. Stabilization of C+4 in this 

position appears to be facilitated by an H-bond formed with C1637 of 18S rRNA helix 44 

(C1400 in E. coli) which stacks on the I of the ICG tRNAArg in the P site (Fig 5F). 

Compared to the canonical decoding situation, accommodation of the purine:purine A:I 

wobble base pair at position +3 shifts the mRNA backbone by 2.6 Å at the phosphate 

linking +3 and +4, thus forcing the general path of the downstream mRNA into an unusual 

direction (Fig EV5B, C). Importantly, this alteration in the mRNA structure moves the 

crucial A/P kink to occur between positions +4 and +5 (Fig 5F). The A/P kink, normally 

positioned between positions +3 and +4, was shown to be crucial for A site interaction and 

proofreading activity, especially for difficult-to-decode near cognate tRNAs 40. In the 

flipped-out position seen here, the C+4 seems unlikely to be engaged by a canonical 

codon:anticodon interaction with the incoming aminoacyl-tRNA (Fig 5C). This 

rearrangement of the mRNA itself could explain the previously proposed communication 

between ribosomal P and A sites 13.  

Moreover, following C+4, the mRNA folds into a stable mRNA hairpin structure 

that directly occludes tRNA binding in the A site. In the hairpin, the C+5 base pairs with 

G+12 and the G+6 base pairs with C+11, while nucleotides C+7 – C+10 form a rather 

flexible tetraloop at the tip of the hairpin (Fig EV5D, E). Interestingly, this structure is 

stabilized by A1756 (A1493 in E. coli) of the 18S rRNA which flips out of helix h44 as 

well as the rearranged A2256 (A1913 in E. coli) of the 25S rRNA helix 69. Normally, 

A2256 forms a dynamic inter-subunit bridge 2A by intercalating into the 18S rRNA helix 

44. However, to support the observed mRNA secondary structure formation, A2256 rotates 

by 101 degrees and stacks with C+7 of the mRNA (Fig EV5E). Taken together, this 
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structure rationalizes how accommodation of the UGG-tRNAPro in the A site on the CGA-

CCG inhibitory dicodon is prevented: i) by positioning of C+4 in a conformation 

incompatible with decoding, ii) by shifting the crucial mRNA A/P kink one position 

downstream and iii) by sterically blocking the tRNA binding site with an mRNA secondary 

structure. 

Analogous to the CGA-CCG situation, we saw a specific inhibitory conformation 

of C+4 in the CGA-CGA mRNA cryo-EM structure (Fig 5G-I). Again, well supported by 

cryo-EM density, the conformation of C+4 is essentially the same as observed for the CGA-

CCG reporter, with an 84° rotation of the cytosine base (Figs 5I and EV5F). After position 

+4, however, the mRNA density is weak and does not allow for reliable model building. 

These observations suggest a more flexible conformation of downstream mRNA in this 

structure. Nonetheless, the general path of mRNA seems to be shifted in the same direction 

as seen for the CGA-CCG case and the A/P kink in mRNA is also dislocated downstream 

as it cannot be observed between positions +3 and +4 (Figs 5I and EV5C). Taken together, 

these two structures show how rearrangement of the mRNA induced by the wobble-

decoded CGA codon in the P site causes perturbations in the A site that disfavor decoding.  

  

Decoding-incompatible mRNA conformation contributes to poly(A) tract-mediated 

stalling 

Next, we wondered whether the CGA-dependent codon pair stalling mechanism is 

structurally related to poly(A)-mediated stalling. First, using our in vitro system, we see 

slower elongation on a MFK5 AAA IC as compared to an AAG IC, consistent with earlier 

observations in E. coli 21. Despite resolution limitations of eTLC with multiple lysines, 
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when we compare the earliest time points for AAA complexes with those for AAG 

complexes, the AAA complexes have only elongated to MF and MFK, whereas the AAG 

complexes are already making MK2 and larger products as indicated by the fast running 

smear (Fig EV6). These data are consistent with earlier reports documenting differences in 

elongation on iterated AAA relative to AAG lysine codons in other systems 21, 23. 

For cryo-EM, we used an analogous approach to that used for CGA-dependent 

codon pair-mediated stalling with a modified mRNA reporter comprising a 49 nucleotide 

long poly(A) tract (Appendix Fig S6). As for both inhibitory codon pairs (CGA-CCG and 

CGA-CGA) discussed above, classification of poly(A) stalled ribosomal particles revealed 

that a majority (78%) of programmed particles are in the POST state without A-site tRNA 

(Appendix Fig S7). We reconstructed the poly(A)-stalled ribosome structure to an overall 

resolution of 3.1 Å, which allowed for building and refinement of a molecular model (Fig 

6A, B).  

In the resulting structure, we first analyzed the PTC to look for potential structural 

changes that might rationalize previous arguments that sequential lysines in the peptide 

tunnel lead to translational stalling due to their basic nature 20. We were able to model the 

last three C-terminal residues of the nascent chain as lysines, consistent with the RNC being 

stalled on the poly(A) tract. In the PTC we observed the terminal lysine side chain pointing 

towards the A site and an extra density not explained by the nascent peptide model (Fig 

6C). Overall, however, the crucial catalytic bases (U2875 and U2954) did not seem to be 

hindered from moving into the induced state conformation upon tRNA binding in the A 

site, therefore hinting that any perturbations of the PTC geometry are relatively modest. 

Consistent with this hypothesis, these complexes are reactive to puromycin (data not 
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shown). Moreover, these observations do not provide an explanation for the absence of A 

site tRNA in 93% of particles. Therefore, we investigated the mRNA conformation in the 

A site decoding center. 

When we examined the molecular details in the decoding center, we clearly saw 

the structure of the codon-anticodon interaction between the AAA codon and UUU 

tRNALys in the P site with no apparent perturbations (Fig 6D). Strikingly, however, the four 

downstream adenosines in the A site decoding center are engaged in a π-stacking array, 

adopting essentially the same single stranded helical conformation recently reported by 

Passmore and colleagues for isolated poly(A) sequence 41. This +4 to +7 π-stack is 

stabilized on both sides by flipped out rRNA nucleotides A1756 and C1634. Indeed, C1634 

(C1397 in E. coli) is found in an unusual, previously unobserved conformation (Fig 6E, F). 

In this arrangement, the AAA codon in the A site adopts what is clearly a decoding-

incompetent conformation that likely directly contributes to poly(A) mediated stalling, 

although the general path of mRNA does not seem to be as strongly affected as in the case 

of both inhibitory codon pairs (Fig EV5C). Taken together, for RNCs stalled on poly(A), 

we observe structural changes assumed by the mRNA in the A site that preclude canonical 

interactions with the decoding tRNA.  

 

Ribosome collisions on poly(A) tracts affect disome formation 

Given that ribosome collisions have been shown to produce crucial substrates for 

quality control pathways 26, 42, 43, we wondered if poly(A) tracts in our system would 

generate a stable ribosome collision amenable to structural analysis. Therefore, we 

prepared a disome fraction of the poly(A) stalled RNCs as a minimal ribosome collision 
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species and determined structural information by cryo-EM (Appendix Fig S6). We 

processed the data using the 80S extension approach as described previously 43 and 

segregated classes of ribosomal particles stalled in the POST and PRE states (Appendix 

Fig S9). When we further sorted particles corresponding to the above described poly(A) 

stalled 80S POST state class, we observed disome structures as expected, however, these 

POST state ribosomes were found in both the first “stalled” as well as the second 

“colliding” positions. These collided disomes, which were composed of two POST state 

ribosomes, are thus strikingly different from previously characterized disomes in both 

mammalian and yeast systems 42, 43. In these previous structures, the second colliding 

ribosome was always present in a rotated PRE state, with tRNAs in the A/P and P/E states 

unable to translocate any further downstream. We refined the disome class containing the 

colliding 80S in the POST state to an overall resolution of 3.8 Å and clearly confirmed that 

both individual 80S ribosomes are present in the canonical POST state conformation in this 

disome assembly (Fig 7A–C). Direct comparison of POST-POST with the POST-PRE 

disome assemblies showed that the second colliding ribosome would have to rotate by 16° 

to structurally mimic the previously reported POST-PRE conformation (Fig 7D). Taken 

together, these data indicate that the second colliding ribosome is able to complete the 

translocation step along the mRNA, a step that would normally be prevented by the stable 

“roadblock” of the leading stalled ribosome. Therefore, we suggest that poly(A) tracts, 

which are known to be slippery and allow for sliding, can result in a less rigidly arrested 

first stalling ribosome.  
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Discussion 

 

Gene expression can be fine-tuned by the selection of specific codons within the 

context of the degeneracy of the genetic code. While traditional metrics like the codon 

adaptation index or tRNA adaptation index take into account how commonly a codon is 

used or how abundant its cognate tRNA is, respectively, it is not well understood why 

specific codon pairs are underrepresented in genomes compared to their expected values 

based on the frequency of each individual codon in the pair 44, 45. The work of Grayhack 

and co-workers 13 identified 17 codon pairs in S. cerevisiae that reduce protein expression, 

offering experimental insights into how codon pairs affect translation. In particular, they 

showed that tRNAs in neighboring ribosomal A and P sites can interact to limit protein 

output in a codon pair-mediated way, and hypothesized that wobble base pairing played a 

role in this inhibition. 

Our results with an in vitro reconstituted translation system directly show that 

elongation rates of inhibitory codon pairs are slower than those of their optimal 

counterparts, confirming the hypothesis that inhibition is intrinsic to the ribosome and is 

likely to involve interactions with the tRNA substrates. For both the Arg-Arg (CGA-CGA) 

and Arg-Pro (CGA-CCG) pairs, strong defects in the rates and endpoints of the reactions 

are observed (Figs 2A and B). The observation that the strong endpoint defects are not 

affected by increased tRNA concentration suggests that there are fundamental structural 

defects that preclude A site binding/reactivity for some fraction of the ribosome complexes. 

Consistent with previous work by Grayhack and co-workers 13, the unique I-A wobble 

associated with decoding CGA codons by the ICG tRNAArg has a strong effect on 
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interactions in the P site that structurally extend into perturbations of the A site (Figs 5F, 

I). We additionally find that these defects are partially rescued by substitution of a UCG 

tRNAArg that no longer relies on I:A pairing (Fig 2C), consistent with previous in vivo 

studies 13.  

The observation that the kinetics of decoding are retarded by inhibitory codon pairs 

in biochemical assays was corroborated by our high resolution ribosome profiling studies. 

We see an enrichment of 21 nt RPFs, corresponding to ribosomes lacking a tRNA in the A 

site, when the first codon of the pair is in the ribosomal P site and the second codon is in 

the A site (Fig 3A and B). Comparing the results from the CHX/ANS library with the 

CHX/TIG library, we see the same level of these 21 nt RPFs, indicating that peptide bond 

formation is not limiting the inhibitory codon pair-stalled ribosomes (Fig 3C). This 

observation is consistent with the fact that the optimal codon pairs (which encode the same 

amino acid residues and use the same tRNAs) elongate at normal rates both in vivo and in 

vitro. These data indicate that the inhibitory codon pairs affect the decoding center of the 

40S subunit rather than the peptidyl-transferase center of the 60S subunit. Overall, our data 

are consistent with the idea that the major mechanism of inhibition on most of these 

inhibitory codon pairs is through impairment of tRNA binding/accommodation.  

Previous studies argue that ribosomes lacking the ribosomal protein Asc1 are able 

to readthrough CGA-CGA codons, thus effectively increasing protein output 22, 36, 37. Our 

data argue that this apparent gain of function may originate in part from defects in the 

biochemical activity of ribosomes lacking Asc1. First, we find that ribosomes lacking Asc1 

are less efficient at elongating on mRNAs with both inhibitory and optimal pairs in vitro 

(Fig 4A and EV3B). Second, by ribosome profiling, we observe a higher fraction of 21 nt 
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RPFs in cells lacking Asc1 suggesting a general defect in tRNA decoding within the A site 

of the ribosome (Fig 4B, C). While this finding is somewhat surprising from a structural 

perspective, given that Asc1 is located on the 40S subunit far away from the decoding 

center, one possibility is that the loss of Asc1 affects the conformation of Rps3, a ribosomal 

protein that directly interacts with Asc1 and forms a part of the mRNA entry channel 46, 47. 

Asc1 is also positioned such that it may be involved in sensing ribosome collisions that 

lead to ribosome rescue pathways 42, 43, 48. It seems likely that the increased read-through 

on inhibitory sequences in the Asc1 deletion strain arises from initial defects in the 

decoding step (promoting frameshifting) as well as by the loss of cellular responses to 

ribosome pausing. 

Detailed mechanistic insight into the origins of A site accommodation defects was 

ultimately provided by our structural analysis. In our cryo-EM structures of ribosome-

nascent chain complexes stalled on the CGA-CGA or CGA-CCG codon pairs, we 

identified several structural details that likely directly affect tRNA binding/accommodation 

activity. Interestingly, in each case these alterations are mediated by the structure of the 

mRNA itself and readily explain the previously proposed communication between the 

ribosomal A- and P sites (Figs 5 and EV5) 13. In particular, for both the CGA-CCG and 

CGA-CGA inhibitory pairs, the C+4 mRNA nucleotide is dramatically flipped away from 

the A site decoding center of the ribosome. The C+4 nucleotide instead makes contact with 

the P site codon and interacts with C1637 of 18S rRNA which stacks to the anticodon 

inosine decoding the wobble position (A+3) of mRNA in the P site. The path of the mRNA 

is also affected by the purine:purine A:I wobble base pair at position +3 and shifts towards 

C1637. This perturbation involving the A:I wobble interaction provides an immediate 
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explanation for why the CGA codon in particular confers the strongest elongation defect. 

Moreover, the A/P kink of the mRNA, which was shown to be crucial for A site interaction 

and proofreading 40, is moved downstream in these structures as a consequence (Fig 5F, I). 

This critical structure is typically stabilized by an ammonium ion in X-ray structures 49 and 

was proposed to be essential for frame maintenance by preventing slippage 50. Finally, in 

the case of CGA-CCG, we observe a hairpin structure formed by mRNA nucleotides 

between positions +5 and +14 (Fig EV5D, E). This structure may be particular to this 

reporter mRNA sequence since no equivalent stable mRNA secondary structure is formed 

in the case of the CGA-CGA stalled RNC. Interestingly, a similar A site hairpin was 

observed previously in a structure implicated in translational bypassing 51.  

Consistent with the earlier work 13, we see a specific deleterious effect of I:A 

wobble decoding on translation efficiency in inhibitory codon pairs containing the 5’ CGA 

codon. Previously, the purine:purine I:A base pair was analyzed in the A site only, where 

its accommodation affects and alters mainly the anticodon of tRNA, due to its unique 

“wide” purine-purine geometry  30. In contrast, in our structure of the I:A wobble pair in 

the P site, we find that its accommodation affects not the anticodon of tRNA but rather the 

mRNA backbone (Figs 5E and H). This mRNA distortion apparently imposes allosteric 

effects on the neighboring region resulting in the unusual mRNA conformation in the A 

site. The modification of adenosine to inosine 52 expands the decoding range of the ICG 

tRNAArg as inosine is able to base-pair with cytidine, uridine and even adenosine at the 

wobble position. It is intriguing to observe that this seemingly elegant evolutionary 

decoding mechanism has certain associated disadvantages as the non-optimal CGA codon 
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(decoded via the I:A interaction with the ICG tRNAArg) is slow to decode and leads to 

deleterious effects on mRNA stability 53. 

In the case of translation of poly(A) tracts, previous studies proposed that 

electrostatic interactions between the poly-basic nascent chain and the peptide exit tunnel 

of the ribosome might elicit ribosomal stalling 20. Using our detailed structural information, 

we were able to reveal that an mRNA-mediated mechanism is directly contributing to 

stalling. Consecutive adenosines are engaged in a π-stacking array in the A site, stabilized 

on both sides by rRNA base stacking interactions, and adopt a helical conformation typical 

for single stranded poly(A) stretches (Fig 6E, F) 41. This π-stacking array represents a 

decoding-incompetent structure. Conversely, the crucial catalytic bases in the peptidyl-

transferase center (PTC) did not seem to be hindered from moving into the induced state 

conformation despite the presence of extra density which is not clearly interpretable (Fig 

6C). This extra density adopts a defined shape next to the last nascent amino acid residue 

and could potentially be assigned to a mixed nascent chain state or even a small molecule. 

However, the observed geometry of the PTC cannot explain the highly efficient stalling on 

poly(A) tracts and the absence of any A site tRNA in 93% of particles in the dataset. 

Therefore, we argue that the inhibitory conformation of mRNA in the A site is at the basis 

of the poly(A)-mediated stalling mechanism. These ideas agree with previous observations 

that consecutive AAG codons are less efficient in stalling than AAA codons 21 despite 

encoding for the same amino acid residue and that the intrinsic π-stacked helical structure 

of poly(A) single strand tract is efficiently disrupted by inclusion of guanosines 41. Taken 

together, while we can’t exclude the possibility that the basic nascent chain also 
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contributes, the stalling mechanism employed at poly(A) stretches mainly depends on the 

specific inhibitory conformation of the mRNA in the A site. 

Interestingly, when studying ribosomal collisions as a consequence of poly(A)-

mediated stalling, we found a large fraction of the disomes in a novel POST-POST state 

that was distinct from the previously characterized disome structures in both mammalian 

and yeast systems (Fig 7A, B) 42, 43. In both previous structures, the second colliding 

ribosome is captured in a rotated PRE state unable to translocate further. Finding both 

collided ribosomes in the POST state indicates that the second colliding ribosome 

completed the translocation step, likely due to a weaker “roadblock” presented by the first 

stalled ribosome. Since poly(A) tracts were characterized as slippery 21, it is tempting to 

speculate that applying force on the first stalled ribosome by the colliding ribosome(s) 

could contribute to ribosome sliding on the mRNA and loss of reading frame. This model 

is consistent with recent findings that directly implicate ribosomal collisions in +1 

frameshifting 54. Ribosomal collisions could, in principle, disrupt the interaction between 

the P site tRNA and the mRNA in the first ribosome and contribute to +1 frameshifting 

observed after ribosomal pausing 55. We speculate that the loss of reading frame in the case 

of collisions on poly(A) tracts is facilitated by (i) the fact that the P site tRNA is the only 

one left on the stalled ribosome after the E site tRNA dissociates and (ii) the fact that the P 

site tRNA only interacts with the mRNA via relatively less stable A:U base pairs. These 

ideas are consistent with earlier studies arguing that reading frame maintenance is 

predominantly affected by the energetics of the P-site codon-anticodon interaction 56. 
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Taken together, our work combines in vitro and in vivo methods to study the effects 

of inhibitory mRNA sequences, and shows for the first time detailed mechanistic insight 

into mRNA-mediated translation stalling via decoding obstruction.  
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Figure Legends 

 

Figure 1. Inhibitory codon pairs slow elongation in vitro. (A) Inhibitory pairs showing 

the inhibitory mRNA codons (red) and the optimal codons (green). Schematic 

representation of the in vitro elongation reactions performed using the reconstituted yeast 

translation system. (B) Representative eTLCs (left) and corresponding elongation kinetics 

(right) for the CGA-CGA inhibitory pair (red) and the CGC optimal pair (green). (C) 

Representative eTLCs (left) and corresponding elongation kinetics (right) for the CGA-

CCG inhibitory pair (red) and the CGC-CCA optimal pair (green). Product formation in 

(C) and (D) are normalized to the fraction of Met ICs that form Met-Puro when reacted 

with puromycin (Fig EV1A). 

 

Figure 2. Effects of tRNA concentration on elongation rates and endpoints.  

(A) Comparison of observed rates of elongation for inhibitory pairs (red) and their optimal 

controls (green) at limiting tRNA concentrations (hatched bars) and saturating tRNA 

concentrations (solid bars). (B) Comparison of total peptide formation for inhibitory pairs 

(red) and their optimal controls (green) at limiting tRNA concentrations (hatched bars) and 

saturating tRNA concentrations (solid bars). (C) Elongation kinetics for the CGA-CGA 

inhibitory codon pair with the native ICG tRNAArg (red) or the non-native UCG tRNAArg 

(purple) and for the CGC-CGC optimal control pair with the native ICG tRNAArg (green). 

Error bars represent standard deviations calculated from at least three experimental 

replicates. 
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Figure 3. Increased 21 nt RPFs on inhibitory pairs indicate an empty ribosomal A 

site. (A) Meta-analysis of footprint size of all 17 inhibitory pairs identified by Grayhack 

and coworkers (Gamble et al., 2016), aligning the first codon of the pair in the ribosomal 

P site. (B) Metacodon analysis of 21 nt RPFs centered at the first codon of each inhibitory 

pair (red) compared to their corresponding optimal pair (green). (C) Comparison of 21 nt 

RPFs aligned at all 17 inhibitory codons from libraries made with CHX/ANS (blue) and 

CHX/TIG (black) (left) to their corresponding optimal pairs with the same antibiotic 

combination (right). 

 

Figure 4. Loss of the ribosomal protein Asc1 inhibits elongation. (A) Elongation 

kinetics for the CGA-CGA inhibitory codon pair (red) and the CGC-CGC optimal control 

(green) from WT ribosomes (solid) or the asc1Δ strain ribosomes (dashed) at saturating 

tRNA concentrations. Average observed rates and elongation endpoints from three or more 

replicate experiments shown below the graph. (B) Size distributions of ribosome footprints 

for WT cells (black) and asc1Δ cells (gold). (C) Scatter plot of ribosome occupancies for 

21 nt RPFs at the 17 inhibitory codon pairs (Gamble et al., 2016) comparing WT cells to 

asc1Δ cells with the two inhibitory codon pairs further investigated in this study labeled. 
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Figure 5. CGA-CCG and CGA-CGA induce stalling through decoding-incompatible 

mRNA conformations in the A site. (A-C) Cryo-EM structural characterization of the 

pre-state RNC with A site tRNA in the decoding center. (A) Schematic representation of 

the decoding situation (top) and molecular model for the pre-state RNC with A site tRNA 

in the decoding center. (B) General overview of the A, P and E sites with A/A and P/P 

tRNAs and mRNA. (C) Detailed view of the mRNA in the A site using sticks model with 

cartoon phosphate backbone representation. The 18S rRNA bases A1755 and A1756 

recognize the minor groove of A site tRNA – mRNA interaction during tRNA decoding. 

(D-F) Cryo-EM structural characterization of the CGA-CCG stalled RNC. (D) Schematic 

representation of the stalling situation (top) and molecular model of the CGA-CCG stalled 

RNC (bottom). (E) General overview of the A, P, and E sites with P/P and E/E tRNAs and 

mRNA. (F) Detailed view of the mRNA in the A site using sticks model with cartoon 

phosphate backbone representation. The mRNA positions +2 to +5 and their interactions 

are shown. The C +4 is flipped by approximately 95° degrees towards the wobble A:I base 

pair in the P site and stabilized by interaction with the C1637 of the 18S rRNA helix 44. 

The C +5 is stabilized by stacking interaction with the A1756 of the 18S rRNA which 

normally recognizes the minor groove of A site tRNA – mRNA interaction during decoding 

(L). (G-I) Cryo-EM structural characterization of the CGA-CGA stalled RNC. (G) 

Schematic representation of the stalling situation (top) and molecular model of the CGA-

CGA stalled RNC (bottom). (H) General overview of the A, P and E sites with P/P and 

E/E tRNAs and mRNA. (I) Detailed view of the mRNA in the A site as in (E). Downstream 

mRNA is indicated by the dotted line. Note the rotation of the C+4 base compared to the 

CGA-CCG mRNA. 
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Figure 6. Ribosomes stalled on poly(A) stretches reveal alterations in both the 

peptidyl-transferase and decoding centers. (A) Schematic representation of the stalling 

situation on poly(A) tract mRNA. Cryo-EM density map of the poly(A) stalled RNC 

filtered according to local resolution and used to build the molecular model (B). (C) Cryo-

EM density (mesh) and stick model with cartoon phosphate backbone representing the 

peptidyl-tRNA in the peptidyl-transferase center (PTC). (D) General overview of the A, P, 

and E sites with the P/P tRNA and mRNA. (E, F) Detailed view of the mRNA in the A site 

using sticks model with cartoon phosphate backbone representation and cryo-EM density 

(mesh). The poly adenine mRNA sequence forms a π-stacking array between positions +4 

and +7, which is stabilized from both sides by stacking of 18S rRNA bases C1634 and 

A1756. 

 

Figure 7. Disomes stalled on poly(A) tracts form a novel POST-POST assembly. 

(A) Composite cryo-EM density map of the POST-POST disome stalled on the poly(A) 

mRNA reporter filtered according to local resolution and used to build the molecular model 

(B). (C) Cut top views of both the first (stalling) and the second (colliding) ribosomes 

forming the disome. Observed ribosomal and tRNA translocation states are indicated. (D) 

Comparison of ribosomal assemblies between the previously described CGA-CCG stalled 

yeast disome in pink (EMD-4427, Ikeuchi, Tesina et al., 2019a) and the novel POST-POST 

assembly observed in poly(A) stalling. The EMD-4427 density map was fitted into the 

density of the first stalling ribosome on the poly(A) reporter. The indicated rotation was 

calculated using the 60S subunit, as the compared colliding ribosomes are not in the same 

translocation state (PRE vs. POST). 
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Expanded View Figure 1. Initiation complex test of Met-Pm activity and individual 

product analysis of MFRR elongation. (A) Met-Pm activity for all the ICs formed with 

WT ribosomes on inhibitory mRNAs (red) and optimal mRNAs (green). There is no 

significant difference in activity at the last time point for any of the ICs. (B) TLC showing 

peptidyl tRNA drop off using the PTH assay on MFRR ICs with the inhibitory (CGA-

CGA) pair (red) and the optimal (CGC-CGC) pair (green). Time points were quenched 

with formic acid to assess drop off and time points quenched with KOH were to monitor 

peptide formation as a control. There is no significant accumulation of peptidyl tRNA drop 

off products. (C) TLC showing peptidyl tRNA drop off using the PTH assay on MRPK 

ICs with the inhibitory (CGA-CCG) pair (red) and the optimal (CGC-CCA) pair (green). 

Time points were quenched with formic acid to assess drop off. There is no significant 

accumulation of peptidyl tRNA drop off products. (D)Elongation kinetics for the MFR 

product within the context of MFRR elongation for the inhibitory (CGA-CGA) pair (red) 

and the optimal (CGC-CGC) pair (green). MFR peptide builds up on the inhibitory pair as 

compared to the optimal pair indicative of slow formation of the next peptide bond. (E) 

Elongation kinetics for the MFR and MFRR products together versus the final MFRR 

product alone for the inhibitory (CGA-CGA) pair (red) and the optimal (CGC-CGC) pair 

(green). The increased rate and amount of product formed for the MFR and MFRR data 

compared to the MFRR alone suggest that the addition of the second arginine is slower 

than the first. (F) Elongation kinetics for the addition of a single arginine MFR CGA (red) 

and CGC (green). The addition of the first arginine is only slightly slower for CGA again 

suggesting that the addition of the second arginine is the slower step. 
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Expanded View Figure 2. Ribosome profiling analysis showing defects in peptide 

bond formation. (A) Metacodon analysis of 21 nt RPFs in libraries prepared with 

CHX/ANS (blue) showing an increase in ribosome density at tripeptide motifs that undergo 

slow peptide bond formation (Schuller et al., 2017) compared to libraries prepared with 

CHX/TIG.   

 

Expanded View Figure 3. Initiation complex test of Met-Pm activity with ribosomes 

lacking Asc1 and their corresponding elongation rates. (A) Met-Pm activity for all the 

ICs formed with ribosomes from asc1Δ strain on inhibitory mRNAs (red) and optimal 

mRNAs (green). There is no significant difference in activity at the last time point for any 

of the ICs as compared to one another or to the Met-Pm activity for WT ICs (Figure S1A). 

(B) Comparison of observed rates of elongation at saturating tRNA concentrations for all 

inhibitory pairs (red) and their optimal controls (green) by ICs formed with ribosomes 

lacking Asc1 (hatched bars) versus WT ribosomes (solid bars). Error bars represent the 

standard deviation calculated from three replicate experiments with the exception of the 

MFRP inhibitory and optimal pairs (two replicates). 

 

Expanded View Figure 4. Cryo-EM structures of RNCs stalled on inhibitory codon 

pairs in comparison with the A site decoding situation. (A-C) Cryo-EM density maps 

filtered according to local resolution used to build molecular models. (A) Cryo-EM map of 

the pre-state RNC with tRNA in the A site. (B) Cryo-EM map of the CGA-CCG stalled 

RNC. (C) Cryo-EM map of the CGA-CGA stalled RNC.  
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Expanded View Figure 5. Structural details of the codon-based stalling. (A) Cryo-EM 

density (mesh) and stick model with cartoon phosphate backbone representing the mRNA 

positions +1 to +4 and their interactions in the CGA-CCG stalled ribosome. (B) 

Comparison between the A site tRNA decoding situation and the CGA-CCG stalled 

situation of the mRNA in positions +1 to +4. In the CGA-CCG A site, the C+4 is flipped 

by approximately 95° degrees towards the wobble A:I base pair and the mRNA backbone 

is shifted by 2.6 Å at the phosphate linking A+3 and C+4. (C) The effect of flipped C+4 

on the general path of the mRNA in the A site. A cartoon representation of mRNAs in all 

four discussed 80S structures is compared. (D) Overview of the mRNA and it’s interactions 

in the A site of CGA-CCG reporter stalled ribosome using stick model with cartoon 

phosphate backbone representation. (E) Detail of the tip of the hairpin from (C) with 

stabilizing stacking interactions between A2256 of the 25S rRNA and the C+7 of the 

mRNA and among A1756 of the 18S rRNA intercalated between the C+5 and the A+14 of 

the mRNA. (F) Cryo-EM density (mesh) and stick model with cartoon phosphate backbone 

representing the mRNA positions +1 to +4 and their interactions in the CGA-CGA stalled 

ribosome. 

 

Expanded View Figure 6. Elongation of AAA is slower than AAG on MFK5 initiation 

complexes. (A) TLC showing peptide bond formation of MFK5 messages on inhibitory 

AAA codons (red) and control AAG codons (green). Samples were diluted 1 to 4 µL in 

water (top) or undiluted (bottom). MFK5 AAG complexes are making longer lysine 

peptides (indicated by higher bands on the TLC) than AAA at early timepoints. 
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Appendix Figure S1. CGA-CCG reporter mRNA and purification of the stalled 80S 

RNCs. (A) Schematic representation of the CGA-CCG mRNA reporter used for the 

structural studies. (B) In vitro translation reaction (IN) using a yeast translation extract 

from a ski2Δ strain and subsequent affinity purification of His-tagged ribosome-nascent 

chain complexes. Fractions representing input (IN), flow through (FT), washing steps (W1 

– W3), elution (E) and beads (B) were visualized by immunoblotting using anti-HA 

antibody. Peptidyl-tRNA (p-tRNA) and free peptide (fp) bands are indicated. (C) The 

eluate was loaded on a 10-50 % sucrose gradient and fractionated. The indicated peak 

representing the 80S fraction was collected and concentrated using a sucrose cushion. 

Resuspended ribosomal pellet was used for cryo-EM sample preparation. 

 

Appendix Figure S2. CGA-CGA reporter mRNA and purification of the stalled 80S 

RNCs. (A) Schematic representation of the CGA-CGA mRNA reporter used for the 

structural studies. (B) In vitro translation reaction (IN) using a yeast translation extract 

from a ski2Δ strain and subsequent affinity purification of His-tagged ribosome-nascent 

chain complexes. Fractions representing input (IN), flow through (FT), washing steps 

(W1 – W3), elution (E) and beads (B) were visualized by immunoblotting using anti-HA 

antibody. Peptidyl-tRNA (p-tRNA) and free peptide (fp) band sizes are indicated. (C) 

The eluate was loaded on a 10-50 % sucrose gradient and fractionated. The indicated 

peak representing the 80S fraction was collected and concentrated using a sucrose 

cushion. Resuspended ribosomal pellet was used for cryo-EM sample preparation. 
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Appendix Figure S3. 3D classification and processing scheme of the 80S ribosomes 

stalled on the CGA-CCG reporter mRNA. The first 3D refined map was sorted into 8 

classes. Classes 2, 3, 4 and 7 represented a vast majority of programmed ribosomal 

particles exhibiting the non-rotated post state with P/P and E/E site tRNAs. These classes 

were joined and further sub-classified, sorting out low resolution and weak E site tRNA 

occupancy particles. This particle category was further refined and processed as indicated 

(for details, see Methods). 

 

Appendix Figure S4. 3D classification and processing scheme of the 80S ribosomes 

stalled on the CGA-CGA reporter mRNA. The first 3D refined map was sorted into 6 

classes. Class 3 represented a vast majority of programmed ribosomal particles exhibiting 

the non-rotated post state with P/P and E/E site tRNAs. This class was further refined and 

processed as indicated (for details, see Methods). 
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Appendix Figure S5. Puromycin reactivity of CGA-CGA and CGA-CCG stalled 

RNCs. 

(A-B) 80S fractions of RNCs isolated from sucrose density gradients (Appendix Figs 1c 

and 2c) were treated with 1 mM puromycin. Nascent chain species were visualized by 

immunoblotting using anti-HA antibody. Peptidyl-tRNA and free peptide band sizes are 

indicated. (A) 80S RNCs stalled on the CGA-CGA reporter mRNA readily reacted with 

puromycin releasing all detectable nascent chains within the first five minutes of the 

reaction. (B) 80S RNCs stalled on the CGA-CCG reporter mRNA reacted with 

puromycin slower than the CGA-CGA ones with a small fraction of unreacted peptidyl-

tRNA still detectable after 15 minutes of the reaction. 

 

Appendix Figure S6. Poly(A) reporter mRNA and purification of the stalled 80S 

RNCs. 

(A) Schematic representation of the poly(A) mRNA reporter comprising 49 consecutive 

adenines as a stall-inducing sequence used for the structural studies. (B) In vitro 

translation reaction (IN) using a yeast translation extract from a ski2Δ strain and 

subsequent affinity purification of His-tagged ribosome-nascent chain complexes. 

Fractions representing input (IN), flow through (FT), washing steps (W1 – W3), elution 

(E) and beads (B) were visualized by immunoblotting using anti-HA antibody. Peptidyl-

tRNA (p-tRNA) band size is indicated. (C) The eluate was loaded on a 10-50 % sucrose 

gradient and fractionated. The indicated peaks representing the 80S and disome fractions 

were collected and concentrated using a sucrose cushion. Resuspended ribosomal pellets 

were used for cryo-EM sample preparation. 
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Appendix Figure S7. 3D classification and processing scheme of the 80S ribosomes 

stalled on the poly(A) reporter mRNA. The first 3D refined map was sorted into 6 

classes. With the exception of classes 1 and 6 accounting for approximately 22% of 

particles, all other classes represented a vast majority of programmed ribosomal particles 

exhibiting the non-rotated post state. Class 3 was further subsorted sorting out a minor 

population of particles with both P/P and E/E tRNAs and two classes with P/P tRNA. 

These two classes were joined, resulting in a clean major population of particles with P/P 

tRNA. This particle category was further refined and processed as indicated (for details 

see Methods). 

 

Appendix Figure S8. Local resolution and FSC curves for the 80S cryo-EM density 

maps of stalled ribosomes. Cryo-EM density maps filtered and colored according to 

local resolution as estimated by Relion 3 with Fourier Shell Correlation (FSC) plots for 

the refined and post-processed maps of 80S ribosomes stalled on the CGA-CCG (A), 

CGA-CGA (B) and poly(A) (C) mRNA reporters. 
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Appendix Figure S9. 3D classification and processing scheme of the disomes stalled 

on the poly(A) reporter mRNA. 740,637 80S particles were 3D refined and initially 

separated into eight classes partly representing different translational states of the 

ribosome. Class 4 represented the previously characterized poly(A) stalled 80S in the 

non-rotated post state with P/P tRNA. This class was further sub-classified, sorting out 

particles with no neighboring ribosome and revealing two subclasses with approximately 

the same share of particles. These two classes represented the first stalling and the second 

colliding ribosome judging by the density of the neighbor ribosome. Further processing 

of the first stalling post state ribosome (with neighbor density at mRNA exit) yielded a 

standard post-hybrid disome assembly. However, further processing of the second 

colliding ribosome in the post state (with neighbor density at mRNA entry) revealed a 

novel post-post disome assembly. The indicated processing procedure is described in 

more detail in Methods. 

 

Appendix Figure S10. Local resolution and FSC curves for the individually refined 

80S cryo-EM density maps of poly(A) stalled disomes. Cryo-EM density maps filtered 

and colored according to local resolution as estimated by Relion 3 with Fourier Shell 

Correlation (FSC) plots for the individually refined and post-processed maps of the first 

stalling (A) and second colliding (B) ribosomes stalled on the poly(A) mRNA reporter. 
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Methods 

 

Ribosome Preparation 

WT Ribosomes were purified and isolated as subunits as previously described 27. 

Asc1 depleted ribosomes were purified similarly from strain AW768 (MATa his3-Δ1, 

leu2-Δ0, met15-Δ0, ura3-Δ0, asc1-Δ::spHIS5, pURA3, ASC1) gifted from the Grayhack 

lab 36. 

 

Purification of translation factors 

Translation initiation factors eIF1, eIF1A, eIF5, eIF5B were expressed and purified 

from E. coli and eIF2 was expressed and purified from S. cerevisiae as previously described 

27, 57. The translation elongation factor, eIF5A was purified from E. coli as previously 

described 28, 58. The translation elongation factors eEF2 and eEF3 were purified from S. 

cerevisiae as previously described 28. 

 

Purification of amino-acyl synthetases 

Plasmids gifted from the Grayhack lab containing the arginine and proline 

sythetases were transformed into BY4741 yeast strain and grown initially in CSM –ura 

glucose media (Sunrise Science) and induced in –ura galactose media overnight. Harvested 

cells grown in small scale (500 mL) were lysed by vortexing with acid washed glass beads 

(sigma) in extraction buffer (50mM Tris-Cl, pH 7.5, 1M NaCl, 1mM EDTA, 4mM MgCl2, 
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5mM DTT, 10% glycerol). Larger scale preparations (2 L) were lysed by CryoMill and 

lysate was flowed over 5mL Ni column (GE) and batch eluted in 5 to 10 mLs (extraction 

buffer used for lysis with 5mM BME rather than DTT). Lysates were then diluted in IPP0 

buffer (10mM Tris-Cl, pH 8, 0.1% NP40) and incubated for a minimum of 2 hours with 

IgG sepharose beads at 4°C. Beads were spun down at low speed (2 krpm) and unbound 

supernatant was removed. The beads were then washed with multiple times with IPP150 

buffer (10 mM Tris-Cl, pH 8, 150mM NaCl, 0.1% NP40) to remove all unbound protein 

and washed subsequently with cleavage buffer (10 mM Tris-Cl, pH 8, 150 mM NaCl, 0.1% 

NP40, 0.5mM EDTA, 1 mM DTT). The protein was then cleaved from the beads using 3C 

protease in cleavage buffer overnight at 4°C. Cleaved protein was removed from beads, 

flash froze in small aliquots and stored at -80°C for use.  

 

Purification of bulk yeast tRNA 

tRNA isolation protocol was derived from a protocol to isolate RNA from E. coli 

59 with minor changes and an added LiCl precipitation to remove rRNA and mRNA. 

Briefly, 3L of BY4741 yeast alone or expressing a plasmid of interest were grown to an 

OD600 of 1 and harvested by centrifugation. Cell pellets were resuspended in 20 mL Buffer 

A (50mM NaOAc, pH 7.5, 10mM MgOAc). Phenol:chloroform extraction of RNA and 

DNA was performed using an equal volume of acid phenol:chloroform, pH 4.5 (VWR). 

rRNA and mRNA was then pelleted by LiCl precipitation and tRNA and DNA was then 

ethanol precipitated. DNA was then removed by isopropyl alcohol precipitation. tRNA was 

then deacylated by incubation in 1M Tris-Cl, pH 9 for 3 hours at room temperature. 
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Deacylated tRNA was then purified by ethanol precipitation and resuspended in water for 

acylation and use in in vitro assays.   

 

Purification and charging of tRNAs 

Initiator methionine and lysine tRNAs were purchased from tRNA probes (College 

Station, TX). Phenylalanine tRNA was purchased from Sigma. Arginine and proline 

tRNAs were isolated from bulk yeast tRNA using 3’ biotinylated oligonucleotides (listed 

below) as previously described 29. 

Oligo for A(I)CG-tRNAArg : 5’ – CGC AGC CAG ACG CCG TGA CCA TTG GGC – 3’ 

Biotin 

Oligo for UGG-tRNAPro : 5’ – CCA AAG CGA GAA TCA TAC CAC TAG AC – 3’ Biotin 

Leu-2um plasmids for overexpressing native and exact match tRNAs were received 

from the Grayhack lab (ECB0873 ACG-tRNAArg, ECB0874 UCG-tRNAArg). tRNA 

sequences were moved to pRS316 vector by Gibson cloning for lower level 

overexpression. The low copy CEN plasmids containing the tRNA sequences were 

transformed into the BY4741 yeast strain. Bulk tRNA was then purified by the protocol 

above and the non-native tRNA was then isolated by the same 3’ biotinylated 

oligonucleotide method previously 29 using the specific oligonucleotides listed below. 

Oligo for A(I)CG-tRNAArg : 5’ – CGC AGC CAG ACG CCG TGA CCA TTG GGC – 3’ 

Biotin 
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Oligo for UCG-tRNAArg : 5’ – CGA AGC CAG ACG CCG TGA CCA TTG GGC – 3’ 

Biotin 

All isolated tRNAs were subjected to CCA addition as described previously 58. 

Isolated tRNALys was charged using S100 extract and tRNAPhe, tRNAArg, and tRNAPro were 

charged using purified synthetases as previously described with minor changes 27. Briefly, 

reactions contained 1X buffer 517 (30 mM HEPES-KOH pH 7.4, 30 mM KCl, 15 mM 

MgCl2), 4 mM ATP, 5 mM DTT, 10-20 µM amino acid, 3 µM CCA-added tRNA and a 

1/5 th volume of an S100 extract or 10 µM tRNA synthetase. Reactions were incubated at 

30°C for 30 minutes, then extracted twice with acid phenol and once with chloroform. 

tRNA was precipitated with ethanol, resuspended in 20 mM KOAc, 2 mM DTT, pH 5.2, 

and stored in small aliquots at -80°C. 

 

In vitro 80S initiation complex formation 

80S initiation complexes were formed as previously described 28 with minor 

differences. Briefly, 3 pmol of 35S-Met-tRNAiMet was mixed with 50 pmol of eIF2 and 

1 mM GTP in 1X Buffer E (20 mM Tris pH 7.5, 100 mM KOAc pH 7.6, 2.5 mM 

Mg(OAc)2, 0.25 mM Spermidine, and 2 mM DTT) for 10 min at 26°C. Next a mixture 

containing 25 pmol 40S subunits, 200 pmol mRNA (purchased from IDT), 125 pmol eIF1, 

and 125 pmol eIF1A in 1X Buffer E was added for 5 min. To form the 80S complex, a 

mixture containing 25 pmol 60S subunits, 150 pmol eIF5, 125 pmol eIF5b, and 1 mM GTP 

in 1X Buffer E was added for 1 min. Complexes were then mixed 1:1 with buffer E 

containing 17.5 mM Mg(OAc)2 to yield a final magnesium concentration of 10 mM. 
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Ribosomes were then pelleted through a 600 μL sucrose cushion containing 1.1 M sucrose 

in buffer E with 10 mM Mg(OAc)2 using a MLA-130 rotor (Beckmann) at 75,000 rpm for 

1 hr at 4°C. After pelleting, ribosomes were resuspended in 15-25 μL of 1X Buffer E 

containing 10 mM Mg(OAc)2 and stored at −80°C. 

 

In vitro reconstituted translation elongation 

Translation elongation reactions were performed as previously described 27, 28 with 

minor differences. Briefly, aa-tRNA ternary complex was formed by incubating aa-tRNA 

(1.5 - 2 uM), eEF1A (5 uM), 1 mM GTP, in 1X Buffer E for 10 minutes at 26°C. Limited 

amounts of 80S initiation complexes (3 nM) were then mixed with aa-tRNA ternary 

complex (varying concentrations), eEF2 (500 nM), eEF3 (1 μM), eIF5A (1 μM), ATP (3 

mM) and GTP (2 mM). Reactions were incubated at 26°C and time points quenched into 

500mM KOH. Samples were diluted 1 uL into 3 uL water before monitoring peptide 

formation electrophoretic TLC (Millipore). TLC plates were equilibrated with pyridine 

acetate buffer (5 mL pyridine, 200 mL acetic acid in 1 L, pH 2.8) before electrophoresis at 

1200 V for 25 to 30 minutes. Plates were developed using a Typhoon FLA 9500 

Phosphorimager system (GE Healthcare Life Sciences) and quantified using 

ImageQuantTL (GE Healthcare Life Sciences). Time courses were fit to single exponential 

kinetics using Kaleidagraph (Synergy Software). 
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In vitro Met-Puromycin assay 

Reactions were set up as previously described 28. Reactions were performed for 

each set of initiation complexes made and used to normalize peptide formation from 

elongation. Briefly, 2 nM initiation complexes and 1 μM eIF5A in 1X Buffer E (20 mM 

Tris pH 7.5, 100 mM KOAc pH 7.6, 2.5 mM Mg(OAc)2, 0.25 mM Spermidine, and 2 mM 

DTT) were incubated at 26°C in the presence of 4 mM puromycin. Time points over the 

course of 120 min were quenched into 500 mM KOH and analyzed by electrophoretic TLC 

(Millipore). TLC plates were equilibrated with pyridine acetate buffer (5 mL pyridine, 200 

mL acetic acid in 1 L, pH 2.8) before electrophoresis at 1200 V for 25 min. Plates were 

developed using a Typhoon FLA 9500 Phosphorimager system (GE Healthcare Life 

Sciences) and quantified using ImageQuantTL (GE Healthcare Life Sciences). 

 

In vitro PTH assay to access peptidyl-tRNA drop-off 

Translation elongation reactions were performed in the presence of 27 μM peptidyl-

tRNA hydrolase (PTH) to monitor drop-off of peptidyl-tRNAs from translating ribosomes 

as described previously 28. Time points for drop-off products were quenched with 10% 

formic acid and were analyzed by electrophoretic TLC in pyridine acetate buffer (see 

above) at 1200 V for 30 minutes. 
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Preparation of ribosome footprint libraries and analysis of aligned footprints 

WT and ∆asc1 cells were grown to OD ~ 0.5 in 1 L of YPD media (sample 1) or 

transferred to YPGR media (2% galactose and 2% raffinose) for 6 hr (sample 2) and 

harvested by fast filtration followed by flash frozen in liquid nitrogen. Cell pellets were 

ground with 1 mL footprint lysis buffer [20 mM Tris-Cl (pH8.0), 140 mM KCl, 1.5 mM 

MgCl2, 1% Triton X-100 0.1 mg/mL CHX, 0.1 mg/mL TIG] in a Spex 6870 freezer mill. 

Lyzed cell pellets were diluted to 15 mL in footprint lysis buffer and clarified by 

centrifugation. Polysomes were isolated from sucrose cushions for library construction as 

described previously 34.  

3’ adapter (NNNNNNCACTCGGGCACCAAGGA) was trimmed, and 4 random 

nucleotides included in RT primer were removed from the 5’ end of reads 

(RNNNAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTC

GC/iSP18/TTCAGACGTGTGCTCTTCCGATCTGTCCTTGGTGCCCGAGTG). 

Trimmed reads longer were aligned to yeast ribosomal and non-coding RNA sequence. 

Unmapped reads were mapped to R64-1-1 S288C reference genome assembly (SacCer3) 

from the Saccharomyces Genome Database Project using STAR 60 as described previously 

34. Data shown in Figs 3 and 4 for WT are identical to those published previously 34. 

Relative ribosome occupancies for codon pairs were computed by taking the ratio of the 

ribosome density in a 3-nt window at the di-codon over the density in the coding sequence 

(excluding the first and the last 15 nt).  
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Preparation of stalled ribosome-nascent chain complexes 

We generated a series of mRNA reporters containing three different stalling 

sequences (CGA-CCG)2, (CGA-CGA)2, and poly(A) (Appendix Figs S1A, S2A and S6A). 

These sequences were placed downstream of a sequence coding for TEV-cleavable N-

terminal His- and HA tags and the first 64 amino acid residues of truncated uL4. 

Corresponding mRNAs were produced using the mMessage mMachine Kit (Thermo 

Fischer) utilizing an upstream T7 promoter and translated in a yeast cell-free translation 

extract from ski2 cells.  

This yeast translation extract was prepared, and in vitro translation was performed 

essentially as described before 61. In brief, the cells were grown in YPD medium to OD600 

of 1.5–2.0. Spheroplasts were prepared from harvested washed cells using 10 mM DTT for 

15 min at room temperature and 2.08 mg zymolyase per 1 g of cell pellet for 75 min in 1 

M sorbitol at 30°C. Spheroplasts were then washed and lysed in a Dounce homogenizer as 

described 61 before using lysis buffer comprising 20 mM Hepes pH 7.5, 100 mM KOAc, 2 

mM Mg(OAc)2, 10% glycerol, 1 mM DTT, 0.5 mM PMSF and complete EDTA-free 

protease inhibitors (GE Healthcare). The S100 fraction of lysate supernatant was passed 

through PD10 column (GE Healthcare) and used for in vitro translation. In vitro translation 

was performed at 17°C for 75 min using great excess of template mRNA (38 µg per 415 

µl of extract) to prevent degradation of resulting stalled ribosomes by endogenous response 

factors. 

Respective stalled RNCs were affinity-purified using the His6-tag of the nascent 

polypeptide chain essentially as described before 43, 62. After in vitro translation, the extract 

was applied to Ni-NTA DynabeadsTM (Invitrogen) and incubated while rotating for 15 min 
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at 4°C. The beads were washed three times with excess of a wash buffer containing 50 mM 

HEPES/KOH, pH 7.5, 100 mM KOAc, 25 mM Mg (OAc)2, 250 mM sucrose, 0.1% Nikkol 

and 5 mM ß-Mercaptoethanol and eluted in 400 µl of the same buffer containing 300 mM 

imidazole. The elution was applied to a 10-50% sucrose gradient in wash buffer, and 

ribosomal fractions were separated by centrifugation for 3 h at 172,000 g at 4°C in a SW40 

rotor. For gradient fractionation, a Piston Gradient FractionatorTM (BIOCOMP) was used. 

The 80S (mono)ribosome (and for poly(A) also the disome) fractions were collected, 

applied onto 400 µl of sucrose cushion buffer and spun at 534,000 g for 45 min at 4°C in 

a TLA110 rotor. The resulting ribosomal pellets were resuspended carefully on ice in 25 

µl of grid buffer (20 mM HEPES/KOH, pH 7.2, 50 mM KOAc, 5 mM Mg(OAc)2, 125 mM 

sucrose, 0.05% Nikkol, 1 mM DTT and 0.01 U/µl SUPERase-INTM (Invitrogen). 

Collected 80S fractions of CGA-CCG and CGA-CGA stalled RNCs were also 

subjected to puromycin reactions with 1 mM puromycin at 20°C. Time point samples were 

heated 5 minutes at 60°C with reducing sample buffer and analyzed by SDS-PAGE and 

western blotting. 

 

Electrophoresis and Western blotting 

Protein samples of in vitro translation reactions and subsequent purifications were 

separated on SDS-PAGE at neutral pH condition (pH 6.8, for purified protein samples) and 

were transferred on PVDF membrane (Immobilon-P, Millipore). After blocking with 5% 

skim milk in PBS-T, the membranes were incubated with anti-HA-peroxidase antibody 

(1:5,000; Roche, Cat# 12013819001, clone 3F10) for 1 h at room temperature followed by 
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washing with PBS-T for three times. Chemiluminescence was detected using 

SuperSignal® substrate (Thermo Fischer) in a LAS4000 mini (GE Healthcare).  

 

Cryo-EM 

Freshly prepared samples (stalled monosomes or disomes) were applied to 2 nm 

pre-coated Quantinfoil R3/3 holey carbon support grids and vitrified. Data were collected 

at Titan Krios TEM (Thermo Fisher) equipped with a Falcon II direct detector at 300 keV 

under low-dose conditions of about 25 e-/Å2 for 10 frames in total and defocus range of -

1.3 to -2.8 µm. Magnification settings resulted in a pixel size of 1.084 Å/pixel. In the case 

of CGA-CGA RNCs, a higher magnification was used resulting in a pixel size of 0.847 

Å/pixel. Original image stacks were summed and corrected for drift and beam-induced 

motion at the micrograph level by using MotionCor2 63. The Contrast transfer function 

(CTF) estimation and resolution range of each micrograph were performed with Gctf 64.  

  

Cryo-EM Data processing  

All datasets were processed using standard procedures with programs 

GAUTOMATCH (http://www.mrc-lmb.cam.ac.uk/kzhang/) used for particle picking and 

RELION-3 for data processing and 3D reconstruction 65. For each dataset, picked particles 

were extracted for 2D classification using a box of 400 pixels rescaled to 70 pixels. After 

selection of suitable 2D classes, particles were extracted for initial 3D refinement followed 

by 3D classification using a box of 400 pixel rescaled to 120 pixels and a mask diameter 

of 300 Å.  

http://www.mrc-lmb.cam.ac.uk/kzhang/
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The CGA-CCG dataset was described before with focus on the Xrn1 factor bound 

62. We now re-processed this dataset with focus on the ribosome itself. Individual 

translation states were separated as before with around 60% of the particles containing 

tRNAs in the P/P and E/E conformation (Appendix Fig S3). These classes were joined and 

separated into four subclasses sorting out low resolution particles. Further subclassification 

was performed using a mask covering tRNAs. This approach sorted out a population of 

particles without the E site tRNA. The cleaned population of particles was further 

processed using particle CTF refinement yielding a final resolution of 2.6 Å. This cryo-

EM density map was filtered according to local resolution and used for interpretation 

(Appendix Fig S8A). 

For the CGA-CGA dataset, 840,234 particles were used after 2D classification and 

sorted into six classes in 3D classification. A vast majority of programmed ribosomal 

particles in the dataset were found in the post translocation state while a single class 

containing tRNAs in P/P E/E conformation represented 39.9% of the whole dataset 

(Appendix Fig S4). As further classification of this class was mainly yielding volumes 

sorted based on position of expansion segment 27 on the periphery of the ribosome, the 

class was further processed as a whole. The final cryo-EM density map reaching an overall 

resolution of 3.2 Å after particle CTF refinement was filtered according to local resolution 

and used for interpretation (Appendix Fig S8B). 

For the poly(A) 80S dataset, 840,234 particles were used after 2D classification and 

sorted into six classes in 3D classification (Appendix Fig S7). Analogous to previous 

datasets, a vast majority of programmed ribosomal particles represented classes in the post 

translocation state. Class 3 containing tRNAs in P/P E/E conformation was subsorted based 
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on tRNA presence into classes containing only P/P tRNA and a class containing both P/P 

and E/E tRNAs. The dominant classes of P/P tRNA state were joined and further processed 

using particle CTF refinement and Bayesian polishing. The resulting cryo-EM density map 

reached an overall resolution of 3.1 Å. This volume was subjected to focused refinement 

using a mask covering the 60S subunit and the decoding center. This yielded a better 

resolved density map (3.0 Å) in the region of interest and was used for interpretation after 

filtering according to local resolution (Appendix Fig S8C). 

 

Reconstruction of the poly(A) disome  

The poly(A) disome dataset was collected as described above. The dataset was 

processed using the “80S extension” approach as described previously 43. Initial 3D 

classification yielded in a class of ribosomes in the POST state with P/P tRNA as described 

above for the poly(A) monosome. Surprisingly, subsorting of this class revealed that 

approximately the same share of particles in this class represented the first stalling and the 

second colliding ribosome judging by the density of the neighboring ribosome close to the 

mRNA entry and exit site, respectively (Appendix Fig S9). Further processing of the 

leading POST state ribosome (with neighbor density at mRNA exit) yielded a standard 

POST-PRE hybrid disome assembly as observed for the CGA-CCG-stalled disome 43. On 

the other hand, processing of the second colliding ribosome in the POST state (with 

neighbor density at mRNA entry) revealed a novel POST-POST disome assembly. Both 

these volumes were obtained by stepwise box extension and refinement with particle re-

centering (fist 500 pixels rescaled to 120 pixels followed by 700 pixels rescaled to 506 

pixels). Soft masks covering individual ribosomal bodies were used for multi-body 
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refinement to obtain a more detailed information 66. The resulting volumes were filtered 

according to local resolution (Appendix Fig S10) and fitted into the consensus refinement 

yielding a composite cryo-EM density map at 3.8 Å overall resolution.  

 

Model building 

To generate molecular models for our structures, we used our previously refined 

models for stalled yeast ribosomes 62 PDB ID: 6Q8Y and 43 PDB ID: 6I7O). First, 

individual subunits and tRNAs were fitted as rigid bodies into the densities. These models 

were then refined and remodeled in COOT 67 and Phenix 68. Cryo-EM structures and 

models were displayed with UCSF Chimera 69 and ChimeraX 70.  

 

Data availability 

The cryo-EM structures reported here have been deposited in the Protein Data Bank 

and in the Electron Microscopy Data Bank. Ribosome profiling datasets have been 

deposited under GSE136202 (reviewer access with secure token: mfwfweqatvmlfkt). 
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Chapter 3: Development of a single molecule system to investigate the 

molecular mechanisms of translation termination, ribosome rescue and 

recycling 

 

Abstract 

Translation termination and recycling as well as ribosome rescue are crucial steps 

in translation that are required for continued cell viability replenishing the pool of 

ribosomes available to make proteins throughout the cell. While years of structural and 

biochemical studies have provided detailed information into these processes, single 

molecule fluorescence studies have begun to help sort out the more detailed mechanistic 

pathways involved. To develop a single molecule assay to investigate these processes we 

began with the fluorescent labeling of the ribosome and the factors involved in termination, 

rescue and recycling. Using an in vitro biochemical system in yeast, all the labeled factors 

were then tested for functionality before performing the more in-depth single molecule 

studies. Initial experiments observing canonical translation termination have begun to 

reveal complex interactions between eRF1, eRF3 and the ribosome. With this assay set up 

and the functional protein factors labeled we hope to perform a more comprehensive 

investigation into the similarities and differences between canonical translation termination 

and recycling and ribosome rescue. 
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Introduction 

 

Dynamic processes throughout cells are traditionally measured using bulk methods 

on large numbers of molecules in solution. While these experiments have provided us a 

wealth of information regarding the processes of translation, some information is lost due 

to ensemble averaging. Single molecule methods allow instead for individual molecules to 

be tracked to tease out the details of these highly dynamic processes1-3. Fluorescence 

spectroscopy is a vital tool to track and further understand biological phenomena. In order 

to use single molecule fluorescence approaches, the biological molecules to be studied 

must first be labeled with bright, stable dyes. These organic dyes allow for the emission of 

millions of photons before they undergo irreversible photochemical and photophysical 

processes that lead to termination of fluorescence (photobleaching)4. Further understanding 

of the properties of these dyes has led to the development of even brighter and more stable 

dyes for use in single molecule experiments5, 6.  

To further distinguish the fluorescence signal of interest for single molecule 

experiments from background or noise, total internal reflection fluorescence (TIRF) and 

zero mode waveguide (ZMW) techniques are frequently used7-9. TIRF microscopy creates 

an evanescent field that only extends ~100 nm above the surface therefore limiting the 

fluorescent molecules in solution from being excited. ZMWs, on the other hand, reduce the 

excitation volume by orders of magnitude to allow the use of higher concentrations of 

fluorescently labeled ligands. For both of these techniques to be successful, the 

biomolecules to be studied are spatially constrained to the surface of a slide or coverslip. 
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In translation experiments, surface immobilization is often done using biotin and 

streptavidin interactions on mRNAs or ribosomes. 

Through the use of these techniques and multiple colored dyes two main types of 

single molecule analysis can be performed – localization and Förster resonance energy 

transfer (FRET). Localization experiments can be performed without having to 

synchronize the biomolecules in the experiment. Instead, postsynchronization is performed 

by aligning single molecule traces to a defined zero time point. This can be done for many 

differentially labeled molecules which can then be sorted from one another to track 

multiple events1, 10. Through the use of this analysis method the order of binding events, 

and the kinetics of association and dissociation of different molecules, as well as the 

binding overlap between molecules can be directly visualized and measured11. Single 

molecule FRET experiments, on the other hand, allow for the investigation of 

conformational dynamics as the efficiency of energy transfer between a donor and acceptor 

dye depend on the relationship 1/R6 where R is the distance between the dyes7, 12, 13. FRET 

efficiency varies from 1 (when all energy is transferred from the donor to the acceptor) 

below distances of ~20 A to 0 (no energy transfer occurs) at distances above ~80 A14. This 

method is therefore highly sensitive to conformational changes in the range of 30 to 70 A 

which is especially well suited for translational studies of the ribosome (diameter ~250 A) 

1, 2. Single molecule experiments have greatly enhanced our knowledge of translation 

events over the past two decades especially in prokaryotes and now beginning to expand 

further to eukaryotes and live cell imaging15-22. 

As reviewed in chapter 1, the processes of translation termination, ribosome rescue 

and recycling in eukaryotes are complex, dynamic processes that involve many different 
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factors. The canonical termination factors eRF1 and eRF3 recognize stop codons at the 

ends of ORFs, whereas the homologous rescue factors DOM34 and HBS1 recognize stalled 

ribosomes. In both cases the ribosomes then need to be recycled back to the cytoplasm for 

continued translation on other mRNA transcripts23, 24. Many mechanistic questions 

regarding the ordering, timing and interactions between these factors during termination, 

rescue and recycling remain to be answered. Through the development of a single molecule 

fluorescence system for eukaryotic translation termination, rescue and recycling using the 

model system S. cerevisiae, we hope to begin to deepen our understanding of these 

processes.  

 

Results 

 

Construction of single molecule TIRF microscope for 3 color visualization 

In order to measure the kinetic processes of translation via smTIRF, we first had to 

setup a microscope capable of this type of visualization. The microscope we began with in 

the laboratory of Dr. James Berger, an objective based TIRF system, had a single excitation 

laser at 532 nm. This was a starting point, but many of the experiments we planned to do 

would require more than one color to follow multiple crucial components in the processes 

of translation termination, ribosome rescue and ribosome recycling. We first added an 

excitation laser at 640 nm. This wavelength was chosen based on the fluorescent properties 

of readily available organic dyes as well as its suitability for FRET experiments with the 

532 nm laser. The excitation pathway of the microscope was constructed based on 

previously published protocols25, 26. The emission pathway was constructed using an 
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OptoSplit device (Cairn Research Ltd). This device contains built in mirrors with set 

positions for filters to separate the emission pathways corresponding to the two lasers 

(Figure 1). We were also able to add a third laser with the excitation wavelength of 488 nm 

to expand the capabilities of this system further. 

 

Sample chamber preparation 

In order to move towards observing processes of translation via single molecule 

fluorescence we had to have an efficient and specific way to immobilize substrates onto 

the surface of a coverslip and a system to quickly deliver sample onto the surface. First, 

the surface of the glass slide and coverslip needed to be cleaned of fluorescent impurities. 

Two methods were used to clean the slides and coverslips. One is the first step, or organic 

and particle cleaning step, of the RCA cleaning method often used on silicon wafers27 

(detailed in the methods section). The second method used was oxygen plasma cleaning 

(Harrick Plasma). Coverslips showed similar levels of background fluorescence using 

either cleaning method (Figure 2A).  

Following cleaning of the surface, coverslips needed to be functionalized to allow 

the specific attachments of biomolecules of interest28. First, the glass surface of the 

coverslips were amino-modified and then the amine covered glass surface was coated with 

PEG. Ratios of biotinylated and non-biotinylated PEG were added to allow the specific 

attachment of biotinylated molecules through the interaction with streptavidin or 

neutravidin while also minimizing the non-specific interactions of other biomolecules with 

the surface of the glass coverslip (Figure 2B).  
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Finally, an efficient and fast method to deliver sample onto the surface of the 

coverslip was needed to later perform experiments involving many different factors 

involved in translation termination, rescue and ribosome recycling. Sample chambers were 

assembled using NanoPort assemblies (IDEX Health & Science) epoxied to the surface of 

the slide with the functionalized coverslip epoxied to the opposite slide surface for 

biomolecule visualization (Figure 2C). These assemblies allowed for the efficient 

introduction of sample without leaking using a syringe and syringe pump to minimize the 

volume of sample needed. The cleaning, functionalization and assembly of slides allowed 

for the specific visualization of biotinylated molecules on the surface of the coverslips by 

objective-based TIRF microscopy. 

 

Ribosome labeling and function tests 

To be able to follow the steps of translation, we needed to be able to visualize the 

catalytic core of these processes – the ribosome. Working with our collaborators, we 

received a construct with a SNAP tag incorporated at the N-terminus of the ribosomal 

protein RPL5 on the 60S subunit of the yeast ribosome (Figure 3A). The SNAP tag is a 20 

kDa mutant of the human DNA repair protein, O6-alkylguanine- DNA alkyltransferase that 

reacts specifically with benzylguanine derivatives. When organic dye derivatives are made 

with a benzylguanine modification, the SNAP tag is covalently labeled with a fluorescent 

probe29-32. The incorporation of this tag into the large subunit of the ribosome will allow 

for the purification of specifically labeled ribosomal subunits (see methods for purification 

details).  
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A major concern when labeling proteins with any tag, especially large ones, is that 

the tag will inhibit the natural function of the protein itself. Therefore, it is necessary to test 

the specific activity of the labeled construct as compared to a functional, unlabeled protein. 

To test the activity of ribosomes labeled with the SNAP tag, initiation complexes (ICs) 

were first assembled using our in vitro reconstituted yeast translation system. ICs were 

prepared stepwise using labeled 60S subunits on a simple MFX mRNA with [35S]-Met-

tRNAiMet loaded in the ribosomal P site. Pelleted ICs were then mixed with elongation 

factor eEF1A and Phe-tRNAPhe, quenching time points of the peptide transfer reaction 

using KOH and then running formed peptide products on electrophoretic TLC (Figure 3B). 

Quantifying the amount of MF product formed allowed the functional comparison of 

labeled and unlabeled 60S subunits (Figure 3D, E). From these experiments we can 

conclude that our labeled ribosomes are as functional as their unlabeled counterparts and 

are therefore able to be used for single molecule studies.  

 

Single molecule visualization of initiation complexes with labeled ribosomes 

To allow for single molecule visualization of ICs the constructs were modified by 

initiating on similar MF-Stop or M-Stop mRNAs with a biotin at their 5’ end and non-

radioactive Met-tRNAiMet in the P-site (Figure 4A).  These ICs with DY-549 dye (NEB) 

incorporated in the large subunit of the ribosome were flowed onto functionalized 

coverslips in a buffer containing oxygen scavengers and triplet state quenchers to minimize 

blinking and delay photobleaching of the fluorophores in solution4, 33-35. The unbound 

complexes were then removed by washing and the bound complexes were visualized after 

excitation with the 532 nm laser. Individually labeled ICs were clearly observed on the 
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coverslip surface, but were photobleaching at a rapid rate (Figure 4B). This fast 

photobleaching is problematic for the ribosome termination, rescue and recycling events 

we are hoping to measure given previously published rates for these processes from bulk 

experiments36-38.  

To increase the lifetime of the fluorophores in our experiments we began using 

“ultra-stable” organic dyes to label our ribosomal subunits5, 39 and began using a dye 

excited by the 640 nm laser as this channel has less fluorescent background. We received 

this dye from the Blanchard lab (Cy5-M-BG) which is a Cy5 dye conjugated to the triple 

state quencher COT and benzylguanine for SNAP labeling. Ribosomes were labeled with 

the new dye, ICs were synthesized with the labeled subunits and these complexes were 

shown to be functional in bulk experiments (Supplementary Figure 1A). The new 

complexes were then flowed into chambers for single molecule visualization as described 

previously and were visualized after excitation with the 640 nm laser (Figure 5A). The 

fluorescence lifetimes observed for these complexes lasted much longer than previously 

seen with some molecules fluorescing throughout the entire visualization time (Figure 5B). 

To ensure that the lifetime would allow for observation of translation processes we wanted 

to characterize the lifetime of the fluorophore further. By measuring the fluorescence 

lifetimes of the labeled ICs at different excitation laser powers, we are able to show that 

the lifetime of the fluorophore decreases with increasing excitation power as expected 

(Supplementary Figure 1B). Using a low laser excitation power (2.5 mW) we were able to 

quantify the lifetime of the fluorophore on ICs bound to the coverslip surface (Figure 5C). 

The fluorophore lifetime of 0.598 min-1 will now allow us to observe the kinetics of 

ribosome rescue and recycling as predicted by bulk studies38.   
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Labeling and testing of protein factors involved in termination, rescue, and release 

With a functional assay for single molecule studies established we turned to 

labeling the protein factors important for termination, rescue and recycling. As introduced 

previously, the main factors involved in eukaryotic translation termination are eRF1 and 

eRF3. eRF1 recognizes the stop codon in the ribosomal A site. The GTPase activity of 

eRF3 promotes the structural rearrangement of eRF1 to allow it to catalyze the peptide 

hydrolysis reaction, releasing the polypeptide from the P site tRNA40-42. These proteins are 

functionally homologous to the rescue factors DOM34 and HBS1 with these factors 

functioning to rescue ribosomes stalled on codons within the ORF37, 43, 44. Ribosomes are 

then recycled by the protein factor RLI1 which splits the ribosomal subunits through the 

hydrolysis of ATP38, 45, 46 following either canonical termination or ribosome rescue. 

Therefore, we wanted to incorporate tags into these five proteins in order to allow us to 

specifically label them with different color fluorophores.  

We incorporated a SNAP tag onto the C terminus of RLI1 to allow for fluorescent 

labeling and visualization (Supplementary Figure 2A). The recycling function of the 

labeled protein was then tested using the in vitro translation system described previously 

with an assay using peptidyl tRNA hydrolase (PTH). In this assay elongation complexes 

are formed by mixing initiation factors, 35S-Met-tRNAiMet as above on a simple MF-Stop 

mRNA and then adding aminoacyl-tRNA, and elongation factors, eEF2, eEF3 and eIF5A 

to elongate prior to pelleting. The elongation complexes are then mixed with rescue factors, 

labeled or unlabeled RLI1 and PTH. Time points of the reaction are quenched using 10% 

formic acid. If RLI1 is functional, it will split the ribosomal subunits apart making released 

peptidyl tRNAs accessible by PTH for peptide hydrolysis and these peptide are resolved 
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by electrophoretic TLC (Figure 6A). Using this assay, the SNAP-labeled RLI1 is as 

functional as a WT version without the SNAP tag (Figure 6B). The rate of release 

quantified from the TLCs for this assay, 0.83 min-1 is comparable to the release rates 

previously measured in bulk38. 

To label the termination factors and rescue factors for single molecule studies we 

used a different labeling strategy with the ybbR protein tag to reduce the size of the label. 

This method inserts a much smaller, 11 residue peptide tag (ybbR), onto the protein. An 

organic dye conjugated to CoA is then covalently attached to a serine residue in the ybbR 

tag using the SFP phosphopantetheinyl transferase47. In collaboration with the Puglisi lab, 

we received labeled constructs for both eRF1 and eRF3. eRF1 and eRF3 constructs both 

with N terminal ybbR tags were successfully labeled with Cy3 and Cy5, respectively, with 

about 40% labeling efficiency (Supplementary Figure 3A, B).  

Both proteins were then tested in a termination assay for activity. Because eRF1 

catalyzes peptide hydrolysis from the P site tRNA this assay does not require the addition 

of the PTH enzyme. Instead, pelleted ICs (in this case on a simple MFD-Stop mRNA) are 

elongated through phenylalanine and aspartic acid using aa-tRNA, eEF1A ternary 

complex, eEF2, eEF3 and eIF5A. The elongated complexes are then mixed with the labeled 

or unlabeled termination factors of interest and time points of the reaction are taken 

quenching with 10% formic acid to run the peptides that were hydrolyzed by the 

termination factors on electrophoretic TLC (Figure 7A). As a negative control, the 

catalytically inactive mutant of eRF1 with its GGQ motif mutated to AGQ was also used 

in this assay48. The fraction of MFD peptide released from ribosomes shows that the Cy3-
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eRF1 and Cy5-eRF3 constructs are both similarly active in release as their WT counterparts 

and as compared to the catalytically dead eRF1-AGQ mutant (Figure 7B).  

Additionally, labeled mutant constructs of both eRF1 and eRF3 were constructed 

to use as controls in single molecule experiments. The eRF1 N terminal ybbR construct 

was mutated at glycine 108 to alanine and labeled with Cy3 for a Cy3-eRF1 AGQ 

construct. Similarly, the eRF3 N terminal ybbR construct was mutated at histidine 348 to 

glutamic acid and labeled with Cy5 for a Cy5-eRF3 H348E construct. The eRF3 mutant is 

not catalytically dead as with the eRF1 AGQ mutant, but has been shown to be defective 

in termination49. Both mutant proteins were tested for function using the previously 

described termination assay and showed decreased activity compared to their WT controls. 

The labeled eRF1 AGQ mutant is almost completely inactive and the H348E mutant of 

eRF3 shows a significantly slower release rate (Figure 7C). 

The rescue factors, DOM34 and HBS1 were also tagged with ybbR for labeling at 

both the N and C terminal ends. Small scale labeling tests for both constructs of HBS1 

yielded successfully labeled protein (Supplementary Figure 3C). The N terminal ybbR 

HBS1 construct was purified in large scale and labeled with Cy5 with a labeling efficiency 

of about 22%. Although this labeling efficiency is lower, single molecule experiments will 

allow only the analysis of labeled factors making experiments feasible. Labeling of both 

the N and C terminal ybbR constructs of DOM34 is currently being optimized before large 

scale preparations of this protein can be performed. Once these conditions are optimized 

both proteins will be tested for activity using the PTH assay outlined above before use in 

single molecule experiments. 
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Discussion 

  

With the feasibility of this single molecule assay established and many of the 

protein factors involved in translation termination, rescue and ribosome recycling 

fluorescently labeled, it can be used to answer many open questions regarding the various 

kinetic steps in these processes. These experiments are more feasible on the advanced 

imaging systems developed by the Puglisi lab. Their use of ZMW fluorescence microscopy 

in combination with the four-color detection power of an in-house Pacific Biosciences’s 

RS sequencer allows for the simultaneous collection of larger amounts of data50. This will 

be especially useful and more efficient than collecting data for one slide at a time as is done 

on a more traditional TIRF setup. Initial experiments using the RS system have begun in 

the Puglisi lab and will allow many of the complex questions discussed below to be 

addressed. 

Although it is suggested from structural and bulk biochemical studies that eRF1 

and eRF3 associate with ribosomes as a complex51, 52, it has never been demonstrated 

directly during association. Single molecule experiments following fluorescently labeled 

constructs of both of these factors will allow direct observation of their association either 

individually or as a complex. These experiments are already underway in the Puglisi lab 

and will also allow for the measurement of the rates of association for these two factors 

during termination. From structural studies, it is also suggested that the binding of eRF3 

and RLI1 to the ribosome are mutually exclusive events as they share a binding site46. The 

dissociation of eRF3 and the binding of RLI1 can be measured directly using this assay to 
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confirm this hypothesis. Furthermore, the effect of RLI1 binding on the dissociation of 

eRF3 can be measured.  

The mechanism of peptide release and subunit separation can also be explored 

further using a single molecule assay with the development of a few more features. Using 

peptide binding antibodies fused to fluorescent proteins, peptide release could be 

monitored at the single molecule level. While this will require elongation of much longer 

peptides than shown here using in vitro bulk studies, this experiment will allow further 

understanding of the role of RLI1 in the enhancement of peptide release by eRF1. 

Similarly, if ribosome labels on the small and large subunit that report on the functional 

state of the ribosome using FRET are developed, as they have been in E. coli20, 21, 53, the 

mechanism of RLI1 splitting through eRF1 could be investigated further. Previous studies 

suggest that RLI1 uses the force of ATP hydrolysis to push eRF1 into the intersubunit space 

of the ribosome to separate the subunits54. Use of a FRET pair on eRF1 and RLI1 

simultaneously with a FRET pair that reports on the state of the ribosome could give further 

insight into the mechanistic details of this process.  

Given the homology of the canonical termination and recycling process with eRF1, 

eRF3, and RLI1, there are many open questions analogous to these regarding the process 

of ribosome rescue and recycling by DOM34, HBS1, and RLI1. Do DOM34 and HBS1 

bind as a complex or individually in a sequential manner? Is the binding of RLI1 precluded 

by HBS1 and does the presence of RLI1 enhance the dissociation of HBS1 from the 

ribosome? Does the GTP hydrolysis of HBS1 lead to conformational changes to DOM34? 

How does RLI1 interact with DOM34 to split the ribosomal subunits? Is the association 

rate of RLI1 rescue substrates targeted by DOM34 similar to the association rate for 
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terminating ribosomes bound by eRF1 or does peptidyl tRNA in the P site of the ribosome 

slow RLI1 binding in the case of rescue? Does RLI1 make similar conformational changes 

when associated with eRF1 bound and DOM34 bound ribosomes? All of these questions 

can begin to be addressed using the in vitro single molecule assay developed in this study. 

This will allow significant clarification of many of the kinetic steps carried out during the 

processes of termination, rescue and recycling that are crucial for cellular function and 

viability. 
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Supplementary Figure 2  

1   2    3   4    5   6    7    8   9  10 11 12  13 14 15  16 17 

1 – Lysate 
2 – Nickel Column FT 
3 – Nickel Column Wash 1 
4 – Nickel Column Wash 2 
5 – Nickel Column Elute 
6 – S200 Load 
7 – RLI1 control no SNAP tag 
8 – Protein Standards 
9 – 17 S200 Fractions 

1   2    3   4    5   6    7    8   9  10 11 12  13 14 15  16 17 

1 – RLI1 control no SNAP tag 
2 – Protein Standards  
3 – 17 S200 Fractions 



120 
 

A 

 

 

 

 

 

 

B 

 

 

 

 

 

 

C 

 

 

 

 

 

 

Supplementary Figure 3  
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Figure Legends 

 

Figure 1. Construction of single molecule TIRF microscope. Schematic representing 

the smTIRF microscope built in the laboratory of James Berger highlighting the optical 

components necessary for visualization. The excitation pathway is shown on the right of 

the diagram with the 532 nm and 640 nm lasers depicted as green and red lines, 

respectively. The emission pathway is shown on the left of the diagram with the emissions 

from the 532 nm (green) laser and 640 nm (red) laser depicted as orange and magenta, 

respectively. (Schematic modified from Timothy Wendorff – unpublished) 

 

Figure 2. Steps of sample chamber preparation. (A) Images of coverslips following 

cleaning to remove fluorescence impurities from the glass surface. The image on the left 

shows a coverslip cleaned using the RCA cleaning method while the image on the right 

shows a coverslip cleaned using a plasma cleaner. (B) Schematic representation of the 

surface passivation to enable molecules to be bound to the coverslip surface for TIR 

visualization. (C) Images of sample chambers constructed using NanoPorts to allow the 

efficient delivery of sample material to the coverslip surface. Food coloring was flowed 

through the sample chamber to allow for ease of visualization of the setup. 
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Figure 3. Ribosome labeling and function tests. (A) Crystal structure of the yeast 80S 

ribosome modeled with tRNAs in the E, P and A sites (shown in red, orange and yellow, 

respectively). The proteins of the 40S subunit are colored in dark blue, while the RNA of 

the 40S subunit is colored in light blue and the proteins of the 60S subunit are colored in 

dark magenta, while the RNA of the 60S subunit is colored in light magenta. The recycling 

factor RLI1 is rendered as a cartoon and shown in light green with the insertion site for the 

SNAP tag label highlighted by cyan spheres. (B) Schematic representation of the 

elongation assay using on eEF1A to follow the incorporation of phenylalanine to ICs. (C) 

Representative TLCs and their corresponding elongation kinetics testing the functionality 

of WT yeast ribosomes as compared to 60S-SNAP labeled yeast ribosomes.  

 

Figure 4. Single molecule visualization of initiation complexes with labeled ribosomes. 

(A) Schematic representation of the single molecule experiment showing 5’ biotinylated 

mRNA ICs bound to the functionalized surface of the coverslip. (B) Example TIR image 

of DY-549 labeled ribosome complexes bound to the surface of the coverslip excited by 

the 532 nm laser. Left: Visualization at time zero. Right: Visualization after continuous 

laser excitation for 10 seconds, highlighting the rapid photobleaching of the fluorescent 

ribosomal complexes. 
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Figure 5. Characterization of a Cy5-M labeled ribosomes by single molecule 

visualization. (A) Representative image of single molecule visualization of ICs 

synthesized with ribosomes labeled with Cy5-M – a longer lived fluorophore. The emission 

channel for the 532 nm (green) excitation laser is shown on the left and the emission 

channel for the 640 nm (red) excitation laser is shown on the right. The image was captured 

using on the 640 nm (red) excitation laser. (B) Representative traces of individually tracked 

IC molecules. Left: Trace showing a single photobleaching event around 150 seconds of 

continuous excitation by the 640 nm (red) excitation laser. Right: Trace showing an 

individual molecule fluorescing for the length of the capture, around 360 seconds, with 

continuous excitation by the 640 nm (red) excitation laser. (C) Histogram of fluorescence 

lifetimes of individually traced molecules. Individual traces were manually examined and 

a single photobleaching even was selected to quantify the lifetimes of the individual 

molecules. All 151 molecules represented in the histogram were collected under 2.5 mW 

640 nm (red) laser excitation. A maximum likelihood estimation was used to quantify the 

overall lifetime of the fluorophore at these conditions yielding a photobleaching rate of 

about 0.6 min-1. 
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Figure 6. Testing of labeled RLI1 for ribosome recycling activity. (A) Schematic 

representation of the PTH assay performed in vitro to test the functionality of labeled RLI1. 

Pelleted elongation complexes are mixed with the rescue factors, DOM34 and HBS1, as 

well as the labeled or unlabeled recycling factor RLI1 and the enzyme PTH. As ribosomes 

are split, PTH cleaves the peptidyl tRNA releasing the peptide which is quenched with 

formic acid and run on electrophoretic TLC. (B)  TLC and quantification of splitting 

kinetics by RLI1. The TLC on the left shows the PTH alone control and the activity of the 

untagged, unlabeled RLI1 construct. The TLC on the right shows the activity of the C 

terminally SNAP tagged version of RLI1 labeled with a Cy3 conjugated dye. The KOH 

quench lanes are controls to show that the ICs used in the experiment are elongating as 

expected.  
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Figure 7. Testing of labeled eRF1 and eRF3 for canonical termination by peptide 

release. (A) Schematic representation of the in vitro termination assay used to test labeled 

and unlabeled constructs of eRF1 and eRF3. Pelleted initiation complexes are elongated to 

their stop codons and then mixed with either labeled or unlabeled termination factors. Time 

points were quenched with formic acid to assess the amount of peptide released by 

electrophoretic TLC. (B) TLCs of peptide release assay on a variety of labeled or unlabeled 

termination factors. The top TLC shows the activity of both WT eRF1 and eRF3 compared 

to the catalytically dead mutant eRF1 AGQ which shows little to no activity. The bottom 

TLC shows the peptide release activity of labeled eRF1-N-ybbR with WT eRF3 and 

labeled eRF3-N-ybbR with WT eRF1. (C) TLCs of peptide releases assay for the labeled 

mutant termination factors – eRF1-AGQ-N-ybbR-Cy3 with WT eRF3 and eRF3-H348E-

N-ybbR-Cy3 with WT eRF1.  

 

Supplementary Figure 1. Function of Cy5-M complexes in vitro and further 

characterization of their lifetimes. (A) TLC showing the peptide transfer activity of ICs 

made with the Cy5-M labeled ribosomes according to the assay shown in Figure 3B. Time 

points were quenched with KOH and run on electrophoretic TLC. (B) Cy5-M complex 

lifetimes quantified at various laser powers showing that lifetime decreases with increasing 

excitation laser power. Individual lifetimes for each laser power were calculated using a 

maximum likelihood estimation from a histogram of individually quantified 

photobleaching events as in Figure 5C. 
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Supplementary Figure 2. Purification of RLI1-SNAP construct. (A) Coomasie stained 

protein gel showing fractions from Nickel column purification and the beginning of sizing 

column purification. (B) Coomasie stained protein gel showing the remaining fractions 

from sizing column purification. Tagged RLI1 from lanes 4-9 were pooled and 

concentrated for fluorescent labeling. Purified, untagged RLI1 was run on both gels (S1A 

lane 7 and S1B lane 1) as a control and runs about 20 kDa smaller as expected for the 

protein lacking the SNAP tag.  
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Supplementary Figure 3. Purification of labeled termination and rescue factors. (A) 

Left: Coomasie stained protein gel showing purified and labeled eRF1-N-ybbR-Cy3 

following desalting column purification to remove free dye and a final ortho-nickel column 

clean up. Right: Protein gel scanned for Cy3 fluorescence using a Typhoon imager of the 

same eRF1-N-ybbR-Cy3 samples as on the coomasie stained gel to assess the efficiency 

of protein labeling. (B) Left: Coomasie stained protein gel showing purified eRF3-N-ybbr-

Cy5 following the final ortho-nickel column purification. Right: Protein gel scanned for 

Cy5 fluorescence using a Typhoon imager of the same eRF3-N-ybbR-Cy5 samples as on 

the coomasie stained gel to assess the efficiency of protein labeling. Two concentrations of 

protein were run on both gels for better quantification. (C) Protein gel showing small scale 

labeling test of DOM34-C-ybbR, DOM34-N-ybbR, HBS1-C-ybbR and HBS1-N-ybbR 

constructs (from left to right) with Cy3 conjugated dye. Four labeling conditions were 

tested for each construct: room temperature labeling for 30 minutes, 30˚C labeling for 30 

minutes, 37˚C labeling for 30 minutes, and 4˚C labeling for 2 hours. Both HBS1 constructs 

show efficient labeling (lanes 10-17) with some protein degradation for the HBS1-N-ybbR 

construct as shown by the fluorescent laddering between the top protein band 

corresponding to full length HBS1 (lanes 14-17). Neither DOM34 construct showed 

efficient labeling (lanes 2-9). Conjugated Cy3 dye alone was also run as a comparative 

control (lane 18). 
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Methods 

 

Purification and labeling of ribosomal subunits 

Yeast strain AL63 (parental strain is JWY3733 - MATα ura3-52 trp1Δ101 leu2Δ1 

ade1 his3Δ 200 rpl1::TRP1 + pRS315-rpl5-SNAP) from the Puglisi lab was grown, lysed 

and pelleted over a sucrose cushion as described previously55. Pellets were resuspended in 

the cold room in 1 mL (each) of subunit separation buffer (50 mM HEPES-KOH pH 7.4, 

2 mM MgCl2, 500 mM KCl, 2 mM DTT) with or without 10 µM dye. Subunits were then 

separated by treatment with 1mM puromycin and allowed to label at 37°C for 30 minutes. 

A260 measurements were taken and 200 A260 units of ribosome were layered onto 5-20% 

sucrose gradients. Gradients were spun in a Beckman SW28 rotor at 24,000 rpm for 10 

hours. Separated 40S and labeled or unlabeled 60S subunits were collected via an in-line 

UV detector. Subunits were pooled, concentrated and buffer exchanged into ribosome 

storage buffer (20 mM HEPES-KOH, pH 7.4, 2.5 mM magnesium acetate, 100 mM KOAc, 

250 mM sucrose and 2 mM DTT). A260 measurements were taken to approximate 

concentration along with UV/Vis measurements of labeled subunits to approximate the 

extent of labeling. Aliquots of subunits were stored at -80°C until use. 

 

Purification of translation factors 

Translation initiation factors eIF1, eIF1A, eIF5, eIF5B were expressed and purified 

from E. coli and eIF2 was expressed and purified from S. cerevisiae as previously described 

55, 56. The translation elongation factor, eIF5A was purified from E. coli as previously 
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described 57, 58. The translation elongation factors eEF2 and eEF3 were purified from S. 

cerevisiae as previously described 58. 

 

Charging of tRNAs 

Initiator methionine tRNA was purchased from tRNA probes (College Station, 

TX). Phenylalanine tRNA was purchased from Sigma. Charging reactions were set up 

similarly to previously published protocols55. Briefly, 1X 517 Buffer, 4 mM ATP, 15 µM 

amino acid, 5 mM DTT, 2.85 µM labeled tRNA, and 1/10th volume of S100 extract were 

mixed and incubated at 30°C for 15 minutes. Reactions were then extracted twice with acid 

phenol, once with chloroform, and ethanol precipitated before resuspension in 20 mM 

KOAc, pH 5.2 and 2 mM DTT. Small aliquots were flash froze and stored at -80°C until 

use. S100 extract was prepared as previously described55 using DEAE columns (GE 

Healthcare). 

 

Synthesis and purification of mRNAs   

Model mRNAs for in vitro translation were transcribed using T7 RNA polymerase 

and 5’ biotinylated for single molecule experiments with biotin-GMP (4 mM) and GTP 

(1.5 mM). The mRNA sequence is as follows:  5’-biotin-

GAAUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCU AUG UUC 

UAA AAACAAACACACAACAAACCAAACAACCCAACA-3’ (bold is the ORF 

coding for MF-Stop). Model mRNAs for in vitro termination assay were transcribed using 

T7 RNA polymerase with the following sequence: 5′-GAAUCUCUCUCUCUCUCU 

AUG UUC GAC UAA CUCUCUCUCUCUCUC-3’ (bold is ORF coding for MFD-Stop). 
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mRNAs were purified on 10% TBE urea gels, extracted from the gel, phenol/chloroform 

extracted and ethanol precipitated. Later, shorter mRNAs for rescue and termination single 

molecule experiments were purchased from IDT: 

MFX: 5’Biotin-

GAAUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCU 

AUGUUCUAA AAA-3’ 

MFF: 5’Biotin-

GAAUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCU  

AUGUUCUUC AAA-3’ 

 

In vitro 80S initiation complex and elongation complex formation 

80S initiation complexes were formed as previously described58 with minor 

differences. Briefly, 3 pmol of 35S-Met-tRNAiMet was mixed with 50 pmol of eIF2 and 

1 mM GTP in 1X Buffer E (20 mM Tris-Cl, pH 7.5, 100 mM KOAc pH 7.6, 2.5 mM 

Mg(OAc)2, 0.25 mM Spermidine, and 2 mM DTT) for 10 min at 26°C. Next a mixture 

containing 25 pmol 40S subunits, 200 pmol mRNA, 125 pmol eIF1, and 125 pmol eIF1A 

in 1X Buffer E was added for 5 min. To form the 80S complex, a mixture containing 25 

pmol 60S subunits, 150 pmol eIF5, 125 pmol eIF5b, and 1 mM GTP in 1X Buffer E was 

added for 1 min. Complexes were then mixed 1:1 with buffer E containing 17.5 mM 

Mg(OAc)2 to yield a final magnesium concentration of 10 mM. Ribosomes were then 

pelleted through a 600 μL sucrose cushion containing 1.1 M sucrose in buffer E with 10 

mM Mg(OAc)2 using a MLA-130 rotor (Beckmann) at 75,000 rpm for 1 hour at 4°C. After 
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pelleting, ribosomes were resuspended in 15-25 μL of 1X Buffer E containing 10 mM 

Mg(OAc)2 and stored at −80°C. 

To form elongation complexes, initiation complexes were formed as above above 

and elongated before pelleting as described previously58.  

 

In vitro reconstituted peptide transfer assay 

Translation elongation reactions were performed as previously described 55, 58 with 

minor differences. Briefly, aa-tRNA ternary complex was formed by incubating aa-tRNA 

(1.5 µM), eEF1A (5 µM), 1 mM GTP, in 1X Buffer E for 10 minutes at 26°C. Limited 

amounts of 80S initiation complexes (3 nM) were then mixed with aa-tRNA ternary 

complex (150 nM). Reactions were incubated at 26°C and time points quenched into 

500mM KOH. Samples were spotted (1 µL) to monitor peptide transfer by electrophoretic 

TLC (Millipore). TLC plates were equilibrated with pyridine acetate buffer (5 mL pyridine, 

200 mL acetic acid in 1 l, pH 2.8) before electrophoresis at 1400 V for 20 min. Plates were 

developed using a Typhoon FLA 9500 Phosphorimager system (GE Healthcare Life 

Sciences) and quantified using ImageQuantTL (GE Healthcare Life Sciences). Time 

courses were fit to single exponential kinetics using Kaleidagraph (Synergy Software). 

 

In vitro PTH assay to access ribosome recycling 

Reactions were performed as described previously37, 55. Briefly: limiting amount of 

translation elongation complexes (3 nM) were mixed with rescue factors DOM34 (4 µM), 

HBS1 (4 µM), and labeled or unlabeled RLI1 (4 µM) in 1X Buffer E. An excess amount 

of peptidyl-tRNA hydrolase (PTH) (50uM) was added to monitor tRNA release from the 
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ribosome following recycling. Time points for recycled products were quenched with 10% 

formic acid and were analyzed by electrophoretic TLC in pyridine acetate buffer (see 

above) at 1400 V for 20 minutes. 

 

In vitro peptide release assay 

Peptide release assays were performed as previously described58 with slight 

variation. Initiation complexes were elongated using ternary complex (eEF1A, aa-tRNAs, 

GTP), eEF2, eEF3, and eIF5A for 5 minutes. Elongated complexes were then combined 

with pre-mixed combinations of labeled and unlabeled termination factors at a 

concentration of 6 µM in 1X Buffer E. Time points were quenched with 10% formic acid 

and run on electrophoretic TLC plates pre-equilibrated in pyridine acetate buffer (see 

above). TLCs were run at 1200V for 25 minutes, dried, developed and quantified for 

release products.  

   

Purification and labeling of RLI1 

C-terminal His6 RLI1 was cloned to include a SNAP tag following His6 and was 

grown and purified as previously described38 over Nickel and sizing (S200) columns. 

Labeling reactions were set up as follows: protein in Buffer SE (20 mM Tris-Cl, pH 7.5, 

200 mM NaCl, 5mM βME, and 5% glycerol) was mixed with 2X excess of SNAP-

Alexa549 (NEB), and 1 mM βME. Reactions were allowed to incubate at 4°C overnight. 

Labeled protein was then run over NAP 5 column (GE Healthcare) to remove excess dye. 

A280 and A555 measurements were taken to calculated concentration and labeling 

efficiency, respectively. Small aliquots of labeled protein were stored at -80°C until use. 
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Purification and labeling of eRF1 and eRF3 

eRF1 and eRF3 (NΔ165) N terminal His6-MBP constructs were cloned to insert N 

terminal ybbR tags downstream of the TEV cleavage site and subsequently purified and 

labeled in the Puglisi lab. The general method of purification is as follows: Ni-NTA 

purification, TEV cleavage, ortho-Nickel, sizing column, dialysis into labeling buffer, 

labeling, 10DG desalting column, and ortho-Nickel. Purified proteins were run on 

coomasie gels and scanned at the appropriate wavelengths to quantify labeling efficiency. 

 

Purification and labeling of DOM34 and HBS1 

DOM34 and HBS1 were cloned using Gibson assembly into MacroLab 1C vector 

(N terminal His6-MBP) and the ybbR tag was inserted at the N terminus just downstream 

of the TEV cleavage site or at the C terminus followed by a GGGGKL amino acid linker 

(DOM34-C-ybbR LN72, DOM34-N-ybbR LN73, HBS1-C-ybbR LN74, and HBS1-N-

ybbR LN75). Proteins were purified similarly to previously published protocols37 over 

Nickel columns (GE Healthcare). Proteins were then TEV cleaved overnight to remove the 

His6-MBP tag and run over ortho-Nickel. Proteins were then dialyzed into SFP labeling 

buffer (50 mM HEPES-KOH, pH 7.5, 100 mM NaCl, 10mM MgCl2, and 5mM DTT). A 

lot of DOM34 protein crashed out during this step dialyzing into low salt buffer. Labeling 

reactions were set up as follows 2 µM SFP synthetase, 20 µM CoA-Cy3, and 15 µM protein 

in labeling buffer. Reactions were allowed to incubate at room temperature, 30°C, and 

37°C for 30 minutes, or 4°C for 2 hours. Labeled protein was then run gel to assess labeling 

efficiency.  
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Subsequent purifications of DOM34 will include higher salt concentrations 

throughout purification before dropping salt concentrations for labeling. Unlabeled, tagged 

HBS1 constructs were sent to the Puglisi lab for large scale purifications as described above 

for eRF1 and eRF3 given the efficient labeling seen (Supplementary Figure 3C). SFP 

synthetase was gifted from the Puglisi lab and purified according to a previously published 

protocol47. CoA-Cy3 was gifted from the Puglisi lab following synthesis.  

 

RCA coverslip and slide cleaning 

Slides and coverslips were placed in ceramic holders in a beaker and covered in a 

mixture of 400 mL H2O, 80 mL Ammonium hydroxide (28%) which was heated and 

stirred until it starts to bubble. 80 mL 30% hydrogen peroxide was then added and the 

beaker was covered with foil. Slides and coverslips were cleaned for 1 hour. The beaker 

was then cooled and the mixture discarded to waste. Slides and coverslips were then 

washed multiple times with milli-Q water and transferred to methanol until surface 

passivation. 

 

Plasma cleaning of coverslips and slides 

Slides and coverslips were placed in ceramic holders inside the plasma cleaner 

(Harrick Plasma). The vacuum pump is turned on and the pressure of the chamber is 

allowed to fall below 200 mTorr. The plasma power is set to high and turned on. A small 

amount of air is bled in about every minute for 5 minutes to allow the slides and coverslips 

to be cleaned. The slides and coverslips are removed from the chamber and immediately 

immersed in methanol until surface passivation. 
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 Coverslip and slide surface passivation 

Coverslips and slides were passivated according to a previously published 

protocol28. Briefly, slides and coverslips were silanized in a mixture of 400 mL methanol, 

20 mL glacial Acetic Acid, 4 mL amino-silane with stirring for 20 minutes. Coverslips 

and slides are then placed back in methanol briefly. Coverslips and slides are then 

individually removed from methanol, washed with milli-W water and dried with N2 gas. 

Clean, dried coverslips and slides are then placed in tip boxes filled partially with water 

so the solutions added to functionalize them do not dry out. A mixture of m-PEG and 

biotin-PEG (Laysan Bio) is prepared in 100 mM sodium bicarbonate as described28. 

Solutions containing varying ratios of m-PEG and biotin-PEG can be used to vary the 

amount of biotin on the surface. For all slides a solution of only mPEG was used. 35 µL 

of m-PEG/biotin-PEG mixtures was sandwiched between coverslips and 70 µL of m-

PEG only solution was sandwiched between slides. Slides and coverslips were incubated 

in humid chamber overnight. Sandwiches were then separated, rinsed with milli-Q water 

and dried with N2 gas. One slide and coverslip were then places in a 50 mL conical with 

holes in the lid and vacuum sealed in a bag for storage at -20°C until chamber assembly 

for imaging. 

 

Sample chamber assembly 

Slides and coverslips were removed from -20°C and allowed to come to room 

temperature. Double stick tape was placed on the functionalized surface of the glass slide 

on either side of the drilled holes to create a channel. The functionalized surface of the 

coverslip was then sandwiched face down onto the slide so the surface of the slide and 
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coverslip in the channel are both functionalized. The edges of the coverslip were then 

epoxied to prevent leaking. NanoPort assemblies were epoxied to the non-functionalized 

surface of the glass slide and tubing was inserted along with a needle and small syringe for 

sample delivery.  

 

Single molecule TIRF imaging of ICs 

Assembled sample chambers were washed and equilibrated in reaction Buffer E 

(see above) and imaged to assess background of surface. A solution of 200 nM neutravidin 

was mixed in Buffer E and combined with labeled 80S initiation complexes for a ratio of 

4:1 neutravidin to IC. This mixture was incubated on ice for 2 minutes and then diluted in 

Buffer E with oxygen scavenging system (PCA and PCD) for a final labeled complex 

concentration of about 300 pM. This solution was then flowed over the surface of the slide 

and incubated for 3 minutes before washing with Buffer E containing oxygen scavengers 

and imaging. Imaging was done with continuous laser excitation with one or both lasers 

and recorded using Single software (Ha lab).  

 

Analysis of single molecule traces to calculate fluorophore lifetime 

Raw data files were then converted to trace files in IDL using scripts from the Ha 

lab. Trace files were then graphed in MATLAB and visually inspected to select only traces 

with a single photobleaching event. The lifetime (time at which the molecule bleached) 

was selected manually and all time were compiled. Lifetimes were then plotted as a 

histogram for a given laser power and fit using a maximum likelihood estimation model to 
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quantify the overall lifetime of the fluorophore when imaged as part of a ribosomal 

initiation complex bound to a coverslip surface.  
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