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Abstract 
 

The ability to change site-specific skin identity could have numerous potential 

advantages in the study of skin regenerative medicine.  In human skin, volar and non-

volar regions are formed during development and are maintained throughout our lifetime.  

Previous studies demonstrated that this site-specific skin identity is regulated by dermal 

fibroblasts underlying different epidermal regions.  However, the mechanism by which 

this regulation is maintained remains unclear.  Here, we investigate the potential for 

reprogramming skin identity using double-stranded RNA analog (poly(I:C)) in co-

cultures of keratinocytes and fibroblasts.  To examine this, cells were cultured in the 

presence or absence of poly(I:C) and specific genes including KERATIN9 and WNT7b 

were analyzed by qRT-PCR to characterize reprogrammed skin identity.  Initial 

experiments confirmed that KRT9 is intrinsically expressed in keratinocytes in the 

absence of fibroblasts, although its expression is induced by fibroblasts.  We found that 

poly(I:C) treatment of solo-cultures stimulates KRT9 mRNA expression over an extended 

period of time.  In addition, KRT9 was preferentially induced in co-culture with volar 

fibroblasts over non-volar fibroblasts.  Significantly, we identified that poly(I:C) induces 

the WNT/β-catenin signaling pathway and elevates KRT9 expression, a novel mechanism 

by which poly(I:C) may modulate skin identity.  These results establish poly(I:C) 

treatment as a viable method for KRT9 induction.  Collectively, the present study 

provides the undiscovered effects of poly(I:C) and suggests the possibility of clinical 

relevance to reprogram skin identity at the stump site of amputees. 
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Introduction 
 

The regulation of tissue identity is a major topic in skin regenerative medicine.  

The potential to change skin tissue identity, for example, to revert scars to original tissue, 

could be extremely beneficial in the treatment of various skin diseases and ailments.  The 

ability to reprogram skin tissue identity could have numerous clinical applications, not 

the least of which is amputee stump site problems and prosthetic use.  Current prosthetic 

design has certainly advanced; however, amputees still deal with skin-breakdown at the 

stump site.  Several studies have found that amputees report a high incidence of issues 

such as redness, abrasion, and folliculitis (inflammation of the hair follicles) (Meulenbelt 

et al., 2011).  In fact, forty-eight percent of Vietnam veterans still have problems at the 

stump site nearly forty years after amputation.  These difficulties lead to a reduction in 

prosthetic use as well as a reduction in continuous-walking distance (Yang et al., 2012).  

Our goal is to improve the quality of life for amputees.  This may be achieved by 

changing the stump site skin from non-volar (non-palmoplantar; dorsal) to volar 

(palmoplantar; ventral) skin. 

Human skin consists of two layers: the epidermis, the outermost layer, and the 

dermis, which contains fibroblasts.  The epidermis is divided into several strata (from top 

to bottom): stratum corneum, stratum granulosum, stratum spinosum and stratum basale 

(Farris).  Each sub-layer is made up of differentiating keratinocytes that migrate upward 

from the stratum basale.  As they migrate, the cells begin to change shape and lose their 

cytoplasm, which is replaced with keratin. Once the keratinized cells (corneocytes) reach 

the stratum corneum, they slough off, in a process termed desquamation (McGrath). 
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Volar skin is found on the palms of the hands and soles of the feet. This skin is 

characterized by a thick epidermis and lack of hair follicles or pigmentation.  Volar 

epidermis is comprised of a thicker stratum corneum as well as a fifth epidermal layer, 

the stratum lucidum (Farris), designed to help the palms and soles handle friction.  Volar 

keratinocytes express KERATIN9 (KRT9), which is responsible for the structural 

resiliency of volar skin.  KRT9 is the only gene found throughout the skin that is accepted 

as being limited to the suprabasal layers of the epidermis on the palms and soles (Knapp 

et al., 1986; Yamaguchi et al., 1999).  This exclusivity makes it a valuable marker for 

palmoplantar skin.  In fact, mutations in KRT9 can result in hyperkeratosis (increased 

production of keratins), a condition seen in skin diseases like epidermolytic palmoplantar 

keratoderma (EPPK) (Reis et al., 1994).  Patients who have EPPK display thickened 

epidermis but only at the palms and soles (Reis et al., 1994), further confirming the site-

specific nature of KRT9. 

Initial experiments in our laboratory attempted to induce KRT9 expression in 

human non-volar keratinocytes through co-culture with volar dermal fibroblasts.  A co-

culture system is appropriate based on the knowledge that site-specific fibroblasts are 

important for programming proliferation and differentiation in keratinocytes (El-

Ghalbzouri et al., 2002). Our initial co-culture experiments, though successful, yielded 

only moderate levels of KRT9 induction and have been difficult to reproduce (Kim et al., 

unpublished data). 

Polyinosinic:Polycytidylic acid (poly(I:C)) is a synthetic double-stranded RNA 

(dsRNA) that is structurally identical to the dsRNA released from damaged cells upon 

skin wounding.  It has been reported that poly(I:C) recognizes the Toll-like receptor-3 
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(TLR3) pathway and activates its downstream signaling (Alexopoulou et al. 2001).  This 

activation prevents normal keratinocyte differentiation and promotes the acquisition of 

stem cell features in keratinocytes (Nelson et al., 2015, in revision).  The activation of 

this pathway appears to be important in complete cutaneous wound healing, including 

regeneration of hair follicles, as opposed to the formation of fibrotic scar tissue that is 

usually seen in healed wounds (Nelson et al., 2015, in revision).  Recently, it was shown 

that poly(I:C) treatment of keratinocytes leads to a partial epithelial-to-mesenchymal 

(EMT) transition and up-regulation of keratinocyte stem cell genes such as Tumor protein 

p63 (TAp63), Chromobox homolog 4 (CBX4), and KRT15 as well as WNT genes 

(Nelson et al., 2015, in revision).  Keratinocytes that have been treated with poly(I:C) for 

as little as 24 hours lose their characteristic cuboidal shape and take on a long, spindly 

morphology (Fig. 1), resembling fibroblasts or migratory keratinocytes seen during 

healing (Nelson et al., 2015, in revision).  

We hypothesized that treatment with poly(I:C) may prime keratinocytes to be 

more receptive to signaling from fibroblasts.  If so, poly(I:C) treatment of non-volar 

keratinocytes prior to co-culture with volar fibroblasts could result in greater induction of 

KERATIN9 than has previously been achieved. 
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Results 
 
KRT9 is expressed in non-volar keratinocytes in the absence of fibroblasts 

Recently, Kim et al. found that non-volar keratinocytes have an innate ability to 

induce KRT9 in the absence of any fibroblasts (unpublished data).  They induced KRT9 

expression in non-volar keratinocytes cultured at high density in keratinocyte basal media 

(KBM), without growth factors to stimulate differentiation (unpublished data).  That 

result is confirmed under a different set of experimental conditions in this study (Fig. 

2B).  In this study, the keratinocytes were again cultured at high density, but in KGM 

(KBM with defined growth factors; insulin, epidermal growth factor, transferrin, 

hydrocortisone, bovine pituitary extract, and epinephrine), which promotes proliferation 

rather than differentiation.  Even under diverse conditions, the keratinocytes alone show 

higher KRT9 levels compared to co-cultures of keratinocytes and both non-volar (scalp) 

and volar (sole) fibroblasts (Fig. 2B).  We conclude that non-volar keratinocytes can be 

induced to express KRT9 when cultured at high density, even in the presence of growth 

factors. 

 

Poly(I:C) treatment of non-volar keratinocytes stimulates KRT9 expression over time 
 

Previously our lab identified that poly (I:C) stimulates hair regeneration in 

wounded mouse skins by regulating EMT-related genes such as vimentin and E-cadherin 

(Nelson et al., 2015, in revision).  Thus, we speculate whether poly (I:C) modulates site-

specific skin identity. To examine this, keratinocytes were plated at high density and 

treated with poly (I:C) in time-course experiments (Fig. 3A).  Cells were harvested every 

day for 5 days (Fig. 3A) and RNA samples were used to measure levels of KRT9.  Since 
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KRT9 is exclusively expressed in suprabasal layers of volar epidermis (Knapp et al., 

1986; Yamaguchi et al., 1999), keratinocytes on Day +3 (D3), which express extremely 

low levels of KRT9 (Fig. 3B), represent undifferentiated cells. By comparison, untreated 

keratinocytes express KRT9 mRNA from D4 and its levels have decreased by D7 (Fig. 

3B), suggesting that keratinocytes are undergoing differentiation and some terminally 

differentiated keratinocytes are undergoing apoptotic process.  

Although levels of KRT9 mRNA were not significantly different between the 

untreated and the treated cells during early culture periods, poly(I:C)-treated 

keratinocytes continued to produce KRT9 from D6 and the highest levels of KRT9 are 

seen on D7 (Fig. 3B). Considering the possibility of apoptosis without poly(I:C) on D7, 

our data suggest that poly (I:C) maintains cell survival, resulting in a sustained amount of 

KRT9 mRNA. In addition, these results strongly support our previous and current 

experiments demonstrating that non-volar keratinocytes are able to produce KRT9 in the 

absence of fibroblasts (Fig. 2B). 

 

KRT9 expression is induced in co-cultures of non-volar keratinocytes and volar 
fibroblasts  
 
 Non-volar keratinocytes were cultured in the presence of non-volar and volar 

fibroblasts (Fig. 2A) from several areas on the body; including scalp, dorsal foot, and 

ventral foot (sole).  KRT9 expression was induced in the presence of scalp fibroblasts, but 

was more highly induced in co-cultures with sole fibroblasts compared to pre-confluent 

keratinocyte control (Fig. 2B).  In both cases, KRT9 expression was less than in cultures 

of keratinocytes alone, suggesting fibroblasts may have an inhibitive effect on KRT9 

induction.  To assess a possible inhibitive influence, keratinocytes and sole fibroblasts 
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were co-cultured at ratios of 10:1, 1:1 and 1:5 keratinocytes:fibroblasts (Fig. 4A).  For 

every condition, 75,000 keratinocytes were used and fibroblasts were added accordingly.  

In looking at the data in Figure 4B, there is a clear pattern of decreasing KRT9 mRNA 

expression as the number of fibroblasts increases.   

 

Poly(I:C) treatment of non-volar keratinocyte and fibroblast co-cultures induces KRT9 
expression 
 

The co-culture system was next adapted in order to investigate what effect 

poly(I:C) treatment might have on KRT9 induction in co-culture.  As in the poly(I:C) 

treatment protocol, cells were plated on Day -2 (D-2) prior to treatment (Fig. 5A).  

However, in this case, keratinocytes and fibroblasts were plated together, at a 10:1 ratio 

of keratinocytes to fibroblasts, and then both treated with poly(I:C) on D0 (Fig. 5A).  The 

10:1 ratio was chosen based on the results in Figure 4B, which showed that in the case of 

a co-culture, a small fibroblast number is warranted.  The co-culture experiment then 

continued as laid out in Figure 5A.   

Combined results of each high cell count (Table 1) repeat indicate that poly(I:C)-

treated keratinocyte-sole-fibroblast co-cultures express a greater amount of KRT9 mRNA 

over untreated co-cultures (Fig. 5B).  However, the combined results also show that 

poly(I:C)-treated keratinocyte-foot-fibroblast co-cultures expressed a large amount of 

KRT9 mRNA as well (Fig. 5B).  It is interesting to note that after poly(I:C) treatment, 

KRT9 expression was greater in both co-cultures than in keratinocytes cultured alone 

(Fig. 5B), unlike the initial co-cultures, where keratinocytes alone showed the best 

induction (Fig. 2B).  Under low cell count (Table 1) conditions (Fig. 5C), induction was 
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not as robust, but poly(I:C)-treated keratinocyte-sole-fibroblast co-cultures expressed the 

most KRT9.  

 

Poly(I:C) treatment of non-volar keratinocyte and fibroblast co-cultures induces WNT7b 
expression 
 

Kim et al. recently found that canonical WNT/β-catenin signaling is important in 

the induction of KRT9 in keratinocytes (unpublished results).  They treated keratinocytes 

with DKK1, an inhibitor of the canonical WNT pathway (Glinka et al. 1998), and found 

that KRT9 mRNA expression was decreased by nearly half (Kim et al., unpublished 

results).  Based on this information, we speculated that poly(I:C) may induce KRT9 

through a WNT/β-catenin signaling mechanism.  We tested this hypothesis by probing 

for WNT mRNA expression in co-culture, in this case WNT7B (important in hair follicle 

formation (Kandyba & Kobielak, 2014)).  The cDNA generated from the high cell count 

(Table 1) co-cultures discussed above was used to probe for WNT7b by qRT-PCR.  The 

results show a significant increase in WNT7b mRNA expression in poly(I:C)-treated 

keratinocyte-sole-fibroblast co-cultures (Fig. 6), suggesting that WNT ligands may 

function via autocrine as well as paracrine manners. 

 

Effect of DKK1 treatment on poly(I:C)-treated non-volar keratinocytes  
 

Since we found that poly (I:C) induces WNT ligand expression in co-culture, we 

attempted to inhibit WNT signaling using DKK1, an inhibitor of canonical WNT 

signaling (Glinka et al., 1998).  Keratinocytes were treated with DKK1 (100ng/ml) with 

poly(I:C) and a time course experiment was carried out as described in Figure 7A.  Cells 

treated with both DKK1 and poly(I:C) were designated +DKK1/+PIC and cells treated 
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only with poly(I:C) were designated –DKK1/+PIC.  Samples were collected at the time 

of plating (pre-confluent keratinocytes), and on Day 3 (D3), D6 and D7.  These days 

were chosen because the greatest disparity in KRT9 expression was seen between these 

time points in the original time course (Fig. 3B).  Both KRT9 and WNT7b mRNA 

expression was decreased in the presence of DKK1 with poly(I:C) at the early time point, 

D3, which was the date of re-plating (Fig. 7B and C).  However, KRT9 induction was 

greater in the +DKK1/+PIC cultures than in the -DKK1/+PIC cultures at the late time 

points (Fig. 7B).  WNT7b induction appears to have ceased on or before D6 (Fig. 7C). 
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Discussion 
 

Skin identity throughout the human body is highly site-specific and tightly 

regulated (Compton et al., 1998).  This is well established through structural and 

functional analysis of the skin on our hands and feet.  Non-volar skin makes up the dorsal 

regions of our hands and feet and is no different from the skin on the rest of the body.  

Our palms and soles however, consist of volar skin, which is thicker and more resistant to 

damage and irritation.  The mechanisms that specify skin identity are not well 

understood.  A deeper understanding of how skin identity is regulated and maintained 

could potentially lead to numerous clinical applications.  We aim to reprogram non-volar 

skin at amputated limb stump sites to take on volar identity.  Successful reprogramming 

at this site could relieve skin diseases caused by prosthetic use. 

 Volar skin is characterized by the presence of KERATIN9, a keratin not widely 

expressed in other skin types (Knapp et al., 1986; Yamaguchi et al., 1999).  Yamaguchi 

et al. showed 

, a result that we have reproduced

.  It is our hypothesis that these poly(I:C)

that KRT9 mRNA expression could be induced in non-volar keratinocytes 

by co-culture with volar fibroblasts , though induction 

was generally moderate.  In this study, we sought to enhance KRT9 induction through 

pre-treatment of keratinocytes with poly(I:C).  Colleagues in my laboratory have found 

that poly(I:C) treatment of keratinocytes results in a partial epithelial-to-mesenchymal 

transition of the cells as well as upregulation of keratinocyte stem cell genes (Nelson et 

al., 2015, in revision) -treated cells may be better 

primed to follow differentiation signals from fibroblasts.   

 As a starting point, normal co-culture experiments with no poly(I:C) treatment 

were carried out in order to ensure that we were able to repeat the previously reported 
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results.  We found that co-culture of keratinocytes with volar (sole) fibroblasts resulted in 

greater KRT9 induction than co-cultures with non-volar (scalp) fibroblasts.  We also 

report the interesting result that non-volar keratinocytes, in the absence of fibroblasts, 

express KRT9 quite robustly.  This clearly demonstrates that non-volar keratinocytes have 

an innate ability to express KRT9 and is a result that has been reproduced separately by 

many individuals in this laboratory (unpublished data).  Further, these results suggest to 

us that non-volar fibroblasts may inhibit the expression of KRT9 in non-volar skin, rather 

than producing a signal to activate non-volar identity.  

 To investigate what effect poly(I:C) treatment might have on innate KRT9 

expression in keratinocytes, a solo-culture time course experiment was carried out, in 

which untreated and treated keratinocytes were collected for several successive days.  At 

the early time points, KRT9 expression is relatively similar.  But, whereas KRT9 

expression began to drop off in untreated cells at later time points, treated cells continued 

to express KRT9.  Poly(I:C) treatment appears to not only have enhanced KRT9 mRNA 

expression, but also extended the duration of KRT9 mRNA synthesis.  This result 

supports our hypothesis that poly(I:C) treatment augments KRT9 expression and raises 

some new questions for future exploration.  What is the mechanism of action of poly(I:C) 

in KRT9 induction?  Does poly(I:C) treatment impact epigenetic mechanism in 

keratinocytes, as implied by the prolonged period of mRNA synthesis?  And now that we 

have evidence that poly(I:C) treatment does induce KRT9, the most immediate question 

becomes what effect might we see after treating co-cultures of keratinocytes and 

fibroblasts?   
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In in vivo conditions, keratinocytes are always in the presence of fibroblasts; so 

using keratinocytes alone for skin reprogramming would likely be unsuccessful.  Early 

studies attempted to growth epidermal grafts transplanted to areas of full-thickness (down 

to muscle layer) wounds.  While these wounds are able to heal, the newly healed skin is 

unable to stop the surrounding margins of the wound from encroaching on the site, and so 

it is eventually abolished (Billingham & Silvers, 1963).  Other studies tested the ability of 

isolated epidermis to maintain active growth and found that the epidermis quickly 

degraded in the absence of the dermis (Briggaman & Wheeler, 1968).    

Given this knowledge, we chose to go back to the co-culture system and adapt the 

protocol to include a poly(I:C) treatment step.  This involved optimizing culture 

conditions, concentration of poly(I:C) treatment, cell number and density for plating, and 

appropriate cell harvesting dates.  Kim et al. have shown that KRT9 is best induced when 

cells are plated at high density and cultured in KBM media to support differentiation 

(unpublished results).  However, another colleague in our laboratory has found that 

poly(I:C) treatment works best when cells are plated at low density and are cultured in 

KGM media to support proliferation (Zhu, unpublished data).  To reconcile these two 

protocols, an experiment was done wherein the cells were plated at high density and 

treated with poly(I:C) in KGM media.  Unfortunately, these cells did not survive past the 

first day after treatment (unpublished data) and it was concluded that high-density plating 

was not conducive to poly(I:C) treatment.  As a successful poly(I:C) treatment was 

deemed most necessary for a positive outcome in this experiment, we chose to use the 

second described culture conditions.   
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It was also important to decide exactly when the fibroblasts would be added to the 

cultures.  In previous experiments, Kim et al. mixed the keratinocytes and fibroblasts 

together at the beginning of the experiment and plated the cells in that way in order to 

ensure correct cell counts (unpublished results).  With the addition of the treatment step, 

this would mean waiting several days before adding the fibroblasts as the poly(I:C) 

treated cells cannot be trypsinized for at least two days after treatment.  As this was 

undesirable, we took a chance and decided to plate the keratinocytes and fibroblasts 

together and treat all of the cells with poly(I:C).  As fibroblasts themselves do not 

produce keratins, we could be certain that the measured KRT9 expression was 

synthesized by the keratinocytes.   

 The new poly(I:C) treatment co-culture protocol has been successful in inducing 

KRT9 expression.  The co-culture experiments were done under low and high cell count 

conditions (as described in Table 1).  In both cases, poly(I:C) treatment has resulted in 

greater induction of KRT9 in keratinocyte-fibroblast co-cultures.  While we expected that 

sole-fibroblasts co-cultures would show the greatest induction after treatment, we found 

that foot-fibroblasts co-cultures also express a large amount of KRT9 under some 

conditions.  This indicates to us that poly(I:C) may be acting to overcome site-specific 

regulation.  The increased induction, for both sole and foot fibroblasts, was most 

significant under high cell count conditions.  However, even under low cell count 

conditions, induction was higher in poly(I:C)-treated co-cultures than in untreated co-

cultures.  Of great interest was the fact that in several of the co-culture experiments, the 

poly(I:C)-treated co-cultures showed greater KRT9 induction than the keratinocytes 

alone, either treated or untreated.  This is the opposite of what is seen in the original co-
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culture experiments as mentioned earlier.  All of this leads us to believe that poly(I:C) 

must be doing something to allow the keratinocytes and fibroblasts to interact in a new 

way.  At this point, we do not know what that exactly that something is, but we can 

certainly speculate. 

 Poly(I:C) is a dsRNA agonist for the TLR3 damage-sensing pathway 

(Alexopoulou et al. 2001).  Activation of the TLR3 pathway by dsRNA promotes the 

acquisition of stem cell features in keratinocytes as well as the induction of WNT genes 

(Nelson et al., 2015, in revision)

When considered together

WNT7b.  

.  We know based on our own results that WNT7b 

mRNA expression is highly induced after poly(I:C) treatment.   

with the finding by Kim et al. that WNTs can activate KRT9 (unpublished results), an 

argument could be made that poly(I:C) is acting through the WNT/β-catenin pathway to 

turn on KRT9.  As a preliminary test of this hypothesis, we chose to carry out a time 

course experiment with the addition of a DKK1 treatment.  We expected that treatment 

with DKK1 would result in decreased expression of both KRT9 and Our results 

found that both KRT9 and WNT7B mRNA expression was decreased on Day 3 by 

treatment with DKK1, implying inhibition by DKK1.  However, KRT9 mRNA 

expression was greater in the +DKK1/+PIC cultures than in the -DKK1/+PIC cultures at 

Day 6 and Day 7.  While the WNT7b result is promising, the KRT9 finding is unexpected 

and conflicts with our other results indicating that poly(I:C) treatment increases KRT9.  

We wonder if this might indicate that past a certain point, for example six days after poly 

(I:C) treatment, a different set of secreted factors is responsible for KRT9 induction.  This 

is plausible given the significant changes in morphology seen after poly(I:C) treatment.  

However, it is still too early in the exploration of this question to be drawing conclusions.  
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More time is needed for repeating this experiment and optimizing DKK1 treatment 

conditions before anything can be said with certainty.  In continuing this work, we will 

also explore the effect of poly(I:C) on skin regeneration using an in vivo model. 

 In summary, this work develops an improved method by which KRT9 induction 

can be upregulated in in vitro co-culture.  These findings demonstrate that poly(I:C) 

treatment of keratinocytes results in enhanced KRT9 induction not only in the presence of 

volar fibroblasts but in the presence of non-volar fibroblasts as well.  This strongly 

supports our hypothesis that poly(I:C) treatment modulates site-specific skin identity.  

We expect the present research will provide a clinical method by which we may achieve 

our goal of reprogramming skin at the stump site of an amputee.   
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Methods 
 
Isolation of human foreskin keratinocyte isolation 
 

Human primary foreskin keratinocytes were isolated from newborn circumcision 

foreskin with parent’s permission.  All instruments were kept in 70% ethanol (EtOH) 

when not in use and rinsed in PBS before use.  To make dispase solution, 0.04g of 

dispase II (Sigma-Aldrich, St.-Louis, MO) was dissolved in 10ml PBS, drawn up into a 

syringe and filtered into a 15ml conical tube.  

 To begin isolation, foreskins were cut so that they lay flat, and were then 

transferred to a 50 ml conical tube containing 25ml of 70% EtOH, followed with 

vigorous shaking to remove any contaminants.  Once all foreskins were cut, the conical 

tube was shaken for 60 seconds.  To remove remaining 70% EtOH, foreskins were 

transferred to a 50 ml conical tube containing 25 ml of PBS-A (PBS + 1X antibiotic-

antimycotic (antibiotics) (Life Technologies, Grand Island, NY)) and which was 

vigorously shaken for 60 seconds.  The foreskins were then trimmed by removing fat 

tissues using scissors and washed twice with 70% EtOH and PBS-A.  Finally, the 

foreskins were cut into thin strips (about 0.5 cm x 2 cm) and incubated in 0.4% dispase II 

(Sigma) solution at 4 °C overnight.  

 The following day, epidermis layers were separated from the dermis and 

collected by spinning down in PBS for 1 minute at 2000 rpm. After aspirating off the 

PBS, epidermis layers were incubated in 10 ml of pre-warmed trypsin-EDTA (Life 

Technologies, Frederick, MD) for 5 minutes with gentle shaking.  Next, the trypsin 

solution was carefully poured onto a mesh filter with 70 µm poresize placed over a new 

conical tube containing 10 ml of trypsin neutralizing solution (TNS) (Life Technologies) 
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and cell suspension was centrifuged for 5 minutes at 2000 rpm.  The supernatant was 

aspirated off and cells were re-suspended in 5 ml of keratinocyte growth media (KGM-

GOLD) (Lonza, Walkersville, MD).  The cells were counted using the Countess 

Automated Cell Counter (Life Technologies) and plated at minimum 2x106 cells cells per 

10 cm plate.  

Keratinocyte culture 
  

Primary human foreskin keratinocytes (HFKs) were cultured in KGM-GOLD 

(Lonza); media was replaced every two days.  Volar (sole) and non-volar (scalp and foot) 

fibroblasts were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Corning, 

Manassas, VA) with 10% fetal bovine serum (FBS) (Gemini, West Sacramento, CA) and 

1X antibiotic-antimycotic (Life Technologies).  Media was replaced every three days.  

Cells were kept at pre-confluent state to prevent differentiation prior to use in co-culture 

experiments. 

Co-culture experiments  
 

HFKs and sole, scalp or foot fibroblasts were mixed together at a 10:1 

keratinocyte:fibroblast ratio and seeded onto 6-well plates (Day -2).  After incubation for 

2 day, cells in three wells were treated with poly(I:C) (20µg/ml) in KGM-GOLD (Day 0); 

the remaining three wells were left untreated.  The next day (Day +1), cells were washed 

with PBS to remove poly(I:C) and incubated with fresh KGM-GOLD for two additional 

days; except in the case of time course experiments, where incubation length was 

extended up to seven days.  To analyze gene expression, cells were harvested and used 

for RNA isolation.  For comparison, keratinocytes harvested on Day -2 served as a pre-

confluent control.  For co-culture experiments, keratinocytes alone were always included 
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and were treated with poly(I:C) to compare gene expression to that of the co-culture 

samples.  As poly(I:C) can be somewhat cytotoxic, a larger number of cells were plated 

for poly(I:C)-treatment than for non-treated cells.  Two variations of cell counts were 

used, termed high cell count and low cell count.  Table 1 contains the keratinocyte and 

fibroblast cell counts plated for each variation. 

RNA Isolation and Quantitative real-time PCR (qRT-PCR) 
 

RNA was isolated for HFKs and fibroblasts with RNeasy Mini Kit (Qiagen, 

Valencia, CA) and treated with DNase I (Qiagen) to eliminate genomic DNA.  

Concentration of the isolated RNA was analyzed with a NanoDrop2000c (Thermo 

Scientific, West Palm Beach, FL).  Reverse transcriptase reactions were carried out as 

described in the protocol for the high-capacity RNA to cDNA kit (Life Technologies).  

Following this, qRT-PCR was performed for genes of interest using Taqman probes and 

Fast Start Universal Probe Master (Roche, Indianapolis, IN).  Relative expression of 

mRNAs was analyzed by the CT (threshold of cycle) value of target genes and quantified 

by normalizing to ribosomal protein large P0 (RPLP0) (housekeeping gene) using the 

ΔΔCT method (Livak et al., 2001).  P values were determined using a two-tailed t-test; a 

p value of 0.05 was accepted for statistical significance.  
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Figures 

  

Figure 1. Keratinocyte morphology in presence of poly(I:C). Left 
panel: Normal, untreated keratinocytes. Right panel: Keratinocytes 
after 24-hour PIC treatment. 
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Figure 2. Induction of KRT9 expression in keratinocytes and fibroblast co-
cultures. (A) Keratinocytes cultured with fibroblasts; arrows denote fibroblasts. (B) 
KRT9 mRNA expression in untreated keratinocytes alone and keratinocyte co-
cultures. PCK= pre-confluent keratinocytes, K = keratinocytes. 
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Figure 3. Time Course of KRT9 mRNA expression in keratinocytes after PIC treatment. 
(A) Timeline for PIC-treatment keratinocyte solo-culture experiment; D3= Day 3. (B) KRT9 
mRNA expression with and without PIC treatment over the course of one week. PIC= 
poly(I:C). 
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Figure 5. KRT9 mRNA expression after PIC treatment in co-culture. (A) Timeline for PIC-
treatment co-culture experiments; D-2= Day -2. (B) KRT9 mRNA expression with PIC treatment; 
high cell count (see Table 1); n=5. (C) KRT9 mRNA expression with PIC treatment; low cell count 
(see Table 1); n=6. *p<0.05, **p=0.0006; PIC= poly(I:C), PCK= pre-confluent keratinocytes, K = 
keratinocytes. 
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Figure 7. Effect of DKK1 and PIC treatment on KRT9 and WNT7b mRNA expression. (A) 
Timeline for DKK1 and PIC-treatment experiment. (B) KRT9 mRNA expression with PIC treatment 
+/- DKK1; low cell count (see Table 1). (C) WNT7b mRNA expression with PIC treatment +/- DKK1; 
low cell count (see Table 1); n=3 for D6 & D7. PIC= poly(I:C). 
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Tables 
 
Table 1. Cell Number for PIC Treatment in Solo-culture and Co-culture  

 
 
  

 Poly(I:C) 
(PIC) 

Keratinocytes (K) Fibroblasts 
 (Sole, Scalp, Foot) 

High Cell Count +PIC 750,000 75,000 
-PIC 250,000 25,000 

Low Cell Count +PIC 75,000 7500 
-PIC 25,000 2500 
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