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Abstract

The mechanism of gene regulation is a crucial problem in current computational

biology. Chromatin-immunoprecipitation microarray (ChIP-chip) is a technique used

to study transcriptional regulation by identifying the binding regions of specific tran-

scription factors. In this thesis, we focus on the binding of transcription factors to

upstream region motifs to understand the mechanism of gene regulation.

Sonic hedgehog (Shh) signals direct digit number and identity in the vertebrate

limb via Gli transcription factors. We sought to identify key Gli binding motifs in

Gli binding regions through whole-genome ChIP-chip in the developing mouse limb.

Through de novo motif discovery method, we found that there were specific DNA

motifs enriched in different expression domains of the developing limb. A novel motif

in Gli binding regions is highly likely to be a functional element. In addition, we

noted that there was no statistically significant difference of quality of Gli motifs in

Gli binding regions associated with genes expressed in different domains. The quality

of Gli motif might not be a factor that influences the expression of genes in different

domains.
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ABSTRACT

Myc transcription factor, produced by the MYC oncogene, has the ability to acti-

vate and repress gene transcription. Elevated expression of Myc transcription factor

is frequently found in cancers. We conducted antibody-specific motif analysis with

application to human MYC transcription factor by using high-throughput genomic

approaches. Chromatin immunoprecipitation was performed using two different anti-

Myc antibodies in human P493-6 B cells, Santa Cruz (SC) antibody and Epitomics

(Epit) antibody. Intersection of the two peak lists from SC antibody and Epit anti-

body identified 885 common Myc binding regions in both data sets. With the average

probe intensities of the ChIP samples, we found no statistically significant difference

between the binding intensity of probe with ChIP sequences immunoprecipitated by

SC antibody and Epit antibody. There was linear increasing relationship between

Epit antibody and SC antibody. Furthermore, we identified that Sfpi1 motif might

be specifically bound to Myc-SC antibody and involved in differentiation or activation

of B-cells.
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Chapter 1

Introduction

The mechanism of gene regulation is a crucial problem in current computational

biology. ChIP-chip and ChIP-seq are powerful technologies to study transcriptional

regulation in complex genomes. ChIP-chip experiments consist of chromatin im-

munoprecipitation (ChIP) of transcription factor-bound genomic DNA followed by

high density oligonucleotide hybridization (chip) of the IP-enriched DNA [1]. ChIP-

Chip technology can identify transcription factor binding sites on a genome-wide

basis. ChIP-sequencing (ChIP-seq), is a new approach used to analyze protein inter-

actions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with

massively parallel DNA sequencing to identify the binding sites of DNA-associated

proteins. Using these technologies, studies of protein-DNA interactions provide in-

formation on cis-regulatory circuitry underlying various cellular processes [2].
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CHAPTER 1. INTRODUCTION

1.1 ChIP-chip

The chromatin immunoprecipitation on microarray (Chip-chip) is used to inves-

tigate interactions between DNA and proteins in vivo. The technology of ChIP-chip

enables large-scale screening for the binding regions of specific transcription factors

at a resolution of ∼ 1 − 2 kb [3]. In a ChIP experiment for DNA-binding proteins, a

transcription factor of interest is crosslinked to DNA by a formaldehyde fixation [4].

The chromatin is sheared by sonication into small fragments of average length 1kb,

and the fragments bound by the transcription factor are precipitated using specific

antibodies for the transcription factor. In the next “chip step”, the crosslinks of

DNA-protein complexes are reversed and the DNA strands are released [5]. After an

amplification and denaturation step, IP-enriched DNA is fluorescently labeled and

hybridized to chips containing single-stranded DNA sequences [1]. As a result, the

bound probes are expected to occur in small clusters, which we refer to as peaks [1].

By comparison between the ChIP sample and control sample, one can identify which

parts of the genome are bound by the transcription factor. Therefore, ChIP-chip

experiments can provide valuable information for locating cis-regulatory elements in

the genome [3].

CisGenome is an integrated software system for analyzing ChIP-chip data. To

analyze ChIP-chip data in CisGenome, one usually goes through data exploration,

quantile normalization, binding regions detection, adding gene annotations and find-

ing enriched sequence motifs [2]. Binding regions are detected using a moving average

2



CHAPTER 1. INTRODUCTION

(MA) method [6]. Studies for this thesis are mainly based on the ChIP-chip analy-

sis [2].

1.2 ChIP-seq

In ChIP-seq, the DNA fragments of interest are sequenced directly instead of being

hybridized on an array. Compared to ChIP-chip, ChIP-seq technology can provide

higher resolution, less noise and greater coverage for identification of protein-DNA

interactions [2, 4].

In a ChIP experiment, DNA fragments associated with a specific protein are en-

riched. An antibody specific to the protein of interest is used to immunoprecipitate

the DNA-protein complex. Finally, the crosslinks are reversed and the released DNA

is assayed to determine the sequences bound by the protein [4]. Oligonucleotide adap-

tors are added to the released DNA strands to enable massively parallel sequencing.

After size selection, all the resulting ChIP-DNA fragments are sequenced simulta-

neously using a genome sequencer. There are many sequencing methods, such as

Illumina Genome Analyzer, Applied biosystems’ SOliD and the Helicos platform [4].

The Genome Analyzer and SOliD platforms generate 100-400 million reads in a single

run with an accuracy rate up to 98% [4]. With higher resolution, fewer artefacts and a

larger dynamic range, ChIP-seq technology therefore provides substantially improved

data [4].

3



CHAPTER 1. INTRODUCTION

CisGenome can analyze ChIP-seq data as well. Analysis of a ChIP-chip exper-

iment begins with aligning reads to the genome and finding binding regions. The

predicted regions can then be used for downstream analyses, including motif discov-

ery and annotation retrieval.

1.3 Motif analysis

Transcription factors are proteins required to initiate or regulate transcription in

eukaryotic cells [3]. Transcription factors bind to specific DNA patterns in the tran-

scription regulatory region (TRR) of genes and either induce or repress the transcrip-

tion of these genes by recruiting other proteins [7]. The loci on the DNA sequences

that transcription factors bind to are called cis-regulatory elements [3]. The binding

sites of the same transcription factor show a significant sequence conservation, which is

called a transcription factor binding motif (TFBM) or binding consensus with length

of 5-20 bases long [7]. Cis-regulatory modules (CRM) are DNA sequences where a

number of transcription factors can bind and regulate expression of nearby genes,

i.e., combinatorial patterns of DNA motifs. Different transcription factors may have

different binding motifs. A motif can be represented either by a consensus sequence,

an alignment matrix, a frequency matrix, or a weight matrix [3]. Sequence logos can

be used to visualize the motifs. Multiple transcription factors can bind cooperatively

to a cis-regulatory element, which contains several different binding motifs that are

4



CHAPTER 1. INTRODUCTION

closely clustered together [3]. Transcription regulation not only relies on the combi-

nation of the TFs involved, but also on the number of site copies in the upstream

regions [7]. Characterizing the motifs of transcription factors and searching for loca-

tions of transcription factor binding sites are of great importance for understanding

gene regulation mechanisms in response to developmental changes [7].

Motif discovery is an approach to find both the motif patterns and the locations

of transcription factor binding sites (TFBSs) in DNA sequences [3]. De novo method

is a way of discovering unknown motifs and their corresponding TFBSs that are

“enriched” in a set of upstream sequences [7]. Compared to random sequences, the

sites bound by the same transcription factor are enriched in the set of genes that are

coregulated by this TF [3]. When a group of coregulated genes is available, we could

look for their common regulatory mechanisms [3]. If coregulation of these genes is

resulted from the binding of a common set of transcription factors, TFBSs should be

found enriched in the surrounding DNA sequences of these coregulated genes [3]. By

looking for overrepresented sequence patterns in the genomic regions near these genes,

we can infer both transcription factor binding motifs and their positions [3]. If the

binding motif of a transcription factor is known from biological experiments, we can

score sequence patterns of the motif and hence predict TFBSs by scanning genomic

DNA sequences [3]. This method is called known motif mapping. Motif discovery

is of great importance since the binding of transcription factors to upstream region

motifs is crucial to understanding the mechanism of gene regulation [3].
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Chapter 2

DNA motif analysis in Gli binding

regions

2.1 Introduction

In the developing limb, Sonic Hedgehog (Shh) signaling acts as a morphogen to

specify the final digit pattern and a growth factor by directing a complex transcription

response [8]. Sonic hedgehog (Shh), secreted by a discrete posterior organizing center,

the zone of polarizing activity (ZPA), directs digit number and identity in the verte-

brate limb [9]. Shh signaling is mediated via Gli transcription factor, which contains

zinc finger domain, through a Gli-consensus binding sequence, TGGGTGGTC [8,9].

However, the mechanisms underlying the transcriptional responses are poorly under-

stood. Vokes et al. have predicted 205 putative limb target genes through intersection
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CHAPTER 2. DNA MOTIF ANALYSIS IN GLI BINDING REGIONS

of DNA binding data with gene expression profiles [9]. The binding regions that cor-

respond to the 205 unique genes represent the core set of candidates under direct Gli

transcriptional control in the developing limb [9]. The average size of Gli binding

regions by ChIP-on-chip ranges from 200 to 3000 bp. For a further study on the Gli

target genes, our collaborators have identified the gene expression patterns for the

205 candidate Shh target genes. They have clustered gene expression patterns into 4

expression categories, genes expressed in the posterior and the posterior-distal limb,

genes expressed in the posterior-proximal limb, genes expressed in the central portion

of the limb, genes expressed with multiple spatially distinct domains where one or

more expression domain is within the overall Sonic Hedgehog-responsive region in

the mouse limb. Interestingly, they have noted that the different groups have dis-

tinct requirements for Shh signaling. Shh signaling is required to maintain expression

for genes within the posterior-distal group. Whereas, most genes within the other

domains require Shh signaling only for initiating gene expression.

In this thesis, our aim is to check if there are any specific DNA motifs enriched

in individual gene expression categories and the quality of Gli motifs in Gli binding

regions. Different DNA motifs might be associated with different expression groups.

Gli transcription factor, associated with other proteins, might bind to different DNA

motifs, activating transcription of genes in different domains. The quality of Gli

motifs in Gli binding regions might be statistically different between groups of genes

expressed in the Shh-responsive region and genes that are not expressed in the Shh-
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CHAPTER 2. DNA MOTIF ANALYSIS IN GLI BINDING REGIONS

responsive region. Would this difference have an influence in the expression of genes

in different domains?

2.2 Methods

2.2.1 Data generation

We downloaded the list of 656 peak-gene pairs associated with 261 unique genes in

the limb and list of 396 peak-gene pairs that contained Gli motifs associated with 205

unique genes in the limb from supplemental material in Vokes et al., 2008. The 656

binding regions were the total binding regions associated with differentially expressed

limb genes, of which 396 binding regions containing Gli motifs. The original ChIP-

chip datasets were generated using Affymetrix tilling arrays [10]. Raw data were

quantile normalized and binding regions were determined using the new version of

TileMap incorporated into CisGenome using a moving average (MA) method [6].

Details of generation of the two peak lists were provided in supplemental materials

in Vokes et al., 2008.

Our collaborator Dr. Vokes provided us with 10 groups of genes, which were

identified in Vokes et al., 2008 (Table 2.1). Included in each group are the gene

names and RefSeq ID (as defined by Vokes et al., 2008). Group 1 consists of 58

genes predominately expressed in the Sonic Hedgehog-responsive region in the mouse

limb. Group 2 consists of 24 genes expressed in the posterior and the posterior-

8



CHAPTER 2. DNA MOTIF ANALYSIS IN GLI BINDING REGIONS

distal limb. Group 3 consists of 9 genes expressed in the posterior-proximal limb.

Group 4 consists of 12 genes expressed in the central portion of the limb. Group

5 consists of 13 genes expressed with multiple spatially distinct domains where one

or more expression domain is within the overall Sonic Hedgehog-responsive region

in the mouse limb. Group 6 contains a list of all the 205 Sonic Hedgehog target

genes (as defined by Vokes et al., 2008). Group 7 contains 147 genes that are not

predominately expressed in the Shh responsive region. In other words, this group

contains all other gene expression domains: anterior, proximal-anterior, proximal,

distal, AER, uniform, weak, and unclear. Group 8 is a variant of Group 1. Group 9

is a variant of Group 4. Group 10 is a variant of Group 7.

We used two methods to generate the binding regions for each group. In method

1, we extracted all of the binding regions specific for genes in each group from list of

396 peak-gene pairs that contain Gli sites for de novo motif discovery. The number

of binding regions generated for each group was displayed in Table 2.1. In method

2, we extracted one peak region with the highest MA statistics associated with each

gene in each group from list of 656 peak-gene pairs for de novo motif discovery. All

analyses were done using the mouse genome assembly mm8.

2.2.2 De Novo Motif Discovery

With the binding regions generated for each group by each method, we performed

de novo motif discovery incorporated into CisGenome by running a Gibbs motif sam-
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CHAPTER 2. DNA MOTIF ANALYSIS IN GLI BINDING REGIONS

pler three times independently [10]. Gibbs motif sampler is a de novo motif discov-

ery algorithm that searches for enriched sequence patterns in a collection of DNA

sequences, which can handle multiple motifs simultaneously [10]. The motifs are as-

sumed to be unknown before the search [10]. Each time, 10 motifs were sampled

simultaneously. An initial motif length (L =9, 12, 15) was specified for all motifs

at the beginning of the sampling, and the motif lengths were then updated in the

sampling procedures [10]. As a consequence, we identified 30 motifs for each group

of genes.

A position-specific weight matrix (PWM) was reported for each motif and a motif

score was computed as follows:

S =
log(n)

∑T
j=A pijlog(pij/qj)

W

Here, n is the number of aligned sites that are used to construct the matrix, i.e.

n = ni = niA+niC+niG+niT , where nij (j = A, C, G, T) is the number of occurrences

of nucleotide j at the i-th position of the motif [10]. A pseudocount 0.5 is added to

each nij to avoid zero. pij = nij/ni. qj is the occurrence frequency of nucleotide j in

the background sequences [10]. W is the length of the motif.

As a consequence, we discovered 300 motifs totally for binding regions generated

by method 1. For method 2, we identified 300 motifs totally by de novo motif discovery

as well. Motifs with a score less than 1 were considered to have low quality and were

excluded from further analysis [10].

10



CHAPTER 2. DNA MOTIF ANALYSIS IN GLI BINDING REGIONS

2.2.3 Mapping transcription factor binding motif

to sequences

When mapping a motif PWM to DNA, background sequences were modeled as a

third-order Markov chain [10]. At each position, the likelihood ratio (LR) between the

motif model (PWM) and the background model was computed [10]. A site with LR

greater than 500 was used to define TFBS. This cutoff represents a balance between

sensitivity and specificity of the analysis [10].

For binding regions generated by method 1, we first got ‘matched genomic controls’

for each group. ‘Matched genomic controls’ were control regions carefully chosen to

match the physical distributions of ChIP-binding regions as described in Ji et al.,

2006 [10]. Then, we mapped the motif PWMs discovered by de novo motif discovery

to binding regions of each group. As a complementary motif analysis, we also mapped

the 525 human and mouse motif matrices from TRANSFAC database to binding

regions of each group.

For binding regions generated by method 2, we first got ‘matched genomic controls’

for each group and mapped the motif PWMs discovered by de novo motif discovery

to binding regions of each group. The only difference step was that we did not map

525 human and mouse motif matrices from TRANSFAC database to binding regions

of each group.

11
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2.2.4 Examination of motif’s relative enrichment

levels

In order to identify the key motif that may mediate sequence-specific protein bind-

ing, we compared the relative enrichment levels of different motifs in high-quality

binding regions versus control genomic regions [10]. Statistics r1 was defined to char-

acterize relative enrichment levels of a motif in ChIP-binding regions compared to

control regions. Assume that n1B counts how many times a motif occurs in ChIP-

binding regions, n2B is the total length of non-repeat sequences in ChIP-binding

regions, n1C counts how many times the motif occur in control regions and n2C is the

total length of non-repeat sequences in control regions [10].

r1 =
n1B/n2B

n1C/n2C

defines the relative enrichment level of the motif.

For each group, we compared the occurrence rate of motifs in ChIP-binding regions

compared to ‘matched genomic controls’, that is statistics r1. We chose a motif

selection procedure to select enriched motifs by simultaneously requiring r1 ≥ 2,

motif score S ≥ 1, number of motif sites (n1B) ≥ max(
1

5
∗(number of genes), 5)

(Table 2.1).

For method 1, we applied the motif selection procedure to motifs discovered by

de novo motif discovery. This resulted in 11 enriched motifs in group 1, 8 enriched

motifs in group 2, 3 enriched motifs in group 4, 4 enriched motifs in group 5, 5

12



CHAPTER 2. DNA MOTIF ANALYSIS IN GLI BINDING REGIONS

Group no. Number of Genes Number of Binding regions n1B ≥ cutoff

Group 1 58 141 12

Group 2 24 68 5

Group 3 9 18 5

Group 4 12 17 5

Group 5 13 38 5

Group 6 205 396 41

Group 7 147 255 30

Group 8 60 149 12

Group 9 14 25 5

Group 10 145 247 29

Table 2.1: The table of gene numbers, number of all binding regions associated

with genes in each group and cutoff for number of motif sites in each group for motif

selection procedure.

enriched motifs in group 6, 4 enriched motifs in group 7, 10 enriched motifs in group

8, 9 enriched motifs in group 9 and 5 enriched motifs in group 10 discovered by de

novo motif discovery. Then, we used TOMTOM motif comparison Tool to visualize

their sequence logos with their PWMs as input. Some of motifs reported by the three

independent runs had almost the same sequence pattern. These motifs corresponding

to the same transcription factor were considered to be redundant and were removed
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from further analysis. Only one copy with the highest motif score of these redundant

motifs was kept after visual inspection of motif logos [10]. After taking unions of

motifs enriched in each group, we totally got 23 unique motifs discovered by de novo

discovery method.

We applied the same motif selection procedure to TRANSFAC motifs. As a

consequence, we found 60 of the 525 motifs enriched in group 1, 96 motifs in enriched

group 2, 24 motifs enriched in group 4, 53 motifs enriched in group 5, 19 motifs

enriched in group 6, 10 motifs enriched in group 7, 8 motifs enriched in group 8,

72 motifs enriched in group 9 and 74 motifs enriched in group 10. Motifs enriched

in different groups can be the same. After taking unions of motifs enriched in each

group, we totally had 158 unique motifs from TRANSFAC database enriched in the

ten groups.

For method 2, we also applied the same motif selection procedure to motifs dis-

covered by de novo motif discovery and visualized motif logos using TOMTOM motif

comparison Tool. After removing redundant motifs, we finally found 3 unique motifs

enriched.

2.2.5 Remapping enriched motifs to sequences

We picked out 23 enriched motifs recovered by de novo motif discovery by method

1 and 158 enriched motifs from TRANSFAC database and combined them together

as our final enriched motifs. We mapped the PWMs of enriched motifs to binding

14
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regions of each group generated by method 1 and set likelihood ratio cutoff to 500.

As group 6 contains all the binding regions for the 205 Shh target genes, it is most

appropriate for comparing motif’s relative enrichment levels between the 10 groups.

Thus, we chose the ‘matched genomic controls’ for group 6 as the common negative

control regions for each group. As a result, we had the same denominator of statistics

r1 for each group, n1C/n2C . As some of the motifs occurred very few times in ChIP-

binding regions, we added some pseudo-counts to number of motif sites to reduce bias.

We define r?1 to compare the relative enrichment level of the motif across groups.

r?1 =

n1B + n2B × α× β

(1 + α) × n2B

n1C + n2C × α× β

(1 + α) × n2C

Here, we set α to 0.05, n2B × α × β ≈ 5. The purpose of construction of new

statistics r?1 is to set the ratio r?1 equal to 1 if n1B = n1C = 0. When total length of

non-repeat sequences in ChIP-binding regions (n2B) is small, though number of motif

sites (n1B) is few, we can still get high enrichment level r1. Thus, r1 is not appropriate

for comparing motif relative enrichment levels across groups. We compare the relative

enrichment of motifs in each group in the log2 scales. Adding some pseudo-counts

can avoid the values of infinity when raw relative enrichment r1 is 0.

For each group of genes, we chose a new motif selection procedure to filter out mo-

tifs with very few motif sites in ChIP-binding regions and select final enriched motifs

by simultaneously requiring r?1 ≥ 2, number of motif sites (n1B) ≥ max(
1

5
∗(number

of genes),5). After new motif selection procedure, we filtered out more motifs and
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finally got 9 enriched motifs discovered by de novo motif discovery and 27 enriched

motifs from TRANSFAC database.

Taking unions of the enriched motifs identified from method 1 and method 2, we

finally got 36 motifs by method 1 and 1 Hox motif discovered by method 2. We

drew a heatmap to compare and visualize the relative enrichment of each motif in

each group based on log2(r
?
1). Thus, we can check if there are any motifs specifically

enriched in one expression group.

2.2.6 Checking quality of Gli motifs

From all the enriched motifs recovered by de novo motif discovery, we chose one

Gli motif discovered from group 6 with the highest motif score 5.72. We then mapped

the Gli motif matrix to binding regions of each group (Table 2.2). For calculation of

log likelihood of motif site, the Gli matrix was compared to a third-order background

Markov model and a likelihood ratio ≥ 500 was used as a cutoff to define Gli sites [10].

As for calculation of log likelihood of peak region, the likelihood ratio cutoff was set to

100 for detecting Gli sites. Thus, with a lower cutoff, we could find more motif sites in

one peak region. With the Gli consensus-binding pattern, we calculated probability

of each motif site in each group.
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Position A C G T

1 15.50 152.50 112.50 33.50

2 50.50 13.50 0.50 249.50

3 12.50 1.50 299.50 0.50

4 1.50 1.50 239.50 71.50

5 0.50 0.50 312.50 0.50

6 15.50 0.50 0.50 297.50

7 0.50 1.50 311.50 0.50

8 0.50 0.50 312.50 0.50

9 0.50 95.50 26.50 191.50

10 17.50 295.50 0.50 0.50

Table 2.2: The motif matrix of Gli motif used for checking Gli quality.

2.2.6.1 Log likelihood of motif site

The log likelihood of motif site is computed as follows:

S? =
W∑
i=1

log2(pi)

Here, W is the length of the motif. n is the number of aligned sites that are used to

construct the matrix, i.e. n = ni = niA + niC + niG + niT , where nij (j = A, C, G,

T) is the number of occurrences of nucleotide j at the i-th position of the motif [10].

pi is the probability of nucleotide j at the i-th position of the motif, pij = nij/ni. A
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pseudocount 0.5 is added to each nij to avoid zero. The score S? is used to measure

Gli quality based on motif site, assuming independence between different motif sites

within the same peak region. With the log likelihood of each motif site in each group,

we plot a boxplot based on score S? to compare the relative quality of Gli motif.

2.2.6.2 Log likelihood of motif sites for one peak region

The log likelihood of motif sites for one peak region is computed as follows:

Ŝ =
∑
K

W∑
i=1

log2(pi)

We suppose there are K motifs in one peak region. For motif k, W is the length of

the motif. n is the number of aligned sites that are used to construct the matrix,

i.e. n = ni = niA + niC + niG + niT , where nij (j = A, C, G, T) is the number of

occurrences of nucleotide j at the i-th position of the motif [10]. pi is the probability

of nucleotide j at the i-th position of the motif, pij = nij/ni. A pseudocount 0.5 is

added to each nij to avoid zero. The score Ŝ is the summation of log likelihood of

all the motifs in the peak region. Ŝ is used to measure Gli quality by taking into

consideration of correlation between different motif sites in the same peak region.

With the log likelihood of motif sites for each peak region in each group, we plot a

boxplot based on the score Ŝ to compare the relative quality of Gli motif.
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2.2.6.3 Log likelihood ratio

As a complementary analysis, we also used the log likelihood ratio output from

CisGenome to compare the Gli motif quality. The occurrence of Gli sites in conserved

genomic segments was modeled as Poisson processes [8]. The null hypothesis H0 is

that the segment is not a Gli-binding region, while the alternative hypothesis H1 is the

segment is a Gli-binding region. If a segment is a Gli-binding region, the occurrence

rate of Gli sites was assumed to be λ1 (site/bp). Under H1, each Gli site was assumed

to be generated from the Gli-binding matrix. In contrast, if a segment is not a Gli-

binding region, the occurrence rate of Gli sites was assumed to be λ0 (site/bp). Under

H0, each site was assumed to be generated from the background Markov model. For

each segment, the log likelihood ratio between H1 and H0 was computed as:

S̄ = n× log10(
λ1
λ0

) − (λ1 − λ0) × l × log10(e) + log10(L1) − log10(L0)

Here, l is the length of a conserved segment, n is the number of Gli sites in the

segment obtained by matrix mapping, L1 is the probability to generate the sites

from the Gli-binding matrix, and L0 is the probability to generate the sites from

background Markov model. The log likelihood ratio S̄ is used to measure the Gli

enrichment and rank conserved segments [8].

With the log likelihood ratio of each motif site, we plot a boxplot to compare the

relative quality of Gli motif.
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2.2.6.4 Welch’s t-test

Welch’s t-test defines the statistic t by the following formula:

t =
X̄1 − X̄2√
S2
1

N1

+
S2
2

N2

where X̄i, S
2
i and Ni are the i th sample mean, sample variance and sample size,

respectively.

With the log likelihood of each motif site in each group S?, we conducted Welch’s

t-test on every two groups to compare if there is any difference of quality of Gli motifs

between the 10 groups. With the log likelihood of motif sites for each peak region in

each group Ŝ, we performed Welch’s t-test on every two groups to compare quality

of Gli motifs between the 10 groups.

2.3 Results

2.3.1 Motifs identified by de novo motif discovery

in each group

After motifs were selected, we listed all the 23 enriched motifs discovered by

method 1 (Table 2.3). Gli and Sp1 motifs were found to be highly enriched in each

group. We only kept one copy of the Sp1 motifs (Motif 13) with a score of 4.77 and

one copy of the Gli motifs (Motif 14) with a score of 5.72. There were also some
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Sp1-like motifs, with GC-rich patterns discovered by de novo motif discovery, such as

Motif 1, 3, 4, 10, 11, 21, 22. There were some unknown motifs discovered by de novo

motif discovery. We could not find any known motif patterns similar to these motifs.

Table 2.3: Summary of enriched motifs discovered by de novo motif discovery,

based all the peak regions associated with genes for each group, number of motif

sites (n1B), r1, motif score S, known motif and motif sequence logos. Motif

matrices are represented as sequence logos. Sp1? indicates the motif might be

Sp1-like motif but unclear.

Motif n1B r1

Motif

score

Known

motif
Motif sequence logos

1 74 2.45 2.94 Sp1?

2 75 2.58 1.53

3 54 2.03 2.97 Sp1-like

Continued on next page
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Table 2.3 – Continued from previous page

Motif n1B r1

Motif

score

Known

motif
Motif sequence logos

4 36 2.05 3.15 Sp1?

5 36 2.36 1.54

6 38 3.89 1.48

7 21 3.30 1.43

8 7 4.36 2.87

9 3 3.51 1.23

Continued on next page
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Table 2.3 – Continued from previous page

Motif n1B r1

Motif

score

Known

motif
Motif sequence logos

10 14 2.38 1.69 Sp1?

11 21 2.64 2.05 Sp1?

12 6 2.59 2.15

13 153 2.27 4.77 Sp1

14 128 7.89 5.72 Gli

15 56 2.46 1.66

Continued on next page
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Table 2.3 – Continued from previous page

Motif n1B r1

Motif

score

Known

motif
Motif sequence logos

16 134 2.18 2.06

17 83 2.20 1.58

18 135 2.19 2.19

19 31 9.26 1.21

20 3 2.20 1.54

21 31 4.97 1.62 Sp1?

Continued on next page
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Table 2.3 – Continued from previous page

Motif n1B r1

Motif

score

Known

motif
Motif sequence logos

22 25 5.12 1.82 Sp1?

23 24 10.64 1.52

By method 2, after motif selection procedure, we only identified three enriched

motifs, Gli, Sp1 and Hox motifs. Gli and Sp1 motifs were still enriched in each group.

Hox motif was discovered by de novo motif discovery from peak regions of group 6

and group 10. The one identified from group 10 was kept for further analysis, as the

motif score was higher. This Hox motif drew our attention a great deal on account

of its function. We will discuss the function of Hox motif later.

For binding regions generated by both methods, Sp1 and Gli motifs are consis-

tently enriched in each group, which means that motifs can be unambiguously iden-

tified by de novo motif discovery. For method 2, we lost some peak regions because

we just chose one peak associated with each gene. But the analysis might be more

informative as the peak regions had the highest moving average statistics. It turned
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Motif n1B r1 Motif score Motif sequence logos

Gli 75 7.23 3.81

Sp1 134 2.33 2.97

Hox 36 3.05 2.13

Table 2.4: Summary of enriched motifs discovered by de novo motif discovery, based

one peak region with highest MA statistics associated with each gene for each group,

known motif, number of motif sites (n1B), r1, motif score S and motif sequence logos.

Motif matrices are represented as sequence logos.

out that Hox motif was only discovered by method 2. This might result from the fact

that the 396 peak-gene pairs in method 1 were binding regions containing Gli motifs,

while Hox motif might be enriched in binding regions without Gli motifs. Several un-

known motifs were discovered by method 1. Though unknown, some of these motifs

might be functional elements.
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2.3.2 Analysis of a novel motif in Gli binding re-

gions

By insight of the sequence logo of the motif (Table 2.3), Motif 5 seems uninfor-

mative. Although the motif contains not too much information, a few papers have

reported motifs similar to Motif 5 which seem functional [11]. The mutation of these

motifs affect the ability of the enhancer to turn on the gene. Our hypothesis is that

Motif 5 might be a functional element based on the following evidence. In several

peak regions, the motif sites of this motif occurred twice. The motif might carry

out its function in combinatorial patterns. We aligned the sequences of motif 5 in

each peak region to the mouse genome mm10 in UCSC Genome Browser. Browsing

in UCSC, we uncovered several important genes near motif sites of this motif, such

as Ptch1, Wnt11, Osr2 and Cdk6. The motif sequences are very conserved across

species, and some are conserved even in zebrafish genomes. Further investigation will

be needed to check whether Motif 5 is a promoter or not.

For example, in peak region 12 (chr5: 3347412-3350438) of group 1 generated

by method 1, 4 motif sites were discovered in the forward strand. We aligned the

sequences of motif sites to mouse genome mm10 in UCSC Genome Browser (Figure

2.1). We noted that the sequences were of high conservation across species, even

conserved in chicken (Figure 2.2). And the sequences were not located in the re-

peating elements. Cdk6 gene was found to be in the downstream of the sequences.
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Figure 2.1: Blast results for motif sites of peak region 12 (chr5: 3347412-3350438)

in UCSC Genome brower

Gene Cdk6 regulates the synthesis of cyclin-dependent kinase 6 (CDK6). CDK6 is a

serine/threonine-protein kinase involved in the control of the cell cycle and differen-

tiation.

2.3.3 Comparison of relative enrichment level of

motifs

According to the heatmap that compares the relative enrichment of enriched mo-

tifs, the motifs are enriched in the relative group if log2(r
�
1) ≥ 1. As a result, Gli
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Figure 2.2: Blast results across species for the fourth motif site of peak region 12

(chr5: 3347412-3350438) in UCSC Genome brower

motif is enriched in each group, except for group 3 and group 4. This might be result

from the few peak regions in group 3 and group 4, thus some of the motifs might not

pass the signal-noise-ratio threshold. ZIC1, ZIC2 and ZIC3 motifs, are all Gli motifs,

enriched in group 1, group 2, group 6, group 7, group 8, and group 10. SP1 motif is

enriched in group 1, group 3, group 4, group 6, group 7 and group 10. STAT1 motif is

enriched group 1, group 6 and group 10. AP2, Motif 23, Motif 19, Motif 22 (SP1-like)

and Motif 21 (SP1-like) motifs are enriched in group 4 and group 9. RREB1 motif

is enriched in group 2 and group 8. E2F1 motif is enriched in group 2, group 4 and

group 8. E2F motif is enriched in group 1, group 4, group 6, group 7, group 9 and

group 10. Motif 1, which is an SP1-like motif, is enriched in group 1 and group 4.

29



CHAPTER 2. DNA MOTIF ANALYSIS IN GLI BINDING REGIONS

There are also some motifs that are specifically enriched in one group. AP2GAMMA,

AP2ALPHA, ETF, YY1 motifs are only enriched in group 9. PAX4 is only enriched

in group 3. ELK1 and ZF5, PAX2, NRF1, Motif 7 and Motif 6 are only enriched in

group 2.

As to the Hox motif, it is not enriched in any of the ten groups. It is consistent

with our results as we did not discover the Hox motif in all of the peak regions by

method 1. The enrichment levels of Hox motif are relatively high in group 7 and

group 10, compared with other groups.

Thus, we have identified some motifs specifically enriched in some of the groups.

These motifs might be specifically associated with the relative targeted genes.

2.3.4 There is no statistically significant difference

of Gli quality among different groups.

From the boxplot (Figure 2.4), we can easily see that the mean of log likelihood

score S? of group 4 is very low compared to the other groups. The boxplot of log

likelihood ratio score S̄ (Figure 2.4) is consistent with the boxplot of log likelihood

score S?. We reported the p-value of Welchs t-test on every two groups based on log

likelihood of each motif site in each group (Table 2.5). There is significant difference of

Gli quality between group 4 and group 5 (p-value 0.04), group 4 and group 6 (p-value

0.044), group 4 and group 7 (p-value 0.034). However, according to the histogram
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(Figure 2.5), we can see that the t-tests of Gli quality are dependent thus we can not

make inference based on raw p-value. When the tests are correlated with each other,

p-values are not uniformly distributed. Having a total of 100 hypotheses, the Type I

error with Bonferroni correction is 0.0005 (i.e. 0.05/100). Thus, by assuring family

wise error rate (FWER) less than 0.05, the probability of making even one type I

error in the family is controlled at level 0.05. But after Bonferroni correction, there

is no significant difference of Gli quality between different groups.

Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10

Group1 1.00 0.65 0.78 0.08 0.37 0.22 0.09 0.65 0.76 0.13

Group2 0.65 1.00 0.94 0.06 0.66 0.67 0.42 0.93 0.57 0.50

Group3 0.78 0.94 1.00 0.14 0.87 0.93 0.81 0.91 0.66 0.84

Group4 0.08 0.06 0.14 1.00 0.04 0.04 0.03 0.06 0.17 0.04

Group5 0.37 0.66 0.87 0.04 1.00 0.85 0.87 0.56 0.39 0.96

Group6 0.22 0.67 0.93 0.04 0.85 1.00 0.43 0.47 0.38 0.60

Group7 0.09 0.42 0.81 0.03 0.87 0.43 1.00 0.22 0.27 0.82

Group8 0.65 0.93 0.91 0.06 0.56 0.47 0.22 1.00 0.58 0.29

Group9 0.76 0.57 0.66 0.17 0.39 0.38 0.27 0.58 1.00 0.30

Group10 0.13 0.50 0.84 0.04 0.96 0.60 0.82 0.29 0.30 1.00

Table 2.5: P-value output from Welch’s t-test on every two groups.

Considering of correlation between motif sites, we reported the p-value of Welch’s

t-test on every two groups based on log likelihood of motif sites in each peak region in

each group Ŝ (Table 2.6). From the table 2.6, we can see that there is no statistically

significant difference of Gli quality between the ten groups. The boxplot (Figure 2.7)

also shows that there is not much difference between the mean of log likelihood of
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motif sites in each peak region in each group Ŝ. According to the histogram (Figure

2.6), p-values are not uniformly distributed thus Bonferroni correction is needed.

After Bonferroni correction, there is still no statistically significant difference of Gli

quality between the ten groups.

Thus, we conclude that there is no statistically significant difference of quality

between Gli motifs in Gli binding regions associated with genes expressed in the Shh-

responsive region and Gli motifs in Gli binding regions associated with genes that

are not expressed in the Shh-responsive region. In addition, there is no statistically

significant difference of quality of Gli motifs in Gli binding regions associated with

genes expressed in individual expression groups.

Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10

Group1 1.00 0.56 0.15 0.47 0.81 0.36 0.21 0.98 0.50 0.18

Group2 0.56 1.00 0.40 0.37 0.48 0.99 0.78 0.54 0.34 0.73

Group3 0.15 0.40 1.00 0.24 0.14 0.30 0.42 0.14 0.15 0.46

Group4 0.47 0.37 0.24 1.00 0.52 0.36 0.33 0.47 0.76 0.32

Group5 0.81 0.48 0.14 0.52 1.00 0.36 0.25 0.82 0.61 0.23

Group6 0.36 0.99 0.30 0.36 0.36 1.00 0.56 0.32 0.30 0.47

Group7 0.21 0.78 0.42 0.33 0.25 0.56 1.00 0.18 0.25 0.89

Group8 0.98 0.54 0.14 0.47 0.82 0.32 0.18 1.00 0.50 0.15

Group9 0.50 0.34 0.15 0.76 0.61 0.30 0.25 0.50 1.00 0.23

Group10 0.18 0.73 0.46 0.32 0.23 0.47 0.89 0.15 0.23 1.00

Table 2.6: P-value output from Welch’s t-test on every two groups adjusting for

correlation.
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2.4 Summary and Discussion

2.4.1 Summary

As a result, we found that Gli and Sp1 motifs were highly enriched in all Shh

responsive regions (Figure 2.8). There were some motifs enriched specifically in in-

dividual categories. There were also some Sp1-like motifs, with GC-rich patterns

enriched in all Shh responsive regions, such as Motif 1, 3, 4. GC-rich pattern mo-

tifs were also found in multiple domains, such as Motif 10, 11. We discovered some

unknown motifs (Figure 2.8) in different gene expression categories, such as Motif 5.

Motif 5, enriched in all Shh responsive regions, might be a functional element. There

is no statistically significant difference of Gli quality between Gli motifs in Gli binding

regions associated with genes expressed in the Shh-responsive region and Gli motifs in

Gli binding regions associated with genes that are not expressed in the Shh-responsive

region. Furthermore, there is no statistically significant difference of quality of Gli

motifs in Gli binding regions associated with genes expressed in individual expression

groups. The quality of Gli motif might not have influence on the expression of genes

in different domains.
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2.4.2 Discussion

In our study, Hox motif is found in genes that are not predominately expressed

in the Shh-responsive region in the limb. This could suggest that Hox genes may not

function within GBRs to regulate Shh target genes. Genetic studies have indicated

that 5’HoxD complex have been implicated in the regulation of digit identity and

Shh [9]. 5’HoxD not only plays an important function in the onset of Shh expression

but also becomes targets of Shh regulation [9]. HOXA and/or HOXD proteins have

been confirmed to be required for Shh transcription [12]. Under the control of HOX

proteins, confined expression of Sonic hedgehog (Shh) at the posterior margin of

developing early limb buds determines the anterior to posterior (AP) polarity of the

limb [12]. We also found that enrichment level of HoxA motif was relatively high

in the Shh-responsive region in the limb. To study how Hox may function in Gli

binding regions, we need to do further experiments to figure it out. We could mutate

Hox gene and find if this mutation can influence the development of limb buds. Our

collaborator is planning to do some further experiments on Hox motif. They have

cloned about 40 of the GBRs into reporter vectors to test for activity, silencer or

enhancer. And, they will mutate some specific sites of Hox motif to see if mutations

change reporter expression.

Gli Binding regions contain GC rich sequences that could possibly bind other

factors like SP1 or Kruppel like factors (KLFs), which are both found in the limb

bud. In the four categories, we found some unknown motifs enriched in each category,
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except for genes expressed in the posterior-proximal limb. Motif 8 is enriched in genes

expressed in the central portion of the limb, which contains a TGG sequence. It is

not possible that this motif is a Gli motif but is cut off by the algorithm. The motif

pattern is not similar to Gli motif. By running Glibbs motif sampler three times

independently, Gli motif should be identified if it is enriched in the binding regions.

As there are too few peak regions in this group, so it is possible that Gli motif could

not be identified by de novo motif discovery. Some of the motifs might not pass

the signal-noise-ratio threshold. To improve analysis, we could generate more peak

regions in each category, or develop a new algorithm that can detect some weak motifs

even with few peak regions.

In order to check whether Motif 5 is a function element or not, we will map the

PWM of Motif 5 to mouse whole genome. With the motif sites identified, we can

count how many motif sites are located within 1kb upstream of transcription start

site (TSS), 1 kb downstream of transcription end site (TES), Intragene and Intergene.

We will cluster the motif sites and repeat the same analyses on the mouse genome.

If we can find a strong correlation between the clustered sites and promoters, Motif

5 is highly likely to be a functional promoter element [2].
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Figure 2.3: Heatmap of motifs’ enrichment levels for each group. 37 enriched motifs

were compared based on log2(r
?). 36
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Figure 2.4: The boxplot of log likelihood score S? and log likelihood ratio S̄ across

groups. 37
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Figure 2.5: Histogram of raw p-value output from Welch’s t-test on every two

groups.
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Figure 2.6: Histogram of raw p-value output from Welch’s t-test on every two groups

adjusting for correlation.
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Figure 2.7: The boxplot of log likelihood score S? across groups adjusting for cor-

relation.
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Figure 2.8: Summary of motifs enriched in each category, with motif’s enrichment

level r1, number of motif sites in ChIP-binding regions n1B. The motif number is the

same as in table 2.3. The cartoons of E10.5 forelimbs showing the observed expression

patterns of each category are from Dr.Vokes’s laboratory.
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Chapter 3

Antibody-specific motif analysis

with application to human MYC

3.1 Introduction

Myc protein is a transcription factor encoded by the c-MYC gene (thereafter

termed MYC), which regulates around 15% of genes in the human genome [13].

Myc is a helix-loop-helix leucine zipper transcription factor, which forms a het-

erodimer with MYC-associated factor X (Max). The Myc and Max heterodimer

binds to the DNA consensus sequence, Enhancer Box (E-box) having the sequence

5’-CACG/ATG-3’ [13, 14]. Upon binding, Myc/Max recruits cofactors that regulate

the transcription of distinct genes which are involved in cell cycle progression, dif-

ferentiation and apoptosis [13, 14]. Myc has the ability to activate and repress gene
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transcription. Elevated expression of Myc transcription factor is frequently found

in 70% of human tumors [13]. Myc/Max dimers associate with other transcription

factors to repress gene transcription, such as Miz-1 or NF-Y [15]. Myc plays an

important role in stem cell pluripotency, self-renewal and induction of adult cells

back to pluripotent state [14]. The role of Myc is found to be cell type and species

independent [14].

Chromatin immunoprecipitation (ChIP) was performed using two different anti-

Myc antibodies in human P493-6 B cells, a model of Burkitt lymphoma (BL) that

had an Epstein-Barr virus genome and a tetracycline (tet)-repressible human MYC

transgene [14]. The choice of model of human P493-6 B cells is because human B

lymphoma cells could bear inducible MYC [14]. Burkitt lymphoma is an outstanding

example for MYC overexpression due to a chromosomal translocation involving the

c-MYC gene [13]. After removal of tetracycline, Myc protein is highly induced [14].

As a result, resting P493-6 cells are recruited into the active cell cycle [14]. The

two different anti-Myc antibodies are the Santa Cruz (SC) anti-N-terminal Myc an-

tibody and the Epitomics (Epit) monoclonal anti-N-terminal Myc antibody [14]. A

sensitive and specific antibody will give a high level of enrichment compared with

the background, which makes it easier to detect binding events [4]. We sought to

unravel if the binding targets of Myc transcription factor are antibody-specific. The

interactions of Myc with different antibodies are distinct as they have different bind-

ing sites. The different binding patterns can influence the affinity of Myc with DNA
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motifs. With different antibodies, the Myc-antibody complexes might have differ-

ent structures, thus their preference of DNA motifs might be different. If there exist

antibody-specific DNA motifs of transcription factors, we can effectively select specific

antibody for ChIP experiments to study the mechanism of gene regulations.

Thus, the goal of our study is to identify antibody-specific motifs with application

to Myc transcription factor by using high-throughput genomic approaches.

3.2 Methods

3.2.1 Data preparation

We collected ChIP-chip data for Myc TF from Gene Expression Omnibus (GEO,

Human, GEO accession no: GSE32220). The ChIP-chip datasets were generated

using Affymetrix human promoter 1.0R array platform [10]. The ChIP-chip data

were analyzed using CisGenome. All analyses were done using the human genome

assembly hg19.

3.2.2 General data analysis protocol

Cisgenome first loaded the raw data and then did the quantile normalization,

finally exported the intensities of each data [10]. After quantile normalization, we ap-

plied TileMapv2 Moving Avarage (MA) algorithm for ChIP-chip peak detection im-
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Data Species Type Platform Samples Sources

P493 B cells Human

ChIP-chip

(Santa Cruz

antibody)

Affymetrix

Human

Promoter

1.0R Arrays

6 (3 IP vs.3

IgG control)

GEO

(GSE32220)

P493 B cells Human

ChIP-chip

(Epit

antibody)

Affymetrix

Human

Promoter

1.0R Arrays

4 (2 IP vs.2

IgG control)

GEO

(GSE32220)

Table 3.1: ChIP-chip Data Used in the Analysis

plemented in CisGenome to define potential protein-binding regions for the ChIP-chip

datasets (Myc) [10]. Here we have two antibodies: Epitomics (Epit) monoclonal anti-

N-terminal Myc antibody and Santa Cruz(SC) anti-N-terminal Myc antibody [14]. In

human P493-6 B cells, the Santa Cruz (SC) anti-N-terminal Myc antibody revealed

Myc binding to 2452 regions. Using the Epitomics (Epit) monoclonal anti-N-terminal

Myc antibody, 1957 Myc binding regions were identified. We took union of the peak

lists from two antibodies together and got 3507 binding regions. Then, we output the

average probe intensities in each peak region of the 8 samples from Cisgenome, 3 IPs

from SC antibody, 2 IPs from Epit antibody and 3 IgG controls. With the average

probe intensities of the samples, we can check if there is any statistically significant

difference between the binding intensity of probe with ChIP sequence immunoprecip-

itated by different antibodies.
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3.2.3 Comparison of probe intensity between two

antibodies using limma

Limma is a package from Bioconductor for the analysis of gene expression mi-

croarray data, especially the use of linear models for analyzing designed experiments

and the assessment of differential expression [16]. With the average probe intensities

of the IP samples, we can check difference of probe intensity between two antibodies

by limma package from Bioconductor.

3.2.3.1 Checking normalization

First, we plot a scatter plot for each replicate of the sample to visualize if the data

were normalized. If the data were not well normalized, the probe intensities across

samples were not comparable thus differentiation analysis by limma would not make

sense.

3.2.3.2 Linear model

We used limma package to check if there is any difference of probe intensity

between SC antibody and Epit antibody groups. We fitted a multiple linear models

by weighted or generalized least squares and empirical Bayes methods using the input

data. Our design for the linear model is:

y = β0 + β1 ∗ x
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Here x is a dummy variable, taking values of 0 or 1. x = 0 indicates the Epit

antibody group, while x = 1 indicates the SC antibody group. y indicates average

probe intensities for each IP sample. β1 characterizes the difference of average probe

intensities between the two antibodies. β0 is the average probe intensity of IP samples

from Epit antibody group.

And we checked difference of average probe intensity by performing Wald’s test.

If the coefficient of different groups, i.e. β1 is significant different from 0, we consider

there might be statistically significant difference of average probe intensity between

the two antibodies. Our significance level is set at 0.05.

3.2.3.3 Generating new groups

Here, adjusted p-value (i.e. q-value) is used to check if there is any difference of

average probe intensity between the two antibodies. When adjusted p-value is larger

than 0.05, we conclude that there is no statistically significant difference between

the two antibodies. When adjusted p-value is less than 0.05, we conclude that there

is statistically significant difference between the two antibodies. Based on adjusted

p-value and t statistics, we divided the 3507 peak regions into five groups:

Myc Group 1: t-statistic> 0, q-value< 0.05 (significant difference, SC antibody strong

binding)

Myc Group 2: t-statistic< 0, q-value< 0.05 (significant difference, Epit antibody

strong binding)
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Myc Group 3: q-value> 0.5 (no difference)

Myc Group 4: t-statistic> 0, 0.05 <q-value< 0.5 (grey area)

Myc Group 5: t-statistic< 0, 0.05 <q-value< 0.5 (grey area)

Myc Group 1 and Myc Group 2 represent regions having significant difference of

binding intensity between the two antibodies. Regions in Myc Group 1 have a higher

binding intensity with SC antibody, while regions in Myc Group 2 have a higher

binding intensity with Epit antibody. Myc Group 3 represents regions that there is

no significant difference of binding intensity between the two antibodies. Myc Group

4 and Myc Group 5 represent regions of grey area, which are unclear.

3.2.3.4 De novo motif discovery

For the five new groups of peak regions, enriched sequence patterns were identified

through de novo motif discovery. Each time, 20 motifs were sampled simultaneously.

An initial motif length (L =9, 12, 15) was specified for all motifs at the beginning of

the sampling, and the motif lengths were then adjusted during the sampling proce-

dures. A position-specific weight matrix (PWM) and motif score were reported for

each motif. As a consequence, we identified 60 motifs for each group.
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3.2.3.5 Mapping transcription factor binding motif to se-

quences

In order to identify the key motif that may mediate sequence-specific protein bind-

ing, we compared different motifs’ relative enrichment levels in ChIP-binding regions

versus control genomic regions. With the 300 motifs discovered in the previous step

and 525 human and mouse motif matrices from TRANSFAC database, we mapped

the PWM of total 825 motifs to each group of binding regions and set likelihood ratio

cutoff to 500.

r1 =
n1B/n2B

n1C/n2C

defines the relative enrichment level of the motif. It is the same with detailed de-

scription in Chapter 2.

For each group, we compared the occurrence rate of Myc-binding regions com-

pared to ‘matched genomic controls’, i.e. statistics r1. We chose a cutoff to de-

fine enriched motifs by simultaneously requiring motif score S ≥ 1, r1 ≥ 2, n1B ≥

max(0.1∗(number of peak regions), 10). Motifs with a score less than 1.0 were con-

sidered to have low quality, so we excluded them from our further analysis.

With the enrichment level of 825 motifs in each group, we can compare if there

are any different enriched motifs between different groups.
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3.2.3.6 Fisher’s exact test

Fisher’s exact test is a statistical significance test used in the analysis of con-

tingency tables. We conducted a fisher’s exact multiple test on motif’s enrichment

levels in peak regions of Myc Group 1 and Myc Group 2. Total length of non-repeat

sequences in ChIP-binding regions (i.e. n2B) can be described as total number of

all possible starting points of a motif site. Number of motif sites in ChIP-binding

regions (i.e. n1B) can be described as number of observed starting points of a motif

site in ChIP-binding regions. Our null hypothesis is that the relative enrichment lev-

els of the same motif in Myc Group 1 and Myc Group 2 are the same. Alternative

hypothesis is that the relative enrichment levels of the same motif in Myc Group 1

and Myc Group 2 are different. For each motif, our dataset is presented in Table 3.2.

The probability of obtaining any such set of values is given by the hypergeometric

distribution:

p =

(
n2B

n1B

)(
n′
2B

n′
1B

)
(
n2B + n′

2B

n1B + n′
1B

)
We conducted a Fisher’s exact test, two-tailed, in the R statistical computing

environment to check if there were any statistically significant differences of motif’s

enrichment levels between Myc Group 1 and Myc Group 2. The significance level is

set at 0.25. Bonferroni correction is needed in the multiple Fisher’s exact tests.
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Number of observed

starting points of

a motif site in

ChIP-binding regions

Number of points

that are not

observed to be

starting points of

a motif site in

ChIP-binding regions

Number of all

possible starting points

of a motif site in

ChIP-binding regions

Myc Group 1 n1B n2B − n1B n2B

Myc Group 2 n1B n2B − n1B n2B

n1B + n1B n2B + n2B − n1B − n1B n2B + n2B

Table 3.2: Data in a 2 × 2 contingency table for Fisher’s exact test for each motif

3.3 Results

3.3.1 Common binding regions

Signals from both Myc IP and IgG controls were normalized, and binding regions

were detected and visualized using CisGenome [14]. Intersection of the two peak lists

from SC antibody and Epit antibody identified 885 common Myc binding regions

in both data sets. Among 2452 Myc binding regions, 1564 regions were identified

only by Santa Cruz (SC) anti-N-terminal Myc antibody. Among 1957 Myc binding

regions, 1058 regions were identified only by Epitomics (Epit) monoclonal anti-N-

terminal Myc antibody. Only about 25% of the binding regions were discovered by

both antibodies. Thus, we wondered whether the rest binding regions uncovered by
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only one antibody were antibody-specific or not.

3.3.2 There is linear increasing relationship be-

tween Epit antibody and SC antibody

With the average probe intensity of each sample, we can check if the average

probe intensities were normalized. We plotted scatter plots on every two samples

of IgG controls, every two samples of SC IP and two samples of Epit IP and fitted

simple linear regression models. From the scatter plots between every two of the

samples, we found that normalization has been done (Figure 3.1, 3.2). The average

probe intensities of each sample were within the interval (6, 14). And each sample

correlated with others very well, with multiple R-squared ranging from 0.51 to 0.76.

The correlation between every two samples was very high, thus we knew that the

average probe intensities were normalized.

To reduce probe effect, we compared the difference of average probe intensities

between IPs and IgG controls for each antibody rather than just comparing the IPs

of the two antibodies. We plotted a scatterplot based on the difference of average

probe intensities in the log2 scales between IPs and IgG controls for each antibody.

From the scatter plot of average probe intensity between Myc-Epit log2(IP/IgG) and

Myc-SC log2(IP/IgG) (Figure 3.3), we found that the two antibodies correlated with

each other with correlation coefficient of 0.39. Most of the data points were centered
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around the linear regression line, while there were only a few regions that might be

antibody-specific.

According to the output of the linear regression by limma, the minimum of ad-

justed p-values is 0.87 (Figure 3.5). All the adjusted p-values are larger than 0.05.

From Student’s t Q-Q plot (3.4), we found that the residuals were normally dis-

tributed. Thus, we concluded that there was no statistically significant difference of

average probe intensities between the two antibodies. The two antibodies correlated

with each other very well. As q-values were larger than 0.8, we cannot generate

five groups according to the values of q-value. Because the p-value was uniformly

distributed (Figure 3.5), we considered to perform the analysis and see if we could

find some specific motifs with different preference for the two antibodies though not

significant. Thus, we generated new five groups of peak regions based on p-values

instead of q-values, with cutoffs same as described in methods. We performed de novo

motif discovery analysis on five groups of peak regions and found enriched motifs in

each group.
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3.3.3 Enriched motifs in different groups and com-

parison of relative enrichment of enriched

motifs.

After visual inspection of motif logos, redundant motifs were removed. Only one

copy with the highest motif score of these redundant motifs was kept. By motif

selection procedure of 300 motifs discovered by de novo motif discovery, the motif

patterns of 13 enriched motifs were summarized and put in table 3.3. Myc motif was

discovered from binding regions of each group. In Myc Group 1, 8 motifs discovered

by de novo motif discovery were enriched, Motif 2, Motif 29, Motif 39, Motif 52, Motif

125, Motif 131, Motif 133 (Myc) and Motif 247. In Myc Group 2, 1 motif discovered

by de novo motif discovery was enriched, Motif 260. Motif 209, which is a Myc motif,

discovered by de novo motif discovery was enriched in Myc Group 3. Motif 209, which

is a Myc motif, discovered by de novo motif discovery was enriched in Myc Group 4.

In Myc Group 5, 4 motifs discovered by de novo motif discovery were enriched, Motif

133 (Myc), Motif 256, Motif 270 and Motif 284.

Then, with the relative enrichment levels of the 825 motifs, we first selected motifs

enriched in Myc Group 1 by requiring r1 ≥ 2, n1B ≥ 10 and compared the enrichment

levels of these enriched motifs in five groups (Figure 3.6). Motif 2, Motif 29, Motif

39, Motif 52, Motif 125, Motif 131 and FOXO1 and PEA3 and IRF motifs were

only enriched in Myc Group 1. Next, we selected motifs enriched in Myc Group 2
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by requiring r1 ≥ 2, n1B ≥ 13 and compared the enrichment levels of these enriched

motifs in five groups (Figure 3.7). Motif 260 was only enriched in Myc Group 2.

Then, we selected motifs enriched in Myc Group 3 by requiring r1 ≥ 2, n1B ≥ 162 and

compared the enrichment levels of these enriched motifs in five groups (Figure 3.8).

The criteria for motifs enriched in Myc Group 4 was r1 ≥ 2, n1B ≥ 97 simultaneously

(Figure 3.9). USF, ARNT and EBOX motifs were found to be only enriched in

Myc Group 3 and Myc Group 4. Finally, we selected motifs enriched in Myc Group

5 by requiring r1 ≥ 2, n1B ≥ 74 simultaneously and compared the enrichment levels

of these enriched motifs in five groups (Figure 3.10). Motif 256, Motif 270 and Motif

284 were enriched only in Myc Group 5. Myc motif was enriched in binding regions

of every group except for Myc Group 2.

Table 3.3: Summary of enriched motifs discovered by De novo motif discovery,

motif score, known motif, motif logos. Motif matrices are represented as sequence

logos.

Motif id Motif score Known Motif Motif sequence logos

Motif 209 5.47 MYC

Continued on next page
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Table 3.3 – Continued from previous page

Motif id Motif score Known Motif Motif sequence logos

Motif 133 4.92 MYC

Motif 131 3.53

Motif 125 3.41

Motif 260 2.86

Motif 270 2.51

Motif 284 2.22

Continued on next page
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Table 3.3 – Continued from previous page

Motif id Motif score Known Motif Motif sequence logos

Motif 247 2.19

Motif 39 1.93

Motif 256 1.57

Motif 29 1.47

Motif 52 1.26

Motif 2 1.09
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3.3.4 Differential DNA motifs between Myc Group

1 and Myc Group 2

As Myc Group 1 and Myc Group 2 both contain peak regions whose relative

p-value of the linear model is less than 0.05, the only difference is the sign of t

statistics. Regions in Myc Group 1 have a higher binding intensity with SC antibody,

while regions in Myc Group 2 have a higher binding intensity with Epit antibody.

We sought to find if there were any statistically significant differences of motif’s

enrichment level between Myc Group 1 and Myc Group 2.

After performing Fisher’s exact test, we used Bonferroni family wise error rate to

check differences of motif’s enrichment level between Myc Group 1 and Myc Group

2. Having a total of 825 hypotheses, the Type I error with Bonferroni correction is

0.00030 (i.e. 0.25/825). Thus, by assuring FWER ≤ 0.25, the probability of making

even one type I error in the family is controlled at level 0.25.

There were two motifs that were of significantly different enrichment levels between

Myc Group 1 and Myc Group 2, Motif 41 and Motif 52 (Table 3.4). They were all

discovered from Myc Group 1, and the enrichment levels of Motif 41 and Motif 52 were

higher in Myc Group 1. Our hypothesis is that Motif 41 and Motif 52 might be SC

antibody specific binding motifs. Motif 41 seems not to be very informative. Thus, we

will not discuss the function of Motif 41. We used TOMTOM motif comparison Tool

to visualize the sequence logo of Motif 52, and noted that Motif 52 was very similar to
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Sfpi1 motif (Figure 3.11). Sfpi1 is bound to Transcription factor PU.1. The function

of Sfpi1 is binding to the PU-box, a purine-rich DNA sequence (5’- GAGGAA-3’) that

can act as a lymphoid-specific enhancer. Sfpi1, as a transcriptional activator, may be

specifically involved in the differentiation or activation of macrophages or B-cells. As

our ChIP-chip experiments were conducted in human B-cells, Sfpi1 motif might be

involved in differentiation or activation of B-cells and specifically bound to Myc-SC

antibody.

Motif id Motif logo

Motif 41

Motif 52

Table 3.4: Motifs that were of significantly different enrichment levels between

Myc Group 1 and Myc Group 2. Motif matrices are represented as sequence logos.
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3.4 Summary and Discussion

3.4.1 Summary

By comparing the difference of average probe intensities between IPs and IgG

controls for each antibody, we noted that there was linear increasing relationship be-

tween Epit and SC antibodies for MYC. After dividing the union of the two peak lists

into five groups based on p-values, we found some motifs were enriched in individual

groups. Motif 260 was only enriched in Myc Group 2. Myc motif was enriched in

binding regions of every group except for Myc Group 2. The enrichment levels of

Motif 41 and Motif 52 (Table 3.4) were found to be of significantly different between

peak regions of Myc Group 1 and Myc Group 2. That is, Motif 41 and Motif 52 might

be SC antibody-specific binding motifs. Motif 41 does not contain too much informa-

tion. But Motif 52 is very similar to Sfpi1 motif, might be involved in differentiation

or activation of B-cells and specifically bound to Myc-SC antibody.

3.4.2 Discussion

By intersection of the two peak lists from SC and Epit antibody, we just identified

885 common Myc binding regions. At first, we considered that the two antibodies

might not correlate with each other well. However, after fitting a linear regression of

average probe intensities, we found that there was good correlation between Epit and
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SC antibodies for MYC. Such a few common binding regions might be resulted from

algorithm of detecting binding regions. According to previous studies, intersections

of the two peak regions revealed by Epit and SC antibodies were used to determine

binding targets of Myc [14]. As Epit and SC antibodies correlate with each other well,

we could use union of the two peak regions to find binding targets of Myc. Analyzing

based on intersections of two datasets might result in losing some binding targets of

Myc. There are very few regions that are antibody specific. The interactions of Myc

with different antibodies are distinct as they have different binding sites. The binding

pattern of Myc with different antibodies can influence the binding of Myc to different

DNA motifs in several ways. The binding of antibody with Myc might occupy the

binding site of Myc with some particular DNA motifs. As a consequence, these regions

cannot be immunoprecipitated by this antibody. The binding of antibody with Myc

might give rise to deformation of Myc’s structure, thus Myc could not recognized

some specific DNA motifs any more. This kind of study can be beneficial to the

choice of antibody when conducting a ChIP-chip experiment.

In addition, we found that Sfpi1 motif might be SC antibody-specific binding

motif. Sfpi1, as a member of the Ets family, is expressed selectively on B cells, myeloid

cells and macrophages [17]. PU.1/Sfpi1 regulates the expression of several genes,

which is crucial for macrophage and B-cell differentiation. Sfpi1 plays an important

roles in the renewal of progenitor cells and in early differentiation [18]. Published

literature consistently refers to the regulation of PU.1 in the progenitors of blood cells

61



CHAPTER 3. ANTIBODY-SPECIFIC MOTIF ANALYSIS WITH
APPLICATION TO HUMAN MYC

[18]. In our study, enrichment level of Sfpi1 motif is relatively higher in binding regions

immunoprecipitated by SC antibody than in binding regions immunoprecipitated by

Epit antibody for Myc. However, we are not sure if the significant difference of

enrichment level of Sfpi1 motif is happened by chance or not. Further studies are

needed to check if Sfpi1 motif is SC antibody-specific binding motif for Myc. Our

findings suggest that future investigation of the motif is worthwhile. Furthermore, we

should analyze other transcription factors to see if antibody-specific binding motifs

really exist.
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Figure 3.1: Scatter plot of every two replicates of Myc IgG controls
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Figure 3.2: Scatter plot of every two replicates of MYC IPs.
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Figure 3.3: Scatter plot between Myc-Epit log2(IP/IgG) and Myc-SC

log2(IP/IgG)
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Figure 3.4: QQ plot of average probe intensities of IP samples.
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Figure 3.5: Histogram of adjusted p-value and p-value output from limma package

in R
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Figure 3.6: Comparison of relative enrichment level of enriched motifs in Myc Group

1

Figure 3.7: Comparison of relative enrichment level of enriched motifs in Myc Group

2
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Figure 3.8: Comparison of relative enrichment level of enriched motifs in Myc Group

3

Figure 3.9: Comparison of relative enrichment level of enriched motifs in Myc Group

4
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Figure 3.10: Comparison of relative enrichment level of enriched motifs in

Myc Group 5
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Figure 3.11: Comparison of motif logos: up is motif logo of Sfpi1, down is motif

logo of Motif 52.
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