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ABSTRACT  
 
Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause 
mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in 
CV disease risk. The effects of exercise upon the myocardium and vascular system are 
dependent upon the frequency, intensity and duration of the exercise itself. Following a 
prolonged period (≥ 6 months) of regular intensive exercise in previously untrained individuals, 
resting and sub-maximal exercising heart rates are typically 5-20 beats lower, with an increase in 
stroke volume of ~ 20% and enhanced myocardial contractility. Structurally, all four heart 
chambers increase in volume with mild increases in wall thickness’s, resulting in greater cardiac 
mass due to increased myocardial cell size. With this in mind, the present paper aims to review 
the basic science behind the CV benefits of exercise. Attention will be will be paid to 
understanding 1) the relationship between exercise and cardiac remodelling, 2) the cardiac 
cellular and molecular adaptations in response to exercise, including the examination of 
molecular mechanisms of physiological cardiac growth and applying these mechanisms to 
identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure 
and 3) vascular adaptations in response to exercise. Finally, this review will briefly examine how 
to optimise the CV benefits of exercise, by considering how much and how intense exercise 
should be. 
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INTRODUCTION  

The cardiovascular (CV) benefits of regular physical exercise are well documented. 

Cardiorespiratory fitness is a strong predictor of CV disease and all-cause mortality [1, 2], with 

increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk 

[3]. Indeed, a 41% reduction in mortality was reported in 786 former Tour de France cyclists 

compared to the general French male population [4].  The effects of exercise upon the 

myocardium and vascular system are dependent upon the frequency, intensity and duration of the 

exercise itself. Following a prolonged period (≥ 6 months) of regular intensive exercise in 

previously untrained individuals, resting and sub-maximal exercising heart rates are typically 5-

20 beats lower, with an increase in stroke volume of ~ 20% and enhanced myocardial 

contractility [5]. Structurally, all four heart chambers increase in volume with mild increases in 

wall thicknesses, resulting in greater cardiac mass due to increased myocardial cell size.   

 

With this in mind, the present paper aims to review the basic science behind the CV benefits of 

exercise. Attention will be will be paid to understanding 1) the relationship between exercise and 

cardiac remodelling, 2) the cardiac cellular and molecular adaptations in response to exercise, 

including the examination of molecular mechanisms of physiological cardiac growth and 

applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological 

remodelling and heart failure and 3) vascular adaptions in response to exercise. Finally, this 

review will briefly examine how to optimise the CV benefits of exercise, by considering how 

much and how intense exercise should be. 
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Cardiac structure and functional adaptations in response to exercise 

Exercise and cardiac remodelling 

The term ‘Athlete’s Heart’ refers to a constellation of adaptations that affect the structure, 

electrical conduction and function of the heart that facilitate appropriate increases in cardiac 

output during exercise. There is a plethora of studies demonstrating dilatation of all 4 cardiac 

chambers and an increase in the maximal wall thickness in trained individuals compared to 

sedentary controls. Whilst CV adaptation depends on the modality, intensity and volume of 

conditioning, even in previously sedentary individuals, intensive and prolonged endurance 

training leads to cardiac remodelling mimicking parameters commonly observed in athletes [6].  

 

Athlete’s heart dogma suggests that endurance athletes present with eccentric hypertrophy, 

whilst athletes whose training is predominately resistance based present concentric hypertrophy. 

A recent meta-analysis of 92 prospective echocardiographic or CMR studies involving elite male 

athletes however, demonstrated that whilst both endurance and resistance-trained athletes 

demonstrate larger LV structures than sedentary controls (with greater volumes observed in 

endurance athletes), LV wall thicknesses were similar between both groups thwarting support for 

concentric hypertrophy in resistance only athletes (Table 3) [7]. Limited echocardiographic data 

are available on the right cardiac chambers, though data from cardiac magnetic resonance (CMR) 

studies suggest a balanced structural adaptation between LV and RV chambers in both young 

and veteran athletes [8, 9]. 
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Cardiac remodelling in life-long exercisers 

Ageing is associated with changes to the CV system that underpin a reduced functional capacity, 

although regular endurance exercise training may slow this progressive decline in CV function. 

Using CMR, our group observed that male veteran endurance athletes (56 ± 6 years) involved in 

lifelong (43 ± 6 years) exercise had smaller LV and RV end-diastolic and end-systolic volumes, 

with matched wall thicknesses and LV mass compared to younger male endurance athletes (31 ± 

5 years) [9] (Table 2). Yet compared to age-matched controls (60 ± 5 years), veteran athletes had 

larger absolute and indexed LV and RV end-diastolic and systolic volumes, wall thicknesses and 

LV and RV stroke volumes. Despite known age related reductions in cardiomyocyte numbers, 

this data supports findings of maintained LV mass and cardiac compliance in trained veterans, 

likely through hypertrophy of the remaining cells and an increase in interstitial tissue.   

 

Upper limits of cardiac remodelling in athletes 

Whilst the majority of athlete’s exhibit structural and electrical changes that are considered 

physiological, there are however, an extremely small proportion of athletes who develop 

pronounced morphological changes which overlap with phenotypic expressions of cardiac 

pathology associated with sudden cardiac death; namely hypertrophic cardiomyopathy, dilated 

cardiomyopathy and arrhythmogenic RV cardiomyopathy. From four large echocardiographic 

studies examining 5,053 elite, predominately male athletes [10-13], 134 (2.7%) demonstrated a 

maximal wall thickness ≥12mm, of which 27 athletes (0.5%) presented ≥13 mm. In absolute 

terms and regardless of an athlete’s body surface area, the upper limit of physiological 

hypertrophy in athletes is considered ≥13 mm for maximal wall thickness and ≥65 mm for LV 
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internal diameter in diastole. Values above these should be viewed with suspicion; heightened if 

the athlete also presents with personal symptoms suggestive of an underlying cardiac condition, a 

family history of sudden cardiac death and/or an abnormal ECG. In conclusion, whilst there is no 

upper threshold where the CV health benefits observed with regular exercise are diminished, 

there does however, appear to be an upper limit to physiological cardiac remodelling.  

 

Cardiac cellular and molecular adaptations in response to exercise 

Cellular cardiac adaptations – hypertrophy, death and renewal 

Cardiac growth has been generally defined as either physiological or pathological. Exercise-

induced cardiac growth as a prototype of physiological heart growth is associated with normal 

cardiac structure, cell hypertrophy [14, 15], no cell death or fibrosis [16-18], activation of 

resident cardiac stem cells and cardiomyocyte renewal [15, 19, 20], angiogenesis [15, 21, 22] 

and normal or improved cardiac function [15, 16]. Pathological cardiac remodelling is typically 

associated with death of cardiomyocytes, fibrotic replacement, cardiac dysfunction, and 

increased risk of heart failure and sudden death (Figure 1) [23, 24].  

 

Although very low, the human heart has the capacity to self-renew cardiomyocytes over a 

lifespan [25]. The adult heart harbours a pool of resident endogenous cardiac stem and 

progenitor cells (eCSCs). These small primitive cells, positive for stem cell surface receptor 

markers (i.e. c-kit, Sca-1) and negative for markers of the hematopoietic lineage (i.e. CD45) and 

mast cells (i.e. tryptase), exhibit properties of stem cells; being clonogenic, self-renewing and 
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multipotent, both in vitro and in vivo [26, 27]. We have recently shown that intensity-controlled 

treadmill exercise in adult rats produces improved cardiac function and increased myocardial 

mass through cardiomyocyte hypertrophy, and new cardiomyocyte and capillary formation 

(Figure 2). The latter is due to the activation and ensuing differentiation of the eCSCs (Figure 3) 

[15]. Moreover, endurance swim training in mice induced cardiomyocyte hypertrophy and 

renewal, which was dependent on a reduction in the expression of the transcription factor 

C/EBPb [19]. 

 

Molecular mechanisms of physiological cardiac growth 

The molecular mechanisms and signalling cascades underpinning cardiac adaptations with 

exercise are shown in Table 1. The best characterized signalling cascade responsible for 

mediating physiological cardiac growth is the IGF-1-PI3K(p110α)-Akt pathway. Indeed, 

increased cardiac IGF-1 expression and activation of the PI3K (p110α) pathway has been 

implicated in increased cardiomyocyte hypertrophy with endurance exercise in athletes [28]. 

Furthermore, over-expression of the IGF-1 receptor (IGF-1R) in cardiomyocytes increases 

myocyte size, with absence of myocyte death or disarray, and enhanced systolic function, and 

PI3K and ensuing Akt phosphorylation were increased in the hearts of IGF-1R transgenic mice 

[29]. On the other hand, mice lacking the p85 subunit of PI3K showed attenuation of exercise-

induced cardiac hypertrophy [30] and in mice with ablation of the IGF-1R gene in 

cardiomyocytes, the hypertrophic response to swim exercise training was blunted [31]. 

Importantly, PI3K(p110α) is critical for physiological exercise-induced growth of the heart but 

not for pathological growth. dn-PI3K mice showed significant hypertrophy in response to 
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pressure overload, but a blunted hypertrophic response to swim training, when compared to non-

transgenic mice [32]. Additionally, hearts of double transgenic mice over-expressing both the 

IGF-1R and dnPI3K were not significantly different in size to those from dnPI3K mice alone 

[29]. 

 

Akt, a serine/threonine kinase (also known as protein kinase B), is a well characterized target of 

PI3K activity. Recent studies on Akt knockout mice suggest that Akt1 is required for 

physiological rather than pathological heart growth. Akt1 knockout mice (showing normal 

cardiac phenotype under basal conditions) showed a blunted hypertrophic response to swim 

training but not to pressure overload [33]. On the other hand, overexpression of nuclear-targeted 

Akt does not directly induce cardiac hypertrophy; however, transgenic hearts are protected from 

ischemia-reperfusion injury [34]. 

 

We have identified the up-regulation of the growth factors, neuroregulin, BMP-10, IGF-1, and 

TGF-β1 in the cardiomyocytes following high intensity treadmill exercise training. IGF-1 and 

neuroregulin increase eCSC proliferation, with the activation of their respective receptors and 

physiologic molecular signalling targets, Akt and STAT-3, respectively [15]. Furthermore, over-

expression of myocardial IGF-1 increases the survival and number of eCSCs and prevents 

myocyte attrition during ageing fostering myocyte renewal, which is governed by the PI3K-Akt 

signalling pathway [35]. Intriguingly, cardiac-specific expression of nuclear-targeted Akt in 

transgenic mice prolongs postnatal cardiomyocyte cycling and promotes the expansion of the c-

kitpos-Nkx-2.5pos cardiac progenitor cell population. However, cardiac progenitor cells 
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genetically modified to overexpress nuclear-localized Akt exhibit increased proliferation but 

have inhibited capacity for cardiomyocyte lineage commitment [36]. On the other hand, BMP-10 

and TGF-β1 stimulated differentiation of the eCSCs into the three main cardiac lineages; 

cardiomyocytes, vascular smooth muscle and endothelial cells [15]. 

 

Utilising the cellular and molecular mechanisms of exercise to identify new therapeutic targets 

By identifying the cellular and molecular mechanisms associated with physiological cardiac 

remodelling we can identify new therapeutic targets that could prevent or reverse pathological 

remodelling and heart failure. Exercise increases the production and secretion of key growth 

factors, e.g. IGF-1, HGF, neuregulin1, VEGF, BMP-10, nitric oxide, periostin, TGF-β1, PDGF, 

and their associated signalling pathways [28, 37-41].  Intracoronary injections of IGF-1 and 

HGF, following myocardial infarction in a pig heart  promotes cardiomyocyte survival and 

contractility, induces eCSC migration, proliferation and cardiomyogenic differentiation, leading 

to physiologically significant myocardial repair and regeneration [42]. Moreover, Santini et al. 

[43] found that in post-infarcted mice, which express the transgene of the locally acting IGF-1 in 

the myocardium (mIGF-1), had improved myocardial repair and function, attributable in part to 

an increase in the number of newly-formed cardiomyocytes. The origin of these replenished 

myocytes was not determined, but in light of recent findings it is likely they are the product of 

eCSC myogenic differentiation. 

 

Finally, by identifying the specific profile of cardiac up-regulated and down-regulated miRNAs 

in exercise trained physiological hypertrophic hearts, as opposed to pathological hypertrophy; it 
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will be possible to test the relative miRNA-mimics and/or miRNA antagonists/inhibitors as a 

specific therapy for CV disorders. This work is currently on-going. 

 

Vascular structure and functional adaptions in response to exercise 

Exercise, the endothelium and nitric oxide 

The endothelium is a single layer of cells that lines the entire CV system and plays a key role in 

the vascular adaptations seen with exercise training.  The endothelium produces a number of 

vasoactive hormones that alter the tone of conduit and resistance vessels. Principle amongst these 

is nitric oxide (NO), which, in addition to causing smooth muscle cell relaxation and 

vasodilation, has antiatherogenic and antithrombotic properties [44]. Indeed, the endothelium 

and the release of NO has been postulated as the vehicle for exercise-induced improvement in 

CV risk profile, given that modification of traditional risk factors explain only of 50% of risk 

reduction in patients performing exercise [45]. 

 

In response to an increase in blood flow and shear rate, endothelial NO is released and over time 

(and exercise stimulus) repeated episodic increases in shear stress provoke vascular adaptation 

and remodeling of the artery. The integrity of blood vessels function can be assessed using the 

technique of flow-mediated dilatation (FMD) which uses an ischemic challenge to induce 

changes in shear stress that stimulates vasodilation that is NO dependent [46]. Acute exercise 

causes a biphasic FMD response. Immediately post-exercise (5-30 minutes), FMD is reduced, 

with enhanced FMD 1-24 hours post-exercise, and a normalisation back to baseline between 24-

https://www.google.com/search?biw=1440&bih=721&q=antiatherogenic+and+antithrombotic&spell=1&sa=X&ei=PxCEVK7fEoKyUYHjg_gP&ved=0CBkQvwUoAA
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48 hours. The post exercise reduction in FMD is dependent on exercise intensity and mode, with 

higher intensities causing a greater reduction in FMD. The mechanisms responsible for reduced 

FMD relate to an increase in oxidative stress [47], and/or a decline in endothelial (arginine) 

substrate utilization to cleave NO [48]. Additionally, high intensity exercise may cause more 

oscillatory or retrograde flow patterns that inhibit the NO production pathways than the more 

laminar antegrade flow patterns promoted at lower intensities [49].  

 

Exercise-induced adaptations of the endothelium and the blood vessels have been reviewed 

extensively [50]. Briefly, studies undertaken in symptomatic CHD patients report that exercise 

enhances endothelial function both locally (in the popliteal artery following leg exercise) and 

systemically (in the brachial artery following leg exercise) [51]. This pattern of response is less 

clearly evident in healthy asymptomatic individuals and may be intensity-related, with low to 

moderate intensity exercise enhancing endothelial function whereas high intensities do not [52]. 

Tinken et al. [53] qualified this by measuring FMD every 2 weeks across 8 weeks of training and 

observed that following an initial up-regulation, FMD returned to baseline after 4 weeks;  

suggesting that studies which measure FMD merely pre and post, would likely miss training-

induced changes.  

 

Longitudinal training studies report enlarged diameter of conduit arteries and indeed, when 

assessed by peak vasodilator capacity, Tinken et al. [53] reported the same change from weeks 4 

to 8 of training. Taken together, FMD and vasodilator capacity data signify that with training, 

endothelial function improves prior to a structural modification of the vessel, and that the latter 
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occurs to normalise shear rate and thereby return FMD to baseline levels. These observations 

may also help explain the paradox that in athletic population’s endothelial function is similar to 

sedentary individuals. Rowley et al. [54] reported larger vessel diameters in the dominant versus 

non-dominant arms of squash players, and that both diameters were larger than sedentary 

controls. In addition, wall thickness was less in squash players and consequently wall to lumen 

ratios was reduced in athletes. Therefore the structural modification that enhances lumen size in 

the athlete operates to normalise shear rate and explains the observed “normal” FMD in elite 

athletes.  

 

The mechanisms responsible for the up regulation of endothelial function and the structural 

diameter changes appear to relate to shear stress during exercise. Tinken et al. [55] repeated the 

8-week exercise training study reported previously, with the exception that blood flow and shear 

rate were reduced by the inflation of a pneumatic cuff in one arm during each training session. In 

the un-cuffed arm the usual pattern of increased FMD followed by structural modification was 

observed, whereas in the cuffed arm these adaptations were abolished (Figure 4). This data 

strongly suggests that shear stress is obligatory for training-induced changes in vascular structure 

and function. The changes in wall thickness were independent of shear rate modification, 

suggesting that a systemic rather than localized mechanism exists, with the most likely candidate 

being changes in transmural pressure [56]. 

 

The vasculature is the target for both functional and structural change in response to exercise. 

The degree of change detected is dependent on the individual’s health and fitness status, as well 
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as exercise intensity. What is clear is that the phenotype for an athlete’s artery is different from 

sedentary individuals (Figure 5). The athlete’s artery is characterized by a large lumen with a 

thin wall and relatively normal endothelial function. Such structural modification conveys 

performance and health benefits, although the exact mechanism responsible for these 

modifications requires further investigation. 

 

 

Optimising the CV benefits of exercise  

How much exercise? 

In 2008, the U.S. Department of Health and Human Services released ‘physical activity 

guidelines for Americans’ [57]; being 150-300 minutes per week of moderate intensity aerobic 

exercise or 75 minutes per week of vigorous intensity exercise. Whilst all exercise programmes 

must consider intensity, duration and frequency; it is total volume of exercise that appears to be 

the most consistently related to the size of reduction in CV disease or functional improvement 

[58]. Whilst no optimal exercise volume or ‘dose’ has been established, low doses of casual 

lifelong exercise (2-3 sessions per week) do not prevent the decreased cardiac compliance and 

distensibility observed in healthy yet sedentary ageing. Bhella et al. [59] observed stiffer 

ventricles in casual exercisers (2-3 sessions per week) than committed (4-5 exercise sessions per 

week), with LV distensability similar between casual exercisers and sedentary individuals. Since 

LV stiffening is associated with the pathophysiology of many CV conditions, the ‘dose’ of 

exercise is clearly an important consideration in the prevention of CV disease.  
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How intense should exercise be? 

Exercise intensity, specifically vigorous (>6 METS) or high intensity interval training [HIIT; 

>85% 𝑉𝑉𝑉̇𝑉2peak or >90% HR peak, separated by 2-3 minutes of active recovery], and its impact 

upon CV health and cardiorespiratory fitness vs. moderate-intensity continuous training (MICT) 

has recently received significant attention. A meta-analysis of patients with cardiometabolic 

diseases (i.e. coronary artery disease, heart failure, hypertension, metabolic syndrome and 

obesity) observed significantly greater increases in 𝑉𝑉𝑉̇𝑉2peak following HIIT compared to MICT, 

equivalent to 9%, meaning that HIIT improved cardiorespiratory fitness by almost double [60]. It 

appears that HIIT improves cardiorespiratory fitness more than MICT across a broad range of 

populations, including healthy sedentary [61] and heart failure patients with preserved ejection 

fractions [62]. Possessing good aerobic capacity is important, as 𝑉𝑉𝑉̇𝑉2max is a prognostic marker of 

CV disease more so than any other established risk factor [63]. It should be noted however, that 

6 METS is often used as a definition of ‘vigorous’ activity, equating to just 21 ml.kg-1.min-1. 

Thus MET use for prescribing high-intensity exercise is mediocre at best, as it does not consider 

an individual’s exercise capacity. 6 METS in relatively fit individual is likely to be far from 

>85% 𝑉𝑉𝑉̇𝑉2peak or >90% HR peak. 

 

The vast majority of evidence suggests that regular (≥4 times per week), sustained (≥45 minutes) 

and intensive exercise throughout life is the most advantageous to optimise CV health. However, 

considering that physical activity rates in adolescents and adults are reducing year on year, a 

balance must be struck considering 1) there is no lower exercise threshold for CV benefits to be 
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seen, and 2) CV disease risk reduction is greatest in the un-fittest individuals who start 

exercising, signifying that ‘some exercise is better than none’.  

 

CONCLUSION 

In conclusion, exercise is a potent stimulator activating numerous downstream cascades at a 

molecular and cellular level, that if sustained and intensive enough enables gross anatomical 

remodelling capable of enhancing functional capacity in both healthy and diseased populations. 

Since aerobic capacity is a prognostic marker of CV disease and mortality more than any other 

established risk factor, clinicians should promote the expansive benefits of exercise in all 

spectrums of society, be it the casual exerciser, the sedentary individual or those with established 

CV disease.   
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Figure legends 

Figure 1: Cellular cardiac adaptations with physiological and pathological remodelling 

The question mark after irreversible signifies whether by identifying cellular and molecular 
mechanisms, new therapeutic targets could be devised to reverse pathological remodelling. 
These cellular and molecular mechanisms could be identified from what occurs with 
physiological remodelling and as a result of exercise training.  

Figure 2: Intensity controlled treadmill running exercise in rats induces cardiac 
myogenesis and angiogenesis 

A, A small newly formed BrdUpos (green) cardiomyocyte (α-sarcomeric actin; red) in the LV of a 
high intensity exercising animal. (Inset is x2 zoom of boxed area). Nuclei detected by DAPI in 
blue. B, The % number of BrdUpos cardiomyocytes formed was dependent on exercise duration 
and intensity. C, A newly formed BrdUpos (green) capillary (vWF; red) from the LV of a high 
intensity exercising animal (Inset is x2 zoom). D, Capillary density in the LV of exercising 
animals was dependent on exercise intensity. (Data are Mean ± SEM, *P<0.05 vs. CTRL, 
**P<0.05 vs. LI, †P<0.05 vs. 1 (B) & 2 (B & D) weeks; n=6 for All). Adapted from Waring et 
al. [15] 

Figure 3: Activation and proliferation of c-kitpos eCSCs in hearts of exercising animals 

A, c-kitpos eCSC number in the LV of CTRL and following 2 or 4 weeks of high intensity 
exercise training. B, c-kitpos (green), Ki67pos (white) eCSCs from the LV (α-sarcomeric actin; 
red) of a high intensity exercise trained animal. Nuclei detected by DAPI in blue. (Data are Mean 
± SEM, *P<0.05 vs. CTRL; n=6 for All). Panel A is adapted from Waring et al. [15] 

Figure 4: Relative change in brachial artery flow mediated dilation (FMD) from baseline 
(FMD%) across the 8-week handgrip exercise training in healthy young men.  

FMD (an index of endothelial function) adapts rapidly to training and then returns towards 
baseline levels. These adaptations may be superseded by other functional changes or structural 
arterial remodelling. When the shear stress response to each bout of exercise was ameliorated by 
inflation of a proximal pressure cuff, functional adaptations were not apparent. These studies 
suggest that repeated increases in shear stress are obligatory for adaptation of conduit arterial 
function in response to exercise training. Figure from [50]. 

Figure 5: An athlete’s artery relative to an artery from a healthy non-athletic control 
subject.  

A figure representing an ‘athlete's artery’ comprising of a larger lumen dimension with a 
decreased wall thickness, relative to an artery from a healthy non-athletic control individual. 
Two key points to consider; 1) this conclusion is draw from endurance athlete data as little is 
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known about the systematic effects of resistance or power athleticism on arterial size or function, 
and 2) it is not always apparent that athletes’ arteries are larger based on resting lumen 
dimensions; this is due to the possible compensatory increase in basal constrictor tone in larger 
arteries. Figure from [64].  
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Table 1: Molecular Features of Physiological and Pathological Cardiac Remodelling 

HSF1; Heat Shock Transcription Factor 1. S6K1; Ribosomal S6 kinase 1. EGF; Epidermal 
growth factor. TGFβ; transforming growth factor beta. BMP-10; Bone morphogenetic protein-
10. IGF-1; Insulin-like Growth factor-1. ET-1; Endothelin-1. TNFα; Tumor necrosis factor 
alpha. ANP; Atrial natriuretic peptide. BNP; Brain natriuretic peptide. β–MHC; beta-myosin 
heavy chain. SERCA2A; sarcoplasmic reticulum Ca2+ ATPase. ERKs; Extracellular signal-
regulated kinases. JNKs; c-Jun N-terminal kinases. MAPKs; Mitogen-activated protein kinases. 
CAMKII; Ca2+ /calmodulin-dependent protein kinase II. Written in Italics – Not directly shown 
to be activated by exercise but have been shown to have a protective role in the heart and with 
physiological heart growth. Data taken from Bernardo et al. [65] and Waring et al. [15]

PHYIOLOGICAL PATHOLOGICAL 
↑ autocrine and paracrine humoral factors 
such as IGF-1, neuroregulin, periostin, 
BMP-10, TGFβ, cardiotrophin 1 (CT-1).  

↑ autocrine and paracrine humoral factors 
(AngII, ET-1, noradrenaline, TGFβ, TNFα, 
serum response factor)  

↑ Heat shock proteins 20, 27 and 70 ↑ expression of fetal genes (ANP, BNP, β-
MHC, α-actin)  

↑ S6K1, eNOS ↑ Ca2+ handling proteins (SERCA2A) 
↑ Rates of fatty acid and glucose oxidation ↑ S6K1, RhoA,  
Microarray – cell survival, fatty acid 
oxidation, insulin signalling, EGF signalling 
and HSF1 gene clusters 

Microarray – inflammation, apoptotic, 
cardiac fetal gene and oxidative stress gene 
clusters 

miRNA-1, -133, -29c  miRNA-1, -133 
  
Signalling Pathways Signalling Pathways 

- IGF-1-PI3K(p110α)-Akt pathway GPCR-Gαq signalling 
- Gp130/JAK/STAT pathway - PI3K(110γ) 
- Thyroid Hormone signalling - MAPKs (ERKs, JNKs, p38-

MAPKs) 
- HSF1 pathway  - Protein kinases C (PKC) and D 

(PKD) 
 - Calcineurin and calmodulin 

(CAMKII) 
 - GTPases - Ras and Rho 
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Table 2: CMR data indices of LA, LV and RV volumes, mass and systolic function. Values are expressed as mean ± SD and (range).  

Veteran Athletes 
(VA) 

Age-Matched Controls 
(C) 

Young Athletes 
(YA) 

 Absolute Absolute 
^BSA 

Absolute Absolute 
^BSA 

Absolute Absolute 
^BSA 

P value  
(VA vs. C) 

P value  
(VA vs. 
YA) 

LAEDV  
(ml) 

70 ± 13 
(52 – 92) 

25.7 ± 5.6 
(24.6 – 34)  

78 ± 12 
(54 – 101) 

26.6 ± 3.5 
(18 – 32) 

72 ± 21 
(43 – 117) 

25.5 ± 6.8 
(22.6 – 35.3) 

0.567 1.000 

LVEDV 
(ml) 

182 ± 28 
(142 – 232) 

66.8 ± 11.3 
(52 – 81) 

143 ± 18 
(100 – 170) 

52.8  ± 6.6 
(36 – 65) 

211 ± 35 
(162 – 272) 

74.7  ± 9.6 
(57 – 88) 

P<0.001 0.018 

LVESV 
(ml) 

63 ± 16 
(42 – 90) 

23 ± 6.4 
(16 – 35) 

42 ± 9 
(25 - 61) 

15.5 ± 3.4 
(19 – 23) 

76 ± 18 
(47 - 111) 

26.8 ± 5.6 
(16 – 39) 

P<0.001 0.049 

IVSd  
(mm) 

11 ± 1 
(9 – 13) 

7.8 ± 0.9 
(6.6 – 9.5) 

10 ± 2 
(7 – 13) 

6.9 ± 1.0 
(5.1 – 9.4) 

10 ± 1 
(9 – 12) 

7.4 ± 0.5 
(6.6 – 8.5) 

0.049 1.000 

PWd  
(mm) 

10 ± 1 
(8 – 11) 

6.9 ± 0.9 
(5.8 – 8.2) 

8 ± 1 
(7 – 10) 

5.9 ± 0.6 
(7 – 7) 

10 ± 1 
(9 – 12) 

7.3 ± 0.5 
(6.5 – 8.5) 

P<0.001 0.113 

LV Length 
(mm) 

88 ± 6 
(78 – 97) 

63 ± 4.5 
(56.8 – 70) 

93 ± 6 
(84 – 102) 

96.0 ± 5.8 
(85 – 104) 

97 ± 7 
(89 – 112) 

69.1 ± 3.1 
(62.4 – 73.9) 

0.088 P<0.001 

LV mass 
(g) 

148 ± 16 
(120 – 167) 

54.6 ± 6.7 
(45 – 66) 

147 ± 23 
(108 – 180) 

54.2 ± 7.1 
(44 – 71) 

151 ± 23 
(119 – 210) 

53.3 ± 5.2 
(43 – 64) 

1.000 1.000 

RVEDV 
(ml) 

181 ± 24 
(150 – 227) 

66.6 ± 9.4 
(56 – 88) 

146 ± 19 
(113 – 187) 

54.2 ± 7.2 
(41 - 66) 

215 ± 37 
(143 – 276) 

72.1 ± 21.5 
(58 – 92) 

0.003 0.008 

RVESV 
(ml) 

63 ± 15 
(45 – 96) 

23 ± 6.4 
(18 – 37) 

42 ± 13 
(25 – 69) 

15.8 ± 4.7 
(8 – 25) 

82 ± 22 
(41 – 114) 

26.8 ± 5.6 
(18 – 42) 

0.005 0.011 

LVSV  
(ml) 

119 ± 18 
(101 – 163) 

43.8 ± 6.9 
(36 – 56) 

101 ± 11 
(75 – 1115) 

37.3 ± 4.1 
(27 – 46) 

136 ± 21 
(104 – 183) 

47.9 ± 5.4 
(36 – 55) 

0.014 0.036 

RVSV  
(ml) 

119 ± 16 
(102 – 174) 

43.7 ± 6.4 
(36 – 54) 

104 ± 12 
(77 – 124) 

38.4 ± 4.0 
(28 – 48) 

133 ± 21 
(97 – 154) 

44.5 ± 12.6 
(36 – 45) 

0.047 0.093 

LVEF  
(%) 

66 ± 5 
(55 – 71) 

- 71 ± 4 
(64 – 78) 

- 65 ± 4 
(56 – 74) 

- 0.008 1.000 
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RVEF  
(%) 

66 ± 5 
(58 – 75) 

- 72 ± 6 
(63 – 82) 

- 62 ± 6 
(53 – 73) 

- 0.03 0.22 

LAEDV, left atrium end diastolic volume; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end systolic volume; 
IVSd, intra-ventricular septum during diastole; PWd, posterior wall thickness during diastole; LV length, left ventricular length; 
LVmass, left ventricular mass; RVEDV, right ventricular end diastolic volume; RVESV, right ventricular end systolic volume; LVSV, 
left ventricular stroke volume; RVSV, right ventricular stroke volume; LVEF, left ventricular ejection fraction; RVEF, right ventricular 
ejection fraction. Data from [9] 
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Table 3: Left ventricular structural and functional data in male endurance-trained, resistance-trained and sedentary control subjects. 
Data are mean, (95% confidence intervals), [number of studies; number of participants].  

Parameter Endurance-
Trained (ET) 

Resistance-
Trained (RT) 

Sedentary 
Controls (CT) 

P-value  
(All 
groups) 

Post-hoc 
significan
t 
difference
s 

Heterogeneity test 

Hetero-
geneity 

I squared 
(%) 

P value 

LV mass 
(g) 
 

232  
(200-260) 
[n=64; 1099] 

220  
(205-234) 
[n=25; 510] 

166  
(145-186) 
[n=59; 1239] 

P<0.001 ET,RT>C
T 

21 99.8% <0.001 

IVSWT 
(mm) 
 

11.0  
(10.8-11.3) 
[n=68; 1802] 

11.0  
(10.3-11.8) 
[n=19; 408] 

9.2  
(8.9-9.5) 
[n=63; 1352] 

P<0.001 ET,RT>C
T 

98 99.2% <0.001 

PWT (mm) 
 

10.6  
(10.3-10.9) 
[n=57; 1928] 

10.4  
(9.8-10.9) 
[n=14; 370] 

8.8  
(8.6-9.1) 
[n=53; 1433] 

P<0.001 ET,RT>C
T 

87 99.2% <0.001 

LVEDD 
(mm) 
 

54.8  
(54.1-55.6) 
[n=61; 1548] 

52.4  
(51.2-53.6) 
[n=17; 384] 

50.1  
(49.5-50.7) 
[n=56; 1174] 

P<0.001 ET>RT,C
T 
RT>CT 

95 99.1% <0.001 

LVEDV 
(ml) 
 

171  
(157-185) 
[n=34; 493] 

131  
(120-142) 
[n=14; 189] 

135  
(125-145) 
[n=34; 539]  

P<0.001 ET>RT,C
T 

23 99.2% <0.001 

LV SV 
(ml) 
 

106  
(97-116) 
[n=28; 479] 

86  
(77-95) 
[n=9; 125] 

83  
(77-90) 
[n=27; 590] 

P<0.001 ET>RT,C
T 
 

16 98.7% <0.001 

LV EF (%) 
 

63  
(61-64) 
[n=42; 1330] 

66  
(62-70) 
[n=7; 85] 

64  
(62-65) 
[n=37; 878] 

P=0.365 NA 2.0 97.7% <0.001 

LV E/A 
 

2.0  
(1.9-2.1) 
[n=34; 844] 

1.9  
(1.7-2.0) 
[n=8; 214] 

1.8  
(1.7-1.9) 
[n=34; 868] 

P=0.014  8.5 98.8% <0.001 

LV E’ 13.6  *  11.0  P=0.014  18 98.6% <0.001 



26 
 

 

LV-left ventricle, IVSWT-inter ventricular septal wall thickness, PWT-posterior wall thickness, EDD-end-diastolic dimension, EDV-
end-diastolic volume, SV-stroke volume, EF-ejection fraction, E/A-peak early to atrial Doppler trans-mitral flow velocities, E’ peak 
septal early diastole longitudinal tissue velocity, *-insufficient data,  NA – not applicable as main effect not significant (p>0.05). Data 
from [7] 

 

 (12.3-14.9) 
[n=7; 204] 

 
 

(9.4-12.6) 
[n=4; 183] 
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