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Abstract

Our main result is a computation of ER(n)∗(CP∞), the Real Johnson-Wilson

cohomology of CP∞, for all n. We apply techniques from equivariant stable homotopy

theory to the Bockstein spectral sequence. We produce permanent cycles, compute

differentials, and solve extension problems to give an explicit description of the ring

ER(n)∗(CP∞). In the case n = 1, our results reproduce KO∗(CP∞) as computed

by Sanderson, Fujii, Yamaguchi, and Bruner and Greenlees. In the case n = 2, our

result yields the TMF0(3)-cohomology of CP∞ after a suitable completion.

This thesis forms part of a program to compute the ER(n)-cohomology of basic

spaces. We conclude with a discussion of work in progress with Kitchloo and Wilson

on the ER(n)-cohomology of CP k, classifying spaces of various groups, and Eilenberg-

MacLane spaces, as well as future directions and possible applications to topology and

geometry.

We include an appendix which proves some lemmas in equivariant stable homotopy

theory used in our computations.
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Chapter 1

Introduction

1.1 Motivation

In differential topology, a classic problem is to determine, given an n-dimensional

manifold M , the smallest k such that M immerses in Rn+k. For real projective spaces

RP n, Milnor [1] proved lower bounds on k by showing that the nonvanishing of char-

acteristic classes in singular cohomology obstructs the existence of immersions. Since

then, many (see [2]) have demonstrated new nonimmersions by replacing singular co-

homology by various other complex-oriented cohomology theories, which by definition

support characteristic classes for complex vector bundles. Their values on a wide

variety of spaces are immediately computable—complex projective spaces CP k and

CP∞, the universal Grassmanian of complex q-planes BU(q), and others. Complex-

oriented theories often also carry symmetries induced by the underlying geometry and
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CHAPTER 1. INTRODUCTION

encoded by a group action. Taking fixed points of this action frequently yields coho-

mology theories which, though no longer complex-oriented, are much richer especially

in their ability to detect torsion. This is critical, as many invariants in topology are

torsion, such as all elements in the stable homotopy groups of spheres πsk for k > 0.

Furthermore, such fixed point theories often detect geometric data, such as certain

nonimmersions of projective spaces (see [3] and chapter 4), which go unseen by any

complex-oriented theory. Very generally, computations with these fixed point theories

and the torsion they uncover are the subject of this thesis.

1.2 Background and statement of results

The complex cobordism spectrum, MU , carries an action of C2, the group of

order two, coming from complex conjugation and may be constructed as a genuine

(indexed on a complete universe) C2-equivariant spectrum, MR. At the prime 2, the

Johnson-Wilson spectrum, E(n), is an MU -algebra with coefficients

E(n)∗ = Z(2)[v1, . . . , vn−1, v
±1
n ]

where vk is in cohomological degree −2(2k − 1). E(n) may also be constructed as

a genuine C2-equivariant spectrum, Real Johnson-Wilson Theory, ER(n) [4]. It has

the structure of an associative and commutative MR-algebra up to homotopy and

its underlying nonequivariant spectrum is E(n). Let ER(n) denote the fixed point

spectrum ER(n)C2 . When n = 1, ER(1) is KR(2), Atiyah’s Real K-theory with
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CHAPTER 1. INTRODUCTION

underlying nonequivariant spectrum KU(2), and ER(1) is KO(2), real K-theory. After

a suitable completion, the spectrum ER(2) is (additively) equivalent to the spectrum

TMF0(3) of topological modular forms with level structure [5].

Just as there is a fibration

ΣKO
η // KO // KU , η ∈ KO−1

there is for each n a fibration

Σλ(n)ER(n)
x(n) // ER(n) // E(n)

where x(n) ∈ ER(n)−λ(n) is (2n+1− 1)-nilpotent and λ(n) = 2(2n− 1)2− 1 = 22n+1−

2n+2 + 1. This was constructed in [6] and leads to a Bockstein spectral sequence of

the form

Ei,j
1 = E(n)iλ(n)+j−i(X)⇒ ER(n)j−i(X)

This spectral sequence has been used to compute the ER(2)-cohomology of real pro-

jective spaces and establish some new non-immersion results [3, 7, 8]. The ER(n)-

cohomology of BO(q) has been computed for all n and q in [9].

Our main result is a computation of ER(n)∗(CP∞) for all n. ER(n) is not a

complex oriented theory, and so the computation is nontrivial. The Atiyah-Hirzebruch

spectral sequence is unwieldy, so we use the Bockstein spectral sequence instead. Even

this has nontrivial higher differentials, but what makes ER(n)∗(CP∞) computable is

the fact that, after some rearranging, the only interesting differential is d1 and the
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CHAPTER 1. INTRODUCTION

higher differentials all play out in the coefficients. In fact, this phenomenon extends

for many spaces beyond CP∞. This thesis forms part of a program to compute the

ER(n)-cohomology of basic spaces which we continue in future work [10,11].

Before stating the result, we fix some notation. For any z ∈ E(n)2k(CP∞),

let ẑ denote zv
k(2n−1)
n . In particular, we have v̂i := viv

−(2i−1)(2n−1)
n and, letting

u ∈ E(n)2(CP∞) denote the complex orientation, û := v2n−1
n u. Let c denote the

involution on E(n)∗(CP∞) coming from the action of C2 on ER(n). We show that

c(û) = û∗ is given by the power series v2n−1
n [−1]F (u), where F is the formal group

law over E(n)∗ with [2]F (u) = v0u+F v1u
2 +F · · ·+F vnu

2n . Under the identification

CP∞ = BSO(2), the product ûû∗ ∈ E(n)∗(CP∞) is v
2(2n−1)
n times the first Pon-

tryagin class. In Proposition 3.3, we describe a class in ER(n)∗(CP∞) which lifts

ûû∗ ∈ E(n)∗(CP∞). We denote the lift by p̂1. In E(n)∗(CP∞), we also have the sum

û + û∗. We show that this lifts to ER(n)∗(CP∞) as a power series in p̂1, denoted

ξ(p̂1). We have the main theorem of this thesis.

Theorem 1.1. There is a short exact sequence of modules over ER(n)∗

0 −→ im(N res
∗ ) −→ ER(n)∗(CP∞) −→ ER(n)∗[[p̂1]]

(ξ(p̂1))
−→ 0

where im(N res
∗ ) is the image of the restricted norm

Z(2)[v̂1, . . . , v̂n−1, v
±2
n ][[ûû∗]]{û, vnû} ⊂ E(n)∗(CP∞)

N∗ // ER(n)∗(CP∞)

such that for all z, N∗(z) maps to z+c(z) under the map ER(n)∗(CP∞) −→ E(n)∗(CP∞).

4



CHAPTER 1. INTRODUCTION

Remark 1.2. Although the middle and right terms of the short exact sequence of

Theorem 1.1 are rings, the ER(n)∗-module im(N res
∗ ) is not an ideal of ER(n)∗(CP∞)

and the right hand map is not a ring homomorphism. However, we give a complete

answer for ER(n)∗(CP∞) as an algebra in terms of generators and relations in The-

orem 3.24. A simpler answer than either Theorem 1.1 or 3.24 is given by restricting

to degrees multiples of 2n+2 (note that ER(n) is 2n+2(2n − 1)-periodic), though this

portion of it contains none of the 2-torsion:

ER(n)2n+2∗(CP∞) = ER(n)2n+2∗(pt)[[p̂1]]

Remark 1.3. Note that neither the complex orientation u nor û lift to ER(n)∗(CP∞),

but ûû∗ does. The characteristic class ξ(p̂1) by which we quotient in the right

hand term above is not zero in ER(n)∗(CP∞) but is in the image of the norm,

ξ(p̂1) = N∗(û). It has geometric significance as we discuss further in Remark 3.18.

Remark 1.4. In Theorem 1.1 for n = 1, it turns out that ξ(p̂1) = −p̂1, and so the

right hand term reduces to the coefficients ER(1)∗. This is not true for n > 1 (see

Remark 3.25). In the case n = 1, our results reproduce KO∗(CP∞), which has some

history. KO∗(CP∞) was first computed in degree zero by Sanderson [12] then in

all degrees with ring structure on KOeven(CP∞) by Fujii [13]. Yamaguchi [14] gave

the first complete description of KO∗(CP∞) as a ring. All three computations use

the Atiyah-Hirzebruch spectral sequence. Bruner and Greenlees [15] computed the

connective real K-theory of CP∞ using the Bockstein spectral sequence.
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CHAPTER 1. INTRODUCTION

Chapter 2 gives the background for our computations: we review the construction

of the Real Johnson-Wilson theories, the Kitchloo-Wilson fibration, and the Bockstein

spectral sequence. In chapter 3, we carry out the computation of ER(n)∗(CP∞). In

3.1 and 3.2 we identify the key permanent cycle, ûû∗, and give a convenient reformu-

lation of the E1-page of the Bockstein spectral sequence. In section 3.3 we compute

E∗,∗2 . From there, sections 3.4-3.6 break up the Bockstein spectral sequence into a

short exact sequence of spectral sequences and show that the remainder of the com-

putation happens in the coefficients via a Landweber flatness argument. In section

3.7, we prove Theorem 1.1, describe the multiplicative structure, and state the most

explicit form of the answer as an algebra over ER(n)∗. Finally, section 3.8 describes

the very clean form of the answer that occurs after a certain completion. In chapter

4, we discuss future directions suggested by our results. The appendix at the end

contains some key equivariant lemmas necessary for our computations.
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Chapter 2

Background

2.1 Real Johnson-Wilson theories

Before constructing the Real Johnson-Wilson theories, we need some definitions

and constructions from C2-equivariant homotopy theory (see [16] and [4] for more

details). Let α denote the sign representation of C2. By a genuine C2-equivariant

spectrum E, we mean a collection of spaces EV ranging over finite-dimensional C2-

representations V = s+ tα together with a transitive system of based C2-equivariant

homeomorphisms

EV −→ ΩW−VEW , for V ⊆ W

Such spectra represent bigraded cohomology theories E?(−) given by

Es+tα(−) = [−,Σs+tαE]C2

7



CHAPTER 2. BACKGROUND

The C2-action means there is an involution on E. Letting ι∗E denote the underly-

ing nonequivariant spectrum, there is an induced involution on the (nonequivariant)

cohomology groups (ι∗E)∗(−), which we denote by c.

A fundamental example of a C2-equivariant spectrum is given by Real cobordism

MR, first studied by Landweber [17] and Araki [18]. We construct it below.

Construction 2.1. We proceed as in the construction of the (nonequivariant) MU -

spectrum, but keep track of the C2-action throughout. We construct MR as a pre-

spectrum and then spectrify. Recall that the spaces of a C2-spectrum are RO(C2)-

graded, and it suffices to define the prespectrum on the cofinal subsequence given by

representations q(1 + α).

We do this as follows. The tautological complex q-plane bundle γCq over BU(q)

carries a C2-action induced by complex conjugation. Here, the group acts compat-

ibly on both the base and the total space. The Thom space MU(q) of this bundle

inherits a C2-action. We define the q(1 + α) space in the prespectrum to be MU(q).

The map BU(q) −→ BU(q + 1) classifying γCq ⊕ C induces a map of Thom spaces

Σ1+αMU(q) −→ MU(q + 1), which gives the required structure map. We now spec-

trify to produce MR. Explicitly, since the above definition in fact gives an inclusion

prespectrum, spectrification has a straightforward description:

MRV = colim
(q+qα)⊇V

Ωq+qα−VMU(q)

By construction, MR is a homotopy associative and commutative ring spectrum.

8



CHAPTER 2. BACKGROUND

In fact, by [4], it is an E∞-ring spectrum, though we do not use this structure here.

We have that ι∗MR = MU .

Following [4], we recall that MR is Real-oriented : that is, there is a C2-equivariant

map u : CP∞ −→ Σ1+αMR such that the following diagram commutes (up to homo-

topy):

CP∞ u // Σ1+αMR

CP 1 = S1+α

OO
1

66

As in [4], the usual skeletal filtration of CP∞ (which respects the C2-action) now

produces a Real Atiyah-Hirzebruch spectral sequence with E∗,?2 = H∗(CP∞,MR?)⇒

MR?(CP∞). As in the nonequivariant case, the spectral sequence collapses to give

MR?(CP∞) = MR?[[u]], with |u| = 1+α. It also follows that the multiplication map

CP∞ × CP∞ −→ CP∞ yields a formal group law over MR? with coefficients aij in

degrees (1−i−j)(1+α). Thus, there is a (algebraic) map of rings MU2∗ −→MR∗(1+α)

classifying this formal group law. Forgetting the C2-action on MR in the above

construction produces the usual universal formal group law over MU∗. Thus, the

forgetful map MR∗(1+α) −→MU2∗ is split by the map classifying the formal group.

We now localize at the prime 2 and work 2-locally for the rest of this manuscript.

Let vk ∈ π2(2k−1)MU(2) denote the coefficients of the 2-series of the 2-typification of

the universal formal group law (i.e. the Araki vk). We map each vk to π(2k−1)(1+α)MR

along the classifying map MU2k −→ MRk(1+α) and call the image of vk by the same

name. By the above paragraph, the forgetful map sends the ‘diagonal’ equivariant vk

9



CHAPTER 2. BACKGROUND

to the usual nonequivariant vk.

We are now ready to define the Real Johnson-Wilson theories. A C2-equivariant

analog of the Quillen idempotent splits MR into a wedge of suspensions of the C2-

spectrum BPR (Real Brown-Peterson cohomology). Give a nonnegative integer n,

we kill the (equivariant, diagonal) classes vn+1, vn+2, . . . , then invert vn to produce a

C2-spectrum we will denote ER(n). We define Real Johnson-Wilson theory to be its

homotopy fixed points: ER(n) := ER(n)hC2 .

Note that the above construction does not guarantee that ER(n) is a C2-equivariant

ring spectrum. Indeed, the usual argument that nonequivariant E(n) is a ring spec-

trum relies on E(n)∗ being evenly graded. The analogous argument for ER(n)

does not work—the RO(C2)-graded homotopy groups of ER(n) are well-understood

(see [4, 9]) but do not vanish in the necessary degrees. That ER(n) is a homotopy

commutative and associative ring spectrum is stated in [4], though the following

proposition from [19] is enough for the purposes of this thesis.

Proposition 2.2. [19] The theory ER(n)?(−) is a cohomology theory valued in

commutative rings on the category of C2-spaces and for any such space X, the forgetful

map ER(n)?(X) −→ E(n)∗(X) is a ring homomorphism.

Given a C2-spectrum E, we call the function spectrum F (EC2+ ,E) the completion

of E. We say that E is complete (or cofree) if the map F (EC2+ ,E) −→ E is an

equivariant equivalence. If E is complete, it follows that the homotopy fixed points,

defined as EhC2 := F (EC2+ ,E)C2 , are equivalent to the genuine fixed points EC2 . We

10



CHAPTER 2. BACKGROUND

have

Proposition 2.3. [4] The spectra MR and ER(n) are complete.

We close this section by describing the coefficients of ER(n). These were first

computed in [4], but we present a description which follows directly from [9]. First,

we fix some notation. Let λ = λ(n) := 22n+1 − 2n+2 + 1. Recall that v̂k ∈ E(n)∗

denotes the class vkv
−(2k−1)(2n−1)
n .

Theorem 2.4. [4, 9] The integer-graded coefficients π∗ER(n) = π∗+0αER(n) are

given by

ER(n)∗(pt) = Z(2)[x, vk(s), v
±2n+1

n ]/I, 0 ≤ k < n

where |x| = λ := 22n+1−2n+2 +1, vk(s) restricts to v̂kv
2k+1s
n in E(n)∗, and v2n+1

n maps

to the class by the same name in E(n)∗. The ideal I encodes the relations

v0(0) = 2, x2k+1−1vk(s) = 0, x2n+1−1 = 0

in addition to the ones that are detected in E(n)∗.

Tables of the coefficients in the cases n = 1 and 2 are given below in Example

2.15. The interested reader is encouraged to flip ahead.

Remark 2.5. Notice that the class v2n+1

n in degree 2n+2(2n− 1) is invertible. This is

our periodicity class and it makes ER(n) a 2n+2(2n− 1)-periodic cohomology theory.

Kitchloo and Wilson noticed that the bigraded homotopy π?ER(n) contains an

11
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invertible class y(n) in bidegree λ+ α, which allows all bigraded classes to be shifted

to integer grading by multiplying by suitable powers of y(n).

Theorem 2.6. [9] There exists an invertible class y(n) ∈ πλ+α(ER(n)) and an

isomorphism of bigraded rings

π?(ER(n)) = π∗(ER(n))[y(n)±1]

Remark 2.7. Let a : S0 −→ Sα denote inclusion of fixed points. Note that a is

not equivariantly null-homotopic, but is trivial non-equivariantly. The class x defined

above is equal to a · y(n). Note also that when n = 1, the class x is precisely

η ∈ π∗(KO(2)) and the class v4
1 is the Bott class in degree 4.

2.2 The Kitchloo-Wilson fibration

Much of the computational power of Real Johnson-Wilson theories comes from

a fibration constructed by Kitchloo and Wilson [6]. We review their construction

below.

Theorem 2.8. [6] There is a fibration

ΣλER(n)
x−−−→ ER(n) −−−→ E(n)

where the right hand map denotes the inclusion of fixed points map.

12
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Proof. We apply the functor F (−, ER(n))C2 to the cofibration

C2+
// S0 a // Sα

to get the fibration

(Σ−αER(n))C2 a // ER(n) // F (C2+ , ER(n)C2 ' E(n)

Precomposing with the self-map ΣλER(n) = (ΣλER(n))C2 −→ (Σ−αER(n))C2 given

by y(n) yields the desired fibration. To see that the right hand map is given by

inclusion of fixed points, notice that it is precisely the map F (S0, ER(n))C2 −→

F (C2+ , ER(n))C2 , which factors as the inclusion of fixed points F (S0, ER(n))C2 −→

ι∗F (S0, ER(n)) followed by the equivalence ι∗F (S0, ER(n)) ' F (C2+ , ER(n))C2 .

2.3 The Bockstein spectral sequence

Applying [X,−] to the fibration of Theorem 2.8 yields an exact couple

ER(n)∗(X) x // ER(n)∗(X)

ww
E(n)∗(X)

gg

and produces the Bockstein spectral sequence (BSS).

Remark 2.9. Depending on whether one truncates the multiplication by x tower,

there are two spectral sequences that can arise from the above. One converges to

ER(n)∗(X) (as in [9]), the other to 0 (as in [3], [7], and [10]). In the latter case,

13
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one must go back to reconstruct the answer from the differentials. Both have their

advantages and ultimately contain equivalent information, but it is the truncated BSS

converging to ER(n)∗(X) that we use here.

The BSS is described by the following theorem.

Theorem 2.10. [9]

(i) There is a first and fourth quadrant spectral sequence of ER(n)∗-modules, Ei,j
r ⇒

ER(n)j−i(X). The differential dr has bidegree (r, r + 1) for r ≥ 1.

(ii) The E1-term is given by Ei,j
1 = E(n)iλ+j−i(X) with

d1(z) = v1−2n

n (1− c)(z)

where c(vi) = −vi. The differential dr increases cohomological degree by 1 + rλ

between the appropriate subquotients of E(n)∗(X).

(iii) E2n+1(X) = E∞(X), which is described as follows. Filter M = ER(n)∗(X) by

Mr = xrM so that

M = M0 ⊃M1 ⊃M2 ⊃ · · · ⊃M2n+1−1 = {0}

Then Er,∗
∞ (X) is canonically isomorphic to Mr/Mr+1.

(iv) dr(ab) = dr(a)b+ c(a)dr(b). In particular, if c(z) = z ∈ Er(X) then dr(z
2) = 0,

r > 1.

14
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Remark 2.11. As in [9], we note that when X is a space, there is a canonical class

in E1,1−λ
1 that corresponds to 1 ∈ E(n)λ+1−λ−1(X) = E(n)0(X) and is a permanent

cycle representing x ∈ ER(n)−λ. We abuse notation and give its representative in

E1,1−λ
1 the name x as well. Note that though x is a permanent cycle, x2n+1−1 does not

survive the spectral sequence (as we will see, it is the target of a differential) and is

equal to zero in ER(n)∗(X). We may rewrite the E1-page to index the vertical lines

by powers of x

E∗,∗1 = E0,∗
1 [x] = E(n)∗(X)[x]

d1(z) = v1−2n

n (1− c)(z)x, vn ∈ E0,2(1−2n)
1

Remark 2.12. To make things even more confusing, the representative of x = x(n)

in E1,1−λ
1 was previously called y in [9] and is not the same as y(n) ∈ ER(n)−λ(n)−α

as described above. Since our x ∈ E1,1−λ
1 represents x = x(n) ∈ ER(n)−λ, we choose

the lesser of two evils and henceforth use our notation instead.

2.4 The spectral sequence for X = pt

When X = pt, we have

E∗,∗1 = E(n)∗ = Z(2)[v1, . . . , vn−1, v
±1
n ][x], |vk| = −2(2k − 1)

None of the generators vk are permanent cycles as c(vk) = −vk. However, there is

a trick we can do to replace vk for k < n by permanent cycles v̂k. As in [4], each

15
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class vk ∈ MU−2(2k−1) has an equivariant lift in MR−(2k−1)(1+α). For 0 ≤ k ≤ n,

the MR-algebra structure on ER(n) produces these classes in ER(n)?. We may use

y ∈ ER(n)−α−λ to shift the “diagonal” vk classes to integer grading. For 0 ≤ k < n,

let v̂k ∈ ER(n)(2k−1)(λ−1) = ER(n)(2k−1)(λ−1) denote vky
−(2k−1). Then by construction,

this class restricts to vkv
−(2k−1)(2n−1)
n ∈ E(n)(2k−1)(λ−1) and represents a permanent

cycle in E
0,(2k−1)(λ−1)
1 .

We have now shifted all of the differentials onto powers of vn. LetRn = Z(2)[v̂1, . . . , v̂n−1],

Ij = (2, v̂1, . . . , v̂j−1), and I0 = (0). The Bockstein spectral sequence computing

ER(n)∗ goes as follows.

Theorem 2.13. [9] In the spectral sequence Er(pt)⇒ ER(n)∗,

(i) We have

E∗,∗1
∼= Z(2)[v̂1, v̂2, . . . , v̂n−1, v

±1
n ][x].

That is,

Em,∗
1 = Z(2)[v̂1, . . . , v̂n−1, v

±1
n ] on xm

(ii) The only non-zero differentials are generated by

d2k+1−1(v−2k

n ) = v̂kv
−2n+k

n x2k+1−1 for 0 ≤ k ≤ n

(iii) E∗,∗
2k

= E∗,∗
2k+1

= · · · = E∗,∗
2k+1−1

, for 0 ≤ k ≤ n, and E∗,∗2n+1 = E∗,∗∞ .

16
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(iv) For 0 ≤ j < k ≤ n+ 1,

Em,∗
2k

= Rn[v±2k

n ]/Ij
⊕
j<i<k

IiRn[v±2i+1

n ]v2i

n /Ij on xm

when 2j − 1 ≤ m < 2j+1 − 1.

(v) For 0 < k ≤ n+ 1 and 2k − 1 ≤ m,

Em,∗
2k

= Rn[v±2k

n ]/Ik on xm

Remark 2.14. Note that vn does not survive the spectral sequence, but v2n+1

n does.

This is what gives ER(n) the |v−2n+1

n | = 2n+2(2n − 1)-periodicity described above.

Examples 2.15. Below we record a chart of the coefficients ER(n)∗ for n = 1, 2.

Because of periodicity, we present them in their Z/(2n+2(2n − 1))-graded form by

setting v2n+1

n = 1. We have that ER(1) and ER(2) are 8 and 48-periodic, respectively.

Classes listed generate a Z/(2) if divisible by x and generate Z(2) otherwise.

(a) Coefficients of ER(1) = KO(2) (set v4
1 = 1):

0 1
1 x
2 x2

3
4 2v2

1

5
6
7

(b) Coefficients of ER(2): (set v8
2 = 1) (see also appendix of [11])

17
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0 v̂3k
1

1
2
3
4 (2v2

2)v̂3k+1
1

5
6 x2v̂3k+1

1 v4
2

7 xv̂3k+3
1 v4

2

8 v̂3k+2
1 v4

2

2(v̂3k+2
1 v4

2) = (2v4
2)v̂3k+2

1

9
10
11 x5

12 (2v6
2)v̂3k

1

13
14 x2v̂3k

1

15 xv̂3k+2
1

16 v̂3k+1
1

17
18
19
20 (2v2

2)v̂3k+2
1

21
22 x2v̂3k+2

1 v4
2

23 xv̂3k+1
1 v4

2

24 2v4
2, v̂3k+3

1 v4
2

2(v̂3k+3
1 v4

2) = (2v4
2)v̂3k+3

1

25
26
27
28 x4, (2v6

2)v̂3k+1
1

29
30 x2v̂3k+1

1

31 xv̂3k
1

32 v̂3k+2
1

33
34
35
36 (2v2

2)v̂3k
1

37
38 x2v̂3k+3

1 v4
2

39 xv̂3k+2
1 v4

2

40 v̂3k+1
1 v4

2

2(v̂1v
4
2) = (2v4

2)v̂3k+1
1

41
42 x6

43
44 (2v6

2)v̂3k+2
1

45 x3

46 x2v̂3k+2
1

47 xv̂3k+1
1

18



Chapter 3

The ER(n)-cohomology of CP∞

3.1 E∗,∗1 and the action of c

The BSS for CP∞ starts with

E∗,∗1 = E(n)∗(CP∞)[x] = E(n)∗[[u]][x]

Again, we hat off vi, 0 ≤ i < n so that E(n)∗ = Z(2)[v̂1, . . . , v̂n−1, v
±1
n ]. As described

in the introduction, in general, for a class z ∈ E(n)2j(X), we set

ẑ := vj(2
n−1)

n z ∈ E(n)j(1−λ)(X)

However, note that for arbitrary z, ẑ need not be a permanent cycle. In fact, û =

v2n−1
n u ∈ E(n)1−λ(CP∞) is not. In any case, we replace u by û as the power series

generator of E(n)∗(CP∞), which is valid since vn is a unit. We may similarly hat off

19
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the coefficients of the formal group law so that F̂ (û1, û2) is a homogenous expression

of degree 1− λ and satisfies v2n−1
n F (u1, u2) = F̂ (û1, û2).

We now have

E∗,∗1 = Z(2)[v̂1, . . . , v̂n−1, v
±1
n ][[û]][x]

with bidegrees

|v̂k| =
(

0,
1− λ

2
|vk|
)

= (0, (λ− 1)(2k − 1)), |vn| = (0,−2(2n − 1))

|û| = (0, 1− λ), |x| = (1, 1− λ)

To compute d1, by Theorem 2.10(ii), we need the action of c on E∗,∗1 . The classes

v̂k, 0 ≤ k < n, as well as x are permanent cycles and in particular have trivial c-action.

We have c(vn) = −vn. It remains to identify c(û).

Lemma 3.1.

c(û) = [−1]F̂ (û)

Proof. We view u as an equivariant map u : CP∞ −→ Σ1+αE(n). The diagram

CP∞

inv

��

u // S1+α ∧ E(n)

(−1)∧c
��

CP∞ u // S1+α ∧ E(n)

commutes, where inv denotes the involution on CP∞ classifying the conjugate line

bundle with inv∗(u) = [−1]F (u). The above diagram shows that c(u) = −[−1]F (u).
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Then on û = v2n−1
n u, we have

c(û) = c(v2n−1
n u) = −v2n−1

n c(u) = v2n−1
n [−1]F (u) = [−1]F̂ (û)

From now on, we let û∗ denote c(û) = [−1]F̂ (û). For future reference, it will be

helpful to have some terms of this power series, so we pause to derive some formulas.

Lemma 3.2. We have the following congruences in E(n)∗(CP∞):

û∗ ≡ −û mod (û2)

û∗ ≡ û+ v̂kû
2k mod (v̂0, . . . , v̂k−1, û

2k+1) for 0 < k < n

Proof. Both follow from the formula for the 2-series

[2]F̂ (û) =
n∑
i=0 F̂

v̂iû
2i

and the equation

û∗ +F̂ [2]F̂ (û) = û

3.2 A topological basis for E∗,∗1

The next step in computing d1 is finding a convenient topological basis for E∗,∗1 . To

that end, we identify a large collection of permanent cycles in our spectral sequence.
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Note that E∗,∗1 is a power series ring over E(n)∗[x], and throughout, by a basis for

E∗,∗1 we mean a topological basis.

Proposition 3.3. ûû∗ is a permanent cycle

Proof. Our starting point is ER(n)?(BU(2)). It may be computed using the Real

Atiyah-Hirzebruch spectral sequence completely analogously to the complex-oriented

case (see [4]). We have

ER(n)?(BU(2)) = ER(n)?[[c1, c2]]

with |ci| = i(1 + α). We hat c2 to produce ĉ2 = c2y
2 in degree 2(1 − λ) + 0α

which restricts to c2v
2(2n−1)
n ∈ E(n)∗(BU(2)). When we take fixed points to land in

ER(n)∗(BO(2)) and map over to ER(n)∗(BSO(2)) = ER(n)∗(CP∞), we claim this

will produce a permanent cycle which lifts ûû∗ ∈ E(n)∗(CP∞). That is, consider the

following commutative diagram.

[BU(2), ER(n)]C2

��

// [BSO(2), ER(n)]C2

[BU(2), ER(n)] [BSO(2), ER(n)]

��
[BU(2), E(n)] // [BSO(2), E(n)]

Here the two horizontal maps are induced by the inclusion BSO(2) −→ BU(2). From

the diagram, we conclude that the image of ĉ2 ∈ ER(n)?(BU(2)) in ER(n)∗(BSO(2))

is a permanent cycle, whose representative on E1 is given by mapping to the bottom

right corner. ĉ2 restricts to c2v
2(2n−1)
n in E(n)∗(BU(2)), so it remains to show that
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the image of this class in E(n)∗(BSO(2)) is ûû∗. This follows from the homotopy

commutativity of the diagram

BU(1) ∆ //

'
��

BU(1)×BU(1)
1×c // BU(1)×BU(1)

m

��
BSO(2) // BU(2)

Remark 3.4. The above argument shows that, as an element of E(n)∗(CP∞) =

E(n)∗(BSO(2)), the class ûû∗ is in fact v
2(2n−1)
n times the first Pontryagin class in

E(n)-cohomology and lifts to ER(n)∗(CP∞). We denote its lift by p̂1 as in Theorem

1.1.

Now that we have permanent cycles (ûû∗)l for l ≥ 0, we can use these to form

half of our basis for E∗,∗1 . The other half of the basis will consist of classes û(ûû∗)l,

l ≥ 0. Since

(ûû∗)l ≡ (−1)lû2l mod (û2l+1)

and

û(ûû∗)l ≡ (−1)lû2l+1 mod (û2l+2)

it follows that {ûε(ûû∗)l : ε = 0 or 1, l ≥ 0} clearly forms a topological basis for E∗,∗1

over E(n)∗[x].
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3.3 Computing E∗,∗2

To determine d1 on this basis, it is necessary to distinguish between odd and even

exponents of vn, since c(vln) = (−1)lvln. In what follows, recall that v̂i are permanent

cycles and note that d1(v2
n) = 0. We have

d1(v2p
n (ûû∗)l) = 0

d1(v2p+1
n (ûû∗)l) = 2v2p−2n

n (ûû∗)lx

d1(v2p
n (û(ûû∗)l)) = v2p−(2n−1)

n (û− û∗)(ûû∗)lx

d1(v2p+1
n (û(ûû∗)l)) = v2p−2n

n (û+ û∗)(ûû∗)lx

Set R = Z(2)[v̂1, . . . , v̂n−1, v
±2
n ][x] so that E∗,∗1 = (R ⊕ vnR)[[û]]. To analyze the

image and kernel of d1, we begin with a technical lemma concerning û∗.

Lemma 3.5. û∗ is in R[[û]].

Proof. ConsiderR as a submodule of Z(2)[v̂1, . . . , v̂n−1, v
±1
n ][x] over the ring Z(2)[v̂1, . . . , v̂n−1].

Notice v̂n = v
−(2n−1)2+1
n is in R. Thus, the coefficients of F̂ , formed by hatting the

coefficients of F , are also in R, as is [2]F̂ (û). We have

û = [2]F̂ (û) +F̂ û
∗

Reducing modulo the submodule R[[û]], we have

0 ≡ 0 +F̂ û
∗ mod R[[û]]
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Thus, û∗ ∈ R[[û]].

It follows from the formulas for d1 above together with Lemma 3.5 that d1 in-

terchanges classes in R[[û]] with classes in vnR[[û]]. We now describe a convenient

(topological) basis for the kernel of d1.

Proposition 3.6. A basis for the kernel of d1 over R = Z(2)[v̂1, . . . , v̂n−1, v
±2
n ][x] is

given by

{(ûû∗)l, vn(û− û∗)(ûû∗)l : l ≥ 0}

Proof. Let f be in the kernel of d1. We may write f = fe + vnfo with fe ∈ R[[û]]

and vnfo ∈ vnR[[û]]. Since d1 interchanges classes in R[[û]] and vnR[[û]], we must

have both d1(fe) = 0 and d1(vnfo) = 0. We will show that fe ∈ span{(ûû∗)l} and

vnfo ∈ span{vn(û− û∗)(ûû∗)l}.

Let fe = µûj mod (ûj+1) with µ ∈ R. By Lemma 3.2, û∗j ≡ (−1)jûj mod (ûj+1).

Since

d1(fe) ≡ µv1−2n

n (ûj − û∗j) ≡ µv1−2n

n (ûj + (−1)j+1ûj) mod (ûj+1)

must be zero, j must be even. Then fe − (−1)
j
2µ(ûû∗)

j
2 is in R[[û]], in the kernel

of d1, and has û-adic valuation strictly larger than that of fe. Thus, fe may be

approximated to any degree by polynomials in R[ûû∗], which proves the claim for fe.

We need to consider the first two terms in the case of fo. Let vnfo ≡ µvnû
j +

νvnû
j+1 mod (ûj+2). Applying d1 modulo (ûj+1) shows that j must now be odd. Next
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we apply d1 modulo (ûj+2). The congruences in Lemma 3.2 give

ûj + û∗j ≡ v̂j1û
j+1 mod (2, ûj+2)

ûj+1 + û∗j+1 ≡ 0 mod (2, ûj+2)

Thus,

0 = d1(vnfo) ≡ v2−2n

n µ(ûj + û∗j) + v2−2n

n ν(ûj+1 + û∗j+1)

≡ v̂j1v
2−2n

n µûj+1 mod (2, ûj+2)

It follows that µ = 2γ for some γ ∈ R. Then

γvn(û− û∗)(ûû∗)
j−1
2 ≡ µûj mod(ûj+1)

Thus, vnfo − (−1)
j−1
2 γvn(û− û∗)(ûû∗) j−1

2 is in vnR[[û]], is in ker(d1), and has û-adic

valuation strictly larger than that of vnfo. This shows that fo may be approximated

to any degree by elements of span{vn(û− û∗)(ûû∗)l}, which proves the claim for fo.

That the above set of elements is linearly independent follows from inspecting

their leading terms.

The next step is to relate the image of d1 to its kernel. This consists of analyzing

the class û+ û∗ in terms of the above basis for the kernel.

Lemma 3.7. û + û∗ is in Z(2)[v̂1, . . . , v̂n−1, v
±2
n ][[ûû∗]]. In other words, there is a

power series ξ with coefficients in Z(2)[v̂1, . . . , v̂n−1, v
±2
n ] such that û+ û∗ = ξ(ûû∗).

Proof. It follows from the proof of Proposition 3.6 that û+ û∗ ∈ R[[ûû∗]], as it shows
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that any class that is in R[[û]] and in ker(d1) is also in R[[ûû∗]]. Lemma 3.5 shows

that û + û∗ ∈ R[[û]] and c(û + û∗) = û + û∗ shows it is in ker(d1). Since x does not

divide û+ û∗, the coefficients of ξ lie in Z(2)[v̂1, . . . , v̂n−1, v
±2
n ].

Remark 3.8. In fact, something stronger is true. In the proof of Proposition 3.6,

if we replace R by the ring Z(2)[v̂1, . . . , v̂n], the same argument applies to show that

û+ û∗ is in Z(2)[v̂1, . . . , v̂n][[ûû∗]].

We will say more about the power series expansion of û + û∗ in ûû∗ in section

3.8. For now, we describe the E2-page. We will present the result as a module over

E∗,∗2 (pt). Recall that

E0,∗
2 (pt) = Z(2)[v̂1, . . . , v̂n−1, v

±2
n ]x0

Es,∗
2 (pt) = Z/2[v̂1, . . . , v̂n−1, v

±2
n ]xs for s > 0

We then have

Theorem 3.9. The E2-page is given by

E0,∗
2 = E0,∗

2 (pt)[[ûû∗]]{1, vn(û− û∗)}

Es,∗
2 = Es,∗

2 (pt)[[ûû∗]]/(û+ û∗) for s > 0

Proof. In the basis for the kernel given in Proposition 3.6, for s > 0, the classes

vn(û− û∗)(ûû∗)lxs are targets of differentials as are the classes 2(ûû∗)lxs. Thus, these

classes only survive on the zero line. Away from the zero line, we just have R[[ûû∗]]xs
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modulo the image of d1. Lemma 3.7 shows that the ideal generated by (û + û∗)x in

E∗,∗1 is contained in R[[ûû∗]][x]. This proves the theorem.

3.4 The image of the norm

We now find ourselves in a very nice place. We know how the differentials act on

the coefficients, and we have a large collection of permanent cycles. The remaining

permanent cycles live on the zero line and the next step is to find representatives for

them in ER(n)∗(CP∞). We do this using the norm described by Proposition 5.1 in

the appendix. We let N∗ denote the map

N∗ : E(n)∗(CP∞) −→ ER(n)∗(CP∞)

and N∗ denote the map resulting from postcomposing N∗ with the inclusion of fixed

points map ER(n)∗(CP∞)→ E(n)∗(CP∞),

N∗ : E(n)∗(CP∞) −→ ER(n)∗(CP∞) −→ E(n)∗(CP∞)

Thus, for any z ∈ E(n)∗(CP∞), N∗(z) is a permanent cycle on the zero line repre-

sented in ER(n)∗(CP∞) by N∗(z). From the appendix, we have N∗(z) = z+c(z). For

any w such that c(w) = w, we have N∗(wz) = wN∗(z). Let S = Z(2)[v̂1, . . . , v̂n−1, v
±2
n ]

(so that R above is S[x]). As a module over S[[ûû∗]] = Z(2)[v̂1, . . . , v̂n−1, v
±2
n ][[ûû∗]],
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we may write

E(n)∗(CP∞) = S[[ûû∗]]{1, vn, û, vnû}

Since c fixes S[[ûû∗]], N∗ is a map of modules over S[[ûû∗]]. We restrict N∗ to the

submodule S[[ûû∗]]{û, vnû} ⊂ E(n)∗(CP∞) and let im(N res
∗ ) denote the image. (We

restrict to the submodule because we do not want the coefficients, in particular 2, to

be in im(N res
∗ ). This is because we will mod out by im(N∗) later, and we will want

multiplication by 2 to be injective on the quotient.) We have

N∗(û) = û+ û∗

N∗(vnû) = vn(û− û∗)

so

im(N res
∗ ) = S[[ûû∗]]{û+ û∗, vn(û− û∗)}

This is a submodule of E0,∗
1 , and furthermore, since elements of im(N res

∗ ) are per-

manent cycles, it is contained in ker(d1). Since no differentials have their targets in

the zero line, it follows that im(N res
∗ ) is a submodule of E0,∗

2 . We have a short exact

sequence

0 −→ im(N res
∗ ) −→ E∗,∗2 −→ Ẽ∗,∗2 −→ 0

where Ẽ∗,∗2 is by definition the quotient. Since all differentials on im(N res
∗ ) are zero, we

may further view it as a sub-spectral sequence. Furthermore, since im(N res
∗ ) injects

into E∗,∗r at each stage, it follows that the above short exact sequence is in fact a
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short exact sequence of spectral sequences. From Theorem 3.9 we conclude

Ẽ∗,∗2 =
E∗,∗2 (pt)[[ûû∗]]

(û+ û∗)

In the short exact sequence above im(N res
∗ ) collapses immediately, so it remains to

compute the spectral sequence Ẽ∗,∗2 .

3.5 Landweber flatness

Let Ê(n)∗ = Z(2)[v̂1, . . . , v̂n−1, v̂
±1
n ]. There is an isomorphism of rings (but not

graded rings) between E(n)∗ and Ê(n)∗ sending vk to v̂k. Ê(n)∗ consists entirely

of permanent cycles. Thus Ê(n)∗ ⊂ ER(n)∗ and ER(n)∗ is a module over Ê(n)∗.

We may view E∗,∗r (pt) as a spectral sequence of Ê(n)∗-modules. The E2-page of the

spectral sequence of interest, Ẽ∗,∗2 , may be written as

Ẽ∗,∗2 = E∗,∗2 (pt)[[ûû∗]]/(û+ û∗) = E∗,∗2 (pt)⊗Ê(n)∗ Ê(n)∗[[ûû∗]]/(û+ û∗)

The right hand coordinate of the tensor product consists entirely of permanent cy-

cles, so we will be done if we can show that we can commute taking homology past

the tensor product at each stage. That is, we need to know that tensoring with

Ê(n)∗[[ûû∗]]/(û+ û∗) over Ê(n)∗ is exact. This would be true if Ê(n)∗[[ûû∗]]/(û+ û∗)

were flat over Ê(n)∗, but we can in fact show that a weaker condition holds.

If we identify E(n)∗ with Ê(n)∗ as above, then we may view E∗,∗r (pt) as a spec-

tral sequence of E(n)∗-modules. Starting with this observation, it is shown in [9]
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that E∗,∗r (pt) in fact lives in the category of E(n)∗E(n)-comodules that are finitely

presented as E(n)∗-modules.

Thus, to solve our problem we only need to show that Ê(n)∗[[ûû∗]]/(û+ û∗) is flat

on the category of finitely presented E(n)∗E(n)-comodules, i.e. that it is Landweber

flat.

In [20], Hovey and Strickland prove an E(n)-version of the Landweber filtration

theorem. We state and prove an E(n)-exact functor theorem, which follows as a

corollary of Hovey and Strickland’s work. To be consistent with the literature, we

prove the result for E(n)∗-modules, keeping in mind that E(n)∗ is formally isomorphic

(as rings but not graded rings) to E(n)∗ so everything below holds for E(n)∗-modules

as well.

Proposition 3.10. Let M be an E(n)∗-module. The functor (−) ⊗E(n)∗ M is exact

on the category of E(n)∗E(n)-comodules that are finitely presented as E(n)∗-modules

if and only if for each k ≥ 0 multiplication by vk is monic on M/(v0, . . . , vk−1)M , i.e.

(v0, v1, v2, . . . ) is a regular sequence on M .

Remark 3.11. Since E(n)∗ is height n in the sense of Hovey-Strickland, there is only

something to check for 0 ≤ k ≤ n. For k > n, M/(v0, . . . , vk) = 0 so multiplication

by vk is trivially monic.

Proof. We follow Landweber’s original proof over MU∗ in [21]. Applying (−)⊗E(n)∗M
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to the sequence

0 −−−→ E(n)∗
p−−−→ E(n)∗ −−−→ E(n)∗/(p) −−−→ 0

shows that p : M −→ M is monic if and only if Tor
E(n)∗
1 (E(n)∗/(p),M) = 0. For

k > 0, applying (−)⊗E(n)∗ M to the sequence

0 −−−−→ E(n)∗/(v0, . . . , vk−1)
vk−−−−→ E(n)∗/(v0, . . . , vk−1) −−−−→ E(n)∗/(v0, . . . , vn) −−−−→ 0

shows that multiplication by vk is monic if and only if

Tor
E(n)∗
1 (E(n)∗/(v0, . . . , vk−1),M) −→ Tor

E(n)∗
1 (E(n)∗/(v0, . . . , vk),M)

is surjective. It follows that multiplication by vk is monic on M/(v0, . . . , vk−1) for all k

if and only if Tor
E(n)∗
1 (E(n)∗/(v0, . . . , vk),M) is zero for all k. In [20] it is shown that

every E(n)∗E(n)-comodule N that is finitely presented over E(n)∗ admits a finite

filtration by subcomodules

0 = N0 ⊆ N1 ⊆ · · · ⊆ Ns = N

for some s with Nr/Nr−1 ≡ ΣtE(n)∗/(v0, . . . , vj) for some j ≤ n and some t, both

depending on r. In view of this, Tor
E(n)∗
1 (E(n)∗/(v0, . . . , vk),M) = 0 for all k is

equivalent to Tor
E(n)∗
1 (N,M) = 0 for all finitely presented E(n)∗E(n)-comodules, N .

Finally, this is equivalent to (−)⊗E(n)∗ M being an exact functor on the category of

E(n)∗E(n)-comodules finitely presented over E(n)∗.

We now show that M = Ê(n)∗[[ûû∗]]/(û+û∗) satisfies the algebraic criterion given
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above.

Lemma 3.12. (v̂0, . . . , v̂n−1, v̂n) is a regular sequence in Ê(n)∗[[ûû∗]]/(û+ û∗).

Proof. Recall our notation Ik = (v̂0, v̂1, . . . , v̂k−1) and I0 = (0). Suppose f(ûû∗) ∈

Ê(n)∗[[ûû∗]]/(Ik, û+ û∗) is such that v̂kf(ûû∗) = 0. Then

v̂kf(ûû∗) = g(ûû∗)(û+ û∗) mod Ik

Further modding out by v̂k, we have

0 = g(ûû∗)(û+ û∗) mod Ik+1

By Lemma 3.2, we have that

û+ û∗ = v̂k+1(ûû∗)2k+1

mod (Ik+1, (ûû
∗)2k+1+1)

which means û + û∗ 6= 0 mod Ik+1. Since Ik+1 is prime in Ê(n)∗, it follows that

g(ûû∗) = 0 mod Ik+1. Then g(ûû∗) = v̂kh(ûû∗) mod Ik for some h(ûû∗). Hence,

f(ûû∗) = h(ûû∗)(û+ û∗) mod Ik

so that f(ûû∗) = 0 in Ê(n)∗[[ûû∗]]/(Ik, û+ û∗). Thus, multiplication by v̂k is injective.

Thus, M is Landweber flat. That is, tensoring with M over Ê(n)∗ is an exact

functor on the category of finitely presented E(n)∗E(n)-comodules. Since E∗,∗r (pt)

lives in this category, we may commute homology past the tensor product at each
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stage of Ẽ∗,∗r, = E∗,∗r (pt)⊗Ê(n)∗ M . Furthermore, since M consists entirely of perma-

nent cycles by Proposition 3.3, the entire spectral sequence can be evaluated on the

coefficients. In other words, Theorem 4.3 in [9] applies to show that Ẽ∗,∗r is isomorphic

to (E∗,∗r (pt) ⊗Ê(n)∗ M,dr ⊗Ê(n)∗ idM) as spectral sequences of ER(n)∗-modules and

converges to ER(n)∗ ⊗Ê(n)∗ M . We conclude

Proposition 3.13.

Ẽ∗,∗∞ = E∗,∗∞ (pt)⊗Ê(n)∗ M = E∗,∗∞ (pt)[[ûû∗]]/(û+ û∗)

3.6 The E∞-page

We will now put all of the pieces together. Let us return to the short exact

sequence of E2-terms we had in Section 3.4.

0 −→ im(N res
∗ ) −→ E∗,∗2 −→ Ẽ∗,∗2 −→ 0

Lemma 3.14. Upon taking homology the induced long exact sequence collapses into

short exact sequences at each stage. In particular, we have a short exact sequence

0 −→ im(N res
∗ ) −→ E∗,∗∞ −→ E∗,∗∞ (pt)[[ûû∗]]/(û+ û∗) −→ 0

Proof. Since the connecting homomorphism of the long exact sequence must increase

filtration degree (because the differentials do), yet im(N res
∗ ) is concentrated in fil-

tration degree zero, the connecting homomorphism is zero at each stage. Thus we
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have a short exact sequence at E∞. Recall that the left hand spectral sequence col-

lapses immediately. The right hand spectral sequence was computed in the previous

section.

We analyze this short exact sequence, starting away from the zero line. In strictly

positive filtration degree, the left hand term is zero and so we have

Es,∗
∞ = Es,∗

∞ (pt)[[ûû∗]]/(û+ û∗) for s > 0

The zero line is more involved. We begin by giving a “polite” answer.

Proposition 3.15. The zero-line E0,∗
∞ injects into its rationalization, and the ratio-

nalization may be computed as the algebraic invariants of the rationalization of E0,∗
1 :

E0,∗
∞
� � // E0,∗

∞ ⊗Q
∼= // (E0,∗

1 ⊗Q)C2

Proof. Since no classes on the zero line are targets of differentials, E0,∗
∞ contains no

torsion and so injects into its rationalization. E0,∗
2 is exactly the invariants in E0,∗

1 .

Away from the zero line, everything is 2-torsion from E2 onward. Thus, for any class

in E0,∗
r , twice it is in the kernel of dr. Since d2n+1−1 is the last possible differential, we

have that 22n+1−1 times any class on E0,∗
2 survives to E∞. After we rationalize, the

isomorphism

E0,∗
∞ ⊗Q ∼= (E0,∗

1 ⊗Q)C2

follows.
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We now describe the zero line explicitly. Recall that

E0,∗
2 (pt) = Z(2)[v̂1, . . . , v̂n−1, v

±2
n ]

E0,∗
∞ (pt) = Z(2)[v̂1, . . . , v̂n−1, v

±2n+1

n ]
⊕

0<i<n+1

(v̂0, . . . , v̂i−1)Z(2)[v̂1, . . . , v̂n−1, v
±2i+1

n ]v2i

n

We have a short exact sequence of E2-terms

0 −→ im(N res
∗ ) −→ E0,∗

2 −→ Ẽ0,∗
2 −→ 0

where, as modules over E0,∗
2 (pt), we have

im(N res
∗ ) = E0,∗

2 (pt)[[ûû∗]]{û+ û∗, vn(û− û∗)}

Ẽ0,∗
2 = E0,∗

2 (pt)[[ûû∗]]/(û+ û∗)

and

E0,∗
2 = E0,∗

2 (pt)[[ûû∗]]{1, vn(û− û∗)}

Recall that û+ û∗ = ξ(ûû∗) · 1. When we pass to the E∞-page, we have, as a module

over E0,∗
∞ (pt),

im(N res
∗ ) = E0,∗

∞ (pt)[[ûû∗]]{v2p
n (û+ û∗), v2p+1

n (û− û∗)}/J, 0 ≤ p < 2n

where J is the submodule generated by the following relations (which come from

writing E0,∗
2 (pt) as a module over E0,∗

∞ (pt)). Write 2p = 2i+1m + 2i. For 0 ≤ j < i,

we have

v̂j · [v2p
n (û+ û∗)] = (v̂jv

2p
n ) · (û+ û∗)
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v̂j · [v2p+1
n (û− û∗)] = (v̂jv

2p
n ) · vn(û− û∗)

Over E0,∗
∞ (pt), we also have

Ẽ0,∗
∞ = E0,∗

∞ (pt)[[ûû∗]]/(û+ û∗)

Thus, we conclude

Theorem 3.16. As a module over E0,∗
∞ (pt), we have

E0,∗
∞ =

E0,∗
∞ (pt)[[ûû∗]]{1, v2p

n (û+ û∗), v2p+1
n (û− û∗)}

K
, 0 ≤ p < 2n

where K encodes the relations generating J in im(N res
∗ ) over E0,∗

∞ above together with

the relation v0
n(û+ û∗) = ξ(ûû∗) · 1.

3.7 Extension problems and multiplicative

structure

Most of the hard work in solving extension problems is already done by Propo-

sitions 3.3 and 5.1 as they provide canonical lifts to ER(n)∗(CP∞) of our genera-

tors of E∗,∗∞ . Proposition 3.3 produces a class p̂1 ∈ ER(n)∗(CP∞) whose image in

E(n)∗(CP∞) is ûû∗. On the zero line, we also have classes vkn(û + (−1)kû∗) which

are the images under the norm of classes vknû ∈ E(n)∗(CP∞). Since the norm factors

through the map ER(n)∗(CP∞) −→ E(n)∗(CP∞), these classes have canonical lifts

in ER(n)∗(CP∞) as well.
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In Lemma 3.7 we showed that in E(n)∗(CP∞), û + û∗ may be written as a

power series ξ(ûû∗), with the coefficients of ξ in Ê(n)∗. We have independently

constructed lifts N∗(û) of û + û∗ and p̂1 of ûû∗, so we must verify this equality lifts

to ER(n)∗(CP∞). This turns out to be true for degree reasons:

Lemma 3.17. N∗(û) = ξ(p̂1) in ER(n)∗(CP∞).

Proof. The two classes have the same image in E(n)∗(CP∞), so their difference is a

multiple of x. If N∗(û) − ξ(p̂1) 6= 0 in ER(n)∗(CP∞), let r be the maximal power

of x that divides N∗(û) − ξ(p̂1). Suppose r ≥ 1. Then N∗(û) − ξ(p̂1) is represented

by a nonzero class z ∈ Er,1−λ+r
∞ . Since r ≥ 1, we have 2j − 1 < r ≤ 2j+1 − 1. Since

Er,∗
∞ = 0 for r ≥ 2n+1, we must have j < n + 1. By inspection of degrees, we have

that Er,l
∞ = 0 unless l = 0 mod 2j+1. Then

1− λ+ r = 0 mod 2j+1

Since 1− λ = −2n+2(2n−1 − 1), it follows that

r = 0 mod 2j+1

which is impossible. Thus, N∗(û)− ξ(p̂1) = 0 in ER(n)∗(CP∞).

Before we go on to solve the remaining extension problems, we pause to remark on

the significance of the class N∗(û) = ξ(p̂1) above which appears in the denominator

of the right hand term of the short exact sequence of Theorem 1.1.
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Remark 3.18. N∗(û) is a canonical class in ER(n)∗(CP∞) in the following sense.

The “hatted” orientation û induces a map

B(U(1) o C2)+ = CP∞+ ∧C2 EC2+
û∧1 // Σ1−λER(n) ∧C2 EC2+

Postcomposing with the Adams isomorphism ER(n)∧C2EC2+ ' ER(n)hC2 = ER(n)

and precomposing with BU(1)+ → B(U(1) o C2)+ yields the class N∗(û) in the

ER(n)-cohomology of BU(1) = CP∞ whose image in E(n)∗(CP∞) is the û + û∗

described above. This description also gives an alternate argument that N∗(û) is

a power series on p̂1 as follows. Identifying B(U(1) o C2) above with BO(2), it is

shown in [9] that ER(n)∗(BO(2)) is the quotient of a power series ring over ER(n)∗

on two classes, ĉ1 and ĉ2. The above description of N∗(û) ∈ ER(n)∗(CP∞) shows

that it is the image of a class in ER(n)∗(BO(2)), i.e. some power series in ĉ1 and ĉ2.

Identifying BU(1) with BSO(2), it can be shown that the map ER(n)∗(BO(2)) −→

ER(n)∗(BSO(2)) above sends ĉ1 to zero and ĉ2 to p̂1 (see Proposition 3.3). It follows

that N∗(û) is a power series on p̂1 over ER(n)∗. Note that this argument does not

identify the power series explicitly—to do that, we still need Lemmas 3.7 and 3.17.

With canonically determined lifts in hand, we now solve all extension problems.

The relations of Theorem 3.16 need to be lifted to ER(n)∗(CP∞). Additionally, we

describe how classes in im(N res
∗ ) multiply together. In both cases, we use Proposition

5.1 in the appendix. In 1(a) and (b) of the following lemma, recall that classes in
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E(n)∗ of the form

v̂jv
2i+1m+2i

n with 0 ≤ j < i

are permanent cycles and lift to classes of the same name in ER(n)∗.

Lemma 3.19. The following relations hold in ER(n)∗(CP∞):

1. Write 2p = 2i+1m+ 2i and suppose 0 ≤ j < i. Then, as a module over ER(n)∗,

ER(n)∗(CP∞) satisfies

(a) v̂j ·N∗(v2p
n û) = (v̂jv

2p
n ) ·N∗(û)

(b) v̂j ·N∗(v2p+1
n û) = (v̂jv

2p
n ) ·N∗(vnû)

(c) x ·N∗(v2p
n û) = 0

(d) x ·N∗(v2p+1
n û) = 0

2. Let 0 ≤ 2p, 2l < 2n+1 and write 2p + 2l = 2n+1q + 2r with 0 ≤ 2r < 2n+1 and

q = 0, 1. As an algebra over ER(n)∗, ER(n)∗(CP∞) satisfies

(a) N∗(v
2p
n û)N∗(v

2l
n û) = v2n+1q

n N∗(v
2r
n û)N∗(û)

(b) N∗(v
2p+1
n û)N∗(v

2l
n û) = v2n+1q

n N∗(v
2r+1
n û)N∗(û)

(c) N∗(v
2p+1
n û)N∗(v

2l+1
n û) = v2n+1q

n (N∗(v
2r+2
n û)N∗(û)− 4v2r+2

n p̂1).

Proof. The key facts are that N∗ is a map of modules over ER(n)∗(CP∞) and that

the ER(n)∗(CP∞)-module (really, algebra) structure on E(n)∗(CP∞) comes from
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the quotient by x-map ER(n)∗(CP∞) −→ E(n)∗(CP∞). The module structure is

described by the diagram

ER(n)∗(CP∞)⊗ E(n)∗(CP∞)

��

1⊗N∗ // ER(n)∗(CP∞)⊗ ER(n)∗(CP∞)

��
E(n)∗(CP∞)

N∗ // ER(n)∗(CP∞)

We prove 1(a), 1(c) and 2(a); the other relations are proved similarly. For 1(a), note

that in the upper left corner, the classes v̂j ⊗ v2p
n û and v̂jv

2p
n ⊗ û have as their images

in the bottom right corner the classes v̂j · N∗(v2p
n û) and (v̂jv

2p
n ) · N∗(û), respectively.

But both v̂j ⊗ v2p
n û and v̂jv

2p
n ⊗ û map to the same class, v̂jv

2p
n û, in the bottom left

corner, which proves 1(a). In 1(c), x ⊗ v2p
n û maps to zero in the bottom left corner

(since x maps to zero in E(n)∗); thus, x · N∗(v2p
n û) = 0. Finally, for 2(a), note that

the classes v2p
n û⊗N∗(v2l

n û) and v
2(p+l)
n û⊗N∗(û) map to the same class under the left

vertical map. Thus, their images in ER(n)∗(CP∞) are equal. But these are exactly

N∗(v
2p
n û)N∗(v

2l
n û) and N∗(v

2(p+l)
n û)N∗(û), respectively. For any α ∈ E(n)∗(CP∞)

which admits a lift to ER(n)∗(CP∞) and any z ∈ E(n)∗(CP∞), the above diagram

shows that N∗(αz) = αN∗(z). Applying this to α = v2n+1q
n and z = v2r

n û completes

the proof of 2(a).

We now prove Theorem 1.1 as stated in the introduction.

Proof of Theorem 1.1. ER(n)∗(CP∞) is (topologically) generated over ER(n)∗
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by im(N res
∗ ) and the classes p̂l1. To see the isomorphism (of ER(n)∗-modules)

ER(n)∗(CP∞)/im(N res
∗ ) ∼= ER(n)∗[[p̂1]]/(ξ(p̂1))

we must show that the intersection of im(N res
∗ ) and the submodule of ER(n)∗(CP∞)

generated over ER(n)∗ by {p̂l1|l ≥ 0} is precisely the ideal of ER(n)∗(CP∞) generated

by ξ(p̂1). Clearly, (ξ(p̂1)) is in this intersection. We now prove the reverse inclusion.

First recall that the domain of N res
∗ is by definition the submodule

Z(2)[v̂1, . . . , v̂n−1, v
±2
n ][[ûû∗]]{û, vnû}

of E(n)∗(CP∞). Choose some

z =
∑
i

(aiû+ bivnû)(ûû∗)i with ai, bi ∈ Z(2)[v̂1, . . . , v̂n−1, v
±2
n ]

so that (since N∗ is a map of modules over ER(n)∗(CP∞))

N∗(z) =
∑
i

(N∗(aiû) +N∗(bivnû))p̂i1 (3.20)

Suppose that N∗(z) is also in span{p̂l1|l ≥ 0} over ER(n)∗, i.e. that

N∗(z) =
∑
i

λip̂
i
1 with λi ∈ ER(n)∗ (3.21)

We claim that ξ(p̂1) = N∗(û) divides N∗(z) in ER(n)∗(CP∞). This will follow

from two claims: for all i, (i) bi = 0 and (ii) ai is in the subalgebra E0,∗
∞ (pt) of

Z(2)[v̂1, . . . , v̂n−1, v
±2
n ]. Together, they imply that N∗(z) =

∑
iN∗(aiû)p̂i1 with each

ai having a representative in ER(n)∗. Since N∗ is a map or ER∗(CP∞)-modules, it
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follows that N∗(aiû) = aiN∗(û) and so N∗(û) divides N∗(z) in ER(n)∗(CP∞).

To prove both claims, we map into E(n)∗(CP∞). Then (3.20) becomes

N∗(z) =
∑
i

(ai(û+ û∗) + bivn(û− û∗))(ûû∗)i (3.22)

and (3.21) becomes

N∗(z) =
∑
i

λi(ûû
∗)i (3.23)

with λi now in E0,∗
∞ (pt) (by abuse of notation, we denote the image of λi in E0,∗

∞ (pt) by

the same name). Recall that û− û∗ = 2û+ . . . and û+ û∗ is the span of {(ûû∗)l|l ≥ 0}

over E0,∗
∞ (pt) (since v̂i ∈ E0,∗

∞ (pt) for all i). The collection {(ûû∗)l, û(ûû∗)l} is clearly

linearly independent over E(n)∗. Hence, from inspecting the right hand sides of (3.22)

and (3.23), it follows that bi = 0 for all i.

To prove the second claim, suppose that i1 is the first index such that ai1 /∈

E0,∗
∞ (pt). Let l be the maximal such that ai1 = f(v2l

n ) with the coefficients of f in

Z(2)[v̂1, . . . , v̂n−1]. Note that f cannot be a constant polynomial since ai1 is not in E0,∗
∞

by assumption. Then inspection of E0,∗
∞ (pt) shows that v̂kai1 ∈ E0,∗

∞ (pt) for 0 ≤ k < l

and v̂kai1 /∈ E0,∗
∞ (pt) for k ≥ l. Recall that

û+ û∗ ≡ v̂l(ûû
∗)2l + . . . mod (2, v̂1, . . . , v̂l−1)

Since we know that

∑
i

ai(û+ û∗)(ûû∗)i =
∑
i

λi(ûû
∗)i with λi ∈ E0,∗

∞
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it follows from looking at lowest degree terms mod (2, v̂1, . . . , v̂l−1) that v̂lai1 is in

E0,∗
∞ , a contradiction. Thus, ai ∈ E0,∗

∞ for all i. This proves Theorem 1.1.

�

Theorem 1.1 is the nice form of the answer, but we have in fact shown something

stronger. The following theorem presents ER(n)∗(CP∞) explicitly as an algebra over

ER(n)∗.

Theorem 3.24.

ER(n)∗(CP∞) = ER(n)∗(pt)[[p̂1, N∗(v
j
nû)]]/K

where 0 ≤ j < 2n+1 and K is the ideal generated by the relation N∗(û) = ξ(p̂1) of

Lemma 3.17 together with the relations of Lemma 3.19

Proof. This is a consequence of Lemmas 3.17 and 3.19 together with the description

of E∗,∗∞ in section 3.6.

Remark 3.25. We conclude by returning to the case n = 1. It is somewhat de-

generate, as N∗(û) = û + û∗ = −ûû∗ in KU∗(CP∞), so N∗(û) = −p̂1. It fol-

lows that x · p̂1 = 0 and powers of p̂1 do not generate any 2-torsion. This is

not true for n > 1. In general, p̂1 supports higher powers of x up to and in-

cluding x2n+1−2. In light of this, when n = 1, p̂1 is redundant and it suffices

to take {1, N∗(û), N∗(v1û), N∗(v
2
1û), N∗(v

3
1û)} as a set of algebra generators with

x · N∗(vk1 û) = 0 for all k. The relations come from Lemma 3.19 and our answer

matches exactly the answer in Corollary 2.13 of [14].
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3.8 Completing at I

We obtain an especially nice form of the answer if we complete at I := In =

(2, v̂1, . . . , v̂n−1). It turns out that the right hand side of the short exact sequence

of Theorem 1.1 is free after completion. To see this, we need a technical lemma

concerning û+ û∗.

Lemma 3.26. The following congruence holds in Ê(n)[[ûû∗]]:

û+ û∗ ≡ v̂n(ûû∗)2n−1

mod ((ûû∗)2n−1+1, I)

Since Ê(n) ⊂ ER(n)∗, this lifts to

ξ(p̂1) ≡ v̂np̂
2n−1

1 mod (p̂2n−1+1
1 , I)

in ER(n)∗[[p̂1]].

Proof. By Lemma 3.7, û+ û∗ ∈ Ê(n)[[ûû∗]]. By Lemma 3.2,

û+ û∗ ≡ v̂nû
2n mod (û2n+1, I)

It follows that

û+ û∗ ≡ v̂n(ûû∗)2n−1

mod ((ûû∗)2n−1+1, I)

We will use the following version of the Weierstrass Preparation Theorem in [22].

Lemma 3.27. [22] Let A be a graded commutative ring, complete in the topology
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defined by powers of an ideal I. Suppose α(x) ∈ A[[x]] satisfies α(x) ≡ ωxd mod

(xd+1, I), with ω ∈ A a unit. Then the ring A[[x]]/(α(x)) is a free A-module with

basis {1, x, x2, . . . , xd−1}

In what follows, we apologize for the poor notation: the hat of completion and

the hat in p̂1 are unrelated. Recall the short exact sequence of Theorem 1.1:

0 −→ im(N res
∗ ) −→ ER(n)∗(CP∞) −→ ER(n)∗[[p̂1]]

(ξ(p̂1))
−→ 0

After completing at I, if we set A = ER(n)∗∧I we find that the Weierstrass Prepa-

ration Theorem applies to the right hand term.

Proposition 3.28. ER(n)∗∧I [[p̂1]]/(ξ(p̂1)) is a free module over ER(n)∗∧I with basis

{1, p̂1, p̂
2
1, . . . , p̂

2n−1−1
1 }.
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Future directions

Historically, complex-oriented cohomology theories have been extraordinarily amenable

to computations. If E is complex-oriented, its value on many spaces comes for free

via the collapse of the Atiyah-Hirzebruch spectral sequence: CP∞, CPk, BU(q), and

BZ/2q are a few important examples. Other computations with complex-oriented

theories on various fundamental or geometrically significant spaces have been the

result of comprehensive and elaborate work which has uncovered deep structure in

these theories. Examples include Wilson and Ravenel’s computations of the Morava

K-theory [23] and BP -cohomology [24] of Eilenberg MacLane spaces and work of

Kitchloo, Laures, and Wilson on BO and its connective covers [25].

This thesis is a step towards extending the plethora of complex-oriented compu-

tations to a non-complex-oriented context. Many of the above examples have also

proved amenable to computations with Real Johnson-Wilson theories, and we discuss
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some work in progress in this direction, joint with Kitchloo and Wilson, below.

4.1 Truncated projective spaces and non-

immersions

In the case n = 2, the above computation of ER(n)∗(CP∞) can be extended to

the ER(2)-cohomology of CP k for all k ≤ ∞, including multiplicative structure. This

is carried out in [10]. Recall that ER(2) is 48-periodic. The most interesting part of

the answer occurs in degrees multiples of 16. The value of ER(2)16∗(CP k) depends

on the congruence class of k mod 8.

Theorem 4.1. [10] We have

ER(2)16∗(CP 8m+1) = ER(2)16∗[p̂1]/(p̂4m+2
1 , 2p̂4m+1

1 )

There is an analogous result for CP 8m+i for all i, 0 ≤ i < 8.

It is instructive to keep the (complex oriented) E(2)-cohomology of truncated pro-

jective spaces in mind to contrast with the non complex-oriented case: E(2)∗(CP k) =

E(2)∗[u]/(uk+1) where u denotes the first Chern class of the canonical line bundle.

The image of p̂1 in E(2)-cohomology is a unit multiple of u2, and thus the image

of p̂4k+1
1 is a unit multiple of u8k+2. This is zero in E(2)∗(CP 8m+1), but p̂4k+1

1 6= 0

in ER(2)-cohomology! Extra powers of p̂1 survive beyond what one would expect

48



CHAPTER 4. FUTURE DIRECTIONS

in a complex-oriented theory! (beyond the top cell of CP 8m+i) This also occurs in

ER(2)∗(CP 8m+i), for i = 1, 2, 3, 4, and 5.

Computations of Banerjee, Kitchloo, and Wilson [3, 7, 8] reveal this phenomenon

in the ER(2)-cohomology of certain real projective spaces as well. They were able

to leverage this exotic multiplicative structure to produce new non-immersions of

real projective spaces. The fact that these extra classes show up in the ER(2)-

cohomology of complex projective spaces and are undetected in complex-oriented

theories is a promising step toward filling the gaps between known immersions and

nonimmersions (see [26]).

4.2 Odd Eilenberg-MacLane spaces and con-

nective covers of BO

For certain spaces, the Bockstein spectral sequence is as simple as possible in the

sense that it can be generated by a collection of permanent cycles over the coefficients

such that all differentials may be computed entirely on the coefficients (where they

are already known). In such cases, the ER(n)-cohomology may be computed from

E(n)-cohomology by means of base change. Note that, as we have shown above,

this is not the case for CP∞. One example where this does work out, computed by

Kitchloo and Wilson [9], is ER(n)∗(BO(q)):
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Theorem 4.2. [9] There is a canonical isomorphism

ER(n)∗(BO(q)) = ER(n)∗[[ĉ1, ĉ2, . . . ]]/(ĉ1 − ĉ∗1, ĉ2 − ĉ∗2, . . . )

where the generators ĉi restrict to civ
i(2n−1)
n in E(n)-cohomology.

Note that E(n)∗(BO(q)) = E(n)∗[[c1, c2, . . . ]]/(c1 − c∗1, c2 − c∗2, . . . ) [27], and the

proof of Kitchloo and Wilson’s result gives a road map for how to compute ER(n)-

cohomology from E(n)-cohomology by a completely formal procedure. The following

theorem from [11] is an extension of Kitchloo and Wilson’s result for BO to a wide

collection of spaces.

Theorem 4.3. [11] There is a class of spaces which includes X = BO,BSO,BSpin,

and BString (the last for n ≤ 2 only) as well as Eilenberg-MacLane spaces K(Z, 2m+

1), K(Z/(2q), 2m), and K(Z/2,m) for which

ER(n)∗(X) = E(n)∗(X)⊗
Ê(n)

ER(n)∗

This theorem extends both the results of [9] on ER(n)∗(BO) as well as work of

Laures and Olbermann [28] on LK(2)TMF0(3)∗(BString). Its proof involves iden-

tifying a key property of certain spaces X (that of being part of Landweber flat

real pair) which entails that the above isomorphism holds. The results of [11] also

construct certain short exact sequences, worked out in BP -cohomology in [25], in

ER(n)-cohomology.

Note that the above result does not hold for CP∞ = K(Z, 2). We will call spaces
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of the form K(Z, 2k+1) and K(Z/2q, 2k) odd Eilenberg-MacLane spaces, and we will

denote the other half of Eilenberg MacLane spaces, those of the form K(Z, 2k) and

K(Z/2q, 2k − 1), even Eilenberg-MacLane spaces. We discuss the even case in the

next section.

4.3 Even Eilenberg-MacLane spaces and

connective covers of BU

The computation of ER(n)∗(K(Z, 2)) in this thesis is the first computation of the

ER(n)-cohomology of an even Eilenberg-MacLane space. As we have seen, it requires

computing certain differentials on classes other than the coefficients. However, there

is hope that the other even Eilenberg-MacLane spaces as well as BU(q) and its con-

nective covers, fit a similar mold. The results below for BZ/2q = K(Z/2q, 1) and

BU(q) have at present been established only for n = 2.

Proposition 4.4. [10] There is a short exact sequence

0 −→ im(N∗) −→ ER(2)∗(BZ/2q) −→ ER(2)∗[[p̂1, z]]/J −→ 0

where J is the ideal generated by the following.

(1) The relations (in degrees 16∗) encoded by the kernel of the composite map

ER(2)16∗[[p̂1, z]] −→ E(2)16∗[[p̂1, z]] −→ E(2)16∗(BZ/2q)
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which, since the first map is an injection (in these degrees), are detected entirely

within E(2)-cohomology.

(2) The series ξ(û) = N∗(û) as in the computation of CP∞ above, which maps to

û+ û∗ in E(2)-cohomology

Proposition 4.5. The restrictions of the Pontryagin classes in E(2)∗(BSO(2q)) to

E(2)∗(BU(q)) lift to classes p̂i ∈ ER(2)∗(BU(q)). Modulo the image of the norm

(see ER(n)∗(CP∞) above), ER(2)∗(BU(q)) is generated as an ER(2)∗-algebra by

{p̂1, . . . , p̂q}.

These two propositions provide some hope that there is a class of spaces for which

the computations of ER(n)∗(CP∞), ER(2)∗(BZ/2q), and ER∗(BU) prescribe a cer-

tain mold. We conclude with a conjecture.

Conjecture 4.6. Let X be one of the even Eilenberg-MacLance spaces, one of BU ,

BSU , or BU〈6〉, or more generally a space BP 〈k〉
q

in the Ω-spectrum representing

BP 〈k〉 for 2(2k − 1) ≤ q ≤ 2(2k+1 − 1). Modulo the image of the norm, ER(n)∗(X)

is a quotient of a certain power series ring over ER(n)∗ described as follows. The

ring is generated by classes represented by permanent cycles in the Bockstein spec-

tral sequence, formed by taking usual generators z of the E(n)-cohomology of the

above spaces, hatting them, and multiplying them by their conjugates to form ẑc(ẑ).

In the case of Eilenberg-MacLane spaces of the form K(Z/2q, 2j + 1) we also in-

clude the images of generators of K(Z/2, 2j + 1) (as computed for n = 2 in [11]).
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ER(n)∗(X)/im(N∗) is obtained by taking a quotient of this power series ring by an

ideal generated by classes in degrees divisible by 2n+2. In these degrees, the map

ER(n)2n+2∗(X) −→ E(n)2n+2∗(X) is an injection, and the relations which generate

the ideal may be detected in E(n)-cohomology.
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Appendix

5.1 Statement and discussion of results

The goal of this section is to establish some technical lemmas that enable us to

solve extension problems in the Bockstein spectral sequence. Everything we need is

summed up in the following proposition.

Proposition 5.1.

(a) There is a norm map

N : F (X,E(n)) −→ F (X,ER(n))

(b) Give F (X,ER(n)) and F (X,E(n)) module structures over F (X,ER(n)) via

the multiplication on ER(n) and the map of ring spectra ER(n) −→ E(n),

respectively. Then N is a map of modules over F (X,ER(n)). On homotopy, it
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is given as a map of modules over ER(n)∗(X) by

N∗ : E(n)∗(X) −→ ER(n)∗(X)

(c) After composing with the inclusion of fixed points ER(n)∗(X) −→ E(n)∗(X)

(which is one of the maps in our exact couple) we denote the composite by N∗,

N∗ : E(n)∗(X) −→ ER(n)∗(X) −→ E(n)∗(X)

It is given in homotopy by N∗(z) = z + c(z).

(d) In the Bockstein spectral sequence, every class N∗(z) in E(n)∗(CP∞) = E0,∗
1 is

a permanent cycle represented by N∗(z) ∈ ER(n)∗(X).

Intuitively (and imprecisely), the norm is constructed as the following composite

E // E/C2
A
'
// EC2

where A denotes the Adams isomorphism and to get the above proposition, we hope

to set E = F (X,E(n)). Both source and target are modules over EC2 (the source via

the inclusion of fixed points EC2 −→ E), and we want to show that the composite is a

map of modules over EC2 . However, as we are working both stably and equivariantly,

there are several subtleties that we must take into account:

(i) The Adams isomorphism above does not make sense unless E is free. As such,

we will need to work with Ẽ := EC2+ ∧E and transition between E and Ẽ via

the map Ẽ −→ E induced by the map EC2+ −→ S0, which is an equivalence
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nonequivariantly.

(ii) The construction of the Adams map requires working with several groups. In

fact, we set things up in a slightly more general framework of a group G and

a subgroup H, and at some point must expand to the group Γ = H o G. We

follow the treatment of the Adams isomorphism given in [16].

(iii) Several constructions (the Adams isomorphism, orbits, fixed points) require

moving between the G-complete, H-fixed, and trivial universes. As such, we

must keep track of the change of universe functors.

The above considerations make the diagrams necessary to prove Proposition 5.1,

especially part (b), somewhat complicated. We carry these out in the next section.

Warning 5.2. What follows is something of an exorcism. Proposition 5.1 gives

everything we need for the computations in the rest of the paper and what follows is

only for those interested in abstract nonsense.

5.2 Background

We begin with some general setup. Let G be a finite group, H a normal subgroup.

Let p : G −→ G/H the projection onto the quotient. Let ι : {e} −→ G be the

inclusion of the trivial subgroup. Let U a complete G-universe. Let i : UH −→ U

denote the inclusion of universes. Let GSU denote the category of (genuine) G-

equivariant spectra indexed over U .
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Let E ∈ GSU . Recall that H-fixed points are defined by first passing to the

H-trivial universe UH ,

EH := (i∗E)H ∈ (G/H)SUH

The H-fixed points functor is right adjoint to the functor p∗ : (G/H)SUH −→ GSUH ,

where p : G −→ G/H is projection onto the quotient. For a spectrum D ∈ GSUH ,

we have the H-orbits

D/H ∈ (G/H)SUH

The H-orbits functor is left adjoint to p∗. In the case of an H-free genuine G-spectrum

EH+∧E ∈ GSU , we have the fact that free spectra are induced up from the H-trivial

universe, EH+ ∧ E = i∗(EH+ ∧ D) where D = i∗E ∈ GSUH , which allows us to

define the homotopy orbits of E by

EhH := (EH+ ∧D)/H ∈ (G/H)SUH

Fix Ẽ := EH+∧E to be an H-free genuine G-spectrum with E a ring spectrum such

that Ẽ = i∗D̃ with D̃ = EH+ ∧ i∗E ∈ GSUH . Set D = i∗E. In the first part of this

section, we will construct a norm map

Ñ : D̃ −→ p∗(D̃H)

Since D is a ring spectrum, D̃ = EH+∧D is a D-module via the map EH+∧D −→ D

induced by EH+ −→ S0. Both source and target are p∗(DH)-modules (via the counit

p∗(DH) −→ D). We will first show that Ñ is a map of p∗(DH) modules. We will
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then apply ι∗ to move to the nonequivariant context and construct from Ñ a norm

map on D itself:

N : ι∗D −→ ι∗DH

We will then examine the effect of N on homotopy groups. We conclude by describing

how this construction specializes to give Proposition 5.1.

5.3 Construction of the norm

We begin with the unit of the (−/H, p∗)-adjunction,

η : D̃ −→ p∗(D̃/H)

The following diagram shows that this is a map of p∗(DH)-modules:

D̃ ∧ p∗(DH)
η∧1 //

η
((

1∧ε

��

p∗(D̃/H) ∧ p∗(DH)

p∗(ζ−1)

��

p∗
(
D̃∧p∗(DH)

H

)
1∧ε

��

D̃ ∧D //

m

��

p∗
(
D̃∧D
H

)

��

D̃ // p∗(D̃/H)

The map ζ : (D̃∧p∗(DH))/H −→ (D̃/H)∧DH is adjoint to η∧1 and is an equiv-
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alence by Lemma 2.4.9 of [16]. The triangle commutes by adjoint functor identities.

The norm map is the composite of η with the Adams isomorphism

A : p∗(D̃/H) −→ p∗(D̃H)

It is constructed as the adjoint of a map

A′ : i∗p
∗D̃/H) −→ i∗D̃

Since the functor i∗ preserves smash products, both the source and target are modules

over i∗p
∗(DH). We will write out the construction of A′, following [16] and in the

process, show that it is a map of i∗p
∗(DH)-modules. It will then follow that the

adjoint is a map of p∗(DH)-modules.

Intuitively, the Adams map comes from smashing with a map τ : S0 −→ Σ∞H+

D̃/H −→ H+ ∧ D̃
H

= D̃

A subtlety that needs to be taken into account with the above is that since the copy

of D̃ on the right hand side needs to carry an action of H even after taking the

quotient of H+ ∧ D̃ by H, we need to work with a larger group. This is remedied by

introducing the following framework.

Let G act on H by conjugation. Let Γ = H o G. Let π be the subgroup H o 1.
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We have the commutative diagram

Γ θ //

β

��

G

p

��
G

p // G/H

where θ(n, g) = ng, β : Γ −→ Γ/π ∼= G is the projection. Let α : G ∼= 1 o G −→ Γ

be the inclusion. Notice that θ ◦ α = β ◦ α = 1.

We begin constructing A′ by first transitioning to the larger group Γ. The first

step is to note that p∗(D̃/H) is equivalent to (θ∗D̃)/π = Gnβ θ
∗D̃ via the composite

s : Gnβ θ
∗D̃ −→ Gnβ θ

∗p∗(D̃/H) = Gnβ β
∗p∗(D̃/H) −→ Gnβ p

∗(D̃/H)

It is an equivalence by Lemma 2.7.4 of [16]. The following diagram shows that s is a

map of p∗(DH)-modules.

G nβ θ∗D̃ ∧ p∗(DH) // G nβ θ∗p∗(D̃/H) ∧ p∗(DH) G nβ β∗p∗(D̃/H) ∧ p∗(DH) // p∗(D̃/H) ∧ p∗(DH)

G nβ θ∗(D̃ ∧ p∗(DH)) //

''

��

'

OO

G nβ θ∗p∗( D̃H ∧D
H)

'

OO

G nβ β∗p∗( D̃H ∧D
H)

77

'

OO

G nβ θ∗p∗
(
D̃∧p∗(DH )

H

)
'

OO

��

G nβ β∗p∗
(
D̃∧p∗(DH )

H

)
//

��

'

OO

p∗
(
D̃∧p∗(DH )

H

)

'

OO

��
G nβ θ∗(D̃ ∧D) //

��

G nβ θ∗p∗
(
D̃∧D
H

)

��

G nβ β∗p∗
(
D̃∧D
H

)

��

// p∗
(
D̃∧D
H

)

��
G nβ θ∗D̃ // G nβ θ∗p∗(D̃/H) G nβ β∗p∗(D̃/H) // p∗(D̃/H)

Since s is an equivalence, s−1 is also a map of p∗(DH) modules. We take i∗(s
−1)
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to be the first component of A′.

The second subtle point is that the map τ : S0 −→ Σ∞N+ is only defined over a

G-complete universe. Since we are working with the larger group Γ, we let U ′ be a

Γ-complete universe and take the G-complete universe U to be (U ′)π. Let j denote

the inclusion. Then the map τ is defined in the category ΓSU ′. We thus have a map

j∗i∗θ
∗D̃ −→ H+ ∧ j∗i∗θ∗D̃ = j∗i∗(H+ ∧ θ∗D̃) = j∗i∗(Γ nα α

∗θ∗D̃)

Note that α∗θ∗D̃ = D̃ = α∗β∗D̃, but we keep the former notation for now.

Our first step is thus to define

j∗i∗(Gnβ θ
∗D̃) = Gnβ (j∗i∗θ

∗D̃) −→ Gnβ Γnα j∗i∗α
∗θ∗D̃ = j∗i∗(Gnβ Γnα α

∗θ∗D̃)

and show it is a map of j∗i∗p
∗(DH)-modules.

j∗i∗(Gnβ θ
∗D̃) ∧ j∗i∗p∗(DH) τ∧1 // j∗i∗(Gnβ Γ nα α

∗θ∗D̃) ∧ j∗i∗p∗(DH)

j∗i∗Gnβ θ
∗(D̃ ∧ p∗(DH))

'

OO

τ //

��

j∗i∗Gnβ Γ nα α
∗θ∗(D̃ ∧ p∗(DH))

��

'

OO

j∗i∗Gnβ θ
∗(D̃ ∧D)

��

// j∗i∗Gnβ Γ nα α
∗θ∗(D̃ ∧D)

��

j∗i∗Gnβ θ
∗D̃ // j∗i∗Gnβ Γ nα α

∗θ∗D̃

Note that the entire diagram lives in the category of π-free ΓSU ′-spectra. Thus,
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the above map is induced (via j∗) from a map

t : i∗Gnβ θ
∗D̃ −→ i∗Gnβ Γ nα α

∗θ∗D̃

in GSU . The entire diagram above lives in the category of π-free ΓSU ′-spectra as well,

so it is also induced up. From this, we conclude that t is a map of i∗p
∗(DH)-modules.

Finally, we have the action map

ξ : i∗Gnβ Γ nα α
∗θ∗D̃ = Gnβ Γ nα α

∗β∗D̃ −→ i∗D̃

which is constructed as i∗ of the adjoint of the identity on D̃.

The following diagram shows this is a map of i∗p
∗(DH)-modules

i∗Gnβ Γ nα α
∗θ∗D̃ ∧ i∗p∗(DH) i∗Gnβ Γ nα α

∗β∗D̃ ∧ i∗p∗(DH) // i∗D̃ ∧ i∗p∗(DH)

��

i∗Gnβ Γ nα α
∗θ∗(D̃ ∧ p∗(DH))

��

'

OO

i∗Gnβ Γ nα α
∗β∗(D̃ ∧ p∗(DH))

'

OO 55

��

i∗Gnβ Γ nα α
∗θ∗(D̃ ∧D)

��

i∗Gnβ Γ nα α
∗β∗(D̃ ∧D)

��

// i∗(D̃ ∧D)

��

i∗Gnβ Γ nα α
∗θ∗D̃ i∗Gnβ Γ nα α

∗β∗D̃ // i∗D̃

We have the composite A′

i∗p
∗(D̃/H)

i∗(s−1) // i∗Gnβ θ
∗D̃

t // i∗Gnβ Γ nα α
∗θ∗D̃

ξ // i∗D̃
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The (i∗p
∗(−), (i∗(−))H)-adjunction gives the adjoint

A : D̃/H −→ (i∗D̃)H

Finally, we apply p∗ and precompose with η to get

Ñ : D̃ −→ p∗(D̃/H) −→ p∗
(

(i∗D̃)H
)

We have proved

Lemma 5.3. Ñ is a map of p∗(DH)-modules.

We now forget to underlying nonequivariant spectra by applying ι∗:

ι∗Ñ : ι∗D̃ −→ ι∗(i∗D̃)H

and this is now a map of ι∗DH-modules. Throughout, we have been working with

D̃ = EH+ ∧ D. On the right, we know now compose with the map D̃ −→ D. On

the left, we have an equivalence ι∗D̃ −→ ι∗D and we precompose with its inverse to

obtain

N : ι∗D −→ ι∗DH

Both of these are evidently maps of ι∗DH-modules, so we conclude

Corollary 5.4. N : ι∗D −→ ι∗DH is a map of ι∗DH-modules.
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5.4 Effect on homotopy groups

We may now postcompose with the inclusion of fixed points to obtain an endo-

morphism of ι∗D:

N : ι∗D −→ ι∗DH −→ ι∗D

This map has a particularly nice expression on the level of homotopy groups: on πu∗D,

N behaves as the group theoretic norm. In the category of equivariant orthogonal

spectra, this is proved in [29].

Consider

i∗θ
∗D̃

��

τ // i∗Γ nα α
∗θ∗D̃

��

i∗Γ nα α
∗β∗D̃

��

ξ // i∗β
∗D̃

i∗β
∗(Gnβ θ

∗D̃) // i∗β
∗(Gnβ Γ nα α

∗θ∗D̃ i∗β
∗(Gnβ Γ nα α

∗β∗D̃

66

We apply α∗ and use the fact that βα = id = θα to get

i∗D

��

// i∗α
∗Γ nα α

∗θ∗D̃

��

i∗α
∗Γ nα α

∗β∗D̃

��

// i∗D

i∗(Gnβ θ
∗D̃) // i∗(Gnβ Γ nα α

∗θ∗D̃) i∗(Gnβ Γ nα α
∗β∗D̃)

77

Proposition 5.5. For z ∈ πu∗ (D), N∗ is given by

N∗(z) =
∑
h∈H

h · z

Proof. We examine the top row of the above diagram on underlying nonequivariant

spectra. Recall that the underlying nonequivariant spectra of ι∗D̃ and ι∗D are equiv-

alent. Nonequivariantly, we have Γ nα α
∗θ∗D = H+ ∧ D =

∨
h∈H D and the first
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horizontal map is given by smashing with τ : S0 −→ Σ∞H+. From the construc-

tion (via the Pontryagin-Thom collapse map) it follows that, τ : D̃ −→ H+ ∧ D̃ is

nonequivariantly the diagonal map on homotopy, i.e. the following diagram com-

mutes.

πu∗ (H+ ∧D)

πu∗ (D)

τ
88

∆

&&⊕
h∈H π

u
∗ (D)

∼=

OO

The final map is the action and sends an element in a wedge summand πu∗ (D) in

πu∗ (H+ ∧ D) ∼=
⊕

h∈H π
u
∗ (D) indexed by h ∈ H to the action of h on that element.

Putting the two maps together proves the claim.

5.5 Proof of Proposition 5.1

Proposition 5.1 now follows as a specialization of the above results. Set G = H =

C2. Let X be a space with trivial C2-action (in our present applications, X = CP∞

with C2 acting trivially and not by complex conjugation). Set E := F (X,ER(n)).

Then ι∗E = F (X,E(n)), and πu∗E = E(n)∗(X) is the source of the norm, N∗. Since

X has trivial C2-action, we have

EC2 = F (X,ER(n))C2 = F (X,ER(n)C2) = F (X,ER(n))
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and the target of N∗ is πu∗F (X,ER(n)) = ER(n)∗(X). Upon postcomposing with

the inclusion of fixed points F (X,ER(n)) −→ F (X,E(n)), we have that N is an

endomorphism of E(n)∗(X) which sends any element z ∈ E(n)∗(X) to z + c(z). The

final part of Proposition 5.1 follows immediately from the exact couple generating the

Bockstein spectral sequence. This completes the proof.

Remark 5.6. It is possible to modify the above proof of Proposition 5.1 to avoid

using that ER(n) is a homotopy commutative and associative ring spectrum and

instead use the weaker statement that ER(n)∗(−) is a cohomology theory on spaces

valued in commutative and associative rings (as proved in [19]). One simply modifies

the proof of (b) by working up to phantom maps and noting that after applying

F (X,−) to the diagrams for X any space and π∗(−), all phantom maps are trivial.

See [19] for more details.
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