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Abstract 

 

Innate lymphoid cells (ILCs) are an innate immune cell population that is known to play 

an important role in infection and inflammation at diverse tissues. ILCs are recognized as 

an important source of type 2 cytokines and an innate counterpart of T effector cells. Over 

the past decade, ILCs have been shown to contribute to mounting immune responses 

against pathogens at mucosal barriers, regulating tissue inflammation, promoting tissue 

repair and remodeling and maintaining metabolic homeostasis. Although ILCs have been 

investigated intensively at many mucosal sites including the intestine and lungs, our 

understanding of the roles of ILCs in the heart is limited. Here we used an IL-33-induced 

pericarditis mouse model to determine the role of ILCs in the heart and the underlying 

mechanism on how ILCs contribute to cardiac inflammation. We identified an 

accumulation of group 2 innate lymphoid cells (ILC2s) in IL-33-induced pericarditis with 

a marked increase of eosinophils infiltrating to the heart. Using ST2-deficient and IL-33-

deficient mice, we found that IL-33 signaling through its receptor ST2 is essential to induce 

the expansion of ILC2s and pericarditis. We showed the existence of IL-33 feedback loop 

containing cardiac fibroblasts as a main source of IL-33 in the heart where endogenous IL-

33 expression is upregulated upon exogeneous IL-33 administration. Rag2-/-Il2rg-/- mice 

were resistant to pericarditis, whereas Rag2-/- mice develop inflammation comparable to 

WT mice, suggesting that ILC2s, not T cells and B cells, are required for pericarditis 

development. ILC2s transferred to the heart of ILC-deficient Rag2-/-Il2rg-/- mice restored 

their susceptibility to eosinophil infiltration. Moreover, ILC2s directed cardiac fibroblasts 

to produce eotaxin-1 in vitro which might potentially promote eosinophil trafficking to the 
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heart. We also found that eosinophils reside in the mediastinal cavity of naïve and IL-33-

treated mice, which implies a possibility that the mediastinal cavity might serve as a 

reservoir of eosinophils for non-vascular trafficking to the heart. Eosinophils transferred to 

the mediastinal cavity of eosinophil-deficient ΔdblGATA1 mice after IL-33 treatment 

migrated more effectively to the heart than intravenously transferred eosinophils. In 

conclusion, our results demonstrate a pathogenic role of ILC2s in driving pericarditis 

development with implications for therapeutic strategies. 
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Chapter 1. Introduction 

 

A. Innate lymphoid cells 

Innate lymphoid cells (ILCs) are innate immune cells that do not express antigen-specific 

receptors expressed by adaptive lymphocytes, T cells and B cells [1]. ILCs develop from 

common lymphoid progenitors (CLPs), the same progenitors as T cells and B cells do [2, 

3]. Therefore, they are characterized by a lymphoid morphology and the absence of 

rearranged antigen-specific receptors [1-4]. The nomenclature proposed previously 

classified ILCs into three groups, ILC1s, ILC2s and ILC3s with subsets based on their 

function and transcription factor expression [1]. However, with improvement in 

understanding of the development of ILCs, classification of ILCs into five groups was 

recently proposed – natural killer (NK) cells, ILC1s, ILC2s, ILC3s and lymphoid tissue-

inducer (LTi) cells – based on development [4]. ILC1s, ILC2s and ILC3s mirror CD4+ T 

helper (Th)1, Th2 and Th17 cells, respectively, in terms of effector function, while NK 

cells mirror CD8+ cytotoxic T cells [1]. LTi cells induce the development of secondary 

lymphoid organs during fetal development [5]. ILCs develop from common innate 

lymphoid progenitors (CILPs) that are derived from CLPs (Figure 1) [3, 6, 7]. 

In an early stage of ILC development, Id2 is required for the development of all ILCs and 

NK cells as shown in the study using Id2-deficient mice lack of ILCs and NK cells [8-12]. 

Depending on the expression of transcription factors during development, ILCs are 

differentiated into ILC1s, ILC2s and ILC3s [13]. Transcription factors that govern the 

differentiation of ILCs into their subsets are characterized by many studies (Figure 1). NK 
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cells and ILC1s are dependent on T-box transcription factor (T-bet) for their development 

[6]. Whereas ILC1s are strictly dependent on T-bet, NK cells are present in T-bet-deficient 

mice [14]. ILC2s rely on transcription factors including GATA3 and RORα [11, 15-18]. 

GATA3 is one of key transcription factors driving the development of all CD127+ ILCs 

[19]. GATA3 is especially important for the maintenance and survival of ILC2s as the 

absence of GATA3 inhibits the development and function of ILC2s [11, 15, 16, 19].  ILC3s 

and LTi cells are dependent on the transcription factor RORγt [20, 21]. Although the 

development of ILC3s is dependent on RORγt in mice, IL-17-producing subset, not IL-22-

producing subset, is absent in RORC-deficient patients [22]. 

ILC1s are characterized by interferon gamma (IFNγ) production and ILC2s produce Th2-

associated cytokines, mainly IL-5 and IL-13 [6, 8, 23-26]. ILC3s comprise natural 

cytotoxicity receptor (NCR)+ ILC3s and NCR- ILC3s and produce IL-17 and/or IL-22 [21, 

27-29]. Since ILCs produce cytokines as T cells do, they are regarded an innate counterpart 

of T effector cells. However, ILCs act early in immune response, whereas it takes several 

days for T cells to react and function as an effector because they have to clonally expand 

and develop antigen-specificity. 

ILCs are found in both lymphoid organs and non-lymphoid organs. ILCs in non-lymphoid 

organs are derived from ILC progenitors recruited from the blood. ILCs possess slightly 

different phenotypes in different tissues in terms of marker expression despite redundancy 

in common markers. Most ILCs are tissue-resident cells and maintain their tissue residency 

in homeostasis and during acute inflammation [30]. However, ILC3s can migrate from the 

lamina propria of the intestine to the draining mesenteric lymph nodes and NK cells and 

inflammatory ILC2s are found in the circulation [30, 31]. 
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ILC subsets are important for immunity against diverse infections. ILC1s are critical for 

defense against viruses, certain bacteria such as enteric bacteria, Clostridium difficile, and 

intracellular parasites such as Toxoplasma gondii [6, 32]. ILC2s are known to be involved 

in innate immunity against parasites such as Nippostrongylus brasiliensis [8, 25]. ILC3s 

are involved in the innate immune response to extracellular bacteria [21, 29]. ILCs can also 

play critical roles in regulation of inflammation at mucosal and barrier surfaces. Intra-

epithelial ILC1s and ILC3s producing IFNγ induce inflammation in some mouse models 

of colitis [24, 29]. IFNγ-producing ILCs may be involved in inflammatory bowel disease 

such as Crohn’s disease [23, 24]. IL-17-producing ILC3s have also been shown to play a 

role in inflammatory bowel disease in T-cell-independent models [29, 33]. ILC2s have 

been shown to play a detrimental role in various type 2 inflammatory disorders in animal 

models including allergic lung inflammation [34-36]. ILC2s are associated with asthma 

and chronic rhinosinusitis in humans [37, 38]. ILC2s might be also involved in the 

pathogenesis of atopic dermatitis [39, 40]. ILC3s producing IL-17 and IL-22 have been 

associated with the inflammatory skin disease psoriasis vulgaris [41, 42]. Besides functions 

as effectors in innate immune response, ILCs are also involved in tissue homeostasis 

including metabolism, regeneration and tissue repair in response to tissue damage resulting 

from infection and inflammation [9, 43-47]. 
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Figure 1. Development of ILCs. 

Schematic description of ILC development is shown mainly based on findings from mice. 

This figure is adapted from [4]. 

Abbreviations: CILPs (common innate lymphoid progenitors), CLPs (common lymphoid 

progenitors), CHILPs (common helper innate lymphoid progenitors), LTiPs (lymphoid 

tissue inducer progenitors), ILCP (innate lymphoid cell precursors), NFIL3 (nuclear factor 

IL-3 induced), Id2 (inhibitor of DNA binding 2), TOX (thymocyte selection-associated 

high mobility group box protein), TCF-1 (T cell factor 1), ETS1 (avian erythroblastosis 
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virus E26 homolog-1), GATA3 (GATA binding protein 3), PLZF (promyelocytic leukemia 

zinc finger), T-bet (T-box transcription factor), Eomes (Eomesodermin), RUNX3 (runt-

related transcription factor 3), RORα (RAR-related orphan receptor α), Bcl11b (B cell 

lymphoma/leukemia 11B), Gfi1 (growth factor independent 1), RORγt (RAR-related 

orphan receptor γt) and AhR (Aryl hydrocarbon receptor). 

 

 

B. Interleukin-33 (IL-33) 

IL-33 is a cytokine of IL-1 family which was originally identified as an inducer of type 2 

immunity activating Th2 cells and mast cells [48]. Phylogenetic study shows that IL-33 

protein in mammals is evolutionarily conserved and is closely related to IL-18 among the 

IL-1 family members [48]. IL-33 exerts cytokine activity by binding to a heterodimer 

receptor complex composed of its specific receptor ST2 and co-receptor IL-1 receptor 

accessary protein (IL-1RAcP) [48, 49]. IL-33 was first described as a nuclear protein 

known as nuclear factor from high endothelial venules (NF-HEV) because of its nuclear 

localization [50]. Following study showed that IL-33 is a chromatin-associated nuclear 

cytokine in vivo and that its nuclear domain within the N terminus is necessary and 

sufficient for nuclear localization and chromatin association [51]. 

IL-33 functions as an alarmin which is released from cells after cell injury to alert immune 

system during trauma or infection [52-55]. The role of IL-33 as an alarmin is further 

supported by evidence that it is constitutively expressed in normal human tissues, full 

length IL-33 is biologically active and it is released to the extracellular space after injury 

or necrotic cell death [54, 56, 57].  IL-33 is constitutively expressed in various types of 
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cells in humans and mice at the steady state [56, 58]. The major source of IL-33 includes 

endothelial cells, epithelial cells in barrier tissues and fibroblast-like cells such as 

fibroblastic reticular cells in lymphoid organs [56, 58, 59]. However, species-specific 

differences in cell types expressing IL-33 have been noted. In mice, IL-33 is not 

constitutively expressed along vascular tree, although it can be detected in some vascular 

beds [58, 60, 61]. In the lungs, IL-33 is expressed by the lung airway epithelial cells in 

humans, while it is expressed by alveolar type II pneumocytes in mice [53, 62, 63]. The 

expression of IL-33 can be further increased during inflammation, although it is already 

expressed in the steady state. In humans, IL-33 levels are increased in the airway epithelial 

cells from patients with chronic obstructive pulmonary disease (COPD) and in skin 

keratinocytes and blood vessels from patients with atopic dermatitis [53, 62, 64]. In mice, 

IL-33 expression is increased in alveolar type II pneumocytes after helminth infection, 

exposure to cigarette smoke or intranasal allergen challenge [53, 63, 65, 66]. Activated 

fibroblasts, fibroblast-like cells and myofibroblasts are also important sources of IL-33 in 

diseases related to tissue fibrosis and wound repair [67-69]. 

Regulation of IL-33 is critical because IL-33 has a profound function in pro-inflammatory 

responses. Full length IL-33 can be cleaved to shorter mature forms by inflammatory 

proteases from neutrophils and mast cells [70, 71]. Mature forms are 10- to 30-fold more 

potent than full length IL-33 in activating mast cells and ILC2s. There are several 

mechanisms restricting IL-33 activity. During apoptosis, processing of IL-33 by apoptotic 

caspases such as caspase 3 and caspase 7 could be important to suppress the potent pro-

inflammatory effect of IL-33 [54, 57]. IL-33 contains a site for cleavage by apoptotic 

caspases which produce biologically inactive forms of IL-33 [54, 57]. A soluble form of 
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ST2 (sST2) has been shown to function as a decoy receptor in neutralizing IL-33 activity 

in serum [60, 72]. Following release, IL-33 can be inactivated rapidly in the extracellular 

space by oxidation of cysteine residues and the formation of disulfide bonds in the cytokine 

domain [73]. 

IL-33 binding to ST2 leads to IL-1RAcP recruitment and the formation of a signaling 

complex recruiting signaling adaptor molecules such as myeloid differentiation primary 

response protein 88 (MYD88), IL-1R-associated kinase 1 (IRAK1), IRAK4 and tumor 

necrosis factor (TNF) receptor-associated factor 6 (TRAF6) [48, 74]. The cluster of these 

signaling molecule complex activates mitogen-activated protein kinases (MAPKs) such as 

JNK, ERK and p38 and nuclear factor-κB (NF-κB), which drive the proliferation, survival, 

type 2-associated cytokine secretion and amphiregulin (AREG) expression by cells 

expressing ST2 [48, 74]. The IL-33/ST2 signaling pathway is depicted in Figure 2. 

Stimulation of lymphoid and myeloid cells by IL-33 results in their proliferation and 

survival and their production and secretion of type 2 cytokines such as IL-5 and IL-13 [75]. 

Th2 cells, regulatory T (Treg) cells and ILC2s are lymphoid cells known to express ST2. 

Th2 cells were the first cells shown to express ST2 and exert type 2 functions [76]. IL-33 

induces the proliferation and AREG expression of ST2-expressing Treg cells [77, 78]. ST2-

expressing ILC2s are also stimulated by IL-33 and produce IL-5 and IL-13 [8, 25, 26]. 

ILC2s activated by IL-33 enhance type 2 immune responses and help tissue repair through 

AREG production [8, 9, 25, 26]. Among myeloid cells, macrophages and dendritic cells 

(DCs) express ST2 [79-81]. DCs stimulated by IL-33 can mediate Th2 cell polarization 

and support Treg cell expansion through IL-33-induced secretion of IL-2 [79, 81, 82]. IL-

2 that mast cells produce by IL-33 stimulation also mediates Treg cell expansion [83]. 
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Collectively, IL-33 plays a key role in innate and adaptive immunity contributing to 

regulation of infection and inflammation. 

 

 

 

Figure 2. IL-33/ST2 signaling pathway. 

IL-33 binds to ST2 and then IL-1RAcP which forms a receptor complex. IL-33 signaling 

through ST2 is dependent on Myd88 which activates intracellular signaling molecules in 

the downstream. This figure is adapted from [84]. 

Abbreviations: IL-1RAcP (IL-1 receptor accessory protein), IRAK (IL-1 receptor-

associated kinase), ITAM (immunoreceptor tyrosine-based activation motif), JAK (Janus 
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kinase), NFκB (nuclear factor κB), PKB (protein kinase B), PLC (phospholipase C), 

STAT3 (signal transducer and activator of transcription 3), Syk (GRB2-associated-binding 

protein 2, GAB2), TRAF6 (tumor necrosis factor receptor-associated factor 6). 

 

 

C. Pericarditis 

Pericarditis is inflammation of the pericardium that is the most common form of pericardial 

disease [85-89]. Affected patients are usually young and middle-aged individuals and 

recurrences are frequently observed [85, 86]. Pericarditis represents 0.2% of all hospital 

cardiovascular admissions [87]. Approximately 5% of patients with non-ischemic chest 

pain are diagnosed with pericarditis in emergency departments in North America and 

Western Europe [88, 89]. 

The etiology of pericarditis could be an infectious or non-infectious cause (Table 1) [90-

92]. Pericarditis may be a part of manifestations of systemic disease or a primary condition 

independent of systemic disease [93-95]. The exact etiology is difficult and challenging to 

determine because many mild cases resolve without a diagnosis and determination of 

etiology depends on its magnitude of investigation. In addition, epidemiological data are 

limited for pericarditis. However, it is important to diagnose and treat pericarditis because 

failure to treat pericarditis in a timely manner might prolong disease and increase 

recurrences [96]. In developing countries, tuberculosis is the most likely underlying disease 

accounting for about 70% of pericarditis diagnoses which is associated with a high 

mortality [93, 94]. Tuberculous pericarditis is less than 5% of all cases in developed 

countries, which is much less common compared with frequency observed in developing 
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countries [97-100]. In North America and Western Europe, about 80 to 90% of pericarditis 

cases are diagnosed as idiopathic and most of those cases are assumed to be viral [88, 89]. 

In a recent study including 933 hospitalized patients diagnosed with acute pericarditis, the 

etiologies of pericarditis were reported as a following order: idiopathic (55%), autoimmune 

or post-cardiac injury syndromes (24%), neoplastic (9%), bacterial (3.1%) and tuberculosis 

(0.5%) [100]. This study suggests that pericarditis in hospitalized patients are more 

complicated cases and reveal a higher risk of a non-idiopathic etiology. Furthermore, in 

developed countries, aging certainly contributes to the etiology of pericarditis with the use 

of cardiovascular intervention in the elderly population which possibly increases the risk 

of complications happening in the pericardium [96, 100]. 
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Table 1. Etiology of pericarditis 

Group Frequency Etiological agents 

Infectious cause 
Virus Common Enteroviruses (coxsackieviruses and echoviruses), 

Herpesviruses (Epstein-Barr virus (EBV), cytomegalovirus 

(CMV), human herpesvirus 6 (HHV-6)), Adenoviruses, 

Parvovirus B19 (possible overlap with viral etiologic agent of 

myocarditis) 

Bacteria Common or 

rare 

Mycobacterium tuberculosis (common in developing 

countries), Coxiella burnetii, Borrelia burgdorferi, Rarely 

other microorganisms (Pneumococcus, Meningococcus, 

Gonococcus, Streptococcus, Staphylococcus, Haemophilus, 

Chlamydia, Mycoplasma, Legionella, Leptospira, Listeria and 

Providencia stuartii) 

Fungi Rare Histoplasma species (more likely in immunocompetent 

patients) 

Aspergillus, Blastomyces and Candida species (more likely in 

immunocompromised host) 

Parasite Rare Echinococcus and Toxoplasma species 

Non-infectious cause 
Autoimmune and 

autoinflammatory 

Common Systemic autoimmune diseases (especially systemic lupus 

erythematosus, Sjogren syndrome, rheumatoid arthritis, 

scleroderma) 

Systemic vasculitides (e.g. eosinophilic granulomatosis with 

polyangiitis or allergic granulomatosis, previously named 

Churg-Strauss syndrome, Horton disease, Takayasu disease, 

Behcet syndrome) 

Autoinflammatory diseases (familial Mediterranean fever, 

tumor necrosis factor receptor–associated periodic syndrome, 

Still disease) 

Other (sarcoidosis, inflammatory bowel diseases) 

Neoplastic Common or 

rare 

Primary tumors (rare; pericardial mesothelioma) 

Secondary metastatic tumors (common; lung and breast 

cancer, lymphoma) 

Metabolic Common Uremia, myxedema, anorexia nervosa 

Traumatic and 

iatrogenic 

Common Early onset: Direct injury (penetrating thoracic injury, 

esophageal perforation); indirect injury (nonpenetrating 

thoracic injury, radiation injury) 

Delayed onset: Pericardial injury syndromes (post–myocardial 

infarction syndrome, postpericardiotomy syndrome); 

posttraumatic, including after iatrogenic trauma (e.g, coronary 

percutaneous intervention, pacemaker lead insertion, and 

radiofrequency ablation) 

Drug related Rare Lupus-like syndrome (procainamide, hydralazine, 

methyldopa, isoniazid, phenytoin) 

Antineoplastic drugs (often associated with cardiomyopathy 

and may cause pericardiopathy): doxorubicin, daunorubicin, 

cytosine arabinoside, 5-fluorouracil, cyclophosphamide 

Penicillins (as hypersensitivity pericarditis with eosinophilia) 

Other Common or 

rare 

Common: amyloidosis, aortic dissection, pulmonary arterial 

hypertension and chronic heart failure 

Rare: congenital partial and complete absence of the 

pericardium 

This table is based on [88, 90-92, 100].  
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Clinical diagnosis of pericarditis can be made based on diagnostic criteria (Table 2). 

Clinical presentation of patients with pericarditis is mostly chest pain. Additional signs and 

characteristics in acute pericarditis could include pericardial friction rubs, an 

electrocardiogram (ECG) with widespread ST-segment elevation and pericardial effusion 

[85, 86]. Aforementioned characteristic ECG is reported in less than 60% of patients with 

acute pericarditis and more commonly found in younger male patients especially associated 

with myocarditis [88, 101]. ECG can be affected by timing in the course of pericarditis; 

therefore, it should be carefully interpreted. About 60% of patients with acute pericarditis 

have a pericardial effusion, which is usually mild and can be found using echocardiography, 

and a large effusion is associated with an increased risk of complications [88, 97]. The 

absence of a pericardial effusion does not exclude pericarditis. The international guidelines 

on pericardial diseases were published first in 2004 and updated in 2015 by the European 

Society of Cardiology (ESC) [91, 92]. In addition to criteria specified above, a consensus 

expert statement on integrated cardiovascular imaging of pericardial diseases was proposed 

by the American Society of Echocardiography [102]. Specific clinical criteria for the 

diagnosis of acute and recurrent pericarditis are summarized in Table 2. Pericardial fluid 

analysis could be used for diagnostic purpose of certain types of pericarditis but limited 

data are available and pericardiocentesis is usually performed only with some patients with 

acute pericarditis. In addition, biochemical and hematologic tests are not helpful for 

diagnosis of distinguishing among the different pericardial diseases due to a considerable 

overlap of test results among the different pericardial disorders [103]. 
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Table 2. Diagnostic criteria for pericarditis 

Pericarditis Diagnostic criteria 
Acute At least 2 of the 4 following criteria are required for diagnosis: 

(1) Pericarditic chest pain 

(2) Pericardial friction rubs 

(3) Widespread ST-elevation or PR depression on ECG 

(4) Pericardial effusion (new or worsening) 

Incessant Pericarditis lasting for longer than 4-6 weeks but shorter than 3 months without 

remission 

Recurrent Recurrence of pericarditis after a documented first episode of acute pericarditis 

A symptom-free interval of 4-6 weeks or longer 

Chronic Pericarditis lasting for longer than 3 months 

Acute or 

recurrent 

Additional supporting findings 

- Elevation of inflammation markers (i.e. C-reactive protein (CRP), 

erythrocyte sedimentation rate (ESR), and white blood cell count) 

- Evidence of pericardial inflammation by an imaging technique (i.e. contrast-

enhanced pericardium on computed tomography (CT) or pericardial edema 

and pericardial late gadolinium enhancement on cardiac magnetic resonance 

imaging (cMRI)) 

This table is based on [88, 92]. 

 

Treatments for pericarditis are determined depending on its type and etiology. Aspirin or 

nonsteroidal anti-inflammatory drugs (NSAIDs) including ibuprofen and indomethacin are 

the central therapy for acute and recurrent pericarditis with idiopathic or viral etiology. A 

clinical trial done in patients with postpericardiotomy syndrome showed that ibuprofen and 

indomethacin were effective in resolution of symptoms and both were significantly more 

effective than placebo [104]. Corticosteroids such as prednisone were the initial choice for 

treating pericarditis with pericardial effusions or recurrences which did not respond to 

aspirin or NSAIDs. However, in a non-randomized study which included 100 patients with 

recurrent pericarditis, this therapy was shown to be associated with more adverse effects, 

recurrences and hospitalizations when higher dose of prednisone was used compared to 

lower dose [105]. Use of colchicine in addition to NSAIDs was suggested to improve 

remission rates and recurrence rates in acute and recurrent pericarditis compared with 

NSAIDs only [85, 86]. In a meta-analysis including seven studies of therapy for pericarditis, 
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colchicine was associated with a reduced risk of treatment failure and recurrences [106]. 

The most common adverse effect associated with colchicine was gastrointestinal symptoms, 

especially diarrhea, which was reported in 8% of patients with colchicine treatment [86]. 

For patients with refractory recurrent pericarditis which is not responsive to any therapy, 

the last option is pericardiectomy. Although there are two studies which are limited by their 

retrospective design, the result of this surgery is controversial in terms of its efficacy [107, 

108]. 

 

 

D. Pericarditis murine model 

Currently, there is no murine model specific to pericarditis. However, it is critical to 

generate and use a mouse model of pericarditis to improve our understandings on the 

mechanism of how pericarditis develop and what immune cells are involved in the 

progression of inflammation. One study showed that BALB/c mice infected with 

coxsackievirus B3 (CVB3) with the treatment of recombinant mouse IL-33 

intraperitoneally every other day from day 1 to day 9 post-infection increased CVB3-

induced myocarditis and pericarditis compared to PBS-treated controls [109]. Histology 

and flow cytometry analysis indicated that IL-33 treatment increased the number of 

eosinophils in the heart of CVB3-induced myocarditis compared to PBS treatment. 

Recombinant ST2 treatment which block IL-33 did not lead to eosinophilia in both 

myocardium and pericardium of mice infected with CVB3 [109]. In this study, IL-33 

treatment also induced pericarditis with increased eosinophils in uninfected mice which 

was similar in terms of phenotype to that observed in CVB3-induced myocarditis with IL-
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33 treatment [109]. From these findings, we adapted a mouse model of IL-33-induced 

pericarditis and used in our studies. BALB/c mice are administered with 1 µg of 

recombinant mouse IL-33 intraperitoneally every other day for a total of five injections, 

and inflammation is examined via histology and flow cytometry ( 

Figure 3). 

 

 

 

Figure 3. Murine model of pericarditis induced by IL-33. 

BALB/c mice are injected with 1 µg of recombinant mouse IL-33 intraperitoneally every 

other day on days 0, 2, 4, 6 and 8 in 100 µl phosphate buffered saline (PBS). The 

inflammation is assessed at day 9 by harvesting the heart and using histology and flow 

cytometry. 
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Chapter 2. IL-33 in Inflammatory Diseases 

 

A. IL-33 in cardiovascular diseases 

A role for IL-33 in cardiovascular diseases was first considered to be protective in pressure 

overload mouse model [72]. In this study, IL-33 treatment reduced hypertrophy and 

fibrosis and improved survival after pressure overload performed by transverse aortic 

constriction (TAC) in mice [72]. IL-33 produced and secreted by endothelial cells in the 

setting of pressure overload is important for inducing a selective systemic inflammatory 

response [60]. IL-33 prevented cardiomyocyte apoptosis and improved cardiac function 

and survival after experimental myocardial infarction [110]. In atherosclerosis, high levels 

of IL-33 and ST2 were expressed by vascular endothelial and smooth muscle cells [111]. 

IL-33 treatment reduced atherosclerosis development in apolipoprotein E-deficient (ApoE-

/-) mice on a high-fat diet by induction of type 2 immune response switching from 

atherosclerotic type 1 immune response [111]. While the role for IL-33 in the 

cardiovascular diseases listed above is beneficial or protective, it can be pathogenic in a 

certain setting of cardiac inflammation. IL-33 treatment promoted eosinophilic pericarditis 

in CVB3-induced viral myocarditis and sST2 treatment improved systolic functions of the 

heart [109]. A component of IL-33 signaling, ST2, was proposed as a prognostic marker 

for acute myocardial infarction [112]. Increased levels of serum sST2 happened after 

myocardial infarction and sST2 concentrations in serum were correlated with impaired left 

ventricular function and poor prognosis [112]. In addition, elevated sera sST2 was 

associated with an increased risk of heart failure in male patients with myocarditis who 

were not order than age 50 years [113]. IL-33/ST2 axis has not progressed to be used as 
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therapeutic targets of cardiovascular diseases except for the use of sST2 as a biomarker, 

however, it should be carefully assessed to use IL-33 as a therapeutic since it could induce 

activation of immune system leading to adverse effects. 

 

 

B. IL-33 in asthma and allergic inflammation 

Many studies have shown the importance of IL-33 in airway Th2 inflammatory diseases 

such as asthma and allergic rhinitis. IL-33 expression levels in bronchial tissue correlate 

with asthma severity in humans [114]. IL33 genetic variants are implicated in the risk of 

asthma and the susceptibility to allergic rhinitis [115, 116]. In mice, IL-33 treatment 

induced airway inflammation through ILC2 activation resulting in type 2 cytokine 

production, eosinophil infiltration to the lungs and M2 macrophage polarization [35, 48, 

66, 117]. IL-33 was shown to play a crucial role in mediating allergic rhinitis in 

experimental murine models with allergen challenge [118, 119]. Atopic dermatitis is an 

allergic inflammatory disease in the skin that shares the similar role for IL-33 in the 

pathogenesis to one shown in lung airway inflammation. Increased levels of IL-33 were 

reported in the skin of patients with atopic dermatitis [39, 64]. Transgenic mice expressing 

IL-33 in keratinocytes developed spontaneous dermatitis with the activation of ILC2s [40]. 

Blocking IL-33 using anti-IL33 antibody was effective to ameliorate inflammation in 

experimental allergic rhinitis and asthma [120, 121]. Therefore, IL-33 induce type 2 

cytokine production and pathology at barrier tissues such as the lungs and skin and 

targeting IL-33 in asthma and allergic disorders might be a good therapeutic option. 
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C. IL-33 in rheumatoid arthritis 

IL-33 is detected in the synovium of patients with rheumatoid arthritis (RA) [51, 122]. 

Higher IL-33 levels in synovial fluid and serum were correlated with more severe disease 

[122]. Single-nucleotide polymorphism (SNP) of the IL33 gene was associated with lower 

serum levels of IL-33 and a decreased susceptibility to RA [123]. In collagen-induced 

arthritis (CIA) mouse model, IL-33 treatment exacerbated joint inflammation in a mast 

cell-dependent manner [124]. Exacerbation of inflammation was accompanied by 

increased expression levels of proinflammatory cytokines such as IFNγ, TNFα and IL-17 

[124]. Blocking IL-33 signaling through ST2 by using sST2, knockout of ST2 or anti-ST2 

antibody, decreased the severity of joint inflammation in mouse models of RA [124-126]. 

Therefore, targeting IL-33 is a potential therapeutic option for RA and it might be a good 

approach in targeting chronic RA by inhibiting the release of proinflammatory cytokines. 

However, efficacy of IL-33 neutralization needs to be evaluated and blocking IL-33 need 

to compete against current treatments for RA which are successful. 

 

 

D. IL-33 in gastrointestinal diseases 

IL-33/ST2 signaling axis is important for maintaining the integrity of epithelial cell layers 

in the gastrointestinal tract [127]. Esophageal expression of IL-33 was higher in patients 

with active eosinophilic esophagitis (EoE) compared to control individuals [128]. 

Increased expression of IL-33 was associated with the development of pediatric EoE [129]. 

In addition, IL-33 treatment induced transmural inflammation and mucosal 
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hyperproliferation in the esophagus in mice [129]. IL-33 is highly expressed in the mucosa 

of intestine which suggest its important role in inflammatory bowel disease (IBD). Mucosal 

IL-33 levels were increased in Crohn disease and ulcerative colitis which was correlated 

with the severity of disease [130, 131]. This suggests the use of IL-33 as a biomarker of 

IBD. However, similar to its role in the cardiovascular diseases, IL-33 can play both 

beneficial and pathogenic roles in gastrointestinal inflammatory diseases [127]. In a 

dextran sodium sulfate (DSS)-induced colitis model, IL-33-/- mice showed decreased 

inflammation and mortality but delayed recovery at later timepoint [132]. Similarly, ST2-

/- mice were resistant to DSS-induced colitis due to the protection granted from absence of 

ST2 in non-hematopoietic cells [130]. The absence of ST2 also enhanced wound healing 

in the colon [130]. On the other hand, IL-33 administration can ameliorate trinitrobenzene 

sulfonic acid (TNBS)-induced colitis and T cell transfer-induced colitis [133, 134]. IL-33 

induced the expansion of gut-associated Treg cells which overcome the effect of IL-23, a 

proinflammatory cytokine in IBD which usually restrains Treg responses [134]. IL-33 can 

also protect and restore intestinal tissue homeostasis by activating ILC2s to produce AREG 

[135]. These controversial effect of IL-33 could be due to different experimental murine 

models of colitis or the timing and dose of IL-33. Furthermore, acute nature of disease 

models used in mice might contribute to confounding because chronic inflammation is 

usually observed in patients with IBD. The balance between IL-33-induced inflammation 

and repair should be further addressed in these models to evaluate the potential therapeutic 

application of IL-33/ST2 axis. 
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E. IL-33 in kidney diseases 

Studies have shown both pathogenic and beneficial functions of IL-33 in kidney diseases 

using animal models. The pathogenic role of IL-33 has been reported in kidney ischemia-

reperfusion injury (IRI), cisplatin-induced acute kidney injury (AKI) and ovalbumin-

induced nephrotoxicity models [136-138]. In IRI model, IL-33 treatment induced more 

severe renal fibrosis [136]. IL-33 worsened cisplatin-induced AKI with an increase of T 

cell infiltration, serum creatine, acute tubular necrosis (ATN) and apoptosis [137]. By 

contrast, a recent study revealed a protective role for IL-2-IL-33 fusion protein in kidney 

IRI models, which was mediated by the expansion of renal ILC2s [139]. IL-33 treatment 

for a short term also led to the expansion of renal ILC2s and protected from adriamycin-

induced glomerulosclerosis [140]. It is likely that IL-33/ST2 signaling pathways functions 

differently depending on types of renal diseases. 

 

 

F. IL-33 in metabolic disorders 

Expression of IL-33 and ST2 were found in adipose tissues [61, 141, 142]. Low serum 

levels of IL-33 were correlated with high body mass index [143]. These findings suggest 

IL-33 might be associated with obesity and diabetes. IL-33 treatment to adipocyte cultures 

in vitro reduced expression of genes related to adipogenesis and lipid metabolism [142]. 

ST2-/- mice fed high-fat diet increased body weight and fat mass and showed impaired 

insulin secretion and glucose regulation compared to WT mice fed the same diet [142]. The 

protective role of IL-33 in adipose tissue might be exerted by increased production of type 

2-associated cytokines and polarization of M2 macrophages and by the maintenance of 
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Treg cells in adipose tissue [141, 142]. In addition, IL-33 is critical for the maintenance of 

ILC2s in white adipose tissue and for limiting adiposity in mice by enhancing caloric 

expenditure through a process called beiging in which white adipose tissue is conversion 

to brown adipose tissue [8, 144, 145]. Brown adipose tissue plays a role in transferring 

energy into heat potentially protecting from metabolic disorders such as type 2 diabetes. 

 

 

G. IL-33 in the central nervous system 

High levels of IL-33 expression are observed in the central nervous system (CNS) [48]. IL-

33 is expressed by macroglia, astrocytes and oligodendrocytes and ST2 is expressed by 

microglia [55, 146]. In mice, IL-33 treatment attenuated experimental autoimmune 

encephalomyelitis (EAE) [147]. Also, IL-33 can promote the differentiation of M2-like 

microglia and Treg cells limiting glial scaring in experimental ischemic stroke and spinal 

cord injury (SCI) [55, 148, 149]. In Alzheimer’s disease, β-amyloid is accumulated in the 

brain which triggers chronic inflammation and leads to microglia activation and synaptic 

and neuronal dysfunction. In humans, IL-33 expression was decreased in the brain of 

patients with Alzheimer’s disease and serum levels of sST2 were elevated in patients with 

mild cognitive impairment [150, 151]. IL-33 administration reversed synaptic plasticity 

impairment and memory deficits in APP/PS1 mice, a commonly used mouse model of 

Alzheimer’s disease [150]. Furthermore, IL-33 modulated innate immune function by 

polarizing microglia towards an anti-inflammatory phenotype and reducing the expression 

of pro-inflammatory genes [150]. Collectively, IL-33 likely mediates neuroprotective 
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functions in various brain inflammation and injury models. IL-33 might have a potential to 

be used as a therapeutic option for CNS inflammation and injury and Alzheimer’s disease. 

 

The summarized roles of IL-33 in various inflammatory diseases are listed in Table 3. 
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Table 3. Roles of IL-33 in inflammatory diseases 

Inflammatory 

diseases 

Role of IL-33 Protective/ 

Pathogenic 

Refs 

Cardiovascular 

diseases 

IL-33 reduced hypertrophy and fibrosis in pressure overload model Protective [72] 

IL-33 prevented cardiomyocyte apoptosis and improved cardiac function 

in myocardial infarction 

Protective [110] 

IL-33 reduced atherosclerosis development in ApoE-/- mice Protective [111] 

IL-33 promoted eosinophilic pericarditis in CVB3-induced myocarditis Pathogenic [109] 

Elevated serum levels of sST2 is correlated with poor prognosis of 

myocardial infarction and with an increased risk of heart failure in male 

patients ≤50 years old with myocarditis 

Protective [112, 

113] 

Asthma and 

allergic 

inflammation 

IL-33 levels were correlated with asthma severity Pathogenic [114] 

IL33 genetic variants were related to the risk of asthma and allergic 

rhinitis 

Pathogenic [115, 

116] 

IL-33 treatment induced airway inflammation in mice Pathogenic [35, 48, 

66, 117] 

IL-33 mediated experimental allergic rhinitis Pathogenic [118, 

119] 

IL-33 levels were elevated in the skin of patients with atopic dermatitis Pathogenic [39, 64] 

Keratinocyte-specific expression of IL-33 in mice led to spontaneous 

development of dermatitis 

Pathogenic [40] 

Anti-IL-33 treatment reduced inflammation in experimental allergic 

rhinitis and asthma 

Pathogenic [120, 

121] 

Rheumatoid 

Arthritis (RA) 

Higher IL-33 levels were correlated with more severe RA Pathogenic [122] 

Polymorphism of IL33 gene was associated with a decreased risk of RA   Pathogenic [123] 

IL-33 exacerbated collagen-induced arthritis in mice Pathogenic [124] 

Blocking IL-33/ST2 signaling reduced joint inflammation in mice Pathogenic [124-

126] 

Gastrointestinal 

inflammation 

Increased levels of IL-33 was associated with eosinophilic esophagitis Pathogenic [128, 

129] 

IL-33 treatment induced eosinophilic esophagitis in mice Pathogenic [129] 

Increased mucosal IL-33 levels were found in patients with IBD Pathogenic [130, 

131] 

IL-33-/- mice and ST2-/- mice were protected from DSS-induced colitis Pathogenic [130, 

132] 

IL-33 treatment protected mice from TNBS-induced or T cell transfer-

induced colitis 

Protective [133, 

134]  

Kidney diseases IL-33 induced renal fibrosis following IRI Pathogenic [136] 

IL-33 administration exacerbated cisplatin-induced AKI Pathogenic [137] 

IL-33 fused to IL-2 enhanced protection from AKI Protective [139] 

IL-33 treatment ameliorated adriamycin-induced glomerulosclerosis Protective [140] 

Metabolic 

disorders 

Low serum IL-33 levels were correlated with high body mass index in 

humans 

Protective [143] 

IL-33 reduced body weight and fat mass in mice Protective [142] 

IL-33 increased beiging of white adipose tissue and caloric expenditure Protective [144, 

145] 

Central nervous 

system 

IL-33 treatment attenuated EAE in mice Protective [147] 

IL-33-/- mice had impaired recovery from CNS injury Protective [55] 

IL-33 administration attenuated ischemic stroke with reduced CNS 

inflammation 

Protective [148] 

IL-33 treatment reduced secondary injury and improved recovery from 

SCI 

Protective [149] 

Decreased IL-33 levels in the brain were correlated with Alzheimer’s 

disease 

Protective [151] 

Elevated sST2 serum levels were correlated with mild cognitive 

impairment 

Protective [150] 

IL-33 reversed synaptic plasticity impairment and memory deficits in a 

mouse model of Alzheimer’s disease 

Protective [150] 
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H. Clinical applications of IL-33/ST2 signaling 

There has been progress in the development of IL-33/ST2 axis blocking tools. IL-33 and 

ST2 have been targets in preclinical studies and pharmaceutical pipelines. IL-33 Trap, a 

fusion protein comprised of ST2 and IL-1RAcP, ameliorates the pathology of a macular 

degenerative disease in a murine model [152]. Monoclonal antibodies against cytokines 

and their receptors have been proposed to be used as clinical therapeutics in diverse types 

of diseases including cancer and inflammatory disorders [153, 154]. Anti-IL-33 

monoclonal antibodies (ANB020, AMG282, REGN3500/SAR440340) and anti-ST2 

monoclonal antibodies (GSK3772847 and MSTT1041A) have been under development 

and phase 1 or 2 clinical trials either have completed or are currently ongoing (Table 4). 

The neutralization of IL-33/ST2 pathway is a practical approach to regulate and treat 

inflammation caused by IL-33/ST2 axis, however, it should be considered carefully since 

blocking IL-33 signaling can be either protective or pathogenic depending on tissue and 

inflammation conditions. 
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Table 4. Clinical trials of anti-IL-33 and anti-ST2 antibodies 

Anti-IL-33 Conditions tested Phase ClinicalTrials.gov identifier 
ANB020 Eosinophilic asthma Phase 2 NCT03469934 

Peanut allergy Phase 2 NCT02920021 

Atopic dermatitis Phase 2 NCT03533751 

Chronic rhinosinusitis Phase 2 NCT03614923 

AMG282 Chronic rhinosinusitis with 

nasal polyps 

Phase 1 NCT02170337 

Asthma Phase 1 NCT01928368 

REGN3500/SAR440340 Healthy volunteers Phase 1 NCT02958436 

Asthma, moderate asthma Phase 1 NCT02999711 

Allergic asthma Phase 1 NCT03112577 

Atopic dermatitis Phase 2 NCT03738423 

Atopic dermatitis Phase 2 NCT03736967 

Asthma Phase 2 NCT03387852 

Anti-ST2 Conditions tested Phase ClinicalTrials.gov identifier 

GSK3772847 Asthma Phase 2 NCT03393806 

Asthma Phase 2 NCT03207243 

MSTT1041A Atopic dermatitis Phase 2 NCT03747575 

Asthma Phase 2 NCT02918019 

COPD exacerbation Phase 2 NCT03615040 
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Chapter 3. ILC2s in Infection, Inflammation & 

Homeostasis 

 

ILC2s are known to serve as a critical innate source of type 2 effector cytokines. Although 

ILC2s have been studied intensely in mucosal tissues, it is important to appreciate that 

ILC2s are present in diverse locations. The function of ILC2s at these anatomical sites is 

also diverse and they play an important role in regulating innate and adaptive immunity. 

Thus, there is a growing interest to understand the role of ILC2s in settings of infection and 

inflammation. This chapter gives an overview on diverse roles of ILC2s in diseases which 

shows association with or involvement of ILC2s in disease processes. 

 

 

A. ILC2s 

ILC2s are characterized by their ability to produce type 2-associated cytokines such as IL-

5 and IL-13 [8, 25, 26]. They are also shown to be tissue-resident immune cells [30, 155]. 

ILC2s strongly respond to IL-25, IL-33 and TSLP [25, 38, 39, 156, 157]. IL-33 can induce 

strong activation of ILC2s in vitro, while IL-25 stimulates ILC2s only moderately [8, 11]. 

IL-2, IL-7 and TSLP alone are not sufficient for the activation of ILC2s in vitro, but 

enhance the effect of IL-33 and boost activation when used in combination [15, 34]. In 

vivo, IL-25 can elicit the expansion of a subset of ILC2s called inflammatory ILC2s 

(iILC2s) [158]. iILC2s are characterized by high expression of the maturation marker, 

KLRG1, and IL-25 receptor [158]. iILC2s mediate not only anti-helminth immunity, but 
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also combat Candida albicans infection by expressing RORγt and producing IL-17, 

although further investigation is needed for precise lineage and their plasticity between 

ILC2s and ILC3s [158].  

ILC2s express the transcription factor GATA3 at levels higher than other ILC subsets, and 

the development and function of ILC2s are inhibited in the absence of GATA3 [11, 15-17]. 

In mice, a common marker used to define ILC2s is ST2, a component of the IL-33 receptor, 

however, some tissue ILC2s such as skin-resident ILC2s do not express ST2 [156]. ST2 

expression might be also altered by the state of microenvironment depending on tissue. In 

human, ILC2s present in peripheral blood lack ST2 [159]. However, human ILC2s express 

the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) and 

high levels of CD161 [38].  

Cell-to-cell interaction through surface receptors such as ICOS and KLRG1 expressed on 

ILC2s influences the activation and survival of ILC2s [39, 160, 161]. ICOS and its ligand 

ICOSL are co-expressed on ILC2s and the interaction between ICOS and ICOSL promotes 

ILC2 proliferation which might provide evidence of a self-amplifying mechanism [160, 

161]. By contrast, in human ILC2s, the interaction of KLRG1 with its ligand E-cadherin 

has been shown to inhibit type 2 cytokine production by ILC2s [39]. However, since 

KLRG1 is dispensable for NK cells, in vivo functional analysis remains to be investigated. 

Moreover, prostaglandins and eicosanoids produced by myeloid cells regulate the function 

of ILC2s. The prostaglandin D2 (PGD2) receptor, CRTH2, is expressed on human ILC2s 

in circulation and regulates the migration and accumulation of ILC2s in lung tissue and 

their production of IL-13 [162-164]. ILC2s also express the leukotriene D4 receptor, 

CysLT1R, which stimulates IL-4 production in addition to IL-5 and IL-13, and the receptor 
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for the TNF-family cytokine, TL1A, which results in stimulatory signals in ILC2s [165-

167]. ILC2s also express the receptor for a neuropeptide allowing these cells to receive 

signals from the enteric nervous system. The neuropeptide VIP, which activates ILC2s, is 

secreted by enteric neurons and its expression is regulated by circadian rhythm [168].  

ILC2s are involved in the innate immune response through type 2 cytokine production and 

contribute to expulsion of parasites such as Nippostrongylus brasiliensis [8, 25]. Besides 

classic T helper cell cytokines, other effector molecules are also known to be secreted by 

ILC2s. After resolving infection, ILC2s help to repair tissue damage through their 

production of AREG [9, 135]. ILC2s also secrete methionine-enkephalin which induces 

beiging of adipocytes affecting the regulation of adipose function and metabolic 

homeostasis [144]. ILCs including ILC2s play their roles mainly by secreting soluble 

molecules. 

 

 

B. ILC2s in infection 

It is well known that ILC2s mediate resistance to helminth infections. Before ILC2s were 

identified, multiple studies reported that, in the absence of T cells, type 2 immune responses 

can be initiated under helminth infection or IL-25 administration [169, 170]. The role for 

ILC2s in parasite infections were mostly investigated using a N. brasiliensis infection 

model [8, 11, 25]. Some other studies showed that ILC2s might also contribute to the 

clearance of Strongyloides venezuelensis and Trichuris muris [65, 171]. IL-25 and IL-33 

are important for worm expulsion in most settings [25, 172]. IL-25 is secreted by tuft cells 

in the intestine and stimulates IL-13 release from ILC2s which induce hyperplasia of tuft 
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cells [172-174]. In order to deal with helminth infection, ILC2s are activated and secrete 

IL-4, IL-5, IL-13 and AREG. IL-5 is important for eosinophil survival and function, 

whereas AREG contributes to the repair of epithelial cells. IL-13 leads to smooth muscle 

contraction, mucus production by goblet cells, recruitment of alternative activated 

macrophages and eotaxin secretion, which work together to facilitate worm expulsion [8, 

25, 171]. In animals infected primarily with N. brasiliensis, both ILC2s and Th2 cells 

cooperate to remove larvae of N. brasiliensis in the lungs upon reinfection, which prevents 

larvae maturation and migration to the stomach and intestines [175]. In addition, IL-9 

produced by ILC2s, which act as an amplifier of ILC2 functions using an autocrine 

mechanism, is important for repair of epithelial cells in the lungs and worm expulsion after 

N. brasiliensis infection [176].  

Although ILC2s play a critical role in resistance to parasites that invade through the mucosa 

in mouse models, little is known about the role of human ILC2s in defense at barrier tissues. 

It has been shown that the proportions of ILC2s in the blood are reduced in young children 

infected with Schistosoma haematobium and the levels of ILC2s are restored by removal 

of the parasites after treatment [177]. However, another study has reported that the number 

of c-Kit+ ILCs in the blood are increased in patients with filaria infection [178]. Since the 

proportion or number of ILC2s in circulation do not accurately reflect the activation status 

and expansion of ILC2s in tissues, further investigations are needed to uncover the role of 

human ILC2s in host defense against parasites. 

Lung ILC2s were first identified in influenza infection models [9, 179]. It has been reported 

that, after influenza infection, ILC2s play a key role in tissue repair by the production of 

AREG [9]. Alveolar macrophages and NKT cells were reported as sources of IL-33 in 
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influenza-infected lungs, which is different sources of IL-33 than epithelial cells [179, 180]. 

Cigarette smoke exposure resulted in an attenuated response of ILC2s and an exacerbated 

type 1 immune response during influenza infection, which proposes another protective role 

of ILC2s in the lung [53]. IL-13 derived from lung ILC2s was shown to be responsible for 

collagen deposition and fibrosis in the lungs of mice treated with Schistosoma mansoni 

eggs [181]. Rhinovirus infection early in life has been linked to asthma development [182]. 

In mice, rhinovirus infection of neonates induced the expansion of ILC2s secreting IL-13 

[183]. It might be due to reduced Treg cells in the lungs, and the formation of airway 

microbiota induces Treg cells in lungs early in life [184]. Further studies are required to 

delineate the role of ILC2s in lung infections. 

 

 

C. ILC2s in inflammation 

In the gastrointestinal tract, while ILC1s and ILC3s have been strongly implicated in the 

pathogenesis of IBD, we are only at the initial stages of defining roles of ILC2s in the 

process of intestinal inflammation [185]. IL-13 mediates colitis after oxazolone treatment 

which is partially caused by the IL-25-dependent activation of ILC2s [186]. Crohn’s 

disease patients also have increased numbers of IL-13-producing ILCs in the intestine, 

suggesting a possible role for ILC2s in the pathogenesis of disease [187]. IL-33, IL-25 and 

TSLP, which stimulate ILC2s, have been associated with food allergies and eosinophilic 

esophagitis [188-190]. ILC2s have been shown to be enriched in patients with active 

eosinophilic esophagitis [191]. In mice, IL-33 treatment increased ILC2s and led to the 

development of eosinophilic esophagitis [129]. 



31 

 

The role of ILC2s in inflammation has been studied extensively in the settings of allergic 

lung diseases and asthma. Genome-wide association studies have shown that genes related 

to the susceptibility to allergic lung diseases and asthma such as genes encoding IL-33, the 

IL-33 receptor, IL-4, IL-5, IL-13 and TSLP are associated with ILC2 [115, 192]. This 

association is strongly supported by data from mouse models of asthma and rhinosinusitis. 

Papain induces asthma-like symptoms in Rag1-/- mice but not in Rag2-/-Il2rg-/- mice or Rag-

/- mice that underwent ILC depletion [34]. Challenge with allergen induces asthma-like 

symptoms in ILC-deficient mice reconstituted with ILC2s [34]. In the lungs, IL-33 seems 

to be a central cytokine required for ILC2 activation. Purified naïve ILC2s from the lungs 

of mice require IL-33 for their production of type 2 cytokines [34]. IL-33 is a more potent 

inducer of ILCs than IL-25 in mice challenged with ragweed or with Alternaria alternata 

[66]. Other studies also suggest that IL-33 is a key activating cytokine of lung ILC2s in 

type 2 lung inflammation models [35, 193]. By contrast, IL-25 seems to play a more 

prominent role in intestinal ILC2 activation [25]. This is consistent with reduced ST2 

expression on enteric ILC2s [194]. However, intranasal IL-25 administration promotes the 

emergence of an IL-17RB+KLRG1hi ILC2 population in the lungs [158]. These IL-25-

stimulated ILC2s in the lungs may convert to ST2-expressing ILC2s, suggesting that tissue-

specific microenvironment might affect the regulation of ILC2s [158]. Other than IL-33 

and IL-25, basophil-derived IL-4 has been shown to stimulate ILC2s to promote 

inflammation in the lungs [195]. The capacity of ILC2s to trigger hyperreactivity in airway 

is also reported after infection with influenza virus [179]. 

ILC2s are a potent source of type 2 cytokines in settings of allergic lung inflammation. 

Naïve ILC2s are primed to produce IL-5 as indicated by increased Il5 transcription and 
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shown in IL-5 reporter mice [34, 168]. IL-5 derived from ILC2s is important for eosinophil 

homeostasis, while IL-13 and eosinophil attracting chemokine, eotaxin, produced locally 

are critical for eosinophilic lung inflammation induced by allergen challenge [168]. During 

allergic inflammation in the lungs, ILC2s are a major cellular source of IL-13 which 

induces goblet cell hyperplasia, mucus production and smooth muscle contraction, all of 

which unfavorably influencing airflow and lung function. ILC2s promote airway 

hypersensitivity through IL-25, IL-33 and ICOS signaling [66, 160, 179, 196]. Furthermore, 

IL-13 derived from ILC2s promote lymph node trafficking of lung dendritic cells in papain-

induced lung inflammation model providing a link between type 2 innate immune response 

and allergen sensitization of Th2 cells [197]. ILC2s are also a source of IL-9 in allergen-

induced airway inflammation [198]. In addition to its role in autocrine regulation of ILC2s, 

IL-9 supports goblet cell hyperplasia and mast cell proliferation in lungs in helminth-

induced lung inflammation, which suggests a similar function of IL-9 in lung inflammation 

induced after antigen challenge [176, 199]. 

ILC2s expand in number after second challenge with papain in sensitized animals or after 

repeated challenges with house dust mite (HDM) extract [157, 197]. Moreover, a study 

shows that ILC2s play an important but secondary role to Th2 cells in recalling response 

to inhaled ovalbumin antigen [200]. However, another study suggests that ILC2 play a 

more critical role in an HDM model of chronic asthma [201]. Regardless of the extent of 

ILC2 contribution to recalling response to allergen, it is important that these studies suggest 

collaboration between ILC2s and Th2 cells in the context of allergic airway inflammation. 

In humans, ILC2s have been identified in the lungs of fetal tissue, bronchoalveolar lavage 

and lungs of healthy subjects [9, 38]. It was reported that patients with asthma exhibit more 
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ILC2s in circulation [37]. By contrast, a similar number of circulating ILC2s were observed 

between severe or mild asthma patients and health subjects [164]. Another study showed 

that corticosteroids, which are commonly used to treat asthma, inhibit ILC2 activation by 

IL-33 in mice [202]. TSLP is able to confer resistance to the effect of corticosteroids on 

ILC2s [202]. Further work is needed to understand the translational potential of these 

findings in preclinical models. 

Type 2 inflammation is associated with chronic rhinosinusitis with nasal polyps. The 

enrichment of activated ILC2s was initially reported in nasal polyps of patients with 

chronic rhinosinusitis [38]. Nasal polyp ILC2s are a potent source of type 2 cytokines in 

response to IL-33, IL-25 and TSLP [15, 38]. The association between ILC2s and chronic 

rhinosinusitis was further established in subsequent studies [203-206]. Nasal polyp ILC2s 

from patients with chronic rhinosinusitis produced IL-13 when stimulated with IL-33 [205]. 

Moreover, allergic rhinitis that developed into chronic rhinosinusitis was also associated 

with an increase in circulating ILC2s after allergen challenge in sensitized patients [207]. 

Interestingly, corticosteroid treatment in chronic rhinosinusitis with nasal polyps resulted 

in a decrease of ILC2s in nasal polyps [206]. Also, Alternaria-challenged mice showed 

increased apoptosis of lung ILC2s after treatment with corticosteroids [206]. Thus, it is 

clear that ILC2s are present in the nasal mucosa and it is likely that they are highly 

associated with type 2 inflammation occurring in chronic rhinosinusitis with nasal polyps. 

Atopic dermatitis is a chronic inflammatory skin disease characterized by increased levels 

of type 2 cytokines in skin legions. Skin-resident ILC2s were first identified in mice and 

distinguished from ILC2s in other tissues by their expression of CD103 which is an integrin 

expressed by other skin-resident immune cells [156, 208]. Skin inflammation, whose 
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mechanism is dependent on ILC2s, can be induced in mice with calcipotriol, the vitamin 

D analog, an allergen such as HDM, complexes of IL-2 and anti-IL-2, or by IL-33 

overexpression. These sensitization protocols are all associated with a strong ILC2 

expansion and activation triggered by TSLP or by IL-25 and IL-33 [39, 40, 156, 208]. 

Expansion of skin ILC2s is critically dependent on TSLP signaling, although skin-specific 

IL-33 overexpression can lead to the development of spontaneous dermatitis with increased 

ILC2s [40, 156]. It remains unclear whether one of these ILC2-stimulating cytokines play 

a more critical role during atopic dermatitis, however, ILC2s are key mediators of acute 

type 2 inflammation in the skin. 

In humans, there is an enrichment of ILC2s found in the skin lesions of patients with atopic 

dermatitis [39]. Skin ILC2s are present in healthy subjects and the number was increased 

in biopsy samples or blood samples from patients with atopic dermatitis [39, 156]. A 

mechanism of ILC2 suppression was reported in human skin ILC2s. The activation of 

human skin ILC2s was suppressed by binding of E-cadherin to KLRG1 which is expressed 

on activated ILC2s [39]. Interestingly, IL-4 derived from basophils can also increase 

functions of ILC2s and mast cells are present in proximity to skin ILC2s, suggesting a 

possible interaction and regulation among these immune cells in skin [208, 209]. 

Collectively, ILC2s appear to play a critical role in driving skin inflammation especially 

with type 2 immune responses, however, further studies are needed to delineate the exact 

function and regulation of skin ILC2s. 

ILC2s are present not only at mucosal barriers, but also at other tissues. Many diseases 

accompanying type 2 inflammation may involve ILC2s during their pathogenesis. Liver 

fibrosis is associated with increased levels of serum IL-33 and it has been shown that ILC2s 
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are important for IL-13 production induced by IL-33 [210, 211]. IL-13 in turn promotes 

cholangiocyte hyperplasia in the bile duct and hepatic stellate cell activation which are 

associated with biliary atresia and hepatic fibrosis, respectively [210, 211]. ILC2s have 

also been identified in the brain and might play a role in multiple sclerosis. A study showed 

that ILC2s accumulate in the brain and draining lymph nodes of mice resistant to EAE 

[212]. The role of ILC2s in meningeal inflammation has been shown in CNS injury [213]. 

IL-33 is expressed by glia, which promotes recovery following spinal cord injury, and can 

be released to the cerebrospinal fluid after spinal cord injury suggesting its possible role of 

activating cells in the meninges [55]. After spinal cord injury, meningeal ILC2s are 

activated in an IL-33-dependent manner and produce type 2 cytokines suggesting a 

beneficial role of ILC2s in spinal cord injury [213]. ILC2s are also reported in the aorta 

where they can produce IL-5 in response to IL-33 stimulation [214]. IL-25 administration 

reduces atherosclerosis in mice possibly through interactions between ILC2s and B1 B 

cells leading to natural anti-phosphorylcholine IgM generation [215]. In addition, ILC2s 

are found to be present in para-aortic adipose tissue and lymph nodes, and they are a major 

innate cellular source of IL-5 and IL-13 required for mounting protective immunity against 

atherosclerosis development [216]. 

 

 

D. ILC2s in homeostasis 

There is increasing evidence on the role for ILC2s in metabolic homeostasis. Adipose 

tissues contain many immune cells including ILC2s. Studies have demonstrated that ILC2s 

contribute to metabolic homeostasis by enhancing type 2 environment in adipose tissue 



36 

 

which is a characteristic of lean individuals. Low-grade type 1 inflammation in white 

adipose tissue (WAT) is induced by obesity which increases the risk of metabolic diseases. 

Type 2 cytokines, IL-4 and IL-13, are required for beiging of adipocytes. Beige adipocytes 

can uncouple the electrochemical gradient in mitochondria from ATP synthesis by 

expression of the uncoupling protein called UCP-1 [217]. While WAT is enriched for 

ILC2s, ILC2s are decreased in obesity or in mice on a high-fat diet [144]. Studies 

demonstrated the importance of IL-33 or IL-25 stimulation of ILC2s in WAT homeostasis 

[43, 44, 144, 145]. ILC2s in adipose tissue produce IL-5, which is involved in sustaining 

eosinophils, and IL-13, that is important for polarizing M2 macrophages and regulating 

adiposity and insulin resistance [43, 144]. ILC2s seem to regulate adiposity and caloric 

expenditure through several mechanisms. In one proposed mechanism, IL-5 and IL-13 

produced by ILC2s leads to IL-4 secretion by eosinophils. The IL-4 directly controls the 

fate of adipocyte precursors expressing IL-4 receptor and results in promoting pre-

adipocyte differentiation to beige adipocytes [145]. In another mechanism, ILC2s produce 

methionine-enkephalin peptides that induce upregulation of UCP-1 in adipocytes and 

promote beiging of WAT [144]. Although a role for ILC2s in metabolic homeostasis has 

been studied, the underlying mechanism by which ILC2s interact with adipocytes and other 

components in adipose tissue needs more investigation. In addition to the role for ILC2s in 

adipose tissue, a recent study has reported that ILC2s in the pancreas promote insulin 

secretion [218]. ILC2s stimulated by IL-33 can elicit dendritic cells and macrophages to 

produce retinoic acid, which in turn promotes insulin secretion by β cells and regulates 

glucose levels [218].  
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ILC2s appear to play an important role in health and diseases. According to findings in 

many studies, it is obvious that ILC2s are a critical component of immune system in 

infection, inflammation and metabolic homeostasis. A growing body of evidence shows 

that ILC2s are regulated by their microenvironment which fine-tunes their function in a 

tissue-specific manner. Moreover, we have recently found that cardiac ILCs are a resident 

population and they are type 2-committed in steady state [219]. ILCs found in the heart 

showed ILC progenitor-like characteristics, however they were unable to differentiate into 

ILC1s or ILC3s [219]. It is highly possible that ILCs might play a role in maintaining 

homeostasis and regulating inflammation in the heart. We speculate that cardiac ILCs are 

a tissue-resident immune cell population which could drive cardiac inflammation in a type 

2-skewed environment. 

 

While ILCs are implicated in many inflammatory diseases of diverse organs, it is unclear 

whether ILCs play a role in cardiac inflammation. In addition, the etiology of pericarditis 

remains largely idiopathic and the underlying mechanism by which eosinophilic 

pericarditis is induced is poorly understood. More studies are required to fill the knowledge 

gaps in the pathogenesis of pericarditis and understandings in roles for ILCs in the heart 

and cardiac inflammation. The aim of our experimental works was to examine the role of 

ILCs in inflammatory heart disease using a murine model of IL-33-induced eosinophilic 

pericarditis. We hypothesized that IL-33 stimulates cardiac ILC2s to produce type 2 

cytokines such as IL-5 and IL-13, which drives production of eotaxin and eosinophil 

trafficking to the heart resulting in the development of pericarditis. In Chapter 4, we will 

review (1) the background of our experimental study, (2) materials and methods we used 
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to test the hypothesis, and (3) results from the experiments and their implications. In 

Chapter 5, we will discuss the overall conclusions and suggest future directions. 
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Chapter 4. Role of ILC2s in the Heart & Cardiac 

Inflammation 

 

Summary 

 

Innate lymphoid cells (ILCs) play an important role in inflammation in mucosal organs, 

however, the role for ILCs in the heart and cardiac inflammation has not been studied. The 

goal of our work was to investigate the role of group 2 innate lymphoid cells (ILC2s) in 

inflammatory heart disease. Here we found a new role of ILCs during cardiac inflammation. 

We identified an accumulation of cardiac ILC2s in IL-33-induced eosinophilic pericarditis. 

ILC2s, not T and B cells, were required for pericarditis development. ILC2s transferred to 

the heart of Rag2-/-Il2rg-/- mice restored their susceptibility to eosinophil infiltration. 

Moreover, ILC2s directed cardiac fibroblasts to produce eotaxin-1 to promote eosinophil 

trafficking to the heart. We also found that eosinophils resided in the mediastinal cavity of 

naïve mice, serving as a reservoir of eosinophils for non-vascular trafficking to the heart. 

Eosinophils transferred to the mediastinal cavity of eosinophil-deficient ΔdblGATA1 mice 

following IL-33 treatment migrated more effectively to the heart compared to 

intravenously transferred eosinophils. Our data demonstrate a pathogenic role of ILC2s in 

IL-33-induced pericarditis, interaction of ILC2s with cardiac fibroblasts leading to eotaxin-

1 production and eosinophil trafficking from the mediastinal cavity to the heart. 
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Background 

 

Immune cells that reside in the heart play an important role in both cardiac homeostasis 

and progression and modulation of inflammatory heart diseases. The previous view that 

immune cells found in the heart originated from the bone marrow and trafficked via the 

blood has been replaced with the current understanding that many cardiac immune cells 

are resident populations [220]. These resident cells are recruited to the heart during 

embryonic development and self-renew until adulthood. Great efforts have been devoted 

to describe the types of myeloid cell populations in mouse and human hearts including 

macrophages [221, 222]. Mast cells have also been found in mouse and human hearts [223-

225]. In addition, the heart contains lymphocytes such as T cells and B cells [226]. We 

recently found that cardiac innate lymphoid cells (ILCs) are also a resident population in 

both human and mouse hearts [219]. 

 

ILCs are recently identified innate immune cells that serve important roles in lymphoid 

tissue formation, repair of damaged tissues and homeostasis as well as in immunity against 

infectious microorganisms [2, 36, 227]. ILCs are categorized into three groups based on 

their unique expression of transcription factors, surface markers and the production of 

effector cytokines [1, 228]. Group 1, 2 and 3 innate lymphoid cells (ILC1s, ILC2s and 

ILC3s) mirror the functions of T helper cells, Th1, Th2 and Th17 cells, respectively. ILC1s 

are characterized by IFNγ production, ILC2s by IL-5 and IL-13 and ILC3s by IL-17 and 

IL-22. Natural killer (NK) cells are considered a cytotoxic subset of ILC1s [1]. Distinct 

from adaptive immune cells such as T cells and B cells, ILCs do not possess antigen 
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specific receptors [227]. ILCs appear to be tissue resident cells and are maintained mostly 

by self-renewal in homeostatic settings [30, 155]. It was reported that ILC2s are important 

for metabolic homeostasis in white adipose tissue and visceral adipose tissue [43, 144]. 

ILC2s were also shown to be critical for restoring lung tissue homeostasis following acute 

influenza virus infection [9]. ILC2s are especially important in helminth expulsion and 

allergic lung inflammation [8, 25, 26, 34, 35, 157]. 

 

ILC2s are found in many organs at steady state including lung and mucosal tissues, and 

can be activated by IL-33, IL-25 and TSLP [8, 25, 26, 36, 156, 229]. After activation, 

ILC2s produce Th2-associated cytokines, such as IL-5 and IL-13 [8, 25, 26]. These Th2 

cytokines have been implicated in eosinophil proliferation, recruitment and homeostasis 

[26, 168]. The role of ILC2s in infection and inflammation has been investigated mostly in 

mucosa-associated tissues and skin. ILC2s are beneficial to promote immunity to parasite 

infection with N. brasiliensis [8, 25]. In this helminth infection model, IL-25 and IL-33 

were shown to be critical for ILC2 activation and IL-13 produced by ILC2s mediated worm 

expulsion [25]. In contrast to protective immunity provided by ILC2s, IL-33-activated 

ILC2s are also involved in the pathogenesis of asthma and atopic dermatitis promoting 

inflammation in the lungs and skin, respectively [34, 39, 40]. Moreover, enrichment of 

ILC2s were reported in biopsy samples from patients with eosinophilic esophagitis and 

atopic dermatitis [39, 191]. 

 

IL-33 is a cytokine of the IL-1 family and functions as an alarmin, which is released from 

cells upon tissue damage or cellular stress [52, 75]. IL-33 is usually expressed and released 
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from epithelial and endothelial cells, and is also shown to be expressed on stromal cells 

such as fibroblastic reticular cells in the lymph node [56, 58]. The profiling of IL-33 mRNA 

expression in mouse tissues revealed that the heart had a relatively low expression of IL-

33 compared to mucosal and barrier-related tissues such as lung and skin [48]. The role of 

IL-33 in the heart has been shown to be beneficial in some mouse models of cardiovascular 

diseases. IL-33 treatment reduced cardiac hypertrophy in a mouse model of transverse 

aortic constriction and improved cardiac function and survival in a myocardial infarction 

mouse model [60, 72, 110]. However, administration of IL-33 induced pericarditis in mice 

with increased proportion of eosinophils in the heart of naïve and coxsackievirus B3 

(CVB3)-infected mice, demonstrating that IL-33 can also play a pathogenic role in the 

heart [109]. IL-33 has been shown to activate and expand ILC2s [8, 25, 229, 230]. This 

suggests that the described pathogenic effect of IL-33 in the heart could be mediated by 

activation of ILC2s. 

 

Here, we show that ILCs in the heart play a pathogenic role and promote cardiac 

inflammation. Cardiac ILC2s activated by IL-33 caused eosinophilic pericarditis. We 

identified that ILC2s, not T cells and B cells, were required for IL-33-induced pericarditis. 

Rag2-/-Il2rg-/- mice deficient in lymphocytes including ILCs were protected from 

pericarditis, however, ILC2 transfer to the heart restored the susceptibility of Rag2-/-Il2rg-

/- mice to eosinophil infiltration to the heart. We also found that ILC2s induced cardiac 

fibroblasts to produce eotaxin-1 to direct eosinophil trafficking to the heart. Moreover, we 

discovered that eosinophils resided in the mediastinal cavity of naïve mice, which serves 

as a reservoir of eosinophils. We documented that non-vascular recruitment of eosinophils 
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from the mediastinal cavity was more effective than conventional vascular trafficking of 

eosinophils to the heart. The eosinophils trafficking from the mediastinal cavity to the heart 

could explain the development of inflammation preferentially around pericardial area after 

ILC2 activation with IL-33. 

 

 

Materials and Methods 

 

Animals 

Wild type BALB/cJ (JAX 651), Rag2-/- (JAX 8448), Rag2-/-γc-/- (JAX 14593), 

CD45.1/cByJ (JAX 6584), ∆dblGATA1 (JAX 5653) mice were obtained from the Jackson 

Laboratory (Bar Harbor, ME). ST2-/-, IL-13-/- and IL-33cit/+ mice were kindly provided by 

Andrew N.J. McKenzie (Medical Research Council, Cambridge, UK). IL-5Tg mice were 

kindly provided by James Lee (Mayo Clinic, Scottsdale, AZ). All mice used were 6 to 12-

week-old mice on the BALB/c background. Mice were maintained at the Johns Hopkins 

University School of Medicine specific pathogen-free animal facility. Experiments were 

performed with age-matched mice in accordance with the guidelines set forth in the Guide 

for the Care and Use of Laboratory Animals. All methods and protocols were approved by 

the Animal Care and Use Committee of Johns Hopkins University. 

 

Induction of experimental pericarditis 
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Mice were injected with 1 μg of recombinant mouse IL-33 (BioLegend) in 100 μl PBS 

intraperitoneally on days 0, 2, 4, 6 and 8. On day 9 or 10, hearts were harvested for further 

analysis detailed below. 

 

Assessment of pericarditis severity 

Hearts were cut transversely, fixed in SafeFix (Thermo Fisher Scientific), embedded in 

paraffin, cut into 5 μm-thick sections and stained with H&E (Histoserv, MD). The severity 

of pericarditis was assessed by scoring infiltration of the area of pericardium around right 

ventricle (RV) on H&E-stained sections based on histopathology score from 0 to 4 using 

the following criteria for hematopoietic infiltrates: grade 0, no inflammation; grade 1, <20% 

of RV is involved and/or mild inflammation; grade 2, 20-50% of RV is involved and/or 

intermediate inflammation; grade 3, 50-80% of RV is involved and/or severe inflammation; 

grade 4, >80% of RV is involved and/or severe inflammation with adjacent myocardial 

infiltrates. Scoring was performed by two blinded pathologists and averaged. 

 

Light microscopy 

Images on H&E-stained sections were acquired on the BX43 microscope (Olympus) with 

the DS-Fi3 camera (Nikon) using NIS-Elements D Software (v. 5.10.01, Nikon). 

 

Echocardiography 

Conscious mice were held in a supine position and Doppler echocardiography was 

performed using Vevo 2100 with a MS550D transducer (FUJIFILM VisualSonics, Ontario, 

Canada). To measure the Myocardial Performance Index (MPI), tissue Doppler imaging of 
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the mitral annulus was obtained. Cardiac time intervals, isovolumetric contraction time 

(IVCT), isovolumetric relaxation time (IVRT) and ejection time (ET), were measured and 

MPI was calculated based on these parameters [231]. 

 

Flow cytometry and cell sorting 

Hearts were perfused with PBS through ventricles, cut into small pieces and digested in 

gentleMACS C Tubes (Miltenyi Biotec) with 3000U Collagenase II and 300U DNase I 

(Worthington Biochemical Corporation) in HBSS for 30 min at 37°C. To generate single 

cell suspensions, hearts were mechanically dissociated using GentleMACS dissociator 

(Miltenyi Biotec) following manufacturer’s protocols. Cells in the mediastinal cavity were 

harvested by lavage with PBS. Blood was collected in PBS with 100U/ml Heparin and 

overlaid on Histopaque-1119 (Sigma Aldrich) to remove red blood cells. Remaining red 

blood cells were lysed using ACK buffer (Quality Biological). Cells from heart samples 

were strained through a 40 μm filter, and cells from other organs were strained through a 

70 μm filter. For intracellular cytokine staining, cells were stimulated with 50 ng/ml PMA, 

750 ng/ml Ionomycin (Sigma-Aldrich), GolgiStop and GolgiPlug (BD Biosciences) for 4 

hours at 37°C before staining. Single cell suspensions were stained with LIVE/DEAD 

Fixable Aqua (Thermo Fisher Scientific). FcγRII/III was blocked with anti-mouse 

CD16/CD32 (eBioscience), and markers of interest were stained with flourochrome-

conjugated antibodies (BD, BioLegend and eBioscience). Lineage (Lin) used for 

identifying ILC2s included CD3ε, TCRβ, CD19, B220, CD11b, CD11c, Gr-1, Ter119, 

FcεRIα and NKp46. To quantify absolute number of cells, viable cells were counted using 

CountBright Absolute Counting Beads (Thermo Fisher Scientific). Samples were acquired 
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on BD LSR II or Fortessa (BD Biosciences) and data were analyzed using FlowJo V10 

(Tree Star). For cardiac ILC2 sorting, after enzymatic and mechanical dissociation of hearts, 

single cell suspensions were obtained using Histopaque-1077 (Sigma-Aldrich) according 

to manufacturer’s instructions. Collected mononuclear cells were stained and sorted on BD 

FACSAria II (BD Biosciences). 

 

Isolation and in vitro expansion of cardiac ILC2 

Cardiac ILC2s were isolated using FACSAria II (BD Biosciences) from the hearts of IL-

33-treated mice and cultured at 37°C in RPMI 1640 (Gibco) with 10% FBS (GE Healthcare 

Life Sciences), 1% Penicillin-Streptomycin, 2 mM L-Glutamine, 10 mM HEPES, 1mM 

Sodium Pyruvate (all Quality Biological), 0.1 mM Non-essential amino acids (Sigma 

Aldrich), 0.05 mM 2-Mercaptoethanol (Gibco). Cytokines, IL-2, IL-7 and IL-33, at a 

concentration of 25 ng/ml were added in media to expand ILC2s in vitro. 

 

Cardiac injection of ILC2 

CD45.2+ Rag2-/-γc-/- mice were anesthetized with 3.5% isoflurane (Baxter) and tracheal 

intubation was performed immediately. While on intubation, mice were provided with 

oxygen with 2% isoflurane by mechanical ventilation system (Model 845, Harvard 

Apparatus). Pre-operational analgesics (0.05 mg/kg Buprenorphine, Reckitt Benckiser) 

and paralytics (1 mg/kg Succinylcholine, Henry Schein) were treated before operation. 

Thoracotomy was done to access the chest cavity and expose the ventricles of the heart. 

5x105 CD45.1+ cardiac ILC2s were injected into the myocardium on three ventricular 
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locations using a 29G ½  insulin syringe (BD). Post-operational analgesics (0.05 mg/kg 

Buprenorphine) were administered during recovery. 

 

Isolation of primary adult mouse cardiac fibroblasts 

Hearts were isolated from 6-12-week-old WT BALB/c mice pretreated i.p. with PBS with 

50 U/ml Heparin. Hearts were cannulated through aorta and perfused for 3 minutes at 37°C 

with calcium-free perfusion buffer (7.03 g/L NaCl, 1.1 g/L KCl, 0.082 g/L KH2PO4, 0.085 

g/L Na2HPO4, 0.144 g/L MgSO4, 2.38 g/L HEPES, 0.39 g/L NaHCO3, 1 g/L glucose, 3.74 

g/L Taurine, 1 g/L 2,3-Butanedione monoxime; all Sigma-Aldrich) and for 8 minutes with 

the addition of Collagenase II (Worthington Biochemical Corporation) and Protease XIV 

(Sigma-Aldrich) and 0.03 M CaCl2. The heart was cut into pieces and digested by gentle 

pipetting for 3 minutes or until large pieces are fully digested. After filtering through a 100 

µm strainer and washing with DMEM (Gibco), cardiac fibroblasts in cell suspensions were 

separated from cardiac myocytes that precipitated rapidly and spontaneously. Cardiac 

fibroblasts were cultured at 37°C in DMEM with 20% FBS (GE Healthcare Life Siences), 

Non-essential amino-acids (Sigma Aldrich), Penicillin-Streptomycin, 2 mM L-Glutamine, 

and 25 mM HEPES (all Quality Biological). Nonadherent cells were washed off after 1 

hour. Culture media was changed every day for 5 days until cardiac fibroblasts are 

confluent. Cardiac fibroblasts were passaged twice before co-culture. 

 

In vitro co-culture of cardiac fibroblasts and ILC2 

ILC2s were FACS-sorted from the hearts of IL-33-treated mice and expanded in vitro as 

described above. 1x105 ILC2s were placed on Transwell with 0.4 µm pore polyester 
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membrane insert (Corning). Cardiac fibroblasts from second passage were co-cultured with 

ILC2s located on Transwell at 37°C in ILC2 culture media for 24 hours. 25 ng/ml IL-2 and 

25 ng/ml IL-7 were included in co-culture and 25 ng/ml IL-33 was added in certain 

conditions indicated. Cells and supernatants were harvested after co-culture and used for 

further analysis. 

 

In vivo IL-5 neutralization 

To block IL-5 in vivo, mice were treated i.p. with 300 µg of anti-IL-5 monoclonal antibody 

(Clone: TRFK5, BioXCell) or isotype antibody (Clone: HRPN, BioXCell) every three days 

starting from a day before pericarditis induction. 

 

Eosinophil isolation, labeling and transfer to the mediastinal cavity or intravenously 

Blood from donor IL-5Tg mice was collected in PBS with 100U/ml Heparin and overlaid 

on Histopaque-1119 (Sigma Aldrich) to remove red blood cells. Anti-CD90.2 and anti-

CD45R(B220) microbeads (Miltenyi Biotec) were used to deplete lymphocytes and enrich 

eosinophils. Eosinophil purity (78%-95%) was determined by flow cytometry. For labeling, 

cells were stained with either CellTraceTM Violet (CTV) or CellTraceTM Far Red (CTFR) 

according to manufacturer’s instructions (Thermo Fisher). Recipient mice were 

anesthetized with 500 μl avertin and 8-10x106 cells were injected to the mediastinal cavity 

or by retro-orbital injection using a 29G ½  insulin syringe (BD). 

 

Quantitative PCR 
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RNA was extracted in TRIzol (Invitrogen) and cDNA was synthesized using iScript cDNA 

Synthesis Kit (Bio-Rad). Quantitative PCR was performed using Power SYBR Green PCR 

Master Mix (Applied Biosystems) and executed on MyiQ2 thermal cycler (Bio-Rad) using 

iQ5 optical system software (Bio-Rad). Acquired data were analyzed by the 2-ΔΔCt method 

[232]. Threshold cycles were normalized to the expression of Gapdh and then to controls. 

Primers for genes (Ccl11: 5’-GAATCACCAACAACAGATGCAC-3’ and 5’-

ATCCTGGACCCACTTCTTCTT-3’, Ccl24: 5’-TCTTAGGGCCCTTCTTGGTG-3’ and 

5’- AATTCCAGAAAACCGAGTGG-3’, Gapdh: 5’-TTGATGGCAACAATCTCCAC-3’ 

and 5’-CGTCCCGTAGACAAAATGGT-3’) were commercially synthesized (Integrated 

DNA Technologies). 

 

ELISA 

Supernatants from cardiac fibroblasts co-culture with ILC2s or sera from mice were stored 

at -80°C prior to ELISA. Eotaxin-1 was determined by quantitative sandwich ELISA using 

Mouse CCL11/Eotaxin Quantikine ELISA Kit (R&D Systems) according to 

manufacturer’s protocols. For anti-myosin IgM ELISA, plates were coated with 0.5 

µg/well myosin heavy chain α peptide MyHCα614-629 (Ac-SLKLMATLFSTYASAD; 

Genscript) and Alkaline Phosphatase AffiniPure goat anti-mouse IgM, µ chain specific 

(Jackson ImmunoResearch) at a 1:4000 dilution was used to detect anti-myosin IgM in 

sera. 

 

Statistics 
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Two group comparisons were performed using Student’s t-test for normally distributed 

data. Multiple group comparisons were performed using one-way ANOVA followed by 

Tukey’s post-hoc test. Mann-Whitney U test or Kruskal-Wallis H test for two groups or 

multiple groups, respectively, was used for nonparametric data. Pearson correlation 

coefficient, r, was calculated using correlation analysis in Prism 6 (GraphPad Software 

Inc.). Statistical analysis was conducted in Prism 6. Statistically significant comparisons 

were represented by asterisks: *, P<0.05; **, P<0.01; ***, P<0.001. 

 

 

Results 

 

Number of ILC2s increases in the heart after IL-33 treatment 

ILC2s express IL-33 receptor, which is also known as ST2, and become activated and 

proliferative upon IL-33 stimulation [1, 36, 228]. To determine whether IL-33 induces an 

increase of ILC2s in the heart in vivo, we used the IL-33-induced pericarditis model in 

which mice are treated with IL-33 i.p. every other day for 9 days [109]. IL-33-treated mice 

developed severe pericarditis compared to PBS-treated mice (Figure 4A). The 

inflammation mostly affected the pericardium, however, in some cases, adjacent 

myocardium was also inflamed (Figure 4A). We also found that IL-33-treated mice 

showed increased infiltration of immune cells in other organs including esophagus and 

lungs (Figure 5A and B). We assessed cardiac function of the heart by performing Doppler 

echocardiography. IL-33-treated mice showed significantly longer isovolumetric 

relaxation time (IVRT), an indicator of diastolic function, and higher myocardial 
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performance index (MPI), a useful predictor of global cardiac function, than PBS-treated 

mice (Figure 4B and C). Prolonged IVRT indicates poor myocardial relaxation related to 

pericardial constriction and high MPI represents both systolic and diastolic dysfunction. 

This suggests that pericarditis induced by IL-33 resulted in abnormal cardiac function. We 

analyzed the number of heart-infiltrating CD45+ leukocytes by flow cytometry and found 

that it was significantly increased in IL-33-treated mice compared to PBS-treated mice, 

confirming that inflammation occurred in the heart as a result of IL-33 treatment (Figure 

4D). We identified ILC2s in the heart as CD45+Lin-CD90+KLRG1+ST2+ (Figure 5C). Lin 

included CD3ε, TCRβ, CD19, B220, CD11b, CD11c, Gr-1, Ter119, FcεRIα and NKp46, 

and was used to exclude cell populations that may contaminate ILC2s. Both the number 

and frequency of ILC2s in the heart were dramatically increased upon IL-33 treatment 

compared to PBS treatment (Figure 4E and Figure 5D). We also analyzed other heart 

infiltrating immune cells and found that the number and frequency of CD11b+SiglecF+ 

eosinophils were increased in the heart of IL-33-treated mice and they were the most 

abundant cells among heart infiltrates (Figure 4F and Figure 5E). Number and frequency 

of other immune cells known to express ST2 including FcεRIα+CD117(c-Kit)+ mast cells 

remained unchanged (Figure 4G). In addition, the number of CD11b+Ly6G+ neutrophils 

in the heart did not differ between PBS and IL-33 treated mice (Figure 5F). Interestingly, 

we found that the number of CD19+ B cells was greater in the heart of IL-33 treated mice 

than in the heart of PBS-treated mice (Figure 5G). Therefore, we examined if pericarditis 

induced by IL-33 led to the production of autoantibodies against cardiomyocytes. We 

found that the level of anti-myosin IgM antibody in serum was significantly higher in IL-

33-treated mice than in PBS-treated mice on day 9 (Figure 5H). Anti-myosin IgG and IgE 
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were found at a negligible level in sera of both PBS- and IL-33-treated mice (data not 

shown). These results indicate that IL-33-induced pericarditis is characterized by an 

increased number of ILC2s, eosinophils and B cells in the heart. 

 

 

 

Figure 4. ILC2s increase in the heart following IL-33 treatment. 

(A) Representative images of H&E-stained heart sections of the median mice treated with 

either PBS or IL-33. Areas marked by rectangles are shown as enlarged images in the right 

panels. Scale bars: 1 mm (left) and 100 µm (right). (B) Isovolumetric relaxation time 

(IVRT) and (C) myocardial performance index (MPI) of the heart from mice treated with 

PBS or IL-33 was assessed by Doppler echocardiography on day 9 post-PBS or IL-33 

treatment. (D) Total number of heart-infiltrating CD45+ leukocytes was determined by 
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flow cytometry. Number of (E) ILC2s, (F) eosinophils and (G) mast cells in the hearts. 

Absolute cell counts per heart were calculated using counting beads for flow cytometry 

(see Methods). Data are representative of three independent experiments. Data are 

displayed as the mean. Unpaired t-test (B-G) was used for statistical analysis. *, P < 0.05; 

**, P < 0.01. 
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Figure 5. IL-33 treatment induces inflammation in esophagus and lungs and increases 

the number of B cells in the heart. 

(A) Representative images of H&E-stained esophagus section of mice treated with PBS or 

IL-33. Scale Bars: 50 µm (B) Representative images of H&E-stained lung section of mice 

treated with PBS or IL-33. Scale Bars: 50 µm (C) Gating strategy of ILC2s in the heart by 

flow cytometry. Lin includes CD3ε, TCRβ, CD19, B220, CD11b, CD11c, Gr-1, Ter119, 

FcεRIα and NKp46. Frequency of (D) ILC2s and (E) eosinophils in the hearts. Number of 

(F) neutrophils and (G) B cells in the hearts. (H) α-myosin IgM in sera of PBS and IL-33-

treated animals measured by ELISA. Data are representative of two independent 

experiments and displayed as the mean. Unpaired t-test (D-H) was used for statistical 

analysis. *, P < 0.05; ***, P < 0.001. 

 

 

IL-33/ST2 signaling pathway is critical for the ILC accumulation in the heart and 

development of pericarditis 

To determine whether the development of pericarditis is dependent on IL-33/ST2 signaling 

pathway, ST2-/- (Il1rl1-/-) mice were treated with IL-33. ST2-/- mice were completely 

protected from the development of IL-33-induced pericarditis, whereas WT mice 

developed pericarditis (Figure 6A and B). The number of total leukocyte infiltrates was 

significantly reduced in the heart of ST2-/- mice compared to WT mice (Figure 6C). To 

further confirm the dependency of ILC2 accumulation in the heart on IL-33 signaling, we 

analyzed Lin-CD90+KLRG1+ ILC population in the heart of ST2-/- mice after IL-33 

treatment. We found that ILCs were significantly reduced in the heart of ST2-/- mice 
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compared to WT mice (Figure 6D and E). The number of eosinophils was also decreased 

in the heart of ST2-/- mice (Figure 6F). This demonstrates that IL-33 signaling through ST2 

is important for pericarditis development and IL-33/ST2 signaling axis is required for ILC2 

accumulation in the heart. Next, we assessed whether exogenous IL-33 treatment is 

involved in a positive feedback loop resulting in increased endogenous expression of IL-

33. IL-33cit/+ reporter mice treated with IL-33 showed higher expression of IL-33 compared 

to mice treated with PBS, which indicates the presence of a positive feedback loop of IL-

33 expression (Figure 6G and H). In addition, the number of IL-33 expressing cells was 

increased after IL-33 treatment (Figure 6I). Most of IL-33 expressing cells were CD45-

CD31- stromal cells, and among them, IL-33 expressing Sca1+ fibroblasts were increased 

in number in the heart of IL-33-treated mice (Figure 6J). Sca1+ fibroblasts were the major 

IL-33-expressing cells in the heart, suggesting that cardiac fibroblasts have a capacity to 

produce IL-33 in both naïve state and during cardiac inflammation (Figure 6K). We found 

a correlation of IL-33 and ST2 expression in IL-33-induced pericarditis, indicating the 

existence of a feed-forward loop where IL-33 induces greater ST2 expression and IL-33 

production by fibroblasts (Figure 7A). Furthermore, we examined whether endogenous 

IL-33 is important to induce pericarditis. We found that the number of total CD45+ heart 

infiltrating leukocytes was reduced in IL-33-/- mice compared to WT mice upon IL-33 

treatment (Figure 7B). The number of myeloid cells and eosinophils was also decreased 

in the heart of IL-33-/- mice (Figure 7C and D). The lack of endogenous IL-33 affected 

Lin-CD90+KLRG1+ ILC population, which decreased in the heart of IL-33-/- mice (Figure 

7E). These data suggest that endogenous IL-33 is a required component to induce severe 

pericarditis induced by exogenous IL-33 administration. Taken together, these data suggest 
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that IL-33 signaling through ST2 is important for ILC accumulation in the heart and 

pericarditis development. 
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Figure 6. IL-33/ST2 axis is critical for pericarditis development. 

(A) Representative images of H&E-stained heart sections of WT and ST2-/- mice. Scale 

bars: 100 µm. (B) Severity of pericarditis was scored on H&E-stained heart sections. (C) 

Number of heart-infiltrating CD45+ leukocytes was determined by flow cytometry. (D) 

Representative flow cytometry plots of CD45+Lin- cells. Gates show frequency of 

CD90+KLRG1+ ILCs in the heart of WT and ST2-/- mice. Number of (E) Lin-

CD90+KLRG1+ ILCs and (F) eosinophils in the hearts. (G) Representative flow cytometry 

plots of cardiac viable cells. Gates show frequency of IL-33+ cells in the heart of mice 

treated with PBS or IL-33. (H) Mean fluorescence intensity (MFI) of IL-33 expression in 

cardiac viable cells. (I) Number of IL-33-expressing cells in the hearts. (J) Total number 

of IL-33+Sca1+ cardiac fibroblasts. (K) Mean frequency of different IL-33-expressing 

populations. Mean was quantified using values in a PBS-treated group (n=4) and an IL-33-

treated group (n=5). Areas of pie charts are proportional to total IL-33+ cells in the heart. 

Data are representative of two independent experiments and displayed as the mean. Mann-

Whitney U test (B) or unpaired t-test (C, E-F and H-J) was used for statistical analysis. *, 

P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Figure 7. Endogenous IL-33 expression is increased by IL-33 treatment which 

correlates to ST2 expression and important for pericarditis development. 

(A) Correlation between the number of IL-33-expressing cells and the number of ST2-

expressing cells in the heart. Pearson correlation coefficient, r, was calculated and r2 is 

shown. Number of (B) CD45+ leukocytes, (C) CD11b+ myeloid cells, (D) eosinophils and 

(E) Lin-CD90+KLRG1+ ILCs in the hearts of WT and IL-33-/- mice. Data are representative 

of two independent experiments. 

Unpaired t-test (B-E) was used for statistical analysis. *, P < 0.05; **, P < 0.01. 
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ILCs are required for IL-33-induced pericarditis development and sufficient to 

rescue ILC-deficient mice susceptibility to eosinophil infiltration 

To determine whether ILCs are required for the induction of pericarditis, we treated WT, 

Rag2-/- and Rag2-/-Il2rg-/- mice with IL-33. While Rag2-/- mice deficient in T cells and B 

cells developed pericarditis comparable to WT mice, Rag2-/-Il2rg-/- mice, which lack all 

lymphocytes plus ILCs, were completely protected from the development of pericarditis 

(Figure 8A and B). Thus, the adaptive immune response is not necessary for the induction 

of pericarditis by IL-33. We assessed leukocytes in the heart and found a significantly 

reduced number of CD45+ cells in the heart of Rag2-/-Il2rg-/- mice compared to both WT 

and Rag2-/- mice (Figure 8C). ILC2s were increased in the heart of WT and Rag2-/- mice 

treated with IL-33, whereas ILC2s were not found in the heart of Rag2-/-Il2rg-/- mice 

(Figure 8D). IL-33-treated Rag2-/-Il2rg-/- mice showed smaller number of eosinophils, but 

more neutrophils in the heart than WT and Rag2-/- mice (Figure 8E and Figure 9A). These 

data suggest that ILCs are required for the development of pericarditis induced by IL-33 

and adaptive immune cells such as T and B cells are not involved in the pathogenesis of 

IL-33-induced pericarditis. To confirm that IL-33-induced pericarditis is ILC2-dependent, 

we investigated the ability of transferred ILC2s to reverse the resistance of Rag2-/-Il2rg-/- 

mice to pericarditis development. We FACS-sorted CD45+Lin-CD90+KLRG1+ST2+ ILC2s 

from the hearts of CD45.1+ WT donor mice after IL-33 treatment (Figure 9B). Intravenous 

transfer of ILC2s was not successful and we were not able to detect any transferred ILC2s 

in the heart of recipient mice (data not shown). Therefore, we expanded FACS-sorted 

CD45.1+ ILC2s in vitro and injected them directly to the myocardium of ILC-deficient 

CD45.2+ Rag2-/-Il2rg-/- recipient mice followed by IL-33 treatment (Figure 9C). Recipient 
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mice in a control group were injected with media in the myocardium followed by IL-33 

treatment. We were able to detect CD45.1+ ILC2s in the hearts of ILC2-transferred 

CD45.2+ Rag2-/-Il2rg-/- mice on day 9, indicating that ILC2s injected into the myocardium 

remained (Figure 8F). The number of heart-infiltrating CD45.2+ leukocytes was increased 

in Rag2-/-Il2rg-/- mice injected with ILC2s compared to mice injected with media (Figure 

8G). Eosinophils were significantly increased in the hearts of Rag2-/-Il2rg-/- mice injected 

with ILC2s compared to mice injected with media, providing evidence of a critical role for 

cardiac ILC2s in eosinophil recruitment to the heart during the development of pericarditis 

(Figure 8H and I). To summarize, ILCs, but not T cells and B cells, are required for 

pericarditis development and adoptive transfer of cardiac ILC2s directly to the heart is 

sufficient to rescue Rag2-/-Il2rg-/- mice susceptibility to eosinophilic cardiac inflammation 

induced by IL-33. 
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Figure 8. ILCs are required for the development of pericarditis and ILC2s are 

sufficient to induce eosinophilic infiltration to the heart. 

(A) Representative images of H&E-stained heart sections of WT (left), Rag2-/- (middle) 

and Rag2-/-Il2rg-/- (right) mice. Scale bars: 100 µm. (B) Severity of pericarditis was scored 

on H&E-stained heart sections. (C) Total number of heart-infiltrating CD45+ leukocytes 

was determined by flow cytometry. Number of (D) ILC2s and (E) eosinophils in the hearts. 

(F) Representative flow cytometry plots of ILC2s found in the heart of naïve Rag2-/-Il2rg-

/- mice and Rag2-/-Il2rg-/- mice injected with media or ILC2s followed by IL-33 treatment. 

(G) Number of heart-infiltrating CD45.2+ leukocytes. (H) Representative flow cytometry 

plots of CD45.2+ cells. Gates show frequency of CD11b+SiglecF+ eosinophils in the heart 

of naïve Rag2-/-Il2rg-/- mice and Rag2-/-Il2rg-/- mice injected with media or ILC2s followed 

by IL-33 treatment. (I) Number of eosinophils in the hearts. Data are representative of two 

independent experiments and displayed as the mean. Kruskal-Wallis H test (B) or one-way 

ANOVA followed by Tukey’s post-hoc test (C-E, G and I) was used for statistical analysis. 

*, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Figure 9. Neutrophils are increased in the heart of Rag2-/-Il2rg-/- mice treated with IL-

33 and cardiac ILC2s are isolated from the heart of IL-33 treated mice for transfer 

to ILC-deficient mice. 

(A) Number of neutrophils in the heart of WT, Rag2-/- and Rag2-/-Il2rg-/- mice. (B) Gating 

strategy for isolating cardiac ILC2s from IL-33-treated CD45.1+ mice by FACS. ILC2s 

were identified as CD45+Lin-CD90.2+KLRG1+ST2+. (C) Schematic description of 

CD45.1+ WT cardiac ILC2 transfer into the myocardium of CD45.2+ Rag2-/-Il2rg-/- by 

cardiac injection. Data are representative of two independent experiments and displayed as 

the mean. One-way ANOVA followed by Tukey’s post-hoc test (A) was used for statistical 

analysis. *, P < 0.05 **, P < 0.01. 

 

 



64 

 

ILC2s drive cardiac fibroblasts to upregulate CCL11/eotaxin-1 gene expression 

Eotaxin production is known to induce eosinophil trafficking into organs following a 

chemoattractant gradient [233, 234]. We previously found that the eotaxin-CCR3 pathway 

is the main mechanism for eosinophil trafficking to the heart [235]. We found that the 

expression of Ccl11, a gene encoding eotaxin-1, was upregulated in the heart of IL-33-

treated mice compared to PBS-treated mice, while the expression of Ccl24 encoding 

eotaxin-2 was comparable between groups (Figure 10A and Figure 11A). Our previous 

work showed that cardiac fibroblasts produce a diverse set of cytokines and chemokines in 

response to different Th environments [236]. Specifically, in a Th2 environment during 

eosinophilic cardiac inflammation, cardiac fibroblasts are the main source of eotaxin-1 

[235]. To investigate whether ILC2s and cardiac fibroblasts cooperate to attract eosinophils 

to the heart in IL-33-induced pericarditis, we devised a co-culture system in which cardiac 

fibroblasts are co-cultured with ILC2s separated by 0.4 µm transwells (Figure 10B). This 

enabled ILC2s to interact with cardiac fibroblasts through soluble factors such as cytokines, 

but not through direct contact. We found that cardiac fibroblasts significantly upregulated 

Ccl11 expression when co-cultured with ILC2s in the presence of IL-33, compared to 

cardiac fibroblasts cultured without ILC2s in the absence or presence of IL-33 (Figure 

10C). Ccl24 expression by cardiac fibroblasts did not significantly differ (Figure 11B). 

Eotaxin-1 concentration in cell culture supernatant was also significantly increased in the 

co-culture condition where cardiac fibroblasts are cultured with ILC2s in the presence of 

IL-33 (Figure 10D). In summary, ILC2s are able to stimulate cardiac fibroblasts to produce 

eotaxin-1 via soluble factors, suggesting a role for ILC2s and cardiac fibroblasts in the 

recruitment of eosinophils into the heart. 
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Figure 10. Cardiac fibroblasts increase CCL11/eotaxin-1 expression and production 

when co-cultured with IL-33-stimulated ILC2s. 

(A) Expression of Ccl11 gene encoding eotaxin-1 in heart homogenates was analyzed by 

qPCR. (B) Schematic description of cardiac fibroblasts co-culture with ILC2s separated by 

0.4 µm transwell. (C) Expression of Ccl11 in cardiac fibroblasts was analyzed by qPCR. 

(D) Eotaxin-1 concentrations in cell culture supernatants were measured by ELISA. IL-2 

and IL-7 were included in culture media and IL-33 was added where indicated (C and D). 

Data are representative of two independent experiments and displayed as the mean with 

SD. Unpaired t-test (A) or one-way ANOVA followed by Tukey’s post-hoc test (C and D) 

was used for statistical analysis. *, P < 0.05; ***, P < 0.001. 
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Figure 11. Ccl24 expression is unchanged in cardiac fibroblasts when co-cultured with 

IL-33-stimulated ILC2s. 

(A) Expression of Ccl24 gene encoding eotaxin-2 in heart homogenates was analyzed by 

qPCR. (B) Expression of Ccl24 in cardiac fibroblasts was analyzed by qPCR. IL-2 and IL-

7 were included in culture media and IL-33 was added where indicated. Data are 

representative of two independent experiments. Data are displayed as the mean with SD. 

Unpaired t-test (A) or One-way ANOVA followed by Tukey’s post-hoc test (B) was used 

for statistical analysis. 

 

 

ILC2-derived IL-5 affects the development of IL-33-induced pericarditis 

We assessed cytokine production by cardiac ILC2s on day 9 post-IL-33 treatment using 

flow cytometry. We found that ILC2s in the heart produced both IL-5 and IL-13 after IL-

33 treatment (Figure 12A). Eighty percent of ILC2s found in the heart produced both IL-

5 and IL-13 (Figure 12B). To examine the role of IL-5 in the development of pericarditis, 

we depleted IL-5 in IL-33-treated mice using an anti-IL-5 monoclonal antibody (mAb). 
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We found that mice injected with IL-5-neutralizing mAb showed a trend of less severe 

pericarditis by histology after IL-33 administration compared to those injected with isotype 

control (Figure 12C). In addition, we found the total number of leukocytes in the heart was 

significantly decreased in anti-IL-5-treated mice compared to isotype-treated controls 

(Figure 12D). Eosinophils were also significantly reduced in the heart of anti-IL-5-treated 

mice compared to isotype treated mice (Figure 12E). However, the number of ILC2s was 

similar between groups (Figure 12F). These data show that IL-5 produced by ILC2s drives 

eosinophil infiltration to the heart and contributes to pericarditis severity. We also 

examined whether IL-13 plays a role in pericarditis development. IL-13-/- mice showed 

pericarditis similar to WT mice (Figure 12G). We found the number of total leukocytes 

and eosinophils were analogous between WT and IL-13-/- mice (Figure 12H and I). ILC2s 

did not differ in number between WT and IL-13-/- mice with pericarditis (Figure 12J). 

These data suggest that IL-5 derived from ILC2s affects pericarditis development and 

cardiac infiltrating immune cells. 
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Figure 12. IL-5 produced by ILC2s play a role during the development of pericarditis. 

(A) Representative flow cytometry plot of intracellular staining of IL-5 and IL-13 in 

cardiac ILC2s from IL-33-treated mice. (B) Frequency of ILC2s producing IL-5 and/or IL-

13 in the hearts of IL-33-treated mice. (C) Representative images of H&E-stained heart 
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sections of IL-33-treated mice with isotype or anti-IL-5 administration. Scale bars: 100 µm. 

(D) Total number of heart-infiltrating CD45+ leukocytes. Number of (E) eosinophils and 

(F) ILC2s in the hearts of IL-33-treated WT mice with isotype or anti-IL-5 administration. 

(G) Representative images of H&E-stained heart sections of IL-33-treated WT and IL-13-

/- mice. Scale Bars: 100 µm (H) Total number of heart-infiltrating CD45+ leukocytes. 

Number of (I) eosinophils and (J) ILC2s in the hearts of IL-33-treated WT and IL-13-/- 

mice. Data are representative of two independent experiments and displayed as the mean. 

One-way ANOVA followed by Tukey’s post-hoc test (B) or unpaired t-test (D-F and H-J) 

was used for statistical analysis. **, P < 0.01; ***, P < 0.001. 

 

 

Eosinophils are present in the mediastinal cavity and can migrate to the heart 

Previously, we found that eotaxin-CCR3 pathway is critical for eosinophil migration to the 

heart during eosinophilic myocarditis [235]. We also showed that ILC2s stimulated by IL-

33 promote eotaxin-1 production by cardiac fibroblasts (Figure 10C and D). However, 

given that IL-33-induced cardiac inflammation has a unique disease pattern affecting 

predominantly the pericardium and myopericardium, we wanted to explore whether 

eosinophils could migrate from a non-vascular source such as mediastinal cavity, a 

neighboring serosal cavity. We found that eosinophils resided in the mediastinal cavity of 

naïve WT mice at a comparable frequency to eosinophils in the heart (Figure 13A and B). 

To examine if eosinophils would be present in the mediastinal cavity in higher numbers in 

hypereosinophilia, we examined eosinophils in the mediastinal cavity of naïve IL-5 

transgenic (IL-5Tg) mice which spontaneously develop tissue and blood eosinophilia [237]. 
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In IL-5Tg mice, we found eosinophils at a high frequency in the mediastinal cavity as well 

as in the heart and blood (Figure 13C and D). Frequency of neutrophils in the mediastinal 

cavity of both WT and IL-5Tg mice was significantly lower compared to frequency in the 

blood of these mice, indicating that eosinophils found in the mediastinal cavity were not 

from blood contamination (Figure 14A and B). To determine if eosinophils migrate to the 

heart preferentially from the mediastinal cavity or through the vasculature, we transferred 

the same number of eosinophils either to the mediastinal cavity or intravenously to IL-33-

treated ΔdblGATA1 mice lacking eosinophils (Figure 13E). Both mediastinal cavity and 

i.v. transfers were performed simultaneously to the same animal. Eosinophils injected to 

the mediastinal cavity and intravenously were labeled with different fluorescent cell 

tracking dyes, CTV and CTFR, respectively (Figure 13E and F). We found eosinophils 

transferred through both routes in the heart of ΔdblGATA1 mice deficient in eosinophils 

(Figure 13G and H). Eosinophils transferred to the mediastinal cavity were found at a 

significantly higher frequency in the heart of ΔdblGATA1 mice compared to eosinophils 

transferred intravenously (Figure 13H and I). This indicates that eosinophils can migrate 

from the mediastinal cavity to the heart more effectively than through vascular routes. 

Taken together, we demonstrated that eosinophils are present in the mediastinal cavity and 

that eosinophils can efficiently traffic to the heart from the neighboring serosal cavity. The 

mediastinal cavity seems to serve as an eosinophil reservoir leading to rapid non-vascular 

eosinophil trafficking to the heart in IL-33-induced pericarditis model. 

In addition, we analyzed expression of integrins and activation marker CD44 on 

eosinophils found in the mediastinal cavity. Eosinophils are known to express different sets 

of integrins to mediate their migration to lungs in asthma and also express activation 
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marker CD44 when stimulated [238, 239]. In naïve mice, mediastinal-cavity eosinophils 

expressed integrin dimers such as α4β1 (VLA-4, CD49d/CD29) and α4β7 (CD49d/β7) 

(Figure 15A and B). We compared the levels of integrins and CD44 expressed on 

eosinophils from the heart, mediastinal cavity and blood between naïve and IL-33-treated 

mice and found differential expression of these markers depending on the location of 

eosinophils and IL-33 treatment (Figure 15C). Interestingly, CD44 expression levels were 

the highest in mediastinal-cavity eosinophils at steady state, however, blood eosinophils 

showed the highest CD44 levels after IL-33 treatment. Given that eosinophils from the 

mediastinal cavity can migrate effectively to the heart, there might be other mechanisms 

that are currently unclear but important for them to traffic to the heart. 
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Figure 13. Eosinophils reside in the mediastinal cavity from which these cells can 

traffic to the heart. 
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(A) Representative flow cytometry plot of CD45+CD11b+ cells. Gates show 

CD11b+SiglecF+ eosinophils and CD11b+Ly6G+ neutrophils in the heart, mediastinal 

cavity and blood of WT naïve mice. (B) Frequency of eosinophils in the heart, mediastinal 

cavity and blood of WT naïve mice. (C) Representative flow cytometry plot of 

CD45+CD11b+ cells. Gates show CD11b+SiglecF+ eosinophils and CD11b+Ly6G+ 

neutrophils in the heart, mediastinal cavity and blood of IL-5Tg naïve mice. (D) Frequency 

of eosinophils in the heart, mediastinal cavity and blood of IL-5Tg naïve mice. (E) 

Schematic description of eosinophil transfer to eosinophil-deficient ΔdblGATA1 mice. (F) 

Flow cytometry plots of CTV- or CTFR-labeled eosinophils. (G) Flow cytometry plot of 

CD45+ cells in the heart. Gates show CD11b+SiglecF+ eosinophils found in the heart of 

ΔdblGATA1 mice treated with IL-33 after eosinophil transfer in the mediastinal cavity and 

iv. (H) CTV- or CTFR-labeled CD11b+SiglecF+ eosinophils found in the heart of 

ΔdblGATA1 mice treated with IL-33 after eosinophil transfer. (I) Frequency of CTV- or 

CTFR-labeled eosinophils found in the heart of ΔdblGATA1 mice treated with IL-33. 

Concatenated samples (n=7) are shown in G and H. Data are representative of two 

independent experiments and displayed as the mean. One-way ANOVA followed by 

Tukey’s post-hoc test (B and D) or unpaired t-test (I) was used for statistical analysis. **, 

P < 0.01. 
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Figure 14. Neutrophils are found less in the mediastinal cavity than in the heart and 

blood. 

(A-B) Frequency of neutrophils in the heart, mediastinal cavity and blood of WT naïve 

mice (A) and IL-5Tg naïve mice (B). Data are representative of two independent 

experiments and displayed as the mean. One-way ANOVA followed by Tukey’s post-hoc 

test (A and B) was used for statistical analysis. **, P < 0.01; ***, P < 0.001. 
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Figure 15. Differential expression levels of integrins and activation marker on 

eosinophils. 

(A-B) Flow cytometry plots of mediastinal-cavity eosinophils in naïve mice expressing (A) 

VLA-4 (α4β1, CD49d/CD29) and (B) α4β7 (CD49d/β7). (C) Expression levels of CD44, 

CD29, CD49d and β7 on eosinophils isolated from the heart, mediastinal cavity and blood 

of naïve and IL-33-treated mice. Concatenated samples (n=5) are shown in each plot. Data 

are representative of two independent experiments. 
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Discussion 

 

ILC2s reside in many organs and are potent producers of Th2 cytokines in response to 

epithelial-derived cytokines, such as IL-33, IL-25 and TSLP. Here we demonstrated that 

ILC2s accumulate in the heart following IL-33 treatment in mice using a previously 

described model of IL-33-induced pericarditis [109]. This is the first report of a pathogenic 

role of ILC2s in the cardiac inflammation, which implicates that cardiac ILC2s activated 

by IL-33 drive eosinophilic pericarditis in collaboration with cardiac fibroblasts. We 

identified that ILCs are required for the development of IL-33-induced pericarditis. Given 

that Rag2-/- mice develop comparable cardiac inflammation and pathology to WT mice 

following IL-33 treatment, we excluded adaptive lymphocytes such as T cells and B cells 

from being drivers of pericarditis development. The necessity of ILC2s in induction of 

inflammation has been shown in other organs such as allergen-induced lung inflammation 

models [34, 196]. Papain causes asthma-like symptoms in Rag1-/- mice but not in Rag2-/-

Il2rg-/- mice and ILC-deficient Rag2-/-Il2rg-/- mice reconstituted with ILC2s develop airway 

inflammation [34]. While Rag2-/- mice lack T cells and B cells, Rag2-/-Il2rg-/- mice are 

deficient in ILCs in addition to T cells and B cells. Unlike Rag2-/- mice, Rag2-/-Il2rg-/- mice 

were protected from IL-33-induced pericarditis, demonstrating ILCs are required for 

pericarditis development. Our adoptive transfer experiments showed that cardiac ILC2s 

transferred directly to the heart of pericarditis-resistant Rag2-/-Il2rg-/- mice elicited cardiac 

eosinophil infiltration. These findings support the notion that ILCs are tissue resident cells 
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even during acute inflammation as described by us in the heart and others in different 

organs [30, 155, 219]. 

 

The IL-33-induced pericarditis model allowed us to investigate the pathogenic role of IL-

33/ST2 axis in ILC2 activation during cardiac inflammation. IL-33 mediates its effects 

through binding to its receptor ST2 as we demonstrated in cardiac ILC2 activation [48]. 

ST2 is known to be expressed not only on ILC2s but also on Th2 cells, B cells, basophils, 

eosinophils, dendritic cells, mast cells and natural killer T cells [240]. However, using an 

adoptive transfer experiment, we showed that ILC2s are essential for IL-33-induced 

cardiac inflammation. It was reported that IL-33 expression increases during cardiac 

inflammation or after cardiac injury, representing an association between IL-33 and its 

pathological outcome in cardiac inflammation [60, 241]. ST2 is not only expressed as a 

membrane-bound form, but is also produced as a soluble form (soluble ST2, sST2) that is 

released into the circulation. sST2 has been proposed as a prognostic marker for chronic 

and acute heart failure and aortic stenosis [113, 242-244]. These facts are consistent with 

our findings that IL-33/ST2 axis plays a key pro-inflammatory role in the heart by 

stimulating cardiac ILC2s under certain conditions related to increased IL-33 production. 

It should be noted that IL-33 signaling via ST2 could play a beneficial role in different 

types of heart diseases such as pressure overload and myocardial infarction by providing 

improved cardiac function and survival [72, 110]. 

 

We showed that IL-33 is expressed in naïve heart suggesting its role in cardiac homeostasis. 

When mice were treated with exogenous IL-33, its endogenous expression was increased 
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in the heart, thus offering the evidence for the presence of a positive feedback loop in the 

heart. This result also suggests that the IL-33-induced pericarditis model does not rely 

solely on exogenous IL-33 administration, but endogenous IL-33 might contribute to 

increased IL-33 level in the heart leading to disease development. We identified that Sca1+ 

cardiac fibroblasts are major producers of IL-33 in the heart both in steady state and during 

pericarditis. This result is in agreement with our previous findings that cardiac fibroblasts 

are a versatile stromal cell type capable of producing different sets of cytokines and 

chemokines in response to changes in microenvironment [235, 236]. Although it has been 

reported that human endothelial cells could be an important source for IL-33, we did not 

find mouse endothelial cells to be a major producer of IL-33 in the heart [56, 58, 59]. In a 

myocardial pressure overload mouse model, IL-33 has been shown to be derived from 

endothelial cells [60]. Cardiomyocytes have been also shown to constitutively produce IL-

33 in human heart [245]. Diverse types of cells could produce IL-33 depending on different 

stimuli and the microenvironment. In our model, we found that cardiac fibroblasts are 

potent IL-33 producers and increase IL-33 production in response to systemic IL-33 

administration, suggesting the existence of a feed-forward loop. 

 

ILC2s produce Th2 cytokines such as IL-5 and IL-13 upon activation with IL-33. We were 

able to show that IL-33-activated ILC2s induce eotaxin-1 (CCL11) production by cardiac 

fibroblasts. This is consistent with our previous findings that cardiac fibroblasts are the 

major CCL11 producers in eosinophilic myocarditis mouse model, and CCL11 expression 

is induced in cardiac fibroblasts in vitro in response to IL-4 and IL-13 [235]. It has been 

reported that IL-13 potently induces eotaxin expression in lung epithelial cells and 
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esophagus [246-248]. Furthermore, in humans, eotaxin expression was induced by IL-13 

production by various cell types in different organs [249-251]. We found, in vivo, that 

cardiac ILC2s are potent producers of IL-13 upon IL-33 activation. Furthermore, cardiac 

ILC2s are capable of inducing the production of CCL11 by cardiac fibroblast in vitro. 

Given the ability of IL-13 to induce eotaxin expression, these results support a pathogenic 

role of cardiac ILC2s in driving eosinophilic pericarditis potentially through IL-13 derived 

from IL-33-activated ILC2s.  

 

In this study, we found that cardiac ILC2s produce IL-5 and IL-13 which play an important 

role in developing IL-33-induced pericarditis and that blocking of IL-5 protected mice from 

eosinophilic pericarditis development. In response to IL-5, eosinophils are released into 

circulation which might be hindered by blocking IL-5. Several anti-IL-5 agents including 

mepolizumab, reslizumab and benralizumab, which block IL-5 signaling via IL-5 receptor 

and reduce blood eosinophils, have been developed, approved and used to treat asthma in 

a clinical practice [252]. In addition, a Phase 2 clinical trial is currently evaluating the 

safety and efficacy of benralizumap, an anti-IL-5 receptor biologic, in decreasing 

eosinophils in patients with hypereosinophilic syndrome (ClinicalTrials.gov Identifier: 

NCT02130882). As shown in our IL-5 blocking experiment, anti-IL-5 treatment had a 

profound effect on reducing eosinophils infiltrating to the heart during pericarditis. This 

finding proposes anti-IL-5/IL-5R agents as a potential treatment option for eosinophilic 

pericarditis. Future studies should explore clinical biomarkers, such as an increased IL-33 

level or an increase in ILCs present in pericardial effusion, for disease management or as 

therapeutic targets for pericarditis. 



80 

 

 

IL-33-induced cardiac inflammation has a unique pattern affecting mostly pericardium and 

myopericardium, thus we explored whether eosinophils could migrate from a non-vascular 

source such as mediastinal cavity, a neighboring serosal cavity. We identified that 

eosinophils are present in the mediastinal cavity of naïve mice and that adoptively 

transferred eosinophils to the mediastinal cavity of IL-33-treated eosinophil-deficient mice 

are able to traffic to the heart. This suggests that the mediastinal cavity might serve as a 

reservoir of cardiac infiltrating eosinophils. Immune cells have been previously identified 

in serous cavities such as peritoneum and pleural cavity [253-256]. Macrophages residing 

in the peritoneal cavity are rapidly recruited to the injured liver through a non-vascular 

route and display tissue reparative phenotypes [255]. The pleural space is also shown to 

possess B1a B cells which can migrate to the lung and produce protective IgM in response 

to bacterial infection [256]. We found that eosinophils residing in the mediastinal cavity 

migrate to the heart more effectively than i.v. transferred eosinophils. It does not exclude 

the contribution of circulating eosinophils to pericarditis development, however, it is 

noteworthy that the mediastinal cavity can serve as a reservoir of eosinophils which might 

lead to rapid infiltration during inflammation in close proximity to the heart. Interestingly, 

IL-33 treatment also induces inflammation in lungs and esophagus as we demonstrated 

here and shown before by others [128, 129]. After treating mice with IL-33, we found 

pericardial, subserosal and peribronchial eosinophil infiltrates in the heart, esophagus and 

lungs, respectively. IL-33-induced esophagitis has a subserosal inflammation pattern 

similar to IL-33-induced pericarditis with the inflammation mostly confined to the 

subserosa rather than to the mucosa. Based on these observations, we speculate that the 
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mediastinal cavity could also be a source of eosinophils for other organs located in the 

mediastinal cavity. Taken together, our findings suggest that ILC2s might direct 

eosinophils to infiltrate organs not only from the blood, but also from the neighboring 

serosal cavity where these cells reside locally. 

 

In addition to ILC2s and eosinophils, we found that the number of B cells increase in the 

heart after IL-33 treatment. Serosal fluid in pericardium contains immune cells including 

B cells and can become a source of infiltrating leukocytes under certain insults such as 

exposure following cardiac surgery and myocardial infarction [257, 258]. Whether B cells 

found in IL-33-induced pericarditis originate from pericardial fluid is unclear. However, 

the presence of B cells in the heart and anti-myosin IgM antibody in circulation suggests 

that these factors might play a pathogenic role in myopericarditis. Anti-myosin antibodies 

were found in sera of patients with myocarditis or myocardial infarction suggesting the 

presence of these autoantibodies and their potential contribution to long-term myocardial 

damage and dysfunction in heart diseases [259, 260].  

 

Although many pericarditis case reports have been published, the etiology is still largely 

unknown. Current treatments for pericarditis mostly aim to resolve symptoms by 

administrating anti-inflammatory agents such as nonsteroidal anti-inflammatory drugs 

(NSAIDs, especially indomethacine), colchicine and corticosteroids [85, 261]. Ongoing 

Phase 3 clinical trial is assessing IL-1 blocker in patients with recurrent pericarditis 

(ClinicalTrials.gov Identifier: NCT03737110). Another treatment option for severe cases 

is a pericardiocentesis or pericardiectomy to remove the inflamed pericardium. These 
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symptomatic therapies, however, do not address a specific cause of pericarditis. One of the 

problems in developing new targeted therapies is a lack of classification on subtypes of 

pericarditis. There are several case reports of eosinophilic pericarditis in human [262-266]. 

In this study, using IL-33-induced eosinophilic pericarditis mouse model, we identified 

cardiac ILC2s playing a critical role in the pathogenesis of eosinophilic pericarditis. These 

findings augment our understanding of how ILC2s contribute to cardiac inflammation and 

provide insights into the targeted therapy for eosinophilic pericarditis. 

 

 

 

 

Chapter 5. Conclusions and Future Directions 

 

We reviewed the roles for IL-33 in diverse inflammatory diseases and potential clinical 

applications of IL-33/ST2 axis. The effect of IL-33 signaling pathway can be either 

protective or pathogenic depending on sites of inflammation, inflammation-inducing 

agents and tissue microenvironments. Thus, care should be taken when therapeutic 

strategies targeting IL-33/ST2 signaling pathway are made. We also discussed how ILC2s 

contribute to defending against infection, regulating inflammation and maintaining 

metabolic homeostasis. ILC2s play a pivotal role in many biological processes not only as 

effector cells in innate immunity but also as regulators of inflammation and homeostasis in 
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diverse organs. Further studies are needed to utilize current understandings on the role for 

ILC2s in different settings for translational applications. 

In the experimental study, we established a critical role for ILCs in cardiac inflammation 

using pericarditis mouse model. We identified the accumulation of ILC2s in the heart with 

a marked increase of eosinophils infiltrating to the heart during IL-33-induced pericarditis. 

Diastolic dysfunction was observed in IL-33-treated mice, indicating that inflammation 

occurring in the pericardium results in not only infiltration of immune cells but also adverse 

cardiac function. IL-33/ST2 signaling axis is essential to expand cardiac ILCs and drive 

pericarditis. The lack of IL-33 or ST2 diminished the severity of inflammation with 

reduced immune cells in the heart. In addition, we revealed the existence of IL-33 feedback 

loop in which cardiac fibroblast are a major source of endogenous IL-33. Exogenous IL-

33 amplifies endogenous IL-33 expression which is needed to drive severe pericarditis. We 

demonstrated that ILCs are required for pericarditis development whereas adaptive 

immune cells such as T cells and B cells are not responsible for pericarditis. Cardiac ILC2 

transfer to the heart of ILC-deficient mice led to eosinophil infiltration in these mice which 

are originally resistant to pericarditis upon IL-33 treatment. Moreover, in a co-culture 

setting, we found the stimulation of cardiac fibroblasts with soluble factors secreted from 

ILC2s yields upregulation of expression levels of eotaxin-1 and hence increased secretion 

of eotaxin-1 from cardiac fibroblasts. We showed that cardiac ILC2s are a potent producer 

of type 2 cytokines, IL-5 and IL-13, in vivo. Blocking IL-5 using monoclonal antibody 

attenuated cardiac inflammation including infiltrating eosinophils. Furthermore, we 

demonstrated that eosinophils reside in the mediastinal cavity where the heart is located 

inside. Eosinophils transferred in the mediastinal cavity migrated to the heart more 
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effectively than intravenously transferred eosinophils. This result suggests that eosinophils 

in the mediastinal cavity might contribute to cardiac eosinophilic inflammation in addition 

to circulating eosinophils, although a potential mechanism on eosinophil trafficking from 

the mediastinal cavity to the heart needs to be elucidated. Our findings suggest that ILC2s 

play a pathogenic role in driving pericarditis induced by IL-33 and that it might be possible 

to alleviate eosinophilic pericarditis by blocking IL-33-ST2-ILC2s axis. 

Several questions remain to be explored and answered. We were unable to show the 

location of cardiac ILC2s. Although ILC2s play a pivotal role in driving pericarditis, they 

are a rare population which is challenging to locate within the heart. We speculate that they 

might reside near the pericardium given the phenotype of inflammation observed after IL-

33 treatment, however, it is also possible that they are present in the myocardium. A recent 

study showed that ILC2s are present in perivascular regions and localize with fibroblast-

like adventitial stromal cells which express IL-33 [267]. Cardiac ILC2s might be also 

located with cardiac fibroblasts which were shown to express IL-33 in our study. With 

advanced techniques such as clearing tissue and light sheet fluorescence microscopy, it 

may be possible to visualize cardiac ILC2s. 

It would be of interest to see whether IL-33 and ILC2s are correlated with eosinophilic 

pericarditis in humans as our results in mice. IL-33 and sST2 have been proposed or are 

being used as a biomarker in certain cardiovascular diseases [112, 241]. However, 

supporting evidence is not sufficient to propose the use of IL-33 or sST2 as a prognostic 

marker for pericarditis. Access to human samples rarely happen since, in many cases, 

pericarditis is resolved with anti-inflammatory agents and does not require surgery. 

Patients with a severe pericardial effusion might need to undergo pericardiocentesis. 
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During the procedure the fluid can be obtained and tested for levels of IL-33. It should be 

noted that eosinophilic pericarditis is a rare condition, but at the same time, can be one of 

manifestations of other diseases such as hypereosinophilic syndromes. It would still be 

intriguing to see whether IL-33/ST2 axis and ILC2s are involved in pericarditis and how 

these components affect the outcome in humans. IL-1 blocker, a fusion protein comprised 

of the ligand binding domains of IL-1RI and IL-1RAcP, for the use in recurrent pericarditis 

is currently being evaluated in a phase 3 clinical trial (ClinicalTrials.gov Identifier: 

NCT03737110). In addition, as discussed before, there are currently several anti-IL-33 and 

anti-ST2 being evaluated for the potential use as therapeutics to treat diverse allergic 

inflammation in clinical trials (Table 4). Our findings suggest a possible application of 

these monoclonal antibodies against IL-33 and ST2 to block IL-33/ST2 signaling in a type 

2 cardiac inflammation including eosinophilic pericarditis. Since ILC2s express redundant 

markers which are shared with other immune cells, it might be difficult to specifically 

target ILC2s in vivo. The neutralization of IL-33/ST2 signaling pathway could be a 

practical approach to regulate IL-33/ST2-ILC2 axis for the treatment of eosinophilic 

pericarditis in addition to allergic inflammation. 

Future studies will focus on the role of cardiac ILCs at the steady state. The questions to 

be addressed are: What is the role of cardiac ILCs at steady state? How do ILCs contribute 

to homeostasis of the heart? What other cells are affected by ILCs at steady state? Are ILCs 

beneficial or harmful to health of the heart? Recently we have shown that CD45+ 

leukocytes are a main producer of type 2 cytokines, IL-5 and IL-13 in the heart of naïve 

WT mice (Figure 16A and B). Among these cells, ILCs were a major IL-5 and IL-13 

producing population at steady state (Figure 16C). We further assessed the role of IL-13 



86 

 

in healthy hearts. IL-13Rα, a component of IL-13 signaling receptor, was expressed by 

F4/80+ cardiac macrophages (Figure 16D). This suggests that IL-13-producing ILCs may 

interact with cardiac macrophages locally. The number of total CD45+ leukocytes in the 

heart was found to be unchanged in naïve IL-13-/- mice compared to WT mice, however, 

neutrophils were increased in the heart of IL-13-/- mice (Figure 16E and F). This suggests 

a possible role for ILCs in inhibiting neutrophil infiltration to the heart at steady state. 

Moreover, we found that although the number of cardiac macrophages remained 

comparable between naïve WT and IL-13-/- mice, the expression of CD206, one of markers 

for alternative activated macrophages, was slightly upregulated in the heart of IL-13-/- mice 

(Figure 16G, H and I). This result indicates ILCs might perturb the activation status of 

cardiac resident macrophages. Our data suggest that ILCs might play a role in regulating 

other resident and infiltrating immune cells in the heart which in turn could affect 

homeostasis of the heart (Figure 17). 
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Figure 16. Cardiac ILCs are a key producer of IL-5 and IL-13 at steady state and 

IL-13 affect neutrophils and macrophages in naïve heart. 

(A-B) Frequency of (A) IL-13 and (B) IL-5-expressing populations in the heart of naïve 

WT mice. Mean was quantified using values in naïve WT mice (n=5). (C) Mean frequency 

of IL-13 and IL-5 expressing cells in the naïve heart. (D) IL-13Rα-expressing leukocytes 
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in the heart of naïve WT mice. Severity of pericarditis was scored on H&E-stained heart 

sections. (E-G) Number of (E) CD45+ leukocytes, (F) neutrophils and (G) macrophages in 

the heart of naïve WT and IL-13-/- mice. (H) Flow cytometry plot of CD206 expression on 

macrophages in the heart of naïve WT and IL-13-/- mice. (I) Mean fluorescence intensity 

of CD206 expressed by macrophages. Data are representative of two independent 

experiments and displayed as the mean. Unpaired t-test (E-G and I) was used for statistical 

analysis. *, P < 0.05; **, P < 0.01. 

 

 

 

Figure 17. Potential role of cardiac ILCs in the homeostasis of the heart. 

 

 

Uncovering roles of ILCs at steady state in the heart is of interest as we find ILCs are 

cardiac resident cells and produce a majority of type 2-associated cytokines in naïve mice. 
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We currently plan to investigate whether cardiac resident macrophages are altered in naïve 

IL-13-/- mice in terms of their expression of markers related to activation and regulation. 

We are able to utilize more diverse markers of macrophages than before to identify the 

status of macrophages. Both ILCs and macrophages are known to have plasticity to react 

to microenvironments which enable these cells to respond to different conditions and play 

an important role both in homeostasis and inflammation. Furthermore, we plan to study the 

role of ILCs and IL-13 in homeostasis of the heart using aged mice. Cardiac function 

declines as aging occurs, however, its association with cardiac resident immune cells is 

poorly understood. Functional studies using echocardiography would provide insight on 

how ILCs and their production of IL-13 influence cardiac function in a long-term 

perspective. Although we are currently unable to decide at this point if ILCs are beneficial 

or harmful to the heart, it would be interesting to see whether ILCs regulate homeostasis 

of the heart. 

In summary, our findings demonstrate that ILCs play a critical role in the heart and cardiac 

inflammation. ILC2s drive pericarditis development by cooperating with cardiac 

fibroblasts which in turn could lead to severe inflammation (Figure 18). We did not rule 

out the possibility of other immune cells and stromal cells involved in the pathogenesis of 

pericarditis. It might be possible that cardiac ILC2s affect other cell types in the heart with 

unknown mechanisms. Advanced techniques such as single cell RNA sequencing and real 

time in vivo imaging with multiparameter fluorescence microscopy would be of help to 

further identify cardiac ILCs and investigate roles of cardiac ILCs in the homeostasis and 

inflammation.  
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Figure 18. Schematic summary of main findings on the role of ILC2s in pericarditis 

development. 
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