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Abstract1

The expanding diversity and ever increasing amounts of man-made chemicals dis-2

charged to the environment pose largely unknown hazards to ecosystem and human3
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health. The concept of adverse outcome pathways (AOPs) emerged as a comprehensive4

framework for risk assessment. However, the limited mechanistic information available5

for most chemicals and a lack of biological pathway annotation in many species rep-6

resent significant challenges to effective implementation of this approach. Here, a7

systems level, multi-step modeling strategy demonstrates how to integrate information8

on chemical structure with mechanistic insight from genomic studies, and phenotypic9

effects to define a putative adverse outcome pathway. Results indicated that tran-10

scriptional changes indicative of intracellular calcium mobilization were significantly11

overrepresented in Daphnia magna (DM) exposed to sub-lethal doses of presumed nar-12

cotic chemicals with log Kow ≥ 1.8. Treatment of DM with a calcium ATPase pump13

inhibitor substantially recapitulated the common transcriptional changes. We hypoth-14

esize that calcium mobilization is a potential key molecular initiating event in DM15

basal (narcosis) toxicity. Heart beat rate analysis and metabolome analysis indicated16

sub-lethal effects consistent with perturbations of calcium preceding overt acute toxic-17

ity. Together, the results indicate that altered calcium homeostasis may be a key early18

event in basal toxicity or narcosis induced by lipophilic compounds.

Log Kow

19

Introduction20

The release of an increasingly large number of anthropogenic chemicals into the environ-21

ment represents a formidable challenge in ecological risk assessment. The potential toxicity22

of chemicals to ecologically relevant organisms must be considered in this process. However,23
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the historic lack of a regulatory imperative, the number of relevant ecosystems, the multiple24

bio-indicator species for each ecosystem, and the cost of acute and chronic toxicity tests,25

has resulted in ecotoxicity data being available for only a minority of chemicals in com-26

merce. In addition, these traditional ecotoxicity measurements do not consider sub-lethal27

effects nor provide insight into the mechanisms underlying any observed toxicity. Alternative28

rapid, predictive, mechanism based and cost effective approaches for ecological risk assess-29

ment of chemicals are urgently needed to preserve the integrity of the natural environment.30

Quantitative structure activity relationships (QSARs) provide an established alternative to31

traditional toxicity tests for the identification of toxic chemicals.1,2 However, they generally32

do not provide a mechanistic link between physical chemical features and the observed tox-33

icity. Recently, a conceptual framework for environmental risk assessment termed adverse34

outcome pathways (AOPs) has been proposed and adopted by the OECD. AOPs repre-35

sent the causal relationships between the molecular initiating event(s) of chemical(s) action36

through biological processes to organism and population level adverse effects.3 Its application37

in a regulatory context is likely to revolutionise the way we understand environmental toxi-38

city. A significant barrier to implementation of this strategy is the dearth of well-annotated39

biological pathways in many eco-relevant species. Genomic information can provide mech-40

anistic insight into chemical action but methods to utilize this information in an adverse41

outcome pathway framework remain limited. Here we propose a computational approach42

that integrates traditional QSAR, expression profiling following exposure to sub-lethal (or43

NOEC no observable effect concentrations) chemical concentrations, and toxicity endpoints44

to generate a model of putative AOPs. This postulates that the physical-chemical features45

(PCFs) of a chemical can explain an organisms’ transcriptional response at a dose and at46

a time of exposure where no overt toxicity is observed, and second, that such a response is47

informative and predictive of the molecular mechanisms underlying toxicity at higher expo-48

sure endpoints. A key characteristic of this approach is that a hypothesis for the49

AOP is generated from the computational analysis rather than testing a specific50

3
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a priori hypothesis.51

Application of this methodology to a dataset comprised of 24 environmentally relevant52

chemicals revealed that structural features linked to compound lipophilicity are able to ex-53

plain a considerable fraction of sub-lethal (NOEC) transcriptional response of DM to each54

compound. Baseline toxicity, also termed narcosis, has been linked to the lipophilicity of55

chemicals4,5 and has been subdivided into narcosis attributable to non-polar and polar com-56

pounds which are proposed to have related if distinct mechanisms.6,7 However, despite in-57

tense efforts, the precise mechanism of narcosis and the relative importance of basal versus58

target-specific toxicity in the environment are still largely unknown.4 Analysis of the inferred59

transcriptional network linked to both compound PCFs and toxicity outcomes support the60

hypothesis that intracellular calcium release triggered by lipophilic chemicals may be one61

of the initiating events that underlie basal toxicity of these compounds. More generally,62

the approach shows for the first time how a computational approach integrating traditional63

QSAR with advanced systems biology approaches can help define an AOP. The widespread64

application of the approach developed here is therefore expected to have significant impact65

on the development of AOPs in the field of chemical and environmental hazard assessment.66

Materials and Methods67

Analysis strategy68

The overall computational strategy to identify AOPs is to link the transcriptional state of69

an organism following sub-lethal chemicals exposures to both PCFs and organismal toxicity70

and can be conceptualised as six interconnected steps (Figure 1). First, PCFs are identified71

that predict the transcriptional activity of KEGG pathways (Figure 1, Step 1). In parallel,72

each pathway is tested for its ability to predict neonate LC50 (nLC50) (Figure 1, Step 2). The73

relationship between these objects can be represented in a multi-level map (Figure 1, step74

3) defining the interaction of PCFs with pathways, and pathways with organismal toxicity.75

4

Page 4 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



Together these linkages form a network between chemicals (PCFs), biological pathways and76

toxicity, which allows generation of AOP hypotheses (Figure 1, Step 4-5). Targeted studies77

can be used to test these hypotheses (Figure 1, Step 6). Details of the individual analysis78

for each step can be found in the sections below.79

Chemical Exposures and expression profiling dataset80

Transcriptional data from exposure of DM to twenty six organic chemicals were initially81

selected from a previous study.1 Briefly, this set represented gene expression profiles for 1482

day old DM adults exposed to 1
10

of the identified nLC50 (calculated using neonatal DM). At83

the validation stage of the project, an additional exposure to thapsigargin was performed.84

For more details on the compounds see Table S5. Exposures were performed with twenty85

two week old DM in 1L of modified COMBO media8 containing 1
10

LC50 concentration of86

each of the chemical in four replicates. Each beaker was carefully sealed with clingfilm to87

reduce volatility and to improve delivery. After a 24h exposure, total RNA was extracted88

and arrayed using a custom Agilent microarray (AMAID: 023710, GPL15139). (Further89

information on the selected chemicals can be found in Supplementary Table S5 and S8). To90

verify that the experimental precautions taken to reduce evaporation were effective chemical91

concentrations were measured during exposure to the 3 most volatile compounds. The92

analysis revealed that the concentration of 2 of the volatile compounds were reduced by 50%93

at the end of the exposure while the remaining chemical showed < 1% loss. This shows94

that compound loss caused by evaporation is not likely to affect LC50 determination (See95

Supplementary Table S9 for more details).96

Basal toxicity model and excess toxicity97

To establish whether the compounds in this dataset fit a baseline toxicity model, a compari-98

son with an already developed model9 was performed. First a model, based on this dataset,99

5
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Figure 1: Step 1: Predicting pathway activity from PCFs. Step 2: Predicting toxicity from
pathway activity. Step 3: Visualization of the results in a KEGG Pathway Interaction map.
Step 4: Network reconstruction of identified genes and PCFs. Step 5: Hypothesis generation
through integration of Step 3 and Step 2 results. Step 6: Validation of hypotheses generated
in Step 5.
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was derived:100

log(LC50) = −0.8438 ∗ log(Kow)− 2.3078. (1)

Comparing this with the von der Ohe et al. 9 baseline toxicity model verified that the es-101

timated parameters where within the confidence intervals and hence the two models were102

considered to be indistinguishable. To further assess this datasets’ compounds, an excess103

toxicity index (Equ. 2) was calculated based on equations developed by von der Ohe et al. 9 .104

Te =
predictedLC50

experimentalLC50

(2)

Plotting this index as a function of LC50 resulted in no compounds with excess toxicity (> 2)105

and 4 compounds with a slightly lower Te value than expected. These 4 compounds include106

Phenol, Acrylonitrile, Ponasterone A and 20-hydroxyecdysone. The analysis shows that, in107

the conditions of this experimental system, most of lethal toxicity in these chemicals can108

be expected to follow a narcosis based mechanism (see Supplementary Figure S12). These109

results are consistent with the initial assessment which shows minimal loss of highly volatile110

chemical during exposure.111

Calculation of PCFs112

PCFs describing each chemical were identified using the e-Dragon web service available at113

www.vcclab.org.10 Only features that were available across all chemicals (1260/2352) were114

retained. Chemicals which showed outlier PCFs profiles, or for which calculations of PCFs115

lead to errors due to structural peculiarities were removed (2 compounds). The final dataset116

therefore contained 24 chemicals.117

Calculation of indexes of pathway activity (PAI)118

To reduce the complexity of the expression profiling dataset, the individual gene expression119

profiles were grouped according to biological pathways defined in the KEGG database and120
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then indexes of pathway activity (PAI) were computed using principal component analysis121

(PCA). The first three principal components (representing at least 70% of the variance),122

were retained for further analysis.This procedure reduces the initial set of 1425 genes to123

285 pathway components (95 KEGG pathways and 3 principal components (PCs) each).124

Although this approach eliminates the non-annotated genes, biological interpretability and125

statistical power are greatly enhanced.11–13126

Toxicity endpoint127

Organismal toxicity was determined in the initial generated dataset.1 Briefly, neonates (<128

24h) were exposed to varying nominal concentrations of each chemical over 24h and nominal129

LC50s generated. This neonate LC50 (nLC50) was then used to link the transcriptional130

response of 14 day old adults at 1
10

nLC50.131

Pathway activity as a function of chemical features132

Using an advanced machine learning technique (GALGO14) optimized sub-sets of 3 PCFs133

were identified, which are able to predict each of the 285 PAIs (3 PCs x 95 pathways) using134

the following randomForest model:135

PAIj,k = aθ1 + bθ2 + cθ3 + d+ ε (3)

Here PAIj,k represents the pathway activity index for pathway j and component k, θ1−3136

represent 3 PCFs and d and ε the intercept and error of the model. For 35 pathways (at137

least one of its component) a highly significant association to PCFs with an R2 > 0.75 could138

be identified.139
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Toxicity as a function of Pathway activity140

For each pathway a random Forest15 regression model was used to identify pathways predic-141

tive of toxicity (nLC50). The regression model was defined as:142

log(LC50) = aθ1 + bθ2 + cθ3 + d+ ε (4)

To identify statistically significant pathways, nLC 50 are randomized 1000 times and the143

model rerun. Twenty significant pathways linked to toxicity were identified with an R2 >144

0.6.145

Analysis of Gene expression dataset146

To develop a KEGG Pathway map links between KEGG pathways are represented as the147

Jaccard’s Index of overlap, which is defined as the ratio between the size of the intersect over148

the size of the union of any 2 samples. To aid in interpretation, pathways were ordered into149

higher functional groups and coloured on the basis of their association (PCFs black, toxicity150

blue and both red). To further build a network representing the dependency between genes,151

PCFs and LC50 based on the KEGG map, ARACNE16 was applied (p-value 10-8). To identify152

highly interconnected sub-networks GLay (clusterMaker17,18) was applied. A force driven153

layout was used to represent the graph. Statistically significant correlation between genes154

and experimental log Kow was identified using SAM (significance analysis for microarrays).19155

Significant over-representation was identified using a modified fisher test as described in.20156

To identify metabolites or genes highly represented by the log Kow signature KEGG reference157

pathways with at least 5 represented members in this dataset were considered and the fisher158

test applied. To link exposure of thaspigargin and the remaining dataset genes are ranked159

by d-statistic from the above SAM analysis and used as ranked input to GSEA.21 Genesets160

were defined as thapsigargin significantly differentially expressed genes (FDR < 20%). To161

define contribution of specific vs. basal toxicity mechanisms a 2 factor ANOVA was used to162
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identify whether the majority of the variation observed in the dataset was associated with163

chemical class (as defined in1), log Kow or their interaction.164

Validation of observed Ca2+ effects165

To establish whether compounds are likely to inhibit SERCA ATPase, IC50 data was sourced166

from the public domain and complemented with new measurements as described in.22 Fur-167

thermore, semi-targeted and relative quantitative measurements using 1H nuclear magnetic168

resonance (NMR) spectroscopy was performed. Hydrophilic metabolites were extracted from169

DM as described in.23 Data was normalized, g-logged (generalized logarithm) and analysed170

by PCA. Metabolites were identified using an online database.24 Lastly, heart rate was mea-171

sured in two week old DM following 1h and 24h exposure to 8 compounds of varying log Kow172

through video monitoring. Data was collected using 15 individuals as described in.25173

Development of a model predictive of toxicity and integrating cal-174

cium signalling expression signatures and lipophilicity175

A machine learning approach (GALGO14) was used to assess whether inclusion of calcium176

associated genes to log Kow could produce a better predictive model than log Kow by itself.177

Results178

Statistical modeling reveals an interaction between compound PCFs,179

whole organism transcriptional response and toxicity outcome180

The first objective of this study was to identify putative AOPs representing a link between181

compound PCFs, pathway activity and toxicity outcome (Figure 1). Remarkably, 35 out182

of the 95 (36%) KEGG pathways could be identified whose activity can be predicted as a183

function of a subset of PCFs (Table S1) thus linking PCFs to pathway activity. In addition,184
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transcriptional activity of 20 out of 95 (21%) KEGG pathways were found to be predictive of185

toxicity (Table S1) and thereby completing a link between PCFs, biological pathways, and186

toxicity. Grouping of all of these pathways resulted in eight functional groups: 1) amino-187

acid metabolism, 2) glycan metabolism, 3) lipid metabolism, 4) signaling, 5) DNA repair and188

replication, 6) membrane, 7) protein translation/degradation and 8) energy metabolism. A189

functional network representing the inferred complex relationship between PCFs, pathways190

and toxicity is shown in Figure 2.191

41 
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Figure 2: Representation of the interactions between functional clusters and groups of PCFs.
Each functional cluster represents a number of related pathways associated to either PCFs
(black), toxicity (blue) and both (red). Strength of interactions between PCFs and functional
clusters is represented by colored arrows (red > 0.15, blue > 0.1, and green < 0.1).
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PCFs clusters associate with functional groups192

Visual inspection of the network shows that a cluster of PCFs, representing mainly com-193

pound lipophilicity, 2D autocorrelations (representing the shape of a molecule by topological194

distance weighted by molecular properties) and BCUT descriptors (representing atomic prop-195

erties relevant to intermolecular interactions) were connected with six out of the 8 defined196

functional pathway groups (for additional descriptor groups see Figure S1). A second PCFs197

cluster, which mainly represented features from the RDF descriptor group (Radial distribu-198

tion function: which represent the probability of an atom to be present at a given radius from199

the center of the molecule), and a third cluster mainly comprised of GETAWAY descriptors200

(geometry, topology, and atoms-weighted assembly; descriptors representing the molecular201

structure based on atomic coordinates calculated with respect to the geometrical center of202

the molecule) were connected to three and one functional group, respectively (Figure 2, for203

more detail see Figure S1).204

Inference of a biological network integrating PCFs, gene expression205

and toxicity206

The previously developed high level map already provided indications on the possible points207

of interactions between compounds (based on PCFs) and pathway activity. However, it208

does not provide a detailed representation of the interaction between PCFs, gene expres-209

sion and the toxicity endpoint. Features and genes identified in the models summarized in210

Figure 2 were therefore extracted and used as an input to the well-validated network infer-211

ence algorithm ARACNE16 to reconstruct the underlying structure of a biological network.212

This results in a higher resolution map of the interaction between PCFs, individual gene213

expression and toxicity outcome. To be able to interpret this network, highly interconnected214

regions were identified which yielded two larger modules (503 and 469 nodes) and 3 smaller215

modules (less than 10 nodes). One of the larger modules (Figure S2, module 1) contained216
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all but 1 PCFs (DISPp: Displacement value weighted by polarizability) and a subset of217

341 genes (41% of the total number of genes). Within this sub-network ALOGPS logP , a218

representative feature of log Kow, was the node with the highest correlation to nLC50 (see219

Figure S3) and lay at the interface between PCFs and gene sub-clusters. Extensive previous220

work has demonstrated a link between log Kow which provides a measure of lipophilicity of a221

compound and toxicity in a variety of organisms including DM.5,9,26 Toxicity attributable to222

this relationship has been designated baseline toxicity or narcosis although the underlying223

mechanism(s) remain unclear.4,5224

Genes correlated to log Kow define a calcium response signature225

The mechanism(s) underlying narcosis which link lipophilicity and toxicity remain contro-226

versial. We reasoned that the expression and the functional profile of genes correlated with227

log Kow might be informative of such mechanisms. A subsequent analysis of the dataset228

revealed that 1846 and 2438 genes respectively were positively and negatively correlated229

with log Kow (< 1% FDR). These were grouped into 10 clusters (r > 0.75, Figure 3 and230

Supplementary File 2 for more details). Surprisingly, the analysis of their expression profile231

as a function of log Kow reveals an inversion in the transcriptional response to chemical232

exposure at approximately log Kow ≥ 1.8 (Figure 3 and S58-S249). Functional enrichment233

analysis of this gene expression signature (Figure 3) was consistent with the high level model234

described above (Figure 2). Identification of the most represented molecular component in235

these KEGG Pathways revealed that calcium pathways and related kinases such as ERK,236

PKA and MAP2K1 were most represented (25, 21, 20 and 17 respectively out of 97 pathways,237

Table S6).238
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Ca2+ mobilization recapitulates the log Kow transcriptional signa-239

ture and explains a significant proportion of the response to single240

chemical exposure241

Since functional analysis of the genes correlated with log Kow suggested a link with Ca2+,242

chemicals with high log Kow might change membrane permeability causing an imbalance of243

Ca2+ exchange within the endoplasmic reticulum and mitochondria. This perturbation may244

ultimately lead to a change in cytoplasmic Ca2+ concentration and ultimately the observed245

transcriptional response (Figure S10A-B). Indeed chemicals with log Kow greater than 1.8246

were more effective inhibitors of the Sarcoplasmic reticulum Ca2+ ATPase (SERCA) than247

less lipophilic chemicals (p-value < 0.03, Figure S10C). In order to further evaluate the rela-248

tionship between intracellular calcium levels, transcription and toxicity, DM were exposed to249

a SERCA non-competitive inhibitor (thapsigargin) at a concentration (100nM) that has been250

shown to be highly specific.27,28 This chemical induces a large increase in intracellular calcium251

concentration by blocking the active transport of calcium in the endoplasmic reticulum. The252

results show that thapsigargin is an effective inducer of transcription (Figure S6) and that253

it is able to recapitulate 43% of the transcriptional signature linked to log Kow (Figure 4).254

Further analysis showed that on average 45% of the transcriptional response following single255

chemical exposure can be explained by a log Kow signature and that on average 35% can be256

directly linked to the Ca2+ mobilization signature defined by thapsigargin (Table 1 , S2 and257

Figure S7). To further validate these observations we reasoned that calcium release, induced258

by highly lipophilic compounds might affect specific functions, which are highly dependent259

on a tightly controlled Ca2+ concentration. This was explored through two separate ap-260

proaches, 1) evaluation of calcium dependent myocardial contraction and found that highly261

lipophilic compounds indeed change heart rates at concentrations below that which cause262

any overt toxicity (Figure S8) and 2) through a semi-targeted metabolomics analysis of thap-263

sigargin exposure. The metabolomics analysis revealed that exposure to thapsigargin at 1
10

264
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nLC50 did not show an accompanied statistical significant change in metabolites (Figure S5)265

suggesting that calcium mobilization may precede toxicity rather than being a consequence.266

In fact, a metabolic response characterised by an increase in formate, alanine, lactic acid and267

glycerophosphocholine and a decrease of glucose, tyrosine and trimethyl-N-oxide was only268

detected at the much higher dose (nLC50).269

Table 1: Table showing the percentage of associated genes to logKow and Thapsigargin.

Significant
Genes

logKow (%) Thapsigargin
(%)

PonasteroneA 4822 43.05% 31.48%
Trichloroethylene 5540 43.03% 28.23%

Toluene 1868 39.56% 40.10%
Atrazine 3099 38.50% 40.88%

Dichlorobenzene 4269 40.55% 34.15%
Beta-estradiol 4270 40.40% 31.69%

Parathion 5330 43.28% 35.55%
Diazinon 5208 38.50% 32.05%

Phenanthrene 3395 37.47% 33.46%
Pyripoxyfen 4793 45.52% 28.90%

Methoxychlor 6533 43.52% 30.90%
Chlorpyrifos 2787 38.72% 31.40%

Toxaphene 5127 46.93% 31.79%
Methylfarnesoate 4810 38.77% 30.91%

Bifenthrin 4889 40.52% 30.37%
Lamda-Cyhalothrin 4891 43.14% 31.75%

Nonylphenol 3011 46.43% 28.30%
Permethrin 2504 41.13% 41.81%

Integration of Ca2+ dependent transcriptional signatures and com-270

pound lipophilicity is required for optimal prediction of chemical271

toxicity272

The observed link between lipophilicity, calcium signalling and toxicity suggested that a pre-273

dictive model including calcium signalling transcriptional response may be a better predictor274

of toxicity than a model based on log Kow on its own. First, a QSAR linking toxicity and275

15

Page 15 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



Oxidative Phosphorylation 
Ribosome 

Ribosome 

Lysosome 
Glycosaminoglycan degradation 
Starch and sucrose metabolism 
Sphingolipid metabolism 
Other glycan degradation 

Wnt signaling pathway 
Spliceosome 
Alanine, aspartate and glutamate metabolism 
Aminoacyl-tRNA biosynthesis 
Glyxylate and dicarboxylate metabolism 

A
cr

yl
on

itr
ile

 
M

TB
E 

2-
ch

lo
ro

 v
in

yl
 e

th
er

 
20

-h
yd

ro
xy

ec
dy

so
ne

 
Ph

en
ol

 
C

hl
or

of
or

m
 

Po
na

st
er

on
e A

 
Tr

ic
hl

or
oe

th
yl

en
e 

A
tra

zi
ne

 
To

lu
en

e 
D

ic
hl

or
ob

en
ze

ne
 

B
et

a-
es

tra
di

ol
 

D
ia

zi
no

n 
Pa

ra
th

io
n 

Ph
en

an
th

re
ne

 
Py

rip
ox

yf
en

 
M

et
ho

xy
ch

lo
r 

C
hl

or
py

rif
os

 
To

xa
ph

en
e 

M
et

hy
lfa

rn
es

oa
te

 
N

on
yl

ph
en

ol
 

B
ife

nt
hr

in
 

Pe
rm

et
hr

in
 

λ-
C

yh
al

ot
hr

in
 

lo
g 

LC
50

 (m
ol

/L
) 

log Kow 

Figure 3: Heatmap of clusters of genes associated to ALOGPS logP ordered by increasing
lipophilicity. The graph above the heatmap shows the relationship between LC50 and ex-
perimental log Kow with lines indicating the position of the compound in both plots. A
transcriptional inversion at an ALOGPS logP value of 1.8 is visible. The height of the
heatmap block is representative to the number of genes within that cluster. Significantly
enriched functional groups are represented for every given cluster.
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lipophilicity only in this dataset was developed, which resulted in an intercept of -2.3078276

and a log Kow coefficient of -0.8438 (R2 = 0.65), which is within the boundaries of QSAR277

developed by von der Ohe et al. 9 . To explore whether addition of Ca2+ associated genes will278

improve the predictive model a genetic algorithm, to select optimal sets of Ca2+ associated279

genes, was applied. The resulting model included 7 genes and their interaction with log Kow280

(R2 = 0.966, Table S5), which is a significant improvement in the prediction of toxicity as281

compared to lipophilicity on its own (R2 = 0.65). The seven genes identified represented282

3 functional groups, energy: phosphoglycerate kinase (PGK), methylenetetrahydrofolate re-283

ductase (metF), signalling: F-box and WD-40 domain protein (FBXW1 11), collagen type284

IV alpha (COL4A), and metabolism: large subunit ribosomal protein L44e (RP-L44e), serine285

palmitoyltransferase (E2.3.1.50) and sodium-dependent inorganic phosphate cotransporter286

(SLC17A5) (Table S5). A more detailed look at the coefficients revealed that metF, SLC17A5287

and RP-L44e all contribute greater than log Kow alone. Interestingly, interactions between288

log Kow and gene expression only added little information towards the final model.289

Discussion290

This manuscript describes the first example of an experimentally validated integration of291

traditional QSAR analysis, functional genomics and ecotoxicology in a quantitative and292

predictive computational framework. This approach led to formulating a working model ex-293

plaining the molecular basis of the basal toxicity of lipophilic chemicals in DM which could294

have broad implications in toxicology. Basal toxicity, also commonly termed narcosis, has295

classically been attributed to two related lipophilic compounds, type 1 (non-polar lipophilic296

compounds) and type 2 (polar lipophilic compounds), with similar but distinct toxicities.297

On the mechanistic level this difference has been hypothesized to be due to the physical char-298

acteristics of polar and non-polar compounds and their interaction with cellular membranes.299

Polar compounds (type 2) are hypothesized to disrupt membranes by binding between the300
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Figure 4: Gene-level comparison of the gene lists between thapsigargin and log Kow FL
showed a 43% overlap.
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polar functional groups on the lipophilic compound and the polar head groups of membrane301

lipids (e.g phosphatidyl choline head group). In contrast, non-polar compounds (type 1)302

disrupt membrane integrity through direct interactions with the hydrophobic membrane in-303

terior.6 Compounds with lower log Kow do not generally partition into the lipid phase and304

therefore may not disrupt membranes directly.305

Intracellular calcium mobilization a mechanism for basal toxicity306

Basal toxicity or narcosis is believed to result from alterations in membrane integrity due to307

the partition of toxic chemicals into biological membranes. The findings presented in this308

manuscript support the hypothesis that an early event in basal toxicity is disrupted calcium309

homeostasis perhaps secondary to disrupted membrane integrity or direct inhibition of cal-310

cium transport. In summary, the key findings supporting the calcium hypothesis are; 1) a311

considerable fraction (an average of 50%) of the transcriptional response across all chemicals312

correlates with log Kow , 2) increase in intracellular calcium reproduces this transcriptional313

response, 3) lipophilic chemicals (log Kow ≥ 1.8) are better SERCA inhibitors, and 4) ex-314

pression signatures linked to calcium release are predictive of toxicity. Due to the ambiguous315

nature of baseline toxicity however it is unclear as to how many mechanisms may be repre-316

sented in the explored chemical space. Another limiting factor, which mainly apply to points317

1 and 2 of these key findings are the timing and dose that were used in the thapsigargin318

exposure. It is conceivable that the observed transcriptional response is likely to follow dif-319

ferent dynamics depending on the compound and concentration used in the exposure. The320

results here however provide additional strong evidence that supports the hypothesis that321

calcium release is a molecular initiating event in the identified narcosis mechanism.322

Ca2+ movement from the ER to the cytoplasm and mitochondria can trigger biological323

processes leading to cell death. For example, increased mitochondria calcium levels can ac-324

tivate the mitochondrial permeability transition pore (MPTP) 29 leading to mitochondrial325

swelling and cell death through apoptosis or necrosis.30 Moreover, depletion of Ca2+ in the326
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ER can result in inhibition of the entire protein translation machinery via a wide range of327

mechanisms.31–33 Several findings support the hypothesis that the Ca2+ dependent transcrip-328

tional signature is a ”molecular initiating event” rather than a consequence of an already329

on-going tissue degeneration process. First, the calcium transcriptional response signature330

appear at a much lower dose and at an earlier time than any effect can be detected in the331

DM immobilization/toxicity assay. Moreover, NMR metabolomics analyses confirms that332

despite the transcriptional response observed after exposure to thapsigargin at 1
10

LC50 up333

to 24 hours, there is no observable difference in metabolite concentrations (Figure S5A and334

C). It is only at much higher dose (LC50) that metabolic responses consistent with tran-335

scriptional effect are measured (Figure S5). This finding suggests that the transcriptional336

signature observed at 24h is a molecular event likely to precede toxicity manifestation since337

metabolism can be considered highly sensitive. Heart rate analysis revealed greater pertur-338

bations in response to highly lipophilic chemicals (Figure S8) which supports this hypothesis339

of early effects on calcium prior to significant mortality.340

Relationship between basal and target-specific toxicity341

Minimizing adverse impact on biodiversity and human health is the focus of chemical risk342

assessment. To aid in understanding such effects work by us and others has focused on iden-343

tifying chemical specific mechanisms of toxicity.1,2 Basal toxicity may represent the primary344

mechanism of some chemicals and at the least can contribute significantly to the toxicity of345

a chemical. This work indicates that a common calcium-dependent mechanism may underlie346

the basal toxicity of lipophilic chemicals. In contrast, specific toxicity mechanism (endocrine347

disruption) shows little overlap with basal toxicity and involves a relatively small number of348

genes when compared to a basal toxicity response, even at sub-lethal doses (Figure S9). This349

suggests that the toxicity of some chemicals will result from both the calcium dependent basal350

toxicity mechanism and additional specific toxicity mechanisms, i.e. receptor-mediated.351
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Predictive ecotoxicology as a means towards understanding chem-352

ical toxicity353

Omics technologies have dramatically increased the ability to characterize the molecular354

responses of virtually any species to chemical exposure. While there have been concerns355

about the utility of this approach for discovering informative biomarkers,34,35 a number of356

groups have shown that the use of sophisticated computational approaches to link molecu-357

lar response to toxicity endpoints can be a very effective tool to discover mechanism based358

biomarkers.2,3,36,37 Biales et al, for example, developed predictive models to inform classical359

toxicity identification evaluation and have shown that gene expression profiles are highly sen-360

sitive even at sub-lethal concentrations. This work provides further evidence of the potential361

of predictive toxicology in the ecotoxicology arena and suggests that molecular responses362

linked to disrupted calcium homeostasis secondary to membrane perturbation may be com-363

mon in molecular ecotoxicology studies of diverse species. Moreover, it is possible that such364

mechanisms are similarly relevant in human drug toxicity. Inter-species conservation of basal365

toxicity could provide an improved AOP framework for inter species extrapolation of toxicity.366
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