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Abstract—Software-Defined Networking (SDN) is an emerging
paradigm to logically centralize the network control plane and
automate the configuration of individual network elements. At
the same time, in Cloud Data Centers (DCs), although network
and server resources are collocated and managed by a single
administrative entity, disjoint control mechanisms are used for
their respective management. In this article, we propose a unified
server-network resource management for such converged Infor-
mation and Communication Technology (ICT) environments. We
present a SDN-based orchestration framework for live Virtual
Machine (VM) management that exploits temporal network
information to migrate VMs and minimize the network-wide
communication cost of the resulting traffic dynamics. A prototype
implementation is presented, and a Cloud DC testbed is used to
evaluate the impact of diverse orchestration algorithms. Our live
VM management has been shown to reduce the network-wide
communication cost, especially for the high-cost and congestion-
prone core and aggregation layers of the DC. Our results show an
increase in network-wide throughput by over 6 times, as well as
over 70% communication cost reduction by migrating less than
50% of the VMs.

Keywords—Software Defined Networking, Virtual Machine Man-

agement, Cloud Data Centers

I. INTRODUCTION

The advent of Cloud Computing has given rise to new
and exciting prospects for individuals, small and medium-
sized enterprises and large organizations who can flexibly
lease processing, storage, and network resources on-demand,
according to their temporal needs. Underpinning Cloud Com-
puting are Data Center (DC) infrastructures, maintained and
managed at scale by local as well as global operators such as
Amazon, Rackspace, Microsoft, and Google, typically offered
as-a-service to corporate and individual customers over the
Internet. Each of these Cloud DCs typically house tens of
thousands of servers [1].

In order to be sustainable, the significant capital outlay
required for building a DC makes maximization of Return on
Investment (RoI) crucial, which in turn necessitates efficient
and adaptive resource usage. With the advent of virtualization

R. Cziva, S. Jouët, and D.P. Pezaros are with the School of Computing Sci-
ence, University of Glasgow, Glasgow G12 8QQ, UK (e-mail: {richard.cziva,
simon.jouet, dimitrios.pezaros}@glasgow.ac.uk).

D. Stapleton is with Brocade Communications Systems, UK (e-mail:
dstaplet@brocade.com).

F.P. Tso is with the School of Computer Science, Liverpool John Moores
University, Liverpool L3 3AF, UK (e-mail: p.tso@ljmu.ac.uk).

Manuscript received June 7, 2015; revised October 13, 2015; accepted
January 18, 2015

and multi-tenancy, computing resources are shared amongst
multiple tenants, preventing hard resource commitment and
low server utilization. In particular, Virtual Machines (VMs)
are used as fundamental entities that encapsulate a running
system and abstract it from the underlying hardware physically
hosting it. VMs can be statically or dynamically allocated over
a DC infrastructure in order to improve application perfor-
mance for the customers, and at the same time efficiently utilise
the provider’s physical resources and alleviate bottlenecks.
Live VM migration in particular [2][3], is mainly employed to
improve server-side resource usage (e.g., CPU, RAM, I/O) and
to reduce power consumption at run-time [4]. Consolidation
has also been suggested for reducing the number of network
switches that need to be powered on at any time [5].

While server-side metrics are useful to ensure server re-
sources are fully utilised and can be used to reduce the number
of servers required to be powered on at any given time, they
take no account of the resulting network congestion. Recent
evidence suggests that machine virtualization can adversely
impact Cloud environments, causing dramatic performance and
cost variations which mainly relate to networking rather than
software bottlenecks. In particular, consolidation itself has a
significant impact on network congestion [6][7], especially at
the core layers of DC topologies which in turn become the
main bottleneck throughout the infrastructure [8], hindering
efficient resource usage and consequently providers’ revenue.

At the same time, Software-Defined Networking (SDN) has
been penetrating such highly dynamic environments due to
its centralised, network-wide abstraction of the control plane
that can be exploited for fast service deployment and net-
work virtualization [9][10]. SDN allows policies, configuration
and network resource management to be applied in short
timescales, and a single control protocol to implement a range
of functions such as routing, traffic engineering and access
control [11][5]. Most SDN controllers (e.g., OpenDaylight,
Ryu, POX, FloodLight) expose APIs to configure network
components, manage firewalls, get traffic counters, etc. They
have also been widely used for different network-related
projects such as, e.g., for complete network migration [12],
new management interfaces [13], QoS management [14], or
participatory networking [15].

However, current SDN interfaces are explicitly network-
centric and do not inter-operate with VMs, hypervisors or
other control interfaces to convey information of the temporal
network state that could subsequently be exploited for admit-
ting server resources without causing network-wide congestion
and bandwidth bottlenecks [16][6][17]. As an approach to
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overcome these inefficiencies, in this article, we present a
SDN-based framework to facilitate synergistic network-server
resource management over Cloud Data Center infrastructures.
We exploit live VM migration in order to reduce the network-
wide communication cost of the resulting traffic dynamics, and
alleviate congestion of the high-cost, highly-oversubscribed
links at the higher layers of the DC topology. We build on our
previous work on S-CORE [18], a distributed, measurement-
based live VM migration algorithm, and develop a novel
VM management framework that measures temporal network
load, computes the end-to-end paths of pairwise VM flows,
and makes migration decisions in short timescales. Instead
of using proprietary interfaces and complex extensions to
server software, we extend a popular open-source SDN frame-
work to allow inter-operation and communication of temporal,
network-wide properties and static parameters between the
network infrastructure and compute resources. At the same
time, we explore the fine balance between the efficiency of
the centralised orchestration of network-wide state, and the
scalability of distributing algorithmic intelligence throughout
the network to approximate computationally infeasible algo-
rithms. We evaluate our implementation over a representative
Cloud DC testbed with three different orchestration schemes,
and demonstrate significant reduction in topology-wide com-
munication cost (>70%) in short timescales, while migrating
<50% of VMs and improving overall throughput by a factor
of six.

Our work provides important insight into two areas of
DC resource provisioning that currently attract significant
attention: first, we develop and evaluate a measurement-based
resource provisioning closed loop that alleviates the need for
slow-evolving and expensive model-based demand prediction
to achieve sustainable performance [8]. And second, we ex-
plore SDN as the basis of a unified control plane for collocated
ICT infrastructures that synergistically manages the alloca-
tion of both network and server resources in order to offer
predictable services even during short term, high utilization
fluctuations.

The remainder of this article is structured as follows:
Section II outlines the S-CORE VM migration algorithm
and highlights the components that interface with SDN for
enabling converged resource management. Section III presents
the system architecture and the implementation of diverse or-
chestration algorithms. Section IV describes the experimental
parameters and results as well as S-CORE’s improvement
in network-wide communication cost reduction and link uti-
lization. Section V outlines related work. Finally, Section VI
concludes the paper.

II. DISTRIBUTED VM MIGRATION

S-CORE is a communication cost reduction scheme that
exploits live VM migration to minimise the overall communi-
cation footprint of active traffic flows over a DC topology,
based on locally available information [18][20]. In a DC
network hierarchy, the links situated closer to the core are
typically heavily over-subscribed and subject to congestion
even when spare capacity exists in other segments of the
topology [16].

A typical means for distinguishing links based on this
notion of cost is to associate a weight metric for each link
and subsequently use aggregate weightings multiplied with
the temporal bandwidth utilization to determine the overall
communication cost for a given flow. S-CORE then uses this
derived value to migrate VMs to other hypervisors that result
in utilising links with smaller weightings.

A. S-CORE Algorithm
Link utilization is dictated by the intensity of pairwise traffic

between VMs. Let �(u, v) denote the average traffic load
per time unit exchanged between VMs u and v (incoming
and outgoing), over a certain time window. We compute the
cost of non-collocated VMs, i.e., VMs whose pairwise traffic
flows are routed through at least one level of switches in
the topology. For VMs u and v, level `

A(u, v) = 1, if data
is exchanged over two links, i.e., over a Top-of-Rack (ToR)
switch, as illustrated in Figure 1 for two representative DC
network topologies. The corresponding link weight for using
each link is c1. For each of the links, the product �(u, v)c1
corresponds to a weighted communication cost for utilising the
particular 1-level link. Similarly, if the flow is routed through
level 2 of the network hierarchy (i.e., `

A(u, v) = 2), data
exchanges take place over four links, two being 2-level (weight
c2) and two 1-level (weight c1) links. In general, when the
communication among two VMs u and v is of level `A(u, v),
the communication cost corresponds to 2�(u, v)

P
`

A(u,v)
i=1 c
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.
Given that any VM u communicates with all VMs in a set V

u

,
there is a communication cost, denoted by C

A(u), attributed
to VM u, for a given overall VM allocation A,

C
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We can derive an expression with respect to the overall
communication cost, CA, for all VM-to-VM communication
over the DC:

C

A = 2
X

8u2V

X
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i=1

c
i

. (2)

Eq. (2) does not take into account traffic in or out of the
DC. For this case, any shortest path is along ToR, aggregation
and core switches for any allocation A. In order to derive a
particular allocation A

opt

for which the overall communication
cost is minimised (i.e., optimal), it is required that CA

opt 
C

A, for any possible A. Computing such optimal allocation
can be shown to be infeasible due to (i) its high complexity
(given the number of permutations that must be considered in
an exhaustive search approach), and (ii) the global knowledge
required in a highly dynamic environment like a DC. Every
time the traffic dynamics change, optimal values need to be
recomputed. Obviously, such a centralised approach does not
scale with the number of VMs and the size of current DC
topologies.

We have therefore derived the S-CORE distributed migra-
tion policy which is an approximation of the optimal allocation
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Fig. 1: The two most common DC network topologies [16][19].

and is based on local measurement of the pairwise traffic load
between each VM u and the VMs it communicates with in
V

u

. A VM u migrates from a server x to another server x̂,
provided that Eq. (3) is satisfied, i.e., given the locally observed
traffic, a VM u individually tests the candidate servers (for new
placement) and migrates only when the benefit outweighs the
migration cost c

m

. We refer interested readers to [18] in which
we have formulated, proved and compared S-CORE against
other VM migration schemes.
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B. SDN Dependencies
S-CORE’s migration decision process is shown in Algo-

rithm 1. Although a fully distributed prototype implementation
of the algorithm based solely on information available locally
at each VM (by running the Algorithm at each VM) has been
implemented in [20], it inevitably results in a static, non-
extensible deployment that does not take full advantage of
network-wide resource utilization. First, a VM-based imple-
mentation would duplicate effort in measuring per-flow traffic
load at each VM, as each traffic flow would be counted at
both source and destination VMs. Second, cost values against
which each migration decision should be evaluated would have
to be manually set at each VM and would be very hard to
change throughout the DC, should a service provider wish
to alter them to reflect a different cost policy or function.
Most importantly, the entire network topology would have
to be fed into each VM u, in order to be able to compute
the communication level values based on which layer of the
network hierarchy flows to each other VM in V

u

are routed
through. This would couple the entire system too tightly with a
given topology and, although the algorithm itself is topology-
neutral, it would be too costly to deploy in diverse DCs given
the (hundreds of) thousands of VMs that would need to be
updated.

In an SDN-enabled environment, all the above information
is either readily available in-the-network or can be retrieved
centrally and then efficiently propagated throughout the entire

topology, while the core of the algorithm still retains its
scalable and distributed nature. In particular, looking more
closely at Algorithm 1, the getFlows(VM IP) method (line #2)
can exploit the SDN API to obtain flow information for a given
IP address from switches that retain active flow tables, thereby
giving the hypervisor knowledge of all active flows of all
collocated VMs. Weights must be assigned to all network links
to calculate communication costs and hence determine whether
migration is worthwhile. Instead of obtaining link weights for
VM pairs in a static manner relying on a table instantiated at
startup (line #6), SDN can be used to programmatically calcu-
late link weights when necessary, as the controller maintains
a real-time view of the network links and their status. If a
link was to fail, the controller can compensate it by adjusting
other relevant link weights accordingly to avoid other problems
such as, e.g., logical over-subscription on other links. Another
drawback of a static lookup of the weights is the inability to
account for new VMs that are created on-demand in a DC and
therefore would not be included in the weight table.

Orchestration based on which individual VMs make a
unilateral decision on whether to migrate at a particular run
of the algorithm is a crucial part of the implementation. In
a static environment, a token mechanism that orders VMs
based on some metric can be used, however this would impose
additional requirement for network configuration to enable all
hypervisors to send and receive tokens [18]. Instead, SDN
handles dynamic environments too, as it monitors and reacts to
real-time changes and automatically updates the relevant net-
work parameters. As part of the migration decision calculation,
the link weight for potential paths (if a VM was to be migrated)
is also required to work out if the migration will result in the
highest cost saving (line #17). In SDN, the logically centralised
control plane can possess topology information allowing the
link weight for any given path to be retrieved with minimal
additional computation.

III. SYSTEM DESIGN

To overcome the challenges mentioned in Section II, an
SDN framework has been extended to support VM manage-
ment. Enabling VM managers to access a decoupled network
control plane through a logically centralized software con-
troller gives a new rise to network-aware VM management
algorithms:
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Algorithm 1 Algorithm for migration decision
Require: location . location of the current VM

1: totalCost 0
2: flows GETFLOWS(VM IP )
3: for all flows do
4: bytes GETFLOWBYTES(flow)
5: dest GETDESTLOC(flow)
6: weight GETLINKWEIGHT(location, dest)
7: commCost bytes⇥ weight

8: totalCost totalCost+ commCost

9: end for
10: flow, cost GETHIGHESTCOMMFLOW(flows)
11: while cost! = 0 do
12: newLocation GETDESTLOC(flow)
13: newTotalCost 0
14: for all flows do
15: bytes GETFLOWBYTES(flow)
16: dest GETDEST(flow)
17: weight GETWEIGHT(newLocation, dest)
18: commCost bytes⇥ weight

19: newTotalCost newTotalCost+ commCost

20: end for
21: if newTotalCost < totalCost then
22: return newLocation . migrate!
23: end if
24: flow, cost GETHIGHESTCOMMFLOW(flows)
25: end while

• The programmable nature of the network means it can
dynamically adapt to changing traffic and therefore
adjust the applied network policies in short timescales,
such as by reassigning the network routes and link
priorities.

• The logical centralization of the network control plane
makes it much simpler to query the global state. The
controller can keep a view of the entire topology from
active switch connections and link discovery events, and
can also request individual switches for aggregated port
or flow statistics on demand.

• The complexity of network devices is reduced since they
only need to be optimized for data plane performance,
thus for matching packets in the flow table and forward-
ing them to the right port.

A. System Architecture
Our system has been designed to follow today’s commercial

(e.g., VMware, HyperV) and open-source (e.g., OpenStack,
XEN, Eucalyptus) Cloud systems in terms of virtualization,
VM management and networking. Figure 2 presents the high-
level architecture of the proposed system unifying control
over server and network types of resources. The following
subsections provide details of the key aspects.

Server Virtualization: Our implementation1 relies on Lib-
virt2, the most popular open-source VM management API

1https://github.com/simon-jouet/sdnscore
2http://libvirt.org
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Fig. 2: High-level system architecture.

supporting many hypervisors and virtualization technologies.
It is also the default driver for OpenStack, a popular open-
source Cloud platform. The orchestration software, detailed
in section III-C connects to Libvirt daemons running on the
hypervisors to start, stop and migrate VMs. For the migration,
live-migration (migrating without any downtime) is performed
with the copy of the entire disk at every migration. No bespoke
features of Libvirt have been used in this implementation,
therefore other virtualization and migration techniques (e.g.
using VMware’s API) could easily be adopted without signif-
icant changes to the controller modules or to the migration
algorithms detailed in Section III-C.

OpenFlow Networking: The switching fabric of our sys-
tem has been designed using OpenFlow switches connected
through an Out-of-Band (OoB) network to the controller.
OpenFlow [21] is the most popular realization of today’s
SDN, providing an open protocol to manage the data plane of
switches allowing simple match-action flow entries to control
forwarding decisions. At the hypervisors, Open vSwitch is
used and connected to the central SDN controller, allowing
flow statistics between co-located VMs to be retrieved. Open
vSwitch has been selected as the software switch due to its
widespread use, support for the latest OpenFlow specifications
and low resource consumption. It is also the default software
switch for OpenStack and XEN’s Cloud Platform to manage
virtual networks and interfaces at the hypervisors.

The SDN-controlled data network that carries the traffic
between communicating VMs has been configured with a flat-
addressing scheme, where both physical and virtual machines
get allocated IPs from the same range. This decision has been
made in order to simplify the switching module explained
in Section III-B. Although there are many other networking
schemes used in production Cloud DCs (such as GRE tunnels,
NATs, etc), OpenFlow’s multiple flow tables can be used to
perform both VM-to-VM traffic accounting in one table and,
e.g., local NATing and forwarding in the remaining tables.
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TABLE I: Ryu events used by our prototype system

Event Origin Description
SwitchEnter
SwitchLeave OpenFlow Switch Occurs on switch-to-controller con-

nection establishment and closure.

SwitchFeatures OpenFlow Switch
Informs the controller of the fea-
tures the connected switch sup-
ports.

LinkAdd
LinkDelete

Topology
Discovery

Informs listeners that a link has
been added or removed.

PacketIn OpenFlow Switch
OpenFlow asynchronous message
sent in case the packet has not
matched any flow.

FlowStatsReply OpenFlow Switch
Response of a FlowStatsRequest
containing switch’s per flow statis-
tics.

SDN Controller: The Ryu SDN controller has been used
as the base platform for this framework due to its popularity,
support for the latest OpenFlow specifications and its active
development community. Its component and event-based ar-
chitecture provides an easy framework to rapidly implement
custom modules for it in Python. It has been designed to sup-
port multiple network device management protocols including
OpenFlow, Netconf and OF-config.

Our SDN controller has two responsibilities. First, it com-
municates with the switches to set routing and forwarding
information through a southbound API, using the OpenFlow
protocol. Secondly, the northbound API allows third party
applications to query or alter global state information, such
as network topology or installed flows. Ryu relies on Python’s
Web Server Gateway Interface (WSGI) for modules to define
new REST API endpoints and to provide interaction with
third party applications. Our system utilizes Ryu’s publish /
subscribe paradigm and relies on the standard OpenFlow 1.3
protocol [22][21] between switches and the controller. Table I
summarizes the events our controller modules subscribe to.

B. Controller Modules
In this Section, we describe the modules designed to form

an API to access temporal network statistics.
Topology Discovery: The knowledge of the temporal net-

work topology is crucial for the proposed system to calculate
network-wide properties. The Topology Discovery module is
bundled with Ryu and used to construct the network topology
by detecting links between switches. It works by utilising the
OpenFlow Discovery Protocol (OFDP), which relies on the
well-established Link Layer Discovery Protocol (LLDP) [23]
with minor modifications in order to forward the LLDP in-
formation on all ports of the OpenFlow switches. Through
the SwitchEnter and SwitchLeave events triggered when a
new OpenFlow connection from a switch to the controller
is established, individual active switches within the topology
can be accounted for. Subsequently, LinkAdd and LinkDelete
events are triggered on addition and removal of network links,
specifying interconnected switches and physical ports used.

Host Discovery: The host discovery module locates com-
pute hosts in the network topology. Individual hosts are discov-
ered when they start transmitting data and trigger a PacketIn

event at the first switch. While this is sufficient for most SDN
deployments, our system also needs to account for the hosts
(both VMs and hypervisors) that have never exchanged traffic
(e.g. new VMs, empty hypervisors) in order to take appropriate
resource management decisions. As these hosts have never
triggered a PacketIn at a switch, we are discovering them by
periodically sending ARP probe messages that they reply to.

L2 Switching: A new module has been created to provide
classic layer 2 (L2) switching within the topology. This module
is similar to a standard learning switch implementation with
OpenFlow, however to be able to track pairwise flow statistics,
our installed flow entries match for both Ethernet source and
destination, while in standard L2 switch implementations they
match only for destination Ethernet address. When a PacketIn
event is triggered at the controller, the shortest path between
the two endpoints is retrieved from the topology discovery
module and two flow entries (one matching and forwarding
packets from the source to the destination and one matching
and forwarding packets from the destination to the source)
are inserted in all switches along the path using FlowMod
messages.

Flow Statistics: To calculate pairwise utilization between
VMs, flow statistics are collected from all edge switches by
periodically requesting OpenFlow flow statistics from them.
Edge switches contain all the necessary flows as all the
VM-related flows must be installed on them. A flow stats
object contains the number of packets and bytes processed
by the flow entry since the flow was installed. As both edge
switches at the source and destination have similar flow entries
for a particular VM-to-VM communication, therefore during
collection of flow statistics, it is important to collect the metrics
from the same switch for a particular VM-to-VM flow. In the
current implementation, the first time a new flow is discovered
from the flow statistics, the Data Path ID (DPID) of the switch
is stored and subsequent measurements have to come from the
same switch or will otherwise be discarded. Building on these
counters, the delta of bytes transmitted between two statistic
queries is calculated for a given flow as well as the average
traffic rate in this time period. Since the flow’s byte count is
crucial, OpenFlow hard timeouts have been disabled for all
installed flows to avoid flow removals by the switch. While in
this implementation flow statistics are periodically requested,
the latest version of OpenFlow allows triggers to be set at the
switch to asynchronously push flow statistics without having
to request for them explicitly from the controller. Instead of
OpenFlow flow counters, one could use other techniques to
collect flow statistics, such as sFlow [24] or NetFlow [25].
However, these are separate protocols that require additional
configuration at the switches and the controller and are not
available on all OpenFlow switches. Since OpenFlow counters
deliver exactly the functionality we need, our prototype is
based on them.

Link Weights: In order to represent a higher communication
cost when higher layers of the topology are used to carry
traffic, the link weights module assigns increasing weights
as it traverses through the different layers of the network,
namely the hypervisor, Top of Rack (ToR), Aggregation (Agg),
and Core layers. In our implementation, the default weight of
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TABLE II: Controller REST API endpoints

Method Endpoint Description

POST /query Send a flow stat request to all the edge switches
discovered.

GET /view Retrieve the byte count, traffic rate for all the
flows.

GET /placement Get a map of Virtual Machine to hypervisor
placement

GET /cost Get the number of links, cost and maximum layer
traversed from hypervisor to hypervisor.

POST /discovery Trigger an ARP probe packet for the provided IP.

GET /hypervisors Get the list of hypervisors MAC address and
associated switch DPID.

POST /remove Remove a host from the topology and all installed
flows associated.

communication for co-located VMs at the same hypervisor
is 0 and it is increasing as a square function at each layer,
giving weights 1, 4 and 9 to the ToR, Agg and Core layers,
respectively. The weight assignment can be adjusted, and
weights can be manually set by operators to reflect a partic-
ular optimization objective and corresponding cost function.
Apart from the oversubscription ratio, link weights can also
reflect, e.g., the cost of equipment (cabling, network elements)
in non-oversubscribed topologies and, apart from removing
congestion, the proposed system can be utilized to make
VM-to-VM communication links shorter (resulting in lower
latency and higher throughput between VMs), and to free
network elements for energy efficiency, maintenance, etc. By
applying the migration algorithm only on a subset of the VMs,
properties such as the VMs’ desired geographical location can
be retained. This is usually required for multi-site DCs and
to avoid mirrored (replicated) VMs to be co-located by the
algorithm, as they intentionally rely on expensive links (such
as inter-DC links).

REST API for Decoupled Orchestration: One of the key
aspects of this implementation has been to decouple the
controller and orchestration logic. Therefore, all the modules
above provide the information required for the orchestration,
but do not trigger any migration decisions. Using this ap-
proach, the same controller can be reused in multiple scenarios
ranging from different hypervisors providing different VM
migration APIs, to centrally placing the orchestration logic or
leaving it to individual hypervisors to orchestrate the VMs
they are hosting. Table II is a breakdown of the REST API
endpoints exposed by the controller and necessary for the
orchestration software to migrate VMs based on the current
state of the network. As shown, these simple calls provide
a generic way to retrieve topology and traffic information
of the network, accounting all VMs and hypervisors in the
infrastructure. The network data gathered from these calls
can be used in various Cloud managers (e.g. OpenStack or
Eucalyptus), as input parameters for VM live-migration and
placement.

C. Orchestration of the VM management
Orchestration of the VM management is decoupled from

our SDN controller so the migration algorithms can be altered

without affecting the collection of the flow statistics, as seen
in Figure 2.

Matrices: We construct three different matrices in our
orchestrator using the values returned from the REST API of
our SDN application, described in Section III-B. These generic
matrices can be used by various orchestration algorithms to
make resource management decisions.

1) Traffic Matrix: The traffic matrix is a n-by-n matrix with
n being the number of VMs in the infrastructure. In Eq. 3,
it represents �(z, u), the average traffic load between VMs
u and v. It is constructed by querying the /view endpoint,
iterating over the active flows, and setting the traffic rate
for all VM pairs accordingly. As the traffic is measured for
VM-to-VM irrespective of the traffic direction in the current
implementation, the traffic matrix is symmetric.

2) Weight Matrix: The weight matrix is of the same di-
mensions as the traffic matrix and is constructed by querying
the /placement and /cost endpoints. In Eq. 3, the weight is
represented by c

i

. VM-to-VM weight is assigned by first
retrieving the hypervisor of each VM from the /placement
endpoint and then getting the hypervisor-to-hypervisor cost
from the /cost endpoint. As the traffic rate from the traffic
matrix is bidirectional and the links in our topology are
symmetrical, this matrix is also symmetric.

3) Cost Matrix: The cost matrix is the matrix product of
the traffic and weight matrices, and it represents the commu-
nication cost between all VM pairs in the topology as defined
by Eq. 3. From the n-by-n cost matrix, we can derive the n-
by-1 matrix (vector) summing the total communication cost of
each VM (Eq. 1). Lastly, the overall communication cost of
the network is computed as the sum of each cost in the cost
matrix (Eq. 2).

Migration Algorithm Orchestration: Three orchestration al-
gorithms have been implemented: Round-Robin, Best-Fit and
Lookahead. Each algorithm reduces the total communication
cost of the network by identifying new candidate hypervisors
for VMs. By modifying the weight matrix to reflect a potential
migration, the total communication cost of the network after
migration can be estimated. While the algorithms provide
VM-level decisions (i.e., where a particular VM should be
migrated), each decision contributes towards the reduction
of the network-wide communication cost (cf. the distributed
reduction of the S-CORE algorithm in Eq. (3)).

All algorithms described below go through the VMs one-by-
one and select a destination hypervisor for them. A hypervisor
is selected if it is the best choice for 3 consecutive rounds
with a short waiting time between rounds. By using this
technique, the traffic instability (e.g., finishing a migration of
a VM, setting up new flows) can be eliminated from migration
decisions. This value can be changed with respect to the
duration of the flows and the time it takes to migrate VMs
in the infrastructure. On one hand, a small number of rounds
allows the orchestration to include short-lived flows and bursty
traffic in the migration decision, on the other hand a large
number of rounds excludes short-lived traffic to only consider
background flows.

a) Round-Robin (RR) Orchestration Scheme: RR (presented
in Algorithm 2) is the simplest and least compute-intensive
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Algorithm 2 Round Robin algorithm
Require: currentCost, selectedVM
Require: traffic, placement, weight . Matrices

1: currentLocation GETLOCATION(selectedVM)
2: potentialDests hypervisors \ currentLocation
3: bestDest, bestCost currentLocation, currentCost

4: for all potentialDests do
5: placement[selectedVM ] potentialDest

6: cost COSTMATRIX(traffic, placement, weight)
7: if cost < bestCost then
8: bestDest, bestCost potentialDest, cost

9: end if
10: end for
11: return bestDest, bestCost

orchestration algorithm. It iterates over the discovered vir-
tual machines which contribute to the total cost and allows
them to migrate to a different hypervisor if the expected
cost after migration is lower than the current total cost. For
each migration to reduce the cost as much as possible, the
hypervisor which would lead to the biggest saving is selected,
therefore the complexity is linear as the number of hypervisors
increases. At each round, the RR orchestration scheme selects
the single hypervisor with the biggest saving or nothing if other
hypervisors do not provide cost saving. After three rounds of
the same hypervisor being selected, the VM is migrated and
the iterator moved to the next VM in the list.

b) Best-Fit (BF) Orchestration Scheme: BF (presented in
Algorithm 3) orchestration scheme uses the traffic matrix and
the current placement of the VM to determine which VM
should be migrated to which hypervisor in order to achieve
the biggest reduction in total cost after a single migration. In
the RR orchestration scheme, only the currently selected VM
is able to migrate to any other hypervisor and the hypervisor
reducing the total cost the most will be selected. In BF, there
is no concept of selected VM, any VM can be migrated to any
other hypervisor. The complexity of this approach is higher as
the number of computations is the product of every machine
contributing to the total cost times the number of hypervisors
these VMs can migrate to.

c) Lookahead (LA) Orchestration Scheme: LA (presented in
Algorithm 4) orchestration scheme is highly similar to BF but
instead of doing a best fit for a single migration, we consider
the impact on the network after two migrations even if the first
migration increases the total cost. This algorithm is the most
complex and is the most compute-intensive as it is the square
of the Best Fit described before. In the BF implementation, it is
possible for the orchestration logic to find no single migration
able to improve the cost even if the core layer is still highly
utilized. For instance, if two communicating VMs are hosted
on one side and two other on the opposite side, migrating a
VM from one side to the other might not reduce the cost as the
two VMs on the same side are also exchanging traffic therefore
creating a new flows through the core layer. However, using
LA, the orchestration can detect the cost benefit after migrating
both VMs to the other side.

Algorithm 3 Best Fit algorithm
Require: currentCost
Require: traffic, placement, weight . Matrices

1: bestDest, bestCost nil, currentCost

2: for all VMs do
3: currentLocation GETLOCATION(VM)
4: potentialDests hypervisors \ currentLocation
5: for all potentialDests do
6: placement[VM ] potentialDest

7: cost COSTMATRIX(traffic, placement, weight)
8: if cost < bestCost then
9: bestDest, bestCost potentialDest, cost

10: end if
11: end for
12: end for
13: return bestDest, bestCost

Algorithm 4 Lookahead algorithm
Require: currentCost
Require: traffic, placement, weight . Matrices

1: function PMIGRATIONS(placement)
2: migrations empty list
3: for all VMs do
4: currentLoc GETLOCATION(VM)
5: potentialDests hypervisors \ currentLoc
6: for all potentialDests do
7: placmt[VM ] potentialDest

8: cost COSTMATRIX(traffic, placmt, weight)
9: migrations.add({VM, dest, placmt, cost})

10: end for
11: end for
12: return migrations

13: end function

14: bestCost currentCost

15: selectedMigrations empty list
16: for migr1 in PMIGRATIONS(placement) do
17: for migr2 in PMIGRATIONS(migr1.placmt) do
18: if migr2.cost < bestCost then
19: selectedMigrations [migr1,migr2]
20: bestCost migr2.cost
21: end if
22: end for
23: end for
24: return selectedMigrations

D. Operator Interface
The proposed system can be divided into two high-level

components: a north-bound operator interface and a south-
bound Cloud interface. The Cloud interface communicates
with the network elements and the hypervisors, while the
operator interface allows DC operators to manually re-assign
link weights, change and set the orchestration algorithms,
and start/stop the communication cost reduction algorithm,
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Fig. 3: Operations of the proposed system.

as shown in Figure 3. Re-assigning link weights is useful
to reflect the temporal changes in the infrastructure (e.g.,
outages, maintenance and other operational issues) that are not
discovered and handled by the SDN controller automatically.

IV. EVALUATION

We have evaluated our converged, generic, SDN-based
server-network management interface by using the S-CORE
VM migration algorithm. Five main experiments were per-
formed to evaluate our system. The first measures link uti-
lization at all levels of the topology under the execution
of the SDN-orchestrated live VM migration algorithm. The
second experiment computes the overall communication cost
of each resulting allocation according to Eq. 2, and captures
how this evolves following individual VM migrations. The
third experiment measures VM-to-VM communication cost
throughout the run of the different algorithms (RR, BF, LA).
Also, the increase of aggregate throughput and the number of
migrations taken by the various algorithms has been measured.

S-CORE has been previously compared with Remedy [26],
a network-aware VM management system sharing some com-
mon characteristics with our system [18]. We have imple-
mented Remedy alongside S-CORE in ns-3 and used a sparse
traffic matrix under which Remedy achieves best results.
We have demonstrated that S-CORE greatly reduces link
utilization on core and aggregation links, whereas Remedy
marginally alleviates core link utilization and slightly reduces
aggregation. This is because Remedy tries to balance network
traffic as much as possible while S-CORE takes the topology
into consideration and explicitly avoids links in higher layers
which are often oversubscribed.

In the following experiments, we measure the utilization
on the network that carries only the traffic between VMs.
The management and migration traffic has been excluded
from measurements, since it depends highly on the infras-
tructure (e.g., OpenStack suggests separated network for VM
migrations [27]), the virtualization used (e.g., full or para-
virtualization, KVM or VMware VMs), the migration method
applied (e.g., pre-copy methods, live migration with shared
storage) and on the application workload, as reported in
[28]. However, in our previous paper [18], we analyzed the
migration overhead of the memory state and showed that it is
negligible (1-seconds worth of transmission time over a 1 Gb/s
link) for the most popular VM instance types. To account for
migration cost in the system presented in this work, one can

Fig. 4: Experimental network topology based on a canonical
tree. In this Figure, exponential link weights are used.

TABLE III: Part of the traffic generated in our setup with initial
costs and locations.

Source VM Source HV Dest. VM Dest. HV Link cost
VM1 HV1 VM2 HV1 0
VM1 HV1 VM5 HV2 2
VM1 HV1 VM23 HV8 28
VM2 HV1 VM11 HV4 10
VM2 HV1 VM20 HV7 28
VM2 HV1 VM21 HV7 28

...

calculate the additional cost of the migrations by multiplying
the cost of links used with the amount of data to be transferred
and use that in the orchestration algorithms when a potential
destination is selected (note the cost parameter c

m

in Eq.3).

A. Experimental Set-Up
Extending our previous, Mininet-based simulation results

presented in [29], we have evaluated our system on a testbed.
For the experiments we used Dell servers with 16GB of
memory and Intel i7-3770 2.4GHz processors, running Ubuntu
14.04. The VMs are virtualized with kernel-based virtual-
ization (KVM) using VT-X. Each VM has Ubuntu 14.04
installed with 256MB memory allocated. Our experimental
network topology is based on Cisco’s reference topology, as
can be seen in Figure 4. In order to represent and evaluate the
increasing cost at higher layers of the topology, our network
contains the three physical layers of the switching fabric
with an oversubscription ratio increasing at each layer. Such
topology allows us to assign distinctive weight to each layer
and consequently evaluate the cost reduction achievable by our
three orchestration schemes.

Initially, 3 VMs were placed at each hypervisor in the order
of their ids. VMs 1, 2 and 3 are hosted on HV1, while VMs 4,
5, 6 on HV2 and so on. Traffic is generated from each VM to
three other VMs. Table III shows the partial traffic matrix of
the flows initiated by VM1 and VM2 to three other VMs. As
shown, different VM pairs have various link costs associated to
their communication, based on the partial topology over which
pairwise flows are routed. In the table, we present exponential
link weights 1, 4 and 9 for ToR, Aggregation, and Core layers,
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(a) Comparing the three different algorithms by the highest layer used
for VM-to-VM communications, LA reduces the utilization of the higher
layers the fastest.
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(b) LA reduces the utilization of more expensive layers first.

Fig. 5: Link utilization improvement while migrating.

respectively. For example, the link cost between VM2 and
VM23 (row 3 in the table) is 28, as it uses all types of links
twice and (1+4+9) ⇤ 2 = 28. We set the hypervisors to host
a maximum of 7 VMs to match the number of available CPU
cores with one core dedicated to the hypervisor.

B. Traffic Generation
As mentioned above, traffic is generated from all VMs to

three other, randomly selected VMs. For the link utilization
(Section IV-C), overall communication cost (Section IV-D) and
VM-to-VM cost (Section IV-F) measurements Nping is used
to transmit MTU-sized packets at a rate of 9000 pps over
TCP, resulting in an average utilization reported by similar
experiments [30]. For the aggregate throughput experiment
(Section IV-E), Iperf in TCP mode has been utilized to saturate
the network with the maximum achievable bandwidth. By
generating as much as possible between communicating VM
pairs, the oversubscribed links throttle the speed between few
VMs that is a key inefficiency in today’s Cloud environments
that our VM migration algorithm tackles.

C. Link Utilization
Link utilization has been measured for each layer of the

network during each run of the algorithms. The calculation
uses the traffic matrix from the orchestrator and the net-
work topology from the SDN controller. During a run of
the orchestrator, the placement and traffic matrices used for
every measurement are logged. Therefore, by knowing the
network topology, the location of the VMs and the traffic rate
between VM pairs, it is possible to reconstruct the average
link utilization between each measurement.

Figure 5a compares the three orchestration algorithms by
showing the number of flows traversing each layer throughout
migration rounds. For clarity, this figure counts flows by
highest level layer traversed, hence, if a flow traverses the core
it will be counted at the core layer, not in the three less-costly
layers below. It can be seen that LA reduces the number of
flows traversing the higher layers faster than RR and BF, while
maximising the number of flows only communicating through
the inexpensive ToR layer. It is worth noting that increasing
the number of flows communicating through less expensive
layers does not increase the link utilization of those layers
since they were already used to carry the traffic to the higher
layers before the migration occurred.

Figure 5b presents the LA algorithm’s saving in overall
communication cost with the layers’ utilization visualized for
each measurement (at least 3 measurements were used before
a migration). The figure shows that the Core and Aggregation
layers are not utilized after the 12th and 22nd migration out
of the overall 26 migrations the algorithm took. Also, it can
be seen that the first migrations significantly mitigate the use
of the Core layer, while increasing the cheaper Aggregation
layer’s use. Once the Core layer’s utilization is reduced to 0,
the algorithm reduces the Aggregation layer.

D. Overall Communication Cost
The overall communication cost, as shown in Eq. 2, is the

sum of all the individual communication costs that refer to all
incoming and outgoing traffic from each VM. The costs are
available in a traffic matrix, as described in Section III-C.

Figure 6 shows that LA reduces the overall communication
cost faster than RR and BF. For the traffic generated between
the 24 VMs, the optimal (minimal) overall communication
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Fig. 6: Overall communication cost reduction: Lookahead
reduces the overall cost faster, as it looks two migrations ahead
before migrating.

cost is zero, since communicating VMs can be colocated to
hypervisors without outgoing communication. This does not
mean that all 24 VMs are allocated to the same hypervisor,
as the graph of communicating VMs (where nodes are VMs
and edges represent communications) can be disconnected and
only the connected subgraphs (VMs) need to be colocated
to achieve zero communication cost. A correlation between
link utilization and overall communication cost reduction can
be seen in Figure 5b, as the first migration reduces the
overall communication cost by approx. 20%, by reducing the
utilization of the Core layer.

E. Aggregate Throughput
The aggregate throughput is measured by summing the

maximum throughput achievable between all communicating
VM pairs. In this experiment, we used Iperf in TCP mode.
Without constraining packet size and rate, the network is
always fully utilized due to the greedy nature of TCP. The
traffic for VM pairs co-located on the same hypervisor has
been limited to the maximum achievable bandwidth within
the physical topology (1Gbps). Such limit is necessary as the
transfer rate for co-located VMs through the local software
switch would reach tens of Gbps, being limited only by the
CPU of the hypervisor and not the network fabric, therefore
biasing the overall aggregated fabric throughput. As shown in
Figure 7, the aggregate throughput increases by over 6 times
as a consequence of 12 live migrations.

F. VM-to-VM Communication Cost
Communication costs between VMs show the overall net-

work load and the contribution of a particular VM pair to the
overall cost. VM-to-VM costs are provided by the SDN con-
troller as a traffic matrix, described in Section III-C. Figure 8
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Fig. 7: Increase in aggregate throughput.

TABLE IV: Number of migrations required for different or-
chestration algorithms

Cost reduction (# migrations)
Algorithms - VMs >20% >50% >70%
Round Robin - 8 2 (21.9%) 4 (50.7%) 6 (90.8%)
Round Robin - 16 6 (23.7%) 12 (59.4%) 13 (72.6%)
Round Robin - 24 10 (21.1%) 21 (50.1%) 27 (79.0%)
Round Robin - 32 13 (23.8%) 26 (53.2%) 33 (77.9%)

Best Fit - 8 2 (29.6%) 3 (50.5%) 4 (70.5%)
Best Fit - 16 4 (20.3%) 8 (55.6%) 10 (74.9%)
Best Fit - 24 5 (25.8%) 9 (53.0%) 12 (72.2%)
Best Fit - 32 8 (22.5%) 14 (51.6%) 19 (78.0%)

Lookahead - 8 2 (35.2%) 4 (88.0%) 4 (88.0%)
Lookahead - 16 4 (36.9%) 6 (56.9%) 8 (76.1%)
Lookahead - 24 4 (34.7%) 6 (52.4%) 8 (70.4%)
Lookahead - 32 4 (23.9%) 12 (57.2%) 16 (77.9%)

shows the reduction of the VM-to-VM costs in four heatmaps
for each orchestration algorithm. The heatmaps present VM-
to-VM communication cost at the beginning, 33%, 66%, and
100% of the migrations, when no further migration would
reduce communication cost. As it can be seen, LA eliminates
the expensive communications faster and more efficiently than
RR and BF. It can be seen that, between Figures 8j and
8b, BF has 3 VM pairs with very high link cost (6 darker
spots on its heatmap), while LA has only 1 VM pair after
33% of the migrations. Also, it is worth mentioning that even
though our BF and RR algorithms end up with almost identical
overall communication cost (as show in Section IV-D), BF
leaves more dense hotspots behind. This can be explained with
the behaviour of the algorithms. While BF aims for a local-
optimum, greedy allocation as it always selects the VM for
migration that saves the most in communication cost, while
RR goes through them by order that results in a less dense
utilization in our case.
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(a) Best fit - start (b) Best fit - 33% (c) Best fit - 66% (d) Best fit - stable

(e) Round Robin - start (f) Round Robin - 33% (g) Round Robin - 66% (h) Round Robin - stable

(i) Lookahead - start (j) Lookahead - 33% (k) Lookahead - 66% (l) Lookahead - stable

Fig. 8: VM-to-VM communication cost for the Best Fit, Round Robin and Lookahead algorithms at the start, 33%, 66% of the
migrations and at the end. Darker spots show higher communication cost between VM pairs.

G. Number of Migrations

We measured the number of migrations required for the
different algorithms to achieve the highest cost reduction.
Experiments were run with 8, 16, 24 and 32 VMs initiating
3 flows randomly to three other VMs. The traffic generated
is similar to the one described in Section IV-B. The results
are shown in Table IV with the number of migrations required
to achieve a cost reduction by at least 20, 50 and 70 percent
and the actual cost reduction in brackets. This table shows
that the RR orchestration scheme does not scale well as the
number of VMs increase, due to a large number of migration
only marginally reducing the overall cost. RR requires 25%
– 42% of the VMs to be migrated to achieve only 20% in
cost reduction while BF and LA require less than 25% of
VM migrations for the same 20% reduction in communication

cost. Similarly, to reduce the overall cost by more than 70%,
the RR algorithm had to migrate some VMs more than once
with a population of 24 and 32 VMs, however BF and LA
can achieve over 70% cost reduction by migrating less than
60% and 50% of the VMs, respectively. In order to present
the performance of the communication cost reductions scheme
in this experiment, VMs were migrated until communication
cost could not be further decreased. Limiting the migrations
for a particular VM can be achieved by either using a simple
timestamp and ”freezing” the VM for a certain time or by
adjusting the migration cost parameter (c

m

) over time. In
order to constrain the number of VM migrations globally, the
consolidation algorithm can be executed at a slower interval.
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H. Scalability

While we used a modest-scale topology in these experi-
ments, in our previous work we have evaluated S-CORE’s
scale properties using large-scale simulations [18]. In these
simulations, ns-3 was used to construct canonical (2560 phys-
ical hosts; 128 ToR switches; 20 hosts per rack) and fat-tree
(k=16; 1024 hosts) DC topologies (cf. Figure 1), and ran the
simulation of the communication cost reduction algorithm. The
results have shown that S-CORE achieves significant commu-
nication cost reduction (up to 87%), while incurs minimal
overhead and VM downtime over large infrastructures. We
would like to refer interested readers to the paper for detailed
results.

It is also important to note that while a centralized SDN
controller was used for our experiments, S-CORE can be
distributed over multiple SDN controllers by the nature of the
algorithm, as described in [18]. Multiple SDN controllers can
be used with standard OpenFlow or through frameworks such
as HyperFlow [31] that provides a logically centralized, but
physically distributed control plane for OpenFlow.

V. RELATED WORK

As Jennings and Stadler demonstrate in their survey [32],
a comprehensive approach for joint optimization of Cloud
resources is missing, despite such approach being crucial for
the effective management of Cloud resources. In this work,
our focus has been on the joint optimization of network
and server resources by using SDN as the basis of such
network-wide converged resource management system. In this
Section, we discuss related work in unified Cloud resource
management, topology-aware VM migration, and SDN-based
resource management.

A. Unified Resource Management for the Cloud

Unified resource management involves acquiring a system-
wide perspective on the allocation of the physical and vir-
tualized resources that comprise a Cloud environment [32].
During the recent years there have been many proposals for
systems and frameworks from both academia and industry.
VMware’s Distributed Resource Scheduler (DRS) [33] pro-
vides centralized control over a cluster of virtualized servers,
while HP’s 1000 islands architecture [34] unifies three re-
source controllers that operate in different timescales. From
the research community, most work has focused on the unified
management of platform (e.g., power and thermal) and server
(e.g., VMs, applications) resources [4] [35] [30] by extending
VM management to take other objectives into account.

We took a different direction, presenting a resource manage-
ment system built on top of an network-centric SDN controller
and used the SDN controller as the underlying platform for
a unified resource management system. By doing so, we
managed to control the network infrastructure (e.g., end-to-
end routing, flows, topology) and server (e.g., VMs, physical
servers and applications) resources in synergy within a Cloud
environment.

B. Topology-aware Virtual Machine Management
While today’s VM management and consolidation algo-

rithms typically focus on server-side resources (CPU, memory,
local network interface, etc.) and do not consider the effect of
migrations on the network infrastructure as a whole [36][37],
few papers have addressed this issue. In [38], the authors
formalize the Traffic-aware VM Placement Problem (TVMPP)
that strives to reduce the aggregate network traffic by care-
fully selecting the optimal placement of the VMs for various
topologies and traffic patterns. In [39], the authors jointly
migrate VMs and manage routing in DCs to minimise traffic
costs. They leverage and expand the technique of Markov
approximation, provide an online algorithm and optimize the
number of VM migrations required. In [40], Biran et al. focus
on the satisfaction of the VM’s traffic demands as well as the
CPU and memory requirements by trying to derive a placement
that satisfies a predicted communication demand and is also
resilient to demand time-variations. Our previous work [18],
presents S-CORE as underlying traffic and topology-aware VM
management algorithm.

However, all these works are theoretical and provide simu-
lated results. On the contrary, we present a real-world imple-
mentation and evaluation of such traffic and topology-aware
VM management system. We also show how to utilize the
SDN paradigm to manage different resources in a synergistic
way.

C. SDN-based Resource Management
Remedy relies on SDN to monitor the state of network con-

gestion by polling the per-port activity of every switch at reg-
ular time intervals [26]. Based on this aggregated information,
it then estimates the cost of VM migration (number of packets
to be migrated) to determine the benefits of migration in order
to reduce the link utilization. Recent work by Cucinotta et al.
optimizes initial VM placement for DC environments using a
linear solver and SDN to gather network topology information
used as a parameter in the optimization logic [41].

Despite being interoperable with SDN, the above works
only exploit the logical centralization of the network’s control
plane for collecting flow statistics or implementing special
network functions (e.g., routing, traffic engineering, and cost
estimation for VM migration). On the contrary, our work in this
paper exploits SDN to directly manage not only the network,
but the VMs and hypervisors, therefore providing the basis
for a unified and real-time resource admission and control
framework for converged ICT environments.

VI. CONCLUSION

In this article, we presented a converged control-plane
framework that integrates server and network resource man-
agement for Cloud Data Centers. We provide an SDN-based
implementation for S-CORE, a scalable, topology-aware live
migration algorithm that reduces the communication cost of
pairwise VM traffic flows by exploiting collocation and net-
work locality. SDN is an appropriate framework to capture
network-wide state and compute utilization levels, and to
disseminate them to the relevant VMs upon request.
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We have extended the functionality of an SDN controller
to provide flow utilisation measurement and aggregation, to
expose network-wide state, and to assign weights to the links
of the DC topology. For the purposes of this study, link weights
reflect the bandwidth cost and the over-subscription ratio that
increase when moving higher in a DC network hierarchy.

We have built a prototype system to allow flexible and
platform-independent communication between the network in-
frastructure and the hypervisors hosting VMs in a DC. The
proposed converged server-network interface has been evalu-
ated over a scaled-down Cloud DC infrastructure, where real-
world over-subscription ratios were maintained using a popular
network topology and production VMs with real traffic. Our
live VM management has been shown to reduce the network-
wide communication cost, especially for the high-cost and
congestion-prone aggregation and core layers of the DC. As
a result, we show a significant reduction in congestion and
an increase of overall throughput by over 6 times in our
experiments, as well as, over 70% cost reduction by migrating
less than 50% of the VMs.

ACKNOWLEDGMENTS

The work has been supported in part by the UK Engi-
neering and Physical Sciences Research Council (EPSRC)
grants EP/L026015/1 and EP/L005255/1. The authors would
like to thank Konstantinos Oikonomou from Ionian University,
Greece, for his comments and suggestions on the analytical
aspects of this work.

REFERENCES

[1] R. Miller, “http://www.datacenterknowledge.com/archives/2009/05/14/
whos-got-the-most-web-servers/,” 2013.

[2] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and
gray-box strategies for virtual machine migration,” in USENIX NSDI’07,
2007.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in USENIX
NSDI’05, 2005, pp. 273–286.

[4] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755 – 768, 2012, special Section: Energy efficiency in large-scale
distributed systems.

[5] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman, “VMFlow:
Leveraging VM mobility to reduce network power costs in data centers,”
in Proc. IFIP TC 6 Networking Conf., ser. LNCS, vol. 6640, pp. 198–
211.

[6] G. Wang and T. Ng, “The impact of virtualization on network perfor-
mance of Amazon EC2 data center,” in Proc. IEEE INFOCOM’10, Mar.
2010, pp. 1–9.

[7] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: comparing
public cloud providers,” in Proc. ACM SIGCOMM Internet Measure-
ment Conf. (IMC’10), 2010, pp. 1–14.

[8] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in Proc. ACM SIGCOMM’09, 2009, pp. 51–62.

[9] O. N. Foundation, “Software-defined networking: The new norm for
networks,” Open Networking Foundation, Tech. Rep., 2012.

[10] B. N. Astuto, M. Mendonça, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” 2014, iEEE Communications
Surveys & Tutorials.

[11] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in 7th
USENIX NSDI, 2010, pp. 19–19.

[12] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford, “Live migration of
an entire network (and its hosts),” in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks. ACM, 2012, pp. 109–114.

[13] D. Mattos, N. Fernandes, V. da Costa, L. Cardoso, M. Campista,
L. H. M. K. Costa, and O. Duarte, “Omni: Openflow management
infrastructure,” in Network of the Future (NOF), 2011 International
Conference on the, Nov 2011, pp. 52–56.

[14] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An OpenFlow controller design for multimedia delivery with end-to-
end Quality of Service over Software-Defined Networks,” in Signal
& Information Processing Association Annual Summit and Conference
(APSIPA ASC), 2012 Asia-Pacific, 2012, pp. 1–8.

[15] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An api for application control of sdns,” in
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM.
ACM, 2013, pp. 327–338.

[16] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteris-
tics of data centers in the wild,” in Proc. ACM SIGCOMM Internet
Measurement Conf. (IMC’10), 2010, pp. 267–280.

[17] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proc. ACM
SIGCOMM Internet Measurement Conference (IMC’09), 2009, pp. 202–
208.

[18] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros, “Scalable
traffic-aware virtual machine management for cloud data centers,” in
Distributed Computing Systems (ICDCS), 2014 IEEE 34th International
Conference on, June 2014.

[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[20] F. P. Tso, G. Hamilton, K. Oikonomou, and D. P. Pezaros, “Implement-
ing scalable, network-aware virtual machine migration for cloud data
centers,” in Cloud Computing (CLOUD), 2013 IEEE Sixth International
Conference on, June 2013, pp. 557–564.

[21] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM, vol. 38, no. 2, pp. 69–74, 2008.

[22] O. N. Foundation, “Openflow switch specification, version 1.4.0 (wire
protocol 0x05),” Open Networking Foundation, Tech. Rep., October
2013.

[23] J. Hollander, A Link Layer Discovery Protocol Fuzzer. Computer
Science Department, University of Texas at Austin, 2007.

[24] P. Phaal, S. Panchen, and N. McKee, “Inmon corporations sflow: A
method for monitoring traffic in switched and routed networks,” RFC
3176, Tech. Rep., 2001.

[25] B. Claise, “Cisco systems netflow services export version 9,” 2004.
[26] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar,

and A. Iyer, “Remedy: Network-Aware Steady State VM Management
for Data Centers,” in Proc. IFIP TC 6 Networking Conf., ser. LNCS,
2012, vol. 7289, pp. 190–204.

[27] “Openstack example architectures,” http://docs.openstack.org/
openstack-ops/content/example architecture.html, last Accessed:
20-04-2015.

[28] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual
machine live migration in clouds: A performance evaluation,” in Cloud
Computing. Springer, 2009, pp. 254–265.

[29] R. Cziva, D. Stapleton, F. P. Tso, and D. P. Pezaros, “SDN-based Virtual
Machine management for Cloud Data Centers,” in Cloud Networking



14 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

(CloudNet), 2014 IEEE 3rd International Conference on, Oct 2014, pp.
388–394.

[30] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, “Vmplanner:
Optimizing virtual machine placement and traffic flow routing to reduce
network power costs in cloud data centers,” Computer Networks, vol. 57,
no. 1, pp. 179–196, 2013.

[31] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” ser. INM/WREN’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 3–3.

[32] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
pp. 1–53, 2014.

[33] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, and
X. Zhu, “Vmware distributed resource management: Design, implemen-
tation, and lessons learned,” VMware Technical Journal, vol. 1, no. 1,
pp. 45–64, 2012.

[34] X. Zhu, D. Young, B. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee,
C. Hyser, D. Gmach, R. Gardner, T. Christian, and L. Cherkasova,
“1000 islands: Integrated capacity and workload management for the
next generation data center,” in ICAC ’08, June 2008, pp. 172–181.

[35] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and K. Schwan,
“vManage: loosely coupled platform and virtualization management in
data centers,” in Proceedings of the 6th international conference on
Autonomic computing. ACM, 2009, pp. 127–136.

[36] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in Proc. IEEE
INFOCOM’11, Apr. 2011, pp. 71 –75.

[37] A. Song, W. Fan, W. Wang, J. Luo, and Y. Mo, “Multi-objective virtual
machine selection for migrating in virtualized data centers,” in Pervasive
Computing and the Networked World. Springer, 2013, pp. 426–438.

[38] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, March 2010, pp. 1–9.

[39] J. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm placement
and routing for data center traffic engineering,” in INFOCOM, 2012
Proceedings IEEE, March 2012, pp. 2876–2880.

[40] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera, “A stable network-aware vm placement for cloud systems,”
ser. CCGRID ’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 498–506.

[41] T. Cucinotta, D. Lugones, D. Cherubini, and E. Jul, “Data centre optimi-
sation enhanced by software defined networking,” in Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on. IEEE, 2014,
pp. 136–143.

Richard Cziva (S’15) received the B.Sc. degree in
Computer Engineering from the Budapest University
of Technology and Economics, Hungary in 2013. He
is currently a PhD student at the School of Comput-
ing Science, University of Glasgow where he previ-
ously worked as a Research Assistant. His research
focuses on the efficient allocation of resources in
Cloud Data Centre networks through the exploitation
of converged network-server resource management
and Software-Defined Networking (SDN). Recently,
he has also been working on light-weight, container-

based Network Function Virtualization (NFV) and increasing the programma-
bility of next-generation networks.

Simon Jouet (S’13) received the M.Eng in Elec-
tronic and Software Engineering from the University
of Glasgow in 2012. He is currently a Research
Assistant at the School of Computing Science, Uni-
versity of Glasgow. His research focuses on the
cross-layer benefits of centralized control in Cloud
Data Centre in order to optimize resource utilisa-
tion, network and compute performance as well as
energy efficiency. Current research focuses on the
centralisation of network state, topology, routing and
forwarding through Software Defined Networking

(SDN) and orchestration through Network Function Virtualization (NFV).

David Stapleton received the B.Eng. degree in
Electronic & Software Engineering from the Uni-
versity of Glasgow, UK (2014). Before his final
year, he undertook an internship at Cisco Systems
in Edinburgh, UK, where he worked on developing
prototype onePK applications. After graduating, he
worked on Cisco’s XR routing platform at Reading,
UK, before moving onto a new role at Brocade Com-
munications Systems where he is now part of the
team developing the next generation of the Brocade
vRouter platform.

Fung Po Tso (S’09–M’11) received his BEng, MPhil
and PhD degrees from City University of Hong
Kong in 2006, 2007 and 2011 respectively. He is
currently Lecturer in the School of Computer Science
at the Liverpool John Moores University (LJMU).
Prior to joining LJMU, he worked as SICSA Next
Generation Internet Fellow at the School of Com-
puting Science, University of Glasgow. His research
interests include: network measurement and opti-
misation, cloud data centre resource management,
data centre networking, software defined networking

(SDN), virtualisation, distributed systems as well as mobile computing and
system.

Dimitrios P. Pezaros (S’00–M’04–SM’14) received
the B.Sc. (2000) and Ph.D. (2005) degrees in Com-
puter Science from the University of Lancaster, UK.
He is currently Senior Lecturer (Associate Professor)
and director of the Networked Systems Research
Laboratory (netlab) at the School of Computing
Science, University of Glasgow, which he joined in
2009. His research is focusing on the resilient and
efficient operation of future virtualised networked
infrastructures through the exploitation of converged
network-server resource management mechanisms,

Software-Defined Networking (SDN), and Network Function Virtualisation
(NFV). He has received significant funding for his research in the above areas
from the UK Engineering and Physical Sciences Research Council (EPSRC),
the University of Glasgow, the London Mathematical Society (LMS), and
the industry. Previously, he has worked as a postdoctoral and senior research
associate on a number of EPSRC and EU-funded projects in the areas of
performance measurement and evaluation, network management, cross-layer
optimisation, QoS analysis and modelling, and network resilience. Dimitrios
has been a doctoral fellow of Agilent Technologies (2000-2004). He is a
Chartered Engineer, and a Senior Member of the IEEE.


