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ABSTRACT 

There is a growing trend in the use of intelligent Wireless Sensor Networks (WSNs) for a 
wide range of applications.  In the early part of the decade the underlying hardware was 
largely in prototype form and used for small scale demonstration systems, but there is now 
growing interest in applications which are commercially viable.  This work began on the 
premise that the sensor hardware has gradually become smaller, yet there are still a few 
peripheral components which are lagging behind; namely the battery and antenna.  Here, a 
novel antenna design is presented; this antenna is of a practical size for use in WSNs, whilst 
also offering improved energy consumption over commonly used monopole antennas. 
 

1. INTRODUCTION  

Antennas are critical to the operation of wireless communication systems such as those 
used for radio, television, and mobile phones.  They are often taken for granted by an end 
user of such a product – many consumers are blissfully unaware of how much antenna 
design can impact on device performance, size and energy consumption.  Antenna design is 
often forgotten in WSNs since the devices are deployed in close proximity to one another 
(i.e. with a separation of 10m or less).  As a result, device communication with simple wire 
antennas is a simple and affordable solution, but is not necessarily efficient.  This leads to 
data corruption during wireless transmission which can result in three possible scenarios: 

 
 Loss; the data is irreparable and is lost forever – in this case the energy put into 

capturing, processing and transmitting the data is wasted. 
 Recovery; some protocols may allow data recovery, implying that there is a 

permanent data overhead which incurs additional energy consumption. 
 Retransmission; important data may be repeatedly transmitted until the intended 

message is correctly received – this ensures reliability, but leads to wasted 
energy. 

 
Therefore, it is desirable to have a system which minimises data corruption in order to 
improve efficiency, particularly when one takes into account the fact that data transmission 
from a typical sensor node consumes three times more energy than data processing alone 
[1]. 
 
In addition to the energy problem, the physical form of the standard monopole antenna is 
considered to be unsuitable for many applications.  In particular the authors have been 
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A simple experiment, using one mote as a transmitter and another as a receiver, 
demonstrated that flattening the antenna caused significant signal strength degradation.  
When the transmitter and receiver are separated by 1m of air, the signal strength was found 
to be 10dBm less if the antenna was flattened, compared to if the antenna was in its normal 
position (see Figure 1).  As a result of these findings it was thought that designing a new 
antenna for the motes might be a more effective solution, since significant losses in signal 
strength ultimately lead to data loss. 
 

2.  DESIGNING A NEW ANTENNA 

2.1. ANTENNA REQUIREMENTS 

Since industry disliked the idea of the existing MicaZ monopole antenna alternative types 
were considered.  Wire antennas such as dipoles are typically in the order of λ/2 in length, 
and loop antennas often have a circumference equal to λ.  We can see that dipole and loop 
antennas would be larger than the standard monopole antenna supplied with the MicaZ and 
therefore likely to be an even greater concern for industrial use.  Smaller sizes are possible 
for loops and dipoles, but they do not make effective radiators [7, 8].   
 
The best remaining option was a PCB antenna.  With size and practicality being major 
concerns of industry it seemed that a low profile PCB antenna would be ideal.  It was 
thought that such an antenna would be suitable for retrofitting to the current MicaZ motes, 
and in the future could possibly be integrated with the mote circuitry in a combined PCB 
design.  In order to facilitate this, an aim was set of creating an antenna no greater than the 
size of MicaZ PCB (i.e. - 57mm × 32mm).   
 
Although PCB antennas do have their advantages, it is noted in literature that they tend to 
suffer from a narrow impedance bandwidth, quite often in the order of just a few percent 
[5].  The impedance bandwidth [9] refers to the ability of an object to absorb or transmit 
energy into its surroundings; in the case of antennas, the later is desirable.  Impedance 
bandwidth can be calculated using Equation 1, where fu is the upper operating frequency, fl 
is the lower operating frequency and f0 is the centre frequency.  fu and fl refer to the points 
where the energy transmitted by an antenna is ≥ 88.9%.  In some texts this is also referred 
to as the point where the voltage standing wave ratio (VSWR) is ≤ 2 [10], and describes the 
range over which antennas are effective radiators.  
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For the MicaZ mote, fl = 2.485GHz, fu = 2.400GHz and f0 = 2.443GHz [1], since the 
devices support multiple frequency channels for reduced interference.  These figures lead to 
a minimum impedance bandwidth requirement of 3.48%. 
 
In addition to these requirements it was also thought that the antenna should have good 
directional properties (i.e. seek to radiate equally well in all directions).  In literature this is 
often better defined as directivity, but this parameter is often difficult to quantify 
accurately, therefore this work takes a qualitative approach.  Low directivity is critical for 
WSNs since it is often impossible to control the orientation of nodes during deployment – 
in mobile applications (e.g. inventory management) orientation may also vary significantly 



with time.  Antennas with only a single plane of polarisation cannot communicate well (if 
at all) with those orientated perpendicular to themselves [11]; monopole and dipole 
antennas suffer noticeably from this issue. 
 
To summarise before continuing, the new antenna was required to: 
 

 operate at the centre frequency (f0) 2.443GHz. 
 have an impedance bandwidth greater than 3.48%. 
 be no larger than 57mm×32mm×1.6mm. 
 have a low directivity. 

 

2.2. COPLANAR WAVEGUIDE (CPW) ANTENNA 

During a review of literature relating to antenna design, it was discovered that Nithisopa et 
al [12] had designed a broadband co-planar waveguide (CPW) fed slot antenna which, in 
simulations, had proven suitable for use over the range of approximately 2.35-2.70GHz, 
resulting in an impedance bandwidth of 14%. 
 
The term CPW refers to the way in which the antenna is fed; two parallel slots are cut into a 
copper surface to act as a transmission line feed to the radiating elements of the antenna 
itself – this is illustrated in Figure 3.  The radiating elements come in many different forms, 
although it appears that the slot type is popular.  The copper surrounding the feed slots acts 
as a ground plane which promotes more uniform radiation than one would experience with 
similar structures such as patch antennas [5, 13, 14].  Based upon the work conducted by 
Nithisopa, an Ansoft HFSS [15] model was created as shown in Figure 3.  The model was 
set up by following strict guidelines [16] provided by the developer of HFSS for the 
creation of CPW models.  Table 1 gives information relating to the dimensions illustrated 
in Figure 3. 
 
Dimensions W1 and W2 are of particular importance in impedance matching the antenna to 
a typical 50Ω transmission line.  Impedance matching is vital in antenna design in order to 
ensure that as much power as possible from the radio transceiver is transferred to the 
propagation medium via the antenna [17].  Poor matching leads to power being reflected by 
the antenna back toward the transceiver, resulting in reduced transmission range, wasted 
energy and potential damage to the transceiver itself. 
 
Figure 4 shows the difference in simulated performance as a result of using FR4 instead of 
Duroid substrate, as in Nithisopa’s work.  The reason for changing substrate was simply a 
case of using materials to hand at the time for prototype manufacture, but one can see that 
the increase in dielectric constant (εr) reduces the impedance bandwidth.  For Duroid εr ≈ 2, 
but for FR4 εr ≈ 4.  Despite the decrease in impedance bandwidth FR4 still resulted in an 
impedance bandwidth – calculated to be 10% – far exceeding the requirements for this 
application. 
 
 
Table 1. CPW dimensions (mm). 
 

h pcbX pcbY W1 W2 H1 H2 L1 

1.6 90.0 45.0 0.5 2.4 23.0 10.5 39.0 
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4.3. DISCUSSION 

Comparing the RSSI results (Figures 22 and 24), the monopole antenna performs best when 
it is vertical with respect to Earth (i.e. with the xz and yz planes) and there is no polarisation 
mismatch.  For the FCPW antenna, the best performance is achieved when the copper face 
of the antenna is facing the base station (i.e. the xy plane) and there is no polarisation 
mismatch.  It is notable that whilst the monopole antenna gives the highest RSSI result (yz 
plane), it displays the largest variation in results also.  Comparing the results in the yz plane 
with no polarisation mismatch and those in the xy plane with a polarisation mismatch there 
is a 20-25dBm difference.  Looking at the best and worst results for the FCPW, the 
difference is limited to a maximum of almost 10dBm. 
 
The RSSI results do not tell the whole story however, which is why the packet loss results 
(Figures 23 and 25) are also included.  These results show that the monopole antenna 
experiences heavy packet loss when it is orientated in the xy plane, even at a distance of just 
2m.  As the distance increases this packet loss varies greatly, and on numerous occasions 
peaks at over 50% loss.  For the FCPW antenna however, packet loss does not appear to 
occur at all until a distance of 11m, and even then it is not as pronounced as that 
experienced by the monopole antenna.   
 
It is thought that these results are due to the FCPW antenna having an elliptical 
polarisation, as discussed in Section 4.  This is a significant finding, since it is likely that 
WSN nodes will be deployed in close proximity to one another in many applications, and 
therefore often it is short range communications (<10m) which are of most interest.  These 
results indicate that the FCPW antenna would be far more efficient than the typical 
monopole in this situation.  It is difficult to quantify precisely how much more efficient the 
FCPW antenna would be, as differing environments and data recovery mechanisms would 
result in differing levels of wasted energy.   
 
Using the data present in Figures 23 and 25, we can say that 6000 data packets are 
transmitted between the transmitter and receiver for every 1m increment, beginning at 0m 
(i.e. there are 1000 packets per orientation plane, and two polarisations).  Table 3 attempts 
to give a quantitative evaluation of how much more energy is used effectively when using 
the FCPW antenna in this particular scenario.  The energy consumed per packet transmitted 
was calculated using oscilloscope measurements shown in Figure 26.  This calculated 
figure is 6.08mW per packet, assuming average power consumption during processing and 
transmitting of 37.5mW and 60.5mW respectively.  As one can see from Table 3, a 
significant amount of energy is put to more effective use by utilising the FCPW antenna in 
both the 0-10 and 0-25m ranges.  Whilst these experiments took place outdoors in line-of-
sight conditions, it is not unreasonable to expect similar performance differences in real 
world applications.  
 
Table 3.  Energy efficiency comparison of the monopole and FCPW antennas. 
 

Distance 
Packets 

transmitted 

Packets lost 
Energy wasted due to 

lost packets (J) Increase in energy 
used effectively (J) 

Monopole FCPW Monopole FCPW 

0-10m 72000 2946 0 17.9 0 17.9 

0-25m 156000 15784 6315 95.9 38.4 57.5 
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