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Abstract

With the explosion of data and the increasing complexity of data analysis, large-

scale data analysis imposes significant challenges in systems design. While current

research focuses on scaling out to large clusters, these scale-out solutions introduce

a significant amount of overhead. This thesis is motivated by the advance of new

I/O technologies such as flash memory. Instead of scaling out, we explore efficient

system designs in a single commodity machine with non-uniform memory architec-

ture (NUMA) and scale to large datasets by utilizing commodity solid-state drives

(SSDs). This thesis explores the impact of the new I/O technologies on large-scale

data analysis. Instead of implementing individual data analysis algorithms for SSDs,

we develop a data analysis ecosystem called FlashX to target a large range of data

analysis tasks. FlashX includes three subsystems: SAFS, FlashGraph and Flash-

Matrix. SAFS is a user-space filesystem optimized for a large SSD array to deliver

maximal I/O throughput from SSDs. FlashGraph is a general-purpose graph analy-

sis framework that processes graphs in a semi-external memory fashion, i.e., keeping

vertex state in memory and edges on SSDs, and scales to graphs with billions of
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vertices by utilizing SSDs through SAFS. FlashMatrix is a matrix-oriented program-

ming framework that supports both sparse matrices and dense matrices for general

data analysis. Similar to FlashGraph, it scales matrix operations beyond memory

capacity by utilizing SSDs. We demonstrate that with the current I/O technologies

FlashGraph and FlashMatrix in the (semi-)external-memory meets or even exceeds

state-of-the-art in-memory data analysis frameworks while scaling to massive datasets

for a large variety of data analysis tasks.

Primary Reader: Randal Burns

Secondary Reader: Misha Kazhdan

Tertiary Reader: Joshua Vogelstein
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Chapter 1

Introduction

In today’s big data era, we face challenges in both the explosion of data and the

increase in complexity of data analysis. Experiments, simulations and observations

generate terabytes or even petabytes in many scientific and business areas. After

collecting a massive amount of data, we often need to perform complex data analysis

and machine learning techniques to gain insight from the data. These data analysis

tasks exhibit various data access and computation patterns. Furthermore, the fields

of data analysis and machine learning evolve rapidly. The community continuously

develops many new algorithms to effectively extract value from massive datasets.

Graph analysis is a class of commonly used data analysis in both academia and

industry. This models real-world problems in the form of graphs (vertices and edges)

to study objects and the connection between the objects. Graph analysis becomes

ubiquitous and has applications in many fields such as social networks, semantic

1



CHAPTER 1. INTRODUCTION

search, knowledge discovery and cybersecurity. A well-known example is that Google

applies PageRank3 on the Web page graph to determine the importance of Web pages

so that Google can provide users more relevant search results.

When applying graph analysis to real-world problems, we often encounter massive

and irregular graphs. For example, the Facebook social network graph has billions

of vertices, hundreds of billions of edges; the neural network of a human brain has

a fundamental size of 1011 vertices and 1015 edges; graphs that evolve over time can

grow even larger. These graphs often have nearly random vertex connection and

power law distribution, which cause random memory access and load imbalance. As

such, leading systems process graph analysis in RAM and scale to large graphs in

a cluster of machines. While good partitions may be important for performance,4

these leading systems partition graphs randomly.5 Network performance emerges as

the bottleneck and large-scale graph analysis requires fast networks to realize good

performance.

Besides graph analysis, linear algebra is another fundamental tool for many scien-

tific and machine learning applications. In these applications, we store data in (sparse

or dense) matrices, and express algorithms with matrix operations. Linear algebra is

very expressive and covers many data analysis tasks including graph analysis. Matrix

formulation is simple and intuitive for domain experts. This leads to the development

of many popular matrix-oriented programming frameworks, such as MATLAB and

R, to help scientists encode and deploy complex algorithms. Like graph analysis, we

2
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encounter massive matrices. In addition, we need to support many different matrix

operations to perform varieties of complex algorithms on massive datasets.

Complex data analysis at a large scale poses significant challenges for conven-

tional tools. For instance, MATLAB and R are known to scale to large datasets

poorly. Even though SQL database systems can process relatively large datasets,

their programming interface is not designed for programming data analysi algorithms

and their internal optimizations are not designed for this type of workloads either.

These challenges lead to the redesign of data analysis tools. MapReduce6 is one of

the most well-known tools developed for data analysis at the petabyte scale. Since

its appearance, researchers have applied MapReduce to many different data analysis

tasks. Many other general-purpose frameworks, such as Dryad,7 Spark8 and Naiad,9

were developed to process large datasets more efficiently. In addition to the gen-

eral data analysis frameworks, more specialized frameworks have been developed to

tackle subsets of data analysis tasks. For example, PowerGraph5 and GraphX10 are

specialized frameworks for graph analysis.

The majority of current research focuses on scaling out to a large cluster, but

many of the distributed frameworks achieve scalability at the cost of large overhead

introduced to the system. This is a common problem in many distributed systems

such as MapReduce. Even though MapReduce can process petabytes of data in a

large cluster, the framework does not handle many data analysis tasks efficiently due

to its limited primitive operations. As McSherry et al.11 point out, many graph anal-
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ysis frameworks such as PowerGraph5 and GraphX10 suffer from the same problem.

As such, these systems are less economical in terms of dollar efficiency and energy

efficiency, which are obstacles of moving to exascale computation.

This thesis explores a different direction of scaling data analysis. Instead of scaling

out to a large cluster, we focus on large-scale data analysis using fast I/O technologies

and exploring efficient solutions for these tasks on a large parallel machine. It is

orthogonal to the distributed solutions because our work serve as a building block for

the distributed solutions to process data at even a larger scale.

This work is motivated by the tremendous improvement in storage I/O technology

in the recent years. For example, a single solid-state drive (SSD) today typically

delivers 100K IOPS and half a gigabytes per second. As such, an array of such SSDs

can reach over one million random IOPS and over ten gigabytes per second. This

is only one order of magnitude slower than RAM. We believe the advance of I/O

technologies opens a new direction for large-scale data analysis. The tremendous

performance improvement in I/O potentially makes flash memory the true extension

of RAM and enables an efficient and cost-effective solution for running complex data

analysis on massive datasets.

The main question we address in this thesis is: to what extent can the performance

of flash-based data analysis solutions approach that of RAM-based solutions? If data

analysis using flash memory can achieve performance comparable to that in RAM, it

will positively affect computer architecture and revolutionize large-scale data analysis.

4



CHAPTER 1. INTRODUCTION

Figure 1.1: The architecture of FlashX.

This is the first work that explores this question with a large variety of data analysis

tasks.

Hardware advances impose many new challenges in system design (both operat-

ing systems and data analysis frameworks). Operating systems were traditionally

designed with an assumption of slow I/O. There exists significant lock contention in

almost all layers of the block stack of the Linux kernal when it operates on fast stor-

age. High-speed random I/O consumes significant CPU power, which requires us to

minimize CPU overhead for I/O access in order to maximize the overall performance.

Furthermore, although the latest I/O devices deliver unprecedented performance,

they are still orders of magnitude slower than RAM, let alone CPU cache, in both

throughput and latency. As such, it is crucial for data analysis frameworks to re-

duce I/O by reusing data in memory and constructing more compact data format to

achieve performance better than what the raw hardware delivers.

We build an SSD-based data analysis ecosystem called FlashX to explore the ben-
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efits that flash memory brings to large-scale data analysis. Instead of using fast but

expensive non-volatile memory (NVM), we build a very fast I/O system with com-

modity SSDs. We build efficient programming frameworks, instead of implementing

individual data analysis algorithms, to cover a variety of data analysis tasks including

graph analysis and machine learning. FlashX has three main subsystems:

• SAFS12 is a user-space filesystem optimized for large SSD arrays. It abstracts

away the complexity of data access to an SSD array and delivers the maximal

I/O throughput (millions of I/O per second for random I/O and tens of giga-

bytes per second for sequential I/O) in a large NUMA machine. In addition,

SAFS also provides an efficient caching layer13 to amplify user-perceived I/O

performance.

• FlashGraph14 is a semi-external memory graph analysis framework. For any

graph algorithms, it keeps vertex state in memory and edges on SSDs. It takes

advantage of SAFS and issues I/O requests carefully to bring data from SSDs

to CPUs efficiently for graph analysis to achieve performance comparable to

in-memory counterparts. FlashGraph is specifically optimized for graph appli-

cations that generates random I/O access to SSDs.

• FlashMatrix provides a matrix programming interface for general data analysis

tasks using SSDs. It provides both basic and generalized matrix operations to

express a large range of machine learning and data analysis applications. It sup-
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ports both sparse matrices15 and dense matrices.16 The goal of FlashMatrix is

to brings data from SSDs to CPUs efficiently. Unlike FlashGraph, FlashMatrix

is optimized for applications with sequential I/O access to SSDs. To provide

user-friendly programming interface, FlashMatrix reimplements many matrix

operations in the R framework to execute R code in parallel and out of core

automatically.

In this thesis, we explore graph analysis in two formulations. FlashGraph views

a graph as a collection of vertices and edges, while FlashMatrix represents a graph

as a sparse matrix and express graph analysis as matrix operations.17 In the matrix

formulation, a row or a column of a sparse matrix represents a vertex in a graph and a

non-zero entry encodes the existence of an edge or the edge weight on a graph. Both

formulations are commonly adopted and the leading graph processing frameworks

use one of the formulations.5,10,18–22 The first formulation is more flexible and can

express very complex graph algorithms such as Louvain clustering23 and METIS.24 It

is also more efficient for some commonly used graph algorithms such as breadth-first

search and triangle counting. The matrix formulation, however, is more intuitive

for domain experts because these users are familiar with using matrix operations to

express algorithms. It also leads to more efficient implementations for some graph

analysis applications such as PageRank3 and spectral clustering.25

Throughout this thesis, we place data involved in computation in a semi-external

memory fashion. We demonstrate that semi-external memory is an effective strat-
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egy of achieving both scalability and computation efficiency for many data analysis

tasks. For graph analysis, semi-external memory26 maintains algorithmic vertex state

in RAM and edge lists on storage. Only using memory for vertices increases the scal-

ability of graph engines in proportion to the ratio of edges to vertices in a graph. In

FlashMatrix, we introduce a similar construct for sparse matrix dense matrix multi-

plication in which one or more columns of a dense matrix are kept in memory and the

sparse matrix is accessed from external memory. We can even extend this construct to

some machine learning algorithms such as k-means,27 where some of the intermediate

computation state is kept in memory while input data matrices are stored on SSDs.

For many data analysis tasks, semi-external memory effectively utilizes memory in a

machine to reduce I/O access and achieve performance. In addition, this computation

paradigm reduces the amount of data written to SSDs dramatically, which is essential

to increase the lifetime of SSDs.

We also show that FlashX in semi-external memory realizes in-memory perfor-

mance for many data analysis tasks while scaling to massive datasets in a single ma-

chine. These data analysis tasks exhibit varieties of I/O access patterns and different

computation and I/O complexities. FlashGraph in semi-external memory achieves

efficiency comparable to its in-memory version and Galois,28 a high-performance,

in-memory graph engine with a low-level API, on a variety of algorithms that gener-

ate diverse access patterns, while significantly outperforming PowerGraph, a popular

distributed in-memory graph engine. We further demonstrate that FlashGraph can
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process massive natural graphs in a single machine with relatively small memory

footprint; e.g., we perform breadth-first search on a graph of 3.4 billion vertices and

129 billion edges using only 22 GB of memory. Similarly, the out-of-core execution of

both sparse matrix and dense matrix operations in FlashMatrix achieves performance

comparable to their in-memory execution; the implementations of machine learning

algorithms in FlashMatrix significantly outperforms the same algorithms in Spark

MLlib.29 FlashMatrix effortlessly scales to datasets with billions of data points and

its out-of-core execution uses a small fraction of resources required by in-memory

implementations. Given the fast performance, we conclude that the new I/O tech-

nologies coupled with semi-external memory offer a very promising design choice for

efficient and cost-effective data analysis and FlashX is a very good realization of such

a design. We release the code of FlashX as open source at http://flashx.io.

1.1 Related work

MapReduce6 led the trend of large-scale data analysis. It provides a very simple

programming interface. In this framework, users only need to provde a map function

and a reduce function. The system scales users’ computation to very large datasets in

a large cluster and handle machine failures automatically. The simplicity of its pro-

gramming interface and the unprecedented scalability attracted tremendous academic

and industrial attention, which leads to the development of Hadoop,30 the open-source
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clone of MapReduce. MapReduce works well for simple data processing tasks that

can be partitioned easily and do not require much communication between partitions.

Many data processing tasks at Google, such as count of URL access frequency and re-

verse Web links, are tasks that fit the MapReduce programming paradigm. However,

if a task requires significant data exchange between partitions, MapReduce requires

sorting to move data to the right location, which leads to significant overhead. As

such, typical graph algorithms such as breadth-first search and triangle counting are

slow in MapReduce.

Dryad7 and Naiad9 are distributed execution engines from Microsoft for processing

large datasets. Unlike MapReduce, Dryad provides a much more flexible computation

model and gives developers more fine-grain control over computation and data com-

munication. Developers construct a directed acyclic graph to describe communication

and define computation on the vertices in the graph to express algorithms. Naiad pro-

vides an even more flexible computation model, timely dataflow, that supports data

flow graphs with loops. As such, it supports high throughput for batch processing,

low latency for stream processing as well as iterative and incremental computations.

Given the flexible computation model, both Dryad and Naiad implement varieties of

data processing tasks more efficiently at the cost of higher programming complexity.

Spark8 is specifically optimized for in-memory data processing in a distributed

environment. Unlike MapReduce, which relies on writing data to the underlying

distributed filesystem to pass data reliably between MapReduce jobs, Spark keeps

10



CHAPTER 1. INTRODUCTION

data passed between different computation stages in memory to avoid overhead of

I/O access. The uniqueness of Spark is the data reliability model. Instead of repli-

cating data to achieve reliability, Spark stores data transformation operations with

RDDs (Resilient Distributed Datasets) and handles data loss due to node failure by

reconstructing lost partitions on the fly.

Due to the programming complexity in the distributed execution engines, many

programming frameworks have been developed on top of the distributed execution en-

gines. Pig Latin31 and FlumeJava32 build on top of MapReduce to provide high-level

SQL-like operations for general data analysis; DryadLINQ33 builds on top of Dryad.

The common strategy of optimizing these programming frameworks is to combine

high-level operations to reduce the number of invocations of low-level primitives of

the distributed execution engines. The achievable performance of these programming

frameworks is bound by the underlying distributed execution engines.

Given the popularity of MapReduce, many systems have been developed to per-

form graph analysis and machine learning tasks on top of MapReduce. PEGASUS21

is a popular graph processing engine built on MapReduce. PEGASUS respects the

nature of the MapReduce programming paradigm and expresses graph algorithms as

a generalized form of sparse matrix-vector multiplication. This form of computation

works relatively well for graph algorithms such as PageRank3 and label propaga-

tion,34 but performs poorly for graph traversal algorithms. HEIGEN22 implements

an eigensolver on top of MapReduce for spectral analysis on billion-node graphs. De-
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spite optimizations in the framework, the HEIGEN eigensolver is orders of magnitude

slower than state-of-the-art distributed memory eigensolvers. Cheng-Tao Chu et. al35

implements a set of machine learning algorithms using MapReduce to achieve speedup

in a multicore machine. SystemML36 builds a scalable declarative machine learning

system on top of MapReduce, which exposes a declarative higher-level language for

writing ML algorithms.

Due to the importance of graph analysis, both industry and academia build ded-

icated graph processing frameworks. Graph analysis results in random memory ac-

cesses, and thus state-of-the-art graph engines use distributed memory for large-scale

graph analysis. Pregel18 is a distributed graph-processing framework that allows

users to express graph algorithms in vertex-centric programs using bulk-synchronous

processing (BSP). It abstracts away the complexity of programming in a distributed-

memory environment and runs users’ code in parallel on a cluster. Giraph37 is an

open-source implementation of Pregel. GraphLab38 and PowerGraph5 prefer shared-

memory to message passing and provide asynchronous execution. Trinity39 optimizes

message passing by restricting vertex communication to a vertex and its direct neigh-

bors. GraphX10 builds a graph processing framework on Spark using only a few basic

dataflow operators such as join and groupby.

Despite random memory access required by graph analysis, significant efforts have

been made to scale graph analysis using disks. GraphChi19 and X-stream20 are specif-

ically designed for magnetic disks. They eliminate random data access from disks by
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scanning the entire graph dataset in each iteration. Like graph processing frame-

works built on top of MapReduce, they work relatively well for graph algorithms that

require computation on all vertices, but share the same limitations, i.e., suboptimal

performance in graph traversal algorithms. TurboGraph40 is an external-memory

graph engine optimized for SSDs and targets graph algorithms that can be expressed

in sparse matrix vector multiplication.

Many graph algorithms can be formulated as sparse matrix multiplication or gen-

eralized sparse matrix multiplication.17,41 In this abstraction, PageRank and label

propagation are efficiently expressed as sparse-matrix, dense-vector multiplication,

and breadth-first search as sparse-matrix, sparse-vector multiplication. KDT42 is a

system that realizes the abstraction and performs graph analysis using linear alge-

bra with sparse adjacency matrices and vertex-state vectors as data representations.

These frameworks target mathematicians and those with the ability to formulate and

express their problems in the form of linear algebra.

Many machine learning frameworks have been developed to enable large-scale ma-

chine learning. H2O43 and Spark MLlib29 are machine learning libraries implemented

on top of Spark. GraphLab38 is a programming framework that provides primitives

for graph-based machine learning algorithms in a distributed environment. OptiML44

is a domain-specific language and supports vector, matrix and graph operations to

implement machine learning algorithms. It is built on top of a parallel runtime sys-

tem called Delite45 to enable parallelism in a heterogeneous computation environment
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in a single machine. Petuum46 is a distributed programming framework for imple-

menting machine learning algorithms. It leverages several fundamental properties of

machine learning algorithms and aims at faster convergence of an algorithm instead

of achieving higher throughput in a single iteration.
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Chapter 2

Set-associative filesystem (SAFS)

This chapter describes the I/O layer of our data analysis ecosystem called SAFS

(set-associative filesystem), a user-space filesystem that removes I/O bottlenecks in

the operating system to achieve over one million IOPS from arrays of commodity

SSDs. SAFS achieves the extreme I/O performance by refactoring I/O scheduling and

placement for extreme parallelism and non-uniform memory and I/O. It also includes

a set-associative, parallel page cache in the user space that eliminates CPU overhead

and lock-contention in non-uniform memory architecture machines. We evaluate our

design on a 32 core NUMA machine with four, eight-core processors. Experiments

show that our design delivers 1.23 million 512-byte read IOPS. The page cache realizes

the scalable IOPS of Linux asynchronous I/O (AIO) and increases user-perceived I/O

performance linearly with cache hit rates. The parallel, set-associative cache matches

the cache hit rates of the global Linux page cache under real workloads.
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2.1 Introduction

Systems that perform fast, random I/O are revolutionizing commercial data ser-

vices and scientific computing, creating the capability to quickly extract information

from massive data sets.47 For example, NoSQL systems underlying cloud stores gen-

erate small, incoherent I/Os that search key indexes and reference values, tables,

documents, or graphs. The design of Amazon’s DynamoDB testifies to this trend; it

differentiates itself as a fast and scalable technology based on integrating SSDs into a

key/value database.48 In scientific computing, SSDs improve the throughput of graph

and network analyses by an order of magnitude over magnetic disk.49 Data sets that

describe graphs are notoriously difficult to analyze on the steep memory hierarchies

of conventional HPC hardware,50 because they induce fine-grained, incoherent data

accesses. The future of data-driven computing will rely on extending random access

to large-scale storage, building on today’s SSDs and other non-volatile memories as

they emerge.

Specialized hardware for random access offers an effective solution, albeit costly.

For example, Fusion-IO provides NAND-flash persistent memory that delivers over

one million accesses per second. Fusion-IO represents a class of persistent memory de-

vices that are used as application accelerators integrated as memory addressed directly

from the processor. As another approach, the Cray XMT architecture implements a

flat memory system so that all cores have fast access to all memory addresses. This

approach is limited by memory size. All custom hardware approaches cost multiples
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of commodity SSDs.

While recent advances in commodity SSDs have produced machines with hard-

ware capable of over one million random IOPS, standard system configurations fail

to realize the full potential of the hardware. Performance issues are ubiquitous in

hardware and software, ranging from the assignment of interrupts, to non-uniform

memory bandwidth, to lock contention in device drivers and the operating system.

Problems arise because I/O systems were not designed for the extreme parallelism of

multicore processors and SSDs. The design of file systems, page caches, device drivers

and I/O schedulers does not reflect the parallelism (tens to hundreds of contexts) of

the threads that initiate I/O or the multi-channel devices that service I/O requests.

None of the I/O access methods in Linux kernel perform well on a high-speed SSD

array. I/O requests go through many layers in the kernel before reaching a device.51

This produces significant CPU consumption under high IOPS. Each layer in the block

subsystem uses locks to protect its data structures during concurrent updates. Fur-

thermore, SSDs require many parallel I/Os to achieve optimal performance, while

synchronous I/O, such as buffered I/O and direct I/O, issues one I/O request per

thread at a time. The many threads needed to load the I/O system produce lock con-

tention and high CPU consumption. Asynchronous I/O (AIO), which issues multiple

requests in a single thread, provides a better option for accessing SSDs. However,

AIO does not integrate with the operating system page cache so that SSD throughput

limits user-perceived performance.
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The goal of our system design is twofold: (1) to eliminate bottlenecks in parallel

I/O to realize the full potential of SSD arrays and (2) to integrate caching into

SSD I/O to amplify the user-perceived performance to memory rates. Although the

performance of SSDs has advanced in the past years, it does not approach memory

both in random IOPS or latency (Table 2.1). Furthermore, RAM may be accessed

at a finer granularity 64 versus 512 bytes, which can widen the performance gap

by another factor of eight for workloads that perform small requests. We conclude

that SSDs require a memory page cache interposed between an SSD file system and

applications. This is in contrast to translating SSD storage into the memory address

space using direct I/O. A major obstacle to overcome is that the page caches in

operating systems do not scale to millions of IOPS. They were designed for magnetic

disks that perform only about 100 IOPS per device. Performance suffers as access

rates increase owing to lock contention and with increased mutli-core parallelism

owing to processor overhead.

The first contribution of this paper is the design of a user-space file system that

performs more than one million IOPS on commodity hardware. We implement a thin

software layer that gives application programmers synchronous and asynchronous

interfaces to file I/O. The system modifies I/O scheduling, interrupt handling, and

data placement to reduce processor overhead, eliminate lock contention, and account

for affinities between processors, memory, and storage devices.

We further present a scalable user-space cache for NUMA machines and arrays of
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random IOPS latency granularity

ioDrive Octal52 1,300,000 45µs 512B

OCZ Vertex 453 120,000 20µs 512B

DDR3-1333 7,300,000 15ns 64B

Table 2.1: The performance of specialized memory-addressable NAND flash (ioDrive
Octal), a commodity SSD (OCZ Vertex 4), and memory (DDR3-1333). IOPS are
measured with 512-byte random accesses.

SSDs that realizes I/O performance of Linux asynchronous I/O for cache misses and

preserve the cache hit rates of the Linux page cache under real workloads. Our cache

design is set-associative; it breaks the page buffer pool into a large number of small

page sets and manages each set independently to reduce lock contention. The cache

design extends to NUMA architectures by partitioning the cache by processors and

using message passing for inter-processor communication.

The evaluation on a 32 core NUMA machine shows promising results. Our de-

sign delivers 1.23 million 512-byte read IOPS with our current hardware. The page

cache realizes the scalable IOPS of Linux asynchronous I/O (AIO) and increases user-

perceived I/O performance linearly with cache hit rates. We further demonstrate that

our page cache achieves cache hit rates comparable to Linux page cache under real-

world I/O workloads such as the ones from graph processing and cloud services. We

conclude that SAFS maximizes the potential of fast SSDs in a large parallel machine

and serves as an efficient I/O layer for SSD-based data analysis frameworks and cloud

key-value stores.
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2.2 Related work

This research falls into the broad area of the scalability operating systems with

parallelism. Several research efforts54,55 treat a multicore machine as a network of

independent cores and implement OS functions as a distributed system of processes

that communicate with message passing. We embrace this idea for processors and

hybridize it with traditional SMP programming models for cores. Specifically, we use

shared memory for communication inside a processor and message passing between

processors.

As a counterpoint, a team from MIT56 conducted a comprehensive survey on the

kernel scalability and concluded that the traditional monolithic kernel can also have

good parallel performance. We demonstrate that this is not the case for the page

cache at millions of IOPS.

More specifically, our work relates to the scalable page caching. Yui et al.57 de-

signed a lock-free cache management for database based on Generalized CLOCK58

and use a lock-free hashtable as index. They evaluated their design in a eight-core

computer. We provide an alternative design of scalable cache and evaluate our solu-

tion at a larger scale.

The open-source community has improved the scalability of Linux page cache.

Read-copy-update (RCU)59 reduces contention through lock-free synchronization of

parallel reads from the page cache (cache hits). However, the Linux kernel still relies

on spin locks to protect page cache from concurrent updates (cache misses). In
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contrast, our design focuses on random I/O, which implies a high churn rate of pages

into and out of the cache.

Park et al.60 evaluated the performance effects of SSDs on scientific I/O workloads

and they used workloads with large I/O requests. They concluded that SSDs can

only provide modest performance gains over mechanical hard drives. As the advance

of SSD technology, the performance of SSDs have been improved significantly, we

demonstrate that our SSD array can provide random and sequential I/O performance

many times faster than mechanical hard drives to accelerate scientific applications.

The set-associative cache was originally inspired by theoretical results that shows

that a cache with restricted associativity can approximate LRU.61 We build on this

result to create a set-associative cache that matches the hit rates of the Linux kernel

in practice.

The high IOPS of SSDs have revealed many performance issues with traditional

I/O scheduling, which has lead to the development of new fair queuing techniques

that work well with SSDs.62 We also have to modify I/O scheduling as one of many

optimizations to storage performance.

2.3 A High IOPS File Abstraction

Although one can attach many SSDs to a machine, it is a non-trivial task to

aggregate the performance of all SSDs. The default Linux configuration delivers
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only a fraction of optimal performance owing to skewed interrupt distribution, device

affinity in the NUMA architecture, poor I/O scheduling, and lock contention in Linux

file systems and device drivers. The process of optimizing the storage system to realize

the full hardware potential includes setting configuration parameters, the creation and

placement of dedicated threads that perform I/O, and data placement across SSDs.

Our experimental results demonstrate that our design improves system IOPS by a

factor of 3.5.

2.3.1 Reducing Lock Contention

Parallel access to file systems exhibits high lock contention. Ext3/ext4 holds an

exclusive lock on an inode, a data structure representing a file system object in the

Linux kernel, for both reads and writes. For writes, XFS holds an exclusive lock

on each inode that deschedules a thread if the lock is not immediately available. In

both cases, high lock contention causes significant CPU overhead or, in the case of

XFS, frequent context switch, and prevents the file systems from issuing sufficient

parallel I/O. Lock contention is not limited to the file system, the kernel has shared

and exclusive locks for each block device (SSD).

To eliminate lock contention, we create a dedicated thread for each SSD to serve

I/O requests and use asynchronous I/O (AIO) to issue parallel requests to an SSD.

Each file in our system consists of multiple individual files, one file per SSD, a design

similar to PLFS.63 By dedicating an I/O thread per SSD, the thread owns the file
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and the per-device lock exclusively at all time. There is no lock contention in the file

system and block devices. AIO allows the single thread to output multiple I/Os at

the same time. The communication between application threads and I/O threads is

similar to message passing. An application thread sends requests to an I/O thread

by adding them to a rendezvous queue. The add operation may block the application

thread if the queue is full. Thus, the I/O thread attempts to dispatch requests

immediately upon arrival. Although there is locking in the rendezvous queue, the

locking overhead is reduced by the two facts: each SSD maintains its own message

queue, which reduces lock contention; the current implementation bundles multiple

requests in a single message, which reduces the number of cache invalidations caused

by locking.

2.3.2 Processor Affinity

Non-uniform performance to memory and the PCI bus throttles IOPS owing to

the inefficiency of remote accesses. In recent multi-processor machines for both AMD

and Intel architectures, each processor connects to its own memory and PCI bus. The

memory and PCI bus of remote processors are directly addressable, but at increased

latency and reduced throughput.

We avoid remote accesses by binding I/O threads to the processors connected to

the SSDs that they access. This optimization leverages our design of using dedicated

I/O threads, making it possible to localize all requests, regardless of how many threads
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cores of a processor using the message signalled interrupts extension to PCI 3.0 (MSI-

X).64 MSI-X allows devices to select targets for up to 2048 interrupts. We distribute

the interrupts of a storage controller host-bus adapter across multiple cores of its local

processor.

I/O scheduler: Completely Fair Queuing (CFQ), the default I/O scheduler in the

Linux kernel > 2.6.18, maintains I/O requests in per-thread queues and allocates

time slices for each process to access disks to achieve fairness. When many threads

access many SSDs simultaneously, CFQ prevent threads from delivering sufficient

parallel requests to keep SSDs busy. Performance issues with CFQ and SSDs have

lead researchers to redesign I/O scheduling.62 Future Linux releases plan to include

new schedulers.

At present, there are two solutions. The most common is to use the noop I/O

scheduler, which does not perform per-thread request management. This also reduces

CPU overhead. Alternatively, accessing an SSD from a single thread allows CFQ to

inject sufficient requests. Both solutions alleviate the bottleneck in our system.

Data Layout: To realize peak aggregate IOPS, we parallelize I/O among all SSDs

by distributing data. We offer three data distribution functions implemented in the

data mapping layer of Figure 2.1.

• Striping: Data are divided into fixed-size small blocks placed on successive

disks in increasing order. This layout is most efficient for sequential I/O, but

susceptible to hotspots.
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• Rotated Striping: Data are divided into stripes but the start disk for each stripe

is rotated, much like distributed parity in RAID5.65 This pattern prevents

strided access patterns from skewing the workload to a single SSD.

• Hash mapping: The placement of each block is randomized among all disks.

This fully declusters hotspots, but requires each block to be translate by a hash

function.

Workloads that do not perform sequential I/O benefit from randomization.

2.3.4 Implementation

We implement SAFS, a user-space filesystem that realizes our design. It exposes

a simple file abstraction to user applications and supports basic operations such as

file creation, deletion, open, close, read and write. It provides both synchronous and

asynchronous read and write interface. Each SAFS file has metadata to keep track of

the corresponding files on the underlying file system. Currently, it does not support

directories.

The architecture of SAFS is shown in Figure 2.1. It builds on top of a Linux native

file system on each SSD. Ext3/ext4 performs well in the system as does XFS, which

we use in experiments. Each SSD has a dedicated I/O thread to process application

requests. On completion of an I/O request, a notification is sent to a dedicated

callback thread for processing the completed requests. The callback threads help to

offload computation in the I/O threads and help applications to achieve processor
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affinity. Each processor has a callback thread.

2.4 A Set-Associative Page Cache

The emergence of SSDs has introduced a new performance bottleneck into page

caching: managing the high churn or page turnover associated with the large num-

ber of IOPS supported by these devices. Previous efforts to parallelize the Linux

page cache focused on parallel read throughput from pages already in the cache. For

example, read-copy-update (RCU)59 provides low-overhead wait free reads from mul-

tiple threads. This supports high-throughput to in-memory pages, but does not help

address high page turnover.

Cache management overheads associated with adding and evicting pages in the

cache limit the number of IOPS that Linux can perform. The problem lies not just

in lock contention, but delays from the L1-L3 cache misses during page translation

and locking. We redesign the page cache to eliminate lock and memory contention

among parallel threads by using set-associativity. The page cache consists of many

small sets of pages (Figure 2.2). A hash function maps each logical page to a set in

which it can occupy any physical page frame.

We manage each set of pages independently using a single lock and no lists. For

each page set, we retain a small amount of metadata to describe the page locations.

We also keep one byte of frequency information per page. We keep the metadata of a
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page set in one or few cache lines to minimize CPU cache misses. If a set is not full, a

new page is added to the first unoccupied position. Otherwise, a user-specified page

eviction policy is invoked to evict a page. The current available eviction policies are

LRU, LFU, Clock66 and GClock.58

As shown in figure 2.2, each page contains a pointer to a linked list of I/O requests.

When a request requires a page for which an I/O is already pending, the request will

be added to the queue of the page. Once I/O on the page is complete, all requests in

the queue will be served.

There are two levels of locking to protect the data structure of the cache:

• per-page lock: a spin lock to protect the state of a page.

• per-set lock: a spin lock to protect search, eviction, and replacement inside a

page set.

A page also contains a reference count that prevents a page from being evicted while

the page is being used by other threads.

2.4.1 Resizing

A page cache must support dynamic resizing to share physical memory with pro-

cesses and swap. We implement dynamic resizing of the cache with linear hashing.1

Linear hashing proceeds in rounds that double or halve the hashing address space.

The actual memory usage can grow and shrink incrementally. We hold the total

number of allocated pages through loading and eviction within the page sets. When

28



CHAPTER 2. SAFS: TOWARD MILLIONS OF FILE SYSTEM IOPS ON
LOW-COST, COMMODITY HARDWARE

...

page

page

page

...

page

page

Page set

Page set

Page set

0

n-1

split

Page set

Page set

n

hash1

hash0

hash1

class page_set
{
    pthread_spinlock_t lock;
    thread_safe_page *pages;
    int num_pages;
    eviction_policy policy;
};

class thread_safe_page
{
    off_t off;
    void *data;
    short refcnt;
    char flags;
    unsigned char hits;
    pthread_spinlock_t lock;
    io_request *reqs;
};

Figure 2.2: The organization of the set-associative cache showing the data structures
and locks for pages and page sets. The hash0 and hash1 functions implement linear
hashing1 used to resize the cache. n = init size× 2level.

splitting a page set i, we rehash its pages to set i and init size×2level+i. The number

of page sets is defined as init size× 2level + split. level indicates the number of times

that pages have been split. split points to the page set to be split. The cache uses

two hash functions within each level hash0 and hash1 :

• hash0(v) = h(v, init size× 2level)

• hash1(v) = h(v, init size× 2level+1)

If the result of hash0 is smaller than split, hash1 is used for the page lookup as shown

in figure 2.2.
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2.4.2 Read and write optimizations

Even though SSDs deliver high random IOPS, they still have higher throughput

for larger I/O requests.67 Furthermore, accessing a block of data on an SSD goes

through a long code path in the kernel and consumes a significant number of CPU

cycles.51 By initiating larger requests, we can reduce CPU consumption and increase

throughput.

Our page cache converts large read requests into a multi-buffer requests in which

each buffer is single page in the page cache. Because we use the multi-buffer API of

libaio, the pages need not be contiguous in memory. A large application request may

be broken into multiple requests if some pages in the range read by the request are

already in the cache or the request crosses a stripe boundary. The split requests are

reassembled once all I/O completes and then delivered to the application as a single

request.

The page cache has a dedicated thread to flush dirty pages. It selects dirty pages

from the page sets where the number of dirty pages exceeds a threshold and write them

with parallel asynchronous I/O to SSDs. Flushing dirty pages can reduce average

write latency, which dramatically improves the performance of synchronous write

issued by applications. However, the scheme may also increase the amount of data

written to SSDs. To reduce the number of dirty pages to be flushed, the current

policy within a page set is to select the dirty pages that are most likely to be evicted

in a near future.
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To reduce write I/O, we greedily flush all adjacent dirty pages using a single I/O,

including pages that have not yet been scheduled for writeback. This optimization

was originally proposed in disk file systems.68 The hazard is that flushing pages

early will generate more write I/O when pages are being actively written. To avoid

generating more I/O, we tweak the page eviction policy, similar to CFLRU,69 to keep

dirty pages in the memory longer: when the cache evicts a page from a set, it tries

to evict a clean page if possible.

2.4.3 NUMA design

Performance issues arise when operating a global, shared page cache on a non-

uniform memory architecture. The problems stem from the increased latency of

remote memory access, the reduced throughput of remote bulk memory copy.70 A

global, shared page cache treats all devices and memory uniformly. In doing so, it

creates increasingly many remote operations as we scale the number of processors.

We extend the set-associative cache for the NUMA architectures (NUMA-SA) to

optimize for workloads with relatively high cache hit rates and tackle hardware het-

erogeneity. The NUMA-SA cache design was inspired by multicore operating systems

that treat each core a node in a message-passing distributed system.55 However, we

hybridize this concept with standard SMP programming models: we use message

passing for inter-processor operations but use shared-memory among the cores within

each processor. Figure 2.3 shows the design of NUMA-SA cache. Each processor at-
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SA cacheSA cache

Processor 0 Processor 1

Processor 0, 1, 2, 3

Application thread

Request processing thread SSD I/O thread

Message queue

File Abstraction Interface

Processor 2 Processor 3

FS FS FS FS

Request Request completion

File Abstraction Interface

Callback thread

Figure 2.3: The architecture of the NUMA-SA cache on a four processor machine
with two processors attached to SSDs. The page cache accesses SSDs with the same
file abstraction interface as the one used by applications and expose the file abstraction
interface to user applications.

tached to SSDs has threads dedicated to performing I/O for each SSD. The dedicated

I/O thread removes contention for kernel and file locks. The processors without SSDs

maintain page caches to serve applications I/O requests.

I/O requests from applications are routed to the caching nodes through message

passing to reduce remote memory access. The caching nodes maintain message pass-

ing queues and a pool of threads for processing messages. On completion of an I/O

request, the data is written back to the destination memory directly and then a reply
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is sent to the issuing thread. This design opens opportunities to move application

computation to the cache to reduce remote memory access.

We separate I/O nodes from caching nodes in order to balance computation. I/O

operations require significant CPU and running a cache on an I/O node overloads the

processor and reduces IOPS. This is a design decision, not a requirement, i.e. we can

run a set-associative cache on the I/O nodes as well. In a NUMA machine, a large

fraction of I/Os require remote memory transfers. This happens when application

threads run on other nodes than I/O nodes. Separating the cache and I/O nodes

does increase remote memory transfers. However, balanced CPU utilization makes

up for this effect in performance. As systems scale to more processors, we expect that

few processors will have PCI buses, which will increase the CPU load on these nodes,

so that splitting these functions will continue to be advantageous.

Message passing creates many small requests and synchronizing these requests

can become expensive. Message passing may block sending threads if their queue is

full and receiving threads if their queue is empty. Synchronization of requests often

involves cache line invalidation on shared data and thread rescheduling. Frequent

thread rescheduling wastes CPU cycles, preventing application threads from getting

enough CPU. We reduce synchronization overheads by amortizing them over larger

messages.
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2.5 Performance evaluation

We evaluate our implementation with various workloads. We start with the evalu-

ation on SAFS without caching to demonstrate the raw performance of the hardware.

We evaluate the page cache in SAFS with various workloads from commercial data

services and scientific applications. We further integrate our system into the IOR

benchmark71 to measure its performance in a typical HPC environment.

We conduct experiments on a non-uniform memory architecture machine with

four Intel Xeon E5-4620 processors, clocked at 2.2GHz, and 512GB memory of DDR3-

1333. Each processor has eight cores with hyperthreading enabled, resulting in 16

logical cores. Only two processors in the machine have PCI buses connected to

them. The machine has three LSI SAS 9217-8i host bus adapters (HBA) connected

to a SuperMicro storage chassis, in which 16 OCZ Vertex 4 SSDs are installed. In

addition to the LSI HBAs, there is one RAID controller that connects to disks with

root filesystem. The machine runs Ubuntu Linux 12.04 and Linux kernel v3.2.30.

To compare the best performance of our system design with that of the Linux,

we measure the system in two configurations: an SMP architecture using a single

processor and NUMA using all processors. On all I/O measures, Linux performs best

from a single processor. Remote memory operations make using all four processors

slower.

• SMP configuration: 16 SSDs connect to one processor through two LSI HBAs

controlling eight SSDs each. All threads run on the same processor. Data are
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Linux I/O scheduler noop

Page cache size 512MB

Page eviction policy GClock

Block size 16 pages

Block mapping striping (SMP)/hash (NUMA)

Page set size 12 pages

AIO depth 32

Number of app threads 16

File system on SSDs XFS

Table 2.2: Default configuration of experiments.

striped across SSDs.

• NUMA configuration: 16 SSDs are connected to two processors. Processor 0

has five SSDs attached to an LSI HBA and one through the RAID controller.

Processor 1 has two LSI HBAs with five SSDs each. Application threads are

evenly distributed across all four processors. Data are distributed through a

hash mapping that assigns 10% more I/Os to the LSI HBA attached SSDs.

The RAID controller is slower.

Experiments use the configurations shown in Table 2.2 if not stated otherwise.

2.5.1 Optimizations in SAFS

This section enumerates the effectiveness of the hardware and software optimiza-

tions implemented in SAFS without caching, showing the contribution of each. The

size of the smallest requests issued by the page cache is 4KB, so we focus on 4KB

read and write performance. In each experiment, we read/write 40GB data randomly
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Figure 2.4: Optimizing page I/O in SAFS accessed from an 8 core processor (SMP).
The bars show the aggregate IOPS when applying four optimizations successively in
comparison with the hardware’s capabilities (raw).

through SAFS in 16 threads.

We perform four optimizations on SAFS in succession to optimize performance.

• O even-irq: distribute interrupts evenly among all CPU cores;

• O bind-cpu: bind threads to the processor local to the SSD;

• O noop: use the noop I/O scheduler;

• O io-thread: create a dedicated I/O thread to access each SSD on behalf of

the application threads.

Figure 2.4 shows I/O performance improvement in SAFS when applying these opti-

mizations in succession. Performance reaches a peak 765,000 read IOPS and 699,000

write IOPS from a single processor up from 209,000 and 191,000 IOPS unoptimized.

Distributing interrupts removes a CPU bottleneck for read. Binding threads to the

local processor has a profound impact, doubling both read and write by eliminat-

ing remote operations. Dedicated I/O threads improves write throughput, which we
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SAFS ioDrive Octal 5TB

Read IOPS (512B) 1,228,100 1,190,000

Write IOPS (512B) 386,976 1,180,000

Read IOPS (4KB) 946,700 N/A

Write IOPS (4KB) 766,082 N/A

Read Bandwidth (64 kB) 6.8GB/s 6.0 GB/s

Write Bandwidth (64 kB) 5.6GB/s 4.4 GB/s

Table 2.3: The performance of SAFS compared with FusionIO ioDrive Octal.

attribute to removing lock contention on the file system’s inode.

When we apply all optimizations, the system realizes the performance of raw

SSD hardware, as shown in Figure 2.4. It only loses less than 1% random read

throughput and 2.4% random write throughput. The performance loss mainly comes

from disparity among SSDs, because the system performs at the speed of the slowest

SSD in the array. When writing data to SSDs, individual SSDs slow down due to

garbage collection, which causes the entire SSD array to slow down. Therefore, write

performance loss is higher than read performance loss. These performance losses

compare well with the 10% performance loss measured by Caulfield.72

When we apply all optimizations in the NUMA configuration, we approach the

full potential of the hardware, reaching 1.23 million read IOPS. We show performance

alongside the the Fusion-IO ioDrive Octal52 for a comparison with state of the art

memory-integrated NAND flash products (Table 2.3). This reveals that our design

realizes comparable read performance using commodity hardware. SSDs have a 4KB

minimum block size so that 512 bytes write a partial block and, thus, slow. The 766K

4KB writes offer a better point of comparison.
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Figure 2.5: Performance of SAFS with Linux file systems and software RAID. All
systems use optimizations O even-irq and O noop.

We further compare our system with Linux software options, including block in-

terfaces (software RAID) and file systems (Figure 2.5). Although software RAID can

provide comparable performance in SMP configurations, NUMA results in a perfor-

mance collapse to less than half the IOPS. Locking structures in file systems prevent

scalable performance on Linux software RAID. Ext4 holds a lock to protect its data

structure for both reads and writes. Although XFS realizes good read performance,

it performs poorly for writes due to the exclusive locks that deschedule a thread if

they are not immediately available.

As an aside, we see a performance decrease in each SSD as more SSDs are accessed

in a HBA, as shown in Figure 2.6. A single SSD can deliver 73,000 4KB-read IOPS

and 61,000 4KB-write IOPS, while eight SSDs in a HBA deliver only 47,000 read

IOPS and 44,000 write IOPS per SSD. Other work confirms this phenomena.51 The

aggregate IOPS of an SSD array increases as the number of SSDs increases. Multiple

HBAs scale. Performance degradation may be caused by lock contention in the HBA
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Figure 2.6: The 4KB read and write IOPS of individual SSDs and the aggregate
IOPS of the SSD array with different numbers of SSDs in the array. All SSDs connect
to a single HBA.

driver as well as by the interfere inside the hardware itself. As a design rule, we attach

as few SSDs to a HBA as possible to increase the overall I/O throughput of the SSD

array in the NUMA configuration.

2.5.2 Set-Associative Caching

We demonstrate the performance of set-associative and NUMA-SA caches under

different workloads to illustrate their overhead and scalability and compare perfor-

mance with the Linux page cache.

We choose workloads that exhibit high I/O rates and random access that are

representatives of cloud computing and data-intensive science. We generated traces

by running applications, capturing I/O system calls, and converting them into file

accesses in the underlying data distribution. System call traces ensure that I/O are

not filtered by a cache. Workloads include:
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• Uniformly random: The workload samples 128 bytes from pages chosen ran-

domly without replacement. The workload generates no cache hits, accessing

10,485,760 unique pages with 10,485,760 physical reads.

• Yahoo! Cloud Serving Benchmark (YCSB):73 We derived a workload by in-

serting 30 million items into MemcacheDB and performing 30 million lookups

according to YCSB’s read-only Zipfian workload. The workload has 39,188,480

reads from 5,748,822 pages. The size of each request is 4096 bytes.

• Neo4j:74 This workload injects a LiveJournal social network75 in Neo4j and

searches for the shortest path between two random nodes with Dijkstra algo-

rithm. Neo4j sometimes scans multiple small objects on disks with separate

reads, which biases the cache hit rate. We merge small sequential reads into

a single read. With this change, the workload has 22,450,263 reads and 113

writes from 1,086,955 pages. The request size varies from 1 bytes to 1,001,616

bytes. Most requests are small. The mean request size is 57 bytes.

• Synapse labelling: This workload was traces at the Open Connectome Project

openconnecto.me and describes the output of a parallel computer-vision pipeline

run on a 4 Teravoxel image volume of mouse brain data. The pipeline detects 19

million synapses (neural connections) that it writes to spatial database. Write

throughput limits performance. The workload labels 19,462,656 synapses in a

3-d array using 16 parallel threads. The workload has 19,462,656 unaligned

writes of about 1000 bytes on average and updates 2,697,487 unique pages.
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For experiments with multiple application threads, we dynamically dispatch small

batches of I/O using a shared work queue so that all threads finish at nearly the same

time, regardless of system and workload heterogeneity.

We measure the performance of Linux page cache with careful optimizations. We

install Linux software RAID on the SSD array and install XFS on software RAID. We

run 256 threads to issue requests in parallel to Linux page cache in order to provide

sufficient I/O requests to the SSD array. We disable read ahead to avoid the kernel to

read unnecessary data. Each thread opens the data file by itself because concurrent

updates on a file handler in a NUMA machine leads to expensive inter-processor cache

line invalidation. As shown in the previous section, XFS does not support parallel

write, we only measure read performance.

Random Workloads:

The first experiment demonstrates that set-associative caching relieves the proces-

sor bottleneck on page replacement. We run the uniform random workload with no

cache hits and measure IOPS and CPU utilization (Figure 2.7). CPU cycles bound

the IOPS of the Linux cache when run from a single processor—its best configuration.

Linux uses all cycles on all 8 CPU cores to achieves 641K IOPS. The set-associative

cache on the same hardware runs at under 80% CPU utilization and increases IOPS

by 20% to the maximal performance of the SSD hardware. Running the same work-

load across the entire machine increases IOPS by another 20% to almost 950K for

NUMA-SA. The same hardware configuration for Linux results in an IOPS collapse.
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Figure 2.7: IOPS and CPU for random read (0% cache hit rate).

Besides the poor performance of software RAID, a NUMA machine also amplifies

locking overhead on the Linux page cache. The severe lock contention in the NUMA

machine is caused by higher parallelism and more expensive cache line invalidation.

A comparison of IOPS as a function of cache hit rate reveals that the set-associative

caches outperform the Linux cache at high hit rates and that caching is necessary to

realize application performance. We measure IOPS under the uniform random work-

load for the Linux cache, with set-associative caching, and without caching (SAFS).

Overheads in the the Linux page cache make the set-associative cache realize roughly

30% more IOPS than Linux at all cache hit rates (Figure 2.8(a)). The overheads

come from different sources at different hit rates. At 0% the main overhead comes

from I/O and cache replacement. At 95% the main overhead comes from the Linux

virtual file system76 and page lookup on the cache index.

Non-uniform memory widens the performance gap (Figure 2.8). In this exper-

iment application threads run on all processors. NUMA-SA effectively avoids lock
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contention and reduces remote memory access, but Linux page cache has severe lock

contention in the NUMA machine. This results in a factor of four improvement in

user-perceived IOPS when compared with the Linux cache. Notably, the Linux cache

does not match the performance of SAFS (with no cachcing) until a 75% cache hit

rate, which reinforces the concept that lightweight I/O processing is equally important

as caching to realize high IOPS.

The user-perceived I/O performance increases linearly with cache hit rates. This

is true for set-associative caching, NUMA-SA, and Linux. The amount of CPU and

effectiveness of the CPU dictates relative performance. Linux is always CPU bound.

The Impact of Page Set Size:

An important parameter in a set-associative cache is the size of a page set. The

parameter defines a tradeoff between cache hit rate and CPU overhead within a page

set. Smaller pages sets reduce cache hit rate and interference. Larger page sets better

approximate global caches, but increase contention and the overhead of page lookup

and eviction.

The cache hit rates provide a lower bound on the page set size. Figure 2.9 shows

that the page set size has a limited impact on the cache hit rate. Although a larger

page set size increases the hit rate in all workloads, it has more noticeable impact on

the YCSB workload. Once the page set size increase beyond 12 pages per set, there

are minimal benefits to cache hit rates.

We choose the smallest page set size that provides good cache hit rates across all
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Figure 2.8: User-perceived IOPS as a function of cache hit rate.

workloads. CPU overhead dictates small page sets. CPU increases with page set size

by up to 4.3%. Cache hit rates result in better user-perceived performance by up to

3%. We choose 12 pages as the default configuration and use it for all subsequent

experiments.

Cache Hit Rates:

We compare the cache hit rate of the set-associative cache with other page eviction

policies in order to quantify how well a cache with restricted associativity emulates
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a global cache61 on a variety of workloads. Figure 2.10 compares the Clock-Pro page

eviction variant used by Linux.77 We also include the cache hit rate of GClock58 on

a global page buffer. For the set-associative cache, we implement these replacement

policies on each page set as well as least-frequently used (LFU). When evaluating the

cache hit rate, we use the first half of a sequence of accesses to warm the cache and

the second half to evaluate the hit rate.

The set-associative has a cache hit rate comparable to a global page buffer. It may

lead to lower cache hit rate than a global page buffer for the same page eviction policy,

as shown in the YCSB case. For workloads such as YCSB, which are dominated by

frequency, LFU can generate more cache hits. It is difficult to implement LFU in a

global page buffer, but it is simple in the set-associative cache due to the small size

of a page set. We refer to13 for more detailed description of LFU implementation in

the set-associative cache.
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Figure 2.10: The cache hit rate of different cache designs under different workloads.

Performance on Real Workloads:

For user-perceived performance, the increased IOPS from hardware overwhelms

any losses from decreased cache hit rates. Figure 2.11 shows the performance of set-

associative and NUMA-SA caches in comparison to Linux’s best performance under

the Neo4j, YCSB, and Synapse workloads, Again, the Linux page cache performs best

on a single processor.

The set-associative cache performs much better than Linux page cache under

real workloads. The Linux page cache achieves around 50–60% of the maximal per-

formance for read-only workloads (Neo4j and YCSB). Furthermore, it delivers only

8,000 IOPS for an unaligned-write workload (Synapses). The poor performance of

Linux page cache results from the exclusive locking in XFS, which only allows one

thread to access the page cache and issue one request at a time to the block devices.
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Figure 2.11: The performance of the set-associative cache on real workloads

2.6 Conclusion

We present a user-space filesystem called SAFS that achieves more than one mil-

lion random read IOPS running on an array of commodity SSDs. SAFS builds on

top of a local file system on each SSD in order to aggregates their IOPS. It also cre-

ates dedicated threads for I/O to each SSD. These threads access the SSD and file

exclusively, which eliminates lock contention in the file and device interfaces. The

design amplifies IOPS by 3.5 times and realizes nearly the full potential of the SSD

hardware, less than 1% loss for reads and 2.4% for writes.

In SAFS, we deploy a set-associative parallel page cache designed for non-uniform

memory architectures. The design divides the global page cache into many small,

independent sets, which reduces lock contention. For NUMA architectures, the design

minimizes the CPU overhead associated with remote memory copies through a hybrid

SMP and message passing programming model. Each processor is treated as a node

in a distributed system and inter-processor operations exchange messages through
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rendezvous queues served by a dedicated thread pool. The multiple cores of each

processor are programmed as an SMP. With page caching, user-perceived throughput

grows linearly with the cache hit rate up to 16 million IOPS, more than four times

that realized by Linux. Our optimizations in the parallel page cache achieve good

performance for all request sizes and synchronous write performs nearly as well as

asynchronous write.

As a whole, the design alleviates bottlenecks associated with lock contention, CPU

overhead, and remote memory copies across many layers of hardware and software.

The design captures parallelism and non-uniform performance of modern hardware

to realize world-class performance for commodity SSDs.
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Chapter 3

FlashGraph

This chapter describes FlashGraph, a general-purpose graph processing frame-

work built on top of SAFS for massive graphs. By utilizing commodity SSDs through

SAFS, FlashGraph enables a multicore server to process graphs with billions of ver-

tices and hundreds of billions of edges, with minimal performance loss. FlashGraph

processes graphs in a semi-external memory fashion, i.e., it stores vertex state in mem-

ory and edge lists on SSDs. It hides latency by overlapping computation with I/O. To

save I/O bandwidth, FlashGraph only accesses edge lists requested by applications

from SSDs; to increase I/O throughput and reduce CPU overhead for I/O, it conser-

vatively merges I/O requests. These designs maximize performance for applications

with different I/O characteristics. FlashGraph exposes a general and flexible vertex-

centric programming interface that can express a wide variety of graph algorithms

and their optimizations. We demonstrate that FlashGraph in semi-external memory
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performs many algorithms with performance up to 80% of its in-memory implemen-

tation and significantly outperforms PowerGraph, a popular distributed in-memory

graph engine.

3.1 Introduction

Large-scale graph analysis has emerged as a fundamental computing pattern in

both academia and industry. This has resulted in specialized software ecosystems

for scalable graph computing in the cloud with applications to web structure and

social networking,18,37 machine learning,38 and network analysis.49 The graphs are

massive: Facebook’s social graph has billions of vertices and today’s web graphs are

much larger.

The workloads from graph analysis present great challenges to system designers.

Algorithms that perform edge traversals on graphs induce many small, random I/Os,

because edges encode non-local structure among vertices and many real-world graphs

exhibit a power-law distribution on the degree of vertices. As a result, graphs cannot

be clustered or partitioned effectively78 to localize access. While good partitions may

be important for performance,4 leading systems partition natural graphs randomly.5

Graph processing engines have converged on a design that (i) stores graph parti-

tions in the aggregate memory of a cluster, (ii) encodes algorithms as parallel pro-

grams against the vertices of the graph, and (iii) uses either distributed shared mem-
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ory5,38 or message passing18,37,39 to communicate between non-local vertices. Plac-

ing data in memory reduces access latency when compared to disk drives. Network

performance, required for communication between graph partitions, emerges as the

bottleneck and graph engines require fast networks to realize good performance.

Recent work has turned back to processing graphs from disk drives on a single

machine19,20 to achieve scalability without excessive hardware. These engines are

optimized for the sequential performance of magnetic disk drives; they eliminate

random I/O by scanning the entire graph dataset. This strategy can be wasteful

for algorithms that access only small fractions of data during each iteration. For

example, breadth-first search, a building block for many graph applications, only

processes vertices in a frontier. PageRank3 starts processing all vertices in a graph,

but as the algorithm progresses, it narrows to a small subset of active vertices. There

is a huge performance gap between these systems and in-memory processing.

We present FlashGraph, a semi-external memory graph-processing engine that

meets or exceeds the performance of in-memory engines and allows graph problems to

scale to the capacity of semi-external memory. Semi-external memory26,49 maintains

algorithmic vertex state in RAM and edge lists on storage. The semi-external memory

model avoids writing data to SSDs. Only using memory for vertices increases the

scalability of graph engines in proportion to the ratio of edges to vertices in a graph,

more than 35 times for our largest graph of Web page crawls. FlashGraph uses an

array of solid-state drives (SSDs) to achieve high throughput and low latency to
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storage. Unlike magnetic disk-based engines, FlashGraph supports selective access to

edge lists.

Although SSDs can deliver high IOPS, we overcome many technical challenges to

construct a semi-external memory graph engine with performance comparable to an

in-memory graph engine. The throughput of SSDs are an order of magnitude less

than DRAM and the I/O latency is multiple orders of magnitude slower. Also, I/O

performance is extremely non-uniform and needs to be localized. Finally, high-speed

I/O consumes many CPU cycles, interfering with graph processing.

We build FlashGraph on top of a user-space SSD file system called SAFS12 to

overcome these technical challenges. The set-associative file system (SAFS) refactors

I/O scheduling, data placement, and data caching for the extreme parallelism of

modern NUMA multiprocessors. The lightweight SAFS cache enables FlashGraph to

adapt to graph applications with different cache hit rates. We integrate FlashGraph

with the asynchronous user-task I/O interface of SAFS to reduce the overhead of

accessing data in the page cache and memory consumption, as well as overlapping

computation with I/O.

FlashGraph issues I/O requests carefully to maximize the performance of graph

algorithms with different I/O characteristics. It reduces I/O by only accessing edge

lists requested by applications and using compact external-memory data structures.

It reschedules I/O access on SSDs to increase the cache hits in the SAFS page cache.

It conservatively merges I/O requests to increase I/O throughput and reduces CPU
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overhead by I/O.

Our results show that FlashGraph in semi-external memory achieves performance

comparable to its in-memory version and Galois,28 a high-performance, in-memory

graph engine with a low-level API, on a wide-variety of algorithms that generate

diverse access patterns. FlashGraph in semi-external memory mode significantly out-

performs PowerGraph, a popular distributed in-memory graph engine. We further

demonstrate that FlashGraph can process massive natural graphs in a single machine

with relatively small memory footprint; e.g., we perform breadth-first search on a

graph of 3.4 billion vertices and 129 billion edges using only 22 GB of memory. Given

the fast performance and small memory footprint, we conclude that FlashGraph offers

unprecedented opportunities for users to perform massive graph analysis efficiently

with commodity hardware.

3.2 Related Work

MapReduce6 is a general large-scale data processing framework. PEGASUS21 is

a popular graph processing engine whose architecture is built on MapReduce. PE-

GASUS respects the nature of the MapReduce programming paradigm and expresses

graph algorithms as a generalized form of sparse matrix-vector multiplication. This

form of computation works relatively well for graph algorithms such as PageRank3

and label propagation,34 but performs poorly for graph traversal algorithms.
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Several other works41,42 perform graph analysis using linear algebra with sparse

adjacency matrices and vertex-state vectors as data representations. In this ab-

straction, PageRank and label propagation are efficiently expressed as sparse-matrix,

dense-vector multiplication, and breadth-first search as sparse-matrix, sparse-vector

multiplication. These frameworks target mathematicians and those with the ability

to formulate and express their problems in the form of linear algebra.

Pregel18 is a distributed graph-processing framework that allows users to ex-

press graph algorithms in vertex-centric programs using bulk-synchronous processing

(BSP). It abstracts away the complexity of programming in a distributed-memory

environment and runs users’ code in parallel on a cluster. Giraph37 is an open-source

implementation of Pregel.

Many distributed graph engines adopt the vertex-centric programming model and

express different designs to improve performance. GraphLab38 and PowerGraph5 pre-

fer shared-memory to message passing and provide asynchronous execution. Flash-

Graph supports both pulling data from SSDs and pushing data with message passing.

FlashGraph does provide asynchronous execution of vertex programs to overlap com-

puting with data access. Trinity39 optimizes message passing by restricting vertex

communication to a vertex and its direct neighbors.

Ligra79 is a shared-memory graph processing framework and its programming

interface is specifically optimized for graph traversal algorithms. It is not as general

as other graph engines such as Pregel, GraphLab, PowerGraph, and FlashGraph.
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Furthermore, Ligra’s maximum supported graph size is limited by the memory size

of a single machine.

Galois28 is a graph programming framework with a low-level abstraction to imple-

ment graph engines. The core of the Galois framework is its novel task scheduler. The

dynamic task scheduling in Galois is orthogonal to FlashGraph’s I/O optimizations

and could be adopted.

GraphChi19 and X-stream20 are specifically designed for magnetic disks. They

eliminate random data access from disks by scanning the entire graph dataset in each

iteration. Like graph processing frameworks built on top of MapReduce, they work

relatively well for graph algorithms that require computation on all vertices, but share

the same limitations, i.e., suboptimal graph traversal algorithm performance.

TurboGraph40 is an external-memory graph engine optimized for SSDs. Like

FlashGraph, it reads vertices selectively and fully overlaps I/O and computation.

TurboGraph targets graph algorithms expressed in sparse matrix vector multiplica-

tion, so it is difficult to implement graph applications such as triangle counting. It

uses much larger I/O requests than FlashGraph to read vertices selectively due to

its external-memory data representation. Furthermore, it targets graph analysis on

a single SSD or a small SSD array and does not aim at performance comparable to

in-memory graph engines.

Abello et al.26 introduced the semi-external memory algorithmic framework for

graphs. Pearce et al.49 implemented several semi-external memory graph traversal
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algorithms for SSDs. FlashGraph adopts and advances several concepts introduced

by these works.

3.3 Design

FlashGraph is a semi-external memory graph engine optimized for any fast I/O

device such as Fusion I/O or arrays of solid-state drives (SSDs). It stores the edge

lists of vertices on SSDs and maintains vertex state in memory. FlashGraph runs

on top of the set-associative file system (SAFS),12 a user-space filesystem designed

to realize both high IOPS and lightweight caching for SSD arrays on non-uniform

memory and I/O systems.

We design FlashGraph with two goals: to achieve performance comparable to in-

memory graph engines while realizing the increased scalability of the semi-external

memory execution model; to have a concise and flexible programming interface to

express a wide variety of graph algorithms, as well as their optimizations.

To optimize performance, we design FlashGraph with the following principles:

Reduce I/O: Because SSDs are an order of magnitude slower than RAM, FlashGraph

saturates the I/O channel in many graph applications. Reducing the amount of I/O

for a given algorithm directly improves performance. FlashGraph (i) compacts data

structures, (ii) maximizes cache hit rates and (iii) performs selective data access to

edge lists.
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Perform sequential I/O when possible: Even though SSDs provide high IOPS

for random access, sequential I/O always outperforms random I/O and reduces the

CPU overhead of I/O processing in the kernel.

Maximize cache hit rates: The high-speed I/O of SSDs is still an order of mag-

nitude slower than RAM. I/O will be the bottleneck if SSDs serve all data for graph

processing. Careful scheduling by the graph engine orders data accesses to increase

data reuse in the page cache.

Reduce random memory access: Random access in RAM reduces the effective-

ness of CPU caches and decreases memory bandwidth. It is as important to access

vertices sequentially (from memory) as it is to access edges sequentially (from SSDs).

Overlap I/O and Computation: To fully utilize multicore processors and SSDs

for data-intensive workloads, one must initiate many parallel I/Os and process data

when it is ready.

Avoid remote memory access: Modern multi-proessor systems have non-uniform

memory architectures (NUMA) in which regions of memory associate with processors.

Accessing remote memory (of another processor) has higher latency, lower bandwidth,

and causes overhead and contention on the remote processor.

Minimize wearout: SSDs wear out after many writes, especially for consumer SSDs.

Therefore, it is important to minimize writes to SSDs. This includes avoiding writing

data to SSDs during the application execution and reducing the necessity of loading
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graph data to SSDs multiple times for the same graph.

In practice, selective data access and performing sequential I/O conflict. Selec-

tive data access prevents us from generating large sequential I/O, while using large

sequential I/O may bring in unnecessary data from SSDs in many graph applica-

tions. For SSDs, FlashGraph places a higher priority in reducing the number of bytes

read from SSDs than in performing sequential I/O because the random (4KB) I/O

throughput of SSDs today is only two or three times less than their sequential I/O. In

contrast, hard drives have random I/O throughput two orders of magnitude smaller

than their sequential I/O. Therefore, other external-memory graph engines such as

GraphChi and X-stream place a higher priority in performing large sequential I/O.

3.3.1 SAFS

SAFS12 is a user-space filesystem for high-speed SSD arrays in a NUMA machine.

It is implemented as a library and runs in the address space of its application. It is

deployed on top of the Linux native filesystem.

SAFS reduces overhead in the Linux block subsystem, enabling maximal perfor-

mance from an SSD array. It deploys dedicated per-SSD I/O threads to issue I/O

requests with Linux AIO to reduce locking overhead in the Linux kernel; it refactors

I/Os from applications and sends them to I/O threads with message passing. Further-

more, it has a scalable, lightweight page cache that organizes pages in a hashtable and

places multiple pages in a hashtable slot.13 This page cache reduces locking overhead
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and incurs little overhead when the cache hit rate is low; it increases application-

perceived performance linearly along with the cache hit rate.

To better support FlashGraph, we add an asynchronous user-task I/O interface to

SAFS. This I/O interface supports general-purpose computation in the page cache,

avoiding the pitfalls of Linux asynchronous I/O. To achieve maximal performance,

SSDs require many parallel I/O requests. This could be achieved with user-initiated

asynchronous I/O. However, this asynchronous I/O requires the allocation of user-

space buffers in advance and the copying of data into these buffers. This creates

processing overhead from copying and further pollutes memory with empty buffers

waiting to be filled. When an application issues a large number of parallel I/O re-

quests, the empty buffers account for substantial memory consumption. In the SAFS

user-task programming interface, an application associates a user-defined task with

each I/O request. Upon completion of a request, the associated user task executes

inside the filesystem, accessing data in the page cache directly. Therefore, there is no

memory allocation and copy for asynchronous I/O.

3.3.2 The architecture of FlashGraph

We build FlashGraph on top of SAFS to fully utilize the high I/O throughput

provided by the SSD array (Figure 3.1). FlashGraph solely uses the asynchronous

user-task I/O interface of SAFS to reduce the overhead of accessing data in the

page cache, memory consumption, as well as overlapping computation with I/O.
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Figure 3.1: The architecture of FlashGraph.

FlashGraph uses the scalable, lightweight SAFS page cache to buffer the edge lists

from SSDs so that FlashGraph can adapt to applications with different cache hit

rates.

A graph algorithm in FlashGraph is composed of many vertex programs that run

inside the graph engine. Each vertex program represents a vertex and has its own

user-defined state and logic. The execution of vertex programs is subject to scheduling

by FlashGraph. When vertex programs need to access data from SSDs, FlashGraph

issues I/O requests to SAFS on behalf of the vertex programs and pushes part of

their computation to SAFS.

3.3.3 Programming model

FlashGraph aims at providing a flexible programming interface to express a variety

of graph algorithms and their optimizations. FlashGraph adopts the vertex-centric

programming model commonly used by other graph engines such as Pregel18 and

PowerGraph.5 In this programming model, each vertex maintains vertex state and

performs user-defined tasks based on its own state. A vertex affects the state of others
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by sending messages to them as well as activating them. We further allow a vertex

to read the edge list of any vertex from SSDs.

The run method (Figure 3.2) is the entry point of a vertex program in an itera-

tion. It is scheduled and executed exactly once on each active vertex. It is designed

intentionally to have only access the vertex’s own state in this method. A vertex

must explicitly request its own edge list before accessing it because it is common that

vertices are activated but do not perform any computation. Reading a vertex’s edge

list by default before executing its run method wastes I/O bandwidth.

The rest of FlashGraph’s programming interface is event-driven to overlap com-

putation and I/O, and receive notifications from the graph engine and other vertices.

A vertex may receive three types of events:

• when it receives the edge list of a vertex, FlashGraph executes its run on vertex

method.

• when it receives a message, FlashGraph executes its run on message method.

This method is executed even if a vertex is inactive in the iteration.

• when the iteration comes to an end, FlashGraph executes its run on iteration end

method. A vertex needs to request this notification explicitly.

Given the programming interface, breadth-first search can be simply expressed as

the code in Figure 3.3. If a vertex has not been visited, it issues a request to read its

edge list in the run method and activates its neighbors in the run on vertex method.

In this example, vertices do not receive other events.
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class vertex {

// entry point (runs in memory)

void run(graph_engine &g);

// per vertex computation (runs in the SAFS page cache)

void run_on_vertex(graph_engine &g, page_vertex &v);

// process a message (runs in memory)

void run_on_message(graph_engine &g, vertex_message &msg);

// run at the end of an iteration when all active vertices

// in the iteration are processed.

void run_on_iteration_end(graph_engine &g);

};

Figure 3.2: The programming interface of FlashGraph.

class bfs_vertex: public vertex {

bool has_visited = false;

void run(graph_engine &g) {

if (!has_visited) {

vertex_id_t id = g.get_vertex_id(*this);

// Request the edge list of the vertex from SAFS

request_vertices(&id, 1);

has_visited = true;

}

}

void run_on_vertex(graph_engine &g, page_vertex &v) {

vertex_id_t dest_buf[];

v.read_edges(dest_buf);

g.activate_vertices(dest_buf, num_dests);

}

};

Figure 3.3: Breadth-first search in FlashGraph.

This interface is designed for better flexibility and gives users fine-grained pro-

grammatic control. For example, a vertex has to explicitly request its own edge list

so that a graph application can significantly reduce the amount of data brought to

memory. Furthermore, the interface does not constrain the vertices that a vertex

can communicate with or the edge lists that a vertex can request from SSDs. This

flexibility allows FlashGraph to handle algorithms such as Louvain clustering,23 in

which changes to the topology of the graph occur during computation. It is difficult

to express such algorithms with graph frameworks in which vertices can only interact
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with direct neighbors.

3.3.4 Execution model

FlashGraph proceeds in iterations when executing graph algorithms written with

the programming interface in Figure 3.2. In each iteration, FlashGraph processes the

vertices activated in the previous iteration. An iteration ends when all active vertices

complete computation; an algorithm ends when there are no active vertices in the

next iteration.

As shown in Figure 3.4, FlashGraph splits a graph into multiple partitions and

assigns a worker thread to each partition to process vertices. Each worker thread

maintains a queue of active vertices within its own partition and executes user-defined

vertex programs on them. FlashGraph’s scheduler both manages the order of execu-

tion of active vertices and guarantees only a fixed number of running vertices in a

thread.

There are three possible states for a vertex: (i) running, (ii) active, or (iii) in-

active. A vertex can be activated either by other vertices or the graph engine itself.

An active vertex enters the running state when the graph engine schedules it to run.

During the execution, an active vertex can issue I/O requests to access the edge lists

of itself and other vertices on SSDs. It remains in the running state until it finishes

its task in the current iteration and becomes inactive. A running vertex interacts

with other vertices via message passing and requests the notification of the end of an
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Figure 3.4: Execution model in FlashGraph.

iteration. When a vertex is inactive in an iteration, it still needs to respond to the

messages from other vertices.

3.3.4.1 Message passing

Message passing avoids concurrent data access to the state of other vertices. A

semi-external memory graph engine cannot push data to other vertices by embedding

data on edges like PowerGraph.5 Writing data to other vertices directly can cause race

conditions and requires atomic operations or locking for synchronization on vertex

state. Message passing is a light-weight alternative for pushing data to other vertices.

Although message passing requires synchronization to coordinate messages, it hides

explicit synchronization from users and provides a more user-friendly programming

interface. Furthermore, we can bundle multiple messages in a single packet to reduce

synchronization overhead.

We implement a customized message passing scheme for vertex communication
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in FlashGraph. The worker threads send and receive messages on behalf of vertices

and buffer messages to improve performance. To reduce memory consumption, we

process messages and pass them to vertices when the buffer accumulates a certain

number of messages.

FlashGraph supports multicast to avoid unnecessary message duplication. It is

common that a vertex needs to send the same message to many other vertices. In this

case point-to-point communication causes unnecessary message duplication. With

multicast, FlashGraph simply copies the same message once to each thread. We

implement vertex activation with multicast since activation messages contain no data

and are identical.

3.3.4.2 Synchronous vs. asynchronous computation

A side effect of passing messages to vertices during an iteration is that Flash-

Graph supports asynchronous computation. When the state of a vertex is changed

by a message, the new state can be immediately exposed to other vertices in the same

iteration. It has been demonstrated that asynchronous computation has a faster con-

vergence rate than synchronous computation for many graph algorithms.38,80 How-

ever, asynchronous computation is non-deterministic and some graph algorithms do

not converge when they run asynchronously.

FlashGraph provides an additional interface for programmers to enable synchronous

computation. FlashGraph’s approach is similar to Naiad.9 It allows a vertex to re-
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quest a notification at the end of an iteration independently. At the end of an it-

eration, FlashGraph invokes run on iteration end on the vertices that requested

notification during the iteration. To enable synchronous computation, each vertex

maintains two copies of vertex state: current state and future state. When receiving

a message, a vertex only updates the future state. At the end of an iteration, the

vertex replaces its current state with its future state.

3.3.5 Data representation in FlashGraph

FlashGraph uses compact data representations both in memory and on SSDs. A

smaller in-memory data representation allows us to process a larger graph and use

a larger SAFS page cache to improve performance. A smaller data representation

on SSDs allows us to pull more edge lists from SSDs in the same amount of time,

resulting in better performance.

3.3.5.1 In-memory data representation

FlashGraph maintains the following data structures in memory: (i) a graph in-

dex for accessing edge lists on SSDs; (ii) user-defined algorithmic vertex state of all

vertices; (iii) vertex status used by FlashGraph; (iv) per-thread message queues. To

save space, we choose to compute some vertex information at runtime, such as the

location of an edge list on SSDs and vertex ID.

The graph index stores a small amount of information for each edge list and
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compute their location and size at runtime (Figure 3.5). Storing both the location and

size in memory would require a significant amount of memory: 12 bytes per vertex in

an undirected graph and 24 bytes in a directed graph. Instead, for almost all vertices,

we can use one byte to store the vertex degree for an undirected vertex and two bytes

for a directed vertex. Knowing the vertex degree, we can compute the edge list size

and further compute their locations, since edge lists on SSDs are sorted by vertex

ID. To balance computation overhead and memory space, we store the locations

of a small number of edge lists in memory. By default, we store one location for

every 32 edge lists, which makes computation overhead almost unnoticeable while the

amortized memory overhead is small. In addition, we store the degree of large vertices

(≥ 255) in a hash table. Most real-world graphs follow the power-law distribution in

vertex degree, so there are only a small number of vertices in the hash table. In our

default configuration, each vertex in the index uses slightly more than 1.25 bytes in

an undirected graph and slightly more than 2.5 bytes in a directed graph.

Users define algorithmic vertex state in vertex programs. The semi-external mem-

ory execution model requires the size of vertex state to be a small constant so Flash-

Graph can keep it in memory throughout execution. In our experience, the algorith-

mic vertex state is usually small. For example, breadth-first search only needs one

byte for each vertex (Figure 3.3). Many graph algorithms we implement use no more

than eight bytes for each vertex. Many graph algorithms need to access the vertex

ID that vertex state belongs to in a vertex program. Instead of storing the vertex
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ID with vertex state, we compute the vertex ID based on the address of the vertex

state in memory. It is cheap to compute vertex ID most of the time. It becomes rel-

atively more expensive to compute when FlashGraph starts to balance load because

FlashGraph needs to search multiple partitions for the vertex state (Section 3.3.8.1).

3.3.5.2 External-memory data representation

FlashGraph stores edges and edge attributes of vertices on SSDs. To amortize the

overhead of constructing a graph for analysis in FlashGraph and reduce SSD wearout,

we use a single external-memory data structure for all graph algorithms supported

by FlashGraph. Since SSDs are still several times slower than RAM, the external-

memory data representation in FlashGraph has to be compact to reduce the amount

of data accessed from SSDs.

Figure 3.5 shows the data representation of a graph on SSDs. An edge list has

a header, edges and edge attributes. Edge attributes are stored separately from

edges so that graph applications avoid reading attributes when they are not required.

This strategy is already successfully employed by many database systems.81 All of

the edge lists stored on SSDs are ordered by vertex ID, given by the input graph.

Vertex numbering can greatly affect the performance. A good one increases data

locality for adjacency list access on SSDs as well as message passing. In the future

work, we will explore different vertex ordering schemes such as shingle ordering82 and

SlashBurn,83 or even use graph clustering schemes such as spectral clustering25 and
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Figure 3.5: The data representation of a directed graph in FlashGraph. During
computation, the graph index is maintained in memory and the in-edge and out-edge
lists are accessed from SSDs.

Louvain clustering23 to reorder vertices.

FlashGraph stores the in-edge and out-edge list of a vertex separately for a directed

graph. Many graph applications require only one type of edge. As such, storing both

in-edges and out-edges of a vertex together would cause FlashGraph to read more

data from SSDs. If a graph algorithm does require both in-edges and out-edges

of vertices, having separate in-edge and out-edge lists could potentially double the

number of I/O requests. However, FlashGraph merges I/O requests (Section 3.3.6),

which significantly alleviates this problem.

3.3.6 Edge list access on SSDs

Graph algorithms exhibit varying I/O access patterns in the semi-external memory

computation model. The most prominent is that each vertex accesses only its own

edge list. In this category, graph algorithms such as PageRank3 access all edge lists

of a graph in an iteration; graph traversal algorithms require access to many edge

lists in some of their iterations on most real-world graphs. A less common category of

graph algorithms, such as triangle counting, require a vertex to access the edge lists
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of many other vertices as well. FlashGraph supports all of these access patterns and

optimizes them differently.

Given the good random I/O performance of SSDs, FlashGraph selectively accesses

the edge lists required by graph algorithms. Most graph algorithms only need to access

a subset of edge lists within an iteration. External-memory graph engines such as

GraphChi19 and X-Stream20 that sequentially access all edge lists in each iteration

waste I/O bandwidth despite avoiding random I/O access. Selective access is superior

to sequentially accessing the entire graph in each iteration and significantly reduces

the amount of data read from SSDs.

FlashGraph merges I/O requests to maximize its performance. During an iteration

of most algorithms, there are a large number of vertices that will likely request many

edge lists from SSDs. Given this, it is likely that multiple edge lists required are

stored nearby on SSDs, giving us the opportunity to merge I/O requests.

FlashGraph globally sorts and merges I/O requests issued by all active state ver-

tices for applications where each vertex requests a single edge list within an iteration.

FlashGraph relies on its vertex scheduler (Section 3.3.7) to order all I/O requests

within the iteration. We only merge I/O requests when they access either the same

page or adjacent pages on SSDs. To minimize the amount of data brought from

SSDs, the minimum I/O block size issued by FlashGraph is one flash page (4KB).

As a result, an I/O request issued by FlashGraph varies from as small as one page

to as large as many megabytes to benefit graph algorithms with various I/O access
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Figure 3.6: FlashGraph accesses edge lists and merges I/O requests.

patterns.

Figure 3.6 illustrates the process of selectively accessing edge lists on SSDs and

merging I/O requests. In this example, the graph algorithm requests the in-edge

lists of four vertices: v1, v2, v6 and v8. FlashGraph issues I/O requests to access

these edge lists from SSDs. Due to our merging criteria, FlashGraph merges I/O

requests for v1 and v2 into a single I/O request because they are on the same page,

and merges v6 and v8 into a single request because they are on adjacent pages. As a

result, FlashGraph only needs to issue two, as opposed to four, I/O requests to access

four edge lists in this example.

In the less common case that a vertex requests edge lists of multiple vertices,

FlashGraph must observe I/O requests issued by all running state vertices before

sorting them. In this case, FlashGraph can no longer rely on its vertex scheduler to

reorder I/O requests in an iteration. The more requests FlashGraph observes, the

more likely it is to merge them and generate cache hits. FlashGraph is only able to

observe a relatively small number of I/O requests, compared to the size of a graph,

due to the memory constraint. It is in this less common case that FlashGraph relies

on SAFS to merge I/O requests to reduce memory consumption. Finally, to further
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increase I/O merging and cache hit rates, FlashGraph uses a flexible vertical graph

partitioning scheme (Section 3.3.8).

3.3.7 Vertex scheduling

Vertex scheduling greatly affects the performance of graph algorithms. Intelligent

scheduling accelerates the convergence rate and improves I/O performance. Flash-

Graph’s default scheduler aims to decrease the number of I/O accesses and increase

page cache hit rates. FlashGraph also allows users to customize the vertex scheduler

to optimize for the I/O access pattern and accelerate the convergence of their algo-

rithms. For example, scan statistics84 in Section 3.4 requires large-degree vertices to

be scheduled first to skip expensive computation on the majority of vertices.

FlashGraph deploys a per-thread vertex scheduler. Each thread schedules vertices

in its own partition independently. This strategy simplifies implementation and re-

sults in framework scalability. The per-thread scheduler keeps multiple active vertices

in the running state so that FlashGraph can observe then merge many I/O requests

issued by vertex programs. In general, FlashGraph favors a large number of running

state vertices because it allows FlashGraph to merge more I/O requests to improve

performance. In practice, performance improvement is no longer noticeable past 4000

running state vertices per thread.

The default scheduler processes vertices ordered by vertex ID. This scheduling

maximizes merging I/O requests for most graph algorithms because vertices request
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their own edge lists in most graph algorithms and edge lists are ordered by vertex

ID on SSDs. For algorithms in which vertex ordering does not affect the convergence

rate, the default scheduler alternates the direction that it scans the queue of active

vertices between iterations. This strategy results in pages accessed at the end of the

previous iteration being accessed at the beginning of the current iteration, potentially

increasing the cache hit rate.

3.3.8 Graph partitioning

FlashGraph partitions a graph in two dimensions at runtime (Figure 3.7), inspired

by two-dimension matrix partitioning. It assigns each vertex to a partition for parallel

processing, shown as horizontal partitioning in Figure 3.7. FlashGraph applies the

horizontal partitioning in all graph applications. In addition, it provides a flexible

runtime edge list partitioning scheme within a horizontal partition, shown as vertical

partitioning in Figure 3.7. This scheme, when coupled with the vertex scheduling,

can increase the page cache hit rate for applications that require a vertex to access the

edge lists of many vertices because this increases the possibility that multiple threads

share edge list data in the cache by accessing the same edge lists concurrently.

FlashGraph assigns a worker thread to each horizontal partition to process vertices

in the partition independently. The worker threads are associated with specific hard-

ware processors. When a thread processes vertices in its own partition, all memory

accesses to the vertex state are localized to the processor. As such, our partitioning
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Figure 3.7: An example of 2D partitioning on a graph of n vertices, visualized as an
adjacency matrix. In this example, the graph is split into two horizontal partitions
and four vertical partitions. The size of a range in a horizontal partition is two. v

i,j

represents vertical partition j of vertex i. The arrows show the order in which the
vertical partitions of vertices in horizontal partition 0 are executed in a worker thread.

scheme maximizes data locality in memory access within each processor.

FlashGraph applies a range partitioning function to horizontally partition a graph.

The function performs a right bit shift on a vertex ID by a predefined number r and

takes the modulo of the shifted result:

range id = vid >> r

partition id = range id % n

As such, a partition consists of multiple vertex ID ranges and the size of a range

is determined by a tunable parameter r. n denotes the number of partitions. All

vertices in a partition are assigned to the same worker thread.

Range partitioning helps FlashGraph to improve spatial data locality for disk I/O

in many graph applications. FlashGraph uses a per-thread vertex scheduler (Section
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3.3.7) that optimizes I/O based on its local knowledge. With range partitioning, the

edge lists of most vertices in the same partition are located adjacently on SSDs, which

helps the per-thread vertex scheduler issue a single large I/O request to access many

edge lists. The range size needs to be at least as large as the number of vertices

being processed in parallel in a thread. However, a very large range may cause load

imbalance because it is difficult to distribute a small number of ranges to worker

threads evenly. We observe that FlashGraph works well for a graph with over 100

million vertices when r is between 12 and 18.

The vertical partitioning in FlashGraph allows programmers to split large vertices

into small parts at runtime. FlashGraph replicates vertex state of vertices that require

vertical partitioning and each copy of the vertex state is referred to as a vertex part.

A user has complete freedom to perform computation on and request edge lists for

a vertex part. In an iteration, the default FlashGraph scheduler executes all active

vertex parts in the first vertical partition and then proceeds to the second one and

so on. To avoid concurrent data access to vertex state, a vertex part communicates

with other vertices through message passing.

The vertical partitioning increases page cache hits for applications that require

vertices to access the edge lists of their neighbors. In these applications, a user can

partition the edge list of a large vertex and assign a vertex part with part of the edge

list. For example, in Figure 3.7, vertex v0 is split into four parts: v0,0 , v0,1 , v0,2 and

v0,3 . Each part v
0,j

is only responsible for accessing the edge lists of its neighbors with
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vertex ID between n
4
× j and n

4
× (j + 1). When the scheduler executes vertex parts

in vertical partition j, only edge lists of vertices with vertex ID between n
4
× j and

n
4
× (j + 1) are accessed from SSDs, thus increasing the likelihood that an edge list

being accessed is in the page cache.

3.3.8.1 Load balancing

FlashGraph provides a dynamic load balancer to address the computational skew

created by high degree vertices in scale-free graphs. In an iteration, each worker thread

processes active vertices in its own partition. Once a thread finishes processing all

active vertices in its own partition, it ‘steals’ active vertices from other threads and

processes them. This process continues until no threads have active vertices left in

the current iteration.

Vertical partitioning assists in load balancing. FlashGraph does not execute com-

putation on a vertex simultaneously in multiple threads to avoid concurrent data

access to the state of a vertex. In the applications where only a few large vertices

dominate the computation of the applications, vertical partitioning breaks these large

vertices into parts so that FlashGraph’s load balancer can move computation of vertex

parts to multiple threads, consequently leading to better load balancing.
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3.4 Applications

We evaluate FlashGraph’s performance and expressiveness with both basic and

complex graph algorithms. These algorithms exhibit different I/O access patterns

from the perspective of the framework, providing a comprehensive evaluation of Flash-

Graph.

Breadth-first search (BFS): It starts with a single active vertex that activates its

neighbors. In each subsequent iteration, the active and unvisited vertices activate

their neighbors for the next iteration. The algorithm proceeds until there are no

active vertices left. This requires only out-edge lists.

Betweenness centrality (BC): We compute BC by performing BFS from a ver-

tex, followed by a back propagation.85 For performance evaluation, we perform this

process from a single source vertex. This requires both in-edge and out-edge lists.

PageRank (PR):3 In our PR, a vertex sends the delta of its most recent PR update

to its neighbors who then update thier own PR accordingly.86 In PageRank, vertices

converge at different rates. As the algorithm proceeds, fewer and fewer vertices are

activated in an iteration. We set the maximal number of iterations to 30, matching

the value used by Pregel.18 This requires only out-edge lists.

Weakly connected components (WCC): WCC in a directed graph is imple-

mented with label propagation.34 All vertices start in their own components, broad-

cast their component IDs to all neighbors, and adopt the smallest IDs they observe.

A vertex that does not receive a smaller ID does nothing in the next iteration. This
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requires both in-edge and out-edge lists.

Triangle counting (TC):87 A vertex computes the intersection of its own edge list

and the edge list of each neighbor to look for triangles. We count triangles on only

one vertex in a potential triangle and this vertex then notifies the other two vertices

of the existence of the triangle via message passing. This requires both in-edge and

out-edge lists.

Scan statistics (SS):84 The SS metric only requires finding the maximal locality

statistic in the graph, which is the maximal number of edges in the neighborhood of a

vertex. We use a custom FlashGraph user-defined vertex scheduler that begins com-

putation on vertices with the largest degree first. With this scheduler, we avoid actual

computation for many vertices resulting in a highly optimized implementation.88 This

requires both in-edge and out-edge lists.

These algorithms fall into three categories from the perspective of I/O access pat-

terns. (1) BFS and betweenness centrality only perform computation on a subset of

vertices in a graph within an iteration, thus they generate many random I/O accesses.

(2) PageRank and (weakly) connected components need to process all vertices at the

beginning, so their I/O access is generally more sequential. (3) Triangle counting and

scan statistics require a vertex to read many edge lists. These two graph algorithms

are more I/O intensive than the others and generate many random I/O accesses.
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3.5 Experimental Evaluation

We evaluate FlashGraph’s performance on the applications in section 3.4 on large

real-world graphs. We compare the performance of FlashGraph with its in-memory

implementation as well as other in-memory graph engines (PowerGraph5 and Ga-

lois28). For in-memory FlashGraph, we replace SAFS with in-memory data struc-

tures for storing edge lists. We also compare semi-external memory FlashGraph with

external-memory graph engines (GraphChi19 and X-Stream20). We further demon-

strate the scalability of FlashGraph on a web graph of 3.4 billion vertices and 129

billion edges. We also perform experiments to justify some of our design decisions that

are critical to achieve performance. Throughout all experiments, we use 32 threads

for all graph processing engines.

We conduct all experiments on a non-uniform memory architecture machine with

four Intel Xeon E5-4620 processors, clocked at 2.2 GHz, and 512 GB memory of

DDR3-1333. Each processor has eight cores. The machine has three LSI SAS 9207-

8e host bus adapters (HBA) connected to a SuperMicro storage chassis, in which

15 OCZ Vertex 4 SSDs are installed. The 15 SSDs together deliver approximately

900, 000 reads per second, or around 60, 000 reads per second per SSD. The machine

runs Linux kernel v3.2.30.

We use the real-world graphs in Table 3.1 for evaluation. The largest graph is the

page graph with 3.4 billion vertices and 129 billion edges. Even the smallest graph

we use has 42 million vertices and 1.5 billion edges. The page graph is clustered by
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Graph datasets # Vertices # Edges Size Diameter
Twitter89 42M 1.5B 13GB 23

Subdomain90 89M 2B 18GB 30
Page90 3.4B 129B 1.1TB 650

Table 3.1: Graph data sets. These are directed graphs and the diameter estimation
ignores the edge direction.

domain, generating good cache hit rates for some graph algorithms.

3.5.1 FlashGraph: in-memory vs. semi-external

memory

We compare the performance of FlashGraph in semi-external memory with that of

its in-memory implementation to measure the performance loss caused by accessing

edge lists from SSDs.

FlashGraph scales by using semi-external memory on SSDs while preserving up to

80% performance of its in-memory implementation (Figure 3.8). In this experiment,

FlashGraph uses a page cache of 1GB and has low cache hit rates in most applications.

BC, WCC and PR perform the best and have only small performance degradation

when running in external memory. Even in the worst cases, external-memory BFS

and TC realize more than 40% performance of their in-memory counterparts on the

subdomain Web graph.

Given around a million IOPS from the SSD array, we observe that most ap-

plications saturate CPU before saturating I/O. Figure 3.9 shows the CPU and I/O

80



CHAPTER 3. FLASHGRAPH: PROCESSING BILLION-NODE GRAPHS ON
AN ARRAY OF COMMODITY SSDS

 0

 0.2

 0.4

 0.6

 0.8

 1

BFS BC WCC PR TC SS

R
e
la

ti
v
e

 p
e
rf

o
rm

a
n
c
e

twitter subdomain

Figure 3.8: The performance of each application run on semi-external memory
FlashGraph with 1GB cache relative to in-memory FlashGraph.

utilization of our applications in semi-external memory on the subdomain Web graph.

Our machine has hyper-threading enabled, which results in 64 hardware threads in a

32-core machine, so 32 CPU cores are actually saturated when the CPU utilization

gets to 50%. Both PageRank and WCC have very sequential I/O and are completely

bottlenecked by the CPU at the beginning. Triangle counting saturates both CPU

and I/O. It generates many small I/O requests and consumes considerable CPU time

in the kernel space (almost 8 CPU cores). BFS generates very high I/O through-

put in terms of bytes per second but has low CPU utilization, which suggests BFS

is most likely bottlenecked by I/O. Although betweenness centrality has exactly the

same I/O access pattern as BFS, it has lower I/O throughput and higher CPU uti-

lization because it requires more computation than BFS. As a result, betweenness

centrality is bottlenecked by CPU most of the time. The CPU-bound applications

tend to have a small performance gap between in-memory and semi-external memory

implementations.
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Figure 3.9: CPU and I/O utilization of FlashGraph on the subdomain Web graph.
PR1 is the first 15 iterations of PageRank and PR2 is the last 15 iterations of PageR-
ank.

82



CHAPTER 3. FLASHGRAPH: PROCESSING BILLION-NODE GRAPHS ON
AN ARRAY OF COMMODITY SSDS

3.5.2 FlashGraph vs. in-memory engines

We compare the performance of FlashGraph to PowerGraph,5 a popular dis-

tributed in-memory graph engine, and Galois,28 a state-of-art in-memory graph en-

gine. FlashGraph and Powergraph provide a general high-level vertex-centric pro-

gramming interface, whereas Galois provides a low-level programming abstraction for

building graph engines. We run these three graph engines on the Twitter and sub-

domain Web graphs. Unfortunately, the Web page graph is too large for in-memory

graph engines. We run PowerGraph in multithread mode to achieve its best perfor-

mance and use its synchronous execution engine because it performs better than the

asynchronous one on both graphs.

FlashGraph has much smaller memory footprint than PowerGraph (Figure 3.11).

FlashGraph only needs to maintain vertex state in memory and access data on SSDs

via the page cache. Furthermore, FlashGraph’s programming interface enables tri-

angle counting and scan statistics to only need to maintain complex data structures

when vertices are in the running state. In contrast, PowerGraph maintains all data in

memory. It also requires much more memory to perform triangle counting and scan

statistics because these two applications require every vertex to maintain much more

complex data structures in PowerGraph.

Both in-memory and semi-external memory FlashGraph performs comparably

to Galois, while significantly outperforming PowerGraph (Figure 3.10). In-memory

FlashGraph outperforms Galois in WCC and PageRank. It performs worse than Ga-
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Figure 3.10: The runtime of different graph engines. FG-mem is in-memory Flash-
Graph. FG-1G is semi-external memory FlashGraph with a page cache of 1 GB.

lois in graph traversal applications such as BFS and betweenness centrality, because

Galois uses a different algorithm91 for BFS. The algorithm reduces the number of

edges traversed in both applications. The same algorithm could be implemented in

FlashGraph but would not benefit semi-external memory FlashGraph because the

algorithm requires access to both in-edge and out-edge lists, thus, significantly in-

creasing the amount of data read from SSDs.
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Figure 3.11: The memory consumption of the applications in FlashGraph (FG)
with the page cache configuration of 1GB and PowerGraph (PG).

3.5.3 FlashGraph vs. external memory engines

We compare the performance of FlashGraph to that of two external-memory graph

engines, X-Stream20 and GraphChi.19 We run FlashGraph in semi-external memory

and use a 1 GB page cache. We construct a software RAID on the same SSD ar-

ray to run X-Stream and GraphChi. Note that GraphChi does not provide a BFS

implementation, and X-Stream implements triangle counting via a semi-streaming

algorithm.92

FlashGraph outperforms GraphChi and X-Stream by one or two orders of mag-

nitude (Figure 3.12a). FlashGraph only needs to access the edge lists and performs

computation on only the vertices required by the graph application. Even though

FlashGraph generates random I/O accesses, it saves both CPU and I/O by avoid-

ing unnecessary computation and data access. In contrast, GraphChi and X-Stream

sequentially read the entire graph dataset multiple times.

Although FlashGraph uses its semi-external memory mode, it consumes a rea-
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Figure 3.12: The runtime and memory consumption of semi-external memory Flash-
Graph and external memory graph engines on the Twitter graph.

sonable amount of memory when compared with GraphChi and X-Stream (Figure

3.12b). In some applications, FlashGraph even has smaller memory footprint than

GraphChi. FlashGraph’s small memory footprint allows it to run on regular desktop

computers, comfortably processing billion-edge graphs.

3.5.4 Scaling to billion-node graphs

We further evaluate the performance of FlashGraph on the billion-scale page graph

in Table 3.1. FlashGraph uses a page cache of 4GB for all applications. To the best

of our knowledge, the page graph is the largest graph used for evaluating a graph
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processing engine to date. The closest one is the random graph used by Pregel,18

which has a billion vertices and 127 billion edges. Pregel processed it on 300 multicore

machines. In contrast, we process the page graph on a single multicore machine.

FlashGraph can perform all of our applications within a reasonable amount of time

and with relatively small memory footprint (Table 3.2). For example, FlashGraph

achieves good performance in BFS on this billion-node graph. It takes less than

five minutes with a cache size of 4GB; i.e., FlashGraph traverses nearly seven million

vertices per second on the page graph, which is much higher than the maximal random

I/O performance (900, 000 IOPS) provided by the SSD array. In contrast, Pregel18

used 300 multicore machines to run the shortest path algorithm on their largest

random graph and took a little over ten minutes. More recently, Trinity39 took over

ten minutes to perform BFS on a graph of one billion vertices and 13 billion edges on

14 12-core machines.

Our solution allows us to process a graph one order of magnitude larger than

the page graph on a single commodity machine with half a terabyte of RAM. The

maximal graph size that can be processed by FlashGraph is limited by the capacity

of RAM and SSDs. Our current hardware configuration allows us to attach 24 1TB

SSDs to a machine, which can store a graph with over one trillion edges. Furthermore,

the small memory footprint suggests that FlashGraph is able to process a graph with

tens of billions of vertices.

FlashGraph results in a more economical solution to process a massive graph. In
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Algorithm Runtime (sec) Init time (sec) Memory (GB)
BFS 298 30 22
BC 595 33 81
TC 7818 31 55

WCC 461 32 47
PR 2041 33 46
SS 375 58 83

Table 3.2: The runtime and memory consumption of FlashGraph on the page graph
using a 4GB cache size.

contrast, it is much more expensive to build a cluster or a supercomputer to process

a graph of the same scale. For example, it requires 48 machines with 512GB RAM

each to achieve 24TB aggregate RAM capacity, so the cost of building such a cluster

is at least 24− 48 times higher than our solution. In addition, FlashGraph minimizes

SSD wearout and the only write required by FlashGraph is to load a new graph to

SSDs for processing. Therefore, we can further reduce the hardware cost, by using

consumer SSDs instead of enterprise SSDs to store graphs, as well as reducing the

maintenance cost.

3.5.5 The impact of optimizations

In this section, we perform experiments to justify some of our design decisions

that are critical to achieve performance for FlashGraph in semi-external memory.
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3.5.5.1 Preservation of sequential I/O

We demonstrate the importance of taking advantage of sequential I/O access in

graph applications, using BFS and weakly connected components. We start with

vertex execution performed in random order, and then sequentially order vertex ex-

ecution by vertex ID. Finally, we show the performance difference between merging

I/O requests in SAFS vs. FlashGraph. All experiments are run on the subdomain

web graph.

The huge gap (Figure 3.13) between random execution and sequential execution

suggests that there exists a degree of sequential I/O in both applications, as de-

scribed in Section 3.3.6. If FlashGraph did not take advantage of these sequential

I/O accesses, it would suffer substantial performance degradation. Therefore, the

first priority of the vertex scheduler in FlashGraph is to schedule vertex execution to

generate sequential I/O. Consequently, FlashGraph’s vertex scheduler is highly con-

strained by I/O ordering requirements and is not able to schedule vertex execution

freely like Galois.28

Figure 3.13 also shows that I/O accesses generated by a graph algorithm are well

merged in FlashGraph as opposed to the filesystem level or the block subsystem level.

Although SAFS, the Linux filesystem and the Linux block subsystem are capable of

merging I/O requests, they require more CPU computation to merge I/O requests

and do not have a global view for merging I/O requests. Consequently, it is much

more light-weight and effective to merge I/O requests in FlashGraph. By doing so,
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Figure 3.13: The impact of preserving sequential I/O access in graph applications.
All performance is relative to that of the implementation of merging I/O requests in
FlashGraph.

we achieve 40% speedup for BFS and more than 100% speedup for WCC.

3.5.5.2 The impact of the page size

In this section, we investigate the impact of the page size in SAFS. A page is the

smallest I/O block that FlashGraph can access from SSDs. The experiments are run

on the subdomain web graph.

Figure 3.14 shows that FlashGraph should use 4KB as the SAFS page size. SSDs

store and access data at the granularity of 4KB flash pages, so using an SAFS page

smaller than 4KB does not increase the I/O rate of SSDs much. A larger SAFS page

size brings in more unnecessary data and wastes I/O bandwidth, which leads to per-

formance degradation. When we increase the SAFS page size from 4KB to 1MB, the

performance of BFS and triangle counting (TC) decreases to a small fraction of their

maximal performance. Even WCC, whose I/O access is more sequential, performs

better with 4KB pages because WCC also needs to selectively access edge lists in all
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Figure 3.14: The impact of the page size in FlashGraph. All performance is relative
to that of the implementation with 4KB page size.

iterations but the first. This result suggests that TurboGraph,40 which uses a block

size of multiple megabytes, may perform general graph analysis suboptimally. It also

suggests that when using 4KB pages, selectively accessing edge lists and merging I/O

enables FlashGraph to adapt to different I/O access patterns.

3.5.6 The impact of page cache size

We investigate the effect of the SAFS page cache size on the performance of

FlashGraph. We vary the cache size from 1 GB to 32GB, which is sufficiently large

to accommodate the twitter graph and the subdomain web graph. We omit Twitter

graph results as they mirror subdomain graph results.

FlashGraph performs well even with a small page cache (Figure 3.15). With a

1GB page cache, all applications realize at least 65% of their performance with a

32GB page cache, and WCC and betweenness centrality even achieve around 90%

of the performance with a 32GB page cache. Although PageRank has a similar I/O
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Figure 3.15: The impact of cache size in FlashGraph.

access pattern to WCC, it converges more slowly than WCC, so a large cache has

more impact on PageRank. By varying the page cache size, we show FlashGraph

can smoothly transition from a semi-external memory graph engine to an in-memory

graph engine.

3.6 Conclusions

We present the semi-external memory graph engine called FlashGraph that closely

integrates with an SSD filesystem to achieve maximal performance. It uses an asyn-

chronous user-task I/O interface to reduce overhead associated with accessing data

in the filesystem and overlap computation with I/O. FlashGraph selectively accesses

edge lists required by a graph algorithm from SSDs to reduce data access; it conserva-

tively merges I/O requests to increase I/O throughput and reduce CPU consumption;

it further schedules the order of processing vertices to help merge I/O requests and

maximize the page cache hit rate. All of these designs maximize performance for
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applications with different I/O access patterns. We demonstrate that a semi-external

memory graph engine can achieve performance comparable to in-memory graph en-

gines.

We observe that in many graph applications a large SSD array is capable of deliv-

ering enough I/Os to saturate the CPU. This suggests the importance of optimizing

for CPU and RAM in such an I/O system. It also suggests that SSDs have been

sufficiently fast to be an important extension for RAM when we build a machine for

large-scale graph analysis applications.

FlashGraph provides a concise and flexible programming interface to express a

wide variety of graph algorithms and their optimizations. Users express graph algo-

rithms in FlashGraph from the perspective of vertices. Vertices can interact with any

other vertices in the graph by sending messages, which localizes user computation to

the local memory and avoids concurrent data access to algorithmic vertex state.

Unlike other external-memory graph engines such as GraphChi and X-stream,

FlashGraph supports selective access to edge lists. We demonstrate that streaming

the entire graph to reduce random I/O leads to a suboptimal solution for high-speed

SSDs. Reading and computing on data only required by graph applications saves

computation and increases the I/O access rate to the SSDs.

We further demonstrate that FlashGraph is able to process graphs with billions

of vertices and hundreds of billions of edges on a single commodity machine. Flash-

Graph, on a single machine, meets and surpasses the performance of distributed
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graph processing engines that run on large clusters. Furthermore, the small memory

footprint of FlashGraph suggests that it can handle a much larger graph in a sin-

gle commodity machine. Therefore, FlashGraph results in a much more economical

solution for processing massive graphs, which makes massive graph analysis more ac-

cessible to users and provides a practical alternative to large clusters for such graph

analysis.
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Chapter 4

Sparse matrix multiplication

This chapter describes another view of graph analysis. Instead of viewing a graph

as a collection of vertices and edges, we encode a graph as a sparse matrix and

express graph analysis as matrix operations.17 In this formulation, a row or a column

of a sparse matrix represents a vertex in a graph and a non-zero entry encodes the

existence of an edge or the edge weight on a graph. As such, many graph analysis

algorithms such as PageRank and spectral clustering are expressed as sparse matrix

multiplication. In this chapter, we describe an efficient implementation of sparse

matrix dense matrix multiplication (SpMM), a key operation for graph analysis. We

scale this matrix operation by utilizing commodity SSDs and implement it in a semi-

external memory (SEM) fashion, i.e., we keep the sparse matrix on SSDs and dense

matrices in memory. Our SEM SpMM incorporates many in-memory optimizations

that require a small memory footprint. Coupled with many I/O optimizations, our
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SEM SpMM achieves performance comparable to our in-memory implementation on

a large parallel machine and outperforms the implementations in Trilinos and Intel

MKL. Our experiments show that the SEM SpMM achieves almost 100% performance

of the in-memory implementation on graphs when the dense matrix has more than

four columns; it achieves at least 65% performance of the in-memory implementation

for all of our graphs when the dense matrix has only one column. We apply our

SpMM to three important graph analysis applications and show that our SSD-based

implementations can significantly outperform state of the art of these applications

and scale to billion-node graphs.

4.1 Introduction

Sparse matrix multiplication is a very important computation with a wide vari-

ety of applications in scientific computing, machine learning and data mining. For

example, matrix factorization algorithms on a sparse matrix such as singular value de-

composition (SVD)93 and non-negative matrix factorization (NMF)94 requires sparse

matrix multiplication. Graph analysis algorithms such as PageRank3 can be formu-

lated as sparse matrix multiplication or generalized sparse matrix multiplication.17

Some of the algorithms, such as PageRank and SVD, require sparse matrix vector

multiplication. Others, such as NMF, require sparse matrix dense matrix multiplica-

tion.
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The largest sparse matrices arise from graph datasets such as social networks and

Web graphs, in which one performs sparse matrix multiplication for graph analysis

such as community detection with NMF and spectral analysis with SVD. These ma-

trices inherit structure from natural graphs. Specifically, these matrices are typically

very sparse and have near-random distribution for non-zero entries. They also have

a power law distribution that governs the number of non-zero entries per row and

column.

It is challenging to have an efficient implementation of sparse matrix multipli-

cation, especially for sparse matrices that encode real-world graphs. Sparse matrix

multiplication has very low computation density and its performance is limited by

memory access. As such, this operation usually achieves only a small fraction of

the peak performance of a modern processor.95 It becomes even more challenging

to perform this operation on graphs due to random memory access caused by near-

random vertex connection and load imbalancing caused by the power-law distribution

in vertex degree. Furthermore, many real-world graphs are enormous. For example,

Facebook’s social network has billions of vertices and today’s Web graphs are even

much larger. Therefore, sparse matrix multiplication on graphs is frequently the

bottleneck in an application.

Current research focuses on sparse matrix vector multiplication (SpMV) in mem-

ory for small matrices and scaling to a large sparse matrix in a large cluster, where

the aggregate memory is sufficient to store the sparse matrix.95–97 The distributed
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solution for sparse matrix multiplication leads to significant network communication

and network bandwidth is usually the bottleneck. As such, this operation requires a

fast network to achieve performance. A supercomputer or a large cluster with a fast

network is inaccessible or too expensive for many users.

On the other hand, a current trend for hardware design is to scale up a single

machine for high performance computing. These machines typically have multiple

processors with many CPU cores and a large amount of memory. They are also

equipped with fast flash memory such as solid-state drives (SSDs) to further extend

memory capacity. This conforms to the node design for supercomputers.98

We explore a solution that scales sparse matrix dense matrix multiplication (SpMM)

on a multi-core machine with commodity SSDs and perform SpMM in semi-external

memory (SEM). The concept of semi-external memory arose as a functional comput-

ing approach for graphs26 in which the vertex state of a graph is stored in memory and

the edges accessed from external memory. We introduce a similar construct for SpMM

in which one or more columns of a dense matrix are kept in memory and the sparse

matrix is accessed from external memory. In semi-external memory, we assume that

the memory of a machine is sufficient to keep at least one column of the input dense

matrix but is insufficient to hold the sparse matrix and the dense matrices. Even

though SpMM could be implemented with SpMV, such an implementation would fail

to explore data locality in SpMM and result in higher I/O access in semi-external

memory. We optimize SpMM directly to overcome these problems. Given fast SSDs,
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we demonstrate that the SEM solution uses the resources of a multi-core machine well

and achieves performance comparable to state-of-the-art in-memory implementations

while increasing the scalability in proportion to the ratio of non-zero entries to rows

or columns in a sparse matrix.

We overcome many technical challenges to construct a sparse matrix multiplication

implementation on SSDs to achieve performance. Specifically, SSDs are an order of

magnitude slower in throughput and multiple orders of magnitude slower in latency

than DRAM. Furthermore, sequential I/O of SSDs is still much faster than random

I/O12 and reads are faster than writes. In addition, SSDs wear out when we write

data to them and random writes further shorten the lives of SSDs.99 As such, our

solution needs to sequentialize I/O access and reduce I/O, especially writes.

Semi-external memory provides a scalable and efficient SpMM solution that meets

the I/O challenges and incorporates substantial computation optimizations. During

the computation, each thread streams its own partitions of the sparse matrix from

SSDs, maximizing I/O throughput and avoiding thread synchronization. We buffer all

intermediate computation results in memory and stream the output matrix to SSDs

at most once, minimizing writes to SSDs. We design a very compact sparse matrix

format to accelerate retrieving a sparse matrix from SSDs. Semi-external memory has

memory constraints. As such, we deploy only computation optimizations that require

a small memory footprint, such as dynamic task scheduling and cache blocking.

Our semi-external memory solution adapts to machines with different memory
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capacities. When the dense matrix is larger than memory, we split it vertically into

multiple partitions so that each partition can fit in memory. As such, the minimum

memory requirement of our solution is O(n), where n is the number of rows in the

input dense matrix. By keeping more columns in the dense matrix in memory, we

reduce I/O from SSDs in SpMM. When the number of columns in a dense matrix

increases, SEM SpMM becomes CPU bound, instead of I/O bound on fast SSDs.

We develop three important applications in scientific computing and data mining

with our SEM SpMM: PageRank,3 eigensolver100 and non-negative matrix factoriza-

tion.94 Each of them requires SpMM with different numbers of columns in dense

matrices, resulting in different strategies of placing data in memory. With the three

applications, we demonstrate data placement choices for different memory capacities

in a machine and the impact of the memory size on the performance of the applica-

tions.

Our result shows that for real-world sparse graphs, our SEM SpMM achieves al-

most 100% performance of our in-memory implementation on a large parallel machine

with 48 CPU cores when the dense matrix has more than four columns. Even for

SpMV, our SEM implementation achieves at least 65% performance of our in-memory

implementation and outperforms Trilinos101 and MKL102 by a factor of 2 − 9. The

applications implemented with our SpMM significantly outperform the state-of-the-

art implementations of these applications. As such, we conclude that semi-external

memory coupled with SSDs delivers an efficient solution for large-scale sparse ma-
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trix multiplication. It serves as a building block and offers new design possibilities

for large-scale data analysis, replacing memory with larger, cheaper, more energy-

efficient SSDs and processing bigger problems on fewer machines. The code of this

work is released as open source at http://flashx.io.

4.2 Related Work

Recent sparse matrix multiplication studies focus on in-memory optimizations for

sparse matrix vector multiplication (SpMV). Williams et al.95 describe optimizations

for SpMV in multicore architectures. Yoo et al.96 and Boman et al.97 optimize

distributed SpMV for large scale-free graphs with 2D partitioning to reduce commu-

nication between machines. In contrast, Sparse matrix dense matrix multiplication

(SpMM) receives less attention from the high-performance computing community.

Even though SpMM can be implemented with SpMV, SpMV fails to explore data

locality in SpMM. Aktulga et al.103 optimizes SpMM with cache blocking. Koanan-

takool et al.? experiments different parallel algorithms for sparse matrix dense matrix

multiplication and analyzes their communication cost in distributed memory. We ad-

vance SpMM with a focus on optimizations for semi-external memory.

Compressed row storage (CSR) and compressed column storage (CSC) formats are

commonly used sparse matrix formats in many numeric libraries such as Intel MKL102

and Trilinos.101 However, these formats are not designed for graphs. Sparse matrix
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multiplication with these formats on graphs incurs many random memory accesses.

More modern sparse matrix formats have been designed. Sparsity104 proposes both

register blocking and cache blocking to increase data reuse in the CPU cache for

sparse matrix multiplication. Register blocking requires explicit storage of zero values

in register blocks. This strategy potentially wastes space and computation for graphs

because graphs are very sparse and have nearly random vertex connection. Buluc

et al.2 further advances sparse matrix format by doubly compressed sparse column

(DCSC) for hypersparse submatrices after 2D partitioning on a sparse matrix. This

format significantly reduces the storage size of a 2D-partitioned sparse matrix. We

adopt some of the optimizations and further advance the sparse matrix format with

a focus on reducing the storage size of a sparse matrix.

Abello et al.26 introduced the semi-external memory algorithmic framework for

graphs. Pearce et al.49 implement several semi-external memory graph traversal

algorithms for SSDs. FlashGraph14 adopted the concept and performs graph algo-

rithms with vertex state in memory and edge lists on SSDs. This work extends the

semi-external memory concept to matrix operations.

Zhou et al.105 implemented an LOBPCG106 eigensolver in an SSD cluster. Their

implementation targets nuclear many-body Hamiltonian matrices, which are much

denser and have smaller dimensions than many sparse graphs. Therefore, their solu-

tion stores the sparse matrix on SSDs and keep the entire vector subspace in RAM.

They focus on optimizations in the distributed environment. In contrast, our eigen-
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solver based on our SEM SpMM stores both the sparse matrix and the vector sub-

space on SSDs due to the large number of vertices in our target graphs. We focus on

external-memory optimizations in a single machine.

Anasazi100 is an eigensolver framework in the Trilinos project.101 This framework

implements block extension of multiple eigensolver algorithms such as Block Krylov-

Schur,107 Block Davidson106 and LOBPCG.106 This is a very flexible framework that

allows users to redefine sparse matrix dense matrix multiplication and dense matrix

operations. By default, Anasazi uses the matrix implementations in Trilinos that

runs in distributed memory.

Intel Math Kernel Library102 is an efficient and parallel linear algebra library with

matrix operations specifically optimized for Intel platforms. It provides an efficient

sparse matrix multiplication optimized for regular sparse matrices. In contrast, our

sparse matrix multiplication optimizes for power-law graphs with near-random vertex

connection.

4.3 Sparse matrix multiplication

Sparse matrix multiplication leads to many random memory accesses and its per-

formance is usually limited by random memory throughput of DRAM. We perform

sparse matrix multiplication in semi-external memory (SEM) to scale to a sparse

matrix with billions of rows and columns. This strategy enables nearly in-memory
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performance while achieving scalability in proportion to the ratio of non-zero entries

to rows or columns in a sparse matrix.

4.3.1 Semi-external memory

Our definition of semi-external memory for sparse matrix multiplication keeps the

sparse matrix on SSDs and the input dense matrix or some columns of the input

dense matrix in memory. During the computation, we stream data in the sparse

matrix from SSDs to maximize I/O throughput.

There are two options for keeping the output dense matrix. In applications such as

PageRank and many other graph algorithms, dense matrices have only a few columns,

so we can keep the output dense matrix in memory. If a machine has insufficient

memory to keep the output matrix, we stream the output matrix to SSDs or to the

subsequent computation to reduce memory consumption and potentially I/O as well.

In some applications such as non-negative matrix factorization (Section 4.4), even

the input dense matrix cannot fit in memory. In this case, we partition the input dense

matrix vertically so that each partition has complete columns of the original input

dense matrix and can fit in memory. Each vertical partition stores elements in the row-

major order to increase data locality. For each partition, we perform sparse matrix

multiplication in semi-external memory as before and stream the output matrix to

SSDs.
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Figure 4.1: The format of a sparse matrix.

4.3.2 Sparse matrix format

To support efficient sparse matrix multiplication on graphs in semi-external mem-

ory, we use an alternative format for sparse matrices to increase CPU cache hits and

reduce I/O from SSDs. Compressed row storage (CSR) or compressed column stor-

age (CSC) are not designed for graphs and incur many CPU cache misses. They also

require a relatively large storage size. For a sparse matrix with billions of non-zero

entries, we have to use eight bytes to store row and column indices.

To increase CPU cache hits, we deploy cache blocking104 and store non-zero entries

of a sparse matrix in tiles (Figure 4.1). When a tile is small, the rows from the input

and output dense matrices involved in multiplication with the tile are always kept in

the CPU cache during the computation. The optimal tile size should fill the CPU

cache with the rows from the dense matrices and is affected by the number of columns

of the dense matrices. To handle dense matrices with different numbers of columns,

we deploy both static cache blocking and dynamic cache blocking. We generate

sparse matrices with a relatively small tile size and rely on the runtime system to

optimize for different numbers of columns (Section 4.3.4). However, a small tile size

potentially increases the storage size of a sparse matrix. In semi-external memory,
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Figure 4.3: The ratio of the storage size required by SCSR and DCSC2 format for
real-world graphs. SCSR is much more compact than DCSC for graphs.

by column indices. To determine the end of a row, the most significant bit of the

identifier is always set to 1, while the most significant bit of a column index entry is

always set to 0. Owing to the small size of a tile, we use two bytes to store a row

number and a column index entry, which further reduces the storage size. As such,

each non-zero entry requires at most four bytes to indicate its location in a matrix.

Because the most significant bit is used to indicate the beginning of a row, this format

allows a maximum tile size of 32K × 32K.

SCSR is much more compact than DCSC.2 In the best case (each non-zero entry

is stored in a separate row/column), SCSR requires only 40% of the space than DCSC

for binary sparse matrices. In the worst case (all non-zero entries are stored in a single

row/column), SCSR uses the same space as DCSC. Figure 4.3 shows that SCSR uses

45%-70% of the storage size used by DCSC for large real-world graphs (Table 4.1). In

practice, SCSR saves more space in a sparse matrix where non-zero entries are more

randomly distributed.

Inside each cache tile of the SCSR, we use the coordinate format (COO) for the
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rows that have only a single non-zero entry. For the adjacency matrices of real-world

graphs, many rows in a cache tile have only one non-zero entry, owing to the sparsity

of the graphs and nearly random vertex connection. Iterating over single-entry rows

in the SCSR format requires to test the end of a row for every non-zero entry, which

leads to many conditional jumps. In contrast, COO is more suitable for storing these

single-entry rows. It does not increase the storage size but significantly reduces the

number of conditional jump instructions. As a result, we combine SCSR with COO

and store non-zero entries in the COO format behind the row headers of SCSR (Figure

4.2).

4.3.3 Dense matrices

In many applications, the dense matrices in SpMM are tall and skinny with mil-

lions or even billions of rows but only a small number of columns. The number of

columns is determined by applications. In semi-external memory, we keep the input

dense matrix in memory, so its size governs memory consumption of sparse matrix

multiplication. To increase data locality in SpMM, the elements in the dense matrices

are stored in row-major order.

For a non-uniform memory architecture (NUMA), we partition the input dense

matrix horizontally and store partitions evenly across NUMA nodes. The NUMA

architecture is prevalent in today’s multi-processor servers, where each processor con-

nects to its own memory banks. Therefore, keeping partitions evenly across all NUMA
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nodes helps to fully utilize the bandwidth of memory and inter-processor links. For

horizontal partitioning, we assign multiple contiguous rows in a row interval to a

partition, which is assigned to a NUMA node. A row interval in a partition always

has 2i rows for efficiently locating a row with bit operations. The row interval size is

multiple of the tile size of a sparse matrix so that multiplication on a tile only needs

to access rows from a single row interval.

4.3.4 Parallel Execution

This section describes parallel execution of sparse matrix multiplication in semi-

external memory. Memory is precious resource in this computation model because

memory should be used to keep more columns in the input dense matrix to reduce

I/O from SSDs (as discussed in Section 4.3.6). As such, we deploy only computation

optimizations with a small memory footprint.

Semi-external memory favors horizontal partitioning on a sparse matrix for par-

allelization because this partitioning scheme minimizes writes to SSDs and remote

memory with small memory consumption. Horizontal partitioning requires only one

thread to allocate local memory buffers for computation on a tile row. All intermedi-

ate computation results on tiles are merged into the local memory buffers. As such,

we write the output matrix at most once to SSDs and there are no remote memory

writes. In contrast, both vertical partitioning and 2D partitioning require each thread

to maintain a local memory buffer for the same tile rows in order to reduce writes to
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SSDs and remote memory.

For parallel computation, we construct a global task queue trQ and each thread

runs ProcessTileRows (in Algorithm 1) that gets computation tasks (tile rows) to

achieve load balancing and large I/O writes to SSDs. At the beginning, a thread gets

larger computation tasks (one super tile row at a time) with get super tile row ; as

the computation approaches completion, a thread gets smaller tasks (one tile row at

a time) with get tile row. This design reduces concurrent access to the global data

structure while realizing good load balancing. When a thread gets a computation

task, it reads the corresponding tile rows asynchronously, invokes the callback function

ProcessSTRow to process the tile rows once I/O is complete, and write computation

results back to SSDs asynchronously. To ensure sustainable write throughput to

SSDs,99 we need large writes. write rows async() postpones a write, merges it with

the ones from other threads and writes them to SSDs with a single I/O. To assist

in I/O merging, we use get tile row() and get super tile row() to control a global

execution order that ensures that all threads are processing contiguous tile rows and

the results from the tile rows are located closely on SSDs.

When processing tile rows, we organize tiles into super tiles with get super tiles

to better utilize the CPU cache. The tile size of a sparse matrix is specified when

the sparse matrix image is created and is relatively small to handle different numbers

of columns in the dense matrices. A super tile is composed of tiles from multiple

contiguous tile rows (Figure 4.1) and its size is determined at runtime by three factors:
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Algorithm 1 Parallel execution of sparse matrix dense matrix multiplication.

1: procedure SparseMatrixMultiply(spm, inM)
Input: spm, a n× n sparse matrix on SSDs
Input: inM , a n× p dense matrix in memory
Output: outM , a n× p dense matrix on SSDs

2: ~trQ← get tile row ids(spm)
3: outM ← zeros SSD(n, p)

4: parfor thread ∈ ~threads do
5: ProcessT ileRows(spm, ~trQ, inM, outM)
6: end parfor

7:

8: procedure ProcessTileRows(spm, ~trQ, inM , outM)
Input: spm, a n× n sparse matrix on SSDs
Input: ~trQ, a queue that contains all tile row ids
Input: inM , a n× p input dense matrix in memory
In-Out: outM , a n× p output dense matrix on SSDs

9: while | ~trQ| > 0 do

10: if | ~trQ| > #threads then

11: ~ids← get super tile row( ~trQ)
12: else
13: ~ids← get tile row( ~trQ)

14: t← read tilerow async(spm, ~ids)
15: res← ProcessSTRow(t, inM) when t is ready
16: write rows async(outM, res)

17:

18: procedure ProcessSTRow(trs, inM)
Input: trs, a s× n submatrix in the sparse matrix
Input: inM , n× p dense matrix
Output: outBuf , a s× p dense matrix

19: outBuf ← zeros(s, p)
20: ~sts← get super tiles(trs)
21: for st ∈ ~sts do
22: ~tiles← get tiles(st)

23: for tile ∈ ~tiles do
24: lInMat← rows from inM for tile
25: lOutMat← rows from outBuf for tile
26: lOutMat+ = tile ∗ lInMat
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the number of columns in the dense matrices, the CPU cache size and the number

of threads that share the CPU cache. An optimal size for a super tile fills the CPU

cache with the rows from the dense matrices involved in the computation with the

super tile.

ProcessSTRow in Algorithm 1 processes tile rows. It splits the input tile rows into

super tiles with get super tiles and then further into tiles with get tiles. It processes

all tiles in a super tile before moving to the next one. As such, the computation on

a tile reuses data in the CPU cache from the computation on the previous tile. We

maintain a local memory buffer outBuf to store the computation results, which min-

imizes remote memory access. Once the computation in ProcessSTRow is complete,

outBuf contains complete results.

In spite of nearly random edge connection in a real-world graph, we explore regu-

larity in multiplying a tile with a partition of a row-major dense matrix. In this case

we multiply a non-zero entry from a tile with all elements in a row of the input dense

matrix and add the results to the corresponding row of the output dense matrix. We

perform these operations with vector CPU instructions, such as AVX108 to enable

more efficient memory access and computation. The current implementation relies

on GCC’s auto-vectorization to translate the C code to vector CPU instructions by

predefining the matrix width in the code.
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4.3.5 I/O optimizations

Semi-external memory sparse matrix multiplication streams a sparse matrix from

SSDs, which results in sequential I/O. This I/O access pattern does not generate

any cache hits in the Linux page cache when the sparse matrix size is larger than

main memory. As such, we access a sparse matrix on SSDs with direct I/O. For

accessing data in fast SSDs sequentially, the overhead of operating systems such as

thread context switch and memory allocation becomes noticeable. We tackle these

obstacles to maximize I/O throughput.

We issue asynchronous I/O and poll for I/O to avoid thread context switches

because the latency of a context switch can undermine the sequential I/O through-

put of a high-speed SSD array. When a thread issues an I/O request and waits for

I/O completion, the operating system switches the thread out; the operating system

reschedules the thread for execution once I/O is complete. However, there is latency

for thread rescheduling and the latency from frequent rescheduling can cause notice-

able performance degradation on a high-speed SSD array. As such, we use I/O polling

to avoid a thread from being switched out after the thread completes all computation

available to it.

When accessing a sparse matrix or a dense matrix from SSDs, we maintain a set

of memory buffers for I/O access to reduce the overhead of memory allocation. We

use large I/O to access matrices on SSDs to increase I/O throughput. Large memory

allocation is expensive because the operating system usually allocates a large memory
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buffer with mmap() and populates the buffer with physical pages when it is used.

Therefore, we keep a set of memory buffers allocated previously and reuse them for

new I/O requests. For accessing a sparse matrix, tile rows usually have different

sizes, so we resize a previously allocated memory buffer if it is too small for a new

I/O request.

4.3.6 The impact of the memory size on I/O

More memory reduces I/O in semi-external memory. The minimum memory re-

quirement for semi-external memory sparse matrix multiplication is nc+ tε, where n

is the number of rows of the input dense matrix, c is the element size in bytes, t is

the number of threads processing the sparse matrix and ε is the buffer size for the

sparse matrix and the output dense matrix. When a machine does not have sufficient

memory to keep the entire input dense matrix in memory, we need multiple passes on

the sparse matrix to complete the computation. Reducing memory consumption is

essential to achieve performance in semi-external memory. By keeping more columns

of the input dense matrix in memory, we reduce the number of I/O passes.

When a machine does not have sufficient memory to keep the entire input dense

matrix, we use the existing memory to keep as many columns in the input dense

matrix in memory as possible. Although we can use some memory to cache part of

the sparse matrix, keeping more columns of the input dense matrix in memory saves

more I/O than using the same amount of memory to cache the sparse matrix. Assume
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the input dense matrix has n rows and k columns. Again, c is the element size in

bytes. The storage size of the sparse matrix is E bytes and the memory size is M

bytes. We further assume we use M ′ bytes to keep some columns of the dense matrices

in memory (M ′ < M , nck mod M ′ ≡ 0) and the remaining memory (M −M ′) to

cache the sparse matrix. The amount of data in the sparse matrix read from SSDs is

IOin =
nck

M ′ [E − (M −M ′)]

Because E > M in semi-external memory, we minimize IOin by maximizing M ′.

Therefore, using memory for the input dense matrix always results in a smaller amount

of I/O than using memory for caching the sparse matrix.

As the number of columns in memory from the input dense matrix increases,

the bottleneck of the system may switch. When we keep only one column of the

input dense matrix in memory, the system is usually I/O bound; when we keep more

columns of the dense matrix in memory, the system will become CPU bound and the

I/O complexity does not affect its performance.

4.3.7 I/O complexity

The semi-external memory (SEM) solution for sparse matrix multiplication leads

to no more I/O than the external-memory (EM) solution for many real-world graphs.

When a machine has sufficient memory to keep the entire input dense matrix in
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memory, the SEM solution only needs to read the sparse matrix and the input dense

matrix once and write the output dense matrix once. This is the minimum amount

of I/O.

When a machine has insufficient memory to keep the input dense matrix, the SEM

solution still leads to less I/O than the EM solution when E < nckt if we minimize

writes to SSDs. In this analysis, we assume a square sparse matrix. The same analysis

applies to a rectangular sparse matrix as well. In this case, the SEM solution scans

the sparse matrix multiple times.

readSEM =
nck

M
E + nck

To minimize writes, the EM solution scans the sparse matrix once but reads the

input dense matrix multiple times. Due to near random vertex connection in real-

world graphs, the EM solution needs to read the entire input dense matrix each time.

In the parallel setting, the EM solution requires each thread to keep local memory

buffers for portions of the input and output dense matrices. Assume the EM solution

keeps j rows from the input dense matrix and i rows from the output dense matrix

in memory in each thread.

(ick + jck)t = M =⇒ i <
M

ckt

readEM =
n

i
nck + E =⇒ readEM >

n2c2k2t

M
+ E
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When nck < E < nckt, readEM > readSEM . When E ≤ nck, readEM > readSEM

for any t ≥ 2.

As such, the SEM solution in practice causes less I/O in many natural graphs.

For the natural graphs that we have seen, such as Twitter,89 the Page graph90 and

Friendster,109 the number of edges is of 10−100× the number of vertices. Essentially,

natural graphs have sparse edge matrices. We target multi-core machines with 10s

to 100s of threads. For most of our applications, k is of size 1-30. For very small

k, the SEM solution can keep the entire input dense matrix in memory and leads

to the minimum I/O. For a relatively larger k, E < nckt holds for most of natural

graphs when the graphs are processed in a large parallel machine. Therefore, the

SEM solution usually performs less I/O than EM.

4.4 Applications

We apply sparse matrix multiplication to three important applications widely used

in data mining and machine learning: PageRank,3 eigensolver100 and non-negative

matrix factorization.94 Each application demonstrates a different strategy of using

memory for sparse matrix multiplication.
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4.4.1 PageRank

PageRank is an algorithm to rank the Web pages by using hyperlinks between Web

pages. It was first used by Google and is identified as one of the top 10 data mining

algorithms.110 PageRank is a representative of a set of graph algorithms that can be

expressed with sparse matrix multiplication or generalized sparse matrix multiplica-

tion. Other important examples are label propagation34 and belief propagation.111

The algorithm runs iteratively and its update rule for each Web pages in an iteration

is

PR(u) =
1− d
N

+ d
∑
v∈B(u)

PR(v)

L(v)

where B(u) denotes the neighbor list of vertex u and L(v) denotes the out-degree of

vertex v.

4.4.2 Eigensolver

An eigensolver is another commonly used application that requires sparse ma-

trix multiplication. Many algorithms107,112,113 and frameworks100,114,115 have been

developed to solve a large eigenvalue problem.

We take advantage of the Anasazi eigensolver framework100 and replace its original

matrix operations with our SEM sparse matrix multiplication and external-memory

dense matrix operations. To compute eigenvalues of a n×n matrix, many eigenvalue

algorithms for a large sparse matrix require to construct a vector subspace with
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a sequence of sparse matrix multiplications and each vector in the subspace has

the length of n. Due to the sparsity of real-world graphs, the vector subspace is

large and we keep vectors in the subspace on SSDs. In addition to sparse matrix

multiplication, eigensolvers perform some dense matrix operations on the subspace.

For example, eigensolvers need to orthogonalize the vectors in the subspace with

dense matrix multiplication. The Anasazi eigensolvers have block extension to update

multiple vectors in the subspace simultaneously, which results in sparse matrix dense

matrix multiplication. The most efficient Anasazi eigensolver on sparse graphs is

the KrylovSchur eigensolver,107 which updates a small number of vectors (1-4) in

the subspace simultaneously. Zheng et al.116 provides the details of extending the

Anasazi eigensolver with external-memory matrix operations.

4.4.3 Non-negative matrix factorization

Non-negative matrix factorization (NMF)94 finds two non-negative low-rank ma-

trices W and H to approximate a matrix A ≈ WH. NMF has many applications in

machine learning and data mining. A well-known example is collaborative filtering117

in recommender systems. NMF can also be applied to graphs to find communi-

ties.118,119

Many algorithms are designed to solve NMF and here we describe an algorithm94

that requires a sequence of sparse matrix multiplications. The algorithm uses multi-

plicative update rules and updates matrices W and H alternately. In each iteration,
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the algorithm first fixes W to update H and then fixes H to update W .

Haµ ← Haµ

(W TA)aµ
(W TWH)aµ

,Wia ← Wia
(AHT )ia

(WHHT )ia

We apply SEM sparse matrix multiplication to NMF differently based on the

memory size and the number of columns in W and H. Due to the sparsity of a graph,

W and H may require storage as large as the sparse matrix and can no longer fit in

memory. Therefore, we partition W and H vertically and run multiple sparse matrix

multiplications to compute W TA and AHT , if the memory is not large enough.

4.5 Experimental Evaluation

We evaluate the performance of semi-external memory sparse matrix multipli-

cation on multiple real-world billion-scale graphs including a web-page graph with

3.4 billion vertices. We first measure the performance of our semi-external memory

implementation and compare it with multiple in-memory implementations: (i) our in-

memory implementation, (ii) MKL (mkl dcsrmm) and (iii) Trilinos Tpetra. We also

demonstrate the effectiveness of CPU and I/O optimizations on sparse matrix mul-

tiplication. We then evaluate the overall performance of the applications in Section

4.4 and demonstrate the impact of the memory size on the applications.

We conduct experiments on a non-uniform memory architecture machine with

four Intel Xeon E7-4860 processors, clocked at 2.6 GHz, and 1TB memory of DDR3-
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Graph datasets # Vertices # Edges Directed
Twitter89 42M 1.5B Yes

Friendster109 65M 1.7B No
Page graph90 3.4B 129B Yes
RMAT-40120 100M 3.7B Yes & No
RMAT-160120 100M 14B Yes & No

Table 4.1: Graph data sets. We construct a directed and undirected version for
both RMAT-40 and RMAT-160.

1600. Each processor has 12 cores. The machine has three LSI SAS 9300-8e host

bus adapters (HBA) connected to a SuperMicro storage chassis, in which 24 OCZ

Intrepid 3000 SSDs are installed. The 24 SSDs together are capable of delivering 12

GB/s for read and 10 GB/s for write at maximum. The machine runs Linux kernel

v3.13.0. We use 48 threads for our in-memory and semi-external implementation.

We use the adjacency matrices of the graphs in Table 4.1 for performance evalu-

ation. The smallest graph we use has 42 million vertices and 1.5 billion edges. The

largest graph is the Page graph with 3.4 billion vertices and 129 billion edges, which is

two orders of magnitude larger than the smallest graphs. We generate two synthetic

graphs with R-Mat120 to fill the size gap between the smallest and largest graph. We

construct a directed and undirected version for each of the synthetic graphs because

some applications in Section 4.4 run on directed graphs and others run on undirected

graphs. The real-world datasets are publically available and the synthetic datasets are

generated with the RMAT implementation in the boost library1. We always use the

undirected version of the synthetic graphs for the performance evaluation of sparse

1We use the parameters of a = 0.57, b = 0.19, c = 0.19, d = 0.05.
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Figure 4.4: The performance of SEM-SpMM with dense matrices of different num-
bers of columns, normalized to IM-SpMM for the dense matrix with the same number
of columns.

matrix multiplication. The Page graph is clustered by domain.

4.5.1 The performance of sparse matrix multipli-

cation

We evaluate the performance of our semi-external memory implementation (SEM-

SpMM) and compare its performance with our in-memory implementation (IM-SpMM)

and other state-of-the-art in-memory implementations, including the ones in Intel

MKL and Trilinos Tpetra, on the graphs in Table 4.1. The MKL and Tpetra im-

plementations cannot run on the Page graph because its size exceeds the memory

capacity of our NUMA machine. We use Intel MKL 2015 and Trilinos v12.0.1 for the

experiments.
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4.5.1.1 SEM-SpMM vs. IM-SpMM

We first compare the performance of SEM-SpMM against IM-SpMM on all graphs

with the input and output dense matrices stored in memory. In this case, the dense

matrices involved in SpMM have a small number of columns.

There is only a small performance penalty for semi-external memory (Figure 4.4).

The performance gap between IM-SpMM and SEM-SpMM is affected by randomness

of vertex connection. The gap is smaller if vertex connection in a graph is more

random. The Page graph is relatively well clustered, so SpMM on this graph is less

CPU-bound than others. Even for the Page graph, SEM-SpMM gets 65% performance

of IM-SpMM. The other factor of affecting the performance gap is the number of

columns in the dense matrices. The gap gets smaller as the number of columns in the

dense matrices increases. For all graphs, SEM-SpMM requires a very small number

of columns to become CPU-bound and achieve 100% performance of IM-SpMM.

4.5.1.2 SEM-SpMM vs. other in-memory SpMM

In this section, we compare SEM-SpMM with the Intel MKL and Trilinos Tpetra

implementations. Intel MKL runs on shared-memory machines. Trilinos Tpetra can

run in both shared memory and distributed memory, so we measure its performance

in our 48-core NUMA machine as well as an EC2 cluster. We run Tpetra in the

largest EC2 instances r3.8xlarge, where each has 16 physical CPU cores and 244GB

of RAM and is optimized for memory-intensive applications. The EC2 instances are
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(b) SpMM with a dense matrix of 8 columns.

Figure 4.5: The performance of different sparse matrix multiplication implementa-
tions on the 48-core machine normalized to IM-SpMM for the same graphs.

connected with 10Gbps network in the same placement group.

Our SEM-SpMM significantly outperforms Intel MKL and Trilinos Tpetra on the

natural graphs on our NUMA machine (Figure 4.5). In this case, we compare per-

formance of our SEM-SpMM with Intel MKL and Trilinos Tpetra for both sparse

matrix vector multiplication (SpMV) and sparse matrix dense matrix multiplication

(SpMM). The Tpetra implementation is optimized for SpMV. Our SEM-SpMM still

constantly outperforms Tpetra by a factor of 2− 3 even for SpMV. The MKL imple-

mentation has better optimizations for SpMM than Trilinos Tpetra. Our SEM-SpMM

is still almost twice as fast as MKL in SpMM with a dense matrix of eight columns.

SEM-SpMM only consumes a small fraction of memory compared with IM-SpMM
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Figure 4.6: Memory consumption of different SpMM implementations on RMAT-
160.

and other SpMM implementations (Figure 4.6). SEM-SpMM consumes memory for

the input dense matrix as well as per-thread local memory buffers for the sparse matrix

and the output dense matrix. When we use 48 threads for SpMM, the memory used

by local memory buffers in each thread is significant but is relatively constant for

different graph sizes. We only show the memory consumption on the largest graph

RMAT-160 in Figure 4.5. Despite considerable memory consumed by local memory

buffers for SEM-SpMM, SEM-SpMM uses about one tenth of the memory used by

IM-SpMM. We also observe that IM-SpMM consumes much less memory than MKL

and Tpetra owing to its compact format for sparse matrices.

Our SpMM implementation uses much less computation resources to achieve com-

parable performance and, in many cases, outperform Trilinos Tpetra that runs in the

Amazon cloud, especially on real-world graphs (Figure 4.7). In this experiment, we

run our SpMM implementation on both our NUMA machine with 48 CPU cores and

one of the EC2 machines with 16 CPU cores. Owing to the compact format for a
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(b) SpMM with a dense matrix of 8 columns.

Figure 4.7: The performance of SEM-SpMM on our 48-core machine (SEM) and
Trilinos Tpetra on EC2 clusters (2xEC2, 4xEC2 and 8xEC2), normalized to IM-
SpMM on our 48-core machine for the same graphs. We also show the performance
of IM-SpMM on one of the EC2 instance (IM-EC2) where Trilinos Tpetra runs.
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sparse matrix, our SpMM implementation can run on all of the graphs in memory on

an EC2 instance. When Tpetra runs on 8 EC2 instances, it has 2.5 times as many

CPU cores as our NUMA machine. Tpetra is not able to run SpMV on RMAT-160

on two EC2 nodes. Even though an EC2 instance has only 16 physical CPU cores,

our IM-SpMM on an EC2 instance achieves around half of the performance of our

IM-SpMM on our NUMA machine. In contrast, Trilinos Tpetra uses many more com-

putation resources and still barely reaches the same performance as our IM-SpMM

and SEM-SpMM on our NUMA machine. One of the main reasons that our SpMM

implementation performs much better on real-world graphs is that these graphs are

more likely to cause load imbalance. Our SpMM implementation balances load much

better than distributed implementations that partition data.

4.5.1.3 SEM-SpMM with a large input dense matrix

We further measure the performance of SEM-SpMM with a large input dense

matrix, in which neither the sparse matrix nor the dense matrices can fit in memory.

In this experiment, we measure the performance of multiplying a sparse matrix with a

dense matrix of 32 columns and the input dense matrix is stored on SSDs initially. We

study the impact of memory size on the performance of SEM-SpMM by artificially

varying the number of columns that can fit in memory. SEM-SpMM accesses the

sparse matrix with direct I/O and, thus, varying the number of columns in the dense

matrix that fit in memory does not affect data access to the sparse matrix. In each
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Figure 4.8: The performance of SEM-SpMM with a dense matrix of 32 columns
relative to IM-SpMM, when the number of columns of the input dense matrix kept
in memory varies.

run, we need to load the input dense matrix from SSDs and stream the output dense

matrix to SSDs. We do not show the result on the Page graph because the dense

matrix with 32 columns for the Page graph cannot fit in memory.

As more columns in the input dense matrix can fit in memory, the performance

of SEM-SpMM constantly increases (Figure 4.8). When the memory can fit over four

columns of the input dense matrix, SEM-SpMM gets over 50% of the performance of

IM-SpMM. Even when only one column of the input dense matrix can fit in memory,

SEM-SpMM still gets 25% of the in-memory performance. When the entire input

dense matrix can fit in memory, we get about 80% of the in-memory performance.

Two main factors lead to performance loss in SEM-SpMM when the input dense

matrix cannot fit in memory. We illustrate the contribution of four potential over-

heads in SEM-SpMM on the Friendster graph (Figure 4.9). The main performance

loss comes from the loss of data locality in SpMM caused by vertical partitioning of

the input dense matrix (Vert-part). Partitioning the dense matrix into one-column
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Figure 4.9: The overhead breakdown of SEM-SpMM on the Friendster graph with
a dense matrix of 32 columns when the number of columns in the input dense matrix
kept in memory varies.

matrices contributes 60% of performance loss. It drops quickly when the vertical par-

tition size increases. Keeping the sparse matrix on SSDs (SpM-EM) also contributes

some performance loss when the dense matrix is partitioned into small matrices. The

overhead almost goes away when more than four columns of the dense matrix can fit

in memory. The overhead of streaming the output dense matrix to SSDs (Out-EM)

and reading the input dense matrix to memory (In-EM) is less significant and remains

the same for different memory sizes.

4.5.2 Optimizations on sparse matrix multiplica-

tion

Accelerating SEM-SpMM requires both computation and I/O optimizations. We

first evaluate the effectiveness of computation optimizations by deploying them on IM-
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SpMM. We further show the effectiveness of I/O optimizations by deploying them on

SEM-SpMM with all computation optimizations.

Here we illustrate the most significant computation optimizations from Section 4.3.

We start with an in-memory implementation that performs sparse matrix multiplica-

tion on a sparse matrix in the CSR format and apply the optimizations incrementally

in the following order:

• dispatch partitions of a sparse matrix to threads dynamically to balance load

(Load balance),

• partition dense matrices for NUMA (NUMA),

• organize the non-zero entries in a sparse matrix into tiles to increase CPU cache

hits (Cache blocking),

• use CPU vectorization instructions to accelerate arithmetic computation (Vec),

All of these optimizations have positive effects on sparse matrix multiplication and

all optimizations together speed up SpMM by 3− 5 times (Figure 4.10). The degree

of effectiveness varies between different graphs and different numbers of columns in

the dense matrices. The largest performance boost is from cache blocking, especially

for SpMV. This is expected because the main overhead of SpMV comes from random

memory access and cache blocking significantly increases CPU cache hits to reduce

random memory access. CPU vectorization is only effective on SpMM because it

optimizes computation on a row of the dense matrix. With all optimizations, we have

a fast in-memory implementation for both sparse matrix vector multiplication and
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Figure 4.10: The speedup of computation optimizations for SpMM on the Friendster
graph (F) and the Twitter graph (T) for different numbers of columns in the dense
matrices.

sparse matrix dense matrix multiplication.

We evaluate I/O optimizations on SEM-SpMV against a base implementation

that has all of the computation optimizations and use doubly compressed sparse row

format (DCSR) to store tiles of a sparse matrix. We illustrate their effectiveness on

the Friendster graph and the Page graph. The first one represents a graph that is

not well clustered; the other one is clustered with domain names. We apply the I/O

optimizations in the following order:

• use SCSR to reduce the number of bits read from SSDs (SCSR),

• reduce memory allocation overhead for I/O with per-thread buffer pools (buf-

pool),

• reduce the number of thread context switches for I/O accesses with I/O polling

(IO-poll),

The I/O optimizations lead to substantial speedup over the base implementation,
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Figure 4.11: The speedup of I/O optimizations for SpMV on the Friendster graph
and the Page graph.

but behave very differently on these two graphs (Figure 4.11). On the unclustered

graph (Friendster), SCSR requires a much smaller storage size than DCSR (Figure

4.3) and thus achieves significant speedup. The Page graph, on the other hand, is

well clustered and DCSR already achieves a small storage size. SCSR further reduces

the storage size, but is less significant. SpMV on the Page graph has less random

memory access and is I/O-bound even on a large SSD array. Buf-pool and IO-poll

increases I/O throughput and, thus, improves performance. In contrast, SEM-SpMV

with SCSR on the Friendster graph already achieves almost 80% of IM-SpMV and,

thus, further I/O optimizations have less noticeable speedup.

4.5.3 Performance of the applications

We evaluate the performance of our implementations of the applications in Sec-

tion 4.4. We show the effectiveness of additional memory for these applications and

compare their performance with state-of-the-art implementations on smaller graphs.
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4.5.3.1 PageRank

We evaluate the performance of our SpMM-based PageRank implementation (SpMM-

PageRank). This implementation requires the input vector to be in memory, but it is

optional to keep the output vector and the degree vector in memory. PageRank is a

benchmarking graph algorithm implemented by many graph processing frameworks.

We compare the performance of SpMM-PageRank with state-of-the-art implementa-

tions in FlashGraph,14 a semi-external memory graph engine, and GraphLab Create,

the next generation of PowerGraph.5 The PageRank implementation in FlashGraph

computes approximate PageRank values while SpMM-PageRank and GraphLab Cre-

ate compute exact PageRank values. We run GraphLab Create completely in memory

and FlashGraph in semi-external memory. GraphLab Create is not able to com-

pute PageRank on the Page graph. We use FlashGraph v0.3 and a trial version of

GraphLab Create v1.9.

SpMM-PageRank in memory and in semi-external memory both significantly out-

perform the implementations in FlashGraph and GraphLab Create (Figure 4.12) even

though FlashGraph computes approximate PageRank and GraphLab Create runs

completely in memory. The main computation of PageRank is to access PageRank

values from neighbor vertices, which is essentially the same computation in sparse

matrix vector multiplication. Our SpMM is highly optimized for both CPU and

I/O. Even though SpMM-PageRank performs more computation than FlashGraph,

it performs the computation much more efficiently and reads less data from SSDs than
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Figure 4.12: The runtime of SpMM-PageRank in 30 iterations. The SEM imple-
mentation keeps different numbers of vectors in memory (SEM-1vec, SEC-2vec, SEM-
3vec). We compare them with the implementations in FlashGraph and GraphLab
Create.

FlashGraph. SpMM-PageRank and the implementation in GraphLab create performs

the same computation, but SpMM-PageRank performs the computation much more

efficiently.

The experiment results also show that keeping more vectors in memory has modest

performance improvement for SpMM-PageRank. As such, SpMM-PageRank only

needs to keep one vector in memory, which results in very small memory consumption.

4.5.3.2 Eigensolver

We evaluate the performance of our SEM KrylovSchur eigensolver and compare

its performance with our in-memory eigensolver and the Trilinos KrylovSchur eigen-

solver. Usually, spectral analysis only requires a very small number of eigenvalues,

so we compute eight eigenvalues in this experiment. We run the eigensolvers on the

smaller undirected graphs in Table 4.1. To evaluate the scalability of the SEM eigen-
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Figure 4.13: The runtime of our SEM KrylovSchur, our in-memory eigensolver and
the Trilinos eigensolvers when computing eight eigenvalues. SEM-min keeps the entire
vector subspace on SSDs and SEM-max keeps the entire vector subspace in memory.

solver, we compute singular value decomposition (SVD) on the Page graph. Among

all of the eigensolvers, only our SEM eigensolver is able to compute eigenvalues on

the Page graph.

For computing 8 eigenvalues, our SEM eigensolver achieves performance compa-

rable to our in-memory eigensolver and the Trilinos eigensolver and can scale to very

large graphs (Figure 4.13). Unlike PageRank, an eigensolver has many more vector

or dense matrix operations. As such, the memory size has noticeable impact on per-

formance. For the setting with the minimum memory consumption, it has at least

45% performance of our in-memory eigensolver; when keeping the entire subspace in

memory, it has almost the same performance as our in-memory eigensolver.

4.5.3.3 NMF

We evaluate the performance of our NMF implementation (SEM-NMF) on the

directed graphs in Table 4.1. The dense matrices for NMF can be as large as the
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Figure 4.14: The runtime per iteration of SEM-NMF on directed graphs. We vary
the number of columns in the dense matrices that are kept in memory to evaluate
effect of the memory size on the performance of SEM-NMF.

sparse matrix. As such, we experiment with the effect of the memory size on the per-

formance of SEM-NMF by varying the number of columns in memory from the dense

matrices. We also compare the performance of SEM-NMF with a high-performance

NMF implementation SmallK,121 built on top of the numeric library Elemental.122

We factorize each of the graphs into two n × k non-negative dense matrices and we

use k = 16 because 16 is the largest k that SmallK supports for the graphs in Table

4.1. We use SmallK v1.6 and Elemental v0.85.

We significantly improve the performance of SEM-NMF by keeping more columns

of the input dense matrix in memory (Figure 4.14). The performance improvement is

more significant when the number of columns that fit in memory is small. When we

keep eight columns of the input dense matrix in memory, SEM-NMF achieves over

60% of the performance of the in-memory implementation.

SEM-NMF significantly outperforms other NMF implementations in the litera-

ture. SmallK is the closest competitor. We run the same NMF algorithm in SmallK.
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As shown in Figure 4.14, SEM-NMF outperforms SmallK by a large factor on all

graphs. There are many MapReduce implementations in the literature.123–125 They

run on sparse matrices with tens of millions of non-zero entries but generally take one

or two orders of magnitude more time than our SEM-NMF on the sparse matrices

with billions or even tens of billions of non-zero entries.

4.6 Conclusions

We present an alternative solution for scaling sparse matrix dense matrix multi-

plication (SpMM) to large sparse matrices by utilizing commodity SSDs in a large

parallel machine. We perform this operation in semi-external memory (SEM), in

which we keep the sparse matrix on SSDs and the dense matrices in memory. Semi-

external memory increases scalability in proportion to the ratio of non-zero entries

to rows or columns in a sparse matrix. SEM SpMM requires both memory optimiza-

tions, such as cache blocking and NUMA organization, and I/O optimizations, such

as I/O polling and memory buffer pools, to realize performance.

Our SEM SpMM achieves performance comparable to our highly optimized in-

memory implementation while significantly outperforming the Intel MKL and Trilinos

implementations. Our SEM implementation achieves almost 100% performance of

the in-memory implementation on some graphs when the dense matrices can fit in

memory and have more than four columns. Even when the dense matrix has only
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one column, it achieves at least 65% of the performance of its in-memory counterpart

on different graphs. Our SEM sparse matrix multiplication also scales to very large

graphs with billions of vertices and hundreds of billions of edges.

For a machine with insufficient memory to keep the entire input dense matrix

in memory, we partition the dense matrix vertically and run SEM SpMM multiple

times. In this case, the main overhead of SEM SpMM comes from the loss of data

locality caused by vertical partitioning on the dense matrix. However, given sufficient

memory to keep a small number of columns of the input dense matrix, we achieve

performance comparable to the in-memory counterpart.

We apply our sparse matrix multiplication to three important applications: PageR-

ank, eigendecomposition and non-negative matrix factorization. We demonstrate how

additional memory should be used in semi-external memory in each application. We

further demonstrate that each of our implementations significantly outperform state

of the art and scale to very large graphs.

Through thorough evaluation, we demonstrate that semi-external memory cou-

pled with fast SSDs achieves performance very close to highly optimized in-memory

implementations and scales to massive datasets. As such, our approach provides a

very promising alternative to distributed computation for large-scale data analysis.

Our SSD-based solution also achieves very high energy efficiency even though we

have not measured energy consumption explicitly. SSDs are energy-efficient storage

media126 compared with RAM and hard drives. When processing large datasets,
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our solution only uses a single machine and requires a relatively small amount of

memory. In contrast, a distributed solution requires many more machines and much

more aggregate memory in order to process datasets of the same size. As such,

our solution introduces an energy-efficient architecture for large-scale data analysis

tasks.
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Chapter 5

FlashMatrix

This chapter describes FlashMatrix, a matrix-oriented programming framework

for general data analysis with seamless integration with the R framework. Flash-

Matrix incorporates the efficient sparse matrix multiplication in Chapter 4. In this

chapter, we focus on dense matrix operations in FlashMatrix. It provides a small

number of generalized matrix operations (GenOps) to achieve generality, and reim-

plements a large number of matrix operations in the R framework with GenOps to

executes R code in parallel and out of core automatically. FlashMatrix uses vec-

torized user-defined functions (VUDF) to reduce the overhead of function calls and

fuses matrix operations to reduce data movement between CPU and SSDs. We im-

plement multiple machine learning algorithms in R to benchmark the performance

of FlashMatrix. The execution of the R implementations in FlashMatrix has perfor-

mance comparable to optimized C implementations. When scaling beyond memory
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capacity on a large parallel machine, the out-of-core execution of these R implementa-

tions in FlashMatrix has performance comparable to their in-memory execution and

significantly outperforms the in-memory execution of Spark MLlib.

5.1 Introduction

The National Strategic Computing Initiative (NSCI127) puts forth a critical prob-

lem as we move to exascale: “Increasing coherence between the technology base used

for modeling and simulation and that used for data analytic computing.” A key chal-

lenge lies in providing statistical analysis and machine learning tools that are simple

and efficient. Simple tools need to be programmable, interactive, and extensible,

allowing scientists to encode and deploy complex algorithms. Successful examples

include R, SciPy, and Matlab. Efficiency dictates that tools should leverage modern

HPC architectures, including scalable parallelism, high-speed networking, and fast

I/O from memory and solid-state storage.

Large-scale data analysis requires a large parallel machine or a cluster to gain

computation power and memory capacity. Currently, there are two approaches of

implementing parallel algorithms to process large datasets. One can write an efficient

implementation with low-level parallel primitives such as the ones provided by MPI128

or OpenMP.129 This approach requires expertise in parallel programming and signif-

icant effort from programmers. The other approach is to use high-level programming
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frameworks that provide high-level operations to reduce the burden of programmers.

In general, the second approach is less computationally efficient but can significantly

increase productivity and lower the barrier to writing parallel implementations. The

second approach is preferred in the rapidly evolving fields of machine learning and

data mining.

It is challenging to provide a programming framework that has a high-level pro-

gramming interface and achieves both generality and efficiency. Some highly-optimized

linear algebra libraries101,102,122,130,131 provides a matrix programming interface that

has a limited set of matrix operations with efficient implementations, e.g. BLAS

provides only matrix multiplication and not integer operations or row/column op-

erations. Users have to parallelize the remaining matrix operations themselves that

are not supported by the libraries. High-level programming frameworks, such as R

and Matlab, provide a general programming interface for users to express varieties of

algorithms, but do not produce efficient parallel code.

We present FlashMatrix, a programming framework that provides a high-level

matrix-oriented functional programming interface and supports automatic paralleliza-

tion and out-of-core execution for large-scale data analysis; users write R programs

and FlashMatrix executes them efficiently. Unlike most of the linear algebra libraries,

FlashMatrix provides a small set of highly-optimized generalized matrix operations

(GenOps) to achieve generality. GenOps represent common data access patterns.

By accepting different functions that define operations on individual elements in the
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input matrices, each GenOp covers a very large number of matrix operations. Flash-

Matrix reimplements many matrix operations from the R base package with GenOps

to execute R code in parallel and out of core automatically. FlashMatrix focuses

on optimizations in a single machine and scales matrix operations beyond memory

capacity by utilizing solid-state drives (SSDs). This design choice conforms with a

current trend of hardware design that scales up a single machine for high performance

computing,98 including analysis of data stored on SSDs of I/O burst buffers.132

We overcome many technical challenges to move data from SSDs to CPU effi-

ciently, overcoming the large speed disparity between CPU and memory, as well as

between memory and SSDs. The speed disparity of CPU and DRAM has increased

exponentially over the past decades.133 Even though the I/O performance of SSDs has

advanced to outperform hard drives by a large factor, they remain an order of mag-

nitude slower than RAM. On the other hand, many analysis tasks are data-intensive.

Matrix formulation further increases data movement between CPU and SSDs because

a matrix computation framework typically performs an operation on the entire input

matrices before moving to the next operation.

Another challenge in FlashMatrix is to reduce computation overhead. A GenOp

in FlashMatrix takes some functions (EleFuns) as additional arguments that define

operations on individual elements in the input matrices. To support the matrix oper-

ations in the R base package, a GenOp accepts functions at run time. As such, each

operation on an element potentially results in a function call, incurring computational
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overhead.

To move data efficiently, FlashMatrix evaluates expressions lazily and fuses oper-

ations aggressively in a single parallel execution job. FlashMatrix builds a directed

acyclic graph (DAG) to represent all operations in a single execution. When evaluat-

ing the computation in a DAG, FlashMatrix performs two levels of matrix partitioning

to improve data utilization in memory hierarchy and reduce data movement between

memory and SSDs as well as between CPU and memory. To access data stored on

SSDs, FlashMatrix streams data from SSDs to maximize I/O throughput.

To reduce computation overhead, we deploy vectorized EleFuns (VEleFuns) that

operates on a vector of elements, instead of an individual element. We define multiple

forms for each VEleFun and automatically select the right form for each GenOp to

amortize the function call overhead. When invoking VEleFuns, GenOps choose the

right vector length to balance the amortization of the function call overhead and CPU

cache misses. Inside VEleFuns, we use vector CPU instructions, such as AVX,108 to

further improve performance.

We implement multiple machine learning algorithms, including k-means27 and

Gaussian Mixture Models134 in FlashMatrix with its R programming interface to

benchmark its performance. On a large parallel machine with 48 CPU cores and fast

SSDs, the out-of-core execution of these R implementations in FlashMatrix achieves

performance comparable to the in-memory execution, while significantly outperform-

ing the same algorithms in Spark MLlib.8 FlashMatrix effortlessly scales to datasets
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with billions of data points and its out-of-core execution uses a small fraction of re-

sources required by in-memory implementations. When running in a single thread,

the FlashMatrix implementations outperform the C and FORTRAN optimized im-

plementations of the R framework. In addition, FlashMatrix achieves almost linear

speedup in a multicore NUMA machine for all algorithms. We believe FlashMatrix

significantly lowers the requirements for writing parallel and scalable implementations

of data analysis algorithms; it also offers new design possibilities for data analysis clus-

ters, replacing memory with larger and cheaper SSDs and processing bigger problems

on fewer nodes.

5.2 Related Work

Basic Linear Algebra Subprograms (BLAS) defines a small set of vector and matrix

operations commonly used in scientific computing. There exist a few highly-optimized

BLAS implementations such as MKL,102 OpenBLAS,130 GotoBLAS135 and ATLAS.136

However, these libraries optimize the vector and matrix operations in shared memory.

BLAS provides only a small number of vector and matrix operations.

Distributed memory matrix computation libraries101,122,131 speed up computation

and scale to larger vectors and matrices. These libraries in general build on top of

BLAS and distribute computation with MPI. They provide a limited set of predefined

matrix operations and require users to manually parallelize the remaining matrix op-
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erations. Instead of providing predefined matrix operations, the core of FlashMatrix

provides a few GenOps that represent some common data access patterns. Thus, each

GenOp covers a very large number of matrix operations.

There are many distributed data processing frameworks. MapReduce6 is a gen-

eral large-scale data processing framework. It provides a single primitive that takes

two user-defined functions. Due to the lack of efficient primitives for varieties of

data access patterns, algorithms implemented in MapReduce are inefficient. Dryad7

and Naiad9 provide more primitives than MapReduce to support various data access

patterns more efficiently.

Due to complexity of programming in the distributed execution engines, many

programming frameworks have been developed on top of the distributed execution

engines. Pig Latin31 and FlumeJava32 build on top of MapReduce to provide high-

level operations for general data analysis. SystemML36 builds on top of MapReduce

with a focus on machine learning. DryadLINQ33 builds on top of Dryad and ex-

poses a high-level language to express data analysis tasks. The performance of these

programming frameworks is bound by the underlying distributed execution engines.

Spark8 is a distributed in-memory data processing framework. It provides a highly-

optimized machine learning library called MLlib.29 Spark also provides an R pro-

gramming interface called SparkR, which focuses on computation on data frames, a

table-like data structure in R.

Both academia and industry are making significant effort to bring parallelization
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to array programming languages and scale them to large datasets. Revolution R137

and parallel computing toolbox in MatLab138 provide parallel linear algebra and data

analysis routines as well as explicit parallel programming interface such as MPI and

MapReduce. Other works bring implicit parallelization to programming frameworks.

Presto139 extends R to support sparse matrix operations in distributed memory for

graph analysis. Ching et. al140 parallelizes APL code by compiling it to paralllelized C

code. Accelerator141 compiles data-parallel operations on the fly to execute programs

in GPU.

5.3 Design

FlashMatrix is a matrix-oriented programming framework for general data anal-

ysis. It supports both sparse matrix operations and dense matrix operations. This

work mainly focuses on dense matrices and scales dense matrix operations beyond

memory capacity by utilizing fast I/O devices, such as solid-state drives (SSDs), in

a non-uniform memory architecture (NUMA). The implementation and optimization

of sparse matrix multiplication is described in.15 FlashMatrix uses R as its main

programming interface and executes R code automatically in parallel and out of core.

Figure 5.1 shows the architecture of FlashMatrix. The core of FlashMatrix pro-

vides a small number of generalized matrix operators (GenOps) to simplify the im-

plementation and improve expressiveness of the framework. The optimizer in Flash-
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Figure 5.1: The architecture of FlashMatrix.

Matrix aggressively merges operations to reduce CPU cache misses and I/O accesses

and achieve better parallelization. FlashMatrix stores large matrices on SSDs through

SAFS,12 a user-space filesystem for a large SSD array, to fully utilize high I/O through-

put of SSDs and deploys a set of I/O optimizations to improve its sequential I/O

throughput.15

5.3.1 Dense matrices

Dense matrices are the main data types in FlashMatrix. A vector is stored as a

one-column dense matrix. In FlashMatrix, a dense matrix can be stored physically in

memory or on SSDs or represented virtually by a sequence of computation. FlashMa-

trix specifically optimizes for tall-and-skinny matrices and short-and-wide matrices,

and views tall matrices and wide matrices as groups of tall-and-skinny matrices and

short-and-wide matrices, respectively.
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Figure 5.2: The format of a tall-and-skinny dense matrix.

5.3.1.1 Tall-and-skinny matrices

FlashMatrix optimizes for tall-and-skinny (TAS) dense matrices due to their fre-

quent occurrence in data analysis. In this field, many data matrices contain a large

number of samples with a relatively few features, so data matrices are usually tall

and skinny. If a data matrix has many features, the first step is often dimension

reduction,142 which results in a TAS matrix. FlashMatrix specifically optimizes for

TAS dense matrices with tens of columns or fewer.

FlashMatrix supports row-major and column-major matrix layout (Figure 5.2).

As such, we avoid data copy for common matrix operations such as matrix transpose.

FlashMatrix optimizes matrix operations for both data layouts. Each GenOp has its

own preferred matrix layout and determines the layout of an output matrix based on

the input matrices.

FlashMatrix uses two-level horizontal partitioning on TAS matrices for efficient
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data access to SSDs (Figure 5.2). FlashMatrix partitions TAS matrices horizontally

into I/O-level partitions. All elements in an I/O-level partition are stored contiguously

regardless of the data layout in the matrix. The I/O-level partition size determines an

I/O size, usually on the order of megabytes, because each I/O access reads an entire

I/O-level partition. The number of rows in an I/O-level partition is always 2i. This

produces column-major TAS matrices whose data are well aligned in memory to help

CPU vectorization. We further split an I/O-level partition horizontally into CPU-

level partitions during computation. We use a small CPU-level partition (on the order

of kilobytes) so that it fits in CPU L1/L2 cache to reduce CPU cache misses when

evaluating a sequence of matrix operations (Section 5.3.4.1). FlashMatrix determines

the number of rows in a CPU-level partition based on the number of columns in a

matrix.

5.3.1.2 Virtual matrices

In many cases, we do not need to store the data of a matrix physically. Instead,

we compute and generate its data on the fly. Virtual matrices store computation

and potentially the reference to some other matrices required by computation. A

simple example is a matrix with all elements having the same value. For such a

matrix, we only need to store a single value and construct its matrix partitions during

computation.

Virtual matrices are essential for lazy evaluation (Section 5.3.4.1). All GenOps
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may output virtual matrices that represent computation results by storing only the

computation of GenOps and the references to input matrices. This strategy is essential

for both in-memory and external-memory optimizations to improve performance. It

significantly reduces data access to memory and SSDs as well as memory allocation

overhead for creating new matrices.

5.3.1.3 A group of dense matrices

FlashMatrix represents a tall matrix with a group of tall-and-skinny matrices and

a wide matrix with a group of short-and-wide matrices. We construct a special virtual

matrix to represent a group of dense matrices. To take advantage of the optimizations

on matrix operations on TAS matrices, we decompose a matrix operation on a group

of matrices into operations on individual matrices in the group (Section 5.3.3.4).

Coupled with the two-level partitioning on TAS matrices, this strategy enables 2D-

partitioning on a dense matrix and each partition fits in main memory or CPU cache.

5.3.2 Programming interface

FlashMatrix provides a matrix-oriented functional programming interface. The

main interface is a small set of GenOps that take matrices and some element func-

tions (EleFuns) as input and output new matrices that store computation results.

EleFuns define computation on individual elements in input matrices. We implement

both GenOps and EleFuns with C++ and provides a large set of built-in EleFuns.
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# X is the data matrix

# C is the cluster centers from the previous iteration.

kmeans.iter <- function(X, C)

{

# Compute the pair-wise distance between a data

# point and a center.

D <- fm.inner.prod(X, t(C), "euclidean", "+")

# Find the closest center to a data point.

I <- fm.agg.row(D, "which.min")

# Count the number of data points in each cluster.

one <- fm.rep.int(1, nrow(I))

CNT <- fm.groupby.row(one, I, "+")

# Compute the new centers.

C <- fm.groupby.row(X, I, "+")

C <- fm.mapply.row(C, CNT, "/")

list(C=C, I=I)

}

Figure 5.3: The R code of computing an iteration of k-means using GenOps.

FlashMatrix exposes GenOps and the built-in EleFuns in its R interface and reimple-

ments many functions from the R base package with GenOps.

The R interface provides many functions to support varieties of data analysis

algorithms. We categorize the functions into three classes.

• The generalized matrix operators (GenOps), listed in Table 5.1.

• Utility functions include functions that construct FlashMatrix vectors and ma-

trices; functions that convert between FlashMatrix objects and R objects; func-

tions that transform the shape of a matrix; functions that provide additional

control on computation and data storage in FlashMatrix. Examples are shown

in Table 5.2.

• R matrix computation functions implemented with GenOps. Examples are

shown in Table 5.3.
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GenOp Description
C = fm.inner.prod(A,B, f1, f2) t = f1(Ai,k, Bk,j),

Ci,j = f2(t, Ci,j),
over all k

C = fm.sapply(A, f) Ci,j = f(Ai,j)
C = fm.mapply(A,B, f) Ci,j = f(Ai,j , Bi,j)
C = fm.mapply.row(A,B, f) Ci,j = f(Ai,j , Bj)
C = fm.mapply.col(A,B, f) Ci,j = f(Ai,j , Bi)
c = fm.agg(A, f) c = f(Ai,j , c), over all i, j
C = fm.agg.row(A, f) Ci = f(Ai,j , Ci), over all j
C = fm.agg.col(A, f) Cj = f(Ai,j , Cj), over all i
C = fm.groupby.row(A,B, f) Ck,j = f(Ai,j , Ck,j),

where Bi = k, over all i
C = fm.groupby.col(A,B, f) Ci,k = f(Ai,j , Ci,k),

where Bj = k, over all j

Table 5.1: The list of generalized matrix operators (GenOps) in FlashMatrix. A, B
and C are matrices, and c is a scalar.

Class Function Description

Create

fm.rep.int Create a vector of a repeated value
fm.seq.int Create a vector of sequence numbers
fm.runif.matrix Create a uniformly random matrix
fm.rnorm.matrix Create a random matrix under

a normal distribution

Convert
fm.conv.FM2R Convert a FM matrix to an R matrix
fm.conv.R2FM Convert an R matrix to a FM matrix

Reshape
t Matrix transpose
fm.rbind Bind matrices by rows
fm.cbind Bind matrices by columns

Control

fm.conv.layout Convert the data layout of a matrix
fm.set.mate.level Set the materialization level of

a virtual matrix
fm.materialize Materialize a virtual matrix
fm.conv.store Move a matrix to a specified

storage

Table 5.2: Some of the utility functions in FlashMatrix.
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Class Function Description

Element-wise

C = A+B Ci,j = Ai,j +Bi,j

C = A−B Ci,j = Ai,j −Bi,j

C = A ∗B Ci,j = Ai,j ∗Bi,j

C = A/B Ci,j = Ai,j/Bi,j

C = pmin(A,B) Ci,j = pmin(Ai,j , Bi,j)
C = pmax(A,B) Ci,j = pmax(Ai,j , Bi,j)
C = sqrt(A) Ci,j = sqrt(Ai,j)
C = abs(A) Ci,j = abs(Ai,j)
C = exp(A) Ci,j = exp(Ai,j)

Aggregate

c = sum(A) c =
n∑

i=1

p∑
j=1

Ai,j

C = rowSums(A) Ci =
p∑

j=1

Ai,j

C = colSums(A) Cj =
n∑

i=1

Ai,j

c = any(A) true if any element is true
c = all(A) true if all elements are true

multiply % ∗% matrix multiplication

Table 5.3: Some of the R functions implemented with GenOps.

Figure 5.3 shows an example of computing an iteration of k-means27 using GenOps.

It first uses fm.inner.prod to compute the Euclidean distance between every data

point and every cluster center, and outputs a matrix with each row representing the

distances from a data point to every cluster center. It uses fm.agg.row to find the

closest cluster for each data point and the output matrix represents how data points

are assigned to clusters. It then uses fm.groupby.row to count the number of data

points in each cluster and compute the mean of each cluster.

5.3.3 Efficient generalized operations

FlashMatrix provides efficient implementations of a small number of generialized

matrix operations (GenOps) to achieve both generality and efficiency. For generality,
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FlashMatrix allows users to pass functions to GenOps to define actual matrix com-

putation. For efficiency, FlashMatrix requires the functions passed to GenOps to be

vectorized.

5.3.3.1 Generalized matrix operations

FlashMatrix provides only four GenOps on matrices: inner product, apply, aggre-

gation and groupby (Table 5.1). Each operator represents a data access pattern and

accepts some element functions as additional arguments that define computation on

individual elements in matrices (Section 5.3.3.2).

Inner product is a generalized matrix multiplication (fm.inner.prod). It replaces

multiplication and addition in matrix multiplication with two functions. We define

many operations with inner product. For example, we use it to compute various

pair-wise distances, such as Euclidean distance and Hamming distance, between data

points. For dense matrices, we mainly focus on optimizing two cases: inner product

of a wide matrix and a tall matrix and inner product of a tall matrix and a small

matrix. It is impractical to materialize inner product of a large tall matrix and a

large wide matrix owing to space complexity. This holds for all matrix algebra frame-

works. When evaluating an inner product expression, FlashMatrix uses the BLAS

implementation of matrix multiplication for floating-point matrices. This achieves

the speed and precision required by numeric libraries, such as eigensolvers.100,116

Apply is a generalized form of element-wise operations and has multiple variants.
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The simplest variant (fm.sapply) is an element-wise unary operation. We use it to im-

plement many unary operations such as negation, square root or element type casting

on a matrix. The second variant (fm.mapply) is an element-wise binary operation.

We use it to implement many binary matrix operations such as matrix addition and

subtraction. The third (fm.mapply.row) and the fourth variants (fm.mapply.col) per-

form element-wise binary operations on the input vector with every row or column of

the input matrix and output a matrix of the same shape as the input matrix.

Aggregation takes multiple elements and outputs a single element. It has three

variants on a matrix. The first variant (fm.agg) aggregates over all elements on a

matrix, e.g., matrix summation. The second (fm.agg.row) and the third variants

(fm.agg.col) compute aggregation over each individual row or column. rowSums and

colSums in R are examples.

Similarly, Groupby on a matrix has two variants. The first variant (fm.groupby.row)

groups rows and the second variant (fm.groupby.col) groups columns of a matrix based

on a vector of categorical values and performs aggregation on the rows or columns

associated with the same categorical value. Matrix groupby is used in classification

and clustering algorithms that compute aggregation on the data points in a class or

in a cluster.
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5.3.3.2 Vectorized element functions

Invoking a function on each element individually would result in significant func-

tion call overheads. Instead, all of the GenOps take vectorized element functions

(VEleFuns) that operate on a vector of elements instead of an individual element.

By transforming the operations on individual elements to the ones on a vector, we

amortize the overhead of function calls significantly.

We balance the amortization of function call overhead and CPU cache misses.

To reduce latency of accessing data in VEleFuns, the input data has to be small

enough to fit in the CPU L1 cache. On the other hand, passing a longer vector to a

VEleFun amortizes the overhead of function calls more aggressively. We use 128 as

the maximum length of the input vector of a VEleFun.

We have three types of VEleFuns to support the GenOps in FlashMatrix. Each

VEleFun type may have multiple forms to allow GenOps to transform operations to

increase the length of an input vector to a VEleFun and reduce function call overhead.

• A unary VEleFun (uVEleFun) takes a vector as input and outputs a vector of

the same length.

• A binary VEleFun has three forms: the first form (bVEleFun1 ) takes two vectors

of the same length and outputs a vector of the same length as the input vectors;

the second form (bVEleFun2 ) takes a vector as the left argument and a scalar

as the right argument and outputs a vector with the same length as the input
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vector; the third form (bVEleFun3 ) takes a scalar as the left argument and a

vector as the right argument and outputs a vector. The second and third forms

support non-commutative binary operations such as division and subtraction.

• An aggregation VEleFun consists of two functions: aggregate and combine. Both

functions may have two forms: the first one (aVEleFun1 ) takes a vector and

outputs a scalar; the second one (aVEleFun2 ) takes two vectors of the same

length and outputs a vector. For many aggregation VEleFuns such as sum-

mation, aggregate and combine are the same and have both aVEleFun1 and

aVEleFun2 forms. For some aggregation such as count, aggregate and combine

are different.

FlashMatrix provides many commonly used VEleFuns that wrap basic operations

built in many programming languages and libraries. For example, FlashMatrix pro-

vides arithmetic operations (addition and subtraction), relational operations (equal to

and less than), logical operations (logical AND and logical OR), as well as commonly

used math functions (absolute value and square root). FlashMatrix also provides a

set of VEleFuns to cast primitive element types.

For each basic operation, FlashMatrix provides multiple VEleFun implementa-

tions to support different element types. To reduce the number of binary VEleFun

implementations, FlashMatrix only provides the ones that take two input arguments

of the same type. If a GenOp gets two matrices with different element types, it first

casts the element type of one matrix to match the other. Type casting operations are
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implemented with fm.sapply and are performed lazily.

FlashMatrix allows programmers to extend the framework by registering new

VEleFuns. Like built-in VEleFuns, a new VEleFun needs to provide multiple im-

plementations to support different element types; based on the type of the VEleFun,

it may need to provide different forms as described above. FlashMatrix currently

requires a VEleFun to be implemented with C/C++.

We use CPU vector instructions such as AVX108 to accelerate the computation

in a VEleFun. The current implementation of FlashMatrix heavily relies on auto-

vectorization of a compiler, such as GCC, to vectorize computaion. FlashMatrix

provides hints and transforms code to help auto-vectorization. For example, a VEle-

Fun in FlashMatrix frequently operates on vectors with data aligned in memory and

of the length defined at compile time, so we inform the compiler of the data alignment

and the vector length. Some compilers do not automatically vectorize aggregation op-

erations well. In this case, we manually create a small vector of reduction variables,

flatten the loop and transform the original aggregation operation into aggregation

onto the vector of reduction variables to help auto-vectorization.

5.3.3.3 Implementation of GenOps with VEleFun

GenOps invoke VEleFuns on the elements of CPU-level partitions intelligently to

increase the length of vectors passed and to reduce the overhead of function calls.

Different GenOps choose different forms of VEleFuns based on the data layout and
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the shape of the input matrices.

Some GenOps invoke VEleFuns on the elements of matrices efficiently regardless

of data layout and matrix shape. For example, fm.sapply and fm.mapply only require

the input matrices and the output matrix to have the same data layout. For tall

column-major matrices and wide row-major matrices, each CPU-level partition has

long columns and long rows, respectively. These GenOps invoke a VEleFun on the

long columns and rows. For tall row-major matrices and wide column-major matrices,

all rows and columns in a CPU-level partition are stored in a single piece of memory.

These GenOps invoke a VEleFun only once on all elements in a partition.

Most of the GenOps require a matrix with a specific data layout to reduce function

call overhead. Many of the GenOps favor the column-major order for a tall-and-skinny

matrix and the row-major order for a short-and-wide matrix. These data layouts

increase the length of a vector passed to a VEleFun and align data in memory. For

example, the column-major order ensures that each column in a partition of a tall

matrix is aligned in memory, regardless of the number of columns in the matrix. A

GenOp, such as inner product, converts the data layout of a CPU-level partition to

the preferred layout if an input matrix does not have the preferred layout.

Given a matrix with the preferred data layout, a GenOp selects different forms

of a VEleFun automatically based on the shape of the input matrix. For example,

for a tall column-major matrix, fm.mapply.col invokes the bVEleFun1 form of the

binary VEleFun on a column from the input matrix and the input vector; for a wide
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row-major matrix, fm.mapply.col invokes the bVEleFun2 form on a row from the

input matrix and an element from the vector. We apply the similar strategy to other

GenOps. When applying inner product on a tall column-major matrix, FlashMatrix

uses the bVEleFun2 form of the first VEleFun to computes the outer product of a

column from the left matrix and a row from the right matrix, and uses the aVEleFun2

of the second VEleFun to compute the final result. Because inner product operates

on a CPU-level partition, all intermediate results in the computation reside in CPU

cache. Inner product on a wide matrix and a tall matrix invokes the bVEleFun1 form

of the first VEleFun on a row from the left matrix and a column from the right matrix,

and invokes the aVEleFun1 form of the second VEleFun on the output from the first

VEleFun to compute an element in the output matrix for the input partitions.

5.3.3.4 Implementation of GenOps on a group of matrices

When applying a GenOp on a group of matrices (Section 5.3.1.3), we decompose

the computation into multiple GenOps and apply them to individual matrices in the

group if the GenOp supports decomposition. Decomposing computation to individual

matrices reduces memory copies and increases CPU cache hits. For the GenOps that

cannot be decomposed, we combine the individual matrices on the fly and apply the

GenOps on the combined matrix directly.

We apply some of the GenOps to individual matrices directly without transforma-

tion. For example, fm.sapply and fm.agg run on individual matrices directly regard-
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less of the shape and data layout of the matrices. Other GenOps may be applied to

individual matrices directly if the input matrices have certain shape. For example, we

apply fm.mapply.col and fm.agg.col to individual matrices in a group of tall matrices

directly. Similarly, we apply fm.mapply.row and fm.agg.row to individual matrices in

a group of wide matrices directly.

Applying other GenOps to a group of matrices requires transformation. If an

aggregation VEleFun provides a combine function, applying fm.agg.row to a group

of tall matrices is transformed into two steps: apply the aggregate function on each

row of individual matrices and apply the combine function on the partial aggregation

results. When applying fm.mapply.row to a group of tall matrices, we break the input

vector into parts to match the number of columns in the individual matrices in the

group and apply fm.mapply.row to individual matrices separately. We apply the same

strategies to fm.agg.col and fm.mapply.col on a group of wide matrices.

5.3.4 Reduce data movement in memory hierarchy

Although GenOps coupled with VEleFuns achieves efficiency in a single matrix

operation, they alone cannot achieve the overall performance of users’ code, especially

when matrices are stored on SSDs. Evaluation of individual matrix operations results

in significant data movement between CPU and SSDs. As such, we deploy lazy

evaluation to construct a directed acyclic graph (DAG); when evaluating computation

in a DAG, we take advantage of two-level partitioning on matrices to reuse data in
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Figure 5.4: A directed acyclic graph of computing an iteration of k-means show in
Figure 5.3.

memory and CPU cache.

5.3.4.1 Lazy evaluation

FlashMatrix allows to evaluate many matrix operations lazily, which includes all

GenOps in Table 5.1 and some utility functions in Table 5.2. The lazily evaluated

matrices are put together to construct a DAG to represent the computation. To

reduce data movement, the goal is to grow a DAG as large as possible to increase the

ratio of computation and I/O in a DAG.

Figure 5.4 (a) shows a DAG for the R code of k-means in Figure 5.3. A DAG

comprises a set of matrix nodes (shown as rectangles) and computation nodes (shown

as ellipses). Majority of matrix nodes represent virtual matrices, shown as dashed
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line rectangles, which only contains the corresponding matrix operations and input

matrices. In the case of k-means, only the input matrix X contains materialized

data. A computation node references to a matrix operation and input matrices and

may contain some immutable computation state, such as scalar variables and small

matrices involved in the matrix computation.

Virtual matrices in a DAG do not need to have the same shape (Figure 5.4 (b)).

All virtual matrices in the internal matrix nodes need to have the same long dimension

to simplify evaluation and data flow in matrix materialization. The other dimension

of the internal matrices can vary. The GenOps that generate matrices with the same

long dimension as the input matrices include fm.sapply and fm.mapply. In addition,

FlashMatrix allows virtual matrices of different sizes in both dimensions, such as

matrices CNT and C (Figure 5.4 (b)), in a DAG. These virtual matrices usually form

the edge node of a DAG because any computation that uses these virtual matrices

cannot be connected to the same DAG. We refer to them as sink matrices. The

GenOps that generate sink matrices include fm.agg and the variants of groupby.

To enable lazy evaluation, all matrices in FlashMatrix are immutable and every

matrix operation generates a new matrix. As such, materialization of virtual matrices

always generates the same result. FlashMatrix garbage collects a matrix when there

are no references to it.
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Figure 5.5: Materialization of partitions of matrices in a DAG.

5.3.4.2 Matrix materialization in the memory hierarchy

Lazy evaluation postpones computation in matrix operations, but we eventually

have to materialize some virtual matrices to perform actual computation. When we

perform computation in a DAG, FlashMatrix only reads the input matrices of the

DAG from SSDs and materializes other matrices on the fly. FlashMatrix utilizes the

two-level partitioning in dense matrices to bring data from SSDs to CPU efficiently.

FlashMatrix allows users to materialize any virtual matrix in a DAG. By default,

FlashMatrix materializes only sink matrices in a DAG to minimize data written to

SSDs because sink matrices are small and are always kept in memory. In the example

of k-means (Figure 5.4), we materialize the two sink matrices together. In some cases,

especially in iterative algorithms, we need to materialize some non-sink matrices in

a DAG to avoid redundant computation and I/O across iterations. In the current

implementation, FlashMatrix allows users to set a flag on the non-sink matrices to

inform FlashMatrix to save materialized data of these matrices to memory or SSDs

during computation.

FlashMatrix partitions matrices in a DAG in the long dimension and materializes

partitions separately (Figure 5.5). This is realized because all virtual matrices except

sink matrices in a DAG share the same long dimension size and partition size. As
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such, a partition i of a virtual matrix only requires data from partitions i of the

parent matrices. When materializing a sink matrix, each thread first computes partial

aggregation results independently on the partitions of the parent matrix assigned to

the thread. In the end, FlashMatrix merges per-thread partial aggregation results to

construct the sink matrix.

FlashMatrix takes advantage of the two-level partitioning on dense matrices to

reduce data movement between SSDs and CPU. It assigns I/O-level partitions to a

thread as computation tasks for parallelization. We choose a relatively small partition

size to balance the overhead of accessing a partition, computation skew and memory

consumption. A thread further splits an I/O-level partition into CPU-level partitions

at run time and materializes one CPU-level partition at a time. Materialization of

a CPU-level partition is triggered recursively. As shown in Figure 5.5, materializing

matrix CNT triggers materialization of CPU-level partitions of matrices I and one,

which in turn triggers materialization of partitions of matrix D, and so on. Eventually,

it triggers data access to an I/O-level partition of input matrix X from SSDs. After

materializing a CPU-level partition, the thread passes it to the subsequent operation,

instead of materializing the next CPU-level partition in the same matrix. A CPU-level

partition is sufficiently small to fit in the CPU cache so that the partition still resides

in the CPU cache when the subsequent operation consumes it. This significantly

reduces data movement between CPU and memory. In each thread, all intermediate

matrices have only one CPU-level partitions materialized at any time to reduce CPU
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cache pollution and thus increase CPU cache hits.

5.4 Experimental evaluation

We evaluate the performance of FlashMatrix with statistics and machine learn-

ing algorithms both in memory and on SSDs. We compare their performance with

the implementations in Spark MLlib,29 a highly-optimized parallel machine learning

library, and the C and FORTRAN implementations in the R framework. We further

illustrate the effectiveness of the optimizations deployed in FlashMatrix when running

both in memory and on SSDs.

We conduct experiments on a non-uniform memory architecture machine with

four Intel Xeon E7-4860 processors, clocked at 2.6 GHz, and 1TB memory of DDR3-

1600. Each processor has 12 cores. The machine has three LSI SAS 9300-8e host

bus adapters (HBA) connected to a SuperMicro storage chassis, in which 24 OCZ

Intrepid 3000 SSDs are installed. The 24 SSDs together are capable of delivering 12

GB/s for read and 10 GB/s for write at maximum. The machine runs Linux kernel

v3.13.0. By default, we use 48 threads for both in-memory and out-of-core execution

of FlashMatrix. We use Spark v1.5.0 and R v3.2.4.
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5.4.1 Statistics and Machine learning algorithms

We implement multiple important algorithms in the field of statistics and ma-

chine learning. We implement these algorithms completely with the R interface of

FlashMatrix and rely on FlashMatrix to perform computation in parallel and out of

core.

• Multivariate statistical summary: this computes column-wise minimum, max-

imum, mean, L1 norm, L2 norm, the number of non-zero values and variance

on a data matrix.

• Correlation: this computes pair-wise Pearson’s correlation143 among multiple

series of data and is commonly used in statistics.

• Singular value decomposition (SVD) factorizes a matrix into three matrices:

U , Σ and V such that A = UΣV T , where U and V are orthonormal matrices

and Σ is a diagonal matrix with non-negative diagonals in descending order.

To compute SVD on a n × p matrix A (n � p), we first compute Gramian

matrix ATA and compute eigenvalues and eigenvectors to derive singular values

and singular vectors of the matrix A. SVD is commonly used for dimension

reduction. In the experiments, we compute 10 singular values.

• K-means27 is an iterative algorithm of partitioning a set of data points into

k clusters so that each cluster has minimal mean of distances between the

data points in the cluster and the cluster center. K-means is one of the most
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Algorithm Computation I/O
Summary O(n× p) O(n× p)

Correlation O(n× p2) O(n× p)
SVD O(n× p2) O(n× p)

K-means (1 iteration) O(n× p× k) O(n× p)
GMM (1 iteration) O(n× p2 × k + p3 × k) O(n× p+ n× k)

Table 5.4: The computation and I/O complexity of the algorithms for the five
algorithms. n is the number of data points in the dataset, p is the number of the
features in a data point and k is the number of clusters k-means and GMM partition
the dataset. We assume n� p.

popular clustering algorithms and is identified as one of the top 10 data mining

algorithms.110 In the experiments, we run k-means to split a dataset into 10

clusters by default.

• Gaussian Mixture Model (GMM)134 is another iterative clustering algorithm

that assumes data points are sampled from a mixture of Gaussian distributions

and use expectation maximization (EM)134 algorithm to fit the model. This

algorithm is also identified as one of the top 10 data mining algorithms.110 In

the experiments, we run GMM to split a dataset into 10 clusters by default.

These algorithms have various ratios of computation complexity and I/O com-

plexity (Table 5.4), which helps to evaluate the perforamnce of FlashMatrix on SSDs

thoroughly. The first three algorithms only require a constant number of passes over

the input matrix. K-means and GMM run iteratively and we show their computation

and I/O complexity in a single iteration. GMM typically run on a dataset with a

small number of features. Therefore, the first term of its computation complexity

dominates the computation. Although correlation and SVD have lower asymptotic
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Data Matrix n p size
Friendster-32109 65M 32 16GB
MixGaussian-1B 1B 32 251GB

Random-65M 65M 8-512 4-248GB

Table 5.5: Datasets (n× p matrices) for performance evaluation.

complexity than GMM, they may run on datasets with many features and, thus, may

have very high computation overhead.

K-means and GMM typically run on a dataset with a small number of features

in each data point due to curse of dimensionality142 while the other algorithms may

be applied to datasets with various numbers of features. We use the datasets in

Table 5.5 for performance evaluation. In all datasets, the number of data points is

far more than the number of features. We run k-means and GMM on the Friendster-

32 matrix, constructed from 32 eigenvectors of the Friendster graph,109 as well as

the MixGaussian-1B matrix with one billion data points and 32 features in each

data point, sampled from 10 mixtures of multivariate Gaussian distributions with

the identity covariance matrix and different means. We measure the performance of

the other three algorithms on all of the matrices in Table 5.5, including the random

matrices with 65 million rows and the number of columns varying from 8 to 512.

5.4.2 Comparative performance of FlashMatrix

We compare the performance of the FlashMatrix implementations with the ones

in Spark MLlib29 and the R framework. We run the MLlib implementations with
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Figure 5.6: The performance and memory consumption of FlashMatrix both in
memory (FM-IM) and on SSDs (FM-EM) compared with Spark MLlib on the
MixGaussian-1B matrix.

their native Scala interface and use a very large heap size to ensure that all input

data is cached in memory. We use 48 threads for both FlashMatrix and MLlib to

run on the MixGaussian-1B matrix. The R framework provides C implementations

for correlation, SVD and k-means. The R package mclust144 provides a FORTRAN

implementation of GMM. These implementations run in a single thread. We run the

FlashMatrix implementations in a single thread and compare their performance with

the C and FORTRAN implementations on the Friendster-32 matrix.
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FlashMatrix both in memory and on SSDs outperforms Spark MLlib significantly

in all algorithms (Figure 5.6 (a)). For some algorithms such as correlation, SVD and

GMM, even though both FlashMatrix and MLlib implementations heavily rely on

BLAS for matrix multiplication, FlashMatrix outperforms MLlib significantly owing

to our heavy optimizations on GenOps such as aggressive matrix operation fusion and

VEleFuns. In contrast, MLlib materializes operations such as aggregation separately

and implements non-BLAS operations with Scala.

Even though FlashMatrix provides a matrix-oriented functional programming in-

terface, it easily scales to datasets with billions of data points and its scalability is

bound by the capacity of SSDs (Figure 5.6 (b)). For out-of-core execution, Flash-

Matrix keeps large matrices on SSDs and has a very small memory footprint. The

functional programming interface generates a new matrix in each matrix operation,

which potentially leads to high memory consumption. Owing to lazy evaluation,

FlashMatrix does not store majority of matrices in the computation physically. As

such, its in-memory execution barely increases memory consumption from the min-

imum memory requirement of the algorithms. This indicates that the out-of-core

execution consumes small space on SSDs, which leads to very high scalability.

FlashMatrix running both in memory and on SSDs significantly outperforms R

even with a single thread in all of these algorithms (Figure 5.7). We exclude statistic

summary in the experiment because R does not provide a C or FORTRAN imple-

mentation of computing the same statistics. The performance results indicate that
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Figure 5.7: The performance of FlashMatrix in a single thread both in memory (FM-
IM) and on SSDs (FM-EM) compared with the C and FORTRAN implementations
in the R framework on the Friendster-32 matrix.

FlashMatrix executes R code efficiently to even outperform some optimized C and

FORTRAN implementations when processing large datasets.

The in-memory execution of FlashMatrix achieves almost linear speedup in all

algorithms while the out-of-core execution only starts to flatten out after 32 threads

(Figure 5.8). Owing to operation fusion in CPU cache, FlashMatrix significantly re-

duces data movement between CPU and main memory. As such, memory bandwidth

is no longer the bottleneck for in-memory execution and the algorithms speed up

linearly with more CPU cores. For out-of-core execution, I/O is the bottleneck for

the algorithms with lower computation complexity when they run with 48 threads.

However, GMM still speeds up almost linearly even when running on SSDs, due to

its high computation complexity. The performance results in Figure 5.7 and Fig-

ure 5.8 indicate that FlashMatrix can potentially execute R code with performance

comparable to parallel C or FORTRAN implementations.
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Figure 5.8: The speedup of FlashMatrix with multithreading both in memory (IM)
and on SSDs (EM).

5.4.3 Performance of FlashMatrix in memory and

on SSDs

We further measure the in-memory and external-memory performance of Flash-

Matrix thoroughly with different datasets and different parameters. We run the first

three algorithms on random-65M matrices with the number of columns varying from 8

to 512. We run k-means and GMM on the Friendster-32 matrix and vary the number

of clusters from 2 to 64.

As the number of features or the number of clusters increases, the performance

gap between in-memory and external-memory execution narrows and eventually the

external-memory performance gets almost 100% of in-memory performance for some

algorithms (Figure 5.9 and 5.10). This observation conforms with the computation

and I/O complexity of the algorithms in Table 5.4. When the number of features gets
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Figure 5.9: The relative performance of FlashMatrix on SSDs for statistics compu-
tation on random-65M matrices with the number of columns varying from 8 to 512,
normalized by its performance in memory. As the number of columns increases, the
external-memory performance of these implementations approach to its in-memory
performance.

larger, the computation of matrix multiplication in correlation and SVD grows more

rapidly than I/O and eventually CPU becomes the bottleneck. The current imple-

mentation of correlation requires an additional pass on the input matrix to compute

column-wise mean values, which results in lower external-memory performance. Sim-

ilarly, as the number of clusters increases, the computation of k-means and GMM

increases rapidly and these algorithms are dominated by their CPU computation

as the number of clusters gets larger. Given an I/O throughput of 10 GB/s, the

algorithms do not require many features or clusters to have their external-memory

performance close to their in-memory performance.
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Figure 5.10: The relative performance of FlashMatrix on SSDs for clustering algo-
rithms with different numbers of clusters, normalized by its performance in memory.
As the number of clusters increases, the external-memory performance of these im-
plementations approach to their in-memory performance.

5.4.4 Effectiveness of optimizations

In this section, we illustrate the effectiveness of our memory and CPU optimiza-

tions in FlashMatrix. To reduce memory overhead, we focus on three main opti-

mizations: (i) reusing memory chunks for new in-memory matrices and I/O access

to reduce large memory allocation (mem-alloc), (ii) matrix operation fusion in main

memory to reduce data movement between SSDs and main memory (mem-fuse), (iii)

matrix operation fusion in CPU cache to reduce data movement between main mem-

ory and CPU cache (cache-fuse). To reduce computation overhead, we illustrate the

effectiveness of using VEleFuns.

Each memory optimization has significant performance improvement on most of

the algorithms when FlashMatrix runs on SSDs (Figure 5.11 (a)). Operation fusion in

main memory achieves the highest performance improvement in almost all algorithms,

even in GMM, which has the highest asymptotic computation complexity. Even
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though the SSDs deliver an I/O throughput of 10GB/s, materializing every matrix

operation separately causes SSDs to be the main bottleneck in the system. Fusing

matrix operations in memory significantly reduces I/O access to SSDs and improves

performance by a large factor. Operation fusion in the CPU cache also has very

positive performance impact on some algorithms even when the algorithms run on

SSDs. This suggests that with sufficient I/O optimizations, many machine learning

algorithms that run on fast SSDs can be bottlenecked by the bandwidth of main

memory, instead of I/O. Even though it is less noticeable, reducing large memory

allocation improves I/O performance and almost doubles the overall performance of

all algorithms.

The same memory optimizations also have very positive impact on the perfor-

mance of most of the algorithms when FlashMatrix runs in memory (Figure 5.11

(b)). Operation fusion in CPU cache has performance improvement on all algo-

rithms because reducing data movement between main memory and CPU cache in

a sequence of matrix operations always improves performance. Operation fusion in

main memory further reduces memory allocation overhead when FlashMatrix runs in

memory. Thus, like the optimization of reducing large memory allocation, its effec-

tiveness heavily depend on the computation patterns in the algorithms. Both of the

optimizations are more effective for the algorithms such as statistical summary and

k-means, which require to generate new large matrices but do not have very heavy

computation.
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Figure 5.11: The effectiveness of memory optimizations on different algorithms
running on SSDs. The three memory optimizations are applied to FlashMatrix incre-
mentally.
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Figure 5.12: The effectiveness of using VEleFuns on different algorithms running
in memory.

VEleFuns improve the performance of the algorithms that rely on GenOps for

computation (Figure 5.12). In this experiment, the base implementations deploy all

memory optimizations to avoid memory from being the bottleneck of the system,

and invoke functions on individual elements. The FlashMatrix implementations of

statistical summary and k-means solely rely on GenOps. Therefore, their performance

is almost doubled when we use VEleFuns. The main computation in correlation

and GMM is matrix multiplication, but they still rely on GenOps for the remaining

computation. As such, the use of VEleFuns helps their performance. SVD solely uses

matrix multiplication, so switching to VEleFuns has no performance impact.

5.5 Conclusions

We present FlashMatrix, a matrix-oriented programming framework for general

data analysis. FlashMatrix scales to large datasets by utilizing commodity SSDs. It
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provides a high-level functional programming interface for users to write data analysis

algorithms in R and executes the R implementations in parallel and out of core au-

tomatically. For simplicity and generality, the core of FlashMatrix only implements

a small number of generalized matrix operators (GenOps). It reimplements many

matrix operations in R base package with GenOps to provide a familiar programming

environment to users. To improve performance, FlashMatrix uses vectorized element

functions (VEleFuns) to reduce the overhead of function calls and fuses matrix oper-

ations to reduce data movement between CPU and SSDs.

We demonstrate that the matrix-oriented functional programming interface in

FlashMatrix can achieve high performance and scalability for many data analysis al-

gorithms. We implement multiple statistics and machine learning algorithms in R

and compare their performance with Spark MLlib, a highly-optimized parallel ma-

chine learning library, on large datasets. The R implementations executed in Flash-

Matrix significantly outperforms the implementations in Spark MLlib. We further

demonstrate that the R implementations running FlashMatrix with a single thread

can outperform the C and FORTRAN implementations in the R framework. In ad-

dition, FlashMatrix also achieves linear speedup with multithreading in all of these

algorithms.

Even though SSDs are still an order of magnitude slower than DRAM, the external-

memory execution of many data analysis algorithms in FlashMatrix can achieve per-

formance comparable to their in-memory execution. We demonstrate that an I/O
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throughput of 10 GB/s is able to saturate CPU for many algorithms, even in a large

parallel NUMA machine. As such, the external-memory execution also benefits from

many in-memory optimizations.

FlashMatrix simplifies significantly the programming effort of writing parallel and

out-of-core implementations for large-scale data analysis. It provides domain experts

a familiar programming environment for implementing their algorithms designed to

process large datasets. It also significantly increases productivity of writing an ef-

ficient implementation with performance comparable to low-level programming lan-

guages. We believe FlashMatrix opens a new opportunity for large-scale data analy-

sis.
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Conclusion

This thesis addresses the challenges in large-scale data analysis using commodity

SSDs. Instead of developing data analysis algorithms on SSDs directly, we develop

programming frameworks for users to implement complex data analysis algorithms

and hides the complexity of external-memory data analysis and parallel computation.

One of the main contributions of this thesis is developing a comprehensive data

analysis ecosystem called FlashX, which covers a large range of data analysis tasks.

FlashX contains three major subsystems: SAFS, FlashGraph and FlashMatrix. By

seaminglessly integrating these subsystems together, FlashX achieves efficiency, scal-

ability and generality.

Over the course of studying data analysis tasks on SSDs, we also conclude that

the semi-external memory strategy is a simple but effective way of achieving both

performance and scalability. We adopt semi-external memory in FlashGraph for
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graph analysis and in FlashMatrix for sparse matrix multiplication. In FlashGraph,

we keep vertex state in memory and edge lists of graphs on SSDs. This partitioning

enables in-memory vertex communication that generates majority of small random

memory accesses in graph analysis. Thus, we achieve in-memory performance while

scaling beyond memory capacity. We further extend the concept of semi-external

memory to sparse matrix dense matrix multiplication, where we keep the sparse

matrix on SSDs and the dense matrix or some columns of the dense matrix in memory.

This strategy enables us to achieve in-memory performance while performing sparse

matrix multiplication on a massive sparse matrix.

By implementing the efficient data analysis ecosystem, we are able to thoroughly

study the role of flash memory in varieties of data analysis tasks at a large scale.

We demonstrate that many graph analysis and machine learning tasks benefit from

flash memory. With careful design and engineering in the data analysis framework

and programming efforts from users, external-memory implementations of these data

analysis tasks achieve performance comparable to that of state-of-the-art in-memory

implementations, while scaling to very large datasets. This indicates that fast SSDs

can replace RAM in data analysis, which potentially shapes the design of future

machines for large-scale data analysis.
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