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Abstract 

 

 Computed Tomography (CT) is one of the most useful and widely applied imaging 

modalities, employed in both diagnostic and treatment planning purposes in the medical field. 

Circular and spiral acquisition trajectories are traditionally employed and work well in many 

cases. The advent of technologies such as robotic C-arms in interventional imaging allow for 

more complex data acquisitions, which enables potential improvements in image quality, 

increased field of view, and sampling.  This capability has particular potential crucial in 

interventional cases where images may be compromised by complex anatomy or surgical tools. 

In this work, we present a paradigm that uses custom non-circular orbits and prior patient 

information along with segmentation and registration techniques to account for surgical tools 

and/or implants, to improve image quality. The framework leverages the anatomical model to 

optimize a parameterized source-detector trajectory for a variety of specific imaging tasks. We 

propose an overall workflow for orbit customization with investigations of the various workflow 

stages as well as the overall performance of the framework. 
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Chapter 1 

 

Introduction to Optimizing Orbits to Improve Imaging with 

Metal Implants 

 

1.1 Context and Objective of Work 

Medical imaging is an important component of diagnostic medicine as well as of the 

modern surgical workflow. Computed Tomography (CT) has emerged as one of the most 

common imaging modalities, with tens of millions of scans taken each year within the medical 

sector alone (Brenner and Hall, 2007). The popularity of CT is largely due to its fast acquisition 

times compared to other imaging modalities as well as the high resolution of the 3D images 

produced. 

A special computed tomography modality with a flat panel detector, cone beam 

computed tomography (CBCT), has seen increasing applications. Unlike fan-beam CT, CBCT 

exposure incorporates the entire field of view (FOV) so only one rotation about the gantry is 

necessary to acquire enough data for 3D reconstruction rather than a helical progression 

requiring stacking separate 2D reconstructions. This allows for more rapid acquisition of a data 

set for the entire FOV and requires a less expensive detector, contributing to the low cost and 

small foot print of CBCT. Additional advantages of CBCT include increased x-ray tube 

efficiency and reduced image distortion due to internal patient movement. However, CBCT 
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reconstructions frequently require scatter correction as large amounts of scattered radiation are 

detected, affecting the image quality due to noise and degraded contrast resolution.  (Yan and 

Leahy, 2000) Despite this limitation, CBCT has found a wide range of medical applications in 

radiotherapy guidance, diagnosis, and treatment planning. For example, early detection via 

advanced imaging systems, including CBCT, allows doctors to identify tumors, hemorrhages, 

and other abnormalities in a timely matter to produce better patient outcomes. (Lee et al., 2016)  

 

1.2 Motivation for Work 

Importantly, imaging modalities can be used for surgical guidance, such as C-arm based 

CBCT which allows for additional mobility of the source and detector. This mobility provides 

additional flexibility in acquisition design, making CBCT invaluable in the operating room for 

image guided procedures. (Stayman and Siewerdsen, 2013) The presence of surgical tools and 

the necessity of highly attenuating metal implants often introduce severe metal artifacts that 

degrade image quality and obscure visualization of important anatomical features–frequently at 

the surgical site itself where physicians most need clear images. 

Metal artifacts often arise because satisfactory images cannot be calculated from 

projections with missing or distorted data, which occurs when all or most photons are attenuated 

by the metal for all projections. To correct for metal artifacts, many approaches have been 

proposed. Traditionally, solutions are based on iterative or algebraic reconstruction techniques. 

However, these require a large number of iterations to converge. Kalender proposed a simpler 

solution which uses linear interpolation to “fill in” the missing data and found that metal artifacts 

were reduced. (Kalender et al., 1987) Iterative methods, such as the Metal Deletion Technique 
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(MDT), focus on the principle that projection data near the metal is less accurate due to the 

factors such as beam hardening and under-sampling. Metal pixels are deleted from the 

reconstruction with each iteration and forward projected values from previous iterations replace 

the distorted data. (Boas and Fleischmann, 2011; Boas and Fleischmann, 2012). Ultimately, the 

core of each solution is to “fill in” missing data – this can also be accomplished by leveraging the 

mobility of robotic C-arms to navigate closely around the metal coil to avoid passing many 

photons through it.  

The tasks chosen for this work are focused upon areas with degraded image quality due 

to a metal implant or areas where photons are highly attenuated by bone. Traditionally, circular 

and spiral orbits are used for CT scans and have been the standard data acquisition approach for 

decades and are the most common trajectory for CBCT scans as well. However, non-circular 

scans have also been investigated for a variety of applications in which an expanded FOV or 

improved sampling is desired. This thesis explores the impact of different orbits on image 

quality, given a specific task.  

A change in orbit as simple as tilting a circular orbit can positively impact image quality 

and localization. This has been demonstrated in head imaging (Menzel et al., 1999). These non-

standard orbits have been proposed to expand field of view but we believe there are additional 

opportunities to, for example, improve image quality surrounding a metal implants, and to reduce 

radiation dose. To perform such a design, a performance metric must be chosen. Task-based 

acquisition design has been introduced in recent years to optimize these non-circular orbits for 

specific tools, procedures, and patient anatomy. We propose task-based detectability, which 

accommodates many system dependences including the imaging task, patient anatomy, 

anatomical location, and reconstruction parameters. (Gang et al., 2014)  
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1.3 Utility of Non-Standard Orbits 

1.3.1 “Complete” Orbits 

Orlov’s condition is based on the set of acquisition angles observed by parallel-beam 

sampling. Tuy modifies the parallel-beam geometry to describe the limitations of cone-beam 

geometry. (Metzler, 2003) Tuy’s condition is based on the relationship of a point to the curve of 

the cone-beam focal-source point. (Tuy et al., 1983) A traditional cone-beam CT circular scan 

does not yield a “complete” orbit, excluding vital 3D information about the object of interest as it 

violates Tuy’s condition. Such “incompleteness” manifests as cone-beam artifacts including a 

loss of z-axis frequencies and streaking. Such artifacts can be reduced by improving 3D 

sampling and data completeness using non-circular trajectories. However, “complete” orbits may 

not be necessary for specific tasks. For example, non-circular orbits can reposition missing 

frequency information to frequencies less relevant to the given imaging task. In 

mammotomography, physical limitations limit the field of view for cameras with parallel 

collimators such that the tissue immediately anterior to the chest wall cannot be imaged with a 

simple circular orbit. Various complex 3D trajectories have been proposed to avoid physical 

limitations imposed by the patient or bed and compensate for the missing data. Investigations 

have demonstrated that these more complex 3D orbits yield reconstructions with less distortion 

and more complete sampling. (Madhav et al., 2009; Brzymialkiewicz et al., 2006) 

 

1.3.2 Tilted Circular Orbits 

Tilting the source-detector orbit relative to the longitudinal axis of the object can produce 

significant improvement in some imaging scenarios. Such improvements range from reduced 
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radiation to the patient’s eyes (Nikupaavo et al., 2015) to improved image quality adjacent to the 

skull base (Menzel et al., 1999) where a large amount of highly-attenuating bone drastically 

reduces the number of photons reaching the detector. Additional flexibility in trajectory to move 

around complexly shaped/positioned highly attenuating objects yields further improvements to 

these images. 

 

1.3.3 Extended Field of View and Sampling 

Non-circular orbits have been used to provide extended axial (Yu et al., 2016) and 

elliptical (Herbst et al., 2015) fields of view. Such orbits can be used to address the “long body 

problem”.  The long body problem presents itself in helical orbits for multi-slice CT. Incomplete 

data is created at each end of the spiral orbits which is impossible to reconstruct without artifacts. 

Several solutions have been proposed such as spirals with circular “end caps” and a line plus 

partial helical scan. (Yan and Leahy, 2000) 

 

1.4 Past Work Focused on Task-Driven Optimization 

In recent years, there has been an effort to drive data acquisitions for particular tasks. We 

describe a few approaches to demonstrate the utility of task-driven optimization for imaging 

system design, acquisition, and reconstruction. 

1.4.1 Tube Current Modulation 

Tube current modulation can be altered such that the radiation dose to the patient is 

reduced while maintaining the image quality. This is typically achieved by decreasing current for 



6 

 

less attenuating areas or increasing current for more attenuating areas. The current is modulated 

based upon measured attenuation or a sinusoidal-type function corresponding to the transaxial 

shape of the patient. Tube modulation can either be preprogrammed or implemented in real time 

using a feedback mechanism or some dynamic combination of the two.  

Task-based optimization has been used to efficiently and effectively design CT tube 

current modulation and orbital tilt in filtered back projection (FBP) reconstructions. By 

leveraging a theoretical model based upon the implicit function theorem and Fourier 

approximations, detectability of a sphere in a head phantom was improved by 30% compared to 

the unmodulated case and detectability of a line-pair pattern was improved by 80%.  (Gang et al., 

2015) 

 

1.4.2 Fluence-Field Modulation  

Fluence field modulation (FFM) is an emerging technology wherein the x-ray beam is 

dynamically customized. This is an extension of tube current modulation and provides additional 

opportunity to reduce radiation dose to patients. Strategies for FFM include inverse geometry CT 

and dynamic beam filtration using a number of approaches including multiple aperture devices 

(Stayman et al., 2016), liquid-filled bowtie filters (Shunhavanich et al., 2015; Szezykutowicz et 

al, 2015), and split bowtie filters (Mail et al., 2009). 

Prior anatomical knowledge from a low-dose scout CT scan can be used to predict 

image quality, for example, spatial resolution and noise as a function of FFM. This information 

may be used to determine detectability in a volume-of-interest given the FFM acquisition 

parameters, which then allows for an ideal FFM to be estimated. Gang et al. used a covariance 
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matrix adaptation evolutionary strategy to maximize the minimum detectability over a volume-

of-interest when using a model-based iterative reconstruction (MBIR) for image formation. 

(Gang et al., 2016) 

 

1.4.3 Regularization with Penalized Weighted Least Squares Reconstruction 

Regularization is used to promote smoothing and/or edge sharpness in an image. This can 

be achieved using any number of penalty functions, which will be discussed in depth in future 

chapters. Dang et al. created a spatially-varying regularization term 𝑅(𝜇) which penalizes 

intensity differences between neighboring voxels to promote local smoothness but also to 

maximize task-based detectability of small hemorrhages. (Dang et al., 2017) 

The same detectability metric used in Gang’s work described previously, was 

implemented for this study to optimize the penalty function such that the image quality was 

maximized for a specific volume of interest. Dang determined that the local MTF and NPS 

exhibit shift-variance and anisotropy and that the measured MTF and NPS were in accordance 

with those approximated for the optimization. It also concluded that image was most improved in 

areas of high attenuation such as near the skull base when using the task-based penalty; these 

areas are otherwise prone to over-smoothing data. (Dang et al., 2016) 
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Chapter 2 

 

Basic Principles of Computed Tomography  

2  

2.1 Physical Principles 

The groundbreaking discovery of X-rays in 1895 by Wilhelm Roentgen served as a 

catalyst for modern diagnostic radiology. The versatility of x-rays contributed to its ubiquity in 

the medical field, as it can be used to image nearly all tissues and organs through projection 

radiography, or more recently with tomography. 

Computed Tomography, or CT, refers to a computerized x-ray imaging procedure in 

which a beam of x-rays is projected through an object. A motorized x-ray source rotates the 

beam about the object of interest. (Prince and Links, 2015) Once the photons are attenuated by 

the object, the information provided by the digital x-ray detectors located opposite the source is 

used to reconstruct cross-sectional “slices”, or tomographic images, that reveal the composition 

of the object. Digitally stacking these slices, or projecting a wider beam of photons, such as a fan 

or cone, allows for a three dimensional reconstruction of the object.  
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2.1.1 X-ray Generation and Detection 

X-rays are a form of electromagnetic (EM) radiation, with energies between 10-150 keV 

when used for medical diagnostic purposes. This radiation is produced in a cathode ray tube by 

accelerating electrons in a vacuum between the cathode and the anode. At the cathode, a tungsten 

filament is heated causing electrons to be emitted from the metal. The free electrons are then 

accelerated by an applied voltage to collide with the metal target anode. The collision instantly 

decelerates the fast-moving electrons, and 99% of their kinetic energy is transformed into heat. 

Only a tiny percentage of the electron’s energy is converted into useful X-ray radiation. 

(Behling, 2015) 

X-rays are generated primarily by Bremsstrahlung radiation, or “braking radiation”, but 

also by characteristic radiation. In the Bremsstrahlung process, which generates approximately 

80% of the observed photons, the accelerated electrons travelling in a material are deflected, 

slowed or completely stopped by the attractive force from the positively charged nucleus that it 

encounters. (Behling, 2015) Kinetic energy is lost as the electron slows. By conservation of 

energy, this lost energy must be either absorbed by the atom or converted to another form of 

energy. When the electron is sufficiently close to the nucleus, the electrostatic interaction and 

braking effect increases and the resulting “braking” photon possesses more energy. Therefore, 

the energy produced by this process produce photons of a variety of wavelengths within the X-

ray spectrum.  

The second method of producing these photons is a high-energy collision between high-

speed electrons accelerated through the vacuum tube and the anode metal’s atoms. This collision 

produces characteristic radiation. Upon colliding, a lower-orbital electron is ejected leaving a 

vacancy that is filled by higher-orbital electrons. In dropping to a lower energy orbital, an X-ray 
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photon is produced from the energy difference between the higher and lower orbitals. These 

energies are dependent upon the anode material, as the probability for filling a K-shell vacancy 

differs by orbital level and thus the number of generated photons at each characteristic energy is 

different. (Prince and Links, 2015) It is important to note that this process will only generate an 

X-ray photon if the kinetic energy of the accelerated electron is greater than the energy binding 

the electron to the nucleus, otherwise the lower orbital electron will not be removed, and the 

reaction will not occur.  

The emitted photon intensity can be controlled by modifying the anode current and the 

accelerating voltage. Higher anode current increases the cathode’s heating, which increases the 

thermionic emission of electrons from the tungsten which will in turn increase the number of 

emitted X-ray photons. (Prince and Links, 2015) Increasing the accelerating voltage increases the 

kinetic energy of the electrons thus increasing the energy of the emitted X-ray photons once the 

electrons collide with the anode.  

An increase in photon energy corresponds with an increase in penetrating power. In 

imaging, this is vital as low energy photons may not fully penetrate the patient in order to reach 

the detector and be used to produce an image. Absorbed photons may mutate DNA, causing 

abnormal base pairings as well as double-strand breaks. The downstream effects of these 

radiation-induced errors include somatic mutations and possibly cancer. Due to the increased 

usage of CT for diagnostic imaging, a large body of research has been dedicated to reducing this 

ionizing dose while maintaining image quality. 
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2.1.2 X-ray Interactions with Matter and Beer-Lambert Law 

Upon emission from the source, the x-ray photons interact with matter primarily through 

photoelectric absorption and Compton scatter. An x-ray undergoing photoelectric absorption will 

eject a K-shell electron from an atom with the same energy of the incident x-ray. Photoelectric 

interactions usually occur with electrons that are firmly bound to the atom, with a relatively high 

binding energy. The interactions are most probable when the electron binding energy is only 

slightly less than the energy of the photon, such that the electron can be ejected. The probability 

of the interaction is proportional to (𝑍𝐸)3 , where Z is the atomic number and E is the energy of 

the photon.  

The second manner in which x-rays typically interact with matter is through Compton 

scatter, in which the incident photon loses only a portion of its energy to a valence electron. This 

electron is then ejected while a lower-energy photon is deflected, or “scattered”, by the material 

at an angle. The energy of the scattered photon is dependent upon the scattering angle. This can 

be undesirable as the scattered photons that continue in a forward direction become a secondary 

radiation source and reduce the quality of the image. (Behling, 2015) 

The surviving photon information collected by the digital detector is dependent upon the 

density of the materials within the object. X-ray attenuation is a function of initial photon count, 𝐼0 and the density of the materials which compose the scanned object.  

The basic tenant of the Beer-Lambert law is that photons are attenuated exponentially as 

they travel through an object. Mathematically, this means that for a monochromatic X-ray beam 

of energy E, the law states that the remaining photons after the beam traverses distance ℓ within 

any present material is as follows 
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𝐼 = 𝐼0𝑒− ∫ 𝜇(𝑥)𝑑𝑥ℓ0  

where the linear attenuation coefficient 𝜇 can vary along the beam’s path based upon the specific 

material being traversed at position 𝑥.  In general, 𝜇 is also energy-dependent which is important 

due to the polychromatic x-ray beam. Using the monochromatic model above ignores these 

spectral effects and can lead to artifacts such as beam hardening. In this work, we ignore such 

effects. The general goal of X-ray CT is to recover the attenuation coefficient, 𝜇, from the 

information at the detector, 𝐼, though mathematical methods. (Mahesh, 2013) 

 

2.2 Data Acquisition Trajectories 

Circular trajectories are popular in cone-beam CT imaging. However, 3D image 

reconstruction based on circular trajectories does not satisfy Tuy’s data sufficiency condition for 

an exact three-dimensional reconstruction, which states that any plane passing through the FOV 

of the object must intersect the source trajectory in at least one point. (Metzler, 2003) Despite 

this, circular acquisitions are widely used despite the potential for cone-beam artifacts. The 

appropriateness of a trajectory is necessarily dependent on the task at hand, and whether the 

sampling provided by a particular acquisition is sufficient to properly image a region of interest. 

Investigation of custom non-circular orbits is central to the work presented here. 

 

 

 

 



13 

 

2.3 Reconstruction Considerations 

2.3.1 Forward Model with Mono-Energetic X-rays 

The mono-energetic forward model, written in matrix-vector form is: 

�̅� = 𝑫{𝑔} exp(−𝑙) 

Where 𝑙 =  𝑨𝜇, where 𝑫 is a diagonal operator, g are measurement-dependent gains (detector 

sensitivities, for example), 𝑙 denotes a vector of all line integrals with 𝜇 denoting the vector of 

attenuation values of the object, A is the linear projection operator describing system geometry. 

Poisson noise models are often applied to describe expected variations in 𝑦.  

 

2.3.2 Mathematical Fundamentals 

To obtain 3D images from projection data requires an inversion of the model. Classic 

reconstruction models rely on the “Projection-Slice Theorem”, or the “Fourier Slice Theorem”, 

which relates the one-dimensional Fourier transform of the projection data and the two-

dimensional Fourier transform of the object. It states that the one-dimensional Fourier transform 

of the projection equals a line passing through the origin of the two-dimensional Fourier 

transform of the object at the same an angular orientation (𝜃) as the angle 𝜃 at which the 

projection was acquired. (Prince and Links, 2015) 

If 𝐹 (𝑢, 𝑣) =  ℱ2𝐷{𝑓(𝑥, 𝑦)} is the Fourier transform of the object, the Projection-Slice 

Theorem states that  

𝐹(𝜌 , 𝜃) = ℱ1𝐷{𝑙(𝑢, 𝜃)} = 𝑃(𝜌 , 𝜃)  
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Where u is the horizontal positional index on the detector, P is the Fourier transform of the line 

integral (projection) data l, and 𝜌 , 𝜃 are the polar coordinates in the Fourier domain. (Prince and 

Links, 2015) 

 

2.3.3 Filtered Back Projection Reconstruction 

The Projection-Slice Theorem allows derivation of the filtered back projection (FBP) 

algorithm. The classic derivation relies on several fundamental assumptions about the scanner 

geometry, including that it be a parallel-beam scanner and have a circular source-detector 

trajectory. In the parallel beam case, the object image is 𝑓(𝑥, 𝑦): 

𝑓(𝑥, 𝑦) =  ∫ [∫ |𝜚| 𝐺(𝜚, 𝜃)𝑒𝑗2𝜋𝜚ℓ∞
−∞ 𝑑𝜚 ]ℓ=𝑥𝑐𝑜𝑠𝜃+𝑦 𝑠𝑖𝑛𝜃

𝜋
0  

Where the 1-D Fourier transform of a projection with respect to ℓ (line integral projectection 

data) is:  

𝐺(𝜚, 𝜃) = ℱ1𝐷{𝑔(ℓ, 𝜃)} =  ∫ 𝑔(ℓ, 𝜃)𝑒−𝑗2𝜋𝜚ℓ 𝑑ℓ∞
−∞  

In which 𝜚 denotes spatial frequency and |𝜚| is a “ramp” filter in the frequency domain. G is the 

Fourier transform of data 𝑔, and 𝜚, 𝜃 are polar coordinates in the Fourier domain.  

The ramp filter is frequently employed with a cutoff frequency at or below the Nyquist 

sampling limit in order to avoid amplifying high frequency noise. Generally, the direct 

application of the Fourier method leads to sampling that is inversely proportional to 𝜚. 

Additional “weights” are required to compensate for the sparser sampling at higher frequencies. 

(Prince and Links, 2015) 
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In summary, this straightforward FBP reconstruction is the implementation of a ramp 

filter in the frequency domain followed by a backprojection over the line ℓ , defined as 𝑥 cos 𝜃 +𝑦 𝑠𝑖𝑛𝜃 , summed over filtered projections at each rotation angle. This approach is the most 

widely used reconstruction algorithm in clinical CT scanners. 

 

2.3.4 Penalized Likelihood Image Reconstruction 

More modern reconstruction approaches include iterative methods which have 

demonstrated an ability to reduce noise over classic FBP images. While such statistical iterative 

reconstruction may result in longer reconstruction times compared to FBP reconstructions using 

the same raw projection data, the resulting images are often substantially less noisy with 

preserved spatial resolution and border definition. This means that image quality can be 

maintained or even improved despite radiation dose reduction.  

The objective function of penalized-likelihood (PL) estimation is as follows: 

�̂� =  arg max𝜇 log 𝐿(𝑦; 𝜇) − 𝑅(𝜇; 𝛿) 

where  𝑅(𝜇; 𝛿) represents a penalty term.  

In PL image reconstruction, the regularization parameter 𝛽 controls the tradeoff between 

resolution and noise. However, this parameter can be difficult to choose and has no explicit 

direct relation to spatial resolution and noise levels. Moreover, these properties are object 

dependent, varying between objects or within different areas of the same object.  

The additional 𝛿 parameter is included to allow for more complex penalties, such as the 

Huber penalty or a hyperbola function. For a Huber penalty, the 𝛿 term specifies the value at 
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which the loss function becomes linear. This property allows the Huber penalty to combine the 

sensitivity of the quadratic loss function (L2) and the robustness of the absolute value function 

(L1) . While the quadratic function allows for simpler optimization and global smoothing, the 

nonquadratic functions such as the Huber function preserves edges. Edge preservation is often 

desired when iteratively reconstructing an image, but it also has the potential to emphasize streak 

artifacts and distort the image. (Fessler and Hero, 1995) It should be noted that the analysis and 

prediction of resolution and noise properties can be difficult for nonquadratic penalty functions. 

The use of iterative reconstruction is vital when employing non-traditional acquisitions. 

Iterative methods are not limited by challenges such as sparse data sampling or noncircular 

trajectories, such as those discussed in this work. These methods will adapt to the data acquired 

and improve the image quality wherever possible given the information provided.  

 

2.4 Challenges Posed by Limited Data 

Interventional CT systems often are subject to a variety of kinds of incomplete data. Limited 

data can include truncated data, limited angle data, and few-view data:  

1. Truncated data results from a reduction in the FOV, which truncates the projections 

during the acquisition and produces severe artifacts during reconstruction. This results in 

complicated artifacts which are not easily remedied. When the data is truncated axially, a 

helical scan may be employed but specialized methods must be employed to handle 

transverse truncation. (Clackdoyle and Defrise, 2010) 

2. Limited angle data refers to CT scans in which projection data is acquired in such a 

manner that the source-detector do not turn the required 180 degrees plus the angular 
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width of fan beam. These limited-angle scans significantly degrade the quality of the 

reconstructed image. Conventional FBP and iterative methods do not perform well in 

these cases and certain artifacts present themselves regardless of the reconstruction 

method. (Clackdoyle and Defrise, 2010)  

3. Few-view CT refers to a CT scan in which the number of acquired projections are 

significantly fewer than the conventional hundreds or thousands of views over 360 

degrees. This type of sparse scan is favored from an economic view in that it dramatically 

reduces the acquisition time and increases equipment life cycle. (Kudo et al, 2002) These 

sparse-view CTs contain insufficient sampling, where the number of projections does not 

satisfy the Nyquist sampling theorem and the resulting FBP reconstructions contain 

streak artifacts. (Sidky et al., 2006) Iterative reconstructions based on an assumption of 

image sparsity in the image gradient domain have demonstrated an ability to minimize 

the artifacts resulting from such sparse sampling.   
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Chapter 3 

 

Formulation of the Task Driven Design Problem 

3  

3.1 Resolution 

Resolution is a measurement of an imaging system’s ability to reproduce an object’s 

detail, and can be influenced by an array of different factors. As features of interest become 

smaller, higher resolution is required to be able to resolve details. Spatial resolution can be 

assessed qualitatively using line pair targets. While acquiring such image data is straightforward, 

the technique is biased by observer subjectivity and only provides information on the limiting 

value of the imaging system.  

The modulation transfer function (MTF) is a metric describing resolution of linear and 

shift-invariant imaging systems in the Fourier domain. The MTF is related to the spatial-domain 

point spread function (PSF). The PSF describes the normalized intensity distribution of a point-

source image that has passed through the entire imaging system. The 3D 𝑀𝑇𝐹(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) is 

defined in terms of the 3D system point-spread function, 𝑝(𝑥, 𝑦, 𝑧), which has been normalized 

to unity volume: 

𝑀𝑇𝐹(𝑓𝑥, 𝑓𝑦 , 𝑓𝑧) = |ℱ {𝑝(𝑥, 𝑦, 𝑧)}|‖ℱ{𝑝(𝑥, 𝑦, 𝑧)}‖ 
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where 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧 are spatial-frequency variables corresponding to spatial-frequency variables 𝑥, 𝑦, 
and 𝑧 respectively.  

This metric allows investigators to explore information across all spatial frequencies. We 

note that while the system MTF only applies to a shift-invariant system, a locally shift-invariant 

system can be analyzed in a specific region of interest using the local MTF. This local MTF 

denotes the frequency information in a small neighborhood surrounding a 𝑗𝑡ℎ voxel for a targeted 

investigation. 

 

3.2 Noise 

Noise in computed tomography is random variations in voxel values due to stochastic 

effects in the imaging system. Image noise can be influenced by a variety of factors including 

kVp, mA, exposure time, slice thickness, reconstruction filter, etc. For example, an increase in 

exposure time when acquiring data can have a positive impact on the Signal to Noise ratio 

(SNR). A limited description of noise that has gained widespread appeal is the use of standard 

deviation of voxel values as an easy and quick estimate of CT image noise. However, any 

number of noise textures may yield the same standard deviations. 

The Noise Power Spectrum (NPS) describes noise in the Fourier domain for linear, shift-

invariant systems with wide-sense stationary statistics. (Friedman et al., 2013). The three-

dimensional NPS is defined as the three-dimensional Fourier transform of the system’s 

autocovariance function, K:  

𝑁𝑃𝑆(𝑓𝑥, 𝑓𝑦 , 𝑓𝑧) = ℱ{𝐾(𝜏𝑥 , 𝜏𝑦, 𝜏𝑧)} 
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where 𝜏𝑥, 𝜏𝑦, and 𝜏𝑧 are the distances between voxels in each corresponding spatial direction. 

Similarly to local MTF, the local NPS can be obtained by investigating a small neighborhood 

surrounding voxel j of interest for locally stationary imaging systems.  

 

3.3 Computing Detectability as a Performance Metric 

Imaging performance is defined with respect to an imaging task. (Vennart, 1996) We 

choose a task-based detectability index that integrates noise, spatial resolution, a task function, 

and an observer model. (Gang 2014) The observer is the entity performing the imaging task. One 

such model is the nonprewhitening observer model which was successfully employed in various 

works and over a broad range of imaging conditions and tasks (Gang et al., 2011). For a non-pre-

whitening observer, the detectability index relies upon the MTF and NPS as follows: 

𝑑𝑗′2(Ω) =  {∭ [𝑀𝑇𝐹𝑗(Ω) ∙  𝑊𝑇𝑎𝑠𝑘]2𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧}2
∭ 𝑁𝑃𝑆𝑗(Ω)[𝑀𝑇𝐹𝑗(Ω) ∙  𝑊𝑇𝑎𝑠𝑘]2𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧 

 

where 𝑊𝑇𝑎𝑠𝑘 is the detection task function chosen, defined by the Fourier transform of the 

difference between stimulus present and stimulus absent. This is described in section 4.3. 

 Note that this is an expression of local detectability with the local MTF and NPS 

estimates (denoted 𝑀𝑇𝐹𝑗 and 𝑁𝑃𝑆𝑗). Also note that the local MTF and NPS change based upon 

acquisition parameters Ω including the orbit which is defined based on a system geometry 

specified in section 3.6. While MTF and NPS are typically measured using specialized 
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experiments, analytic expressions can be derived in some circumstances including for PL 

reconstruction (though local expression are required). This is discussed in Section 4.2. 

 

3.4 Objective Functions Based on Task 

The detectability index provides an objective for the design of an optimal source-detector 

orbit. The most straightforward approach to obtain a task-driven non-circular orbit is to assess 

the detectability at a single location within the specified region of interest. The detectability at 

this point would then the maximized: 

Ω̂ =  argmaxΩ ∈Ω𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑑𝑗′2(Ω) 

where the estimated parameter set Ω̂ defines the optimal trajectory and is chosen from a range of 

possible parameters Ω𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒, limited by factors such as hardware or time restrictions.   

While a single location optimized for maximum detectability is straightforward, it runs 

the risk of highly optimizing at only that location while sacrificing image quality in the larger 

region of interest. Exploring the detectabilities across various locations and maximizing the 

minimum detectability allows us to measure performance at a number of different locations in 

the field of view. 

As such, the aim is to optimize detectability over a number of sampled locations in the 

region of interest, where the best orbit would yield the maximum minimum detectability over a 

range of locations, where: 

Ω̂ =  argmaxΩ ∈Ω𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 min𝑗∈𝑗𝑅𝑂𝐼{𝑑𝑗′2(Ω)} 
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This stipulates that the location of minimum performance is what drives the design, as the 

worst part of the image is most often what needs to be improved most. Thus, the chosen orbit 

cannot be one that sacrifices image quality in one location for the improvement of another 

region. (Stayman and Siewerdsen, 2013) Doing so would mean that there is a “new” location of 

minimum performance that would need to be maximized. 

 

3.5 Optimization Algorithms and Influences 

The covariance matrix adaptation evolutionary strategy  (CMA-ES) algorithm (Hansen 

and Ostermeier, 2001) employed in this work to estimate the solution to the maximum-minimum 

detectability objective function. To estimate the solution to the objective function, a population 

size of 40 was applied.  

 

3.6 Parameterization of Prospective Orbit 

The trajectory being investigated is parameterized using 9 periodic basis functions, 

constrained to tilts within a range limited by the C-Arm or available equipment. This work 

constrained the tilts to range within 𝜙 =  −30° 𝑡𝑜 30°, with a sparse sampling of gantry angles 

(for design purposes) every 10 degrees from 𝜃 = 1° 𝑡𝑜 360°.  
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Chapter 4 

 

Efficient Implementation of Task Driven Optimization 

4  

4.1  Computational Barriers to Practical Applications 

In theory, one could spend the time and computational power to create an accurate MTF and 

NPS for every possible orbit of interest in order to determine which yields the best image with 

maximum detectability. This requires MTF/NPS computation for each of several locations 

around the region of interest for each potential orbit. Even for efficient optimization algorithms, 

thousands of MTF/NPS evaluations are required. This efficient computation is critical to 

implementation.  

In order to overcome these inefficiencies, Fourier approximations for resolution and 

covariance can be employed to reduce computation times and effectively integrate task-based 

optimization of orbits with surgical workflow (discussed in Chapter 5). The previously-derived 

resolution and covariance predictors for penalized likelihood estimators can provide accurate 

approximations to the local resolution properties and covariance functions for tomographic 

systems given a good estimate of the mean measurements. 
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4.2  Expression for Local MTF and NPS 

The local impulse response, or point spread function (PSF), measures the change in the mean 

reconstructed image due to perturbation of a particular pixel in a noiseless object. (Fessler, 1994) 

This gives a reasonable predictor of the local image resolution, while similarly, the local 

covariance can give a reliable predictor of local noise.  

The local impulse response, 𝑙𝑗, and local covariance, 𝑐𝑗, can be approximated as 

𝑙𝑗  ≈ [𝑨(Ω)𝑇𝑫{�̅�}𝑨(Ω) + 𝛽𝑹]−1𝑨(Ω)𝑇𝑫{�̅�}𝑨(Ω)𝑒𝑗 

𝑐𝑗 ≈ [𝑨(Ω)𝑇𝑫{�̅�}𝑨(Ω) + 𝛽𝑹]−1[𝑨(Ω)𝑇𝑐𝑜𝑣{𝑦}𝑨(Ω)] [𝑨(Ω)𝑇𝑫{�̅�}𝑨(Ω) + 𝛽𝑹]−1 𝑒𝑗 

where 𝑒𝑗 is the 𝑗𝑡ℎ unit vector of all zeros excluding the 𝑗𝑡ℎ location which is one, and 𝑫{⋅} is a 

diagonal operator that places the vector argument on the diagonal of a matrix. These predictors 

demonstrate that the reconstructed image is dependent upon the system geometry (𝑨(Ω)), the 

regularization (𝛽𝑹), location (𝑒𝑗) and the prior projection data itself (�̅�).  (Fessler and Rogers, 

1996; Fessler, 1996) These predictors allow us to predict local resolution and noise properties 

respectively given knowledge of patient anatomy through a preliminary CT scan (such as a 

preoperative CT). However, these calculations require inversions of large matrices that can be 

quite computationally taxing.  

4.2.1 Fourier Approximation 

It is worth noting that the projection of a single point 𝑨(Ω)𝑒𝑗 is incredibly sparse. 

Intuitively, only the intensity and position of non-zero values within the Fourier space would be 

of interest. With approximately only one non-zero value per projection, it would make sense to 
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limit the size of the matrix by precomputing a much smaller linear operator, 𝑳𝑗, which is only 𝑁3 × 𝑁𝑣𝑖𝑒𝑤𝑠 for each sampled location 𝑗.  

For a more efficient alternative, the Fourier approximation may be applied as described 

by Qi and Leahy in 1999 and Stayman and Fessler in 2000, under a presumption of local shift-

invariance and local stationarity. The approximate forms for local MTF and local NPS are as 

follows: 

𝑀𝑇𝐹𝑗 = ℱ{𝑙𝑗} ≈  ℱ{𝑨(Ω)𝑇𝑫{�̅�}𝑨(Ω)𝑒𝑗}ℱ{𝑨(Ω)𝑇𝑫{�̅�}𝑨(Ω)𝑒𝑗 + 𝛽𝑹𝑒𝑗} 

𝑁𝑃𝑆𝑗 = ℱ{𝑐𝑗} ≈  ℱ{𝑨(Ω)𝑇𝑫{�̅�}𝑨(Ω)𝑒𝑗}ℱ{𝑨(Ω)𝑇𝑫{�̅�}𝑨(Ω)𝑒𝑗 + 𝛽𝑹𝑒𝑗}2 

where ℱ denotes the 3D discrete Fourier transform and relies upon an element-by-element vector 

division. The repeated forward and back projections as well as the Fourier transforms represent a 

significant computational burden, which proves limiting given the desired workflow for this 

work.  

Recognizing the limitation of the above approximations, Stayman and Fessler observed 

that the projection-backprojection term is linear in the diagonal weighting such that: 

ℱ {𝑨(Ω)𝑇𝑫{𝑤}𝑨(Ω)𝑒𝑗} =  𝑳𝑗𝑤 

Where the linear operator 𝑳𝑗 can be precomputed, stored, and later repeatedly called upon for fast 

calculation of MTF and NPS.  (Stayman and Fessler, 2004) 
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4.3 Weighting Functions for Probe Locations in Area of Interest 

Weighting functions are evaluated for each sampled location in an area of interest, 

describing the degree of attenuation that photons experience for a given source position (based 

upon gantry angle, 𝜃 and tilt angle, 𝜙). The optimization algorithm will design a trajectory such 

that the photons rarely pass through the most highly attenuating path. The weighting functions 

will highly weigh the least attenuating beam paths to favor them during optimization. These 

weights assist in maximizing the minimum detectability across several locations.  

 

4.4  Efficient Sampling 

4.4.1 Volume Subsampling 

Because the local PSF and local covariance are relatively compact spatially for 

reasonable imaging properties, one can constrain the volume used to calculate the local MTF and 

NPS. For this work, we focus on a PSF and covariance ROI of 50 x 50 x 50 voxels.  

 

4.4.2 Angular Subsampling 

Relevant frequency information is conveyed by the shape and orientation of each Fourier 

plane. Estimating these planes for each projection is computationally expensive, and a finely 

sampled MTF and NPS is not required for design purposes. The number of Fourier planes 

calculated can be limited by creating a sparser MTF/NPS by angular under-sampling. (Stayman 

and Fessler, 2004) Where before hundreds or thousands of Fourier planes were calculated, a 

mere 30 to 50 planes can convey sufficient relevant frequency information.  
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While a sparse MTF/NPS may be used in trajectory design, they can be further improved 

by interpolating the calculated planes to produce a smoother representation of the remaining 

Fourier space. In doing so, we artificially create a predictor that approximates the MTF that 

would have resulted from calculating planes for each projection across full 360-degree scan. 

 

4.5 Thresholding of 𝑳𝒋 
As described in Section 4.2.1, 𝑳𝑗 is a linear operator that quickly forms the ℱ{𝑨𝑾𝑨𝑒𝑗} 

required in MTF and NPS calculations. We note that there are many values of ℱ{𝑨𝑾𝑨𝑒𝑗} that 

are small or have little impact on a particular 𝑑′ evaluation. This is attributed to some 

frequencies in the task function being near zero. Thus, we may select a threshold and not 

evaluating all frequencies, making the Fourier space approximation even more efficient by the 

elimination of data points that have little to no contribution to the detectability (𝑑′) calculation.  
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Chapter 5 

 

Workflow 

5  

5.1 Scout Views and Preliminary Reconstruction 

For interventional procedures, an initial CT image of the area of interest is often acquired to 

assess the operative site and create a surgical plan. This CT image contains vital prior anatomical 

information that can be used in our proposed interventional workflow. While useful, the 

preoperative CT can significantly differ from the intraoperative state. For example, positioning is 

different and anatomical damage is possible. Notably, hardware is often introduced and imaging 

around such hardware is typically the goal. To accommodate such changes, a scout scan of only 

two perpendicular views is proposed to approximate hardware locations/volume as well as 

patient registration. The anteroposterior and lateral views were chosen for simplicity. In this 

work, we focus on determining the localization of an embolization coil when treating brain 

aneurysms, but it is possible to expand this work to encompass various other implant models as 

well. This can include pedicle screws and rods in spinal surgery or prostatic artery embolization.  

To determine the rough appearance of the embolization coil, we segment the dense metal coil 

from a two-projection reconstruction, refine the model, and place the model within a registered 

patient volume from the preoperative CT. The two-projection reconstruction is an incredibly 
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rough approximation of the patient anatomy and coil structure, and will yield a streaky, “boxier” 

representation of the coil. This preliminary image is produced via simple FDK reconstruction. 

 

 

Figure 1: (a) AP/Lateral views of benchtop projection acquisition of head phantom with implanted coil (b) FBP 

reconstruction using only the two projections in Figure 1(a). This image illustrates the streaks prevalent in the 

reconstruction and gives an idea of the potential difficulties in segmenting the coil out from the head. 

      

5.2 Segmentation of Coil 

We focus on cases where the significant change between the preoperative CT scan and the 

intraoperative CT is the addition of highly attenuating metal. Other changes such as changes in 

hardware and changes in anatomy from the operation are usually relatively negligible in 

comparison; the metal hardware tends to dominate image quality and imaging performance 

(a) 

(b) 
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issues. As such, the segmentation and positioning of the embolization coil is sufficient to model 

the artifacts likely to occur in the intraoperative image. The highly-attenuating metal implants 

have a significant impact on the statistics of the data (weighting of the projections �̅� in the 

predictors). The workflow for the four-step segmentation is described below. 

1. Segmentation of the coil was accomplished first by custom thresholding to create an 

image with only the metal coil, its artifacts, and the denser bone within the skull. We 

selected a value of 2% above of the maximum intensity in the two-view reconstruction.    

 

Figure 2: Result of initial thresholding of two-projection reconstruction. The axial view demonstrates that a simple 

thresholding preserves unwanted edges and streaks, while the shape and size of the coil are well preserved. Higher 

thresholding may eliminate some streaks but would affect the integrity of the coil model.  

2. A diamond structuring element (MATLAB’s strel function) is used to better define the 

structure of the coil by disconnecting the streaks from the coil and if thin enough, 

eliminate them altogether. For best results, MATLAB’s eroding function, imerode, was 

applied twice once with structure size 2 and subsequently with structure size 1. The two 

steps ensure that the coil shape and size remain relatively intact. 
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Figure 3: Result of two erosion steps. The second step in the segmentation workflow largely removes unwanted 

artifacts. 

3. The coil was then isolated using two methods. Knowing the relative structure of a human 

head, and assuming that the patient was centered reasonably well, an ellipsoid centered 

within the skull can be extracted such that the majority of the bone in the segmentation is 

removed. Following this, we can make use of MATLAB’s connected components 

function (bwconncomp) to extract the largest cluster of connected voxels – our coil, while 

removing all other extraneous segments leftover.  

 

Figure 4: Result of connected component method. The coil is isolated, but now appears hollow and incomplete. 

4. MATLAB’s, imdilate, function can then be used twice to restore the size and shape of the 

coil. Once with a diamond and then again with a sphere to round off any sharp edges left 

from the two-projection reconstruction.  



32 

 

 

Figure 5: Result of two dilation steps. The coil is still boxy but has filled in and remains true to its original shape 

and size.  

The shape and size of the coil are an adequate approximation of the true coil, as discussed in 

the verification chapter, in section 6.2. While the axial view of the coil is somewhat square as a 

result of only using two projections to generate the coil model, the segmentation is sufficient for 

our purposes. Following this segmentation, the desired metal coil’s attenuation can then easily be 

substituted in the binary image created. 

 

5.3 Registration of Patient Coordinates 

Following coil segmentation from the preoperative CT scan, a rigid registration of the patient 

is performed. This permits specification of the designed trajectory so that it is transformed into 

the intraoperative patient’s coordinates. This is accomplished in this work using a 3D-3D 

registration program, Elastix. (Klein et al., 2010; Shamonin et al. 2014) 
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5.4 Optimization Workflow 

5.4.1 Task Function Construction 

For the intracranial embolization case, we choose a task function emulating a hemorrhage 

detection task. The task function was constructed by creating a Gaussian stimulus the size of a 3 

mm hemorrhages. A Fourier transform of the bleed specifies the frequency information relevant 

to the detection task.  

 

Figure 6: Frequency domain task function for Gaussian detection. 

 

5.4.2 Projection Generation 

Projection data was generated using a separable footprint projector. (Long et al., 2010) 

Poisson noise was then artificially added to simulation data to emulate physical data with 

quantum noise.  
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5.4.3 Calculate Weighting Functions 

Locations of interest are sampled from the area where improved detectability is desired. 

For the embolization scenario, we select a sphere of 30 sample points around the coil.  The 

placement of these points of interest are depicted in the following figure by purple asterisks.  

 

Figure 7: Sphere of sampled points surrounding coil. This illustrates the ideal position and size of the sphere, 

encompassing the area with bleeds where improved detectability is most desired. 

For each sampled location around the region of interest, statistical weighting functions 

must be generated from the raw projection data. These functions depict the statistical weights for 

all source locations at each task location (sampled within the region of interest), and how noisy 

each of those positions are. Precomputation of these weights permits efficient optimization but 

also illustrates projections and location combinations that lead to low weights (source positions 

leading to poor statistics). For example, if an area is highly attenuating, the weight map will 

display a dark area and the optimized orbit will likely avoid those positions for all possible 

sampled locations and strive to pass through the lighter areas of each weight map.  

The weight maps below display the attenuations through a specific point of interest given 

a location of the source, defined by the gantry angle 𝜃 (from 0 to 359 degrees, sampled every 10 

degrees) and the out of plane tilt angle 𝜙 (from -30 to 30 degrees, sampled every 2 degrees). The 
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optimal orbit is plotted on these weight maps to illustrate how the orbits with the best 

detectability indices avoid the highly attenuating, darker areas of the weight map such as the 

metal coil (black circle) and the areas where the source position passes photons through a lot of 

dense bone (dark grey). Instead, the orbit attempts to choose source positions where the photons 

are less attenuated (the lighter grey/white areas). 

 

Figure 8: Weight maps for two sampled locations displaying the attenuations across an array of source-detector 

positions, defined by the gantry angle (x axis) and out of plane angle (the tilt angle). The orbit optimized across 30 

sampled points for maximum minimum detectability is plotted atop the two weight maps. The detectability indices of 

the orbit for the sampled point are displayed above their respective weight maps. 

 

5.4.4 CMA-ES Optimization 

Using a population size of 40, the CMA-ES algorithm uses the multi-location objective to 

maximize the minimum detectability. The resultant vector of the optimization represents the 9 

coefficients of the 9 periodic basis functions.  

At least 40 optimizations were conducted in order to ensure that the best possible solution 

was reached. This was achieved by initializing each optimization with a different seed, and 

choosing the orbit with the highest minimum detectability. For more complex cases, up to 100 

optimizations were executed. 
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5.5 Reconstruction Using Parameterized Orbit 

The parameterized orbit obtained from the detectability optimization is easily converted 

into a series of gantry and tilt angles that can be used to calculate projection matrices based upon 

the source-detector positions. Once these projection matrices have been obtained, continuing 

with a standard PL reconstruction is fairly straight forward. The reconstruction was generated by 

iteratively using ordered subsets; the voxels were all updated simultaneously and projected 

forward and back once to compute the likelihood gradient. The penalty gradient and curvature 

were computed for every iteration (no precomputation of the curvature). Both FBP and zero 

image initializations were explored for this work. 

 

Figure 9: An example of a designed trajectory, with all 360 source positions plotted as black points surrounding a 

head phantom with a red coil embedded. 
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Chapter 6 

 

Validation 

6  

 This chapter details the investigations conducted of the various workflow stages and 

overall performance of the framework proposed in Chapter 5. We believe the contents of this 

chapter validate Chapter 7 results for the specific tasks investigated. 

6.1 MTF Considerations 

The optimization and detectability index rely upon the accuracy of the MTF approximation 

used to describe the object and task. As such, it is important that the estimated MTF’s orientation 

and magnitude be compared against the “proper” MTF, constructed by determining the point 

spread function (measures the change in the mean reconstructed image due to perturbation of a 

particular pixel in the noiseless object). 

This comparison determines whether there are any inconsistencies in geometry or 

reconstruction. In order to validate the accuracy of the MTF approximation, “true” MTFs were 

calculated using a head phantom with the metal coil artificially implanted. A stimulus point was 

placed within the area of interest surrounding the metal at one of the sampled location points 

used for approximations of MTF and NPS. A phantom with and without a stimulus were forward 

projected and subsequently iteratively reconstructed using the same parameters for both PL 

reconstructions. The Fourier transform of the difference between the two images yields the MTF, 
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in other words, the Fourier transform of the PSF. This is referred to as the “long method.” As 

previously discussed, subsampling Fourier space allows for more efficient computation of an 

ideal trajectory. Therefore, we crop the reconstructed images to the desired subsampled 

dimensions of the approximation before the Fourier transform of the “long method” cropped 

PSF. 

To approximate the MTF, the same single voxel used for the “long” method was chosen for 

the MTF approximation. The estimated MTF was calculated using the procedure described in 

Section 4.2.  

As shown below, the estimated MTF and the true MTF contain the same frequency 

information for a variety of stimulus locations surrounding a coil, with null cones of roughly the 

same size and shape within the Fourier space. It should be noted that the magnitudes of the 

MTFs are different but were easily normalized on a case-by-case basis throughout this work to 

produce roughly identical MTFs as the intensity distribution across the non-zero values were 

approximately equal. Furthermore, these results were generated without subsampling the MTF 

for the long case, but would yield similar results, simply at a lesser resolution – similar to those 

seen in the estimated case. For reference, the locations (as PSFs for easier viewing) referred to in 

figure 10(a) for each MTF are labelled in figure 10(b). 
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To verify that the coil has been properly placed, the coil-less phantom that had the coil 

segmentation artificially implanted can be compared to the full reconstruction of the bench data. 

The transformation will have been determined by a rigid registration reliant upon the skull, so we 

expect to see approximately zero values around the skull and neck, while the coil should line up 

relatively nicely excluding the slight differences in shape between the true coil and the 

segmentation. This is merely for verification purposes. As detailed in Chapter 5, the true 

workflow requires that the images be registered using a basic FBP reconstruction of the two 

scout views collected and the prior information available (the image of the head excluding the 

coil). As the skull information is mostly present, an adequate registration is possible. 
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attenuation of the coil whereas a method like PL or PWLS would fare far better as the errors in 

attenuation are due to beam hardening.  

 

Figure 12: A magnified, cropped view of the difference image centered on the metal coil. The images demonstrate 

an acceptable approximation of the coil shape and size after segmentation in all three views. 

 The images demonstrate that the skull and coil are adequately aligned, with some error 

primarily in the artificial segmentation of the brain for the simulation data. 

 In assessing and validating these factors, we can be confident that the results presented in 

the following chapter are accurate. 

  



45 

 

Chapter 7 

 

Results and Discussion 

7  

7.1 Optimized Orbits 

Following multiple optimizations, the trajectory with the maximum minimum detectability 

was chosen to reconstruct the data, as previously described in section 5.4.4. 

 

Figure 13: A plot of 40 designed orbits, with the detectabilities encoded by color – darker colors assigned to orbits 

with higher detectability indices. The figure illustrates the similarity between the trajectories with the highest 

detectabilities. 
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 The figure above (designed for the pelvis phantom) demonstrates that the dark blue orbits 

with the highest (top 20%) detectabilities are nearly identical, exhibiting far more clustering than 

orbits with lower detectabilities. We conclude that the trajectory with the highest detectability is 

a relatively robust solution.  

 

7.2 Reconstruction for Optimized Orbit 

Once an ideal orbit has been converged upon, we can begin the reconstruction process. This 

process requires fine tuning several factors and techniques, described in this section. In order to 

efficiently explore the effects of regularization parameters and their effects upon image quality 

for the given phantom, a simple elliptic cylindrical phantom was generated containing a highly-

attenuating ellipsoid and surrounding lower contrast spheres, as shown below. 

 

Figure 14: Three views of simple phantom, center sliced through the metal coil.  

This phantom is roughly the shape and volume of a human head, with the ellipsoid modelling 

an embolization coil and the low contrast spheres representing brain bleeds that can be difficult 

to visualize following embolization procedures.  
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7.2.2 Noise Realizations 

Different Poisson noise realizations were evaluated to confirm that improved visibility of 

the bleeds was true across various noise realizations. The results demonstrated that the results 

produced by the optimized trajectory were not coincidentally effective for an image with a 

specific noise level but for any noise realization.  

 

Figure 16: Various noise realizations were explored to ensure the results of the designed trajectory carried true 

across each. The figure illustrates that this is the case. 

7.2.3 Initializations 

A good initial guess helps to speed up convergence for penalized likelihood reconstruction. 

In general, the closer the starting point is to the final image estimation, the fewer iterations are 

required. However, if the algorithm is initialized with artificial edges or streaks, then the 

reconstruction may take many iterations to eliminate these false objects. In order to ensure that 

the algorithm is provided with a good first guess, three initializations were tested: truth, zeros, 

and an FBP reconstruction. 

Similarly, to verify sufficient convergence and to ensure image features are a product of a 

converged reconstruction process, rather than being intermediate errors from insufficient 

convergence, we initialized the PL reconstructions with the “true” phantom volume. “True” 
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initialization was chosen for this comparison because the PL reconstruction will converge fastest 

from the truth, and the artifacts likely to diminish or be eliminated should be clear despite the 

limited number of iterations used for this experiment. As such, the initial “guess” is the best 

guess investigated and any deviations from this are likely attributed to the reconstruction 

workflow. 

The following results were created without noise and with identical reconstruction 

parameters, including quadratic penalties where 𝛽 = 1 E 6. This 𝛽 value was empirically found to 

be a good regularization parameter for this data set when employing quadratic penalties. Section 

7.2.1 provides evidence supporting the decision to reconstruct images using 600 iterations. This 

is the case for all of the following reconstructions unless otherwise stated. 
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an image with significant streak artifacts and with very poor visibility for the low contrast bleeds 

near the metal coil. These streaks can be easily avoided by initializing with a matrix of zeros. 

This initialization most closely resembles the PL reconstruction initialized with the true 

phantom, which results in the least severe artifact of the three initializations investigated. While 

some streak artifacts are still present, they have been drastically reduced, especially given that 

the images were reconstructed using only 200 iterations.  

 

7.2.4 Quadratic vs Nonquadratic Penalties 

In general, a roughness-penalized, likelihood-based estimator can be expressed as:  

�̂� =  arg maxlog𝜇 𝐿(𝑦; 𝜇) − 𝑅(𝜇)  =  arg maxlog𝜇 𝐿(𝑦; 𝜇) − 𝛽𝑅‖𝚿𝑅𝜇‖𝑝𝑅      
Where 𝑅(𝜇) denotes an arbitrary regularizer, and we have chosen a specific roughness penalty 

which incorporates the image gradient operator 𝚿R, a p-norm operator. As previously discussed, 

the parameter 𝛽𝑅 is a scalar that allows for a manual tuning of the noise-resolution tradeoff.  

 The differences between the different p-norm operators are significant enough to merit 

discussion. The p-norm penalties explored include total variation (TV) style regularization 

where 𝑝𝑅 = 1, quadratic regularization where 𝑝𝑅 = 2, and Huber penalty. The quadratic 

regularizer applies blur relatively uniformly across the volume, while the TV regularization 

allows larger differences between voxels and can result in highly nonuniform smoothing with 

strong edge preservation. (Vogel and Oman, 1996; Stayman 2014).  

This work primarily explored the effects of Quadratic vs. Huber penalty in a phantom 

with low-contrast bleeds located near a highly attenuating ellipsoid. The following figure 
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contains less noise due to its smoothing the entire image, the Huber penalty preserved edges of 

interest such that the bleeds are far more visible despite identical projection acquisition. 

 

7.3 Bleed Visibility around High-Attenuators 

Various phantoms were studied, all with the same task in mind – to improve image quality in 

the area surrounding or near a highly attenuating object. The results are summarized in the 

following subsections. 

 

7.3.1 Bleed Visibility in Simple Phantom 

Using the simple phantom previously described, we were able to achieve a significant 

improvement in image quality surrounding the platinum sphere. This is a clear distinction 

between the metal coil and the low contrast bleed in the image created using the designed 

trajectory, whereas the bleeds lack definition in the circular trajectory. It is impossible to tell 

where the bleeds start and end with the traditional acquisition technique. Though both images 

were created with the same parameters in a Huber penalized iterative reconstruction, the more 

designed orbit visibly outperforms the circular one. 
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Figure 22: (a) General trajectory found successful for depicted normal patient, with prostate in average position 

and size. (b) Results for circular and designed (optimal) trajectories in both normal and obese patients. The bleed is 

visibly clearer and truer to shape in the optimal results in both normal and obese patients, across a variety of 

prostate sizes and locations. 

With photon counts as low as 1000, FBP reconstructions are incapable of producing a 

useful image in this region. We compare our penalized-likelihood reconstructions using the 

(b) 

(a) 
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Chapter 8 

 

Conclusion 

 

This work was based upon the hypothesis that designing an acquisition trajectory passing 

through the least attenuating areas of the imaged object will yield better image quality. To 

achieve this, an anatomical model using prior scans as well as segmentation and registration of 

changes due to surgical intervention were leveraged to optimize the CT orbit such that 

detectabilities are maximized across the area of interest. We have demonstrated the ability of a 

properly designed acquisition to dramatically improve the visibility of low contrast objects 

within simple phantoms as well as within a human body.   

These effects were especially pronounced in cases where a highly attenuating object, 

such as metals within the imaged object, were present. As previously discussed, medical 

procedures such as embolization in the head can benefit greatly from task-based orbit 

optimization. These improvements are not limited to the applications explicitly discussed in this 

thesis. Intraoperative procedures involving metal may all benefit from this technique; these 

procedures may include pedicle screws for spinal fusion, knee replacement implants, and 

titanium plate fixation for sternal dehiscence.  

The optimization framework described in this work could be performed before surgery 

based on the prior CT scan and planning information regarding the surgical tools (e.g., 

embolization). However, real-time optimization may be required under certain circumstances 
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during surgery. In that case, more efficient optimization and reconstruction routines are 

necessary. Future work will focus on leveraging the GPU for accelerated CMA-ES optimization 

and model-based reconstruction.    

It is also important to note that we have demonstrated the use of designed orbits in cases 

without metal artifacts as well. Areas with abundant bone, such as the pelvis, can be difficult to 

image properly with high image quality and low radiation dose. We have shown that the low-

contrast prostatic bleeds were far more visible in the designed trajectory results while using the 

same initial photon count. Other areas of the body such as the torso and the skull can also benefit 

from designed orbits, regardless of the presence of metal tools or implants. 

 Moreover, the validity of each stage of the workflow was investigated and verified. In 

doing so, the importance and impact of each of the parameters and factors was assessed and 

detailed, giving insight into the algorithm itself.  This work expands upon previous work 

(Stayman and Siewerdsen, 2013) which focused upon quadratically penalized model-based 

image reconstruction, finding that Huber penalty is more effective for reducing streak artifacts 

without blurring out the entire coil area. 

Future studies can further explore these medical applications, potentially with cadavers 

and later with patients. The optimization problem can be further sophisticated by changing the 

parameterization of the orbit. Rather than employing the gantry (𝜃) and tilt angles (𝜙) alone, 

both Euler angles and a translation (𝜃, 𝜙 , 𝑧) can be employed to create a more dynamic 

trajectory that may provide additional benefits to image quality by navigating the x-rays through 

more complex anatomical areas. Additionally, the orbit parameterization can include 

magnification to increase the field of view if beneficial to the task. As an added benefit, initial 

photon count can also be included as part of the optimization to reduce radiation to areas where 
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less photons are required to acquire a proper projection image. Additional optimization 

parameters can be included in the same task driven optimization framework.   

This work has demonstrated an effective method to significantly improve image quality 

across a variety of tasks and scenarios. Future work can address the limitations discussed within 

this chapter to further improve the workflow for intraoperative applications.  
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and exams. Managed 6 graduate student graders to ensure timely and accurate feedback on student 

work 

JOHNS HOPKINS UNIVERSITY, Baltimore, MD  January 2016 – May 2017 

Chemistry Lab Teaching Assistant, Department of Chemistry                                         

            

• Lead 20 students in weekly experiments, graded exams, performed administrative tasks 

• Communicated and clarified key concepts and proper lab techniques to students 

JOHNS HOPKINS UNIVERSITY, Baltimore, MD June 2014 – November 2015 

Undergraduate Researcher, Enteric Neuromuscular Disorders and Pain Laboratory                            

• Constructed an experimental pump to test and analyze the in-vitro peristaltic activity in the small and 

large intestines of mice to develop a consistent model of gut movement 

• Investigated effects of drug and optogenetically modified conditions 

• Presented findings to Principal Investigator and 10 senior faculty every month 

• Executed experiments requiring reagent preparation and delicate surgeries and dissections 
 

SKILLS                 

Design:  Math Modeling, Optical System Design, Circuit and Device Design 

Computer Applications:  MATLAB, Python, Creo Parametric, AutoCAD, Java, ImageJ 

Business and Logistics:  Business Plans, Patent Research, IRB Applications, FDA Regulations, R21 Grant 

Proposals 

Languages:  Spanish, French 

 


