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12IAG, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
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ABSTRACT
We develop a new framework for use in exploring Type Ia Supernova (SN Ia) spectra.
Combining Principal Component Analysis (PCA) and Partial Least Square analysis
(PLS) we are able to establish correlations between the Principal Components (PCs)
and spectroscopic/photometric SNe Ia features. The technique was applied to ∼ 120
supernova and ∼ 800 spectra from the Nearby Supernova Factory. The ability of PCA
to group together SNe Ia with similar spectral features, already explored in previous
studies, is greatly enhanced by two important modifications: (1) the initial data matrix
is built using derivatives of spectra over the wavelength, which increases the weight
of weak lines and discards extinction, and (2) we extract time evolution information
through the use of entire spectral sequences concatenated in each line of the input
data matrix. These allow us to define a stable PC parameter space which can be used
to characterize synthetic SN Ia spectra by means of real SN features. Using PLS, we
demonstrate that the information from important previously known spectral indicators
(namely the pseudo-equivalent width (pEW) of Si ii 5972 Å/Si ii 6355 Å and the line
velocity of S ii 5640 Å/Si ii 6355 Å) at a given epoch, is contained within the PC space
and can be determined through a linear combination of the most important PCs. We
also show that the PC space encompasses photometric features like B/V magnitudes,
B-V colors and SALT2 parameters c and x1. The observed colors and magnitudes,
that are heavily affected by extinction, cannot be reconstructed using this technique
alone. All the above mentioned applications allowed us to construct a metric space for
comparing synthetic SN Ia spectra with observations.

Key words:
type Ia supernovae: general – Principal Component Analysis, derivative spectroscopy,
Partial Least Square analysis, reddening and intrinsic color

∗ E-mail: sasdelli@mpa-garching.mpg.de

1 INTRODUCTION

Type Ia Supernovae (SNe Ia) are among the most luminous
transients in the Universe. They appear to be a rather homo-
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geneous group, both photometrically and spectroscopically.
After the discovery of a relation between their light-curve
shape and luminosity (Phillips 1993) and of the luminosity-
color relation (e.g. Riess et al. 1996a; Tripp 1998) they have
served as “standardizable candles” and distance indicators
in cosmology. This increases the need to identify their pro-
genitors and to understand the explosion mechanism. It is
widely accepted that SNe Ia are the result of the thermonu-
clear explosion of a white dwarf in a binary system, where
the companion star is needed to trigger the explosion. How-
ever, the nature of the companion star, whether it is another
white dwarf (Iben & Tutukov 1984; Webbink 1984) or a non-
degenerate companion (Whelan & Iben 1973; Nomoto 1982)
is still an open question. In these two scenarios, models dif-
fer from each other by the amount of mass gathered by the
primary white dwarf at the time of explosion, the mode of
thermonuclear combustion or the ignition mechanism (Hille-
brandt & Niemeyer 2000; Wang & Han 2012; Hillebrandt
et al. 2013).

SNe Ia spectra, albeit quite homogeneous, exhibit a
non-negligible diversity of spectral features (e.g. Benetti
et al. 2005; Branch et al. 2006; Hachinger et al. 2006; Wang
& Han 2012). Studying their spectral differences is a promis-
ing way to shed some light on questions regarding their na-
ture. There are many ongoing observational campaigns like
the Nearby Supernova Factory (SNfactory, Aldering et al.
2002), the Palomar Transient Factory (PTF, Rau et al.
2009) or the Public ESO Spectroscopic Survey of Transient
Objects1 (PESSTO, e.g. Maund et al. 2013) and a large
number of SN spectra collected by the CfA Supernova Data
Archive (Blondin et al. 2012), the CSP sample (Folatelli
et al. 2013), the Berkeley sample (Silverman et al. 2012),
and SN catalogs as SUSPECT 2 and WISEREP (Yaron &
Gal-Yam 2012). The number of well-observed SNe Ia has
become large enough to allow for a quantitative statistical
analysis of their spectral and photometrical diversity. Like-
wise, the complexity and diversity of synthetic spectra have
increased (Hillebrandt et al. 2013), for the first time produc-
ing enough synthetic data to allow a coherent comparison
between theoretical predictions and observations, although
such a deep investigation is still to be reported.

In order to explore this potential, we aim at developing
an enhanced framework where all information stored in a
particular data set can be automatically used to character-
ize a given synthetic spectrum. This new metric space was
constructed using an extended version of the Principal Com-
ponent Analysis (PCA) method. PCA has been successfully
used to classify QSO spectra (e.g. Boroson & Green 1992;
Francis et al. 1992; Yip et al. 2004; Suzuki 2006), and it has
become a standard technique in that field. It is also widely
used for studying galaxy spectra (e.g. Connolly et al. 1995)
and stellar spectra (e.g. Whitney 1983; Bailer-Jones et al.
1998). A non-linear extension of PCA has also been used to
photometrically classify SNe, in anticipation of the compar-
atively scarce spectroscopic resources to be faced by future
cosmological surveys (Ishida & de Souza 2013). Standard
linear PCA was applied to SN Ia spectra recently by James
et al. (2006) and Cormier & Davis (2011). Both papers con-

1 http://www.pessto.org
2 http://www.nhn.ou.edu/~suspect

cluded that PCA can be useful to study the diversity among
SN spectra once larger samples become available.

In this work, we use an Expectation Maximization
PCA (EMPCA) algorithm as implemented by Bailey (2012),
which is capable of handling missing data and measurement
uncertainties. The potential of information extraction en-
closed in EMPCA was enhanced by pre-processing filtering
and derivative routines, as well as by the use of complete
spectral sequences in the construction of the initial data ma-
trix. Once a stable PC space was obtained, we used Partial
Least Square (PLS) analysis to demonstrate that the infor-
mation it contains is not restricted to spectral indicators
(velocities and pseudo-equivalent widths) but, as expected,
it also correlates with photometric features as SALT2 (Guy
et al. 2007) parameters c and x1. The outcomes from this
analysis, applied to data from SNfactory, enabled the con-
struction of a metric space where any given synthetic spec-
trum can be projected and automatically confronted with
real data ones. Systematic comparisons of models with ob-
servation have been explored (e.g. Diemer et al. 2013, com-
paring light-curves). Here we approach the problem from a
new observation-driven perspective and we focus on spectral
series.

The paper is organized as follows: in Section 2 we
present details about all pre-processing techniques and sta-
tistical methods used to build our framework. The method is
presented as a general data analysis technique, which allows
its application to any set of spectral sequences. The connec-
tion with SN Ia data is presented in the following sections.
Section 3 describes the SNfactory data set and the addi-
tional spectroscopic and photometric features to be inves-
tigated through PLS algorithm. Results from the EMPCA
analysis (Bailey 2012), including illustrative comparisons to
models, are presented in Section 4. Section 5 presents the
independently measured SNe Ia features investigated in this
work and the corresponding results from PLS are shown in
Section 5.1. Finally, our conclusions are delineated in Sec-
tion 6.

2 METHOD

2.1 Weighted Savitzky-Golay filter

Before attempting any process of information extraction on
spectral data, one must take into account the high impact of
random noise originated in the observational process. Spec-
tra are affected by noise arising from photon statistics, de-
tectors, and calibration. Ideally, we would like to extract the
features filtering the noise without degrading the signal.

The Savitzky-Golay (SG) filter (Savitzky & Golay 1964)
is sometimes used to tackle this issue (Bailey 2012; Poznan-
ski et al. 2010; Hügelmeyer et al. 2007). It uses a least-square
approach to fit a polynomial to neighbouring points within
a fixed window around each wavelength. In comparison with
other smoothing methods (e.g. simply re-sampling the data
in larger wavelength bins), the SG filter, with an appropri-
ate choice of parameters, is more successful in preserving the
shape of the peaks and valleys, even for weak spectral fea-
tures. The procedure is effective especially if the line broad-
ening is significantly larger than the size of the wavelength
bin as is the case here. Ideally, the smoothing window (poly-
nomial degree) should be chosen such that it is not too small
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A metric space for SNe Ia 3

(large) to fail to filter the noise at the same time that it is
not too large (small) so weak features are completely wiped
away.

In this work, we wish not only to properly smooth a
noisy spectrum, but we look for a procedure that takes
into account the uncertainties associated with each mea-
surement. Moreover, we should be able to calculate all the
coefficients of the polynomial fit as well as their covariance
matrix. In order to fulfil these requirements, we substituted
the least square polynomial fit in the standard SG filter, by
a weighted least square routine3, where the quantity to be
minimized is given by

S =

N∑
i=1

[
wi
(
F obs
λi
− gM(λi,βββ)

)]2
. (1)

Here, N is the number of data points included in a fixed
window, F obs

λi
is the observed flux at wavelength λi, gM is

the polynomial of degree M, βββ is the vector of scalar co-
efficients of g and wi is the weight assigned to F obs

λi
. The

algorithm returns the best fit values and covariance matrix
for βββ at each wavelength. The width of the window is kept
constant in log(λ), which corresponds to a constant veloc-
ity broadening to allow for a reasonable smoothing up to
the minimum line broadening of the lines. Although other
types of smoothing techniques might possibly improve the
results of our analysis, this matter has not been investigated
in detail in this work.

Once the impact of noise is reduced, we proceed to the
construction of a framework capable of extracting informa-
tion from a large data set, while minimizing the number of
random variables to be dealt with.

2.2 Expectation Maximization PCA

Principal Component Analysis (PCA) is a dimensionality
reduction method used to describe an initially multivariate
data set using a smaller number of uncorrelated parameters
(principal components — PC). It transforms the original
high-dimensional space, through a rotation of its axes. The
first new axis (or PC) is aligned with the direction of largest
variance in the data. The second PC should also maximize
the variance, subject to being orthogonal to the first, and
so on. Mathematically, these directions can be more easily
determined through the covariance matrix,

Σii′ =

∑k=N
k=1 (Xk

i −Xi)(Xk
i′ −Xi′)

N
, (2)

where Xi is the mean of all fluxes measured at wavelength i
and N is the total number of objects (for a complete review,
see Jollife 2002). Hereafter, we will always refer to the initial
data as the mean subtracted terms in Eq. 2 (the centralized
version of all points in the initial data set).

Once Σ is diagonalized, the PCs are given by its eigen-
vectors, with the first PC corresponding to the one with the
largest associated eigenvalue and so on. We are now able to

3 http://docs.scipy.org/doc/numpy/reference/generated/

numpy.polyfit.html

fairly reconstruct a given spectrum from the original data
set using only M PCs (M � N),

FFF rec ≈XXX +

M∑
j=1

cjPPP j , (3)

with XXX representing the mean of all spectra, PPP j the j-th
PC and cj the j-th scalar whose values must be determined
from fitting FFF rec to the measured flux. Geometrically, cj
represents the projection of the measured spectrum on PPP j .
PCA is just a basis change. Using all the N components the
reconstruction becomes identical to the original data. The
point is that the new basis captures a large fraction of the
variance in a small number of components (M). For the
purpose of this work, the determination of the “optimal”
M is not a crucial point. A deeper discussion and other
important applications of PCA for reconstruction in astron-
omy can be found in Ishida & de Souza (2011); Ishida et al.
(2011); Benitez-Herrera et al. (2012, 2013) and references
therein.

If a particular measurement is missing, or is not reliable
enough to be considered on the same basis as the other more
accurate ones, it is possible to reconstruct it from the nearest
ones. Here we chose a different approach, taking advantage
of a technique able to deal with missing elements in the ini-
tial data matrix: an expectation maximisation algorithm of
PCA, first developed by Roweis (1998). We use an extended
version of it, which can deal with non-uniform errors in the
known components (Dempster et al. 1977; Bailey 2012).

Reversing the line of thought which leads us to equa-
tion 3, we can think of the PCs as the vectors which minimize

χ2 =
∑N
k=1

[
XXXk −FFF rec

]2
. In the presence of measurement

errors, one can add a k×i weight matrix, W, which controls
the degree of influence of each flux measurement (for object
k at wavelength i) in the determination of the components,

χ2 =

N∑
k=1

Wk
[
XXXk −FFF rec

]2
. (4)

The above expression presents the challenge of diagonalizing
a possibly very large matrix with a non-negligible number
of null elements. Within EMPCA, this problem is tackled
through the use of an Expectation Maximization algorithm
(explained in detail in section 5.3 of Bailey 2012).:

Algorithm 1 Expectation Maximization algorithm

(i) V← random orthonormal basis of dimension i×M
(ii) repeat until convergence (i.e. the basis V does not

vary significantly with new iterations):
(a) calculate the projections of all spectra on the basis

V (E-step)
(b) using these coefficient values, find a new estimate

of the basis V which minimizes equation 4 (M-step)
(c) normalize the columns of V to unit length

(iii) return V as the EMPCA calculation of the first
M eigenvectors of the basis P

This method allows us to perform PCA on real data by
giving higher weight to points with lower noise. Moreover,
missing components in the input data are handled easily by
assigning them a weight equal to zero. Using the SG filter
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and EMPCA, we are able to translate a set of spectra from
wavelength to PC parameter space, with the SG filtering
being crucial to ensure stability of the EMPCA results. In
the absence of such filtering, the EMPCA procedure does
not converge to a stable solution.

2.3 Error budget

The propagation of the errors from the spectra to the pro-
jections is not included in the EMPCA framework. For stan-
dard PCA, the error in the determination of each eigenvec-
tor is inversely proportional to the corresponding eigenvalue
(Jollife 2002). In EMPCA however, we need to deal with
three main sources of error when analysing the geometri-
cal distribution of our data in PC space. First, the itera-
tive nature of the EM algorithm prevents us from obtaining
the complete eigensystem and leads to uncertainty in the
determination of the PC themselves. Beyond that, in the
presence of missing data, computing the eigenvalues can be
complicated, as it would require defining the total covari-
ance based on an incomplete data sample. Second, once the
PCs are given, we need to tackle properly the potential vari-
ance in their projections due to missing elements in the data
vectors. Third, the variance in the projections due to noise.

The determination of the PCs in EMPCA starts with
a random first guess. It rapidly converges to an approxi-
mate final solution, but continues to fluctuate weakly even
after many more iterations. The output PC vectors also vary
slightly for different choices of the initial random seed. De-
spite the small influence of these features in the overall be-
haviour of our results, we took them into account by running
the EMPCA algorithm for 100 different seeds during 500 it-
erations each. The resulting sets of vectors were then used to
estimate the uncertainty in the projections in PCs space. A
small value of these variances can be interpreted as evidence
that the input data quality is high enough to allow a stable
determination of the PCs.

The errors in the projections due to missing measure-
ments in the projected vector were calculated assuming that
the eigenvectors are well determined, using the approach of
Nelson et al. (2006). The propagation of the errors is due
to the operation of projecting a non-complete spectrum on
the PC space. The approach involves the inversion of sub-
matrices of the covariance matrix, whose dimension is much
larger than the sample size. An estimate of this matrix was
achieved by completing the observed data with the PCA
reconstructions. Then, we computed the estimator for the
covariance of the completed data as described by Ledoit &
Wolf (2004). With the covariance matrix and the eigenvec-
tors we computed the error in the projection due to missing
data for each object, as described by Nelson (2002), section
3.2.1 and Nelson et al. (2006).

The errors on the projections due to measurement noise
were computed using a Monte Carlo approach. Each spec-
trum was submitted to the SG filter and a random noise
based on the original error amplitude was added to the
smoothed spectrum. The new noisified spectrum was again
submitted to the filtering process and its corresponding pro-
jection in PC space was computed. The procedure was re-
peated 25 times. This allowed us to assess, in an empirical
approach, the variance in the projections due to different
magnitudes and covariances among the measurement errors.

2.4 Optimizing information extraction

After the smoothing described in Section 2.1, we are left
with a well behaved representation of the measured spec-
tra. Mathematically, this would be enough to feed the EM-
PCA algorithm and perform the exercise of looking for pat-
terns/subgroups in PCs space (e.g. Whitney 1983; Francis
et al. 1992; Connolly et al. 1995). However, astronomical
spectra commonly also present uncertainties in large wave-
length modes due to reddening, calibration problems, and
on the absolute flux itself due to poor estimates of the dis-
tance of nearby galaxies. They can also present uncertainties
on small wavelength modes due to CCD fringing at higher
wavelengths, discontinuities in the overlapping region be-
tween spectra obtained with different spectrographs, or poor
subtraction of telluric lines. In this context, our goal is to
optimize the power of information extraction as much as
possible, getting rid of any recognizable additional noise and
enhancing intrinsic spectral features which we know to be
relevant for individual object characterization.

2.4.1 Derivative Spectroscopy

Although we are aware that it is not possible to completely
remove the effect of extinction in measured spectra, we can
make it easier to handle by, first, using the logarithm of the
flux as our initial data. As an example, consider a general
reddening law:

Flog = log10 F
obs
λ = log10 F

intr
λ − 0.4

Aλ
AV

RV EB−V , (5)

where F obs
λ , F intr

λ and Aλ are the observed flux, intrinsic flux
and extinction at wavelength λ, respectively. AV represents
the extinction in V -band and RV = AV /EB−V , and Aλ/AV
is traditionally used to characterize the dust responsible for
the extinction. From this expression we realize that in terms
of Flog, reddening becomes a linear relation in the extinc-
tion parameter, EB−V . Moreover, two objects following the
same extinction law but subjected to different amounts of
reddening will differ only by a multiplicative constant.

We would also like to take full advantage of the PCA
dimensionality reduction power by equally weighting the in-
formation contained in weak/strong spectral lines. The pres-
ence of strong lines naturally dominates the variance (and
consequently all results from PCA) of any given spectra data
set. They are crucial to the initial classification, but in a sec-
ond order analysis they may obscure important information
contained in weak spectral features, which are more sensi-
ble to the conditions of the material because usually they
are not saturated. It is important to emphasize that PCA
itself is an excellent framework to study a “forest” of weak
lines since this kind of study demands the parallel analysis
of many of them.

We independently rediscovered a technique used in
chemistry since Morrey (1968), which consists of beginning
the analysis from the derivative of each spectrum over the
wavelength, which in our case translates to ∂Flog/∂λ, here-
after dFlog. This approach presents a few important im-
provements over the standard scenario for spectra analysis
with PCA:

• Weak lines are emphasized. PCA on the derivative ac-

© 2014 RAS, MNRAS 000, 1–19
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counts for variance in the slope instead of variance in the
flux, which also enhances the importance of the velocity of
lines.
• It does not depend on errors in distances or on small

calibration errors of each spectrum, since a change in any
of these adds a constant to Flog but leaves its derivative
unchanged.
• It is only mildly dependent on reddening and large but

smooth calibration errors, since these add a function to Flog

which is weakly dependent on wavelength (section 4).

2.4.2 Complete spectral sequences

The procedure described up to now can be applied to any
data set composed of at least one spectrum per object. In a
few cases however, mainly concerning transients, a specific
data set will contain a sequence of spectra for each of its
objects, taken at different epochs. When this is the case, we
could, in principle, restrict ourselves to a single important
epoch which would mean wasting a large part of the avail-
able information. Such a time-focused analysis would have
no means of recognizing distinct evolutionary tracks for two
objects which happen to present similar features at the cho-
sen epoch. Similarly, it would overestimate the distinction
among two sources sharing almost identical spectral time
evolution, if they are submitted to external effects which are
mainly detected at the time of observation (such as noise,
or bad atmospheric subtraction).

Alternatively, one could compare results from the anal-
ysis of spectra taken at different epochs and follow the differ-
ent PC space configurations over time. Although this naively
seems a good option, it poses some difficult technical prob-
lems. Comparing PCA results from two different matrices
would require spectra for all sources taken at exactly the
same epochs (or within the same epoch bin) in order to have
enough statistics to justify a PCA in each one of them. As
this is not the case for current data sets, we chose to analyse
all available spectra in a single PC space by concatenating
subsequent spectra in each line of the initial data matrix.
In this context, if one particular object is missing one spec-
trum the corresponding slots for those measurements are
assigned a null weight, and the EMPCA algorithm still uses
the available data in the determination of the complete PC
space.

2.5 The Partial Least Square analysis

We now have a few techniques enabling us to translate the
measured spectra from wavelength into PC parameter space.
This new optimized space summarizes the information con-
tained in the original data, grouping objects similar to each
other and providing a low-dimensional basis from which we
can reconstruct the main aspects of observed spectra. How-
ever, given that the PC space represents the essential in-
formation contained in each spectral sequence, it should be
possible to obtain additional information from the PCs. It is
reasonable to assume the existence of correlations between
physical characteristics and a space that represents all spec-
tral features, and in such case, we would be able to associate
known physical characteristics to the parameters found with
EMPCA. In this context, we could easily recognize a miss-

ing or unexpected element in synthetic spectra. In this sub-
section we show how the PLS analysis is suited for this task.

The Partial Least Squares analysis (PLS, also known
as Projection to Latent Structures) is a technique used to
find hidden relations between two groups of variables, orig-
inally developed by Wold (1982); Wold et al. (1984). The
underlying hypothesis behind PLS is that all observed data
are generated by a small number of latent variables, not di-
rectly observed or measured. It searches for traces of these
latent structures which may be present in different parame-
ter spaces.

We can roughly think of PLS as a combined principal
component search. Suppose we have two independent sets
of variables, {X ,Y}, which result from measurements per-
formed on the same objects. For example, X can be a set
of spectra and Y the set of independently measured pho-
tometric properties of the same objects. If we apply PCA
to each one of these sets individually, we would obtain two
distinct groups of PCs and their corresponding data projec-
tions, but the PCs of X would bare no information about
the PCs, or projections, of Y, and vice versa. The goal of
PLS is to determine directions within X and Y that maxi-
mize the covariance between their projected data. Once the
directions are known, from measurements of a new object in
X we can estimate its projections and predict the values for
variables in Y.

In this work, we look for relations between a 1-
dimensional parameter space Y and the M -dimensional PC
space coming from EMPCA. Mathematically, we are search-
ing for the direction eee (

∑
i e

2
i = 1) that maximizes

Cov(eeeX, Y ) =

∑N
k=1 (Y k − Y )

∑
i (Xk

i −Xi)ei
N

, (6)

where N is the number of objects and Xj and Y are means:

Xj =

∑N
k=1X

k
j

N
, Y =

∑N
k=1 Y

k

N
.

The corresponding correlation is the covariance weighted by
the variances:

Corr(ei) =
Cov(ei)

σ(
∑
iXiei)σ(Y )

,

where

[σ(
∑
i

Xiei)]
2 =

∑N
k=1 (

∑
i (Xk

i −Xi)ei)2

N
,

[σ(Y )]2 =

∑N
k=1 (Y k − Y )

N
.

PLS does not maximize the correlation, as the standard
least square linear regression does, because that would as-
sign the same weight to all directions in X . Instead, it max-
imizes the covariance, which gives more weight to directions
in X with larger variance (first PCs) and avoids overfitting
problems. In this work, we use the PLS algorithm as imple-
mented by the scikit-learn statistical suite (Pedregosa et al.
2011).

In principle it is possible to apply PLS before the PCA
dimensionality reduction, however, given the large dimen-
sion of the original spectral sequence data, that would barely
simplify the traditional approach. Moreover the EMPCA

© 2014 RAS, MNRAS 000, 1–19
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method allows us to deal with missing components and di-
verse weights, and consequently apply the method to many
more spectra without discarding incomplete or significantly
noisy data.

3 APPLICATION

In this section we apply the previously explained framework
to SN Ia spectra from the SNfactory.

3.1 The Nearby Supernova Factory

The SNfactory is an experiment carried out using the Uni-
versity of Hawaii 2.2m telescope, mounted at Mauna Kea.
Its goal is to obtain a sample of well observed SNe Ia in
order to improve the measurements of cosmological parame-
ters (Aldering et al. 2002; Copin et al. 2006). Spectra are ac-
quired through a two-channel Supernova Integral Field Spec-
trograph (SNIFS, Lantz et al. 2004), which simultaneously
covers channels B (3200-5200 Å) and R (5100-10000 Å).
Discovery is largely automated using images from the JPL’s
Near Earth Asteroid Tracker (NEAT) and from the QUasar
Equatorial Survey Team with quantitative and traceable
selection of SN candidates (Bailey et al. 2007). This re-
moves biases induced by the reliance on existing galaxy
catalogs. Precise calibration is carried out in order to en-
sure agreement with high-redshift SNe (Buton et al. 2013).
The spectra are deredshifted with independently measured
host galaxies redshifts (Childress et al. 2013). Telluric lines
are properly removed and Milky Way extinction corrections
are applied to all spectra (Schlegel et al. 1998). Each su-
pernova is followed from before B−band maximum up to
40 − 45 days after peak, resulting in 10-15 flux-calibrated
low resolution spectra for each object. Most of the observed
SNe are at the low-redshift end of the smooth Hubble flow
(0.03 < z < 0.08), which enables a small error in the de-
termination of distance from peculiar velocities while still
being well within the homologous expansion regime.

Consequently, SNfactory provides a considerably large
and relatively homogeneous data set of SNe Ia spectra (151
SNe and 2323 spectra at the time of this analysis), ideal
for the study of second-order features as the one proposed
here. Since all spectra are obtained with the same instru-
ment, resolution and host subtraction routine, the data set
is homogeneous enough to allow for intrinsic astrophysical
features to produce non-negligible effects in PCA results. In
what follows, we shall directly probe this argument by cor-
relating the remaining variance in flux measurements with
specific photometric and spectroscopic SN features (Section
5.1).

It is important to emphasize that we chose the SNfac-
tory as a first test of these tools because the outcome would
certainly be less obvious if obtained from a less homogeneous
sample. However, due to the incorporation of the SG filter-
ing and the use of dFlog, the method is flexible enough to be
applied to a much more diverse SNe Ia data (e.g. Blondin
et al. 2012; Silverman et al. 2012).
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Figure 1. Multiple steps in data treatment. Both panels show
data from SNF20080626-002, taken at −0.65 days relative to

B−band maximum brightness. In each panel we artificially shifted

the curves along the vertical axis for didactic reasons. Top: Flog

measurements before (blue-full) and after (green-dotted) going

through the SG filtering. Bottom: dFlog (red-dashed) and cen-

ter derivative, dFlog − dFlog (yellow-full).

3.2 Data treatment

The processed portion of the data set contains 151 SNe Ia
(2323 spectra) from which we selected objects with at least
one spectrum before, one after B−band maximum and a
minimum of three observed epochs between −10 and +10
days around B-band maximum. The epoch B-band maxi-
mum was determined from the SALT2 light curve fitter (Guy
et al. 2007) applied on magnitudes obtained from integrat-
ing BV R top-hat filters (Pereira et al. 2013). Applying such
requirements reduced our sample to 119 SNe and 764 spec-
tra. The ∆m15(B) of the sample is within 0.7 and 1.7, the
SALT2 color within −0.16 and 0.40. The redshifts of the SNe
are within 0.007 and 0.12. Plots showing the distributions
of these parameters in the SNfactory sample are shown by
Chotard et al. (2011) and by Childress et al. (2013).

Each spectrum was smoothed by means of the weighted
SG filter (Section 2.1), using a third order polynomial
(M=3), and a 6000 km/s-wide window as filter parame-
ters. Those values were chosen by visually inspecting some
smoothed spectra; potentially, the choice of different values
may provide further improvements. It is also important to
emphasize that this filtering technique performs satisfacto-
rily up to a certain threshold and starts to saturate for very
noisy spectra. In this context, the uniformity and quality of
SNfactory data allow us to apply the filtering without the
need to discard spectra due to poor data quality.

Figure 1 is an example of how a measured spectrum is
transformed at different stages of the pre-processing treat-
ment. The top panel shows the measurements from the stan-
dard SNf reduction pipeline (blue-full) and the correspond-
ing spectra after the SG filtering (green-dashed). The bot-
tom panel presents the derivative of the same spectrum (red-
dashed) and its centred counterpart (yellow-full), that is the
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Figure 2. Representation of the input data matrix. Different

rows correspond to different SNe. Each column shows centered

dFlog, from spectra collected between −10 and +10 days relative
to B−band maximum brightness (from left to right), within each

2 day epoch window. Each curve runs over 3300Å6 λ 6 9000 Å,

written in wavelength bins of 20Å.

difference between the derivative and the mean derivative.
The mean derivative is the mean of all SNe. This last prod-
uct of the spectra preparation was used as input to build
the initial data matrix. In both panels, functions were arti-
ficially displaced along the vertical axis in order to improve
clarity.

Once all preparations are done, each row in the data
matrix is constructed by grouping into bins measurements
taken in 2 days within each other. Thus, a SN with no miss-
ing spectrum is represented by a row in the data matrix
constructed from the concatenation of 10 spectra. The first
was taken between −10 and −8 days, the second between
−8 and −6 days, and so on. When a spectrum is missing, its
corresponding matrix elements are left empty, and if more
than one measurement exists within the same epoch bin, the
mean spectrum is used as a representation of that SN in that
bin. The choice of the parameters for the binning is inspired
by the method of abundance tomography (Stehle et al. 2005;
Mazzali et al. 2008). Using the SNfactory data, −10 days is
as early as possible to have a rich sample. After +10 days
the quality of the spectra generated by radiation transport
codes not including forbidden line transitions starts to de-
crease (e.g. Sasdelli et al. 2014, for a study of the SN 1991T).

As with the SG filter parameters, the size of the epoch
bin can be adapted according to the characteristics of each
data set. For SNfactory, a two-day binning is a reasonable
compromise, given that SN Ia spectra are quite homoge-
neous within this time frame and the data set is complete
enough to provide a final matrix with more existing than
missing spectra (in this configuration, we achieve 53% cov-
erage). When transferring this procedure to another data
set, one should keep in mind that an epoch bin should be
small enough to guarantee that spectral variations between
different objects within that bin are not due to time evo-
lution. At the same time, the bins must be large enough
to accommodate uncertainties in the determination of the

epoch for each spectrum and allow a not too sparse initial
data matrix.

Figure 2 illustrates the overall shape of the final data
matrix. Each spectrum was sampled every 20Å (wavelength
gap between two columns for the same spectra). Our results
show that this choice has negligible effects on the analysis
and saves computational time.

In order to properly populate the weight matrix, errors
coming from the flux measurements need to be propagated
through the filtering process. Since the complete error co-
variance matrix of each spectrum is not used in the EMPCA
code from Bailey (2012), we are computing only its diagonal
terms. The weighted polynomial fit described in Section 2.1
represents the smoothed spectrum at each wavelength as

F obs
λ → g3(λ, β) = β0+β1(λ−λ0)+β2(λ−λ0)2+β3(λ−λ0)3,

(7)
where λ0 is the central wavelength for each window. Given
that each polynomial fit is used to determine the smoothed
flux only at λ = λ0, this implies that for each wavelength:

Flog = log10 F
obs
λ

∣∣∣∣
λ=λ0

= log10 β0, (8)

dFlog =
d log10 F

obs
λ

dλ

∣∣∣∣
λ=λ0

=
β1

β0 ln 10
, (9)

finally, propagating the errors:

δFlog =
δβ0

β0 ln 10
, (10)

δdFlog =

∣∣∣∣ β1
β0 ln 10

∣∣∣∣
√
δβ2

0

β2
0

+
δβ2

1

β2
1

− 2cov(β0, β1)

β0β1
, (11)

where δβi denotes the uncertainty associated with the de-
termination of parameter βi and the covariance between
the first two parameters is represented by cov(β0, β1) . The
weight matrix elements are then defined as wi = δF−2

log or

wi = δdF−2
log for the logarithm and derivative cases, respec-

tively.
There are a few supernovae within the SNfactory set

whose errors are an order of magnitude smaller than the
ones of the bulk of the data. This happens for bright SNe,
where the number of counts is high and the Poisson error
small. For example SN 2007le, being one of the nearest su-
pernovae in the sample, has errors much smaller than most
of the other objects. If the EMPCA is carried out with er-
rors as they come out of the SG filter, it would overweight
the two or three supernovae with the smallest errors and
the first components would point in the direction of these
few objects. This behaviour of EMPCA in the presence of
few objects with a noise much lower than the rest of the
sample is also highlighted by Bailey (2012, section 8.3). To
overcome this problem, we artificially decreased the weight
of 52 SNe (42% of the sample) in order to have no SN with
a weight larger than 90 times the sum of the weights of the
other objects. Results are not biased towards these objects
and the PC space is stable as long as their number is kept
between ∼ 25% and ∼ 75% of the total data set. We also
performed the analysis without changing the initial weights,
but removing the 8 SNe with lowest noise from the initial
sample. The test returned the same results, demonstrating
the low sensitivity of this procedure regarding the method
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used for down-weighting. Once the PC space is determined,
the spectra are not downweighted to obtain the projections.

4 PRINCIPAL COMPONENTS
INTERPRETATION AND METRIC SPACE
COMPARISON

We present below, side by side, results from the applica-
tion of the EMPCA to SNfactory data, with matrices built
from Flog and dFlog (Figures 3 and 4, and Figures 5 and 7).
Hereafter, the PCs derived from a data matrix based on
Flog will be referred to as PCiFlog , with i denoting the PC
number. Meanwhile, PC calculated from a matrix based on
derivatives will be simply called PCi. This direct compari-
son allows the reader to clearly recognize the differences and
advantages in using the derivatives, which is a crucial step
for the subsequent PLS analysis presented in Section 5.1.

4.1 Principal Components

Figures 3 and 4 show the behaviour (first panel) and conse-
quent influence on reconstructed spectra (second to fourth
panels) of the first three eigenvectors for analyses based on
Flog and dFlog, respectively. In both figures, the first panel
displays the functional form of the PCs themselves, while
the remaining panels show the effect we can achieve, in the
final reconstruction, by increasing the weight assigned to
each PC within the boundaries allowed by the data. The re-
constructions presented here are non-cumulative. In other
words, the gray region in each panel represents features
which arise when combining the mean spectrum with each
PC separately. From this, we see that the first eigenvector
computed from Flog (Figure 3) leads to a slow variation with
wavelength in the reconstructed result. Its influence can be
easily associated with a constant that allows a rigid trans-
lation in flux, although is also carries some discrete wave-
length dependent features. Also, it clearly describes a much
larger variance than the next two components (larger area
covered by the gray region, second panel of Figure 3). The
first PC is largely influenced by dust, with its long wave-
length behaviour being consistent with a Cardelli reddening
law. However, significant contributions to the flux and to
the slope of this eigenvector due to absolute magnitude and
intrinsic color variations are likely. The mixing of intrinsic
and extrinsic properties is avoided by the PCA based on the
derivative. For dFlog (Figure 4, panels 2–4), one can notice
that an important role is assigned to small scale variations.
Moreover, the variance covered by the first PC is compa-
rable to that of the others. This is a direct consequence of
our choice of removing the overall flux information from the
input data through the use of the derivative. In this analy-
sis, the first three PCs show variations of pseudo-Equivalent
Widths (pEW) and velocities of many lines, some of which
are studied in more detail in Section 5.1.

4.2 High velocity features

The first two PCs contain a large part of the spectral vari-
ance in the SNfactory data. This will be studied in detail
in the subsequent sections. We highlight the significant role

played by the third PC shown in Figure 4, which tracks the
variation of the High Velocity Features (HVFs) of Ca ii H&K
and infrared lines without particularly affecting the rest
of the spectrum. This figure represents the eigenvectors in
the epoch range between −6 and −4 days relative to B-
maximum, since the high-velocity part of these lines usually
disappears at later epochs.. The third PC, by construction
uncorrelated with the first two, seems to be mainly responsi-
ble for tracking variations of HVFs of Ca. Thus, confirming
that HVFs of Ca is a property of the outer layers of the
ejecta and it is not correlated with the underlying structure
(Mazzali et al. 2005). Such an effect can be achieved with
an asymmetric/clumpy outer layer of the ejecta convolved
with line-of-sight effects (Tanaka et al. 2006) and is a good
indicator of the kind of astrophysical characteristics which
can possibly be recognized also in synthetic spectra.

4.3 Metric Spaces

The projection of SNfactory data in a 2-dimensional PC
space, obtained from Flog, is displayed in Figure 5. In-
dividual objects are coloured following the classification
scheme defined by Wang et al. (2009), where high-velocity
SNe are those whose velocity of the Si ii 6355 Å is more
than 3σ above its mean value. In what follows, we con-
sider the mean +3σ equal to 12200 km s−1, as computed
by Blondin et al. (2012). We also highlighted a few 91T-like
SNe (red stars), following the classification used by Scalzo
et al. (2012). 1999aa-like SNe are not highlighted as 91T-
like. Crosses correspond to 1σ uncertainties due to random
seed variation and ellipses represent the 1σ errors coming
from missing data in the projected spectral sequence and
measurement noise added in quadrature. After exploring a
large range of the MC parameters, our results show that 25
realizations were more than enough to the secure stability
of the error bars.

Figure 5 can be considered to be an alternative visu-
alization of the same effect as presented in Figure 3: the
first PC obviously contains a larger part of the total vari-
ance, and consequently the interpretation of the subsequent
PCs is obscured. In this context, although we can identify
a certain clustering of 91T-like SN in larger values of PC1,
contamination is still significant, and an attempt to separate
the set according to these features would certainly present
important drawbacks. This high level of contamination is
mainly due to reddening. This is shown clearly by the varia-
tion of the projections of SNF20080720-001 after a reddening
correction of up to E(B − V ) = 0.4 with a Cardelli et al.
(1989) law (magenta line in Figure 5). This object has an
observed B−V color of ∼ 0.4, one of the reddest SNe in the
SNfactory sample. Figure 6 shows the analogous situation
for PC2 × PC3 parameter space. The magenta line corre-
sponds to the reddening effect still present in the second and
third PC in flux space, showing that the PCA in fluxes is
not able to isolate the effect of reddening in the first PC.

Figure 7 shows how this situation changes when the
analysis is based on dFlog. The crosses due to the insta-
bility of the EMPCA algorithm are completely negligible,
the ellipses due to noise and missing components are large
only in a few very noisy SNe. The slowly declining 91T-
like SNe (red stars) are at the bottom edge of the diagram,
clearly separated from the high-velocity ones on the right
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Figure 3. First panel shows the first three eigenvectors ob-
tained from the analysis on Flog. The second to fourth panels
illustrate the main spectral features tracked by PC1, PC2 and

PC3. All panels correspond to a spectrum taken between −6
and −4 days relative to B-band maximum. Blue lines denote the

mean spectrum. Gray regions were obtained by reconstructing

the spectrum with only 1 PC and varying the scalar coefficient
within the 1σ range given by the data. The PC2 and PC3 bare
similarities with the Si and Ca components found by Chotard
(2011).
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Figure 6. Same as Figure 5, PC2Flog and PC3Flog .

(yellow squares). The spectroscopically normal SNe (blue
triangles) are spread throughout the parameter space, in-
dicating a larger intrinsic variability between these objects.
Visually inspecting spectra from the SNe in the upper-left
corner, we also realize that this space is occupied by fast
declining SNe with cooler spectra showing a lower ioniza-
tion ratio. According to the projections in our metric space
there are no clear separations that justify the definition of
subclasses. SNe Ia, accordingly to spectral features, look like
a continuous distribution of objects. In other words, there is
no clear separation in velocity or EW of lines which justifies
or objectively indicates a threshold for defining a subclass,
although there are undoubtedly fundamental differences be-

tween objects in the extremes. For example, 91T-like SNe
show a “bridge” of objects that connects them with the bulk
of normal ones. The same is true for the ones with a high
velocity of Si.

The marginal effect coming from reddening in this con-
text is illustrated by the magenta line in Figure 7. As in
Figure 5, it represents the translation in PC space experi-
enced by SN SNF20080720-001 when a 0.4 mag reddening
correction is applied. Comparing the magenta lines in both
figures demonstrates the power of the derivative analysis in
minimizing the effect of dust in the PC space. Although
this is one of the most reddened SNe, the change in the PCs
is merely marginal. The same trend is observed for all the
other objects in this sample.

It is important to keep in mind that this specific geo-
metrical configuration in PC space will always be related to
the sample of objects used to construct it, and it is not a
“universal” space for SNe Ia. However, it is reasonable to ex-
pect that the addition of more high-quality data leads to an
asymptotic PC space configuration which summarizes the
similarities and differences within the SNe Ia sample used
in its construction. Nevertheless, with the SNfactory data
at hand, we are already able to demonstrate that the anal-
ysis is useful to look for correlations in the data, attack the
problem of SN Ia spectra characterization and search for
outliers.

Although this “universal” PC space is merely an asymp-
totic state, we can have a hint on how close it is to the
ideal configuration. In other words, we can test the stability
of a given PC space through the successive application of
the EMPCA algorithm to different subsets of the original
data. This procedure is called Cross-Validation (CV) and
it has been used in many fields where the configuration of
a given method depends on the initial data set (Arlot &
Celisse 2009). Detailed results from a CV test are presented
in Appendix A, and these demonstrate the stability of the
space presented in Figure 7.

After analysing the first pair of PCs and confirming
the stability of the PC space, we are left with an obvi-
ous question: how many PCs are necessary to describe the
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Figure 7. Same as Figure 5, for the analysis based on dFlog.

data set and throw away a substantial part of the noise? In
a standard PCA the fraction of the total variance associ-
ated to each PC, or to a subset of them, can be estimated
through the cumulative percentage of total variance (Jollife
2002; Ishida & de Souza 2011; Benitez-Herrera et al. 2013).
Given that the eigenvalues associated with each eigenvector
constitute a measurement of the data variance along that
PC direction, this means that the ratio between the largest
eigenvalue and the sum of all eigenvalues gives an estimative
of the percentage of variance (or information) described by
the first PC. However, in the EMPCA approach we do not
have access to all eigenvalues at once, since the eigenvec-
tors are calculated one at a time through the EM algorithm.
Nevertheless, we do expect that only a handful of PCs will
actually carry meaningful information and this hypothesis
can be tested with a small sub-sample of them.

We used the EMPCA approach to calculate the first
six PCs and their corresponding data set projections. From
these, we determined the variance along each PC. By def-
inition, the first PC contains a larger fraction of the total
variance than any other PC, so we used it as a normaliza-
tion factor. In this context, we can obtain an estimate of how
much information is stored in a certain PC, in comparison
to that in the first one.

In Figures 8 and 9 we show the variances normalized

to the first component for the analysis on Flog and dFlog

respectively. Figure 8 shows the same result we have seen
in Figures 3 and 5, with most of the information concen-
trated in PC1Flog . From a physical perspective, performing
the analysis in this parameter space is challenging, due to
extinction and intrinsic luminosity variations. Extinction ef-
fects are present in all the principal components, making it
difficult to disentangle two very different physical processes.
For example, in this context, two similar SNe subjected to
different amounts of reddening would be distant from each
other in the PC parameter space (as illustrated by the ma-
genta line in Figures 5 and 6). On the other hand, when
using dFlog we concentrate the investigation on spectral fea-
tures which are crucial to SNe Ia characterization and con-
sequently a larger number of PCs are found to be significant.
The derivative approach removes the effect of reddening, a
physical process that causes a large amount of variance in
the data, making it easier to train the PCA space. From
Figure 9, it is clear that PC2 to PC5 carries at least 20%
of the variance in PC1 each and the fractions stabilized for
PC6. Thus, we conclude that 5 PCs are enough to describe
most of the variance in SNfactory.

In Figure 10 some of the reconstructions are directly
shown. We present the original spectra along with recon-
structed ones using two and five PCs. The plot shows a few
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SNe at maximum for clarity, but this behaviour holds for all
epochs between −10 to +10 days. Here, the consequences
of our choices in focusing on intrinsic features are obvious.
Although the overall spectral shape and most lines are very
well recovered, the ratio of fluxes at long wavelengths (color)
is not. This is welcome and expected because the derivative
analysis does not give much weight to the mean slope of the
spectra, making the analysis independent of individual SNe
reddening and reshapes the observed spectra so to allow a
fair comparison with synthetic models. The comparison in
the derivative space is shown in Appendix C.

4.4 Comparison with models

We emphasis the potential of this metric space, built from
the combination of the derivative approach and EMPCA,
in providing an ideal environment for the characterization
of synthetic spectral series (from −10 to +10 days) within
a space defined by observed SNe. As an example, the black
symbols in Figure 11 denote the projection, in derivative PC
space, of the 3D delayed detonation model “N100” (Seiten-
zahl et al. 2013; Sim et al. 2013) and the merger model from
Pakmor et al. (2012).

The N100 model describes a supernova generated from
a white dwarf accreting material from a companion and get-
ting close to the Chandrasekar mass (1.4 M�). The other
model describes the explosion of two carbon-oxygen white
dwarfs with masses of 0.9M� and 1.1M� prototypical for
the double degenerate scenario. The model spectra were con-
structed based on radiative transfer calculations of Kromer
& Sim (2009) and projected into the PC space through the
same procedure applied to the observed sample. Both mod-
els have been proposed as explanation of normal SN Ia, in
particular SN2011fe (e.g. Röpke et al. 2012), and have a
similar luminosity.

Figure 11 demonstrates that our procedure does place
both models among the normal SNe (blue dots), in deriva-
tive PC space. However, the geometrical distance between
them is considerable, reflecting the intrinsic and spectral
differences of these two models (Röpke et al. 2012). This
illustrates the power of our method when applied to charac-
terize SN Ia models, providing an automatic and quantita-
tive approach to confront them with observations and with
each other. Such investigation will be further developed in
a subsequent work.

5 COMPARISON WITH DISCRETE
OBSERVABLES

In the context of the PLS we will now study the correla-
tion between the PC space and a few other photometric and
spectroscopic quantities. We present a closer look at each
of these characteristics and describe in more detail how to
obtain such information from the derivative PC space.

The absolute B-band magnitude at maximum is prob-
ably the most important quantity for the characterization
of SNe Ia. SNe Ia are standardizable candles because a high
degree of homogeneity in SN Ia absolute magnitudes can be
achieved using simple transformations based on parameters
of their light curves. Given the crucial role played by these
objects in astronomy and cosmology, a handful of techniques

have already been developed aimed at properly standardiz-
ing them. The empirical relation between brightness and
decline rate demonstrated by (Phillips 1993) is considered
one of the first standardization techniques for SNe Ia. It is
given in terms of ∆m15(B), which represents the decrease
in B-band magnitude at 15 days after maximum brightness.
Brighter SNe tend to decline more slowly and consequently
present a lower value for ∆m15(B). This standardization was
substantially improved by introducing corrections based on
broadband colors (Riess et al. 1996b; Tripp 1998; Phillips
et al. 1999). Ostensibly such color corrections account for
extinction from dust, but most likely also contain a hidden
color-luminosity correlation intrinsic to the SNe Ia them-
selves.

For the purpose of comparing models with observa-
tions, any successful model should obtain the correct SN Ia
absolute magnitudes, and contain the brighter-broader re-
lation. However, in the derivative PCA space the overall
flux scaling and broad-wavelength color have been removed,
and therefore are not directly represented in the deriva-
tive PCA space. Fortunately there are a number of spectro-
scopic indicators known to correlate with overall lightcurve
peak brightness, width, and color. For instance, Nugent
et al. (1995) found that the ratio between the depths of the
Si ii 5972 Å and the Si ii 6355 Å lines correlates with peak
B-band absolute magnitude. The pseudo Equivalent Width
(pEW) at B-maximum of the Si ii 4000 Å line correlates very
well with lightcurve width (Arsenijevic et al. 2008; Bronder
et al. 2008; Chotard et al. 2011), as does that of Si ii 5972 Å
(Hachinger et al. 2006). There is also evidence that the ve-
locity of the Si ii 6355 Å line is correlated with the intrinsic
SN color (Foley & Kasen 2011). Since information related to
pseudo equivalent widths and velocities will exist, and possi-
bly be enhanced, by taking the flux derivative with respect
to wavelength, it is quite likely that the derivative PCA
space will retain the ability to differentiate between super-
novae, and models, having different luminosities, lightcurve
widths, and intrinsic colors. Here we apply PLS to explore
the presence of such correlations in our derivative PC space.

5.1 Measurement of Discrete Observables

We wish to measure the B-band magnitude at maximum
and ∆m15(B) with the fewest possible modeling assump-
tions. Wherefore, we simply fit a third order polynomial to
the B magnitudes measured between−10 and +25 days from
maximum using errors coming from the noise of the spectra.
The fit is evaluated at maximum and at +15 days after max-
imum to obtain the peak B-band magnitude and ∆m15(B),
respectively. Uncertainties come from an error propagation
of parameters from the polynomial fit. The V -magnitude at
the epoch of B-band maximum is recovered from an analo-
gous fit run on the V -magnitudes. The difference of the two
magnitudes at B−maximum gives us the B − V color. The
input magnitudes are synthesized from our spectrophoto-
metric time series, using the B and V filter responses given
by Bessell (1995). Absolute magnitudes considered here are
obtained from the observed apparent magnitudes at B-band
maximum assuming Hubble-flow distances, without any ex-
tinction corrections. The errors on the absolute magnitudes
are computed from the uncertainties in the light-curve fits
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Figure 12. The directions maximizing the covariance with var-
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jected into the plane formed by the first two principal compo-
nents. Gray points are the same as those shown in Figure 7. Di-

rections correlated with spectroscopic quantities are coloured in
black (solid), photometric quantities in blue (dashed), and results

from the SALT2 fit in red (dash-dotted).

and added in quadrature to uncertainties due to peculiar
velocity of the host galaxies of ∼ 500 km s−1 (Hawkins et
al. 2003).

As a point of comparison, we also performed light curve
fits using the well-known Spectral Adaptive Lightcurve Tem-
plate, (SALT2; Guy et al. 2007) code. SALT2 employs an
internal model constructed using a linear PCA approach.
The model is described by stretch (x1) and color (c) param-
eters. The x1 parameter is analogous to ∆m15(B), while c
is analogous to B−V . Here the fits use magnitudes synthe-

PC1 PC2 PC3 PC4 PC5

D(Si ii 6355−vel) 0.74 0.58 0.13 0.24 0.21

D(S ii 5640−vel) 0.81 0.35 0.35 −0.21 0.24

D(Si ii 5972−pEW) −0.58 0.39 0.21 0.33 0.60

D(Si ii 6355−pEW) −0.12 0.64 −0.38 0.59 0.30

D(Bmag) 0.40 −0.63 0.49 −0.32 −0.32

D(Vmag) 0.49 −0.60 0.49 −0.21 −0.34

D(B − V ) 0.76 0.09 0.43 0.45 −0.13

D(c) 0.76 −0.06 −0.24 0.58 0.11

D(∆m15) −0.53 0.25 0.07 0.39 0.71

D(x1) 0.66 −0.45 −0.05 −0.26 −0.54

Table 1. Directions in PC space found by PLS. Each direction
is defined as a linear combination of the first 5 PCs whose coef-

ficients are shown above (e.g., D(Si ii 6355−vel) = 0.74×PC1 +

0.58×PC2 + 0.13×PC3 + 0.24×PC4 + 0.21×PC5).

Pearson coeff. σres

Si ii 6355−vel 0.85 612 km s−1

S ii 5640−vel 0.93 351 km s−1

Si ii 5972−pEW 0.85 4.9 Å

Si ii 6355−pEW 0.92 9.9 Å

∆m15 0.78 0.13

x1 0.74 0.60

Table 2. Pearson correlation coefficient for the linear fit between

the directions found by PLS and independently measured observ-

ables. σres corresponds to the mean residual between the mea-
sured observables values and those determined through PLS.

sized in the BV R top-hat filters described in Pereira et al.
(2013).

Here we focus on three key spectroscopic features:
Si ii 6355 Å, Si ii 5972 Å, and S ii 5640 Å. Technical details
of the algorithm used to measure their spectroscopic pseudo
equivalent widths and velocities directly from the SNfac-
tory spectra are presented in Appendix B. Since we do not
possess a spectrum at maximum for all of our SNfactory
SNe, we determined velocities and pEWs for every available
spectra within −7 days and +7 days, for each SN. These
values were then used to perform a linear fit from which we
derived the values at maximum and corresponding uncer-
tainties. We required a minimum of three successful mea-
surements in this time window for the SN to be considered
for the fit. This method proved to be quite robust, however,
it is not capable of distinguishing the HVFs from the normal
photospheric component, when both are present. Thus, ev-
ery time we mention independently measured spectroscopic
features, we are referring to the velocity of a given line, and
not its HVFs counterparts.
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5.2 Results from PLS

In Section 3.2, we saw that five components are sufficient to
address most of the variance in the spectral features present
in SNfactory data. Therefore, from now on we will work in a
5D PC space and use PLS to establish connections between
these PCs and other independently measured parameters.
Our goal is to demonstrate the potential encompassed by
our derivative PC space, which summarizes the evolution of
spectral features of a large SN Ia sample. Using the nomen-
clature of in Section 2.5, the PLS technique was used to find
the direction in 5D PC space (X ) which best describes each
one of the SNe features cited in Section 4.3 (1D - Y).

Figure 12 shows PLS results for the spectroscopic and
photometric features discussed in Section 5.1, projected –
for pedagogical reasons – onto the first 2 PCs. Each one of
these lines is obtained from a linear combination of the first
5 PCs, whose coefficients are presented in Table 1. In this
plot we see the first evidence of important physical infor-
mation present in the derivative PC space: the connection
between the pEW of Si ii 5972 Åand ∆m15(B). As expected
from the studies of Nugent et al. (1995) and Hachinger et al.
(2006), the direction found by PLS for the pEW of this line
is similar to that of ∆m15(B) (i.e. opposite to −∆m15(B),
Figure 12). The velocity of Si ii 6355 Å is seen to correlate
with color, as expected from the study of Foley & Kasen
(2011). Interestingly, we also find a strong correlation of the
velocity of S ii 5640 Å with color. In terms of our PCs, we
find that PC1 correlates the best with indicators of color.

In Table 2 we present the correlations given by PLS for
SNe features with each one of the directions highlighted in
Figure 12. The fact that many important SN features have
strong signatures in our new metric spaces gives us confi-
dence that our framework can help us better place synthetic
spectra among their real data counterparts. Next we exam-
ine these trends in more detail.

5.3 Spectroscopic observables in derivative PC
space

Figure 13 shows the correlation between the velocity of
Si ii 6355 Å at maximum and the corresponding direction
found by PLS in PC space. From Table 1, we see that it is
highly correlated with PC1 and PC2 but not so much with
PC3, PC4 and PC5. This is still another angle on the HVFs
discussed before: the velocity of Si ii is among the persistent
features of SNe Ia, and not correlated with the mechanism
that gives rise to the HVFs of Ca lines (Section 4.1). The
few outliers on the high-velocity side of Figure 13 are due to
strong HVFs of Si ii still present around maximum. Their
velocity is not predicted by the combination of components
that predicts the photospheric velocity, suggesting also that
the HVF of Si ii is not correlated with the main physics of
the explosion and follows the more diverse behaviour of the
outer layers.

Our ability to describe the velocity of S ii 5640 Å us-
ing the 5D PC space is illustrated in Figure 14. Given the
weakness of this line, the quality of the fit is quite impressive
(Pearson correlation coefficient (PCC) is 0.93). This is not
completely unexpected if one realizes that this line is usually
narrower than the saturated Si ii 6355 Å line, making possi-
ble a better measure of the velocity. More generally, S ii lines

are not affected by HV features, which can complicate the
measurement the photospheric component. These character-
istics suggest that the velocity of S ii 5640 Å might present
a viable alternative to the Si ii 6355 Å line for classification
purposes. The S ii lines form deep in the ejecta and are good
tracers of the photospheric velocity (Blondin et al. 2006). It
is expected that for objects with similar luminosities and
rise times, a larger photospheric velocity corresponds to a
larger radius for the photosphere, a lower radiation tem-
perature and, consequently, a redder color. The ability to
extract such an effect from our derivative PC space is very
promising as a tool for synthetic spectra characterization.
Finally, we emphasize that, although the PC space itself
encompasses information regarding the entire time window
study here (−10 to +10 days around B-band maximum),
the directions obtained by PLS are bounded by the epoch
in which the corresponding spectral features were measured.
In this context, the correlations presented in Figs. 13 to 15
are only valid at maximum. An analogous study aimed at a
different epoch would require the determination of spectral
features at the epoch in question.

Figures 15 and 16 show the correlation obtained by PLS
between the pseudo equivalent widths of Si ii 5972 Å and of
Si ii 6355 Å which are the basis of the Branch et al. (2006)
classification scheme. These have Pearson correlation coeffi-
cients of 0.85 and 0.92, respectively. This is another indica-
tion that information used by others to differentiate between
SNe Ia strongly persists in the derivative PCA space.

5.4 Photometric observables in derivative PC
space

Having established correlations between spectroscopic lumi-
nosity and color indicators and our 5D PC space, we ex-
pect to find correlations with B-band peak magnitudes and
colors. However, unlike the spectroscopic features discussed
above, or the photometric ∆m15(B) parameter, these are
strongly affected by dust extinction and reddening. The in-
formation on the amount of the extinction is not present
in the dFlog space. This means that observed colors and
magnitudes cannot be completely reconstructed using this
technique alone. Nonetheless, it is of interest to examine
these dust-polluted parameters since their intrinsic behavior
is critical for understanding SN Ia physics and standardiza-
tion for cosmology. This may also allow advances in sepa-
rating the intrinsic and dust contributions.

Figures 17 and 18 show the correlation between the
directions in PC space and the observed B and V abso-
lute magnitudes, respectively. All points represent rest frame
magnitudes corrected for Milky Way but not for host-galaxy
reddening. The well defined upper envelope situated below
the green triangles in each plot suggests a locus potentially
dominated by SNe Ia with little extinction. The presence
of a slope to this upper envelope versus D(B) and D(V) is
likely due to SNe Ia suffering little dust extinction. Because
D(B) and D(V) are largely free of the effects of extinction,
this strongly suggests that the derivative PC space contains
information on the intrinsic luminosity of SNe Ia.

In an effort to find the approximate direction of the
luminosity vector, we attempt to isolate the least extincted
SNe Ia, under the assumption that brighter SNe Ia have less
extinction, using an iterative rejection scheme. This type of
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at B-band maximum.

−0.10 −0.05 0.00 0.05 0.10 0.15
D( Si ii 5972 pEW )

−10

0

10

20

30

40

50

S
i
ii

(5
97

2
Å
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Figure 16. Same as Figure 13, but for the Si ii 6355 Å pEW.

approach is common when attempting to establish intrinsic
peak magnitudes for many SN Ia standardization methods,
however, it assumes that D(B) and D(V) impose a sufficient
degree of order in the relative SN Ia luminosities, which
may be an oversimplification (e.g., Rigault et al. (2013)).
(The crispness of the upper envelope is encouraging in this
regard.) We applied PLS to the entire data set and then
performed a linear fit between the observed magnitudes and
the output direction in PC space. Based on this linear fit,
only supernova brighter than the linear fit, or fainter by
less than 0.3 mag, are selected to the next iteration. PLS
was applied again to the chosen subset and the process was
repeated until convergence. The algorithm converged rapidly
to a direction that represents the variation of the brightest
SNe Ia absolute magnitudes with D(B) or D(V). We found
that the output direction in PC space depends only weakly
on the criteria used to reject SNe in each iteration. Blue
points in Figures 17 and 18 correspond to SNe selected in

the final PLS iteration, the blue line denotes the final linear
fit, and red points represent rejected objects.

A similar procedure can be applied to color, using the
assumption that the bluest SNe Ia suffer the least amount
of reddening by dust. This assumption is only effective if
D(B-V) imposes a sufficient amount of homogeneity in the
SNe Ia colors. Again, the crispness of the blue end of the
color envelope offers encouragement that this is a sensible
approach. Figure 19 shows the correlation between B − V
color at maximum and the direction in PC space found by
the iterative process described above. As in previous plots,
each point corresponds to a color measurement without any
attempt to correct for host galaxy reddening. The surviving
SNe (blue dots) represent objects whose reddening is consis-
tent with the locus of bluest objects to within their measure-
ment errors. Figure 20 shows that the SALT2 c parameter
has a similar behaviour. This was expected from the exis-
tence of a correlation with B−V color at B-band maximum,
however the c parameter incorporates the color information
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Figure 20. Same as Figure 19 for SALT2 color parameter c.

at other epochs included in the SALT2 fit. Hence, c corre-
sponds to a more general measurement of the SN Ia color.
Here again, because D(B-V) and D(c) are largely free of the
effects of extinction, this strongly suggests that the deriva-
tive PC space contains information on the intrinsic color of
SNe Ia.

Finally, Figure 21 illustrates the correlation between
∆m15(B) and the corresponding PLS result in PC space.
The Pearson correlation coefficient between these two quan-
tities is 0.78 (Tab. 2). Discrepancies frequently come from a
wrong estimation of the decline rate. Comparing the polyno-
mial fit used to compute the ∆m15(B) with the SALT2 x1,
the later usually gives better results. The SALT2 fit takes
into account all epochs in B, V and R bands, obtaining a
decline rate parameter quite consistent with the one sug-
gested by the EMPCA analysis (Figure 22), for most of the
objects. This is also reflected in the similar directions found
to correlate with ∆m15(B) and x1 in Figure 12.

We emphasize that the correlations between directions
in PC space and global photometric properties like x1 and
∆m15(B) represent yet another test of the information en-
compassed in the metric space. As it was constructed from
the entire spectral sequences, it was expected to reproduce
such photometric observables even though they were not
inserted as features directly in the data matrix. This rein-
forces our statement that important information is preserved
throughout the entire process.

6 CONCLUSIONS

We have developed a new framework which allows the simul-
taneous characterization of large samples of spectra, form-
ing an ideal ground for placing synthetic spectra among
the observed ones. Combining Expectation Maximization
Principal Component Analysis (EMPCA) and Partial Least
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Square (PLS) techniques, it defines a meaningful metric
space and correlates it to spectroscopic and photometric in-
trinsic properties.

The algorithm is based on the derivative of the spectrum
over wavelength, which consequently assigns a larger weight
to small scale features and, at the same time, makes re-
sults independent of distance measurements, reddening and
spectra calibration. The method allows an automatic ex-
ploration of information encoded in weak spectral features
from the weak lines themselves, not only through their corre-
lation with stronger lines. Moreover, the initial data matrix
was forged to encode spectral evolution information through
the use of spectral sequences representing each object. This
shows an easy way to use the available spectral evolution
information.

We applied the method to a large sample (∼ 120 SNe
and ∼ 800 spectra) of well observed type Ia supernovae ob-
tained by the SNfactory collaboration. At first, we defined a
low dimensional parameter space using EMPCA and studied
the spectral features covered by each PC separately. Results
show that the High Velocity Features (HVFs) of Ca ii H&K
and infrared lines are uncorrelated with properties of the
rest of the ejecta, consistent with Mazzali et al. (2005). This
suggests that the outer layers of the ejecta have variations
partially unrelated to the inner structure.

We confirmed many of the results of Cormier & Davis
(2011). For example, the 91T-like SNe form a continuum
of properties with normal SNe, PCA can be used to form
a continuum of spectral templates, and the first two PCs
mainly describe spectral velocities and equivalent widths. A
larger dataset and the innovative method of analysing the
derivative of the spectra allows us to have a stable metric
space without arbitrarily removing peculiar objects from the
sample.

Once the PC space was defined, we applied the PLS
algorithm in order to find directions in this low dimen-
sional space which correlate with independently measured
SNe Ia characteristics. In other words, we used the PC
space as a tool which enables the reconstruction of not only

the observed spectra, but also as a substitute of the spec-
tral parameters most used to sub-classify SNe Ia: velocity
and pseudo-Equivalent Width (pEW) of Si ii 5640 Å and
Si ii 6355 Å lines, B and V magnitudes and B − V color at
maximum, ∆m15(B) and SALT2 parameters c and x1. This
demonstrates that the PC space is physically meaningful
and includes the information recovered from usual spectral
indicators. Moreover, it clarifies the potential of this frame-
work in finding missing or unexpected features in synthetic
spectra.

Our PLS results confirm the well known correlation be-
tween the pEW of Si ii 5972 Å and the ∆m15(B) in SNe Ia
(Hachinger et al. 2006; Nugent et al. 1995). The technique
is not optimized to calibrate SN Ia. The observed color and
magnitudes cannot be directly reconstructed by this tech-
nique alone, because they are largely contaminated by ex-
tinction. We show that the intrinsic B−V color of SNe Ia is
not constant among different objects and correlates with the
velocity of Si ii 6355 Å, as found by Foley & Kasen (2011).
We showed that the velocity of the S ii 5640 Å can be used
for the same scope.

Now that we have the PCA trained on a large enough
sample, this tool can be applied for direct comparison be-
tween synthetic and real SN Ia spectra. Projecting a syn-
thetic spectral series in this PC space will reveal its coun-
terparts among the real data, by an analysis of its neigh-
bours. Moreover, the relations discovered by PLS can in-
dependently characterize each spectral feature of a given
model and place it according to its most important physical
properties within the real data parameter space.

Given the challenge of performing a coherent statistical
comparison between synthetic and real spectra, our method
can also be used to characterize complete sets of models
built with different explosion scenarios. It is able to pro-
vide important insights regarding the global properties of
each explosion mechanism in order to favour or disfavour
them. Such a global analysis should be more robust against
systematics in the models than comparing them with indi-
vidual SNe. From a large enough synthetic spectra library,
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the method also allows the construction of a PC space based
entirely on models and the projection of real objects in it,
providing a cross-check between the real and synthetic met-
ric spaces. A detailed study of such applications will be in-
vestigated in a future work.
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APPENDIX A: CROSS-VALIDATION

We tested the stability of our PC space using a k-folding
cross-validation (CV) algorithm. The goal of any CV pro-
cedure is to ensure that results are statistically consistent
and not particular to a specific data set. At the same time,
it tests for over-fitting. In our context, this means that even
when applied to a sub-sample of the original data (train-
ing sample), the PC space configuration (Figure 7) must be
recognizable. Moreover, the directions found by PLS in this
space must be able to predict the values of the discrete ob-
servables for data not used in the EMPCA analysis (valida-
tion sample), using only their projections in PC space. Such
results are expected to have residuals of the same magnitude
for training and validation samples.

The number of foldings (k) denotes how the data will be
divided between training and validation samples. The origi-
nal set is divided into k mutually exclusive sub-samples and
for each iteration one of these is stripped out of the original
data set. The complete EMPCA and PLS algorithm is then

σres σres
ratio

training validation

Si ii 6355−vel 608 km s−1 642 km s−1 1.06

S ii 5640−vel 348 km s−1 362 km s−1 1.04

Si ii 5972−pEW 5.5Å 6.0Å 1.09

Si ii 6355−pEW 10.3Å 11.0Å 1.07

∆m15 0.13 0.15 1.10

x1 0.61 0.64 1.06

Table A1. Residuals in estimation of observables from training

and validation samples.

applied to the remaining data and a linear fit is obtained
characterizing the directions found by PLS and the discrete
observables analysed in section 5. This process is repeated
for all k subsamples and results for the PC projection and
PLS analysis are stored in each iteration. The average dis-
placement of each point in the PC space, calculated over all
iterations, gives us a measurement of how much the stabil-
ity of this space relies on individual data points. If the PC
space configuration is highly unstable for different subsets,
it can be considered evidence of the need of a larger, more
representative, sample in order to safely draw conclusions.
Analogously, an over-fitting method can be recognized if the
PLS analysis is not able to provide estimations of the dis-
crete observables for objects in the test sample, at least as
accurately as it does for the training sample.

Here we present results for k = 10 foldings, which is
a standard first choice for many CV procedures (Arlot &
Celisse 2009). However, we did perform the test for different
values of k, with results following the expected behaviour:
the PC space becomes more stable for larger values of k, the
linear fits on the PLS results remain the same and the ra-
tio of residuals between training and validation sets remain
close to unity (Table A1).

The stability of the PC space in dFlog is shown in Fig-
ures A1 and A2. The color code is the same used in Figure 5
and the gray ellipses represent the mean and 1σ variance of
the locations occupied by each data point in all the 9 realiza-
tions in which it was part of the EMPCA. As an example, we
show in the left panel of Figure A2, the PLS results regard-
ing the determination of x1, in one of the iterations. This
plot illustrates how well the PLS is able to determine values
of x1 for points in the validation sample (green diamonds) in
comparison with the variance present in the training sample
(red circles). A more quantitative approach to such results
throughout all the CV process is shown in the right panel
of the same figure. Residuals from the determination of x1
for training (red) and validation (green) samples, as well as
the Pearson correlation coefficient (blue) for different folds
(k) are shown. The mean ratio between residuals from vali-
dation and test samples was found to be very close to unity,
verifying that our method is not suffering from over-fitting
in the determination of discrete observables. Similar tests
were performed for other observables and numerical results
are shown in Table A1.
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Figure A1. Stability of PC space through k = 10 folding cross-validation. The color code for points and line are the same used in

Figure 5. The gray ellipses denote mean and 1σ variance for locations occupied by each data point throughout the 10 iterations.

Figure A2. Accuracy of PLS analysis in predicting the value of x1 for the validation sample. Left panel: Results for one of the

realizations. The red circles and green diamonds correspond to the training and validation sets respectively. The blue line shows the
result from the linear fit applied to the training sample only. Right panel: Residuals from training (red) and validation (green) samples
shown on the left axis, and Pearson correlation coefficient (PCC, in blue), shown in the right axis, for all 10 iterations. The average ratio
between validation and training sample residuals is ≈ 1.057.
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APPENDIX B: LINE VELOCITIES AND
PSEUDO-EW CALCULATIONS

The values for line velocities and pEW used in section 5 were
calculated using the algorithms described below.

In order to calculate the velocity of a line known to exist
at an observed wavelength λ0, we start by searching for local
minimum around λ0. Once the local minimum is found, we
use its wavelength, the rest frame wavelength of the line and
add relativistic corrections to compute the velocity blueshift.

If the line does not exist, the search for local minimum
will lead us to the next important spectral feature and the
final velocity value will be easy to recognize as wrong.

In computing the pEW, we need to determine the line
tangent to the two nearest peaks surrounding a given spec-
tral feature. We begin from the point of minimum flux of
that feature (point A) and define two other points, along the
flux function, to the left (point B) and to the right (point
C) of point A. The area between the line connecting points
B and C is calculated for successive small increments in the
distances between A and B. The algorithm continues to it-
erate until the area between line BC and the flux function
stop increasing. Once this maximum area is reached, B is
kept fixed and the same procedure is applied to successive
small increments in the distance between A and C. The cal-
culation continues to alternate between increments in AB
and AC until convergence. Once the maximum area is de-
termined, it is used to characterize the pEW.

APPENDIX C: THE RECONSTRUCTIONS IN
THE DERIVATIVE SPACE

In Figure C we show the same reconstructions presented in
Figure 10 in the original derivative space. We lack a physical
intuition in observing this space and it is hard to recognise
the behaviour of the classical spectral indicators. However,
it clearly demonstrates the ability of the derivative opera-
tion in minimizing reddening effects. It is instructive that
the mismatches in color, which appear in the first two ob-
jects in Figure 10 (SNF20071015-000 and SN2007kk), are
not noticeable anymore.
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