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Abstract

This thesis is motivated by estimating the cause specific mortality fraction

(CSMF) for children deaths in Mozambique. In countries where many deaths

are not assigned a cause of death, CSMF estimation is often performed by

performing a verbal autopsy (VA) for a large number of deaths. A cause for

each VA is then assigned via one or more computer coded verbal autopsy

(CCVA) algorithms, and these cause assignments are aggregated to estimate

the CSMF. We show that CSMF estimation from CCVAs is poor if there is

substantial misclassification due to CCVAs being informed by non-local data.

We develop a parsimonious Bayesian hierarchical model that uses a small set

of labeled data that includes deaths with both a VA and a gold-standard cause

of death. The labeled data is used to learn the misclassification rates from one

or multiple CCVAs, and in-turn these estimated rates are used to produce a

calibrated CSMF estimate. A shrinkage prior ensures that the CSMF estimate

from our Bayesian model coincides with that from a CCVA in the case of

no labeled data. To handle probabilistic CCVA predictions and labels, we

develop an estimating equations approach that uses the Kullback-Liebler loss-

function for transformation-free regression with a compositional outcome and

predictor. We then use Bayesian updating of this loss function, which allows
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for calibrated CSMF estimation from probabilistic predictions and labels.

This method is not limited to CSMF estimation and can be used for general

quantification learning, which is prevalence estimation for a test population

using predictions from a classifier derived from training data. Finally, we

obtain CSMF estimates for child deaths in Mozambique by applying all of

the developed methods to VA data collected from the Countrywide Mortality

Surveillance for Action (COMSA)-Mozambique and VA and gold-standard

COD data collected from the Child Health and Mortality Prevention project.
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Chapter 1

Introduction

High-quality cause-of-death (COD) information is crucial for governments

and policy makers to evaluate progress towards development goals and to

guide new policies (Lopez and Setel, 2015). However, this high-quality infor-

mation is lacking for 65% of the world’s population (Nichols et al., 2018), due

to the fact that few complete diagnostic autopsies are performed in low-and

middle-income countries (LMICs). As a practical method of obtaining COD

information, LMICs have been adapting the use of verbal autopsies (VAs)

(Fottrell and Byass, 2010). A VA, which involves a detailed interview with a

close relative or neighbor of the deceased, will result in information about a

list of hundreds of symptoms that the deceased may or may not have been

experiencing before their death.

Demographic surveillance systems, like the Countrywide Mortality Surveil-

lance for Action (COMSA) – Mozambique, necessitate collecting COD infor-

mation for hundreds to thousands of deaths. Having two physicians review

each VA to assign a COD, as is standard practice (Soleman, Chandramohan,
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and Shibuya, 2006), will be too time consuming and costly. Instead, to pro-

duce COD assignments from VA data, surveillance systems are turning to

automated, computer-coded classifiers for VA algorithms (CCVA) such as

InSilicoVA (McCormick et al., 2016), InterVA-4 (Byass et al., 2012), the Naive

Bayes Classifier (NBC) for Verbal Autopsies (Miasnikof et al., 2015), and the

expert algorithm for verbal autopsy (EAVA) (Kalter, Perin, and Black, 2016).

COD assignments from a CCVA are aggregated to obtain a cause specific

mortality fraction (CSMF) estimate.

Chapter 2 of this thesis demonstrates that simply using the aggregated

COD assignments from one or multiple CCVAs may produce inaccurate CSMF

estimates, due to the fact that CCVAs are imperfect classifiers. The reason

for this is that the local context of a VA, such as how respondents describe

a symptom or disease, may differ between countries. Thus, a CCVA trained

using VA data from India would be expected to perform poorly when applied

to VA data from Mozambique.

We develop a Bayesian framework that allows using information on the in-

accuracy of the classifier from a small validation set from the target population.

The validation set is often ongoing collection of a small set of hospital deaths

where both a VA and a GS-COD. This, alongside the larger set of nationally

representative community deaths where just a VA is available are jointly used

in a hierarchical model. The hospital deaths are used to learn the sensitivities

and specificities, which we refer to as misclassification rates, for CCVAs. The

misclassification rates are then used to calibrate the aggregated CCVA CSMF

estimates. Importantly, our framework uses a shrinkage prior that guarantees

2



the calibrated CSMF estimate will coincide with the uncalibrated CSMF esti-

mate (or average of the uncalibrated CSMF estimates from multiple CCVAs)

when there is little-to-no hospital death data. We also develop an ensemble

approach, which combines information from multiple CCVAs to estimate a

single CSMF. This ensemble estimate prevents us from having to decide on

which CCVA to use for calibration, and performs at par with the most accurate

classifier. We develop a simple and fast Gibbs sampler for obtaining posterior

samples, which is implemented in the ‘CalibratedVA’ R-package.

However, there are two short comings of the method presented in Chapter

2. First, the method only allows for a single-cause assignment from a CCVA

(single-cause-VA). Algorithms such as InSilicoVA give probabilistic individual

cause assignments, and simply using the most-likely COD for each individual

as the cause assignment results in a loss of information. Second, the method

requires that each hospital death has a known GS-COD (single-cause-GS-COD).

If this GS-COD is determined by an expert panel, as it is for minimally invasive

autopsies, there may be uncertainty in the final cause assignment. Thus, we

would like to extend the method to handle a probabilistic GS-COD (multi-

cause-GS-COD).

Chapter 3 develops the statistical tools needed to shift from the single-

cause-VA-single-cause-GS-COD calibration to the multi-cause-VA-multi-cause-

GS-COD calibration. Recognizing that the multi-cause-VA and multi-cause-

GS-COD for each death are compositional vectors, we develop a model for

transformation-free linear regression for compositional outcomes and predic-

tors, which we call the direct regression model. While we apply this model to
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multi-cause-VA-multi-cause-GS-COD in Chapters 4 and 5, the direct regres-

sion model is not limited to this particular application. We apply the direct

regression model to compositional data collected from both education and

medical research. The direct regression model is simple to interpret, which

is not the case for the compositional regression models developed by Chen,

Zhang, and Li (2017) and Alenazi (2019). Our method also seamlessly allows

for 0s and 1s in the compositional data. Interestingly, when both the compo-

sitional outcome and compositional predictor are categorical and thus only

have 0s and 1s, as in the single-cause-VA-single-cause-GS-COD scenario, our

model reduces to a risk-prediction model for a multinomial outcome.

Chapter 4 frames the problem of CSMF estimation from aggregation of

CCVA COD assignments as a quantification (Forman, 2005) problem. Quan-

tification is the task of predicting the population distribution (prevalence) of

unobserved true outcomes (labels) based on observed covariates (Forman,

2005; González et al., 2017). As with CSMF estimation from a CCVA, quantifi-

cation is often performed by predicting individual outcomes (CODs) using

covariates (VA symptoms), and then aggregating these predicted outcomes.

However, simply aggregating predicted labels from a classifier to estimate the

population prevalence ignores the fact that classifiers are often imperfect.

We develop the Generalized Bayesian Quantification Learning (GBQL)

method that allows for quantification from both single-class and multi-class

(probabilistic) classifier output. Our method is based on the estimating equa-

tions approach in Chapter 3 that uses the Kullback-Liebler loss-function. We

jointly estimate the population label prevalence and classifier misclassification
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rates by incorporating loss functions for both labeleled and unlabeled data.

Data are allowed to have compositional (probabilistic) labels, which allows

for quantification using multi-cause-GS-COD data. The important work de-

veloped by Bissiri, Holmes, and Walker (2016) allows for Bayesian updating

of posteriors using loss-functions. We can thus incorporate the shrinkage

prior developed in Chapter 2 into this model, while also modeling the proba-

bilistic classifications and labels. In addition, we demonstrate how different

choices of shrinkage priors ensures that, in the absence of labeled test data,

quantification from our method shrinks to different existing quantification

methods like classify & count (CC) (Forman, 2005) or probabalistic average

(PA) (Bella et al., 2010). As in Chapter 2, we develop an ensemble method that

produces a single prevalence estimate, but classifier-specific misclassification

rate estimates. This ensemble method is based on minimizing the average loss

across all of the classifiers.

Chapter 5 concludes the thesis by applying the methods from the previous

chapters to estimate the CSMF for child (1-59 months old) deaths in Mozam-

bique. We use multi-cause-VA output from InSilicoVA and EAVA for 989

VAs collected by COMSA. To obtain a set of labeled data, we use data from

the Child Health and Mortality Prevention (CHAMPS) project. CHAMPS is

an ongoing surveillance project that performs a minimally invasive autopsy

(MIA), also known as a minimally invasive tissue sample (MITS) (Byass, 2016)

to determine the COD with high precision. A VA for each death that occurs

within a CHAMPS site (CHAMPS Cause of Death Data) is also conducted. MITS

COD assignments have been shown to be very accurate compared to complete
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diagnostic autopsies (Castillo et al., 2016). However, because MITS COD

assignments are decided on by an expert human panel, there may be some

uncertainty in the final cause assignment.

The direct regression model allows us to use the MITS and VA data col-

lected on child deaths that occurred at the CHAMPS sites (including Mozam-

bique) to estimate the uncalibrated misclassification rates of InsilicoVA and

EAVA. These estimates reveal substantial classification errors for both algo-

rithms cautioning against the use of the raw CSMF estimates as they are

likely to be very biased. We use the misclassification matrices to produce cali-

brated VA CSMF estimates for child deaths in Mozambique. We use the GBQL

framework to handle uncertainty in MITS COD classification, as well as to

incorporate probabilistic individual COD predictions from VA algorithms. We

demonstrate a complete workflow of the methodology that first estimates the

raw CSMF estimates and misclassification rates, combines them to produce a

single calibrated ensemble CSMF estimate, and provides quantitative model

comparison metrics to compare and choose between the raw and calibrated

CSMF estimate.
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Chapter 2

Regularized Bayesian transfer
learning for population-level
etiological distributions

2.1 Introduction

Verbal autopsy – a survey of the household members of a deceased individual,

act as a surrogate for medical autopsy report in many countries. Computer-

coded verbal autopsy (CCVA) algorithms are high-dimensional classifiers that

predict cause of death from these high-dimensional family questionnaires

which are then aggregated to generate national and regional estimates of

cause-specific mortality fractions (CSMF). These estimates may be inaccurate

as CCVA are usually trained using non-local information not representative

of the local population of interest. This problem is a special case of transfer

learning, a burgeoning area in statistics and machine learning.

Classifiers trained on source domain data tend to predict inaccurately in

a target domain different from the source domain in terms of marginal and
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conditional distributions of the features (covariates) and labels (responses) (Shi-

modaira, 2000). Various domain adaptation strategies have been explored for

transfer learning of generic classifiers which adjust for this distributional

differences between the two domains. We refer the readers to Weiss, Khosh-

goftaar, and Wang, 2016 and Pan and Yang, 2010 for a comprehensive review

of transfer learning for classification problems. We focus on the setting where

there is abundant labeled source domain data, abundant unlabeled target

domain data, and limited labeled target data. Transfer learning approaches

pertaining to this setting include multi-source domain adaptation (CP-MDA,

Chattopadhyay et al., 2012), neural networks (TCNN, Oquab et al., 2014),

adaptive boosting (TrAdaBoost, Dai et al., 2007; Yao and Doretto, 2010), fea-

ture augmentation method (FAM, Daumé III, 2009), spectral feature alignment

(SFA, Pan et al., 2010) among others.

All of the aforementioned transfer learning classification approaches are

motivated by applications in image, video or document classification, text

sentiment identification, and natural language processing where individual

classification is the goal. Hence, they usually focus on the individual’s (e.g. a

person’s or an image’s) classification within a target domain (e.g. a particular

population) with training performed in data from a different source domain.

Social and health scientists such as epidemiologists are often more inter-

ested with understanding etiological distributions at the population-level

rather than classifying individuals. For example, we aim to estimate national

and regional estimates of cause-specific fractions of child mortality. Hence,
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our goal is not individual prediction but rather transfer learning of population-

level class probabilities in the target domain. None of the current transfer

learning approaches are designed to directly estimate population-level class

membership probabilities.

Additionally, the extant transfer learning approaches rely on large source

domain databases of millions of observations for training the richly-parameterized

algorithms. The sample sizes of datasets in epidemiology are typically orders

of magnitude smaller. Most epidemiological applications use field data from

surveys, leading to databases with much smaller sample sizes and yet with

high-dimensional co sets (survey records). For example, in our application, the

covariate space is high-dimensional (∼ 200 − 350 covariates), the ‘abundant’

source domain data has around ∼ 2000 samples, while the local labeled data

can have as few as ∼ 20− 100 samples. Clearly, in such cases, the local labeled

data is too small to train a classifier on a high-dimensional set of covariates, as

the resulting estimates will be highly variable. A baseline classifier trained on

the larger source domain data will tend to produce more stable estimates, but

the high precision will come at the cost of sacrificing accuracy if the source

and target domains differ substantially.

Our parsimonious solution to this bias-variance trade-off problem is to

use the baseline classifier trained on source-domain information to obtain an

initial prediction of target-domain class probabilities, but then refine it with

the labeled target-domain data. We proffer a hierarchical Bayesian framework

that unifies these two steps. With C classes and S-dimensional covariates, the

advantage of this new approach is that the small labeled data for the target
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domain is only used to estimate the C × C confusion matrix of the transfer error

(misclassification) rates instead of trying to estimate O(SC) parameters of the

classifier directly from the target-domain data. Since S ≫ C, this approach

considerably reduces the dimensionality of the problem. To ensure a stable

estimation of the confusion matrix, we additionally use a regularization prior

that shrinks the matrix towards identity unless there is substantial transfer

error. We show that, in the absence of any target domain labeled data or

in case of zero transfer error, posterior means of class probability estimates

from our approach coincide with those from the baseline learner, establishing

that the naive estimation that ignores transfer error is a special case of our

algorithm. We devise a novel, fast Gibbs sampler with augmented data for

our Bayesian hierarchical model.

We then extend our approach to one that uses an ensemble of input pre-

dictions from multiple classifiers. The ensemble model accomplishes method-

averaging over different classifiers to reduce the risk of using one method that

is inferior to others in a particular study. We establish a theoretical result that

the class probability estimates from the ensemble model coincides with that

from a classifier with zero transfer error. A Gibbs sampler for the ensemble

model is also developed, as well as a computationally lighter version of the

model that is much faster and involves fewer parameters. Simulation and

data analyses demonstrate how the ensemble sampler consistently produces

estimates similar to those produced by using our transfer learning on the

single best classifier.
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Our approach is also post-hoc, i.e., only uses pre-trained baseline classi-

fier(s), instead of attempting to retrain the classifier(s) multiple times with

different versions of training data. This enables us to use publicly available

implementations of these classifier(s) and circumvents iterative training runs

of the baseline classifier(s) which can be time-consuming and inconvenient in

epidemiological settings where data collection continues for many years, and

the class probabilities needs to be updated continually with the addition of

every new survey record. The post-hoc approach also ensures we can work

with non-statistical classifiers that do not use a training data but some sort of

source domain information (e.g. CCVA algorithms InterVA and EAVA).

The rest of the manuscript is organized as follows. We present the mo-

tivating application in Section 2.1.1. In Sections 2.2 and 2.3, we present the

methodology and its extension to the ensemble case. Section 2.9.1 presents an

EM algorithm approach to obtain maximum a posteriori (MAP) estimates for

the model, as a fast alternative to the fully Bayesian approach adopted earlier.

Section 2.4 considers the extension where class probabilities can be modeled

as a function of covariates like age and sex, and spatial regions. Section 2.5

presents simulation results. Section 2.6 returns to the motivating dataset and

uses our transfer learning model to estimate national CSMFs for children

deaths in India and Tanzania. We end the manuscript in Section 2.7 with a

discussion of limitations and future research opportunities.
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2.1.1 Motivating dataset:

In low and middle income countries, it is infeasible to conduct full autopsies

for the majority of deaths due to economic and infrastructural constraints,

and/or religious or cultural prohibitions against autopsies (AbouZahr et

al., 2015; Allotey et al., 2015). An alternative method to infer the cause (or

“etiology") of death (COD) is to conduct verbal autopsy (VA) – a systematic

interview of the relatives of the deceased individual – to obtain information

about symptoms observed prior to death (Soleman, Chandramohan, and

Shibuya, 2006). Statisticians have developed several specialized classifiers

that predict COD using the high-dimensional VA records as input. Examples

include Tariff (James, Flaxman, and Murray, 2011; Serina et al., 2015), InterVA

(Byass et al., 2012), InSilicoVA (McCormick et al., 2016), the King and Lu

method (King, Lu, et al., 2008), EAVA or expert algorithm (Kalter et al., 2015),

etc. Software for many of these algorithms are publicly available, e.g., Tariff (Li,

McCormick, and Clark, 2018c), InSilicoVA (Li, McCormick, and Clark, 2018a),

InterVA (Thomas et al., 2018) and the openVA R-package (Li, McCormick,

and Clark, 2018b) has consolidated most of these individual software into

a single package. Generic classifiers like random forests (Breiman, 2001),

naive Bayes classifiers (Minsky, 1961) and support vector machines (Cortes

and Vapnik, 1995) have also been used (Flaxman et al., 2011; Miasnikof et

al., 2015; Koopman et al., 2015) for classifying verbal autopsies. Predicted

COD labels for each VA record in a nationally representative VA database

is aggregated to obtain national cause specific mortality fractions (CSMF) –

the population-level class membership probabilities, that are often the main
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quantities of interest for epidemiologists, local governments, and global health

organizations.

Formally, a CCVA algorithm is simply a classifier using the S × 1 covariate

vector (VA report) s to predict c – one of C possible COD categories. Ow-

ing to the high-dimensionality of the covariate space (VA record consists of

responses to 200 − 350 questions), learning this mapping P(c | s) requires

substantial amount of gold standard (labeled) training data. Usually in the

country of interest, VA records are available for a representative subset of the

entire population, but gold standard cause of death (GS-COD) is ascertained

for only a very small fraction of these deaths. In other words, there is abun-

dant unlabeled data but extremely limited labeled data in the target domain.

The ongoing project Countrywide Mortality Surveillance for Action (COMSA)

Mozambique typify this circumstance, where, in addition to conducting a

nationally representative VA survey, researchers will have access to gold stan-

dard COD for a small number of deaths from one or two local hospitals using

minimally invasive autopsies (MIA) (Byass, 2016). Budgetary constraints and

socio-cultural factors unfortunately imply that only a handful of deaths can

eventually be autopsied (up to a few hundred).

Lack of sufficient labeled target-domain data implies that CCVA classifiers

need to be trained on non-local data like the publicly available Population

Health Metrics Research Consortium (PHMRC) Gold Standard VA database

(Murray et al., 2011b), that has more than 10, 000 paired physician and VA

assessments of cause of death across 4 countries. However, there exists con-

siderable skepticism about the utility of CCVA trained on non-local data as
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cause-symptom dynamics are often local in nature (McCormick et al., 2016;

Flaxman et al., 2018). To illustrate the issue, in Figure ??, we plot the confu-

sion matrices between the true COD of the PHMRC child cases in Tanzania

against the predicted COD for these cases using two CCVA algorithms, Tariff

and InSilicoVA, both trained on all PHMRC child data non-local to Tanzania.

Both matrices reveal very large transfer errors, some as high as 60%. The
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Figure 2.1: Confusion matrices for PHMRC child cases in Tanzania using Tariff
and InSilicoVA trained on all cases outside of Tanzania. CVD is abbreviation for
cardio-vascular diseases.

large transfer errors indicate that the naive estimates of population-level class

probabilities from CCVA classifiers trained on non-local source data are likely

to be inaccurate thereby highlighting the need for transfer learning in this

application. Additionally, like for any other application area, there exists

considerable disagreement about which CCVA algorithm is the most accurate

(Leitao et al., 2014; McCormick et al., 2016; Flaxman et al., 2018). In our ex-

perience, no method is universally superior, and a robust ensemble transfer

learning approach guarding against use of inaccurate classifiers is desirable.
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Table 2.1: Glossary of acronyms used in the manuscript

Acronym Full form Acronym Full form
VA Verbal autopsy PHMRC Population Health Metrics Research Consortium

CCVA Computer coded VA COMSA Countrywide Mortality Surveillance for Action
COD Cause of Death CSMF Cause Specific Mortality Fraction

CSMFA CSMF accuracy GS-COD Gold-standard Cause of Death

2.2 Transfer learning for population-level class prob-
abilities

2.2.1 Naive approach

Let p = (p1, p2, . . . , pC)
′ denote the true population-level class probabilities in

a target domain DT where we have abundant unlabeled covariate data, which

we denote by U , and a very small labeled data L of paired labels and covariates.

For a covariate vector s, we can write pi = P(G(s) = i) where G denote the

true (gold standard) class-membership. Also, let A(s) = A(s | G) denote

the predicted class membership from the baseline classification algorithm A

trained on some large labeled dataset G in a source domain DS different from

DT. If we do not use any transfer learning, the naive estimate of p from A is

given by

ˆ︁q = (q̂1, . . . , q̂C)
′ where q̂i = ∑

{s∈U}
I((A(s | G) = i))/N = vi/N (2.1)

where vi is the number of observations in U classified by A to category i, and

N = ∑i vi is the sample size of U . If U is large enough to be representative of

the population in DT, it is clear that

ˆ︁q ≈ q = (q1, . . . , qC)
′ where qi =

∫︂
U

P(A(s | G) = i | s)dP(s) = P(A(s) = i),
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i.e., ˆ︁q is the method-of-moments estimator of q.

Unless the algorithm A trained on DS perfectly agrees with the true mem-

bership assignment mechanism G in DT, there is no reason to consider q or

ˆ︁q to be a good estimate of p. More realistically, since DS ̸= DT, accuracy

depends on how similar the algorithm A is in the source and target domains.

Hence, more generally we can think of q as the expected population class

probabilities in DT that would be predicted by A(· | G).

In their most general form, G and A can be thought of as measureable

functions from the high-dimensional symptom space to the space of all C

dimensional simplexes. Hence, we can write

A(s) ∼ Multinomial(q), G(s) ∼ Multinomial(p) . (2.2)

This only depicts the marginal distributions of A(s) and G(s). To infer about G

from A, we need to model their joint distributions. We express qj = ∑C
i=1 mij pi

where mij = p(A(s) = j | G(s) = i). In matrix notation, we have q = M′p

where M = (mij) is a transition matrix (i.e., M1 = 1) which we refer to as the

confusion matrix. First note that, if M = I, then p = q and hence this subsumes

the case where class probabilities from the baseline algorithm is trusted as

reliable surrogates of the true class probabilities.

For transfer learning to improve estimation of p, we can opt to use the

more general relationship q = M′p and estimate the transfer error rates mij’s

from L. Let n = ∑C
i=1 ni denote the sample size of L with ni denoting the
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number of objects belonging to class i. Also let

T = (tij) = (∑
s∈L

I(A(s) = j | G(s) = i))

denote the transfer error matrix for algorithm A. Like many transfer learning

algorithms, exploiting the transfer errors is key to our strategy. It is clear that

tij/ni is a method-of-moments estimator of mij.

We can use these estimates of mij, along with the earlier estimate of q to

obtain a substantially improved estimate of p. Formally we can specify this

via a hierarchical model as:

A(sr)
iid∼ Multinomial(1, M′p), r = 1, 2, . . . , N

Ti∗
ind∼ Multinomial(ni, Mi∗), i = 1, 2, . . . , C

(2.3)

where for r = 1, 2, . . . , N, sr denote the covariate set for the rth observation in

U , and for any matrix M, Mi∗ and M∗j denote its ith row and jth column respec-

tively. The top-row of (2.3) represents the relationship q = M′p and yields the

method-of-moments estimators ˆ︁q = (v1, v2, . . . , vC)
′/N. The bottom-row of

(2.3) is consistent with the naive estimates tij/ni of mij.

To estimate p, one can adopt a modular two-step approach where first ˆ︁q
and ˆ︂M are calculated separately and then obtain

ˆ︁p = arg min
p:1′p=1, pi≥0

L(ˆ︁q,ˆ︂M′p)

where L is some loss function like the squared-error or, more appropriately,

the Kullback-Liebler divergence between the probability vectors. This ap-

proach fails to propagate the uncertainty in the estimation of M in the final

estimates of p. Benefits of a one-stage approach over a two-stage one has
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been demonstrated in recent work in transfer learning (Long et al., 2014).

We recommend the one-stage information-theoretically optimal solution of

estimating the joint MLE of M and p from (2.3).

The advantage of this simple transfer learning method is that it circum-

vents the need to improve the individual predictions of A in DT, and directly

calibrates the population-level class probabilities p, which are the quanti-

ties of interest here. We efficiently exploit the small local training data L to

reduce cross-domain bias. Instead of trying to use L to estimate variants

of a S × C matrix P(s | c) describing propensities of manifestation of each

symptom given each cause, as is used by many CCVA algorithms like Tariff,

InSilicoVA etc., we now only use L to train a (P(A(s) | c)) confusion matrix.

Consequently, the matrix (P(A(s) | c)) involves only C(C − 1) parameters as

opposed to the O(SC) parameters of the P(s | c) matrix. For verbal autopsy

data, S is typically around 250 while we can choose C to be small focusing on

the top 3 − 5 causes. Hence, our approach achieves considerable dimension

reduction by switching from the original covariate space to the predicted class

space.

In equation (2.3) above, q can be estimated precisely because N is large.

However, M has C × (C − 1) parameters so that if there are many classes,

the estimates of mij will have large variances owing to the small size of L.

Furthermore, in epidemiological studies, data collection often spans a few

years; in the early stages, L may only have a very small sample size resulting

in an extremely imprecise estimate of M, even if we group the classes to a

handful of larger classes. Consequently, in the next section we propose a
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regularized approach that stabilizes the transfer learning.

2.2.2 Bayesian regularized approach

If L was not available, i.e., there is no labeled data in the target domain, we

only have U and G. Then it would be natural to train A using G and predict on

U to obtain the estimates ˆ︁q as the best guess for p. This is equivalent to setting

p = q and M = I, i.e., assuming that the algorithm A perfectly classifies in DT

even when trained only using G from DS. Extending this argument, when L is

very small, direct estimates of M would be unstable and we should rely more

on the predictions from A trained on DS. Hence, it is reasonable to shrink p

towards q i.e., we shrink towards the default assumption that the baseline

learner is accurate. This is equivalent to shrinking the estimate of M towards

I. The simplest way to achieve this is by using the regularized estimate˜︂M = (1 − λ)ˆ︂M + λI where ˆ︂M = ( ˆ︁mij) = tij/ni is the unshrunk method-of-

moments estimate of mij as derived in the previous section. The regularized

estimate ˜︂M (like ˆ︂M and M) remains a transition matrix. The parameter λ

quantifies the degree of shrinkage with λ = 0 yielding the unbiased method-

of-moments estimate and λ = 1 leading to ˆ︁p = ˆ︁q. Hence, λ represents the bias

variance trade-off for estimation of transition matrices and for small sample

sizes some intermediate values of λ may lead to better estimates of M and p.

In epidemiological applications, as data will often come in batches over a

period spanning few years, one needs to rerun the transfer learning procedure

periodically to update the class probabilities. In the beginning, when L is

extremely small, it is expected that more regularization is required. Eventually,
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when L becomes large, we could rely on the direct estimate ˆ︂M. Hence, λ

should be a function of the size n of L, with λ = 1 for n = 0 and λ ≈ 0

for large n. Furthermore, at intermediate stages, since the distribution of

true class memberships in L will be non-uniform across the classes, we will

have a disparity in sample sizes ni for estimating the different rows of M.

Consequently, it makes more sense to regularize each row of M separately

instead of using a single λ. A more flexible regularized estimate is given by˜︂Mi∗ = (1− λi)ˆ︂Mi∗ + λiIi∗. The row specific weights λi should be chosen such

that λi = 1 when ni = ∑C
j=1 tij = 0, and λi ≈ 0 when ni is large. One choice to

accomplish this is given by λi = γi/(ni + γi) for some fixed positive γi’s.

We now propose a hierarchical Bayesian formulation that accomplishes

this regularized estimation of any transition matrix M. We consider a Dirichlet

prior Mi∗
ind∼ Dirichlet(γi(Ii∗ + ϵ1)) for the rows of M. We first offer some

heuristics expounding choice of this prior. We will have Mi∗ | Ti∗, γi ∼
Dirichlet(Ti∗ + γi(Ii∗ + ϵ1)). Hence,

E(Mi∗ | Ti∗, γi) =
Ti∗ + γi(Ii∗ + ϵ1)
ni + γi(1 + Cϵ)

ϵ→0→ (1−λi)
Ti∗
ni

+λiIi∗ where λi =
γi

ni + γi
.

Hence, using a small enough ϵ, the Bayes estimator (posterior mean) for

M becomes equivalent with the desired shrinkage estimator ˜︂Mi∗ proposed

above. When n = 0, the Bayes estimate E(M | T, γ = (γ1, γ2, . . . , γC)
′) ≈ I,

and for large n, E(M | T, γ) becomes the method-of-moments estimator ˆ︂M.

Hence, the Dirichlet prior ensures that in data-scarce setting, M is shrunk

towards I and consequently p towards q. We note that however this initial

exposition for the posterior of p are derived conditional on estimation of M
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as an independent piece and ignores the data from U . In Theorem 1, we

will present a more formal result that looks at the properties of the marginal

posterior of p.

To complete the hierarchical formulation, we augment (2.3) with the priors:

Mi∗
ind∼ Dirichlet(γi(Ii∗ + ϵ1)), i = 1, 2, . . . , C

p ∼ Dirichlet(δ1)

γi
ind∼ Gamma(α, β), i = 1, 2, . . . , C

(2.4)

In practice, we need to use a small ϵ > 0 to ensure a proper posterior

for M when any off-diagonal entries of T are zero, which is very likely due

to the limited size of L. Note that our model only uses the data from L to

estimate the conditional probabilities P(A(s) | G(s)) for s ∈ L. We do not

model the marginal distribution of A(s) for s ∈ L like we do for s in U .

This is because often data for the labeled set is collected under controlled

settings, and marginal distribution of the covariates for the samples in L is

not representative of the true marginal distribution of the covariates in DT.

Hence, we only use L to estimate the conditional probabilities M.

Our previous heuristic arguments, illustrating the shrinkage estimation

of M induced by the Dirichlet prior, are limited to the estimation of M from

L as an independent piece and disregards the data and model for U , i.e.

the first row of (2.3). In a hierarchical setup, however, the models for U
and L contribute jointly to the estimation of M and p. We will now state

a more general result that argues that for our full hierarchical model spec-

ified through (2.3) and (2.4), when there is no labeled data in DT or if the

algorithm A demonstrates perfect accuracy (zero transfer error) on L, then
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the marginal posterior estimates of p from our model coincides with the

baseline estimates ˆ︁q. Before stating the result, first note that the likelihood

for a = (A(s1), A(s2), . . . , A(sN))
′ can be represented using the sufficient

statistics v = (v1, v2, . . . , vC)
′. We can write p(a) ∝ ∏C

j=1 q
vj
j and hence

p, M, γ|data = p, M, γ | v, T.

Theorem 1. If T is a diagonal matrix, i.e., either there is no L, or A classifies perfectly

on L, then limϵ→0 p | v, T ∼ Dirichlet(v + δ1). For δ = 0, limϵ→0 E(p | v, T) =

ˆ︁q.

Note that Theorem 1 is a result about the posterior of our quantity of

interest p, marginalizing out the other parameters M, and the γi’s from the

hierarchical model specified through equations (2.3) and (2.4). We also high-

light that this is not an asymptotic result and holds true for any sample size,

as long as we choose ϵ and δ to be small. This is important as our manuscript

pertains to epidemiological applications where L will be extremely small and

asymptotic results are not relevant.

Theorem 1 also does not require any assumption about the underlying

data generation scheme, and is simply a desirable property of our transfer

learning model. If there is no labeled data in DT, then it is natural to trust the

P(c | s) map learnt by A on a source domain and only learn the target domain

marginal distributions of s from U to arrive at the estimates ˆ︁q of p. Similarly,

in the best case scenario, when A is absolutely accurate for the target domain,

Theorem 1 guarantees that our model automatically recognizes this accuracy

and does not modify the baseline estimates ˆ︁q from A. The result of Theorem 1

is confirmed in simulations in Section 2.5.
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Although Theorem 1 is assumption-free, it only concerns with the perfor-

mance of the model when there is no L or when A is perfect on L. While

this is a good sanity check for our model, realistically we will have a small L
where A will be inaccurate. In such cases, the performance of our model will

of course depend on the data generation process. Hence, we summarize the

data generation assumption that drive the model formulation. Since, there is

no labeled data in U , we need to assume some commonality between L and

U in order for the labeled data in L to be useful for estimating the CSMFs in

U . Hence, the model assumes that the conditional distribution of A(s) | G(s)

(i.e., the M matrix) is same in U and L. We would like to emphasize that

we do not assume that the marginal distributions of the symptoms s or the

cause G(s) (i.e., the CSMFs) are same in any of G, U and L. Of course, the

assumption of same confusion matrix M for U and L can also be incorrect (all

models are wrong). However, the class of models spanned by use of a general

M is a superset of the default approach of using the baseline classifier (i.e.,

assuming M = I). Also, we can relax the assumption of constant M between

U and L to make entries of M function of some covariates. This model and

its implementation is discussed in Section 2.4. This would lead to substantial

increase in parameter dimensionality and is only recommended when L is

large.

2.2.3 Gibbs sampler using augmented data

We devise an efficient implementation of the hierarchical transfer learning

model using a data augmented Gibbs sampler. The joint posterior density can

25



be expressed as

p(p, M, γ | v, T) ∝ p(v | M, p)p(T | M)p(M | γ)p(p)p(γ)

Let p | · denote the full conditional distribution of p. We use similar notation

for other full conditionals. First note that since p(v | M, p) ∝ ∏j(∑i mij pi)
vj ,

the full conditional densities p | · and M | · do not belong to any standard

family of distributions, thereby prohibiting a direct Gibbs sampler. We here

use a data augmentation scheme enabling a Gibbs sampler using conjugate

distributions.

The term (∑i mij pi)
vj can be expanded using the multinomial theorem,

with each term corresponding to one of the partitions of vj into C non-negative

integers. Equivalently we can write

(∑
i

mij pi)
vj ∝ E(∏

i
(mij pi)

bij) where bj = (b1j, . . . , bCj)
′ ∼ Multinomial(vj, 1/C).

Choosing b1, b2, . . . , bC to be independent, we can express ∏j(∑i mij pi)
vj ∝

E(∏j ∏i(mij pi)
bij) where the proportionality constant only depends on the

observed vj’s. Using the augmented data matrix B = (b1, b2, . . . , bC) = (bij),

we can write the complete posterior as

p(p, M, γ, B | v, T) ∝ ∏j ∏i(mij pi)
bij × ∏i pδ−1

i × ∏i γα−1
i exp(−βγi)×

∏i

(︂
Γ(Cγiϵ+γi)

Γ(γiϵ)C−1Γ(γiϵ+γi)
∏j(mij)

tij+γiϵ+γi1(i=j)−1
)︂

(2.5)

The full conditional distributions can be updated as follows (derivations
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omitted):

bj | · ∼ Multinomial(vj,
1

∑i mij pi
(m1j p1, m2j p2, . . . , mCj pC)

′)

Mi∗ | · ∼ Dirichlet(bi1 + γiϵ + ti1, . . . , bii + γiϵ + tii + γi, . . . , biC + γiϵ + tiC)

p | · ∼ Dirichlet(∑
j

b1j + δ, . . . , ∑
j

bCj + δ)

p(γi | ·) ∝
Γ(Cγiϵ + γi)

Γ(γiϵ)C−1Γ(γiϵ + γi)
γα−1

i exp(−βγi)∏
j

mγiϵ+γi1(i=j)
ij

The data augmentation ensures that, except the C γi’s, which are updated

using a metropolis random walk with log-normal proposals, all the other

O(C2) parameters are update by sampling from standard distributions leading

to an extremely fast and efficient Gibbs sampler.

2.3 Ensemble transfer learning

Let there be K classifiers A(1), A(2), . . . , A(K) and let a(k) = (a(k)1 , a(k)2 , . . . , a(k)N )′

be the predicted class memberships from the kth algorithm for all the N

observations in U . Let v(k) denote the vector of counts of predicted class

memberships on U using A(k). We expect variation among the predictions

from the different classifiers and consequently among the baseline estimates of

population-level class probabilities ˆ︁q(k) = v(k)/N and their population equiv-

alents q(k) = P(A(k)(s)). Since the true population class probability vector p

is unique, following Section 2.2.1 we can write q(k) = (q(k)1 , q(k)2 , . . . , q(k)C )′ =

M(k)′p where M(k) = (m(k)
ij ) is now the classifier-specific confusion matrix.

The predicted class membership for the rth observation in U by algorithm A(k),
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denoted by a(k)r , marginally follows a Multinomial(1, q(k)) distribution. We

have K such predictions for the same observation, one for each classifier, and

these are expected to be correlated. So, we need to look at the joint distribution

of the K C-dimensional multinomial random variables. Since, in its most gen-

eral form this will involve O(CK) parameters, we use a pragmatic simplifying

assumption to derive the joint distribution. We assume that a(1)r , a(2)r , . . . , a(K)r

are independent conditional on G(sr), i.e.

p(a(1)r = j1, a(2)r = j2, . . . , a(K)r = jK | G(sr) = i) =
K

∏
k=1

m(k)
ijk

(2.6)

This assumption is unlikely to hold in reality but is a common dimension

reducing assumption used in classification problems. For example, the naive

Bayes classifier uses this assumption to jointly model the probability of co-

variates given the true class memberships. Similar assumptions are used

by InSilicoVA and InterVA to derive the joint distribution of the vector of

symptoms sr. Here we are applying the same assumption but not on sr but on

the lower-dimensional prediction vector (a(1)r , a(2)r , . . . , a(K)r )′.

Under this assumption, the marginal independence of the a(k)r ’s will not

generally hold. Instead we will have

p(ar = j) = p(a(1)r = j1, a(2)r = j2, . . . , a(K)r = jK) =
C

∑
i=1

(︄
K

∏
k=1

m(k)
ijk

)︄
pi = wj

(2.7)

where j = (j1, j2, . . . , jK) denotes a C × 1 vector index.

From the limited labeled dataset L in the target domain DT, the classifier

specific transfer error matrices T(k) = (t(k)ij ) = (∑s∈L I(A(k)(s) = j | G(s) =

i)) are also known and can be used to estimate the respective confusion
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matrices M(k) in the same way M was estimated from T in Section 2.2.1. To

introduce shrinkage in the estimation of M(k), like in Section 2.2.2, we assign

Dirichlet priors for each M(k) .

Let w denote a CK × 1 vector formed by stacking up all the qj1,j2,...,jK ’s de-

fined in (2.7). The full specifications for the ensemble model that incorporates

the predictions from all the algorithms is given by:

ar
iid∼ Multinomial(1, w), r = 1, 2, . . . , N

T(k)
i∗

ind∼ Multinomial(ni, M(k)
i∗ ), i = 1, 2, . . . , C; k = 1, 2, . . . , K

M(k)
i∗

ind∼ Dirichlet(γ(k)
i (Ii∗ + ϵ1)), i = 1, 2, . . . , C; k = 1, 2, . . . , K

p ∼ Dirichlet(δ1)

γ
(k)
i

ind∼ Gamma(α, β), i = 1, 2, . . . , C; k = 1, 2, . . . , K

(2.8)

Although w is a CK × 1 vector, courtesy of the conditional independence

assumption (2.6), it is only parameterized using the matrices M(k) and p as

specified in (2.7), and hence involves KC2 + C parameters. This ensures that

there is adequate data to estimate the enhanced number of parameters for

this ensemble method, as for each M(k) we observe the corrsponding trasfer

error matrix T(k). The Gibbs sampler for (2.8) is provided in Section 2.9.3. To

understand how the different classifiers are given importance based on their

transfer errors on L, we present the following result:

Theorem 2. If T(1) is diagonal with positive diagonal entries, and all entries of

T(k) are ≥ 1 for all k > 1, then p | data ∼ Dirichlet (v(1) + δ). For δ = 0,

E(p | data) = q(1).

Theorem 2 reveals that if one of the K algorithms (which we assume to

be the first algorithm without loss of generality) produce perfect prediction
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on L, then posterior mean estimate of p from the ensemble model coincides

with that of the baseline estimate from that classifier. The perfect agreement

assumed in Theorem 2 will not occur in practice. However, simulation and

data analyses will confirm that the estimate of p from the ensemble model

tend to agree with that from the single-classifier model in Section 2.2.2 with

the more accurate algorithm. This offers a more efficient way to weight the

multiple algorithms, yielding a unified estimate of class probabilities that is

more robust to inclusion of an inaccurate algorithm in the decision making. In

comparison, a simple average of estimated p’s from single-classifier transfer

learning models for each of the K algorithms would be more adversely affected

by inaccurate algorithms.

2.3.1 Independent ensemble model

The likelihood for the top-row of (2.8) is proportional to ∏j w
yj
j where yj =

∑s∈U I(a(1) = j1, . . . , a(K)(s) = jK) denote the total number of observations in

U where the predicted class-memberships from the K algorithms corresponds

to the combination j = (j1, . . . , jK)′. Even though U will be moderately large

(few thousand observations in most epidemiological applications), unless

both C and K are very small (C ≤ 5 and K ≤ 3), yj’s will be zero for most of

the CK possible combinations j. This will in-turn affect the estimates of w. For

applications to verbal autopsy based estimation of population CSMFs, there

are many CCVA algorithms (as introduced in Section 2.1), and researchers

often want to use all of them in an analysis. We also may be interested in

more than 3 − 5 top causes. In such cases, the extremely sparse CK vector
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formed by stacking up the yj’s will destabilize the estimation of w. Also, the

Gibbs sampler (see Section 2.9.3) of the joint-ensemble model introduces an

additional CK independent multinomial variables of dimension C thereby

accruing substantial computational overhead and entailing long runs of the

high-dimensional Markov chain to achieve convergence.

In this section, we offer a pragmatic alternative model for ensemble transfer

learning that is computationally less demanding. From equation (2.7), we note

that

p(a(k)r = jk) = ∑
js :s ̸=k

C

∑
i=1

(︄
K

∏
k=1

m(k)
ijk

)︄
pi =

C

∑
i=1

m(k)
ijk

pi (2.9)

by exchanging the summations. Hence, the marginal distribution of a(k)r is

Multinomial(1, q(k)) where q(k) = (M(k))′p. We model the a(k)r ’s indepen-

dently for each k, ignoring the correlation among the predictions in U from

the K classifiers as follows:

ar = (a(1)r , a(2)r , . . . , a(K)r )′ iid∼
K

∏
k=1

Multinomial(1, q(k)), r = 1, . . . , N (2.10)

We replace the top-row of (2.8) with (2.10), keeping the other specification

same as in (2.8). We call this the independent ensemble model. Note that,

while we only use the marginal distributions of the a(k)r ’s ignoring their joint

dependence, the joint distribution is preserved in the model for the transfer

errors on L specified in the second-row of (2.8), as all the M(k)’s are tied to the

common truth p through the equations q(k) = M(k)′p. While the total number

of parameters for the joint and independent ensemble models remain the same,

eliminating the joint model for each of the CK combination of predicted causes

from the K algorithms allows decomposing the likelihood for (2.10) as product
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of individual likelihoods on U for each of the K classifiers. Additionally, the

Gibbs sampler for the independent ensemble model is much simpler and

closely resembles the sampler for the single-classifier model in Section 2.2.3.

We only need to introduce K C × C matrices B(k) = (b(k)
1 , b(k)

2 , . . . , b(k)
C ), one

corresponding to each CCVA algorithm, akin to the matrix B introduced in

Section 2.2.3. The Gibbs sampler steps for the independent ensemble model

are:

b(k)
j | · ∼ Multinomial(v(k)j ,

1

∑i m(k)
ij pi

(m(k)
1j p1, m(k)

2j p2, . . . m(k)
Cj pC)

′)

M(k)
i∗ | · ∼ Dirichlet(B(k)

i∗ + T(k)
i∗ + γ

(k)
i Ii∗ + ϵγ

(k)
i 1)

p | · ∼ Dirichlet(∑
k

∑
j

b(k)1j + δ, . . . , ∑
k

∑
j

b(k)Cj + δ)

Observe that the sampler for the independent model uses CK additional

parameters as opposed to CK parameters introduced in the joint sampler. This

ensures that the MCMC dimensionality does not exponentially increase if

predictions from more algorithms are included in the ensemble model. The

theoretical result in Theorem 2 no longer remains true for the independent

model. However, our simulation results in Section 2.9.5.5 of the supple-

mentary material (http://www.biostatistics.oxfordjournals.org) show that in

practice it continues to put higher weights on the more accurate algorithm

and consistently performs similar to or better than the joint model.
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2.4 Demographic covariates and spatial information

The transfer-learning model introduced up to this point is focused on gener-

ating population-level estimates of the CSMF p. An important extension for

epidemiological applications would be to model p as a function of covariates

like geographic region, social economic status (SES), sex and age groups. This

will enable the estimation of regional and age-sex stratified estimates. In this

section, we generalize the model to accommodate covariates. We illustrate

for the single-classifier model in Section 2.2.2; a similar approach extends the

ensemble model.

Let xr denote a vector of covariates for the rth VA record in U . We propose

the following modifications to the model for allowing covariate-specific class

distributions pr = (pr1, pr2, . . . , prC)
′:

A(sr)
ind∼ Multinomial(M′pr), r = 1, 2, . . . , N

pri =
exp(x′rβi)

∑C
i=1 exp(x′rβi)

, i = 1, 2, . . . , C, βC = 0

βi
ind∼ N(m0i, W0i)

(2.11)

All other components of the original model in (2.3) and (2.4) remain un-

changed. The middle row of (2.11) specify a multi-logistic model for the class

probabilities using the covariates. The top row uses the covariate specific pr

to model the analogous class probabilities qr = M′pr as would be predicted

by A. Finally, the bottom row specifies Normal priors for the regression co-

efficients. The switch from a Dirichlet prior for p to the multi-logistic model

implies we can no longer directly leverage conjugacy in the Gibbs sampler.

Polson, Scott, and Windle, 2013 proposed a Polya-Gamma data augmentation

scheme to allow conjugate sampling for generalized linear models. We now
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show how our own data augmentation scheme introduced in Section 2.2.3

harmonizes with the Polya-Gamma sampler to create a streamlined Gibbs

sampler.

2.4.1 Gibbs sampler using Polya-Gamma scheme

We will assume there are G unique combinations of covariate values – for

example, if there are four geographic regions and three age groups, then

G = 12. If we have a continuous covariate, then G = N, where N is the

number of subjects sampled in U . Then letting g, g = 1, . . . , G, represent a

specific covariate combination xg, we can again represent the likelihood for

a = (A(s1), A(s2), . . . , A(sN))
′ using the G × C sufficient statistics V = (vgj)

where vgi is the total number of subjects with covariate values g that were

predicted to have died of cause i. Let β = (β1, β2, . . . , βC−1). We now have

p(V | M, β) ∝
G

∏
g=1

C

∏
j=1

(
C

∑
i=1

mij pgi)
vgj

and the joint posterior density can now be expressed as

p(β, M, γ | V, T) ∝ p(V | M, β)p(T | M)p(M | γ)p(β)p(γ)

The terms that are different from Section 2.2.3 are p(V | M, β) and p(β).

The sampling step for γ remains exactly the same as previously discussed.

We will use a similar data augmentation strategy as in Section 2.2.3 and com-

bine with a Polya-Gamma data augmentation to sample from this posterior

distribution. We expand the term (∑i mij pgi)
vgj ∝ E(∏i(mij pgi)

bgij) where

bgj = (bg1j, . . . , bgCj)
′ ind∼ Multinomial(vgj, 1/C).

34



Let B denote the GC × C matrix formed by stacking all the bgj’s row-wise. We

can write

p(β, B, M, γ | V, T) ∝ ∏
g

∏
i

∏
j
(mij pgi)

bgij × p(T | M)p(M | γ)p(β)p(γ)

The following updates ensue immediately:

bgj | · ∼ Multinomial(vgj,
1

∑i mij pgi
(m1j pg1, m2j pg2, . . . , mCj pgC)

′)

Mi∗ | · ∼ Dirichlet

(︄
Ti∗ + γiIi∗ + γi1 + (∑

g
bgi1, . . . , ∑

g
bgiC)

′
)︄

For βi’s we introduce the Polya-Gamma variables ωgi’s and define Ωi =

diag({ωgi}G
g=1), ng = ∑j vgj, and κi = (κ1i, . . . , κGi)

′ where κgi = ∑j bgij −
ng/2. Defining W−1

i = X′ΩiX + W−1
0i , we then have

ωgi | · ∼ PG(ng, xT
g βi − cgi) where cgi = log(∑

k ̸=i
exp(xT

g βk))

βi | · ∼ N (mi, Wi) where mi = Wi

(︂
X′(κi − Ωici) + W−1

0i m0i

)︂
Here PG denotes the Polya-Gamma distribution and ci = (c1i, c2i, . . . , cGi)

′.

This completes the steps of a Gibbs sampler where all the parameters except

γ are updated via sampling from conjugate distributions. We can transform

the posterior samples of β to obtain posterior samples of pgi. Estimates of

the marginal class distribution for the whole country can also be obtained

by using the relationship pi =
∫︁

pgidP(g) where an empirical estimate of the

covariate distribution P(g) can be obtained from U .
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2.4.2 Covariate-specific transfer error

Until now, we have assumed that the transition matrix M is independent of

the covariates. We can also introduce covariates in modeling the conditional

probabilities mij’s using a similar multi-logistic regression. This model will

be particularly useful if there is prior knowledge about covariate-dependent

biases in the predictions from a classifier. Letting mrij denoting the conditional

probabilities p(A(s) = j | G(s) = i, xr) we can model

mrij =
exp(x′rζij)

∑C
i=1 exp(x′rζij)

, i, j ∈ {1, 2, . . . , C}, ζiC = 0

ζij
ind∼ N(m0ij, W0ij), j < C .

(2.12)

The implementation will involve Polya-Gamma samplers for each row of M in

a manner exactly similar to the sampler outlined above (we omit the details).

Since we can only estimate the parameters ζij from the limited local data, we

can only adopt this approach with a very small set of covariates for modeling

the transfer error rates.

2.5 Simulation studies

The Population Health Metrics Research Consortium (PHMRC) study, con-

ducted in 4 countries across six sites, is a benchmark database of paired VA

records and GS-COD of children, neonates and adults. PHMRC data is fre-

quently used to assess performance of CCVA algorithms. We conduct a set

of simulation studies using the PHMRC data (obtained through the openVA

package, version 1.0.5) to generate a wide range of plausible scenarios where

the performance of of our transfer learning models needs to be assessed with
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Table 2.2: List of models used to estimate population CSMF

Model name Description
TariffG Tariff trained on the source-domain gold standard data G

TariffBTL Bayesian transfer learner using the output from TariffG
InSilicoG InSilicoVA trained on the source-domain gold standard data G

InSilicoVABTL Bayesian transfer learner using the output from InSilicoVAG
EnsembleI Ensemble Bayesian transfer learner (independent) using TariffG and InsilicoG

respect to the popular CCVA algorithms. First, we randomly split the PHMRC

child data (2064 samples) into three parts representing G, and initial L and

initial U respectively using a 2:1:2 ratio, containing roughly 800, 400 and 800

samples respectively. As accurate estimation of mortality fractions from most

prevalent causes are usually the priority, we restrict our attention to four

causes: the top three most prevalent causes in the target domain data (L∪U ) –

Pneumonia, Diarrhea/Dysentry, Sepsis, and an Other cause grouping together

all the remaining causes.

We wanted to simulate scenarios where both a) the marginal distributions

P(c) = P(G(s) = c) of the classes, and b) the conditional distributions P(c | s)

are different between the source and target domains. To ensure the latter,

given a confusion matrix M = (mij) we want P(A(s) = j | G(s) = i) = mij

for any s ∈ L ∪ U . We will achieve this by discarding the actual labels in

L∪U and generating new labels such that an algorithm A trained on G shows

transfer error rates quantified by M on L ∪ U . Additionally, the new labels

need to be assigned in a way to ensure that the target domain class probability

vector is pU , for any choice of pU different from the source domain class

probabilities in pG .

Note that if the true population class probabilities in DT needs to be pU ,
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then qU , the population class probabilities as predicted by A is given by

qU = M′pU . Hence, we first use A trained on G to predict the labels for each

s in the initial U . We then resample s from the initial U to create a final U such

that the predicted labels of A(s) has the marginal distribution qU . Next, from

Bayes theorem,

p(G(s) = i | A(s) = j) =
mij pU ,i

∑i mij pU ,i
= αij.

For s in U such that A(s) = j, we generate the new “true" labels from

Multinomial(1, (α1j, α2j, . . . , αCj)
′). This data generation process ensures that

for any s in U both G(s) ∼ Multinomial(1, pU ) and A(s) | G(s) = i ∼
Multinomial(1, Mi∗) are approximately true. We repeat the procedure for L,

using the same M but a different pL. This reflects the reality for verbal autopsy

data where the symptom-given-cause dynamics is same for all deaths L ∪ U
in the new country, but the hospital distribution of causes pL is unlikely to

match the population CSMF pU . For resampling to create the final L, we also

vary n — the size of L as 50, 100, 200 and 400, to represent varying amount of

local labeled that will be available at different stages of a project.

We consider two choices of A: Tariff (version 1.0.3) and InSilicoVA (version

1.2.2). For M, we use three choices. We have M1 = I,

M2 =

⎛⎜⎜⎝
1.00 0 0 0
0.65 0.35 0 0

0 0 0.5 0.5
0 0 0 1

⎞⎟⎟⎠
and M3 = 0.6 ∗ I + 0.1 ∗ 11′. The first choice represents the case where

the algorithm A is perfect for predicting in the target domain. M2 with
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two large off-diagonal entries and all other off-diagonal ones being zero

represents the scenario where there are one or two systematic sources of bias

in A when trained on a source domain DS different from DT. The specific

choice of M2 depicts the scenario that 65% of Diarrhea/Dysentry cases are

classified as Pneumonia and 50% of Sepsis deaths are categorized as some

other cause. Finally, M3 represents the scenario where there are many small

misclassifications.

To ensure that pU and pL are different, we generate pairs of probability

vectors (pL, pU )′ from Dirichlet(1) distribution and divide the cases into three

scenarios: low: CSMFA(pL, pU ) < 0.4, medium: 0.4 < CSMFA(pL, pU ) < 0.6,

and high: CSMFA(pL, pU ) > 0.6. Here CSMFA denoting the CSMF accuracy is

a metric quantifying the distance of a probability vector (pL) from a reference

probability vector (pU ) and is given by (Murray et al., 2011a):

CSMFA(pL, pU ) = 1 − ||pL − pU ||1
2(1 − min pU )

.

For each scenario, we generated 100 pairs of pL and pU . For each generated

dataset, we use all the algorithms listed in Table 2.2 for predicting pU . For

an estimate ˆ︁pU (x) generate by a model x, we assess the performance of x

using CSMFA(x)= CSMFA(ˆ︁pU (x), pU ). We present a brief summary of the

results here. A much more detailed analysis is provided in Section 2.9.5 of the

supplementary material. Figure 2.2 presents the CSMFA for all the five models

for n = 400. The three columns are for the three choices of M described above,

and in each figure the x-axis from left to right marks the low, medium and high

settings.
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Figure 2.2: CSMF of ensemble and single-classifier transfer learners.
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We observe that for almost all settings the Bayesian transfer learning ap-

proach was better than its corresponding baseline, i.e. TariffBTL was better

than TariffG and InSilicoVABTL was better than InSilicoVAG . The improve-

ment in CSMFA was most drastic for M2 (middle column) where it was as

much as 0.3 in some cases. Only for M1, i.e., when the classifier is assumed

to be perfect for predicting in the target domain, we see TariffBTL and TariffG

produce similar CSMFA in the (top-left) and InSilicoVABTL and InSilicoVAG

produce similar CSMFA (bottom-left). This just corroborates Theorem 1 that

the transfer learning keeps things unchanged if the classifier has zero transfer

error. We also observe that within each figure, CSMFA’s generally increase as

we go from the low to the high setting, indicating that increased representa-

tiveness of the class distribution in the small labeled set L leads to improved

performance. Also, across all settings we see that transfer learning based on

algorithms used to simulate the data performs better, i.e., for the top-row

TariffBTL performs better than InSilicoVABTL as in this case they respectively

correspond to a true and a misspecified model. Similarly, for the bottom-row

InSilicoVABTL performs better than TariffBTL. However, even under model

misspecification, the transfer learning models perform better than their base-

lines, i.e., even when data is generated using Tariff, InSilicoVABTL performs

better than InSilicoVAG . Finally, across all scenarios, the ensemble learner

performs close to the better performing individual learner, highlighting its

utility and robustness.

In Section 2.9.5 of the supplementary material (http://www.biostatistics.oxfordjournals.org)

we present more thorough insights into the simulation study. In Section 2.9.5.1
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we assess the impact of the disparity in the class distributions between the

source and target domains. In Section 2.9.5.2 we compare the biases in the

estimates of individual class probabilities. Section 2.9.5.3 delves into the role

of the sample size and quality of the limited labeled set L. Section 2.9.5.4

demonstrates the value of the Bayesian shrinkage by comparing with the

frequentist transfer learning outlined in Section 2.2.1. In Section 2.9.5.5 we

compare the joint and independent ensemble models and demonstrate how

they favorably weight the more accurate algorithm. Section 2.9.5.6 shows

how one can use informed shrinkage, if a practitioner has apriori knowledge

of which causes are likely to be misclassified by an algorithm. Finally, in

Section 2.9.5.7, we compare the performance of the models for predicting

individual-level class probabilities for target domain data using the algortihm

outlined in Section 2.9.2.

2.6 Predicting CSMF in India and Tanzania

We evaluate the performance of baseline CCVA algorithms and our transfer

learning approach when predicting the CSMF for under 5 children in India and

Tanzania using the PHMRC data with actual COD labels. We used both India

and Tanzania, as they were the only countries with substantial enough sample

sizes (NIndia = 948, NTanzania = 728). For a given country (either India or Tan-

zania), we first split the PHMRC child data into subjects from within the coun-

try (L and U ) and from outside of the country (G). We then used weighted

sampling to select n(∈ {50, 100, 200}) subjects from within the country of in-

terest to be in L, using weights such that CSMFA(pL, pU ) was low. Figure 2.11
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in the supplementary material (http://www.biostatistics.oxfordjournals.org)

shows the difference in the marginal symptom distribution between U and L.

All the subjects from the country were put in U . We trained models InsilicoG

and Tari f fG using the non local data G, which were then used to predict the

top COD for all subjects in L and U . We classified all causes of death into

“External”, “Pneumonia”, “Diarrhea/Dysentery”, “Other Infectious”, and

“Other”. These predictions were then used to estimate the baseline CSMFs

and as an input to our transfer learning models TariffBTL, InSilicoVABTL, and

EnsembleI . Since the true labels (GS-COD) are available in PHMRC, we cal-

culated the true pU for a country as the empirical proportions of deaths from

each cause, based on all the records within the country. This pU was used to

calculate the CSMF accuracy of each model. This whole process was repeated

500 times for each combination of country and value of n. This made sure that

the results presented are average over 500 different random samples of L for

each country, and are not for an arbitrary sample.

Figure 2.3 presents the results of this analysis. The top and bottom rows

represent the results for India and Tanzania respectively. The four columns cor-

respond to four different choices of n. There are several notable observations.

First, regardless of n, choice of algorithm A, and country, the calibrated esti-

mates of prevalence from our transfer learning model performed better than

or similar to the analogous baseline CSMFs, i.e., TariffBTL performed better

than TariffG , and InSilicoVABTL performed better than InSilicoVAG . Second,

the magnitude of improvement for the our approach depends on the country

and the size of L. Within India, the CSMFA of TariffBTL and InSilicoVABTL is
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Figure 2.3: Average CSMFA using true GS-COD labels

similar to respectively those from TariffG and InSilicoVAG . Tariff does better

than InsilicoVA for India with TariffBTL being the best performer. In Tanza-

nia, the baseline InsilicoVA model InSilicoVAG does better than TariffG , and

similarly InSilicoVABTL does better than InSilicoVABTL. The improvement of

TariffBTL and InSilicoVABTL respectively over TariffG and InSilicoVAG is more

prominent than in India, with InSilicoVABTL being the most accurate. The

magnitude of improvement in the three TL approaches also increased with

increase in n for Tanzania.

2.7 Discussion

Epidemiological studies pose unique challenges to transfer learning, stem-

ming from its focus on estimating population-level quantities as opposed to

individual predictions, small sample sizes coupled with high-dimensional
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covariate spaces (survey records), and lack of large training databases avail-

able for many other machine learning tasks. Motivated by these settings, we

have presented a parsimonious hierarchical model-based approach to transfer

learning of population-level class probabilities, using a pre-trained classifier,

limited labeled target domain data, and abundant unlabeled target domain

data.

In order for the transfer learning approach to work, the labeled data L has

to be useful for improving CSMF estimation in U , i.e., there has to be some

commonality between the distributions in L and U . Usually L is never going

to be representative of the marginal cause distribution of U . If additionally, it

is also not representative of the conditional distributions of s | G(s) (or, in our

dimension reduction approach, of A(s) | G(s)), then L is of no use to improve

CSMF estimation in U . Hence, our transfer learning is useful when the the

conditional distributions are same (constant M) between L and U , or has the

same functional form (regression approach of Section 2.4.2) between L and U .

Shrinkage or regularization is at the core of our approach. In datasets with

large numbers of variables (dimensions), regularized methods have become

ubiquitous. A vast majority of the literature focuses on shrinking estimates

(mostly regression coefficients and covariance or precision matrices) towards

some known sub-model. We apply the same principle of regularization in

a unique way for estimating the population class probabilities. Instead of

shrinking towards any underlying assumptions about the true population

distribution, we shrink towards the baseline estimate from a classifier trained

on source data. In absence of sufficient target-domain data, this is the best
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available estimate and has to be used. We show how this shrinkage for the

class probabilities is equivalent to shrinking the confusion matrix towards

the identity matrix and construct appropriate Dirichlet priors to achieve this

shrinkage. This regularized estimation of a confusion matrix (or any transition

matrix) can also be applied in other contexts.

The fully Bayesian implementation is fast, owing to a novel data-augmented

Gibbs sampler. The ensemble model ensures robust estimates via data-driven

averaging over many classifiers and reduces the risk of selecting a poor one

for a particular application. Our simulations demonstrate the value of transfer

learning, offering substantially improved accuracy. The PHMRC data anal-

ysis makes evident the value of collecting a limited number of labeled data

GS-COD in the local population using full or minimally invasive autopsies,

alongside the nationwide VA survey. Subsequently using transfer learning im-

proves the CSMF estimates. The results also show how our approach benefits

from larger sample sizes of the local labeled set L, and from closer alignment

between the marginal class probabilities in L and the true target domain class

probabilities.

For VA data, we note that while we have treated G as a labeled dataset in

the source domain DS, in practice it can be any other form of gold standard

information sufficient to train a VA classifier. CCVA methods like Tariff and the

approach in King, Lu, et al., 2008 represent a traditional supervised learning

approach and needs a substantial labeled training dataset G. InterVA is a semi-

supervised learning approach where G is a standard matrix of letter grades

representing the propensity of each symptom given each cause. InSilicoVA
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generalizes InterVA and endows the problem with a proper probabilistic

framework allowing coherent statistical inference. It adapts to the type of G
and can work with either the default symptom-cause matrix used in InterVA

or estimate this matrix based on some labeled training data of paired VA and

GS-COD records. Our transfer learning is completely agnostic to the choice of

this baseline CCVA algorithm and the form of G they require. We only need

the predictions from a pre-trained algorithm for all observations in L ∪ U .

One important direction forward would be to generalize this approach

for more complex COD outcomes. Currently COD outcome is viewed as a

discrete variable taking values on a set of causes like Pneumonia or Sepsis.

In practice, death is a complex chronological series of several events starting

from some root causes and ending at the immediate or proximal cause. In

addition to understanding prevalence of causes in the population, another

goal for many of the aforementioned programs is to identify medical events

that occurred before death for which an intervention could prevent or delay

mortality. Extending the current setup for hierarchical or tree-structured COD

outcome would be a useful tool to address this aim. Many CCVA algorithms,

in addition to predicting the most likely COD, also predict the (posterior)

distribution of likely causes. Our current implementation only uses the most

likely COD as an input. An extension enabling the use of the full predictive

distribution as an input can improve the method. In particular, this will

benefit the individual COD predictions for which currently two individuals

with the same predicted COD from CCVA have the same predicted COD

distribution after transfer learning. Finally, the VA records, containing about
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250 questions for thousands of individuals, naturally has several erroneous

entries. Currently preprocessing VA records to eliminate absurd entries and

records entails onerous manual labor. It is challenging to develop quality

control models for VA data due to the high dimensionality of the symptoms.

Akin to what we did here, one can consider dimension reduction via the

predictions of CCVA algorithms for an automated statistical quality control

for VA records.

2.8 Software

R-package ‘calibratedVA’ containing code to obtain estimates of population

CSMFs from our transfer learning approach using baseline predictions from

any verbal autopsy algorithm is available at https://github.com/jfiksel/

CalibratedVA/. The package also contains the code for the ensemble model for

using outputs from several VA algorithms. A vignette describing how to navi-

gate the package and demonstrating the use of the methodology is provided in

https://github.com/jfiksel/CalibratedVA/blob/master/vignettes/CalibratedVA.

Rmd. All results in this paper can be recreated using the scripts contained in

https://github.com/jfiksel/BayesTLScripts.

2.9 Supplementary Material

2.9.1 MAP estimation

In the main manuscript, we have only discussed fully Bayesian implemen-

tations of the model in (2.4). If full inferential output is superfluous and
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only posterior point-estimates of the parameters are desired, we outline a

MAP (Maximum a posteriori) estimation for obtaining posterior modes of

the parameters using an EM-algorithm. The data augmentation scheme in-

troduced for the Gibbs sampler in 2.2.3 is also seamlessly congruous with the

EM algorithm.

In particular, we consider the vector v and T as the observed data and

augment B introduced in Section 2.2.3 as the missing data to form the complete

data likelihood l(B, v, T | M, p, γ) which is proportional to (2.5). At the sth

iteration, let M[s] = (m[s]
ij ), p[s] = (p[s]i ) denote the current values of the

parameters. Then

E[s](bij | v, T) =
vjm

[s]
ij p[s]i

∑i m[s]
ij p[s]i

= ˆ︁b[s]ij ,

where E[s] denotes the expectation taken using the parameter values from the

sth iteration. The EM algorithm then proceeds as follows:

E-step: E[s](log l(B, v, T | M, p, γ) | v, T) = ∑i

(︄
∑j

(︂ˆ︁b[s]ij log(mij pi)+

(tij + γiϵ + γi I(i = j)− 1) log(mij)
)︂
+ (δ − 1) log pi + h(γi)

)︄
(2.13)

where h(γ) = log
(︂

Γ(Cγ+ϵ)
Γ(γϵ)C−1Γ(γϵ+γ)

)︂
+ (α − 1) log γ − βγ. Subsequently, the
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maximization step can be formulated as:

M-step:

m[s+1]
ij =

ˆ︁b[s]ij +tij+γiϵ+γi I(i=j)−1

∑j(ˆ︁b[s]ij +tij)+γiCϵ+γi−C

p[s+1]
i =

∑j
ˆ︁b[s]ij +δ−1

∑i ∑j
ˆ︁b[s]ij +Cδ−C

γ
[s+1]
i = arg maxγ ∑j(γϵ + γI(i = j)− 1) log(mij) + h(γ)

(2.14)

The closed form expression of M and p in the M-step is a consequence of

the data augmentation. This drastically accelerates the MAP estimation as we

only need to conduct C univariate optimizations, one corresponding to each

γi. If instead the data augmentation was not exploited and only the observed

likelihood was used, we would need to search an O(C2) dimensional space

to obtain the MAP estimates. We can implement similar MAP estimation

algorithms for the joint and independent ensemble models detailed in Section

2.3. We omit the steps here.

2.9.2 Individual-level transfer learning

While our Bayesian transfer learning is primarily targeted to estimate population-
level class probabilities, it can also be used to predict individual-level class
probabilities in the target domain DT. The posterior distribution of the true
class membership G(sr) of the rth individual is given by

p(G(sr) = i | A(sr) = j, T) =
∫︂

p(G(sr) = i | p, M, γ, A(sr) = j, T)×

p(p, M, γ | v, T) dP(M) dP(p) dP(γ)

=
∫︂

p(G(sr) = i | p, M, A(sr) = j)p(p, M | v, T) dP(M) dP(p)

=
∫︂ mij pi

∑C
i=1 mij pi

p(p, M | v, T) dP(M) dP(p)
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We can now easily conduct composition sampling using posterior samples of

M and p to generate a posterior distribution for G(sr). This simple application

of the Bayes theorem, can recover the individual class memberships. However,

it is a crude approach because the posterior distribution of the G(sr) are

identical for all instances sr with the same predicted class A(sr) from A. If

A is a probabilistic classifier like InSilicoVA (McCormick et al., 2016), then in

addition to providing a predicted class membership A(sr), A also provides the

predicted distribution for each individual’s class. Utilizing the entire predicted

distribution from A should lead to improved individual level transfer learning.

Since the focus of this manuscript is population level transfer learning, we do

not further explore this avenue here.

2.9.3 Gibbs sampler for the joint ensemble model

Let yj be the number of instances in U for which algorithm A(1) predicts cause

j1, A(2) predicts cause j2, and so on. Let y∗ be the CK × 1 vector formed by

stacking the yj’s. Also, let uij = ∏K
k=1 m(k)

ijk
and uj = (u1j, u2j, . . . , uCj)

′.

The posterior p, {M(k), γk}k=1,...,K | T(1), T(2), . . . , T(k), w∗ is proportional

to

∏
j
(∑

i
uij pi)

yj × ∏
i

pδ−1
i ×

K

∏
k=1

(︄
C

∏
i=1

Γ(γ(k)
i (Cϵ + 1))

(Γ(γ(k)
i ϵ))C−1Γ(γ(k)

i (ϵ + 1))
× ∏

j
(m(k)

ij )
t(k)ij +γ

(k)
i (ϵ+1(i=j))−1

)︄
.

We will once again use data augmentation to implement the Gibbs sampler.
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Let bj = (b1j, b2j, . . . , bCj)
′) denote the C × 1 dimensional realization of a

Multinomial (yj, 1/C) distribution, and let B denote the CK ×C matrix formed

by stacking the independent bj’s row-wise for all combinations of j. Then we

have the following full conditionals for the Gibbs sampler:

bj | · ∼ Multinomial(yj,
1

1′(uj ⊙ p)
uj ⊙ p)

M(k)
i∗ | · ∼ Dirichlet

(︄
Ti∗ + γ

(k)
i Ii∗ + γ

(k)
i 1 + ( ∑

j:jk=1
bij, . . . , ∑

j:jk=C
bij)

′
)︄

p | · ∼ Dirichlet(∑
j

b1j + δ, . . . , ∑
j

bCj + δ)

Here ⊙ denotes the Hadamard (elementwise) product.

Finally, as in Section 2.2.2, we update γ
(k)
i ’s using a metropolis random

walk with log-normal proposal to sample from the full conditionals

p(γ(k)
i | ·) ∝

Γ(Cγ
(k)
i ϵ + γi)

Γ(γ(k)
i ϵ)C−1Γ(γ(k)

i ϵ + γ
(k)
i )

×

(γ
(k)
i )α−1 exp(−βγ

(k)
i )∏

j
(m(k)

ij )γ
(k)
i ϵ+γ

(k)
i 1(i=j).

2.9.3.1 Individual level classifications

As illustrated in Section 2.9.2, the ensemble transfer learner can also predict

the individual-level class memberships. Using Bayes theorem we have

p(G(sr) = i | a(1)r = j1, . . . , a(K)r = jk) =
1

∑j uij pi
uij pi.
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Since posterior distributions of uij’s and p have already been sampled, we can

generate posterior samples of G(sr) post-hoc using the composition sampling

approach demonstrated in Section 2.9.2.

For the independent ensemble model, one can recover the posterior dis-

tribution of the individual class memberships in the exact same way. Only

additional step would be to first calculate the uj’s as they are no longer part

of the Gibbs sampler.

2.9.4 Proofs

Theorem 1. The marginal posterior p | v, T is given by
∫︁

p(p, M, γ | v, T)dP(M)dP(γ).

Conditional on γ, looking only at terms that involve p, M, and γ, we have

p(p, M, v, T | γ) ∝ ∏
j
(∑

i
mij pi)

vj × ∏
i

pδ−1
i ×

∏
i

Γ(γi(Cϵ + 1))
(Γ(γiϵ))C−1Γ(γi(ϵ + 1)) ∏

j
(mij)

tij+γi(ϵ+1(i=j))−1

We will now use the multinomial theorem to expand the first product ∏j(∑i mij pi)
vj .

Note that the jth term expands into κj = (
vj+C−1

C−1 ) terms, one corresponding to

each partition of vj. Let B(j) = (b(j)
ki ) denote the κj ×C partition matrix formed

by stacking up all 1 × C rows that represent a non-negative integer partition

of vj. The kth row of B(j) gives the kth partition and ith element of that row

corresponds to power index for the ith term (mij pi). We now have,
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p(p, M | v, T, γ) ∝

⎛⎜⎝∏
j

κj

∑
kj=1

∏
i

(mij pi)
b(j)

kji

b(j)
kji

!

⎞⎟⎠× ∏
i

pδ−1
i ×

∏
i

Γ(γi(Cϵ + 1))
(Γ(γiϵ))C−1Γ(γi(ϵ + 1)) ∏

j
(mij)

tij+γi(ϵ+1(i=j))−1

∝
n1

∑
k1=1

· · ·
nC

∑
kC=1

⎛⎜⎜⎝∏
i

Γ(γi(Cϵ + 1))p
∑j b(j)

kji
−1

i
(Γ(γiϵ))C−1Γ(γi(ϵ + 1))

×

∏
j

(mij)
b(j)

kji
+tij+γi(ϵ+1(i=j))−1

b(j)
kji

!

⎞⎟⎠

Given k1, . . . , kC and i, the product ∏C
j=1(mij)

b(j)
kji
+tij+γi(ϵ+1(i=j))−1

is the ker-

nel of a Dirichlet(b(1)k1i + ti1 + γiϵ, . . . , b(i)kii
+ tii + γi(ϵ + 1), . . . , b(C)kCi + tiC + γiϵ)

distribution. Hence, integrating M out with respect to the order ∏C
i=1 ∏C

j=1 dmij,

we are left with

p(p | v, T, γ) ∝
n1

∑
k1=1

· · ·
nC

∑
kC=1

wk1,k2,...,kC(γ, ϵ)∏
i

p
∑j b(j)

kji
+δ−1

i
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where wk1,k2,...,kC(γ, ϵ) = ∏i

Γ(γi(Cϵ+1))∏C
j=1 Γ(b(j)

kji
+tij+γi(ϵ+1(i=j)))

(Γ(γiϵ))C−1Γ(γi(ϵ+1))Γ(∑j(b
(j)
kji
+tij)+γi(Cϵ+1))∏j b(j)

kji
!
. Hence,

p | v, T ∼
n1

∑
k1=1

· · ·
nC

∑
kC=1

(︃(︃∫︂ 1
W(γ, ϵ)

wk1,k2,...,kC(γ, ϵ)dF(γ)
)︃
×

Dirichlet(∑
j

b(j)
kj1

+ δ, . . . , ∑
j

b(j)
kjC

+ δ)

)︄

where W(γ, ϵ) = ∑n1
k1=1 · · ·∑nC

kC=1 wk1,k2,...,kC(γ, ϵ). Without loss of generality,

let the first row of each B(j) represent the partition of vj which allocates vj to the

jth component and 0 to all the other components. For any (k1, k2, . . . , kC)
′ ̸= 1C,

we have

lim
ϵ→0

wk1,k2,...,kC(γ, ϵ)

w1,1,...,1(γ, ϵ)
= ∏

i

⎛⎝ Γ(∑j tij + vi + γi)Γ(b
(i)
kii

+ tii + γi)

Γ(∑j(b
(j)
kji

+ tij) + γi)Γ(vi + tii + γi)
×

⎛⎝∏
j ̸=i

lim
ϵ→0

Γ(b(j)
kji

+ tij + γiϵ)

Γ(tij + γiϵ)

⎞⎠⎞⎠

If b(j)
kji

= 0, the ratio
Γ(b(j)

kji
+tij+γiϵ)

Γ(tij+γiϵ)
is one. However, since (k1, k2, . . . , kC)

′ ̸= 1C,

we have atleast one pair i ̸= j such that b(j)
kji

≥ 1 and consequently

Γ(b(j)
kji

+ tij + γiϵ)

Γ(tij + γiϵ)
=

b(j)
kji
−1

∏
s=0

(s + tij + γiϵ)
ϵ→0−→ 0

since T is diagonal. Hence, w1,1,...,1 dominates all the other weights in the lim-

iting case. Since each of the scaled weights are less than one, using dominated
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convergence theorem,

lim
ϵ→0

∫︂ 1
W(γ, ϵ)

wk1,k2,...,kC(γ, ϵ)dF(γ) = 1((k1, k2, . . . , kC)
′ = 1)

and hence lim
ϵ→0

p(p | v, T) ∝ ∏i p
∑j b(j)

1i +δ−1
i = ∏i pvi+δ−1

i .

Theorem 2. We proof only for the case K = 2 as the same proof generalizes

for arbitrary K. We simplify the notation for the proof. Let vst denote the

number of instances in U assigned to class s by algorithm 1, and class t by

algorithm 2. We write M(1) = M, M(2) = N, T(1) = T and T(2) = U to

get rid of the superscripts. Also, let B(st) = (b(st)
li ) denote a κst × C matrix

formed by stacking row-wise all possible partitions of vst into C non-negative

integers. Here κst = (vst+C−1
C−1 ) denotes the total number of such partitions.

Let h = (h11, h12, . . . , hCC)
′ denote a generic index vector such that each

hst ∈ {1, 2, . . . , κst} indexes a partition of vst and H denote the collection of all

such h’s. Then likelihood for (a1, a2, . . . , aN)
′ is

C

∏
s=1

C

∏
t=1

⎛⎝ κst

∑
l=1

C

∏
i=1

(pimisnit)
b(st)

li

b(st)
li !

⎞⎠ = ∑
h∈H

C

∏
i=1

C

∏
s=1

C

∏
t=1

(pimisnit)
b(st)

hsti

b(st)
hsti

!

= ∑
h∈H

(︄
1
ch

C

∏
i=1

p
∑C

s=1 ∑C
t=1 b(st)

hsti
i ×

C

∏
s=1

m
∑C

t=1 b(st)
hsti

is

C

∏
t=1

n
∑C

s=1 b(st)
hsti

it

)︄

where ch is a constant term free of the parameters.

Incorporating the priors and marginalizing with respect to M and N we
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have

p(p | v∗, T, U, γ(1), γ(2)) ∝ ∑
h∈H

1
ch

C

∏
i=1

(︄
p

∑C
s=1 ∑C

t=1 b(st)
hsti+δ−1

i ×

∏C
s=1 Γ(∑C

t=1 b(st)
hsti

+ tis + γ
(1)
i (ϵ + I(i = s))

Γ
(︂

∑C
s=1

(︂
∑C

t=1 b(st)
hsti

+ tis

)︂
+ γ

(1)
i (Cϵ + 1)

)︂×
∏C

t=1 Γ(∑C
s=1 b(st)

hsti
+ uit + γ

(2)
i (ϵ + I(i = t))

Γ
(︂

∑C
t=1

(︂
∑C

s=1 b(st)
hsti

+ uit

)︂
+ γ

(2)
i (Cϵ + 1)

)︂)︄

∝ ∑
h∈H

wh(γ
(1), γ(2), ϵ)

C

∏
i=1

p
∑C

s=1 ∑C
t=1 b(st)

hsti+δ−1

i

where wh(γ
(1), γ(2), ϵ) is the weight comprising of all the terms not involving

pi’s. Now, let H∗ denote the subset of H such that for all h∗ = (h∗11, h∗12, . . . , h∗CC)
′ ∈

H∗, each index h∗st corresponds to a partition of vst which allocates vst to

the sth partition and zero to all the other partitions. Clearly, for any h∗,

∑C
s=1 ∑C

t=1 b(st)
h∗sti

= ∑C
s=1 ∑C

t=1 vst I(i = s) = ∑C
s=1 I(i = s)vs = vi.

Let ζ denote a generic positive constant which does not depend on ϵ. We

absorb terms of the form limϵ→0 Γ(x +O(ϵ)) where x is always greater than

1 into ζ, as these limits will be non-zero. Noting that tis = 0 if s ̸= i, for any

h∗ ∈ H and h ∈ H \H∗, we have

lim
ϵ→0

wh

w∗
h
= ζ

C

∏
i=1

∏s ̸=i Γ(∑C
t=1 b(st)

hsti
+ γ

(1)
i ϵ)

∏s ̸=i Γ(γ(1)
i ϵ)

∏t ̸=i Γ(∑C
s=1 b(st)

hsti
+ uit + γ

(2)
i ϵ)

∏t ̸=i Γ(∑C
s=1 b(st)

h∗sti
+ uit + γ

(2)
i ϵ)

Since uit’s are greater than zero and there exists at least one pair (i, s) such

that ∑C
t=1 b(st)

hsti
> 0, the result follows.
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2.9.5 Detailed analysis of the simulation results

In this Section we present a much more thorough analysis of the simulation

study, as well as investigate as well as investigate additional methods to

generate population-level class probabilities in the target domain.

2.9.5.1 Impact of difference in marginal class distributions between source
and target domains

InSilico Tariff

0.
4

0.
6

0.
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Misclassification matrix M 1 2 3

Figure 2.4: Ratio of CSMFA of baseline model and transfer learner

We first investigate how the performance of our Bayesian transfer learning

model is impacted by the disparity in class distribution between DS and DT.

Figure 2.4 plots the smoothed ratio of the CSMFA of the baseline estimates

and their calibrated analogs from our model, as a function of the true CSMFA

between the class probabilities pG and pU in the source and target domains.

The left panels correspond to data generated using InSilicoVA and hence as-

sesses the performance of InSilicoVAG and InSilicoVABTL by plotting the ratio

CSMFA(InSilicoVABTL)/ CSMFA(InSilicoVAG). Similarly, the right panels

correspond to data generated using Tariff and compares the estimates from
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TariffG and TariffBTL. We only present the results for n = 400, as we will

discuss the role of n in Section 2.9.5.3.

We first note that when data was generated using the misclassification

matrix M1 = I, the ratio is exactly one. This corroborates the result in Theorem

1 that if A classifies flawlessly in DT, then the baseline and transfer learning

estimates are same. For M3, i.e. when the misclassification rate is small, the

ratio is also close to one with the transfer learning estimate being slightly

more accurate in general. For M2, which portrays the scenario where the the

baseline learner trained on source domain is systematically and substantially

biased, one can clearly see the benefit of transfer learning. The CSMFA is

significantly better after transfer learning. It also nicely shows the utility

of transfer learning as a function of x = CSMFA(pG , pU ) (on the x-axis).

Unsurprisingly, the ratio is decreasing with increasing x. When x is small, i.e.,

there exists much disparity in the marginal class distributions between the

source and target domains, the ratio is close to two, implying that transfer

learning yields near 100% gain in accuracy. When x is close to one, the

improvement is much less stark, which is expected as in this scenario the class

probabilities in the non-local and local populations are almost identical.

2.9.5.2 Biases in estimates of probabilities for each class

We also look at the biases in the estimates of each of the four class probabilities

in Figure 2.5. The top and bottom rows correspond to data generated using

InSilicoVA and Tariff respectively. The three columns correspond to three
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choices of M. We see that there is almost no bias for M1 for all the meth-

ods, for M3 the baseline TariffG estimates are generally unbiased, whereas

the baseline InSilicoVAG show small biases. However, for M2 we see the

substantial biases in the estimates from both the baseline approaches. As

expected due to the specification of M2, the baseline learners underestimate

P(Diarrhea/Dysentry) (Cause 2) and P(Sepsis) (Cause 3) while overestimat-

ing P(Pneumonia) (Cause 1) and P(Other) (Cause 4) are overestimated. The

transfer learning estimates TariffBTL and InSilicoVABTL are unbiased for all

the settings.
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Figure 2.5: Biases in the average estimates of individual cause prevalences

2.9.5.3 Role of limited labeled data in target domain

We now investigate the role of the sample size n and the marginal class

distribution pL of L. Additionally, as an alternate to our transfer learning

approach, we also consider including the local labeled data L as part of the

training data for the CCVA algorithms. So, we have four more methods TariffL,
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TariffG∪L, InSilicoVAL and InSilicoVAG∪L, where the sub-scripts indicate the

training data used.

When data is generated using InSilicoVA, Figure 2.6 provides the boxplots

of CSMF accuracy of the methods for all the scenarios as a function of n (rows),

choice of M (columns) and ρ — the CSMFA-range between pL and pU (x-axis

in each sub-figure).

We unpack many different conclusions from this Figure. First we look at

the performances of InSilicoVAG and InSilicoVABTL. These two methods was

already compared in Section 2.9.5.1, but only for fixed n = 400 and averaged

across all ρ. Here, further analyzing the performances as a function of n

and ρ, we see that the CSMFA of calibrated VA using our model increases

with increase in n. Also, there is a drastic gain in precision of the calibrated

estimates with the confidence bands shortening with increase in n from 50 to

400. Additionally, we see that the CSMFA for InSilicoVABTL increases as ρ goes

from low to medium to high, although the gain is not as drastic. This indicates

that the transfer learning procedure, while being reasonably robust to the

value of ρ, does benefit to a small extent from improved concordance between

the class probabilities in L and U . Of course, InSilicoVAG is not affected by

either n or ρ. In general, for M3, we see that only when both n is small and ρ

is low, the InSilicoVAG produces slightly better estimates than InSilicoVABTL.

For all other cases, InSilicoVABTL yields higher or similar CSMF. For M2, we

see InSilicoVABTL dominates InSilicoVAG across all scenarios. The gains from

increase in n and ρ are evident here as well. Finally, for M1, the performance

of InSilicoVABTL is identical to InSilicoVAG , as is guaranteed by Theorem 1,
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Figure 2.6: CSMFA for four InSilicoVA based methods for data generated using
InSilicoVA
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and is not affected by n or ρ.

Next, we look at the performance of InSilicoVAL and InSilicoVAG∪L. For

M1 and M3, InSilicoVAL performs quite poorly, generally producing the low-

est CSMF. InSilicoVAL is also highly sensitive to both ρ and n, yielding highly

variable and inaccurate estimates for low ρ and n, and improving sharply

as either increases. Only for M2, for large n or large ρ, it does better than

InSilicoVAG . As this setting portrays substantial difference in the conditional

distributions between the source and target population, InSilicoVAL, trained

on local data, does better. CSMFA from InSilicoVAG∪L, which uses both the

source and target labeled data in the training, generally lies between the

CSMFA from InSilicoVAG and InSilicoVAL, and is much closer to the former

as G far outnumbers L. Finally, comparing InSilicoVAL and InSilicoVAG∪L to

InSilicoVABTL, we see that the InSilicoVABTL does substantially better than

InSilicoVAL uniformly across the scenarios, and than InSilicoVAG∪L across

all scenarios except when both n is small and ρ is low. This shows that with a

small labeled dataset in DT, our transfer learning approach is a more resource-

ful way of exploiting this limited data and results in more accurate and robust

estimates. The analogous results for data generated using Tariff, provided in

Figure 2.13 of the supplement, reveals similar trends.
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2.9.5.4 Comparison with the naive transfer learning
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Figure 2.7: CSMFA of naive and Bayesian transfer learning

To understand the importance of the Bayesian shrinkage or regularization used

in the the transfer learning, we also compare with the naive transfer learning

based on MLE, outlined in Section 2.2. We refer to the naive transfer learning

using Tariff and InSilicoVA respectively as TariffNTL and InSilicoVANTL. Fig-

ure 2.7 compares the CMSFA for the naive and Bayesian regularized transfer

learning approaches. Once again, the top and bottom row corresponds to data

generated using Tariff and InSilicoVA respectively, the three columns are for

three choices of M and within each setting, we plot the boxplots of CSMFA as

a function of n.

We see that, generally the median estimates from the naive approach is

similar to the ones produced using the Bayesian regularized analog. However,

there is notable difference in the variability of CSMFA, with the naive approach

producing a wide range of values with several extreme estimates. The problem

is exacerbated for smaller values of n. The results from the Bayesian model
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are more stable with uniformly lesser variation across all the settings. It is

evident, that in real data analysis, where the truth is unknown, the Bayesian

model will be much more reliable than the MLE based solution which seems

to be quite likely to yield absurd estimates.

2.9.5.5 Performance of ensemble models

We now analyze the performance of the joint (EnsembleJ) and independent

(EnsembleI) ensemble transfer learning models introduced in Section 2.3.

These models use output from both Tariff and InSilicoVA whereas the single-

classifier models TariffBTL and InSilicoVABTL only use the output from one

CCVA algorithm. For a given dataset, we define

δ =max(CSMFA(InSilicoVABTL), CSMFA(TariffBTL))−

min(CSMFA(InSilicoVABTL), CSMFA(TariffBTL)).

In other words, δ denotes the difference in CSMFA of the calibrated VA using

the most and least accurate classifiers. A small δ implies transfer learning with

either of the baseline classifiers yield similar results, whereas larger values of

δ clearly insinuate that transfer learning with one of the baseline classifiers is

more accurate than the other one. For an ensemble method that aims to guard

against inclusion of an inaccurate method, one would expect that CSMFA for

the ensemble method should be closer to that of the best performing method.

Equivalently, if

ν = CSMFA(Ensemble)− min(CSMFA(InSilicoVABTL), CSMFA(TariffBTL)),
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Figure 2.8: Performance of the ensemble models

where Ensemble refers to either EnsembleI or EnsembleJ , then ν should be

greater than δ/2.

Figure 2.8 plots ν as a smoothed function of δ. We first note that, for M1 (red

lines), the (ν, δ) curve for the joint sampler nearly coincides with the 45-degree

line. Since, in our data generation process, under M1 one of the classifiers is

fully accurate, this empirically verifies the theoretical guarantee in Theorem 2,

that in such settings posterior mean of class probabilities from the ensemble

approach is same as that from the best classifier. While the independent

ensemble model does not enjoy this theoretical property, in practice we see

that for M1, ν is also identical to δ. For M2 and M3, across all scenarios, ν

is close to δ, i.e. estimates from both the EnsembleJ and EnsembleI models

generally aligns much closer to the best performing single-classifer transfer

learner. There are no significant trends with respect to either the size of L (n)

or the data generating algorithm – InSilicoVA (top-row) and Tariff (bottom-

row). The EnsembleI model seems to do slightly better than the joint model.
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Since, it is also the faster model, we only use this version of the ensemble

model for subsequent analysis. The performance of the ensemble samplers is

quite reassuring especially for larger δ, as it demonstrates the robustness to

inclusion of a bad method via averaging over multiple methods. As ν seems

to be substantially greater than δ/2 for most of the curves, it also shows why

our model based method averaging is superior to simply taking average of

the estimated class-probabilities from the different methods, which is much

more affected by the worst method.

2.9.5.6 Informative shrinkage

If we have prior knowledge on M, we can use this for informative shrinkage,

rather than shrinking towards the source predictor. For example, when the

true matrix is M2, if we assume that it was known apriori that label 2 is

often misclassified as label 1, and label 3 is often misclassified as label 4, then

instead of shrinking M towards the identity matrix, we can shrink M towards

transition matrices of the form⎛⎜⎜⎝
1 0 0 0

m21 m22 0 0
0 0 m33 m34
0 0 0 1

⎞⎟⎟⎠ .

To do this informative shrinkage, we can let

X =

⎡⎢⎢⎣
1 0 0 0
1 1 0 0
0 0 1 1
0 0 0 1

⎤⎥⎥⎦
and use an informed prior on M such that
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Mi∗
ind∼ Dirichlet(γi(Xi∗ + ϵ1)), i = 1, 2, 3, 4

This prior would reflect our knowledge of which causes are likely to be

misclassified by the algorithm. We then modify our Gibbs updates as follows:

Mi∗ | · ∼ Dirichlet(Bi∗ + Ti∗ + λi(Xi∗ + ϵ1))

p(γi | ·) ∝
Γ(Cγiϵ + γi · ∑j 1(Xij = 1))

∏j Γ(γiϵ + γi1(Xij = 1))
γα−1

i exp(−βγi)∏
j

m
γiϵ+γi1(Xij=1)
ij

While the choice of prior is less likely to affect the results with a larger cali-

bration set size, we can compare the CSMFA when using a smaller calibration

set size in Figure 2.9 below.

We see that with a sample size of 50 for our L, using the informed prior

on M leads to improved CSMFA. When the sample size for L grows to 100,

there is still some improvement in CSMFA with informed shrinkage when the

data is generated using InSilicoVA, and the performance is nearly identical

between the two models when the data is generated by Tariff.

2.9.5.7 Individual level classification

As mentioned earlier, predicting individual classes is not our primary goal.

Nonetheless, we have outlined a simple way to obtain individual predictions

using our transfer learning model. Here we compared its accuracy using the
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Figure 2.9: Comparison between informative and non-informative (default) shrink-
age.

Chance Corrected Concordance (Murray et al., 2011a) defined as

CCC =
1
C

C

∑
i=1

TPi
TPi+TNi

− 1
N

1 − 1
N

where TPi and TNi denote the true positive and true negative rates for class

i. We only analyze the case when when the data is generated using InSili-

coVA (Figure 2.10). The roles are simply reversed when data is generated

using Tariff (Figure 2.14). We see in Figure 2.10 that CCC for InSilicoVAG and

InSilicoVABTL are better than those of TariffG and TariffBTL respectively. This is

expected as analyzing data using the true model is expected to perform better

than the misspecified model. CCC from the transfer learning (InSilicoVABTL)

and baseline (InSilicoVAG) versions of the same CCVA algorithm, which was
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Figure 2.10: CCC when data is generated using InSilicoVA
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used in data generation, were similar. For the misspecified model, the base-

line TariffG produced slightly better CCC than the transfer learning TariffBTL,

although this improvement in performance is minor. Overall, these results

indicate that if individual prediction is of interest, then perhaps more ad-

vanced methods need to be considered than the simple approach we have

outlined. However, even using our crude approach, we see that the ensemble

model (EnsembleI) produces CCC closer to InSilicoVABTL and InSilicoVAG ,

and much better than the CCC obtained by both TariffBTL and TariffG . This

once again furnishes evidence of the robust performance of the ensemble

model, and in practice, when we will not know which algorithm works best,

using the ensemble model will safeguard against choosing a bad algorithm.

2.9.6 Comparing marginal symptom distributions between L
and U

To show that our method also does not assume similar symptom marginal

distributions between L and U , in Figure 2.11 we plot the proportion of

presence (“Yes") of each symptom in U and L (for 10 randomly selected

samples of L) in India and Tanzania for this analysis. We see that while

many symptoms are rare in both L and U (clustering near (0,0)), the marginal

distributions of the symptoms do not have to match between U and L, with

the symptom proportion in L varying considerably on both sides (up to ±15%)

than the analogous quantity in U )
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Figure 2.11: Scatterplot of the symptom proportions in U and 10 randomly sampled
choices of L. The red line is the x = y line.

2.9.7 Impact of number of cause categories for PHMRC anal-
ysis

To investigate the effect of adding more causes of death on the transfer learning

CSMFA, we added “Malaria” and “Sepsis”, which were part of the “Other

Infectious“ category, as individual causes. Due to the nature of the CSMFA

metric, it is difficult to directly compare accuracy on estimating a probability

vector of length 5 versus a probability vector of length 7. Hence, after getting

the transfer learning CSMF estimates for the 7 cause categories, we aggregated

the 7 cause CSMFs back to the orignal 5 cause CSMFs, i.e., we added the

CSMF estimates for “Malaria” and “Sepsis” to the CSMF estimate for “Other

Infectious“, so that we could fairly compare the CSMFA when using 5 versus

7 causes.

Looking at Figure 2.12, we see that there is actually very little change

in the CSMFA when using individual algorithms. This would indicate that

when we only are using one algorithm, the additional causes are not causing

72



Figure 2.12: Comparison of BTL performance with 7 versus 5 cause categories

substantial shrinkage in the estimates of M. We would expect that as the

number of causes grows even larger and the size of L is small, there are fewer

number of samples per cause category leading to more shrinkage towards

the source predictor and hence worse performance. We only see this for the

ensemble model and for sample sizes 50 and 100 when we add additional

causes. This is also most likely due to the fact that the ensemble method

requires estimating substantially more parameters with an increased number

of causes, as compared to the individual algorithm transfer learning. As the

sample size of L grows larger, we are able to better estimate this increased

number of parameters.

2.9.7.1 Additional figures
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Figure 2.13: CSMF for the four Tariff-based methods for data generated using Tariff
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Figure 2.14: CCC when data is generated using Tariff
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Chapter 3

A Transformation-free Linear
Regression for Compositional
Outcomes and Predictors

3.1 Introduction

Compositional data, also referred to as fractional data (Mullahy, 2015; Murteira

and Ramalho, 2016), consist of vectors constrained to lie in the unit simplex,

SD, where SD = {(x1, x2, . . . , xD)
′ |xj ≥ 0, i = j, . . . , D; ∑D

i=j xj = 1}. Com-

positional data appear in many fields, such as econometrics (Papke and

Wooldridge, 1996), geochemistry (Templ, Filzmoser, and Reimann, 2008),

physical activity research (Dumuid et al., 2018), microbiome analysis (Lin

et al., 2014), and nutritional epidemiology (Leite, 2016).

Depending on the application, compositional data may appear as an ex-

planatory variable (Hron, Filzmoser, and Thompson, 2012; McGregor et al.,

2019; Dumuid et al., 2018), as an outcome of interest (Papke and Wooldridge,

1996; Mullahy, 2015; Egozcue et al., 2012; Hijazi and Jernigan, 2009), or both

(Wang et al., 2013; Chen, Zhang, and Li, 2017; Alenazi, 2019). While there
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has been much attention placed on the first two cases, little work has been

done on creating simple and interpretable models for the last case. Examples

of problems with both compositional outcomes and explanatory variables

include relating the percentage of males and females with different education

levels across countries (Filzmoser, Hron, and Templ, 2018), modeling the rela-

tionship between age structure and consumption structure across economic

areas (Chen, Zhang, and Li, 2017), and understanding how different methods

for estimating the composition of white blood cell types are related (Aitchison,

1986; Alenazi, 2019).

All current methods developed specifically for problems where both the

outcome and the explanatory variable are compostional require transform-

ing the compositional data. Chen, Zhang, and Li (2017) transforms both

the response and explanatory compositional variables, while Alenazi (2019)

transforms just the compositional explanatory variable. Transformation based

models limit interpretability (Morais, Thomas-Agnan, and Simioni, 2018),

especially when complex, but commonly used transformations such as the

isometric log-ratio (ILR) transformation (Egozcue et al., 2003) are used. Fur-

thermore, many transformations do not allow for compositional data with 0s

and 1s (Filzmoser, Hron, and Templ, 2018).

In this manuscript, we postulate a simple estimating equation that directly

relates the expected value of the compositional outcome as a linear function

of the compositional explanatory variable. Our approach does not require

any transformation of the data and naturally accommodates 0s and 1s, thus

treating data on the interior of the simplex the same as data on the boundary.
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By linearly relating the outcome and explanatory variables, the parameters in

our model are easily interpretable, unlike transformation based compositional

regression models. We develop an expectation-maximization (EM) (Dempster,

Laird, and Rubin, 1977) algorithm for fast and accurate parameter estimation

via constrained maximization of the quasi-likelihood that respects the unit sum

nature of the compositional data. We present simulation results comparing the

models for compositional data under a variety of data generating mechanisms.

We also present a permutation-based test for assessing whether or not there

exists a linear dependency between the outcome and explanatory variables,

and evaluate the operating characteristics of this test via simulation. Finally,

we demonstrate the utility of our model with two data analyses from education

and medical research.

3.2 Review of Transformation Based Compositional
Regression Models

Current models for problems with compositional outcomes and explanatory

variables rely on transforming the compositional data from SD to RD−1. The

recommended transformation for compositional data is the ILR transformation

(Egozcue et al., 2003; Hron, Filzmoser, and Thompson, 2012; Filzmoser, Hron,

and Templ, 2018), where for z ∈ SD

ilr(z)j =

√︄
D − j

D − j + 1
ln

⎛⎜⎜⎝ zj(︂
∏D

k=j+1 zk

)︂ 1
D−j

⎞⎟⎟⎠ , j = 1, . . . , D − 1.
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The mathematical advantage of using the ILR transformation over more simple

transformations, such as the additive log-ratio (ALR) or centered log-ratio

(CLR) (Aitchison, 1986), is that the vector ilr(z) can be used as covariates in a

standard linear regression model without having to constrain the regression

coefficients (Hron, Filzmoser, and Thompson, 2012).

The model presented by Chen, Zhang, and Li (2017) assumes that for an

outcome y ∈ SDr and explanatory variable x ∈ SDs , where Dr is not necessarily

equal to Ds, that

E[ilr(y)k|x] = β0k +
Ds−1

∑
j=1

β jkilr(x)j, k = 1, . . . , Dr − 1. (3.1)

Hence, β11 has an interpretation as the effect of increasing the relative value

of x1 by 1 compared to the rest of x, holding the ratios between the other

components of x constant, on the change of the relative value of y1 compared

to the rest of y; the other regression coefficients have no meaningful interpre-

tation (Hron, Filzmoser, and Thompson, 2012; Chen, Zhang, and Li, 2017). To

obtain the effects of relative changes of each part of x on y, one must use the

permutation operation,

zl = (zl, z1, . . . , zl−1, zl+1, . . . , zD),

and estimate Dr · Ds separate models where

E[ilr(yl1)k] = β
(l1,l2)
0k + ∑Ds−1

j=1 β
(l1,l2)
jk ilr(xl2)j, k = 1, . . . , Dr − 1, l1 = 1, . . . , Dr, l2 = 1, . . . , Ds.

(3.2)

The coefficients of interest would then be β
(l1,l2)
11 for each combination of
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l1 and l2 (Chen, Zhang, and Li, 2017; Filzmoser, Hron, and Templ, 2018). As

parameter estimation is performed using standard maximum likelihood for

linear regression models, this procedure is not computationally expensive.

However, using multiple versions of a model to obtain a set of coefficients that

cannot be interpreted jointly is undesirable. There are two additional down-

sides. First, the ILR transformation does not allow for 0s in the compositional

data. If either x or y are categorical, the ILR transformation framework can

not be used, even though categorical variables are still in the unit simplex.

Second, the coefficients of interest can only be vaguely interpreted in terms

of changes in the relative values of each part of the compositional data to the

geometric mean. This model does not permit for simple interpretation of the

coefficients in terms of the direct effect of changing the value of x within the

simplex on the expected value of y in the simplex (Morais, Thomas-Agnan,

and Simioni, 2018). The lack of a simple interpretation for the coefficients

in (3.2) have forced practitioners to instead rely on graphical techniques to

display the estimated response surface of y as a function of x (Nguyen et al.,

2018).

Alenazi (2019) takes a different approach to compositional regression, as

only the explanatory compositional variable x is transformed. While Alenazi

(2019) is more interested in prediction accuracy than interpretation and uses a

complex principal components based transformation, one can use any trans-

formation t (e.g., the ILR transformation). The assumed regression model is

the multinomial logit specification (Papke and Wooldridge, 1996; Mullahy,

2015; Murteira and Ramalho, 2016):
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E[yk|x] =
exp(β0k + ∑Ds−1

j=1 β jkt(x)j)

1 + ∑D−1
k=1

[︂
exp(β0k + ∑Ds−1

j=1 β jkt(x)j)
]︂ , k = 1, . . . , Dr − 1

E[yDr |x] =
1

1 + ∑D−1
k=1

[︂
exp(β0k + ∑Ds−1

j=1 β jkt(x)j)
]︂ .

(3.3)

Murteira and Ramalho (2016) discuss both quasi-maximum and maximum

likelihood (QML and ML) methods for estimation of the coefficients. However,

Alenazi (2019) uses a QML method which allows for 0 values in y (Papke and

Wooldridge, 1996; Mullahy, 2015; Murteira and Ramalho, 2016), and does not

make any distributional assumptions about y.

Despite this method allowing for potential 0s in y (and in x if one uses a

transformation that allows for 0s, such as the α-transformation (Tsagris, 2015)),

the regression coefficients are still only interpretable in terms of effects of

changing a transformed version of x on log
(︂

E[yj]

E[yDr ]

)︂
. In order to interpret the

model in terms of changes within the simplex, one would again need to resort

to graphical techniques.

3.3 Direct Regression of Compositional Variables
on the Simplex

Section 3.2 showed that current models for regressing a compositional out-

come on a compositional explanatory variable are difficult to interpret due

to modeling transformed versions of the compositional data. To create an

interpretable model for this class of problems, we want to directly model the
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expected value of y as a linear function of x. This is achieved through the

following linear model:

E[y|x] =
Ds

∑
j=1

xjbj, (3.4)

where bj’s are Dy-dimensional vectors. Letting B represent the matrix with

the jth row Bj∗ = b
′
j, we can rewrite the model in (3.4) as

E[y|x] = B
′
x . (3.5)

Because y compositional, we require that ∑Dr
k=1 E[yk|x] = 1. To adhere to

the unit sum restriction, we take advantage of the fact that x is also compo-

sitional. Hence, it suffices to constrain B to be a Markov (transition) matrix

with non-negative entries and rows summing to 1, i.e.,

B ∈ {RDs×Dr |Bjk ≥ 0,
Dr

∑
k=1

Bjk = 1 for j = 1, . . . , Ds} .

This transformation-free model allows 0s and 1s in both x and y as (3.5)

is well-defined for entire x- and y-simplexes including the boundaries. The

model allows for direct interpretation of the association between x and E[y] in

terms of the regression coefficient matrix B. If xj increases by ∆ ∈ (0, 1 − xj],

at the expense of xk decreasing by ∆ (assuming xk ≥ ∆) and holding the

rest of x constant, the expected change in E[y] is expressed as ∆(Bj∗ − Bk∗).

This interpretation respects the fact that increasing one part of x necessarily

involves the trade-off of decreasing at least one other part of x. For example,

if x represents the proportion of each day spent on different activities such
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as sleep, physical activity, and sedentary time, we may be interested in how

components of a compositional y are expected to change when we increase

physical activity and decrease sedentary time. We also may be interested

in how this compares to the change of y when we instead increase physical

activity at the expense of sleep (Dumuid et al., 2018). Another example

application where this interpretation is useful is in marketing, where teams

may want to know whether to increase the percentage of expenditure on

television advertisements at the expense of radio advertisements or press

advertisements in order to best increase their market share (Morais, Thomas-

Agnan, and Simioni, 2018). Furthermore, our model allows us to directly see

how y, rather than some transformed version of y, is associated with x.

In addition to the simple interpretation, the direct regression model in

(3.4) exhibits other convenient statistical properties. First, consider the case

when two rows, j1 and j2, of B are equal. This implies that increasing xj1 at

the expense of xj2 does not change E[y]. We then have

E[y|x] =
Ds

∑
j ̸=j1,j2

xjbj + xj1bj1 + xj2bj2

=
Ds

∑
j ̸=j1,j2

xjbj + bj1(xj1 + xj2) , (3.6)

which shows that we can treat the combined categories xj1 + xj2 as a single

category. This not only simplifies interpretation of the direct regression model,

but also means that there is one less row of B to estimate.

Similarly, the direct regression model can easily accommodate combining
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categories yk1 and yk2 . The direct regression model implies that

E[yk1 + yk2 |x] =
Ds

∑
j=1

Bjk1 xj +
Ds

∑
j=1

Bjk2 xj

=
Ds

∑
j=1

(Bjk1 + Bjk2)xj.

Thus, conditional expectations of linear combinations of y can be obtained

through adding columns of B. Rather than having to perform separate re-

gressions using different linear combinations of the outcome, practitioners

can simply perform one regression using the full outcome, and obtain linear

combinations of B post-hoc.

Because B is a Markov matrix, the rows of B are themselves members

of SDr . If we let xj = 1, which means that x is in the jth corner of SDs , (3.4

shows that E[y|xj = 1] = bj. Thus, Bj∗ is equivalent to E[y] when xj = 1. For

the case when Dr = 3, this means we can actually visualize the coefficients

themselves using a ternary diagram (Hamilton and Ferry, 2018). Consider the

following two values of B:

B(1) =

⎛⎝.90 .05 .05
.05 .90 .05
.05 .05 .90

⎞⎠ ; B(2) =

⎛⎝.40 .30 .30
.30 .40 .30
.30 .30 .40

⎞⎠
B(1) represents the setting when y and x are highly correlated, while B(2)

represents the setting when y and x are weakly correlated. This interpreta-

tion is derived directly from the simple analytic interpretation of the direct

regression model in (3.4). This interpretation is also seen through plotting

the rows of these two matrices in a ternary diagram, as in Figure 3.1. Each
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number in the plot corresponds to a row in the two values of B. The plot of

B(1) shows that E[y] substantially changes with x, as changes in E[y] with x

can be expressed as scaled differences in the rows of B. However, the plot of

B(2) shows much smaller changes for E[y] with x. Confidence regions for each

row of B can also be plotted within the diagram. We demonstrate this in the

example in Section 3.7.1.
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Figure 3.1: Visualization of the coefficients B. For a number j, the point plots Bj∗
within a ternary diagram.

We note that the models of Chen, Zhang, and Li (2017) and Alenazi (2019)

models have some advantages over our simple and direct model, most notably

the ability to include multiple confounding covariates of mixed variable type

in the model, and we present a full comparison of the properties of each model

in Table 1. However, the simple interpretation of the direct regression model

stands in stark contrast to the vague interpretation of the coefficients in the

ILR model or any model which transforms y and/or x. The interpretation of
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Properties Direct
Regression

ILR trans-
formation
(Chen,
Zhang, and
Li, 2017)

Multinomial
logit (Ale-
nazi, 2019)

Transformation-free ✓ ✗ ✗

Accommodates 0s and 1s in both out-
come and predictor compositions

✓ ✗ ✓

Coefficients interpreted in terms of
changes of y in the simplex

✓ ✗ ✗

Only requires running 1 model, instead
of Dr · Ds models

✓ ✗ ✗

Coefficients interpreted in terms of
changes of log ratios of y

✗ ✓ ✓

Can be extended to include multiple
covariates that may be compositional,
continuous, or discrete

✗ ✓ ✓

Table 3.1: Comparison of properties between the three compositional regression
models. A ✓ indicates that a model has the given property, while a ✗ indicates that a
model does not have the given property.

B is simple to communicate to non-statisticians without graphical techniques,

does not require familiarity with the compositional transformations, and only

requires estimating one single model for E[y|x], rather than Dr · Ds models.

The direct regression model also seamlessly permits 0s and 1s in both x and y,

leading to the sub-cases of interest presented in Sections 3.3.1 and 3.3.2.

3.3.1 Categorical covariates

For each observation i, assume that the covariate of interest is in whether or

not the observation belongs to one of j = 1, . . . , Ds groups. If observation i

belongs to subgroup j, we let xi = ej, where ej is the compositional vector

with a 1 in the jth index. We now have an ANOVA-like model, but with a
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compositional outcome.

This model has been considered in the literature where only the outcome is

compositional, but previous solutions have either used an ILR transformation

for y (Filzmoser, Hron, and Templ, 2018) or assumed that y|x follows a Dirich-

let distribution (Maier, 2014). Our model allows for a transformation-free and

distribution-free solution for this problem. The formulation of our model in

(3.4) shows that Bj∗ = E[y|x = ej], i.e., the rows of B simply interprets as

the expectation for the jth group. If we are interested in how E[y] changes

between two groups j1 and j2, this change is represented by Bj1∗ − Bj2∗. If the

rows of B are all equal, this would indicate linear independence between y

and x.

3.3.2 Categorical outcome

We now y restrict to be categorical, meaning that each observation i belongs

to one of k = 1, . . . , Dr groups. The standard model for this case would

be a multinomial logistic model, using the ILR transformed x as covariates

(Filzmoser, Hron, and Templ, 2018). However, we can use the model in

(3.4), which allows for direct estimation of E[yk|x] = P(y = ek|x), k =

1, . . . , Dr. This is equivalent to performing multinomial linear regression,

with an identity link. The identity link is the canonical link here, as the

covariates are compositional. Further restricting x to be categorical allows

for interpretation of Bj1,k1 − Bj2,k1 as P(y = ek1 |x = ej1)− P(y = ek1 |x = ej2),

showing that our model is suitable for modeling risk differences between

groups.
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3.3.3 Discrete time series transition probabilities

A specific case of a categorical outcome and covariate is in estimating time-

invariant transition probabilities for a first-order Markov process. An example

of this class of problems is estimating the probability of firms or institutions

transitioning between specific credit ratings (Jones, 2005). Observations may

transition between r = 1, . . . , R states. In the ideal case, for each observation

unit i, we observe their discrete state yi,t over times t = 0, . . . , T. We are then

interested in estimating the probability that each observation moves to state

j at time t, given that they are in state k at time t − 1 (assuming transition

probabilities are constant over time and between observation units). The

interpretation of B from Sections 3.3.2 and 3.3.1 shows that if the covariate in

(3.4), yi,t−1, and the outcome is, yi,t, then Bjk = P(yi,t = ej|yi,t−1 = ek), which

is exactly the transition probability we seek to estimate.

3.3.4 AR(1) model for compositional data

Rather than observing the states of each observation unit, we may only observe

the percentage of observations in each state at each time. For example, Jones

(2005) presents the case where for each year between 1984-2004, we only

observe the percentage of commercial banks that belong to four different

categories of credit quality. Our observed data is now the percentage of

units in the different states at time t, yt. Specifically, ytj is the percentage of

observations belonging to state j at time t. Lee, Judge, and Zellner (1970),

MacRae (1977), and Jones (2005) have shown that E[yt|yt−1] = B
′
yt−1, where

Bij is again defined as P(yi,t = ej|yi,t−1 = ek). Thus, the direct regression

92



model in (3.5) can be used to estimate the individual transition probabilities,

despite only observing aggregate data. For such settings, our model can be

perceived as an AR(1) model for the compositional time series yt.

3.4 Parameter Estimation

3.4.1 Generalized Method of Moments Approach

In order to estimate the entries of B, we note that the model in (3.5) implies

that

E[yk|x] =
Ds

∑
j=1

Bjkxj .

As we are only interested in the first moment of y|x, we use a generalized

method of moments (GMM) (Hansen, 1982) approach and seek a function

ℓ(B; y, x) such that

EB0

(︃
dℓ
dB

)︃
= 0 ,

where B0 is the true value of B. A function ℓ which achieves this is, while also

allowing for 0s in yi and xi, the Kullback-Leibler distance (KLD) between two

compositional vecotrs — the observed yi and E[yi|xi] (Fiksel et al., 2020), i.e.,
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ℓ =
N

∑
i=1

KLD(yi ∥ E[yi | xi])

= −
N

∑
i=1

Dr

∑
k=1

yik log
(︃

E[yik|x]
yik

)︃

= −
N

∑
i=1

Dr

∑
k=1

yik log

⎛⎝∑Ds
j=1 Bjkxij

yik

⎞⎠ . (3.7)

Letting F = {B; Bjk ≥ 0, ∑Dr
k=1 Bjk = 1} be the constrained space for B,

minimizing (3.7) with respect to B is equivalent to maximizing the log-quasi-

multinomial likelihood (Mullahy, 2015; Alenazi, 2019):

min
B∈F

ℓ(B; x, y) = min
B∈F

−
N

∑
i=1

Dr

∑
k=1

yik log

⎛⎝∑Ds
j=1 Bjkxij

yik

⎞⎠

= max
B∈F

N

∑
i=1

Dr

∑
k=1

yik log

(︄
Ds

∑
j=1

Bjkxij

)︄
(3.8)

The multinomial quasi-likelihood belongs to the linear exponential family

(Gourieroux, Monfort, and Trognon, 1984) and minimizing (3.7) (or equiva-

lently, maximizing (3.8)) produces a consistent estimator for B0 (Gourieroux,

Monfort, and Trognon, 1984; Papke and Wooldridge, 1996; Mullahy, 2015).

In addition, Fiksel et al. (2020) show that (3.7) is convex with respect to B,

guaranteeing existence of a global minimum of (3.7).
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3.4.2 An EM Algorithm for Maximizing the Objective Func-
tion

Alenazi (2019) also uses a GMM approach via minimization of the KLD be-

tween the observed and expected values for the compositional outcome in

(3.3). Because the form of the conditional expected value in (3.3) is that used

in multinomial logistic regression, the coefficients are unconstrained and

Alenazi (2019) utilizes the Newton-Raphson (Böhning, 1992) algorithm for

maximizing the log-quasi-multinomial likelihood. However, our model im-

poses constraints on the parameter space for B making it difficult to employ

the Newton-Raphson algorithm to maximize (3.8).

We instead develop an EM algorithm for parameter estimation by maxi-

mization of (3.8) . We first present the algorithm for the special case where

yi’s are categorical (Section 3.3.2). We introduce “missing” pseudo cate-

gories x∗i such that x∗i |xi ∼ Multinomial(1, xi) and assume yi|B, x∗ij = 1 ∼
Multinomial(1, Bj∗), thus using a proper likelihood for the outcome. We

then arrive at the following likelihood of y|x (marginalizing out the psuedo-

categories x∗):
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p(y|B, x) =
N

∏
i=1

(︄
Ds

∑
j=1

p(x∗ij = 1)p(y∗
i |B, x∗ij = 1)

)︄

=
N

∏
i=1

(︄
Ds

∑
j=1

xij

Dr

∏
k=1

(Bjk)
yik

)︄

=
N

∏
i=1

Dr

∏
k=1

(︄
Ds

∑
j=1

Bjkxij

)︄yik

(3.9)

Taking the log of (3.9) gives us the form of the objective function in (3.8).

Letting B(t)
jk denote the value of Bjk after iteration t, the expected complete

log-likelihood becomes

Q(B|B(t)) =
N

∑
i=1

D2

∑
j=1

[︄
E[x∗ij|xij, yik, B(t)

jk ](log(xij) +
D1

∑
k=1

yiklog(Bjk))

]︄
.

Noting that the M-step will require finding

max
B∈F

N

∑
i=1

Dr

∑
k=1

Ds

∑
j=1

E[x∗ij|xij, yik, B(t)
jk ]yik log(Bjk) (3.10)

we see that the terms in (3.10) for which yik = 0 will not influence the

maximization. Thus, rather than evaluating both E[x∗ij|xij, yik = 0, B(t)
jk ] and

E[x∗ij|xij, yik = 1, B(t)
jk ], we only have to evaluate the latter term. We thus in-

troduce weights π
(t+1)
ijk for the E-step at iteration t + 1 which are equal to

E[x∗ij|xij, yik = 1, B(t)
jk ]:

96



π
(t+1)
ijk =

xijB
(t)
jk

∑Ds
j=1 xijB

(t)
jk

, i = 1, . . . , N, j = 1, . . . , Ds, k = 1, . . . , Dr

The expected complete log-likelihood is now

Q(B|B(t)) =
N

∑
i=1

Dr

∑
k=1

Ds

∑
j=1

yikπ
(t+1)
ijk log(Bjk) ,

and the M-step from (3.10) becomes

max
B∈F

Q(B|B(t)) = max
B∈F

N

∑
i=1

Dr

∑
k=1

Ds

∑
j=1

yikπ
(t+1)
ijk log(Bjk) . (3.11)

Due to the fact that ∑Dr
k=1 Bjk = 1 for j = 1, . . . , Ds, we can recognize the

constrained maximization in (3.11) equivalent to maximizing j = 1, . . . , Ds

weighted multinomial likelihoods. This implies the following M-step:

B(t+1)
jk =

∑N
i=1 yikπ

(t+1)
ijk

∑Dr
k=1 ∑N

i=1 yikπ
(t+1)
ijk

, k = 1, . . . , Dr, j = 1, . . . , Ds .

Having developed an EM algorithm when we restrict the outcome y to

be categorical, Theorem 1 now extends the EM algorithm to the general case

when y is compositional:

Theorem 3. Let f (t) = ∑N
i=1 ∑Dr

k=1 yik log
(︂

∑Ds
j=1 B(t)

jk xij

)︂
be the value of the objec-

tive function after iteration t of the EM algorithm with compositional outcomes y,

using the same E and M steps as when y is categorical. Then f (t + 1)− f (t) ≥ 0,

with strict inequality if Q(B(t+1)|B(t)) > Q(B(t)|B(t)).

A proof is provided in the appendix. Theorem 1 allows use of the same EM
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algorithm for estimation of B, despite the fact that our approach is likelihood-

free and only specifies E[y|x].

3.5 A permutation test for linear independence

In the Chen, Zhang, and Li (2017) and Alenazi, 2019 models presented in (3.1)

and (3.3), one can test whether each of the coefficients is equal to 0, using

either bootstrapping (Efron and Tibshirani, 1994) or by estimating the standard

errors of the coefficient estimates (Chen, Zhang, and Li, 2017; Mullahy, 2015).

This is testing whether certain parts of y and x are associated with each other.

We now present a permutation test for linear independence that can be applied

to the direct regression method, and also can be adapted to the Chen, Zhang,

and Li (2017) and Alenazi, 2019 models.

If y is linearly independent of x, we have E[y|x] = E[y]. The interpretation

of our model in Section 3.3 shows that this is equivalent to restricting the

model in (3.5) such that the rows of B are equal. We now develop a procedure

for testing the following null hypothesis:

H0 : E[y] = B1∗ = B2∗ = · · · = BDr∗

Letting µ = E[y], under the restricted model implied by H0, the maximiza-

tion task in (3.8) becomes

max
µ∈SDr

N

∑
i=1

Dr

∑
k=1

yik log(µk) . (3.12)

. The solution to the constrained maximization task in (3.12) leads to the
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following estimate of µ:

µ̂ =
1
N

N

∑
i=1

N

∑
i=1

yi ,

which is simply the arithmetic average of the observed y. Letting ȳk =

1
N ∑N

i=1 yik, under H0 the log-quasi likelihood in (3.8) becomes

PLLH0 =
N

∑
i=1

Dr

∑
k=1

yik log(ȳk) .

Under the alternative hypothesis,

HA : B1∗ ̸= Bk∗ for at least one value of k ∈ {2, . . . , Dr}

the log-quasi likelihood is that implied in (3.8):

PLLHA =
N

∑
i=1

Dr

∑
k=1

yik log

(︄
Ds

∑
j=1

B̂jkxij

)︄

.

Comparing the log-quasi likelihoods under H0 and HA leads to the follow-

ing test statistic of interest:

λ = PPLHA − PPLH0

which is equivalent to the log-quasi likelihood ratio between the restricted and

full models. To obtain the distribution of λ under H0, we use the following

Monte Carlo permutation testing procedure (Good, 2005):

Step 1: Obtain λobs using the observed x and y.

Step 2: Randomly permute the observed x to break any dependence between

x and y

99



Step 3: Obtain λperm using the permuted x and observed y.

Step 4: Repeat Steps 2-3 b = 1, . . . , B times, obtaining λpermb for each permu-

tation. In practice, setting B = 1000 appears to give good precision

(Zeng et al., 2015).

Step 5: Calculate the p-value, p = 1
B ∑B

b=1 I(λpermb ≥ λobs)

The permutation test procedure allows for testing of whether changing any

part of the compositional x is associated with a linear change in the expected

value of y. Furthermore, this procedure can be adopted for use in the models

presented by Chen, Zhang, and Li (2017) and Alenazi (2019), either using the

normal likelihood for the ILR transformed outcome, or the log-quasi likelihood

using the conditional expected value formulation in (3.3). The permutation

test procedure can also be modified for testing the null hypothesis that rows

Bj1 and Bj2 are equal. As discussed in Section 3.3, if two rows of B are equal,

E[y|x] reduces to (3.6). We can use this expectation to obtain the log-quasi

likelihood under the null hypothesis that Bj1 and Bj2 are equal.

3.6 Simulation studies

3.6.1 Model comparison study

We first perform simulations to compare the performance of the direct reges-

sion model with that of the Chen, Zhang, and Li (2017) model and the Alenazi

(2019) model across situations when only one of the three models is correctly

specified. To generate realistic data, we first fit each model to two datasets

with a compositional outcome and explanatory variable: the Education dataset
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(Section 3.7.1) and the White Cells dataset (Section 3.7.2). For the Alenazi

(2019) model, we let t(x) = ilr(x). These fitted coefficients are then used as

the true coefficient values for each model when simulating data. Compo-

sitional covariates xi (i = 1, . . . , N; N = 100, 250, 500, 1000) were simulated

independently such that xi ∼ Dirichlet(1, 1, 1). Because our direct regression

model and the Alenazi (2019) model both directly specify E[yi|xi], we used

the coefficients for each model from the two datasets to obtain the true con-

ditional expected values, and then simulated yi|xi ∼ Dirichlet(10 · E[yi|xi])

for each model. For the Chen, Zhang, and Li (2017) model, we simulated

ilr(yi)|xi ∼ N (E[ilr(yi)|xi], 1), and used yi = ilr−1(yi) as the compositional

outcome.

Each of the three models were fit on the simulated data. To compare

models, we generated a large, independent test set and obtained the true

E[yi|xi] for each observation. We then obtain the average KLD between the

true and estimated conditional means in this independent set. This full process

is repeated 10,000 times for every combination of N, true data generating

mechanism, and dataset.

For ease of comparison, Figure 3.2 shows the log KLD for each simulation

setting, averaged across all 10,000 simulations. Unsurprisingly, the correctly

specified model performs the best in conditional mean estimation across al-

most all settings. Interestingly, the Chen, Zhang, and Li (2017) model appears

to perform much worse when it is misspecified, as compared to the direct re-

gression model and the Alenazi (2019) model. Overall, these results show that

each of these models can be used to model compositional regression models,
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and that the KLD (either estimated on a test set or through cross-validation) is

a valid metric for model comparison.

True model 
 Direct Regression

True model 
 Alenazi (2019)

True model 
 Chen et al. (2017)
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Chen et al. (2017)

Figure 3.2: Log KLD estimated using a test set, across various sample sizes and
true models. Each column represents a different true model for the compositional
outcome, with two true coefficients values estimated on different datasets (solid and
dashed lines). Each color shows the estimated Log KLD based on the fitted model.

3.6.2 Direct regression on different data generating mecha-
nisms

Because the direct regression model does not specify a likelihood for y|x, we

compare performance of the direct regression model across different data

generating mechanisms that share the same conditional mean model. As in

Section (3.6.1), we estimate the coefficients of the direct regression model on

the same two datasets, and generate covariates xi using a uniform Dirichlet

distribution. We then generated yi|xi using three data generating mechanisms

presented by Murteira and Ramalho (2016):

1. Dirichlet: The compositional outcome yi is directly generated via the
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model yi|xi ∼ Dirichlet(10 · B
′
xi)

2. Multinomial (proportion): We first generate an individual “sample-size”

ni from a Discrete − Uni f orm(1, 30) distribution. Individual counts

are generated via y∗
i |xi ∼ Multinomial(ni, B

′
xi), and the compositional

outcome yi is defined such that yik =
y∗ik

∑3
k=1 y∗ik

3. Dirichlet-multinomial (proportion): We introduce over-dispersion into

the multinomial data generating scheme, by first simulating pi|xi ∼
Dirichlet(10 ·B

′
xi). Rather than simulating y∗

i |xi ∼ Multinomial(ni, B
′
xi),

we instead simulate y∗
i |xi ∼ Multinomial(ni, pi). The compositional out-

come yi is again defined such that yik =
y∗ik

∑3
k=1 y∗ik

The fitted direct regression models are evaluated via KLD on a test set, as

in Section (3.6.1). Figure 2 shows that while the (log) KLD is similar across

all data generating mechanisms, the model performs slightly worse for the

models with higher variance for the compositional outcome. However, when

the other two (incorrectly specified) models are fit to this simulated data, the

direct regression model outperforms these models across all data generating

mechanisms (Appendix Figure 3.7), again showing the importance of correctly

specifying the conditional mean for the compositional outcome.
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Figure 3.3: KLD estimated using a test set, across various sample sizes and data
generating mechanisms, with the conditional mean specified via the direct regression
model. Each column represents a different true value for B, based on the two different
real-world datasets. Each color shows the estimated KLD for different data generating
mechanisms for the compositional outcome.

3.6.3 Evaluating the Type-I and Type-II error rates of the global
linear independence test

To evaluate the testing procedure introduced in Section 3.5 in terms of Type-I

and Type-II error rates, we perform a simulation study that we detail in the

Appendix. In summary, we observe that when y is linearly independent of

x, our procedure produces pre-specified Type-I error rates, regardless of the

data generating mechanism for y. We also observe that the permutation test

generally has high power to detect linear relationships between E[y] and x,

although this is not the case for smaller sample sizes (n=100) when the linear

relationship is weak. Finally, we observe that when the true conditional mean

is that specified by the direct regression model, but the model is specified via
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Chen, Zhang, and Li (2017) model, the permutation test has lower power to

detect dependence between E[y] and x.

3.7 Applications

To show that our method can realistically use data to address scientific ques-

tions in an interpretable manner, we now apply our method to two datasets

which have a compositional predictor and a compositional outcome.

3.7.1 Educational status of mothers and fathers in European
countries

Parental educational attainment has a large effect on child outcomes (Dubow,

Boxer, and Huesmann, 2009). Filzmoser, Hron, and Templ (2018) provide a

dataset that contains the percent of fathers and mothers with low, medium,

and high education levels in 31 European countries. The question of in-

terest is how the percentage of fathers with a given education level relate

to the percentage of mothers with different education levels, across the 31

countries. We let yik be the percentage of fathers with education level k (1 =

low (pre-primary, primary or lower secondary education), 2 = medium (upper secondary education and post-secondary non-tertiary education),

3 = high (first stage of tertiary education and second stage of tertiary education))

(Eurostat, 2015) in country i, and xij be the percentage of mothers with educa-

tion level j.

Fitting the model in (3.5) leads to the following estimate of B:
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B̂ =

⎛⎝.91 .05 .04
.00 .91 .09
.00 .14 .86

⎞⎠
which shows high correlation between the educational attainment status of

fathers and mothers (independence test p-value=0). The coefficients and 95%

confidence regions, obtained via bootstrap, are shown in Figure 3.4. There is

noticeably more uncertainty in estimation of B3∗ than in the other rows of B.

In addition, there is very little uncertainty in B̂2,1

1
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E[y2]
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Figure 3.4: Visualization of the coefficients for regression the percentage of fathers of
a given education level on the percentage of mothers of a given education level. Each
row of B̂ is labeled with a number in the ternary diagram. The 95% confidence region
for each row is drawn in blue.

The analytical interpretation of B̂ means that increasing the percentage of

mothers with a medium level of education level by .10, while decreasing the

percentage of mothers with a low level of education level by .10, is associated

with a change in the percentage of fathers with low, medium, and high educa-

tional status of -.09, .09, and .01, respectively. Similar affects are seen for other
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changes of the percentage of mothers with a given educational status.

To visualize the model fit, we first obtain predicted values for each of

the father educational compositions, using leave-one-out cross-validation

(LOOCV) (Friedman, Hastie, and Tibshirani, 2001), based off the mother

educational compositions in each country. Figure 3.5 shows the observed

versus predicted percentage of fathers with each level of education, across

the 31 countries. The predicted percentages are all very close to the observed

percentages, showing that our simple model is not only interpretable, but also

appears to fit the observed data well.
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Figure 3.5: Observed versus predicted father educational attainment compositions
across each of the 31 countries. The grey line represents the identity line.

We also compare our model to the models presented by Chen, Zhang,

and Li (2017) and Alenazi (2019) using the KLD between the observed y and

predicted ŷ, where ŷ is estimated via LOOCV for all three methods. Each of

the three methods had a KLD of .024, indicating similar model fit.
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3.7.2 White cell composition analysis

Aitchison (2003) and Alenazi (2019) consider a dataset in which the propor-

tions of white blood cell types (granulocytes, lymphocytes, and monocytes)

in 30 blood samples are determined by both a time-consuming microscopic

analysis and an automated image analysis. The microscopic analysis is known

to produce accurate results, while the accuracy of the image analysis is un-

known. If the estimated compositions from the microscopic analysis can be

predicted by the compositions estimated by the image analysis, it would be

time-saving to use the automated image analysis in the future.

We let yik and xij be the estimated composition of white blood cell type k

and j (1 = granulocytes, 2 = lymphocytes, 3 = monocytes) by the microscopic

and image analysis, respectively. The estimate of B is

B̂ =

⎛⎝.97 .03 .00
.00 1.00 .00
.00 .04 .96

⎞⎠
which again shows high correlation between the compositional outcome and

explanatory variables (independence test p-value=0). Because B̂ is extremely

close to the identity matrix (i.e. perfect correlation), visualization of B̂ provides

little additional benefit in interpretation and we do not plot B̂ in a ternary

diagram.

If the image analysis estimates a white blood cell composition of (.65, .26, .09),

the average estimated composition for the image analysis, we would predict

that the microscopic analysis estimates a composition of (.63, .28, .09). Increas-

ing one part of the estimated composition from the image analysis would also
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lead to a very similar predicted increase in the estimated composition from

the microscopic analysis. Figure 3.6 again shows that our method produces

extremely accurate predictions, obtained via LOOCV.
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Figure 3.6: Observed versus predicted white blood cell composition estimates using
the microscopic analysis from each of the 30 samples. The grey line represents the
identity line.

Finally, we again compare our method to the methods presented in Section

(3.2) using the KLD. As in the analysis in (3.7.1), the models perform nearly

identically, with direct regression model and the model from Chen, Zhang,

and Li (2017) producing a KLD of .005, and the model from Alenazi (2019)

producing a KLD of .006. These two analyses show that our method is not

only more interpretable, but also comes without loss of fidelity to the observed

data.
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3.8 Discussion

In this manuscript, we have introduced a novel direct regression model for

compositional outcomes and explanatory variables. This direct regression

model offers a simple interpretation of the regression coefficients, as opposed

to currently used transformation-based methods. The simple interpretation of

the direct regression model’s coefficients facilitates the use of this model by

practitioners who are not deeply familiar with compositional data transfor-

mations, without having to resort to graphical techniques for visualizing the

response surface. In addition to its simplicity, the direct regression model can

accurately approximate observed scientific data, as shown in Sections 3.7.1

and 3.7.2. Fast parameter estimation is obtained through a likelihood-free EM

algorithm, and a global null hypothesis test is performed via a quasi-likelihood

ratio test.

One important future direction is developing a robust workflow for model

comparison and selection for compositional regression problems. Although

we have shown the potential of comparing the estimated KLD between models,

there may be additional graphical and analytical tools that may yield better

insight. Another important future direction is extending the direct regression

model to allow for either continuous covariates or multiple compositional

covariates, while maintaining simple interpretations for the compositional

covariate coefficients. Current models for this problem simply extend the

Chen, Zhang, and Li (2017) model by including the continuous covariates in

the model Morais, Thomas-Agnan, and Simioni, 2018. A potential solution is

to use the direct regression model to model the partial dependence (Greenwell,
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2017) between the compositional outcome and the compositional covariates

of interest, but we leave this for future work.

3.9 Appendix

3.9.1 Proofs

Proof of Theorem 1. We adopt this proof from the proof of Theorem 2.1 in

Yao (2013). For i = 1, . . . , N and k = 1, . . . , D1, let z(t+1)
ik be a discrete random

variable such that

P

⎛⎝z(t+1)
ik =

B(t+1)
jk

B(t)
jk

⎞⎠ =
xijB

(t)
jk

∑Ds
j=1 xijB

(t)
jk

= π
(t+1)
ijk , j = 1, . . . , Ds

We then have
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f (B(t+1))− f (B(t)) =
N

∑
i=1

Dr

∑
k=1

yik log

⎛⎝∑Ds
j=1 B(t+1)

jk xij

∑Ds
j=1 B(t)

jk xij

⎞⎠

=
N

∑
i=1

Dr

∑
k=1

yik log

⎛⎝ Ds

∑
j=1

B(t)
jk xij

∑Ds
j=1 B(t)

jk xij

·
B(t+1)

jk xij

B(t)
jk xij

⎞⎠

=
N

∑
i=1

Dr

∑
k=1

yik log

⎛⎝ Ds

∑
j=1

π
(t+1)
ijk ·

B(t+1)
jk xij

B(t)
jk xij

⎞⎠

=
N

∑
i=1

Dr

∑
k=1

yik log
(︂

E[z(t+1)
ik ]

)︂

≥
N

∑
i=1

Dr

∑
k=1

yikE[log
(︂

z(t+1)
ik

)︂
]

=
N

∑
i=1

Dr

∑
k=1

yik

Ds

∑
j=1

π
(t+1)
ijk log

⎛⎝B(t+1)
jk

B(t)
jk

⎞⎠

=
N

∑
i=1

Dr

∑
k=1

Ds

∑
j=1

yikπ
(t+1)
ijk

[︂
log
(︂

B(t+1)
jk

)︂
− log

(︂
B(t)

jk

)︂]︂
Because the M-step in (3.11) is the same regardless of whether y is categor-

ical or compositional, this implies that

N

∑
i=1

Dr

∑
k=1

Ds

∑
j=1

yikπ
(t+1)
ijk log

(︂
B(t+1)

jk

)︂
≥

N

∑
i=1

Dr

∑
k=1

Ds

∑
j=1

yikπ
(t+1)
ijk log

(︂
B(t)

jk

)︂

we have f (B(t+1))− f (B(t)) ≥ 0, with f (B(t+1))− f (B(t)) > 0 if Q(B(t+1)|B(t)) >

Q(B(t)|B(t)).
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3.9.2 Additional Figures
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Figure 3.7: Comparison of models via Log KLD, when the direct regression model
specification is the correct conditional mean. The correctly specified direct regres-
sion model outperforms the other two models, across data generating mechanisms,
coefficient values, and sample sizes.

3.9.3 Coefficient values for the ILR regression model

Model 1

β01 = 1, β11 = 2, β21 = −1

β02 = −2, β12 = −1, β22 = 2

Model 2

β01 = 1, β11 = .333, β21 = −.333

β02 = −2, β12 = −.333, β22 = .333
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Model 3

β01 = 1, β11 = 2, β21 = 0

β02 = −2, β12 = −1, β22 = 0

3.9.4 Simulation study to evaluate Type-I and Type-II error
rates for the global independence test

We again generated xi independently from a uniform Dirichlet distribution

for i = 1, . . . , N, with N = 100, 250, 500, 1000. We then generated yi|xi using

the three data generating mechanisms introduced in Section 3.6.2.

To evaluate the Type-I error rate, we generated data via the direct re-

gression model by setting each row of B to be (1
3 , 1

3 , 1
3), which implies that

E[y|x] = E[y] = (1
3 , 1

3 , 1
3). We then simulated 10,000 data sets for each com-

bination of of the 3 data generating mechanisms and 4 sample sizes. Table

2 shows the percentage of the simulations where the observed p-value was

below .05. Across all the sample sizes and data generating mechanisms for y,

we see that all observed Type-I error rates are very close to the nominal .05

rate, showing that the permutation test is well calibrated.

True Distribution N=100 N=250 N=500 N=1000
Dirichlet .050 .052 .051 .052
Multinomial .054 .050 .052 .047
Dirichlet-Multinomial .050 .050 .048 .052

Table 3.2: Empirical Type-I error rates across different sample sizes and data generat-
ing distributions for y.

For evaluating the Type-II error rate when the direct regression model is

correctly specified, we used the three different values for B:
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B(1) =

⎛⎝.90 .05 .05
.05 .90 .05
.05 .05 .90

⎞⎠ ; B(2) =

⎛⎝.40 .30 .30
.30 .40 .30
.30 .30 .40

⎞⎠ ; B(3) =

⎛⎝.90 .05 .05
.33 .33 .33
.33 .33 .33

⎞⎠
The interpretations of B(1) and B(2) were introduced in Section 3.3. B(3)

represents the setting when y1 and x1 are highly correlated, but increasing x2

at the expense of x3 (and vice-versa) do not lead to any changes in E[y].

Table 3 shows the percentage of simulations for each setting where the

observed p-value was greater than .05. For B(1) and B(3), the permutation

test shows extremely good performance in terms of Type-II error. Because the

rows of B(2) are fairly close to being equal, the method unsurprisingly has a

high Type-II error rate for N = 100. Interestingly, the Type-II error rates differ

across the three data generating mechanisms. As N increases, the Type-II error

rate decreases across all data generating mechanisms, with a Type-II error rate

close to 0 when N = 1000.

Value for B True Distribution N=100 N=250 N=500 N=1000

B(1)
Dirichlet .000 .000 .000 .000
Multinomial .000 .000 .000 .000
Dirichlet-Multinomial .000 .000 .000 .000

B(2)
Dirichlet .582 .152 .006 .000
Multinomial .696 .322 .049 .001
Dirichlet-Multinomial .812 .549 .211 .018

B(3)
Dirichlet .000 .000 .000 .000
Multinomial .000 .000 .000 .000
Dirichlet-Multinomial .003 .000 .000 .000

Table 3.3: Type-II error rates for the direct regression model across different values of
B, data generating mechanisms, and sample sizes.

We also evaluated the Type-II error rate of our method when the true
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model is the Chen, Zhang, and Li (2017) model. We specify E[ilr(yi)k] via

the model in (3.1) and provide coefficient values in the appendix. Outcomes

yi were generated by first simulating ilr(yi)k ∼ N (E[ilr(yi)k|xi], 1) and then

setting yi = ilr−1(ilr(yi)). The permutation test achieved a Type-II error rate

of 0 for all sample sizes and coefficient values, showing robustness to incorrect

specification.

Finally, we evaluate the Type-II error rate of a likelihood ratio permutation

test using the Chen, Zhang, and Li (2017) model. We use a normal likelihood

for the ILR transformed outcomes, and estimate the coefficients and standard

errors via maximum likelihood, as in Chen, Zhang, and Li (2017). When the

ILR model is correctly specified, using the coefficient values specified in the

appendix, the Type-II error rate is 0 across all sample sizes. However, when

the true conditional mean is that specified by the direct regression model,

comparing Table 4 to Table 3shows the ILR regression model to have lower

power than the direct regression model.

Value for B True Distribution N=100 N=250 N=500 N=1000

B(1)
Dirichlet .000 .000 .000 .000
Multinomial .000 .000 .000 .000
Dirichlet-Multinomial .000 .000 .000 .000

B(2)
Dirichlet .642 .225 .017 .000
Multinomial .914 .854 .743 .515
Dirichlet-Multinomial .909 .834 .692 .405

B(3)
Dirichlet .000 .000 .000 .000
Multinomial .320 .014 .000 .000
Dirichlet-Multinomial .231 .004 .000 .000

Table 3.4: Type-II error rates for the Chen, Zhang, and Li (2017) model, using different
values of B, data generating mechanisms, and sample sizes.
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Chapter 4

Generalized Bayesian
Quantification Learning for Dataset
Shift

4.1 Introduction

Classifiers are often developed with the goal of obtaining accurate predic-

tions for individual units. For example, risk prediction models have been

developed for identifying patients at high risk of cardiovascular disease. The

outputs from these classifiers are used to guide decision making for individu-

als in the clinical setting (Moons et al., 2012). However, in some applications,

the objective is not individual level predictions, but rather to learn about

population-level distributions of a given outcome. Examples include senti-

ment analysis for Twitter users (Giachanou and Crestani, 2016), estimating

the prevalence of chronic fatigue syndrome (Valdez et al., 2018), and cause

of death distribution estimation from verbal autopsies (King, Lu, et al., 2008;

McCormick et al., 2016; Serina et al., 2015; Byass et al., 2012; Miasnikof et al.,

2015).
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The task of predicting the population distribution of unobserved true out-

comes (labels) based on observed covariates has been termed quantification

(Forman, 2005; Bella et al., 2010; González et al., 2017; Pérez-Gállego et al.,

2019) in the machine learning literature. Since the covariates are usually

passed through a classifier to obtain predicted labels, quantification can be

viewed as prevalence estimation using these predicted labels. Quantification

requires building a classifier which can predict an outcome y using variables

x. This can be done by obtaining training data with observed outcomes y and

variables x that can be used to train a classifier, or alternatively, creating a

classifier based on expert knowledge (Kalter et al., 2015). In either case, the

classifier is then used to predict labels in the test set representing the popula-

tion of interest where we want to estimate the distribution of the categorical

outcome y, but only observe x. The predicted classes (or probabilities) for

individuals in the test set are then aggregated to obtain an estimate of the

distribution of the outcome in this population, ptest(y) (Forman, 2005).

Quantification is distinct from building a classifier. It also goes beyond the

task of training a classifier to accurately predict individual labels as common

methods for quantification adjust output from inaccurate classifiers to improve

quantification (Forman, 2008; Bella et al., 2010). However, these adjustments

currently rely on estimating the classifier’s true and false positive rates (or their

multi-class equivalents) from the training data and assumes that these rates are

the same in the test set. A review of the current approaches to quantification is

provided in Section 4.2. This is similar to approaches used for transportability

of clinical trial results, which use a weighted average of covariate conditional
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treatment effects obtained from the study sample to estimate the average

treatment effect in a target population. (Westreich et al., 2017; Cole and Stuart,

2010). Thus, the assumption that the misclassification rates are the same in

the training and test data can be viewed as a transportability assumption.

Implicit in the transportability assumption is that ptr(x|y) = ptest(x|y)
(Pérez-Gállego et al., 2019), although the marginal distribution of the outcome

in the training data, ptr(y), is allowed to be different from ptest(y). This implies

that quantification is best suited for y → x problems (Fawcett and Flach, 2005)

where the joint distribution of p(x, y) = p(x|y)p(y). These type of problems

occur when the latent outcome of interest, such as the presence or absence of

a specific disease, causes distinct symptoms (Fawcett and Flach, 2005). Thus,

even though we use x to predict y, x is only observed as a result of the causal

chain beginning with y.

Under this transportability assumption,the conditional distribution of the

predicted labels a from a classification algorithm is given by

p(a | y) =
∫︂

x
p(a | x)p(x | y)dx . (4.1)

Here, p(a | x) is the prediction distribution from the algorithm, and is going

to be same in the training and test sets for the same x. Hence, if we assume

that ptr(x|y) = ptest(x|y), then we have ptr(a | y) = ptest(a | y) in (4.1). That

is, we assume that the sensitivity and specificity of the classifier is same in the

training and test dataset.

Dataset shift occurs when both ptr(y) ̸= ptest(y) and ptr(x|y) ̸= ptest(x|y)
(Moreno-Torres et al., 2012). It is evident from (4.1) that under dataset shift, we

123



will not generally have ptr(a | y) = ptest(a | y). This renders the assumptions

of same sensitivity and specificity among the training and test sets used by

most quantification methods invalid. An example of dataset shift is in the

Population Health Metrics Research Consortium (PHMRC) gold standard

dataset (Murray et al., 2011), which contains 168 reported symptoms and gold-

standard underlying causes of death for adults in four countries. There are

21 total causes of death, that are then aggregated to 5 broader cause of death

categories. Figure 4.1 shows the percentage of subjects within each country

and cause of death that report each symptom. The x-axis is an enumeration of

the entire list of symptoms x and the y-axis plots p(x | y) for each symptom

x. With no dataset shift, we would expect the conditional response rates

(within each cause of death) for each question to be the same for each country.

However, as the country-specific lines are quite distinct, it is clear that even

within the same cause of death the reported symptom rate p(x | y) differs by

country. This leads to poor performance when using symptoms and cause of

death labels from 3 countries to predict the cause of death distribution for the

remaining country (McCormick et al., 2016).

When limited data with known labels is available from the test set, Datta

et al., 2018 have previously developed a quantification approach to address

dataset shift called population-level Bayesian Transfer Learning (BTL) which

resourcefully combines this limited labeled data with the predicted labels for

all test data. The labeled test data, rather than the training data, are used

to estimate the misclassification rates (sensitivities and specificities) of the
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Figure 4.1: Percent of subjects with each of 168 reported symptoms within each of
the 5 gold-standard underlying causes of death, by country.

algorithm on the test set. Importantly, only the distribution of x|y in the la-

beled instances is required to be representative of the whole test set. This is

equivalent to assuming the misclassification rates are transportable from the

labeled test data to the unlabeled test data. The marginal distribution of y in

the labeled test set is allowed to be different from that in the unlabeled test set.

Aside from its demonstrated performance in improving population level class

estimates, the advantages of this approach are its simplicity, incorporating
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multiple classification algorithms through an ensemble approach, and shrink-

age to the default quantification estimates that assume perfect sensitivity and

specificity when no labeled test data is available. In addition, this method only

requires predictions from the available classifiers. It does not require access to

the training data or additional training of prediction models using the labeled

data, which can be a complicated endeavor given the high-dimensionality of

the symptom space. However, quantification under dataset shift using BTL

has three gaps that we aim to address here.

First, BTL requires a single-class prediction for each instance. Statistical

classifiers are often probabilistic (McCullagh and Nelder, 1989; Murphy et al.,

2006; Specht, 1990) producing the vector of prediction probabilities for every

class. Hence, an additional step must be taken to convert this multi-class

prediction distribution that is compositional data to a single-class prediction,

a categorical data, by using some cutoff rule. Typically the most probable

category is used, although cutoffs may have to be developed through cross-

validation for algorithms such as Random Forest (Dahinden, 2011). Using

this leads to information loss and Bella et al., 2010 showed that quantifica-

tion using class probability estimates can outperform quantification using

categorization. Thus, it is desirable to incorporate the entire compositional

prediction distributions, instead of the single class predictions. Second, BTL

does not allow for uncertainty in the true labeled test instances. Label uncer-

tainty is not uncommon. For example, physicians may be uncertain in the

final cause of death (McCormick et al., 2016), or labels may be produced by

aggregating crowd sourced responses (Bragg, Weld, et al., 2013). Third, there
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is no supporting theory about the accuracy of Bayesian quantification under

dataset shift in large sample settings.

In this manuscript, we generalize Bayesian quantification using limited

labeled test data to use entire prediction distributions from classifiers. To

do so, rather than positing a valid likelihood for the compositional prob-

ability predictions, we derive Bayesian-style estimating equations derived

from Kullback-Liebler divergence loss. The advantages of using this loss

function over proper likelihoods for compositional data are many fold. The

loss function is defined by a first moment (expectation) assumption and is

robust to model misspecification. The loss function for the labeled data based

on the conditional expectation is coherent with that for the unlabeled data

based on the corresponding marginal expectation. Unlike Dirchlet higher-

order distribution models for compositional data, the loss function approach

allows 0’s and 1’s in the data. Also, importantly, this loss function remains

the same no matter if one uses categorical single-class predictions or if one

uses compositional probability predictions, subsuming the BTL model as a

special case, when all data are categorical. The loss function harmonizes with

conjugate priors for the parameters and a simple coarsening and rounding

approximation leads to a fast and efficient Gibbs’ sampler.

Next, we extend our approach to allow for probabilistic true labels. We

use simple belief-based mixture modeling (Szczurek et al., 2010) to allow

practitioners to specify the apriori class probabilities for instances in the

labeled set.

Like BTL, our approach can combine multiple classifiers to produce an
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ensemble quantification that is robust to inclusion of poor classifiers in the

group. This also enables using two-versions of the output from the same clas-

sifier (the entire probability predictions or the most probable category). This

is often helpful as there is some evidence suggesting that occasionally thresh-

olding can perform better than using full predictive distributions (Quevedo,

Luaces, and Bahamonde, 2012; Byass et al., 2012). Since it is not known apriori

which choice of output will lead to more accurate quantification, the ensemble

approach guards against the worst of the two choices for any dataset.

We demonstrate how different choices of shrinkage priors ensures that, in

the absence of labeled test data, i.e., when it is not possible to adjust for dataset

shift, quantification from our method shrinks to different existing quantifi-

cation methods like classify & count (CC) (Forman, 2005) or probabalistic

average (PA) (Bella et al., 2010). When using multiple classifiers, ensemble

quantification from our approach, in absence of labeled test data, shrinks to

the average of quantification over the set of classifiers using CC or PA.

Bayesian updating of posteriors using loss-functions is termed generalized

Gibbs updates or generalized belief updates. The seminal work of Bissiri, Holmes,

and Walker, 2016 explains the interpretation and statistical properties of such

generalized posteriors. An immediate consequence of their work is that our

loss-function, in an asymptotic sense, can be interpreted as a sum of two

Bayes risks, one for the labeled data used to adjust for dataset shift and

one for the unlabeled data to perform quantification. Going beyond this

nice interpretation, we prove a theoretical guarantee about the asymptotic

consistency of our quantification approach. The theory does not require full
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specification of a true model and only relies on the first-moment assumption

being true for some parameter value. The theory extends easily to the case of

multiple classifiers.

Because our model handles both single-class and probabilistic predictions

from a classifier, in addition to probabilistic true labels, and uses generalized

Gibbs updates, we term it Generalized Bayesian Quantification Learning (GBQL).

Despite not positing a parametric likelihood for the compositional individual

predictions, we develop and justify a simple and fast Gibbs sampler for obtain-

ing posterior samples for the parameters of interest. We show the robustness

of our method through simulations, and demonstrate its performance on the

problem of deriving the cause-specific rates of child death using the PHMRC

dataset.

4.2 Notation, assumptions, and review of quantifi-
cation learning

We have N instances in our test set with predicted labels a = a(x) output

from a pre-trained algorithm A, but without the true labels y. The instances

are assumed to be randomly sampled from our population of interest and our

interest lies in estimating the distribution of y. We further assume availability

of n ≪ N instances from our population of interest with both true labels y and

predicted labels a. We do not assume that the training data for the algorithm is

available, nor do we assume the knowledge of the covariates x for the test set,

as long as a(x) is available to us. Because true labels are potentially expensive

to obtain, n is typically much smaller than N (and potentially n can be zero at
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the beginning of a quantification project like burden of disease estimation in

a country), so even if the covariates were available, the limited labeled data

is not sufficient for building a new classifier as the covariate vectors x are

typically high-dimensional.

We refer to the population from which we obtain unlabeled instances

as U and the sub-population from which we obtain labeled instances as L.

Although L is a subset of the same test population, we do not require the

distribution of y in L to be representative of our whole population. This is

because true labels for outcomes may only be available for a convenient sam-

ple. For example, true cause of death may only be diagnosed for individuals

who die in settings such as a hospital, making it impossible to also randomly

sample individuals with known labels from our population of interest. We

only assume that the conditional distribution p(x | y) is the same in the la-

beled and unlabeled instances. This transportability assumption for p(x | y)

between L and U is more likely to hold. For example, even if the marginal

cause of death distributions are different for hospital and community deaths,

given a cause y, the symptoms x observed in the patient are likely to have

similar distribution in both settings. The transportability assumption implies

from (4.1) that p(a | y) is also transportable between L and U as the classifier

p(· | x) is learnt from training data and this distribution remains same given x

irrespective of the population x is drawn from.

We let yr ∈ {1, . . . , C} denote the true class (label) for each instance r where

C is the the total number of categories. Our target of interest is p = pU (y) =

(p1, . . . , pC)
′, the distribution of the outcome y in our population of interest
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U , i.e, pi = p(yr = i|r ∈ U ). An algorithm has been trained using labeled

training data that produces a compositional score a(xr) = ar = (ar1, . . . arC)

for an instance r with covariate xr such that 0 ≤ ar ≤ 1 and ∑C
i=1 ari = 1.

These scores may be an actual estimate of p(yr = i|xr), or simply a normalized

degree of belief about whether yr = i|xr. If a classifier gives a single predicted

class j for an instance, in which case we would have arj = 1 and arj′ = 0

for j
′ ̸= j. Note that because these scores are produced via the training data,

these are only expected to be accurate in the r ∈ training data, and not for

r ∈ U ∪ L.

The most simple quantification approach is called Classify & Count (CC)

(Forman, 2005). CC requires that there is a single predicted class j for each

instance, so that arj ∈ {0, 1}. The CC estimate of pi is simply

p̂CC
i =

∑r∈U ari

N
.

An Adjusted Classify & Count (ACC) (Forman, 2005) method has been

proposed to account for the fact that a classification algorithm is not expected

to make perfect predictions, even for instances from the same population as

the training data. ACC relies on cross-validation with the original training

data to estimate the true positive and false positive rates (tpr and fpr) of

the classifier (for the base case of C = 2), and obtaining the following ACC

estimate of pi

p̂ACC
i =

p̂CC
i − f pr

tpr − f pr
. (4.2)
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This method and its multi-class extensions (Hopkins and King, 2010) are

inappropriate for quantification in the presence of dataset shift, as the f pr and

tpr estimated from the training data will not be representative of the true f pr

and tpr in the test population U ∪ L (Pérez-Gállego et al., 2019). Furthermore,

p̂ACC
i can be outside of the restricted range of [0, 1], although Hopkins and

King, 2010 correct for this using constrained optimization.

Bayesian Transfer Learning (BTL) (Datta et al., 2018) first proposes a model-

based version of Classify and Count as ∑r∈U ar ∼ Multinomial(N, pCC)

and then adjusts for dataset shift. The adjustment follows from the sim-

ple observation that pCC is actually pU (a) and does not necessarily equal

p = pU (y). In fact, the two are related by the identity pCC = M′p where

M = (Mij) = (p(ar = j | yr = i, r ∈ U ∪ L)) is the misclassification matrix

of the classifier on the test population. This adjustment is conceptually the

same as the one used by ACC and Hopkins and King, 2010. Instead of using

M = I (i.e., no adjustment as in CC) or M = Mtr (i.e., transportability of the

conditional distributions between the training and test data as used in ACC),

BTL estimates M using data from L, i.e., only assumes transportability of the

conditional distributions from the limited test subset L to all test data. BTL

does not assume any transportability of the marginal distribution of y between

L and U . The joint Bayesian hierarchical framework is then specified as

∑r∈U ar ∼ Multinomial(N, M′p)

ar | yr = i ind∼ Multinomial(1, Mi∗) for r ∈ L, i = 1, . . . , C.,
(4.3)

with Mi∗ denoting the ith row of M. The advantages of the Bayesian frame-

works are a) for any prior on p supported on the C-dimensional simplex (like
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a Dirichlet distribution) the posterior is also guaranteed to lie on the simplex

unlike ACC, and b) use of shrinkage priors for M to stabilize estimation when

L is very small. The Bayesian setup also seamlessly allows for extensions like

use of predictions from multiple classifiers, and allowing M and p to be a

function of covariates.

Bella et al., 2010 developed approaches to quantification similar to CC

and ACC, but using probabilistic classifiers, i.e., ar being a compositional

outcome instead of a categorical outcome. The Probabilistic Average (PA)

estimate of pi, p̂PA
i , is obtained in the same manner as p̂CC

i , but does not require

arj ∈ {0, 1}. An adjusted version of the PA estimate (APA) uses probabilistic

estimates of the tpr and f pr by taking the average estimated probability

within each class; this is easily extended to 3 or more classes. However, like

CC and ACC, they do not adjust for dataset shift. To our knowledge, there

is no quantification method for dataset shift that utilizes the compositional

predictions from probabilistic classifiers. Given the advantages of the BTL

approach to quantification under dataset shift using limited labeled test data,

we propose a generalization that can use both categorical and compositional

predictions from classifiers.

4.3 Method

4.3.1 Issues with Bayesian quantification using compositional
labels

There are fundamental hurdles to extend the model in (4.3) when some or all

ar are compositional. The Dirichlet distribution and its generalizations (Hijazi
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and Jernigan, 2009; Wong, 1998; Tang and Chen, 2018), are the standard model

for compositional data. However, there are several issues with specifying a

Dirichlet model for ar.

1. We allow the ar to take 0 and 1 values for the same dataset, as some ar

may be compositional while the remaining can be categorical. Classi-

fiers that have an in-built thresholding rule for eliminating classes with

small prediction probability will yield such mixed data types. Dirichlet

distributions doesn’t support 0’s and 1’s. and would require forcing the

arj’s to lie strictly in (0, 1) using a cutoff. The choice of such a cutoff is

arbitrary. Alternatively, one can use the zero-inflated Dirichlet distribu-

tion (Tang and Chen, 2018) to formally account for the presence of 0’s,

which leads to a significant increase in the number of parameters.

2. The BTL approach (4.3) has a coherence property. The conditional model

in the bottom-row ar | y = i ∼ Multinomial(1, Mi∗) for r ∈ U ∪ L leads

to the marginal model in the top row ar ∼ ∑C
i=1 pi Multinomial(1, Mi∗) =

Multinomial(1, M′p) for r ∈ U . Specifying ar | y = i as a Dirichlet distri-

bution (or its variants), will endow ar with a mixture-Dirichlet marginal

distribution which presents a computational challenge in posterior sam-

pling.

3. Alternatively, one can enforce coherence in the conditional and marginal

expectations by specifying models of the form ar | y = i ∼ Dirichlet(α1Mi∗)

and ar ∼ Dirichlet(α2M′p). Such Dirichlet models for the data is sus-

ceptible to model misspecification. While more complex models like
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generalized Dirichlet (Wong, 1998) can be used, increased model com-

plexity usually comes with added computational burden. In addition,

specifying a distribution would be specific to the classifier, training data,

and test data, and would be very time-consuming and prone to error.

Misspecification of the likelihood can lead to incorrect inference for p,

which can make the dataset-shift adjusted estimate of p even worse than

the unadjusted one.

4. Single-class classifiers can be viewed as a subclass of probabilistic classi-

fiers, with the predicted distribution being degenerate. Hence, if using

two classifiers, one with compositional predictions and one single-class

predictions, use of the Dirichlet model for the former and a multinomial

model for the latter is discordant.

5. The multinomial likelihood for ar nicely harmonizes with conjugate

Dirichlet priors for the parameters M and p leading to an extremely

efficient Gibbs sampler. Using a Dirichlet distribution based likelihood

relinquishes this computational advantage as the priors no longer remain

conjugate.

Finally, as an alternate to Dirichlet-based likelihoods, one can transform

the data and use log-ratio models, which uses a multivariate normal or skew-

normal to model the log-ratio coordinates of the compositional ar (Comas-Cufí,

Martín-Fernández, and Mateu-Figueras, 2016). However, a transformation-

free approach is generally more desirable. Also, a model on the transformed

compositional ar will be discordant with the multinomial model for the cate-

gorical ar. The transformations also generally do not allow for 0’s and 1’s.
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4.3.2 Bayesian estimating equations for compositional data

Central to BTL’s estimation of population class probabilities (“quantification”)

p(yr = i) = pi, ∀r ∈ U (4.4)

(4.3) is the assumption of transportability of conditional distribution between

L and U , i.e.,

p(ar | yr = i) = Mi∗ ∀r ∈ U ∪ L. (4.5)

The distributional assumption (4.5) can also be viewed as a first-moment

assumption

E(ar | yr = i) = Mi∗ ∀r ∈ U ∪ L. (4.6)

The two viewpoints are equivalent for categorical ar used in BTL, but (4.6) is

more general as it is no longer restricted to categorical data. For compositional

ar, rather than specifying p(ar|yr = i), we only make the general first moment

assumption (4.6). This is similar to the first-moment assumption in the PA

and APA approaches. The challenge is of course how to do valid Bayesian

inference without a full model specification.

First focusing on labeled instances r ∈ L, we consider the following loss

function to connect the parameter M to our data ar, y

ℓL(M | {ar, yr}r∈L) = ∑
r∈L

DKL(ar||
C

∑
i=1

Mi∗ I(yr = i)) (4.7)

where DKL(p||q) is the Kullback–Leibler divergence (KLD) between two
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distributions p and q. There are several reasons to choose the KLD loss

functions. First, if (4.6) is true for some M = M0, then

EM0

(︃
dℓL
dM

)︃
= 0 . (4.8)

To see this, observe that dℓL/dM is the derivative of a multinomial likelihood.

Hence, EM0(dℓL/dM) = 0 when ar are categorical. However, this derivative

is only a linear function of ar and hence the expectation remains unchanged

when we switch to compositional ar with the same conditional mean. Hence,

the loss function ℓL leads to a set of unbiased estimating equations (Liang and

Zeger, 1986) for compositional data. The second advantage of using KLD is

that, as x log x = 0, it seamlessly accommodates instances 0’s and 1’s in ar.

Most importantly, minimizing (4.7) is equivalent to maximizing

∏
r∈L

C

∏
j=1

(︄
∑

i
I(yr = i)Mij

)︄arj

which is the exact form of the multinomial quasi-likelihood (MQL). So, when

ar are all categorical, this reduces to the likelihood from the second row of

(4.3).

If only inference on M was of interest, frequentist optimization on (4.7) or

GEE using its derivative can be executed. Using the rich theory of estimating

equations, the estimate ˆ︂M has been shown to be a consistent estimator for M

(Papke and Wooldridge, 1996; Mullahy, 2015), and such frequentist approaches

have been commonly used in the econometrics literature for regression with a

compositional outcome.
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However, the primary interest in quantification is in p and accurate esti-

mation of the nuisance parameter M is only an important intermediate step.

The unlabeled dataset U is the only one informing estimation of p, and using

(4.4) and (4.6), the marginal first-moment condition for ar in U is given by:

E[ar] = E[E[ar|yr]] = ∑
i

piE[ar|yr = i] = M′p, ∀r ∈ U . (4.9)

This harmonizes with the loss-function

ℓU (p, M | {ar}r∈U ) = ∑
r∈L

DKL(ar||M′p) . (4.10)

The loss function ℓU for the marginal distribution of the predicted labels is

coherent with the loss-function ℓL for their conditional distribution, as they

are based off of coherent moment conditions (4.6) and (4.9). Assuming (4.4)

and (4.6) holds for some true p0 and M0, following the same logic used in

(4.8), we can show

EM0,p0

(︃
dℓU

d(M, p)

)︃
= 0, (4.11)

i.e., the derivative is once again an estimating equation. However, if we

only considered ℓU without bringing in ℓL, M and p cannot be identified.

For example, ℓU (M, p) = ℓU (I, M′p). Hence, we will consider the joint loss-

function ℓL + ℓU as adding ℓL helps to identify M which in turns makes p

identifiable.

Loss functions and estimating equations have traditionally been used in

frequentist literature and have been shown to yield inference robust to model

misspecification. To conduct and justify Bayesian inference with loss functions,

we invoke the fundamental results of Bissiri, Holmes, and Walker, 2016 who
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showed that for any reasonable choice of a loss-function ℓ(θ | data) and prior

Π(θ), generalized Gibbs posteriors of the form

Π(θ | data) ∝ exp (−ℓ(θ | data))Π(θ)

are valid posteriors provided the normalizing constant exists. This poste-

rior is interpreted as the distribution ν for θ minimizing the loss function

Eν(ℓ(θ | data)) + DKL(ν, Π).
We will use the notation aL and aU to respectively denote the collections

{ar}r∈L and {ar}r∈U , and similarly for collections of the other variables. The
two-loss functions ℓL and ℓU also have same functional form leading to the
generalized posterior:

Π(p, M | aU , aL, yL) ∝ exp

(︄
− ∑

r∈U
DKL(ar||E[ar])− ∑

r∈L
DKL(ar||E[ar|yr])

)︄
Π(p, M)

∝ exp

(︄
∑
r∈U

C

∑
j=1

arj log
∑i pi Mij

arj
+ ∑

r∈L

C

∑
j=1

arj log
∑C

i=1 I(yr = i)Mij

arj

)︄
Π(p, M)

If all ar were categorical, this posterior is identical to the one from the

BTL model (4.3). However, using the estimating equations approach, we now

have an unified framework for Bayesian quantification for both categorical,

compositional or mixed-type ar without having to specify the full models for

the different data types.

4.3.3 Uncertainty in true labels

As stated in Section 4.1, in many applications, there is uncertainty in some or

all of the true labels in the labeled test set L. For example, a panel of physicians
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may fail to unanimously agree on a single cause, and may provide a subset of

the list of causes from which they believe the individual was equally likely to

die. In this Section, we modify the loss function ℓL to incorporate uncertainty

for class labels in L.

Following the belief based modeling framework of Szczurek et al., 2010, we

let bri represent the apriori probability that instance r belongs to label i. br is

constrained such that 0 ≤ bri ≤ 1 and ∑C
i=1 bri = 1. Now for an instance r ∈ L

we no longer observe the yr’s but observe the belief vector br. Cases where the

true label is identified with complete certainty can be subsumed by writing

br = ei when yr = i, ei denoting the vector with 1 at the ith component and

zeros elsewhere. We can generalize the conditional first-moment condition

(4.6) to

E[ar|br] = E[E[ar|yr, br] | br] = E

(︄
∑

i
Mi∗ I(yr = i) | br

)︄
= M′br

and our loss function for L becomes

ℓL(M | {ar, br}r∈L) = − ∑
r∈L

DKL(ar||M
′
br) = ∑

r∈L

C

∑
j=1

arj log

(︄
∑C

i=1 bri Mij

arj

)︄
(4.12)

Of course, the loss for the unlabeled data remains the same, and Bayesian

inference proceeds using the likelihood ℓL + ℓU with this generalized choice

of ℓL.

Once again, appealing to the results from Bissiri, Holmes, and Walker, 2016,

we can see that ν = Π(p, M|aU , aL, bL) is the probability measure which, as
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n, N → ∞ and n
N → α, minimizes the Bayes risk

Eν

[︂
Er∈U [DKL(ar||M

′
p)] + αEr∈L[DKL(ar||M

′
br)]

]︂
.

4.3.4 Ensemble Quantification Incorporating Multiple Predic-
tions

There may be k = 1, . . . , K predictions for each instance corresponding to

predictions from different classifiers, such as logistic regression versus a sup-

port vector machine. Datta et al., 2018 has already shown the advantage

of incorporating multiple algorithms for quantification when only categori-

cal predictions are available, and their ensemble quantification can easily be

extended to compositional settings.

We represent the kth algorithm prediction for instance r as ak
r . A fundamen-

tal observation for the ensemble approach is that each algorithm is expected

to have their own sensitivities and specificities. Hence, the conditional first

moment assumption (4.6) becomes

E(ak
r | yr = i) = Mk

i∗ ∀r ∈ U ∪ L. (4.13)

For the unlabeled data, we will now have the labels satisfying the marginal

first moment condition E(ak
r = Mk′p). Hence, each of the K predictions for

the unlabeled test data U informs about the same parameter p and we can

conduct ensemble quantification by specifying a loss function which is the

sum of the losses for the individual algorithms:
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K

∑
k=1

[︄
∑
r∈U

DKL(ak
r ||M(k)

′
p) + ∑

r∈L
DKL(ak

r ||M(k)
′
br)

]︄
An advantage of this loss function is that it allows for combining infor-

mation from probabilistic classifiers and non-probabilistic ones (like clinical

classifiers for cause of deaths). Additionally, we can now also use multiple

predictions from the same classifier but using a different output format, e.g.,

one using the full composition prediction distribution versus one only retain-

ing the rescaled scores for the top-S classes and thresholding the rest to zero

(S = 1 is the categorical prediction).

4.3.5 Gibbs Sampler using rounding and coarsening

We first outline the Gibbs sampler steps when only one predicted labels is

available per instance. The sampler for ensemble quantification is detailed in

the appendix. The generalized posterior distribution ν is given by

ν ∝

[︄
∏
r∈U

C

∏
j=1

(︄
∑

i
pi Mij

)︄arj

∏
r∈L

C

∏
j=1

(︄
∑

i
bri Mij

)︄arj
]︄

π(p, M)

When all ar are categorical, the polynomial expansion of (∑i pi Mij)
∑r arj

enabled an efficient latent variable Gibbs sampler in Datta et al., 2018. When

arj are fractions, this convenience is lost as fractional polynomials do not have

such neat expansions. Additionally, since we now allow uncertainty in the

true labels, we also need to consider the extra fractional expansion terms

(∑i bri Mij)
arj .

To enable fast and efficient sampling, we first switch from ν to νround where
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the probabilistic output arj is replaced by ⌈Tarj⌉ where T is an integer, and

⌈·⌉ denotes the ceiling of any real number. Now, consider now the following

generative model:

zrt
ind∼
{︄

Multinomial(1, p) if r ∈ U
Multinomial(1, br) if r ∈ L

, t = 1, . . . , Tr = ∑
j
⌈Tarj⌉

drt|zrt = i ind∼ Multinomial(1, Mi∗), r ∈ L ∪ U

The rounded generalized posterior νround is then the proper Bayesian poste-

rior using the likelihood p(dU , dL | bL, M, p) for any realization of drt’s satis-

fying ∑t I(drt = j) = ⌈Tarj⌉. To obtain samples of p and M from νround, instead

of using this marginalized likelihood, we can equivalently introduce zL, and

zU as latent variables and use the joint likelihood p(dU , dL, zL, zU | bL, M, p).

This joint likelihood decomposes nicely and will be conducive to a Gibbs

sampler with standard Dirichlet priors on M and p.

Next, since we artificially inflate sample size by an order of T by switch-

ing from ar to ⌈Tar⌉, instead of sampling from vround we sample from the

coarsened likelihood

νcoarse ∝ p(dU , dL|bL, M, p)
1
T π(p, M)

Because p(dU , dL|bL, M, p) is a proper likelihood, this implies that ν can

be expressed as a power posterior (Bhattacharya, Pati, Yang, et al., 2019;

Ibrahim et al., 2015; Miller and Dunson, 2019), and as p(dU , dL|bL, M, p) is a

mixture of categorical distributions, we can introduce latent variables into our
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Gibbs sampler by using the Conditional Coarsening Algorithm (Miller and

Dunson, 2019) just like we would do for νround.

For outlining the Gibbs sampler steps, we use generic Dirichlet priors

M ∼ Dirichlet(V), i.e, Mi∗
ind∼ Dirchlet(Vi∗), and p ∼ Dirichlet(v) where V

and v respectively are matrix and vector of positive hyperparameters. Specific

choices with desirable shrinkage properties are discussed in Section 4.3.6. This

gives the following Gibbs updates:

zr|· ∼

⎧⎨⎩Multinomial
(︂

1, 1
∑i Mij pi

(M1j p1, . . . , MCj pC)
)︂

, r ∈ U , drt = j

Multinomial
(︂

1, 1
∑i Mijbri

(M1jbr1, . . . , MCjbrC)
)︂

, r ∈ L, drt = j

Mi|· ∼ Dir
(︁
Ṽi1, . . . , Ṽi J

)︁
, Ṽij = Vij +

1
T

(︄
∑

r∈U ,L

T

∑
t=1

(I(drt = j)I(zrt = i)

)︄

p|· ∼ Dir (ṽ1, . . . , ṽC) , ṽi = vi +
1
T
·
(︄

∑
r∈U

T

∑
t=1

I(zrt = i)

)︄

If there are hyper-parameters γ in V and v that need to be assigned a prior,

they can be sampled using a Metropolis-Hastings step. We note that the full

conditional distributions for the zrt|drt = j for r ∈ U are identical, which

enables them to be jointly sampled. Furthermore, the zrt for r ∈ L do not need

to be updated if there is a i such that bri = 1. We find that setting T = 100

works well in practice, and that there is little information to be gained by finer

coarsening.
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4.3.6 Shrinkage towards default quantification methods

We now discuss how existing quantification approaches are special cases of

GBQL with specific choices of degenerate priors for M, and how we leverage

this knowledge to construct shrinkage priors in data-scarce settings.

Quantification projects like burden of disease estimation using nation-

wide surveys are often multi-year endeavors, and at the initial stages of such

projects, L, consisting of hospital deaths with clinically diagnosed causes,

can be very small. With very limited labeled data, estimating both M and p

precisely with vague priors is ill-advised as M involves C(C − 1) parameters.

Hence, it is important to carefully choose priors that stabilize estimation of M.

We first make the following observations for the scenario where n = 0, i.e.,

when there is no labeled test set to estimate dataset shift. Consider a sequence

{Πu(M) | u = 1, 2, . . .} of priors for M such that Πu converges in distribution

to the degenerate prior at some pre-fixed transition matrix Mpr. Then the

posterior νu using the prior Π(p)Πu(M) converges in distribution to

lim
u→∞

νu(p) ∝ exp

(︄
− ∑

r∈U
DKL(ar||Mpr ′p)

)︄
Π(p) .

If Mpr = I, then for any prior choice of p, limu→∞ νu(p) ∝ Dirichlet(∑r∈U ar)Π(p).

In particular, if Π(p) = Dirchlet(0) or as N → ∞, then limu→∞ νu(p) =

Dirichlet(∑r∈U ar). For categorical ar, this result was proved in Datta et al.,

2018, and shows that Elimu νu(p) = pCC, i.e., using priors Πu(M) shrinking

towards the degenerate prior at I, inference from GBQL becomes identical to

inference from Classify and Count (Forman, 2005) when there is no labeled
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dataset. Analogously, for the same settings, when ar are compositional, poste-

rior mean from GBQL becomes identical to Probabilistic Average. Extending,

the argument to the settings with multiple predictions, it is straightforward

to see that Elimu νu(p) = 1/K ∑K
k=1 pk,PA, i.e., the posterior mean from our

ensemble classifier coincides with the average of the PA estimates for the K

classifiers.

Alternatively, if the misclassification matrix Mtr for the training data is

available and can be trusted for test data, one can use Mpr = Mtr. Then

the posterior limu→∞ νu(p) coincides with the implicit likelihood in Adjusted

Classify and Count (for categorical ar) and in Adjusted Probabilistic Average

(when ar are compositional). In fact, using Π(M) ≈ δ(M = Mtr) in GBQL

is a better implementation of ACC or APA, as the proper posteriors ensure

that the estimate (posterior mode or mean) of p is guaranteed to be a vector of

probabilities lying in [0, 1]. This is not assured in their current implementation

based on a direct correction (4.2).

Hence, in absence of local labeled set, a prior for M concentrated around I

or Mtr, makes estimates from GBQL nearly coincide with these existing meth-

ods (Figure 4.2). Such classes of shrinkage priors for M are easy to construct.

For example, the priors Mi∗ ∼ Dirichlet(γui(M
pr
i∗ + ϵu1)) concentrates around

δ(M = Mpr) if either ϵu → 0 or γui → ∞. When we will have small amounts

of labeled data, using these shrinkage priors will make a bias-variance tradeoff

yielding estimates with higher precision. The benefits of such shrinkage priors

over non-informative priors have been demonstrated in Datta et al., 2018

in such settings. Finally as more and more labeled data is collected, in the
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next section we show that any reasonable choice of prior (including all these

shrinkage priors) leads to desirable asymptotic concentration of the posterior.

GBQL

Labeled
test data

Uncertainty
in true labels

With true
labels

Compositional
predictions

Single class
predictions

Multiple
classifiers

Ensemble
BTL

(Datta et
al., 2018)

One classifier
BTL

(Datta et
al., 2018)

No labeled
test data

Compositional
predictions

Multiple
classifiers

M = Mtr

M = I Average PA

One classifier

M = Mtr
APA

(Bella et
al., 2010)

M = I
PA

(Bella et
al., 2010)

Single class
predictions

Multiple
classifiers

M = Mtr

M = I Average CC

One classifier

M = Mtr
ACC

(Forman,
2005)

M = I
CC

(Forman,
2005)

Figure 4.2: GBQL includes and extends the common quantification methods through
different classifier outputs and choices of priors for M. Red lines indicate where
GBQL extends current methods, while black lines indicate where GBQL subsumes
existing methods.

147



4.4 Theory

Our quantification approach is grounded in the only assumption that for both

L and U , the conditional first moment of ar | yr are correctly specified as in

(4.6). Throughout we do not we do not make any other assumptions about

higher moments or full distributions. Kessler and Munkin, 2015 have used

a similar first moment assumption to develop a Gibbs sampling approach

for compositional regression. However, their approach only incorporates the

rounded likelihood for the psuedo-data dr and does not coarsen. Rounding

inflates the sample size by a factor of T resulting in underestimation of the

posterior variance and the coarsening is needed to adjust for this. We will

show that the coarsening adjustment by this factor of T ensures asymptotic

equivalence of the rounded and coarsened posterior νcoarse with the original

posterior ν. Yuan, Chappell, and Bailey, 2007 also used a similar Gibbs sam-

pler in the context of early-phase clinical trials with multiple toxicity grades.

However, both Yuan, Chappell, and Bailey, 2007 and Kessler and Munkin,

2015 did not provide any theory backing the use of a Gibbs sampler based on

a loss-function instead of a proper likelihood or justified the approximations

used in the Gibbs sampler. Not only have we justified using the first-moment

assumption in a Bayesian framework, by appealing to the results of Bissiri,

Holmes, and Walker, 2016, in this section we also establish posterior consis-

tency of both ν and the rounded and coarsened posterior νcoarse used in the

Gibbs sampler.

We develop the theory for the general case where the true labels in L are

observed with uncertainty br which subsumes the case with exact labels yr.
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We will use ˜︂M and ˜︁p to denote the free parameters in M and p respectively,

i.e., ˜︂M excludes the last column of M, ˜︁p excludes the last element of p. M

and p are bijective functions of ˜︂M and ˜︁p respectively, so we will use them

interchangeably. Let θ = (˜︂M, ˜︁p), then θ is supported on the compact set

Θ = SC
C−1 ⊗ SC−1 where Sd = {x ∈ Rd | xi ≥ 0, 1′x ≤ 1}. Switching to˜︂M and ˜︁p ensures that the parameter space Θ has a non-empty interior. The

generalized posterior from Section 4.3.3 is given by:

νN(θ) = Π(p, M | aU , aL, bL) ∝ exp

(︄
− ∑

r∈U
DKL(ar||M′p)− ∑

r∈L
DKL(ar||M′br)

)︄
Π(p, M).

(4.14)

Let p0 and M0 denotes the true values and θ0 = (˜︂M0, ˜︁p0), an interior point

in Θ. We first state our assumptions, for the theory:

1. Let Bj denote the matrix of br’s stacked as columns for r ∈ L such that

arj > 0. Then Bj is full rank.

2. M0 is non-singular.

Theorem 4. Let Bϵ(θ
0) be the Euclidean ball of radius ϵ around θ0, and Π(p, M) be

any prior which gives positive support to Bϵ(θ
0) for any ϵ > 0. Then, under assump-

tions 1-2, as N, n → ∞ and n/N to some limit, for any ϵ > 0, PνN(Bϵ(θ
0)) → 1.

While the formal proof is provided in the appendix, we briefly outline

the ideas used here which will also help to contextualize the assumptions.

We can write νN(θ) ∝ exp(−ℓL,n(˜︂M)− ℓU ,N(θ))Π(˜︁p,˜︂M) where the subscript

N is added to indicate dependence of ℓL, ℓU and ν on the sample size. Re-

cently, Miller, 2019 has provided very general and useful conditions for es-

tablishing asymptotic concentrations of generalized posteriors of the form
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exp(−N fN(θ))Π(θ). One of the general tricks is to show that the functions fN

converge point-wise to some function f , and that fN’s and f are convex. These

conditions are sufficient for the generalized posterior to concentrate around θ0,

the minimizer of f . In our case, fN = (ℓL,n + ℓU ,N)/N converges point-wise

to f = αEL(DKL(a||M′b)) + EU (DKL(a||M′p)) where α = lim n/N. How-

ever, neither fN’s nor f is convex because of the M′p term, ruling out direct

application of this result.

We hence first focus just on ℓL,n/n and establish the result

Lemma 1. If assumption 1 holds, then for any ϵ > 0 the generalized posterior

νL,n(˜︂M) ∝ exp(−ℓL,n)Π(˜︂M) satisfies,

(a) P
νL,n(˜︂M)(Bϵ(˜︂M0)) → 1.

(b) lim infn inf˜︂M/∈Bϵ(˜︂M0) ℓL,n/n > EL(DKL(a||M0′b)).

Assumption 1 is needed to ensure that the loss-functions ℓL,n are convex

ensuring direct applicability of the results from Miller, 2019 to prove the

lemma. To interpret Assumption 1, we consider the special case where we

observe the true labels y, and the predicted labels a are categorical. Then this

condition reduces to the statement that for every (i, j) pair, there are cases in

L for whom the true class is i and the predicted class is j. This is of course

necessary to estimate the misclassification rate Mij. Thus, Assumption 1 can

be interpreted as the limited labeled test set having data enough correctly

estimate the sensitivities and specificities of the classifier for all class-pairs.

Lemma 1(a) is important on its own right as it establishes an important con-

sistency result for model-free Bayesian estimating equations for compositional
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regression. It states that when only loss ℓL,n is considered, the coefficients

M for the regression equation (4.6) is consistently estimated by generalized

posteriors from KLD loss function. We do not even need to actually observe

the true labels y as observing the beliefs b suffices.

For our quantification problem, Lemma 1(b) is, however, the more relevant.

As our fN’s are not convex, an alternate sufficient condition of Miller, 2019

to establish posterior concentration is that the infimum of fN outside any

neighborhood around the true θ0 is strictly greater than f (θ0) for large enough

N. Lemma 1(b) states that outside of any neighborhood around the true value

M0, the empirical loss-function ℓL,n/n has higher value than the limiting

loss-function EL(DKL(a||M′b)). A complementary result to Lemma 1(b) is

that

Lemma 2. lim infN infθ∈Θ ℓU ,N/N ≥ EU (DKL(a||M0′p0)).

Lemma 2 states that the infimum value of ℓU ,N(M′p) over the entire space

Θ is greater than or equals to the limiting loss-function EU (DKL(a||M′p))

evaluated at true θ0. Combining, Lemmas 1(b) and 2, we have that for any

region R of Θ, fN(θ) is greater than f (θ0) unless R lies in an infinitesimally

small neighborhood around˜︂M0. Thus, use of the local labeled set L via the loss

function ℓL,n helps to identify M, as the posterior is guaranteed to concentrate

around M0. As M concentrates around M0, the loss ℓU ,N(M, p) becomes

capable of identifying p. A sufficient condition for this is that ℓU ,N(M0, p) is a

convex function of p. Assumption 2 ensures this convexity. It is a separability

assumption necessary for quantification as if there exists two probability vectors

p0 and p1 such that M0′p0 = M0′p1 then it will be impossible to identify p
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based on predicted labels. This separability, or identifiability, assumption

has long been discussed in the finite mixture model literature (Teicher, 1963;

Yakowitz and Spragins, 1968), but has not been discussed for methods which

rely on class-conditional first moments of classifier output for quantification.

Theorem 4 guarantees posterior concentration when using the actual gen-

eralized posterior ν. However, our Gibbs sampler relies on rounding and

coarsening ν using an integer factor T. The following result connects the

theory to the practical implementation.

Corollary 1. Let νcoarse,N denote the rounded and coarsened generalized posterior

using a factor TN with TN → ∞. Then, under the conditions for Theorem 4, we have

Pνcoarse,N(θ)(Bϵ(θ
0)) → 1.

Corollary 1 makes it evident that not only the coarsening step is important,

the coarsening and rounding factor TN needs to increase with increase of

sample size.

Finally, it is trivial to extend the posterior concentration results for the

ensemble quantification.

Corollary 2. If K predictions are available for each label, and assumptions 1 and 2 are

satisfied for each of the K prediction algorithms, then with θ = (˜︂M(1), . . . ,˜︂M(K), ˜︁p)
we have Pνcoarse,N(θ)(Bϵ(θ

0)) → 1.

4.5 Simulations

We conduct multiple simulation studies to assess
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1. accuracy of GBQL in estimating p in the presence of moderate amounts

of labeled data

2. comparison of our estimating equations based approach with Dirchlet

model-based approach using different data generating mechanisms

3. computation efficiency compared to Dirichlet model based approaches

4. estimation accuracy when there is uncertainty for some true labels in L.

To mimic the motivating verbal autopsy situation, we used N = 1000,

n = 300, C = 5, pL = EL(yr) = ( 1
C , . . . , 1

C ), and the following four different

values of p representing each of the four countries in the PHMRC dataset

(Section 4.1)

p1 = (.20, .19, .27, .27, .07)

p2 = (.11, .11, .40, .29, .09)

p3 = (.09, .18, .52, .19, .02)

p4 = (.13, .30, .35, .19, .03)

We generated true labels

yr|p, pL ∼
{︄

Multinomial(1, p), r ∈ U
Multinomial(1, pL), r ∈ L

And first allow for full knowledge of these labels for r ∈ L, which means

that br|yr = i equals ei for r ∈ L.
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We then simulated outputs ar|yr directly from a model, so that we know

the true data generating mechanism of the dataset shift. We let

M =

⎡⎢⎢⎢⎢⎣
0.65 0.35 0 0 0

0 0.35 0.65 0 0
0.1 0.1 0.6 0.1 0.1
0 0 0 0.8 0.2
0 0.4 0 0 0.6

⎤⎥⎥⎥⎥⎦
We used two data generating mechanisms for ar|yr. The first mechanism

corresponds to a zero-inflated Dirichlet mixture model:

a∗rj|yr = i, Mi∗ ∼
{︄

0, if Mij = 0
Gamma(5Mij, 1), else

j = 1, . . . , C

arj =
a∗rj

∑C
k=1 a∗rk

The second data generating mechanism introduced overdispersion in the

data:

τr ∼ .5 · Uni f orm(.1, 1) + .5 · Uni f orm(10, 20)

a∗rj|yr = i, Mi∗ ∼
{︄

0, if Mij = 0
Gamma(τr · Mij, 1), else

j = 1, . . . , C

arj =
a∗rj

∑C
k=1 a∗rk

Instances for which τr ≤ 1 will have responses arj close to 0 and 1, while

instances with larger values of τr will have arj clustered closer to the non-zero

entries of M.
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We then compare our method’s estimates of p with estimates from follow-

ing standard Bayesian Dirichlet mixture model which assumes the first data

generating mechanism as truth.

yr|p ∼ Multinomial(1, p)

ar|yr = i ∼ Dirichlet(τi · Mi∗)

τi ∼ Normal(0, 25)

For both the Dirichlet model and the GBQL model, we used Dirichlet priors

for M shrinking towards I, and uninformative Dirichlet prior for p.

Since the Dirichlet distribution does not support zeros, for running the

Dirichlet model, 0 values were replaced with ϵ = .001 and each ar was re-

normalized. Posterior sampling for this model was performed using RStan

Version 2.19.2 (Stan Development Team, 2019). Note that this model then

becomes misspecified for the second true data generating mechanism. For

both models, we ran three chains each with a total of 6,000 draws and a burn-in

of 1,000 draws. We used the posterior mean of p as p̂.

To compare estimates of p, we use a chance corrected version of the nor-

malized absolute accuracy (NAA) (Gao and Sebastiani 2016). NAA is defined

as

1 − ∑C
i=1 |pi − p̂i|

2(1 − mini{pi})
.

To represent random guessing of p with a score of 0, and perfect estimation

of p with a score of 1, we follow Flaxman et. al (2015) and use the Chance
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Corrected NAA

CCNAA = (NAA − .632)/(1 − .632).

We repeat our simulations 500 times for each choice of p and show the average

CCNAA across this simulations in Figure 2. For case 1 (left panel) when the

likelihood is correctly specified for the Dirichlet model, both methods produce

accurate estimates of p and have approximately the same CCNAA. When we

introduce overdispersion to the distribution of the ar|yr = i (right panel), we

see that the performance the GBQL model is hardly affected, and substantially

outperforms the now misspecified Dirichlet model in all cases.
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Dirichlet Overdispersed Dirichlet

GBQL Dirichlet GBQL Dirichlet
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● ● ● ●p1 p2 p3 p4

Figure 4.3: Columns shows results for the two different data generating mechanisms,
while each color represents each of the four true values of p. The GBQL model
produces high values of CCNAA for each of the scenarios, while assuming a Dirichlet
mixture model likelihood only produces acceptable estimates of p when the likelihood
correctly identifies the true data generating mechanism.

When we investigated the Stan output for the Dirichlet models, many of

the chains failed to converge when the likelihood was misspecified (Table

4.1). Furthermore, on average the Stan model took nearly 200 times longer
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to run than the GBQL method (Table 4.1). Thus, GBQL accurately estimates

p, removes the need to correctly specify the likelihood, is fast, and does not

require fine-tuning for the posterior samples to converge.

Value for p Average R̂ GBQL Average R̂ Dirichlet Average Runtime (minutes) GBQL Average Runtime (minutes) Dirichlet
p1 1.03 3.32 0.15 29.79
p2 1.02 3.43 0.16 29.70
p3 1.03 3.12 0.16 28.84
p4 1.03 3.46 0.15 29.88

Table 4.1: Average R̂, as a measure of posterior sampling convergence, and runtime
in minute for each value of p was computed for when there is overdispersion in the
data generating mechanism.

We now examine the behavior of the GBQL model in the case of uncertain

labels. To induce this uncertainty, we generate the compositional br from the

following overdispersed Dirichlet distribution

τr ∼ .5 · Uni f orm(.1, 1) + .5 · Uni f orm(10, 20)

br ∼
{︄

Dirichlet(τrp), r ∈ U
Dirichlet(τrpL), r ∈ L

and generate yr|br ∼ Multinomial(1, br). The data generating process for the

ar is the same as in the simulations with known labels. The compositional br

are used as the uncertain labels for r ∈ L. Figure 4.4 plots the average CCNAA

from GBQL with known labels y against CCNAA of GBQL with unknown

labels b for each value of p and data generating mechanism. It can be seen

that introducing uncertainty in the labels results in slightly lower, but nearly

identical performance for estimating p.
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Figure 4.4: CCNAA for known versus uncertain labels using GBQL. Each color
represents a different value for p, while the shapes represent the two different data
generating mechanisms.

4.6 PHMRC Dataset Analysis

We now apply GBQL to the PHMRC dataset introduced in Section 1. The

number of observations within India, Mexico, Philippines, and Tanzania are

2973, 1586, 1259, and 2023, respectively. To address country-specific dataset

shift, for each country, we used the three remaining countries as training data

for four methods commonly used for cause of death predictions: InterVA

(Byass et al., 2012), InSilicoVA (McCormick et al., 2016), NBC (Miasnikof et al.,

2015), and Tariff (Serina et al., 2015). The first three methods are probabilistic,

while Tariff produces a score for each cause that needed to be normalized to be

in [0, 1]. Model training was done using the openVA package version 1.0.8 (Li,

McCormick, and Clark, 2019). We considered both compositional predictions
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(for Tariff, this was the normalized score) and classifications (single-class cate-

gorical predictions based on the most likely cause of death for an individual

per each algorithm). For comparisons, we obtained estimates using the CC

and PA estimates of p, that should align with the GBQL estimate for n = 0

(Section 4.3.6), as well as estimates using the ACC and APA methods. For

GBQL in the country not used in training data, we then sampled labeled data

of varying sizes (n=25, 100, 200, 400) to investigate the effect of increasing the

number of known labels. Sampling was performed such that pL = (1
5 , . . . , 1

5),

as in Section 4.5. We repeated this 500 times for each size of n. Results for the

average CCNAA when using compositional predictions are shown in Figure

4.5a, while Figure 4.5b compares the CCNAA for GBQL using compositional

predictions versus GBQL using single-class categorical predictions.
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(b) Comparison of CCNAA between GBQL using compositional predictions versus single-
class/categorical predictions. Each point represents a different value of n, with the black line representing
the identity line.

Figure 4.5: GBQL outperforms PA and APA for PHMRC quantification, while han-
dling both compositional and single-class predictions
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When no labeled instances are available, we see that the APA method

performs worse than the PA method across almost all countries and algorithms,

demonstrating why it is not appropriate to estimate M using the training

data in the presence of dataset shift. We see that obtaining n = 25 labeled

instances (an average of only 5 labeled deaths per class) does not effectuate

any improvement in the performance over not having any labeled test data

(n = 0). However, increasing this to 100 labels (an average of 20 labeled

deaths per class) leads to large increase in CCNAA indicating substantial

improvement in estimation of p across all countries and algorithms. As

there are 168 covariates used for building these classifiers, using just 100

observations to build a reliable classifier would be difficult, if not impossible.

Quantification accuracy continues to increase with a larger number of labeled

observations across all countries and algorithms, although the extent of this

improvement is quite variable. Finally, comparing the performance of GBQL

using the categorical versus compositional predictions, Figure 4.5b shows that

overall, using compositional data offers slight improvement.

Figure 4.5a shows that classifier performance varies widely across settings.

We now look at the performance of our ensemble method which uses predic-

tions from all four algorithms. Figure 4.6 shows the CCNAA for the ensemble

method and the individual algorithms for different numbers of labeled obser-

vations and each country. With only 25 labeled observations, the ensemble

CCNAA is approximately an average of the CCNAA for each of the other

algorithms, which is what we would expect, as for n = 0 it is exactly the

average as discussed in Section 4.3.6. With more labeled observations, the
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ensemble begins to either outperform all of the methods, or has CCNAA very

close to that of the top performing method. Importantly, the ensemble method

significantly outperforms the worst method for all combinations of country,

output format and numbers of labeled observations, showing that including

multiple algorithms and using the ensemble quantification protects against

inadvertently selecting the worst algorithm.
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Figure 4.6: CCNAA comparing the ensemble GBQL (red) with the 4 individual
GBQL algorithms across countries for both classification predictions and probalistic
predictions

Finally, to illustrate the efficacy of GBQL even when true labels are ob-

served with uncertainty, we create a toy dataset by randomly pairing individ-

uals within a country in the PHMRC data. To introduce label uncertainty into

the analysis, for a pair of individuals, r1 and r2, we let

br1i = br2i =
1
2
(I(yr1i = 1) + I(yr2i = 1)),

By using two individuals each with a single true label, we create two

individuals each with uncertain true labels in such a way that the total number
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of individuals with a given cause remains same in this new dataset as that in

the actual PHMRC dataset. In other words, the data generation satisfies the

assumption that p(yr = i|bri) = bri. We then used these beliefs instead of the

true labels as input for our method. Figure 4.7 compares the CCNAA for the

individual methods across each value of n for compositional predictions when

using the known labels versus representing uncertainty in the labels through

beliefs, and shows that the performance of our method is nearly identical for

both inputs.
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Figure 4.7: Comparison of CCNAA when using known labels versus labels with un-
certainty. Each point represents a different value of n, with the black line representing
the identity line.

4.7 Discussion

Quantification is an important and challenging problem that has only recently

gained the attention it deserves. There are important limitations of the com-

monly used methods; CC (Forman, 2005), ACC (Forman, 2005), PA (Bella et al.,

2010), and APA (Bella et al., 2010) do not use a probabilistic framework and

only use training data, and therefore do not account for dataset shift, while
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BTL (Datta et al., 2018) does not allow uncertainty in either the predicted or the

true labels. The GBQL approach discussed here is more general, allowing for

both categorical and compositional classifier output, incorporation of training

data (through priors) and labeled data, and uncertain knowledge of labeled

data classes. Thus, the GBQL model subsumes and extends these current

methods.

By incorporating the categorical and compositional classifier output through

the KLD loss function, which only relies on a simple first-moment assumption

that is coherent for both data types, we circumvent the need for full model

specification. In addition, the GBQL loss function is easily extended to harmo-

nize output from multiple classifiers, leading to a unified ensemble method.

Our application of the results of Bissiri, Holmes, and Walker, 2016 allows for

model-free Bayesian inference, which in turn enables use of shrinkage priors

to inform the estimation of M and p when no or limited labeled data from the

test set is available. The GBQL generalized Gibbs posterior exhibits posterior

consistency, as does the coarsened posterior used for extremely fast posterior

sampling. Finally, extensive simulations and PHMRC data analysis show that

the GBQL model is robust to model misspecification, and uncertainty in true

labels, and significantly improves quantification in the presence of dataset

shift.

Currently the GBQL method gives equal weight to all instances in U and

L. For ongoing quantification projects, ptest(x, y) may not be stable over

time, and equally weighting instances collected early during the project may

lead to inaccurate estimates of the current value for p. A potential solution
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could incorporate power priors (Ibrahim et al., 2015) for earlier observations,

although we leave this for future research.

Further research is more warranted on general moment-based Bayesian

methods for compositional data that builds on our application of the results

from Bissiri et al. (2016). Given that our loss function is the one used in

MQL based regression approaches, this justifies using priors on the regression

parameters of interest, and updating these beliefs with a MCMC based method.

In addition, our method could generally be used for semi-supervised mixture

modeling of compositional observations. Important future contributions

would be instance level class predictions and incorporation of higher moments

through our loss function approach.
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Chapter 5

Improving Verbal-Autopsy-based
Cause Specific Mortality Fraction
Estimates in Mozambique using
Bayesian machine learning

5.1 Introduction

The Countrywide Mortality Surveillance for Action (COMSA)-Mozambique

seeks to provide timely cause specific mortality fractions (CSMF) at a national

level for the country of Mozambique. Many deaths which are registered as

part of COMSA occur outside of a hospital and thus are not assigned an official

cause of death (COD). To give informed CSMF estimates, COMSA performs a

verbal autopsy (VA) for each registered death. Recent efforts have resulted in

standard VA questionnaires that allow for informed CSMF estimates (Nichols

et al., 2018).

For each VA, trained COMSA VA data collectors collect information on 354

symptoms. Standard practice for assigning a COD based on a VA is to have
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two physicians review the VA (Soleman, Chandramohan, and Shibuya, 2006).

However, this process is timely and costly, and would prevent COMSA from

presenting up-to-date mortality statistics on a rolling basis.

Automated, computer-coded classifiers for VA algorithms (CCVA) such as

InSilicoVA (McCormick et al., 2016), InterVA-4 (Byass et al., 2012), the Naives

Bayes Classifier (NBC) for Verbal Autopsies (Miasnikof et al., 2015), and the

expert algorithm for verbal autopsy (EAVA) (Kalter, Perin, and Black, 2016)

allow for fast assignments of CODs from VA data. Aggregating these COD

assignments to produce CSMF estimates from VA algorithms can produce

results similar to that from physician review (Jha et al., 2019). However, the

data or expert knowledge at the heart of these CCVA algorithms that relates VA

responses to COD information has a large influence on VA algorithm accuracy

(Clark, Li, and McCormick, 2018). Even for individuals who die from the

same cause, VAs performed in Mozambique may result in different symptom

information than VAs performed in another country, due to culture differences

and other factors specific to the local context in Mozambique. Because the

algorithms used in this study were developed without knowledge of the local

context that relates VA symptom information to COD in Mozambique, these

algorithms may be inaccurate when applied to the COMSA VA data (Clark,

Li, and McCormick, 2018; Datta et al., 2020).

Previous work has shown how to improve CSMF estimates by collecting

gold-standard COD (GS-COD) information on a small number of deaths for

whom a VA has also been performed (Datta et al., 2020; Fiksel et al., 2020).

This GS-COD information is used to learn the misclassification rates of the VA
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algorithms, which is used to calibrate the original CSMF estimates by taking

into account for the imperfect sensitivity and specificity of the CCVA classifier.

To correct for imperfect VA algorithm COD predictions for deaths in

Mozambique, we use data from the Child Health and Mortality Prevention

(CHAMPS) project. CHAMPS is an ongoing surveillance project that performs

a minimally invasive autopsy (MIA), also known as a minimally invasive

tissue sample (MITS) (Byass, 2016) to determine the COD with high precision.

A VA for each death that occurs within a CHAMPS site (CHAMPS Cause of

Death Data) is also conducted. MITS COD assignments have been shown to

be very accurate compared to complete diagnostic autopsies (Castillo et al.,

2016). However, because MITS COD assignments are decided on by an expert

human panel, there may be some uncertainty in the final cause assignment.

We use the MITS and VA data collected on child (1-59 months old) deaths

that occurred at the CHAMPS sites (including Mozambique) to estimate the

misclassification rates of two VA algorithms InsilicoVA and EAVA. These

estimates reveal substantial classification errors for both algorithms caution-

ing against the use of the raw CSMF estimates as they are likely to be very

biased. We use the misclassification matrices to produce calibrated VA CSMF

estimates for child deaths in Mozambique. We use the Generalized Bayesian

Quantification Learning (GBQL) (Fiksel et al., 2020) framework to handle

uncertainty in MITS COD classification, as well as to incorporate probabilistic

individual COD predictions from VA algorithms. This framework also allows

for a single CSMF estimate based on an ensemble learner that incorporates

VA COD assignments from both InSilicoVA and EAVA, rather than having to
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choose a CSMF from one of the two algorithms. We demonstrate a complete

workflow of the methodology that first estimates the raw CSMF estimates and

misclassification rates, combines them to produce calibrated CSMF estimates,

and provides quantitative model comparison metrics to compare and choose

between the raw and calibrated CSMF estimate.

5.2 Data

We use two main sources of data to estimate the CSMF for 1-59-month old

children in Mozambique. The first source consists of VA data for 989 child

deaths from the ongoing nationally representative VA survey conducted by

COMSA. We refer to this source of data as the COMSA data. The second

source of data is obtained from 283 child deaths that occurred within hospitals.

Information about these deaths was collected by the CHAMPS project, and

we refer to this source of data as the CHAMPS data. These deaths occurred

in CHAMPS sites across several countries: South Africa (n = 115), Kenya

(n=115), Mozambique (n=26), Mali (n=23), Ethiopia (n=3), and Bangladesh

(n=1). For each of these deaths, the CHAMPS project performed both a VA

and a MITS. For each MITS from the CHAMPS project, there is an underlying

COD and an immediate COD, if applicable. Table 5.1 shows the number of

deaths for each combination of underlying and immediate COD. For many

cases, it is ambiguous which among the immediate and the underlying cause

should be the GS-COD and we consider both causes in our methodology

taking into account this uncertainty. For deaths for which the underlying

cause is determined to be the sole COD, we do not consider a second cause.
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Underlying
COD

Immediate COD

Malaria Pneumonia Diarrhea
Severe

Malnutrition
HIV Other

Other
Infections

Total

Malaria 16 3 0 0 0 1 1 23
Pneumonia 0 21 0 0 0 4 13 38
Diarrhea 0 5 15 0 0 0 3 23
Severe Malnutrition 4 8 2 0 0 0 23 37
HIV 4 14 3 0 0 1 14 36
Other 1 26 0 0 0 28 38 93
Other Infections 0 44 0 0 0 7 22 33
Total 25 81 20 0 0 41 116 283

Table 5.1: Classification of GS-COD in the CHAMPS dataset by underlying and
immediate COD

5.3 Methods

5.3.1 Verbal Autopsy Algorithm Probabilities

We use both InSilicoVA and EAVA for individual COD assignments based off

the VA symptom information for each death in the two sources of data. InSili-

coVA is a probabilistic method, and gives individual probability estimates for

61 specific causes of death. To estimate these probabilities, InSilicoVA uses

a conditional probability matrix which specifies the probability of observing

each symptom, conditional on each COD. This matrix is derived from rec-

ommendations of an expert panel, and is the same one used for the InterVA

algorithm (Byass et al., 2012). We aggregate these probabilities to the seven

broad causes of death used in our study: pneumonia, malaria, diarrhea, severe

malnutrition, HIV, other infections, and other cause of death. For each individ-

ual death, we thus get a 7 × 1 vector of estimated probabilities or percentages

of the COD being in each of the seven broad categories.

EAVA uses an expert derived hierarchy to predict a COD from a VA. EAVA

is deterministic and for each death may produce either a single most likely
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COD, a first and second most likely COD, or conclude that the COD is unable

to be determined. To handle the three potential outputs from EAVA, we map

each output to a probabilistic interpretation. In the case of a single COD, this

COD is assigned a probability of 100%. For a first and second most likely COD,

the most likely COD is assigned a probability of 75%, and the second most

likely COD is assigned a probability of 25%. Finally, for an undetermined

COD, all causes are assigned equal probability.

We obtain “uncalibrated” CSMF estimates for each method by averaging

the individual probability estimates over the 989 nationally representative

deaths in the COMSA data. Formally, for both the InsilicoVA and EAVA

algorithms we can write the predicted COD for the rth case as a 7 × 1 vector

ar whose entries ar1, ar2, . . . , ar7 sum up to 1. For InsilicoVA, arj is going to be

the estimated probability that the rth individual died from cause j. For EAVA,

only up to two of the arj’s are going to be non-zero for every individual. The

uncalibrated estimate for each algorithm a is given by

ˆ︁qa =
1
N

N

∑
r=1

ar, for a ∈ {EAVA, InsilicoVA}, N = 989. (5.1)

Because it is impossible to know which method produces a more accurate

CSMF estimate, we also produce an uncalibrated “ensemble” CSMF estimate

(Fiksel et al., 2020), which is the average of the two methods’ CSMF estimates.

5.3.2 Verbal Autopsy Algorithm Misclassification Rates

Misclassification occurs from a VA algorithm when a VA algorithm assigns an

individual COD that is different from that individual’s GS-COD. Both Chapter
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2 and Chapter 4 of this thesis showed that estimating the misclassification rates

of a VA algorithm to obtain a calibrated CSMF estimate can greatly improve

over the uncalibrated CSMF estimate. For example, suppose there are only

two causes of interest, and we know that a given CCVA has sensitivities for the

two causes of 95% and 65%, respectively. This means that we expect the CCVA

to predict a higher prevalence for the first cause than the true prevalence, as

it mistakenly assigns 35% of people who truly die of the second cause to the

first cause. After obtaining VA COD assignments for each 1000 individuals

in our population set, we obtain an uncalibrated CSMF of 53% for the first

cause and 47% for the second cause. However, calibrating this result with our

known sensitivites gives us the correct calibrated CSMF of 30% and 70% for

the two causes, respectively.

Because the misclassification rates for the CCVA algorithms are not known

for our setting, we use the CHAMPS data to estimate these misclassification

rates, considering the MITS COD as the GS-COD, and assuming that the

misclassification rates in the COMSA and CHAMPS data are the same. If all

the MITS cases were assigned a single COD (the underlying COD), and we

only used the top cause for the VA (plurality-rule), then for each CHAMPS

case we will have one MITS COD and one VA COD and the entries of the

misclassification matrix M = (Mij) can be estimated as:

Mij =
# of cases with MITS cause i, and VA cause j

# of cases with MITS cause i
(5.2)

However, in our case, two difficulties arise in deriving the misclassification
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rate for a VA algorithm. The first difficulty is that we do not want to lose infor-

mation by using the plurality-rule and select the top single-class predictions.

Instead we adopt a fully probabilistic approach, using the full vector ar of

estimated probabilities from each algorithm. We resolve this by defining the

misclassification “rate” for single-cause-MITS-multi-cause-VA as the average

predicted probability for each cause, conditional on each gold-standard cause

i.e.,

Mij =
∑ estimated VA probabilities arj for cause j, for cases with MITS cause i

# of cases with MITS cause i
.

(5.3)

The definition in (5.3) is a generalization of (5.2) as they are same when all the

VA’s give a single COD.

The second difficulty is how to handle cases where both the MITS un-

derlying and immediate causes are believed to be contributing to the death,

meaning there is uncertainty in the GS-COD. Neither (5.2) or (5.3) applies to

this situation as the phrase “cases with MITS cause i" used the numerator of

both is no longer defined for MITS cases with more than one possible COD.

We adopt the same approach as for the cases with two possible COD

predicted by EAVA. We translate this uncertain MITS output to a probabilistic

interpretation. For the rth case, we denote by gr, a 7 × 1 vector encoding the

MITS COD. For cases where MITS identifies a “single-cause”, we give this

underlying COD a probability of 100% and assign 1 to the corresponding

element grj and 0’s to the other components of gr. For cases with the “multi-

cause” interpretation, i.e., where both the immediate and underlying causes

are believed to contribute to the outcome, we give both the underlying and
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immediate COD a probability of 50%. This states that for death with different

underlying and immediate causes, we believe both causes are equally likely

to be the final COD, and translates to giving 1/2 to the two corresponding

entries fo gr and 0’s elsewhere.

For each CHAMPS case, we now have two 7 × 1 compositional vectors ar

and gr representing the COD diagnosing from the VA and MITS respectively.

We use the transformation-free method treating the probabilistic VA algorithm

outputs ar as the compositional outcome, and (possibly) multi-cause MITS

probabilities gr as the compositional predictor to define the misclassification

rates for multi-cause-VA-multi-cause-MITS as

M = arg min
{B=(Bij):Bij≥0,∑j Bij=1}

N

∑
r=1

kld(ar||B′gr) (5.4)

where kld(y, x) = ∑j yjlog(yj/xj) denotes the Kullback-Leibler Divergence

loss function between two compositional vectors. Chapter 3 has demonstrated

why for the special cases where only the VA is multi-cause, the estimate of

M from (5.4) is identical to that from (5.3), which in turn is identical to (5.2)

when the VA is also single-cause. Hence, the defnition in (5.4) is the most

general one and we use it to estimate the multi-cause-VA-multi-cause-MITS

misclassification rates for InSilicoVA and EAVA based on the CHAMPS data.

5.3.3 Bayesian calibration of VA and MITS COD Data

The uncalibrated CSMF estimate (5.1) from a VA algorithm essentially as-

sumes that the VA algorithm has perfect sensitivity and specificity, i.e., the

M matrix is the identity matrix. In practice, VA algorithms are prone to large
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misclassification errors and the estimate of the misclassification matrix helps

to quantify this. When a classifier demonstrates large misclassification rates,

Chapter 2 outlines a frequentist two-step approach to calibrate CSMFs. This

two stage approach first estimates the uncalibrated CSMF estimate and the

misclassification matrices separately and combines them to yield the cali-

brated CSMF estimate. However, when the size of the dataset used to estimate

the misclassification matrix is small this procedure is unstable. In our case, we

have 283 CHAMPS cases to estimate a 7 × 7 misclassification matrix, leaving

an average of 6 datapoints to estimates each entry of the matrix.

Chapter 2 also developed a joint estimation of the CSMF and the mis-

classification rates using a Bayesian approach. The joint model in the single-

cause-VA-single-cause-MITS framework consists of two distinct pieces – a

conditional multinomial model for the conditional probabilities (misclassifica-

tion rates) of the VA COD given the MITS COD for the CHAMPS data, and a

marginal multinomial model for the COMSA VA data with marginal probabil-

ities derived from combining the misclassficiation rates and the true CSMF,

i.e., the estimand of interest. In data-scarce settings such as ours, the Bayesian

approach with “informative" priors substantially improves the calibration

over the two-step frequentist approach by attaining a tradeoff between bias

and variance. The informative prior ensures that in absence of enough paired

MITS-VA data, the estimate of M is shrunk towards the identity matrix. This

in turn shrinks the calibrated CSMF estimate towards the uncalibrated one

which is the default estimate currently used by practitioners. In the extreme

scenario, where there is no data to estimate the misclassification rates, the
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calibrated and uncalibrated CSMF estimates are identical.

Chapter 4 extends the calibration method from Chapter 2 from a single-

cause-VA-single-cause-MITS to our multi-cause-VA-multi-cause-MITS setup

by switching from marginal or conditional probabilities to marginal or condi-

tional averages, and replacing multinomial models with pseudo-multinomial

likelihoods. This model thus incorporates the inherent uncertainty presented

by the probabilistic COD information, rather than forcing practitioners to

decide on the final COD, as when using the single-cause VA or MITS data.

Furthermore, both Chapters 2 and 4 showed that the Bayesian hierarchical

calibration model allows for an ensemble approach that helps circumvent the

subjective decision-making about which VA algorithm to use to present fi-

nal results. The ensemble method uses the entire suite of VA algorithms (in

our case, InSilicoVA and EAVA) and models the misclassification rates from

each of the algorithms, producing a single CSMF that is most coherent with

all the misclassification rates. The ensemble calibration outperforms equal

weighted equal weighting of the CSMFs from individual algorithms as it

assigns weights in a data-driven manner generally ensuring higher weights

for the better performing algorithm.

Because of the numerous advantages of the ensemble model with multi-

cause GS-COD data, we use this model to obtain the estimate the CSMF for

children of age 1-59 months in Mozambique. We outline the entire pipeline of

obtaining the CSMF calibrated ensemble CSMF estimate using the COMSA

VA using the CHAMPS VA-MITS data in Figure 5.1.

As a sensitivity analysis, we compare the ensemble multi-cause CSMF to
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Figure 5.1: Pipeline for statistical calibration of CSMF estimates from a large VA
data (COMSA VA data) using limited data with paired VA and true COD (CHAMPS
MITS-VA data)

that obtained using the ensemble model but with the single-cause MITS COD

(but with multi-cause VA), where we take the underlying COD to be the GS-

COD. We also obtain calibrated CSMF estimates individually for InSilicoVA

and EAVA, using both the single and multi-cause MITS data.
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5.3.4 Model Selection and Comparison Using the WAIC

The Bayesian calibration model incorporates a shrinkage prior distribution

on the misclassification rates that apriori posits that each algorithm has near-

perfect sensitivity for every cause. Without the CHAMPS data, this prior

means that the hierarchical calibration model would not change the uncali-

brated CSMF estimates. This prior distribution necessitates choosing tuning

parameter values which determine how strong this prior is, relative to the

data. A strong prior would lead to estimating near-perfect sensitivity for a

classifier leading to almost indistinguishable CSMF estimates before and after

calibration. With a substantial number of gold-standard deaths this is undesir-

able. On the other hand, a very weak prior would lead to unstable estimates

of the misclassification rates due to the extremely small size of the paired

MITS-VA data leading which in turn destabilizes the final CSMF estimate.

To pick the tuning parameter values and also to compare the calibrated

models to the uncalibrated models we use the widely applicable information

criterion (WAIC) (Watanabe, 2010) which is an estimate of a model’s ability

to model future data, but using only already collected data (Vehtari, Gelman,

and Gabry, 2017). In our case, we have two collected sources of data which are

modeled differently in our model. The COMSA data correspond to a marginal

multinomial (pseudo-)likelihood, and the CHAMPS data correspond to a

conditional multinomial (pseudo-)likelihood. If we just used the COMSA data,

which has no GS-COD information, to evaluate the WAIC, the best WAIC

would be obtained by using the posterior distribution of the uncalibrated

model for the CSMF. However, the uncalibrated CSMF assumes that the
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models have perfect sensitivity and the CHAMPS data testifies for or against

this assumption. Hence, the misclassification rates are critical to understand

the relationship between the VA algorithm COD predictions and the GS-

COD, and the WAIC calculation needs to include the CHAMPS data as well.

Thus in our case, the future data for WAIC are twofold – VA algorithm COD

predictions for nationally representative community deaths (COMSA data),

which are modeled using both the true CSMF and misclassification rates,

and VA algorithm COD predictions for the CHAMPS data with GS-COD,

which are modeled using just the misclassification rates. If the CHAMPS

data demonstrate large misclassification rates, the WAIC will be large thereby

rightfully penalizing the uncalibrated CSMF for the wrong assumption of

perfect sensitivity.

To estimate the WAIC from the calibrated models, we use the MCMC

draws of the CSMF and the misclassification rates to obtain the posterior

distribution of the loss-function presented in Chapter 4 for every death in

both sources of data. We run the model for a grid of different combination

of values of the tuning parameters and determine the optimal combination

as one which minimizes the WAIC and ensures convergence of the MCMC

to a unimodal marginal posterior distributions for each of the CSMFs and

misclassification rates.

To estimate the WAIC for the uncalibrated models, we first obtain draws

from the posterior distribution of the CSMF by assuming perfect sensitivity.

As shown in Chapter 2, the posterior mean of this distribution is nearly exactly

that of the uncalibrated CSMF estimate. The prefect sensitivity assumption

183



for the uncalibrated model, ideally translates to all posterior draws of the

misclassification matrix being the identity matrix. This however produces a

WAIC of +∞ immediately ruling out the uncalibrated model. To make the

WAIC of the uncalibrated model more competitive to that of the calibrated

model, we compute the the former assuming model sensitivities of 95%,

under the assumption that with sufficiently high sensitivity, one would still

be willing to accept the uncalibrated CSMF estimates.

5.4 Results

5.4.1 Uncalibrated CSMFs:

We first present the uncalibrated CSMF estimates for InSilicoVA, EAVA, and

the ensemble model in Figure 5.2 from COMSA. As the uncalibrated ensemble

CSMF is simply the average of the two individual algorithm CSMFs, we focus

on the differences between the InsilicoVA and EAVA estimates. Most notably,

EAVA estimates a higher percentage of deaths from pneumonia (27% versus

19%), while InSilicoVA estimates a higher percentage of deaths from malaria

(15% versus 6%). EAVA also estimates a higher percentage of deaths from

severe malnutrition (10% versus 4%), and a slightly lower percentage of deaths

from other causes of death (6% versus 10%). The two algorithms estimate

similar percentages of death from the remaining causes.

5.4.2 Sensitivities and Misclassification rates:

Figure 5.3 shows the estimated uncalibrated misclassification matrices for

InSilicoVA and EAVA, using both single-cause (5.3) and multi-cause (5.4)
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Malaria 15%

Pneumonia 19%

Diarrhea 20%

Severe 
 Malnutrition 4%

HIV 4%

Other 10%

Other 
 Infections 28%

InSilicoVA (Uncalibrated)

Malaria 6%

Pneumonia 27%

Diarrhea 17%

Severe 
 Malnutrition 10%

HIV 5%

Other 6%

Other 
 Infections 29%

EAVA (Uncalibrated)

Malaria 11%

Pneumonia 23%

Diarrhea 19%

Severe 
 Malnutrition 7%

HIV 4%

Other 8%

Other 
 Infections 29%

Ensemble (Uncalibrated)

Figure 5.2: Uncalibrated CSMFs for InSilicoVA, EAVA, and the ensemble method.

MITS data from CHAMPS. Each point shows the expected probability a VA

algorithm will predict for each cause on the columns, conditional on the

GS-COD on the row. The algorithms show overall low estimated sensitivity

(diagonal entries), with the EAVA sensitivity for diarrhea being the only

sensitivity near 75%, and several of the cause-specific sensitivity rates being

lower than 25%. InSilicoVA also shows very low sensitivities, with other

infections and other COD being the only causes with a sensitivity above 25%.

While Figure 5.2 shows that in the COMSA data both algorithms predict

similar uncalibrated prevalence estimates for deaths due to diarrhea and

other infections, Figure 5.3 suggests that based on the CHAMPS data the
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misclassification rates conditional on the GS-COD being either of these two

cause categories are very different between the two algorithms. For example,

using the multi-cause MITS, EAVA has a sensitivity for diarrhea of 68%, while

InSilicoVA has a sensitivity of 18%. However, InSilicoVA has a sensitivity for

other infections of 57%, while EAVA has a sensitivity of 29%. Furthermore,

among the CHAMPS cases, EAVA tends to predict higher probabilities for

diarrhea and pneumonia being the COD, regardless of the GS-COD, while

InSilicoVA tends to predict higher probabilities for other causes of death and

other infections.
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Figure 5.3: Uncalibrated misclassification rate estimates for EAVA (triangles) and
InSilicoVA (circles), using both the multi-cause (red) and single-cause (purple) MITS
data. The sample size for the multi-cause MITS is given by the sum of the individual
GS-COD probabilities for each cause, while the sample size for the single-cause MITS
is given by the number of individuals with the given cause as an underlying COD.
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Figure 5.4 plots the estimated sensitivites for both algorithms when using

the multi-cause MITS as opposed to the single-cause MITS. We see that using

the multi-cause MITS COD data tends to result in slightly higher sensitivity

estimates for each algorithm, as compared to using the single-cause data. This

shows that by allowing for uncertainty in the GS-COD data the multi-cause

calibration induced higher concordance between the VA- and MITS- predicted

COD than the single-cause calibration.
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Figure 5.4: Cause-specific multi-cause MITS versus single-cause MITS estimated
sensitivities for EAVA (triangles) and InSilicoVA (circles). The dashed line shows the
identity line.

5.4.3 Calibrated CSMF estimates:

We present the final CSMF estimate using the ensemble calibration with multi-

cause-VA-multi-cause-MITS COD data in Figure 5.5. The estimates indicate

that pneumonia, other infections, diarrhea, and malaria are the most common

causes of death, with mortality rates of 31%, 23%, 17%, and 16%, respectively.
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Mortality fractions for severe malnutrition, HIV and other causes were all

estimated to be less than 5%. Figure 5.6 compares the calibrated ensemble

estimates with the uncalibrated ensemble estimates. The notable differences

after the calibration are higher mortality rates are higher for pneumonia (31%

from 23%) and malaria (16% from 11%), and lower for other infections (23%

from 29%). In the supplemental figures section, we compare multi-cause-VA-

multi-cause-MITS COD ensemble estimates are compared to the calibrated

InSilicoVA and EAVA estimates.

Malaria 16%

Pneumonia 31%

Diarrhea 17%

Severe 
 Malnutrition 5%

HIV 2%
Other 5%

Other 
 Infections 23%

Figure 5.5: Calibrated CSMF estimates from the ensemble multi-cause MITS model.
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Figure 5.6: Comparison of CSMF estimates from the calibrated ensemble multi-cause
MITS model versus the uncalibrated ensemble model.

5.4.4 Understanding the differences between calibrated and
uncalibrated estimates:

To obtain some insights into the changes in CSMF after calibration, Figure

5.7 shows the estimates (posterior means) from the ensemble model of the

algorithm-specific misclassification rates as compared to the estimated un-

calibrated multi-cause misclassification rates (also presented in Figure 5.3).

The calibrated sensitivities are significantly higher for both algorithms than

the uncalibrated sensitivity estimates, across all causes. This is a result of a

shrinkage prior on the misclassification rates, as well as low MITS sample sizes

for several causes. The shrinkage for both algorithms is especially noticeable

for diarrhea (N=21.5), severe malnutrition (N=18.5), and HIV (N=18), which

are the least common multi-cause MITS causes.

The estimate for the EAVA malaria sensitivity from the ensemble calibra-

tion is below 40%. This is significantly lower than the sensitivity estimates for

189



the other causes across both algorithms. Low sensitivity means that EAVA

often fails to diagnose malaria as the COD, despite it being the GS-COD, the

ensemble model takes this into account by giving an increased estimate for the

malaria mortality rate, relative to the uncalibrated estimate from Figure 5.2)

(16% to 8%). The estimated malaria sensitivity for InSilicoVA is 75%, similar to

the other estimated sensitivities, leading to the calibrated InSilicoVA estimate

of the malaria mortality rate being similar to the calibrated InSilicoVA estimate

from Figure 5.2) (16% versus 15%).
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Figure 5.7: A comparison of the ensemble multi-cause MITS posterior mean misclas-
sification rates (brown) to the uncalibrated misclassification rate estimates (pink) for
InSilicoVA and EAVA. The sample size for the multi-cause MITS is given by the sum
of the individual GS-COD probabilities for each cause.

Similar reasoning explains why the estimated mortality rate for pneumo-

nia increases after calibration. The estimate of the InSilicoVA sensitivity for
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pneumonia is near 50% which is by far the lowest estimated sensitivity for In-

SilicoVA estimated by the ensemble model. The EAVA estimated pnuemonia

sensitivity is 62% which is similar to the EAVA sensitivites for other infections

and other COD, which are the most common GS-COD MITS causes. The

estimates of EAVA false positives for pneumonia when the true MITS COD is

malaria, other, and other infections, are also higher than the analogous num-

bers for InSilicoVA. All of this gives insight into why the ensemble pneumonia

mortality rate estimate of 31% is much higher than the InSilicoVA estimate

(19%) as compared to the EAVA estimate (27%).

Finally, looking at other infections, we see from Figure 5.7 that when the GS-

COD is pneumonia, both InSilicoVA and EAVA are expected to predict a 25%

probability that we get a false positive for other infections. In addition, when

the GS-COD is malaria, EAVA again is expected to predict a 25% probability

that the COD is other infections. These misclassification rate of around 25% are

higher than the other misclassification rates, which tend to be between 0-12.5%.

The fact that both algorithms tend to predict many false positives for other

infections gets reflected in both algorithms’ uncalibrated estimate (Figure 5.2)

where other infections is the leading cause of child death. The results after

the ensemble calibration adjusts for the false positives and estimates a lower

mortality rate from other infections.

5.4.5 Single-cause-MITS vs multi-cause-MITS-calibration:

As a sensitivity analysis, we also compare the ensemble multi-cause model

estimates to the ensemble model single-cause model estimates. Figure 5.8
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shows that the CSMF estimates are largely similar between the two methods,

with the single-cause MITS data leading to a slightly higher estimated severe

malnutrition mortality rate (9% versus 5%), and a slightly lower estimated

pneumonia mortality rate (28% versus 31%).

The main driver behind the lower pneumonia mortality rate estimate for

the single-cause model is likely to be that the single-cause model estimates

higher misclassification to pneumonia from severe malnutrition, while both

models estimate similar misclassification rates conditional on the GS-COD

being pneumonia. The single-cause model also estimates higher misclassifi-

cation to other infections from severe malnutrition, especially for InSilicoVA,

which is likely the reason for the higher mortality rate estimate for severe

malnutrition. Similar reasoning also explains why the single-cause model also

estimates a slightly higher mortality rate for HIV.
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Figure 5.8: Comparison of CSMF estimates from the calibrated ensemble multi-cause
MITS model versus the the calibrated ensemble single-cause MITS model.
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5.4.6 Model comparison:

Finally, Figure 5.9 compares the WAIC between the calibrated and uncali-

brated models, for both the multi-cause and single-cause GS-COD data, where

a lower WAIC indicates better model fit. For both the multi-cause and single-

cause data, the calibrated models significantly outperform their uncalibrated

counterpart. While we are unable to fully evaluate the models on a completely

independent validation data set as the calibration does not offer individual

predictions but only the calibrated CSMF estimate for the population, WAIC

offers a way to do this evaluation using just the collected data, and these

results provide strong evidence in favor of using the calibrated models for

estimating the CSMF, as opposed to using the uncalibrated CSMF estimate.
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Figure 5.9: WAIC for the calibrated and uncalibrated ensemble models, using both
multi-cause and single-cause MITS data.
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5.5 Discussion

This study outlines a complete pipeline to use a limited dataset of paired VA

records and GS-COD (in this case from MITS) to calibrate CSMF estimates

obtained from VA algorithms applied to abundant unpaired VA data from a

nationally representative survey. The calibration works with both multiple

and single-cause outputs from both the VA and the MITS. We show that for

child deaths in Mozambique, this results in higher estimated mortality from

pneumonia and malaria, and lower estimated mortality from other infections.

We also show that this calibrated model outperforms the uncalibrated model

in terms of WAIC.

We also give insight into why the calibration model resulted in these

changes to the CSMF for this application. However, giving a simple expla-

nation for the changes made to the CSMF may not always be possible as the

calibration is reflect the total change affected by many different misclassifi-

cation rates. This underscores the need for clear communication between

statistical practitioners and government officials and stakeholders to under-

stand the general principles of the calibration model which are intuitive and

interpretable.

As both the COMSA and CHAMPS are ongoing surveillance projects, we

expect the size of both data sources to increase over time. While we expect

that this will result in more precise CSMF estimates, it presents an interesting

challenge in how to interpret the changing estimates. With a larger CHAMPS

dataset, we expect the prior to play less of a role in estimating the misclassifica-

tion rates. Given the uncalibrated misclassification rate estimates in Figure 5.3
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that show extremely low sensitivities, we would expect the CSMF estimates

to change as the posterior means for the misclassification rates become closer

to the uncalibrated estimates. However, the true mortality rates may also be

changing as a function of health interventions within Mozambique. Thus, an

important future direction is to develop methods to determine what sources

are influencing the changing CSMF estimates.

Another important future direction for research is to develop methods for

comparing calibrated model estimates, for example comparing the estimate

from the ensemble calibration model to just the calibrated InSilicoVA model.

The difficulty in this is that there is no external data for model validation, and

that each calibration model using a different VA algorithm uses a different

source of VA data. However, we have shown that calibrated models outper-

form their uncalibrated counterparts in terms of WAIC for the COMSA and

CHAMPS data. In addition, extensive simulation studies have shown the

superiority of the ensemble model to models which only use one VA algorithm

(Datta et al., 2020; Fiksel et al., 2020).

Despite these important unsolved challenges for producing calibrated

CSMF estimates, we believe that this method produces more informed CSMF

estimates than simply aggregating VA algorithm predictions especially given

the large misclassification rates we observe for both VA algorithms. As more

countries begin implementing VAs within national surveillance systems, they

should also invest in obtaining a smaller number of deaths with both VA and

GS-COD information, even if there is uncertainty in the GS-COD. Projects

such as the global symptom-cause archive (Clark, Setel, and Li, 2019) may
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help to establish misclassification rates for many algorithms and regions of

the world in order to produce accurate COD information for low and middle

income countries.

5.6 Supplemental Figures
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Figure 5.10: Multi-cause calibrated CSMFs for InSilicoVA, EAVA, and the ensemble
method.
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Chapter 6

Discussion and Conclusion

This thesis has developed important methodological advancements that allow

for improved CSMF estimates from VAs. The GBQL approach presented

in Chapter 4 is especially important in advancing the area of quantification

and mortality estimation, as it provides a robust Bayesian framework to

incorporate compositional predictions and labels. Our Gibbs sampler using

rounding and coarsening allows for fast posterior sampling, which encourages

the use of our method by policymakers and stakeholders. This Gibbs sampler

is implemented in the ‘CalibratedVA’ R-package. We have shown how the

GBQL approach can be used for CSMF estimation in Mozambique. We believe

this approach can and should be adopted by future demographic surveillance

systems that rely on VAs for mortality data.

While the GBQL approach uses the loss function presented in Chapter 3

for quantification with compositional data, we should how this loss function

can be used for transformation-free regression with compositional data. The

direct regression model provides simple coefficient interpretation, as opposed

to previous compositional regression models, and is easy to implement. In
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Chapter 3, we applied this model to research data from education and medical

imaging, and in Chapter 5 we applied this model to estimate the uncalibrated

misclassification rates in the multi-cause-VA-multi-cause-MITS model.

This work has opened several future areas of research. While the direct

regression model in Chapter 3 is an important contribution to the field of

compositional data analysis, it does not currently allow for inclusion of con-

founding variables. Ideally, the model would be able to handle confounding

variables of mixed data types, rather than just compositional confounding

variables. There are two difficulties in including additional variables into the

model. First, because our model is represented as a single Markov transition, it

allows for simple coefficient interpretation. If we were to include confounding

variables in the model, the coefficients should interpret in a similar manner,

although it would be conditional on the values of the confounding variables.

Second, any model with compositional data must respect the unit-sum re-

striction of this data. In the direct regression model, we perform parameter

estimation with constrained optimization, and the compositional data allowed

us to use a simple EM algorithm. However, by including confounding vari-

ables, the constrained optimization problem becomes more complex in order

to ensure that the expected value of the outcome is compositional for each

combination of covariates. The fact that one or more of the covariates will

also be compositional, and thus linearly dependent, further complicates the

computation.

The use of Bayesian updating with loss-functions for compositional data

in Chapter 4 also opens the door for generalized Bayesian regression for
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compositional outcomes. This could be a Bayesian extension of the direct

regression model in Chapter 3, or incorporating priors into the MQL regression

model with continuous covariates.

While we compared the calibrated and uncalibrated models using the

WAIC in Chapter 5, we do not currently have a method to compare calibrated

models using different combinations of CCVAs. The reason for this is that

the WAIC is an estimate of the log-likelihood for future data. Comparing a

calibrated ensemble model with a calibrated model using just InSilicoVA pre-

dictions is difficult, as the ensemble model must account for both InSilicoVA

and EAVA predictions, but the latter model only has to account for InSilicoVA

predictions. Although our simulations in Chapters 2 and 4 show that the

ensemble model performs well for CSMF estimation from the PHMRC data,

it is important to develop metrics that allow for model selection in order to

communicate to stakeholders which CSMF estimate should be used. Further-

more, improved metrics for comparing calibrated models would allow for

more principled selection of the prior parameters.

Finally, Chapter 5 showed that labeled data may come from multiple

countries, and not just the country of interest. An extension of the GBQL

model could be to add an additional hierarchical structure to estimation of

the misclassification matrix, that allows for country-specific misclassifications.

One could decide how much information is pooled between countries to

estimate an “overall” misclassification matrix that is used for calibration.
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