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ABSTRACT 

Reperfusion is mandatory after ischaemia, but also triggers ischaemia–reperfusion (IR)-injury. 

It is currently unknown whether heart failure (HF) alters the magnitude of IR-injury. 

Ischaemic preconditioning (IPC) can limit IR-injury. Since IPC is typically applied in subjects 

at risk for cardiovascular complications, it is of clinical importance to understand the efficacy 

of IPC in HF patients.  

Objective. To examine the magnitude of endothelial IR-injury, and the ability of IPC to 

protect against endothelial IR-injury in HF.  

Methods. We included 15 subjects with HF (67±10 years, NYHA-class II/III) and 15 healthy, 

age- and sex-matched controls (65±9 years). We examined brachial artery endothelial 

function using flow mediated dilation (FMD) before and after arm IR (induced by 5-minute 

ischaemic handgrip exercise +15 minutes reperfusion). IR was preceded by IPC (consisting of 

3 cycles of 5-minute upper arm cuff inflation to 220 mmHg) or no inflation.  

Results.  A significant interaction-effect  was found for the change in FMD after IR between 

groups (2-way ANOVA interaction-effect: P=0.01). Whilst post-hoc analysis revealed a 

significantly decline in FMD in both groups (P<0.05), the decline in FMD in HF patients 

(6.2±3.6% to 3.3±1.8%) was significantly larger than that observed in controls (4.9±2.1 to 

4.1±2.0). In HF patients nor in controls, the decrease in FMD after IR was altered by IPC (3-

way ANOVA interaction: P=0.87).  

Conclusion. We found that patients with HF are associated with exaggerated endothelial IR-

injury compared with age- and sex-matched, healthy controls, which may contribute to the 

poor clinical prognosis in HF. Furthermore, we found no protective effect of IPC (3x5-

minutes forearm ischaemia) against endothelial IR-injury in HF patients.  

 

KEYWORDS: cardiovascular disease; endothelial function; flow-mediated dilation; 

ischaemia; cardiovascular risk  
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INTRODUCTION  
 

Heart failure (HF) is a major cause of death in developed countries and represents a growing 

public health problem, partly due to the ageing population, and is responsible for an 

increasing proportion of hospital admissions 1. A potential explanation for the poor prognosis 

of HF patients may relate to an exaggerated ischaemia-reperfusion (IR)-injury in HF as 

demonstrated in rats 2.  Such an increased vulnerability to IR-injury is clinically relevant, as 

this may contribute to worsening of the clinical outcome after a cardiovascular event. DeVan 

and colleagues demonstrated that traditional cardiovascular risk factors, such as advanced age, 

are associated with a greater magnitude and delayed recovery from endothelial IR-injury in 

humans 3. Also experimental studies suggest that the presence of cardiovascular risk factors or 

disease is associated with exaggerated IR-injury 2, 4, 5, although some studies suggest 

otherwise 6, 7. Accordingly, we examined the hypothesis that HF patients demonstrate an 

increased endothelial IR-injury compared to healthy peers in vivo.  

 

Originally described in animals, ischaemic preconditioning (IPC; intermittent episodes of 

nonlethal ischaemia) is a powerful strategy to limit or even prevent IR-injury 8. Previous 

human in vivo studies found that IPC effectively prevents endothelial IR-injury, with putative 

mechanisms for protection related to the sympathetic nervous system and the production of 

reactive oxygen species 9-11. Despite successful pre-clinical studies, clinical trials 

implementing IPC have demonstrated somewhat disappointing results 12. One potential 

explanation relates to the interaction between the efficacy of IPC and the presence of 

cardiovascular risk factors or disease 9. Indeed, some preclinical studies provide evidence that 

HF is associated with an attenuated efficacy of IPC to prevent injury 13-15. Since no previous 

study in humans has explored this hypothesis, the second aim of the study is to examine the 

efficacy of IPC to prevent or attenuate endothelial IR-injury in patients with HF. To study 
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these questions, we examined brachial artery flow-mediated dilation (FMD) before and after 

ischaemia (induced by 5-minute ischaemic handgrip exercise) and reperfusion (15-min) and 

use the reduction in FMD as a well-validated marker of endothelial injury. This model is 

frequently used as a surrogate endpoint for IR-injury 9, 10.  

 

 

METHODS 

Participants 

We included 15 subjects with HF (67±10 years, NYHA-class II/III, ejection fraction ≤ 45%) 

and 15 healthy, age- and sex-matched older subjects (65±9 years). HF patients were recruited 

from the Department of Cardiology of the Radboud University Nijmegen Medical Centre. We 

excluded pre-menopausal women (or women with hormone replacement therapy), subjects 

with diabetes mellitus type 1 or 2, hypertension (systolic ≥140 or diastolic ≥90 mmHg), 

chronic obstructive pulmonary disease and severe hepatic or renal insufficiency. Healthy 

control subjects were free of any chronic disease and did not use any type of medication 

known to interfere with the cardiovascular system. HF patients were categorized as New York 

Heart Association (NYHA) class II/III. Patients were on stable optimized pharmacological 

therapy for ≥3 months. All subjects signed an informed consent and study procedures were 

approved by the local ethics committee and performed according to the Declaration of 

Helsinki (2000). 

 

Experimental Design 

Subjects attended our laboratory twice (separated by at least 7 days). Brachial artery 

endothelial function was measured with FMD in the right arm. Brachial artery FMD was 
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measured before and after IR-injury. IR-injury was induced by a 5-minute ischaemic handgrip 

exercise stimulus followed by 15 minutes of reperfusion. Local ischaemia during handgrip 

exercise was induced with upper arm cuff inflation to 220 mmHg. This ischaemic handgrip 

protocol leads to a (near) maximal ischaemic stimulus and peak reactive hyperaemia 16. The 

transient decrease in FMD is believed to reflect IR-induced endothelial dysfunction, a finding 

supported by studies that successfully prevented this decline in FMD by well-established 

pharmacological (i.e. statins and physical (i.e. ischaemic preconditioning 9, 10) interventions 

that protect against IR-injury. As such, studies have typically adopted protocols that induce 

significant exposure to ischemia and reperfusion to examine IR-injury in conduit arteries. 

Furthermore, brachial artery FMD correlates well with coronary artery endothelial function in 

humans 17, and predicts cardiovascular events in asymptomatic subjects and in those with 

established cardiovascular diseases 18, 19. The assessment of FMD before and after IR-injury 

was performed with or without the preceding ischaemic preconditioning stimulus (IPC-

intervention). IPC consisted of 3 cycles of 5-minute upper arm cuff inflation to 220 mmHg, 

with 5 minutes reperfusion time after each occlusion. This IPC-protocol is based on previous 

studies that have reported a protective effect of this stimulus in the heart or peripheral tissues 

9, 10.  

 

Measurements 

Body anthropometric data. Body mass (Seca 888 scale, Hamburg, Germany) and height were 

measured to calculate body mass index (in kg/m2). A four-point skin fold thickness 

measurement (biceps, triceps, sub-scapular, supra-iliac) was obtained in order to calculate the 

lean body mass. Waist circumference was measured midway between the lower rib margin 

and iliac crest. Hip circumference was measured at the level of widest circumference over 

greater trochanters. Waist to-hip ratio was calculated as waist circumference divided by hip 



Seeger et al. Impact of heart failure on IRI and IPC 

6 
 

circumference. Resting heart rate and blood pressure were measured twice in supine position, 

using a manual sphygmomanometer after 5-min of rest.  Finally, with a finger stitch a small 

amount of blood was collected in order to assess glucose and blood cholesterol levels. 

 

Flow mediated dilation (FMD). Before each experiment, participants refrained from food 

ingestion ≥6 hours, caffeine and products with high levels of vitamin C ≥18 hours, and from 

strenuous physical activity ≥24 hours. Subjects were tested at the same time of day to prevent 

diurnal variation in FMD response. All measurements were performed in a temperature-

controlled room (22.5°C ) and using recent guidelines of FMD 20.  

Subjects rested in a supine position with the right arm extended and immobilized, supported at 

an angle of ~80° abduction from the torso. Heart rate and mean arterial pressure were 

determined with a manual sphygmomanometer. For the assessment of FMD, a rapid 

inflation/deflation pneumatic cuff was placed distal to the olecranon process to provide an 

ischaemic stimulus distal from the brachial artery to provoke vasodilation and subsequent 

shear stress. A 10-MHz (T3000, Terason, Aloka, UK) multi-frequency linear array probe 

attached to a high-resolution ultrasound machine was used to perform imageing. The brachial 

artery was imaged in the distal third of the upper arm. Ultrasound parameters were set to 

optimize longitudinal B-mode images of the lumen/arterial wall interface. A continuous 

Doppler velocity assessment was obtained simultaneously, and data were collected using the 

lowest possible insonation angle (always <60°), which did not vary during each study 20. After 

a resting period of at least 15 minutes, 1 minute of baseline recording of the arterial diameter 

and velocity was performed. Subsequently, the occlusion cuff was inflated to 220 mmHg for 5 

minutes. The arterial diameter and velocity recordings were restarted at least 30 seconds 

before cuff deflation and continued for at least 3 minutes after deflation. Peak arterial 

diameter and flow, and the time to reach this peak after cuff deflation, were recorded. 



Seeger et al. Impact of heart failure on IRI and IPC 

7 
 

  

Brachial artery diameter and blood flow analysis 

Analysis of the brachial artery diameter was performed using custom-designed edge-detection 

and wall-tracking software, which is independent of investigator bias. Baseline data were 

calculated across the 1 minute preceding cuff inflation. Following cuff deflation, peak 

diameter was automatically detected according to an algorithm as described in detail 

elsewhere 21. Within-subject reproducibility of the FMD using this semi-automated software 

is 6.7-10.5% (coefficient of variation) 22. Post-deflation shear rate data, derived from velocity 

and diameter measures, was used to calculate the area under the shear rate curve (SRAUC).  

 

Statistical analysis 

All data were analyzed using the Statistical Package for the Social Sciences (SPSS, version 

20). Data are presented as mean±SD unless stated otherwise. Baseline characteristics between 

groups were compared using an unpaired Student’s t-test. In order to evaluate the impact of 

IR on endothelial function (measured as FMD) between groups (primary aim), and whether 

IPC can (partially) prevent endothelial IR (secondary aim), we employed a linear mixed 

model analysis. For aim 1, FMD was analysed with random factor subject and 2 fixed factors: 

time (pre versus post) and group (HF versus control). The interaction-effect IR*group was 

used to examine our primary aim (i.e. examine whether IR injury was different between 

groups). To examine whether IPC can prevent the decline in FMD after IR in both groups (i.e. 

secondary aim), we repeated this analysis with the addition of 1 fixed factor: intervention 

(IPC versus control) and explored the interaction IR*group*IPC. When a significant 

interaction-effect was found, we adopted post-hoc analysis to identify differences.  

A recent study described that inadequate scaling for FMD would be present if the upper 

confidence limit of the regression slope of the relationship between logarithmically 
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transformed base diameter and peak diameter is less than one 23.  In such an event, FMD% 

may not be an appropriate measure to estimate endothelial function. Therefore, we repeated 

the analysis for FMD using the allometric modelling solution 23. The level of statistical 

significance was set at 0.05. 

 

RESULTS 

Baseline characteristics are presented in Table 1 and 2. Compared to controls, HF patients 

demonstrated a lower total cholesterol and a higher waist-to-hip ratio, whilst no differences 

between HF patients and controls were found for age, body mass, height, systolic blood 

pressure, diastolic blood pressure, fat percentage and fasting glucose.  

 

Endothelial IR-injury 

We found no significant differences between HF patients and healthy controls for baseline 

brachial artery diameter, brachial artery FMD (absolute (FMDmm)) or relative change from 

baseline (FMD%), time to peak diameter, or SRAUC (all P>0.05, Table 3). IR resulted in a 

significant increase in resting diameter (Table 3). To control for the potential impact of the 

increase in diameter on FMD%, we included baseline diameter as a co-factor in the 2-factor 

statistical analysis (IR and group). This analysis revealed a significant interaction-effect 

(IR*group: P=0.01, Table 3). Subsequent analysis revealed that IR resulted in a significant 

decrease in brachial artery FMD in HF and controls (P=0.002 and 0.02, respectively, Figure 

1). However, the magnitude of decrease in FMD after IR was larger in  HF patients compared 

to controls (Table 3). Also when FMD was presented as the absolute change (in mm), we 

found that the decrease in FMDmm after IR in HF patients was significantly larger than in 

controls (Table 3). When repeating the analysis for FMD using the allometric scaling 
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approach, including correction for the change in diameter, we confirmed our initial 

observations of a larger decline in FMD in HF compared to controls after IR (Table 3). 

 

IPC and endothelial IR-injury 

We did not find differences in HF patients or in controls between both testing days for 

baseline brachial artery diameter, brachial artery FMD (absolute (FMDmm)) or relative 

change from baseline (FMD%), time to peak diameter, or SRAUC (all P>0.05, Table 3). In line 

with the analysis above, we statistically controlled for the potential impact of baseline 

diameter on the FMD%, by including these parameters as a co-factor in the statistical 

analysis. The 3-way ANOVA confirmed the presence of a decrease in brachial artery FMD 

after IR (P<0.001), which is significantly larger in HF patients compared to controls (P=0.01, 

Figure 1). Moreover, IPC did not significantly alter the decrease in FMD (Time*Group*IPC-

interaction: P=0.85). Also when FMD was presented as the absolute change (in mm) or using 

allometric scaling, we found that the decrease in FMD after IR was not changed by IPC 

(Table 3). Post-hoc analysis revealed that IPC prevented the decline in FMD after IR in 

healthy controls, whilst IPC showed no effect in heart failure patients (Table 3). 

 

 

DISCUSSION 

Our study provides a number of novel findings. First, we found a significantly larger decline 

in brachial artery FMD after IR-injury in HF patients (~46%) compared with their healthy 

peers (~16%). This indicates that in agreement with our hypothesis, HF patients demonstrate 

an exaggerated endothelial injury after IR compared to their healthy controls. Second, we 

found that IR-induced endothelial dysfunction cannot be prevented by ischaemic 
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preconditioning in HF patients. Accordingly, the magnitude of decline in FMD after IR-injury 

when preceded with IPC, remains larger in HF patients than in their healthy age- and sex-

matched controls. Therefore, our study revealed that HF is associated with an exaggerated 

decline in endothelial function after IR-injury, whilst IPC failed to protect against this 

decrease.  

 

Endothelial IR-injury 

In agreement with several previous studies, we found that IR-injury induces a transient, 

conduit artery endothelial dysfunction 9, 10. A novel observation is that HF patients 

demonstrate an exaggerated decline in FMD after IR-injury compared with their healthy 

peers. To date, the impact of HF on IR-injury has only been examined in animal studies, 

which provided conflicting results ranging from an increased 6, 7 to a decreased tolerance 2, 4, 5 

against prolonged ischaemia. Differences in the ischaemia-stimulus within and between 

studies may contribute to these conflicting results. In our study, both groups received the 

same ischaemic stimulus. Moreover, inter-species differences or the experimental procedures 

to induce HF may also have contributed to the conflicting results from animal studies. 

Nonetheless, our study provides support that, in humans, HF is associated with an 

exaggerated decline in endothelial function after endothelial IR-injury. 

 

The larger decline in FMD in HF patients than controls after IR may relate to differences in 

antioxidative capacity between groups. Endothelial injury after IR is caused, at least partially, 

by excessive production of oxidative stress 24. Whilst healthy individuals have a well-

controlled balance between the production of reactive oxygen species (ROS) and 

antioxidative enzymes, patients with HF demonstrate less antioxidative capacity, resulting in 

increased oxidative stress 25, 26.  Nonetheless, our novel observations in HF patients warrants 
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future research to better understand the potential underlying mechanisms that contribute to the 

exaggerated IR-injury in HF. 

 

IPC and endothelial IR-injury 

In a recent study, we demonstrated that the well-established protective effects of IPC are 

abolished in healthy older men compared to younger control patients 9.  In addition, the 

present study provides evidence that the protective effect of IPC to attenuate endothelial IR-

injury is also abolished in HF patients. This latter observation is in line with data from 

animals, supporting an emerging hypothesis of a reduced efficacy of IPC associated with 

cardiovascular disease or risk factors 12, 13, 27. For example, a recent animal study revealed the 

inability of preconditioning to protect the old diabetic heart against an ischaemic insult 28. In 

line with these findings, preclinical studies in patients with HF demonstrated an impaired 

effect of preconditioning to prevent ischaemia-induced tissue damage 13-15.   

 

Our study supports the detrimental findings on the efficacy of IPC in HF patients. We can 

only speculate about possible mechanisms to explain this finding. Preclinical studies suggest 

that the impaired efficacy of IPC in cardiovascular disease is linked to morphological and 

biochemical alterations, which may impact on signal transduction 27. For instance, it was 

recently demonstrated that the presence of post-infarction cardiac remodelling is closely 

linked to an abolished effect of IPC 15. Whilst this finding supports a role for morphological 

changes underlying our findings, others have provided support for biochemical alterations in 

patients with HF. Indeed, IPC in HF failed to induce protein kinase C-ε translocation 29, 

which represents an important step in the protection through preconditioning. Finally, 

mitochondrial defects in the genesis and progression of HF have also been proposed to 
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contribute to the diminished effect of IPC. While mitochondria seem to serve as end-effectors 

of IPC, decreased enzyme activities of the electron transport seen in failing hearts may 

potentially negatively impact the efficacy of IPC 27.  

 

Clinical implication. Our finding of a reduced efficacy of IPC in HF patients may have 

clinical implications. Various (non)pharmacological preconditioning interventions are 

currently applied in randomised controlled trials in patients, including those with HF. Despite 

some recent successful studies 30, 31, application of (remote) IPC in the clinical setting in 

general is often disappointing 32. Especially the increased cardiovascular death rate in post-

infarcted, failing hearts suggests that endogenous protective mechanisms in HF against IR-

injury may be lost or attenuated 27; a finding which is in line with the present study. Possible 

reasons relate to the inclusion of relatively young animals in preclinical studies with a 

relatively short disease duration, whilst clinical trials mostly involve patient groups such as 

HF (e.g. in heart transplantation) 27. Therefore the majority of preclinical studies do not 

adequately reflect the clinical setting in which patients are included with lower efficacy of 

IPC. This should be taken into consideration when examining the impact of IPC in clinical 

groups, such as HF. 

  

Limitations. A number of limitations must be discussed. First, our model to examine IR-injury 

involved measurement of endothelial function in the forearm. Although strong correlations 

have been reported between brachial artery FMD and coronary endothelial function 17, caution 

should be taken when extrapolating our findings to other vascular beds. Given the aetiology of 

HF as a disease affecting the heart, studying the heart muscle tissue directly might reveal even 

more pronounced results on the magnitude of IR-injury. Secondly, in contrast to previous 

studies that adopted 15-20 minutes of ischemia to induce endothelial IR-injury, our study used 
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5-min ischaemic handgrip. However, previous work demonstrated that 5-minutes of 

ischaemic handgrip exercise induces reperfusion that is at least similar to 15-minutes of 

ischemia. Moreover, FMD decreased in both groups using this protocol. Therefore, this 

approach is valid to examine endothelial IR-injury. Third, patients in our study continued their 

medication during testing. Continuing medication in HF patients may explain why we found 

no differences in FMD between groups.  Indeed, our FMD-data matches with previous studies 

that included medicated HF patients 33. We deliberately chose to continue (pharmacological) 

treatment, so that our results would reflect a ‘real life’ situation. This approach revealed, 

despite the intake of drugs with established preconditioning effects (i.e. statins), that an 

exaggerated endothelial IR-injury in HF patients could not be attenuated by IPC. These 

findings raise questions regarding the potential loss of preconditioning effects of statins with 

sustained intake, such as recently highlighted 34. Finally, we only examined a single time-

point after IR-injury. This limits insight into a potential difference between groups (or 

between interventions) in the time-course of restoration of FMD after IR injury. Such 

differences in time-course may have provided further insight to better understand our 

findings.   

 

In conclusion, we provide data in humans in vivo that HF is associated with an exaggerated 

damage to the endothelium after an ischaemic insult, which cannot be prevented by IPC. 

These novel findings may contribute to the poor clinical outcome after cardiac injury in HF 

patients, and should be considered when examining the effects of traditional, non-

pharmacological preconditioning in HF patients.  
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FIGURE LEGENDS 

FIGURE 1. Brachial artery flow-mediated dilation before (baseline, black bars) and after 

endothelial ischaemia-reperfusion (Post IR, white bars) ischaemia-reperfusion (IR) 

injury and when preceded by ischaemic preconditioning (IPC + IR-injury) in healthy 

controls (A, n=15) and heart failure patients (B, n=15). A mixed model analysis 

revealed a statistically larger decline in FMD after IR in heart failure compared to 

controls (P=0.001), whilst IPC did not change the decline in FMD after IR in both 

groups (P=0.87).  Error bars represent SE. *Post hoc significantly different from 

baseline at P<0.05. #Post hoc significantly larger change in FMD than in controls at 

P<0.05. 
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