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Aim: Advanced age is associated with vascular endothelial dysfunction, characterized 

by reductions in endothelium-dependent vasodilation of conduit and resistance 

arteries, in part from decreased nitric oxide (NO) bioavailability. Although vascular 

smooth muscle function (SMF), assessed by responsiveness to an exogenous NO 

donor, is typically reported to be intact, many of these studies are limited by small 

sample size. Therefore, the purpose of this meta-analysis is to systematically review 

and determine whether vascular SMF is different between older versus young healthy 

subjects. 

Design: We conducted a systematic search of MEDLINE, Cochrane and Scopus, since 

their inceptions until January 2014 for articles evaluating SMF in the brachial artery 

and/or resistance arteries (BASMF and RASMF, respectively), as assessed by the 

endothelium-independent vasodilator response to exogenous NO donors in older 

(≥60 years) and young (<30 years) groups of healthy subjects. Meta-analyses were 

performed to compare the mean difference (MD) in BASMF and the standardized 

mean difference (SMD) in RASMF between older and young groups. Subgroup analyses 

were performed to identify sources of heterogeneity. 

Results: Fifteen studies assessing BASMF and 20 studies assessing RASMF were 

included, comprising 550 older and 516 young healthy subjects. After data pooling, 

BASMF and RASMF were lower in older compared with young groups (MD=-1.89 %, 

P=0.04; SMD=-0.46, P=0.0008, respectively). Significant heterogeneity was observed in 

the BASMF (I2=74 %; P<0.00001) and RASMF (I2=57 %; P=0.0008) meta-analyses. 

Subgroup analyses revealed that studies with (predominantly) males showed similar 

SMF responses between older and young groups. 

Conclusions: Based on current published studies, vascular SMF is reduced in conduit 

and resistance arteries of otherwise healthy older subjects, particularly in women.  
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INTRODUCTION  1 

Older age is a primary risk factor for the development of cardiovascular diseases [1, 2]. 2 

The influence of advanced age on increased cardiovascular risk is, at least partly, 3 

mediated through its effects on the arterial vasculature [1].  In this regard, ageing is 4 

associated with vascular endothelial dysfunction in humans, characterized by reduced 5 

endothelium-dependent vasodilator function in conduit [3-13] and resistance [6, 9, 14-6 

24] arteries.  Alterations in the nitric oxide (NO) signaling pathway and/or decreased 7 

NO bioavailability have been proposed to contribute to the age-related decrease in 8 

endothelium-dependent vasodilator function [25, 26].  9 

 10 

The ability of vessels to dilate is dependent on the function of the endothelium, but is 11 

also subordinated to vascular smooth muscle (vasodilator) function (SMF). Smooth 12 

muscle responsiveness represents the final, and frequently underappreciated, step of 13 

endothelium-dependent vasodilation. However, relatively little is known about the 14 

impact of advanced age on SMF. Some reports from animal studies indicate that 15 

advanced age is associated with reduced vascular SMF [27-29]; nonetheless, this finding 16 

is not universal [25]. In humans, studies assessing vascular SMF in healthy older and 17 

young subjects have reported variable results, possibly as a result of small sample sizes 18 

[3-6, 8-10, 12, 14-24, 30-43].  19 

 20 

Therefore, the primary aim of this study was to perform a systematic review and meta-21 

analyses of available studies comparing vascular SMF in older and young healthy 22 

subjects.  We hypothesized that SMF would be reduced in conduit and resistance 23 

arteries of older compared with young healthy adults. We selected studies that 24 

assessed SMF, determined by the endothelium-independent vasodilator response to 25 
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exogenous NO donors, in the brachial artery (BASMF) and in resistance arteries 26 

(RASMF) of healthy young and healthy older subjects. 27 

 28 

METHODS 29 

The review is reported according to the Meta-analysis Of Observational Studies in 30 

Epidemiology (MOOSE) Group guidelines [44].  31 

 32 

Data sources and searches 33 

Our systematic search included MEDLINE, Cochrane and Scopus, since their 34 

inceptions until January 2014. We used combinations of the subject headings “older”, 35 

“vascular smooth muscle”, “endothelium independent”, “nitroglycerin”, “sodium 36 

nitroprusside”, “vascular function”, “vasodilation” and “vascular reactivity”; the search 37 

strategy for MEDLINE is shown in Supplemental Figure S1. We also performed hand 38 

searching in reference citations of articles included in meta-analysis and related 39 

citations in MEDLINE.  40 

 41 

Study selection  42 

To be included in the analysis, an observational report had to assess BASMF and/or 43 

RASMF in an older group (mean age ≥60 years) and a young group (mean age <30 44 

years) of healthy subjects. In the event of multiple publications pertaining to the same 45 

research, the first published or most comprehensive study was included. Inclusion of 46 

studies was not limited by publication status or language.  47 

 48 

Data extraction and quality assessment 49 



7 
 

The following variables were extracted into a pre-formatted spreadsheet: authors, year 50 

of publication, characteristics of study participants (n, gender, age, height, weight, body 51 

mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), 52 

physical activity, maximal oxygen consumption (VO2max), morbidities, risk factors to 53 

health, medication) and vascular variables (vascular region, vasodilation parameter, 54 

baseline vascular tone, NO donor, dosage, time of analysis after NO donor 55 

administration, wall-tracking system, BASMF, RASMF, endothelial function). A 56 

systematic appraisal of quality for observational research (SAQOR) [45] previously 57 

applied in meta-analysis of observational studies evaluating arterial function [46] was 58 

performed to provide assessment of study quality. The SAQOR was adjusted to assess 59 

1) the older sample group, 2) the young sample group, 3) quality of vascular SMF 60 

measurement, 4) confounding variables and 5) data. Overall, the SAQOR was scored 61 

out of 16, quality deemed better with a greater score (Table S1 and S2).  62 

 63 

Data synthesis and analysis 64 

The meta-analyses and subgroup analyses were performed using Review Manager 65 

software (RevMan 5.2, Cochrane Collaboration, Oxford, UK). The primary outcomes 66 

were the mean difference (MD) in BASMF and the standardized mean difference (SMD) 67 

in RASMF between older and young groups. SMD summary statistic allowed us to 68 

standardize RASMF values expressed in different units into a uniform scale to complete 69 

this meta-analysis. Each MD and SMD was weighted according to the inverse variance 70 

method [47] and they were pooled with a random-effects model [48]. SMD of 0.2, 0.5, 71 

and 0.8 represents small, medium, and large effect sizes, respectively [49]. 72 

Heterogeneity between studies was assessed using the chi-squared test for 73 

heterogeneity and I2 statistics. Potential moderating factors were evaluated by 74 
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subgroup analysis comparing studies grouped by dichotomous or continuous variables 75 

potentially influencing vascular SMF. Median values of continuous variables were used 76 

as cut-off values for grouping studies. Publication bias was evaluated by estimating the 77 

asymmetry of the Begg and Mazumdar’s funnel plot [50]. A P value of less than 0.05 78 

was considered statistically significant. 79 

 80 

RESULTS 81 

Study selection and characteristics  82 

The flow diagram of the process of study selection is shown in Figure 1, which resulted 83 

in the inclusion of 33 articles. Thirteen of these articles assessed BASMF, 19 assessed 84 

RASMF and 1 assessed both BASMF and RASMF. One of the articles assessing BASMF 85 

presented two groups of older subjects, each of which had been independently 86 

compared with a location-matched young group [43]. Therefore, these data were 87 

evaluated as two individual studies. Table 1 shows the main clinical characteristics of 88 

the 15 BASMF studies and 20 RASMF studies, comprising a total of 550 subjects in the 89 

older group and 516 subjects in the young group. Older and young groups were 90 

gender-matched in all studies (omitting 1 study in which gender-related data was not 91 

available [22]). All subjects were free from co-morbidities and risk factors according to 92 

cut-off values, non-smokers (except for 1 study allowing < 5 cigarettes per day [23]) 93 

and not taking medications (other than oral contraceptives reported in 1 study [31]). 94 

The quality of the studies was moderate-to-high according to a previously validated 95 

scale [45, 51]. The mean score was 13.9±1.2 for studies assessing BASMF and 11.8±1.2 96 

for studies assessing RVSMF, out of a possible 16 points (Table S1 and S2). As for the 97 

evaluation of potential bias, the Begg and Mazumdar’s funnel plot for the MD in BASMF 98 

was moderately asymmetric, suggesting the presence of publication bias and/or other 99 
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biases (Figure S2). The Begg and Mazumdar’s funnel plot for the SMD in RVSMF was 100 

relatively symmetrical (Figure S3).  101 

 102 

Brachial artery smooth muscle function (BASMF) 103 

All studies assessing BASMF evaluated the vasodilator response to 0.4 mg of 104 

nitroglycerin by means of high-resolution ultrasound (Table 2). Resting brachial 105 

diameter ranged from 3.0 to 4.4 mm, with older groups commonly presenting a larger 106 

resting brachial diameter than young groups. After data pooling, the meta-analysis 107 

revealed that BASMF was lower in older compared with young groups (15 studies, 108 

MD=-1.89%; P=0.04) (Figure 2). Significant heterogeneity was detected (I2=74%; 109 

P<0.00001). In subgroup analyses, studies above the median in presence of females in 110 

the study group showed lower BASMF in older compared with young groups (8 111 

studies, MD=-3.38%; P=0.01).  In contrast, studies below the median in presence of 112 

females had similar BASMF in older and young groups (7 studies, MD=0.19%; P=0.80).  113 

Both sex subgroups were significantly different when compared with each other 114 

(P=0.02) (Table S3). In addition, lower brachial artery endothelial function in older 115 

compared with young groups was related to lower BASMF (P=0.03, Table S3). No 116 

other potential moderating factor (n, age, height, weight, BMI, SBP, DBP, VO2max, 117 

vascular assessment, methodological quality, year of publication) significantly influenced 118 

the MD in BASMF between older and young groups in subgroup analyses (Table S3). 119 

 120 

Resistance artery smooth muscle function (RASMF) 121 

RASMF was determined by evaluating the absolute peak [6, 14, 15, 18, 23, 24, 30-33, 122 

35], percent increase from baseline [8, 9, 16, 17, 19-21, 34] or slope [22] in 123 

vasodilation in response to sodium nitroprusside (Table 3). After data pooling, the 124 
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RASMF was lower in older compared with young groups (20 studies, SMD=-0.46; 125 

P=0.0008) (Figure 3). Significant heterogeneity was detected (I2=57%; P=0.0008). In 126 

subgroup analyses, studies above the median in presence of females showed lower 127 

RASMF in older compared with young groups (10 studies, SMD=-0.77; P=0.001). In 128 

contrast, studies below the median in presence of females presented similar RASMF in 129 

older and young groups (9 studies, SMD=-0.17; P=0.20). Both sex subgroups were 130 

significantly different when compared with each other (P=0.02) (Table S3). No other 131 

potential moderating factor (n, age, height, weight, BMI, SBP, DBP, VO2max, vascular 132 

assessment, methodological quality, year of publication) significantly influenced the 133 

SMD in RASMF between older and young groups (Table S3). 134 

 135 

DISCUSSION 136 

In this systematic review and meta-analysis, we pooled and analyzed data from 33 137 

articles comparing vascular SMF, determined by the vasodilator response to exogenous 138 

NO donors, in 550 older and 516 young healthy subjects. The main finding of this 139 

meta-analysis is that vascular SMF is significantly lower in older compared to young 140 

individuals, a finding that is similarly present in conduit and resistance arteries (Figure 2 141 

and 3). In subgroup analyses, we found that sex altered the impact of age on vascular 142 

SMF.  More specifically, studies including females only or a higher ratio of females to 143 

males displayed a significant and marked impact of age on conduit and resistance artery 144 

SMF, whilst studies involving males only or a lower ratio of females to males reported 145 

no effect of age on SMF (Table S3).  146 

 147 

The impact of age on vascular SMF had not been explored in detail in most previous 148 

individual studies (Table 2 and 3), possibly because of low statistical power and 149 
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presence of confounding factors inherent in cross-sectional comparisons. Results from 150 

this meta-analysis indicate that, in addition to endothelial dysfunction, older age is 151 

associated with smooth muscle dysfunction in conduit and resistance arteries, as 152 

represented by reduced smooth muscle sensitivity to a NO donor. Consistent with 153 

this finding, studies performed in older rats demonstrated reduced vasodilator 154 

response to NO [27-29] and decreased vascular smooth muscle expression of soluble 155 

guanylyl cyclase (sGC) [27, 52] (i.e., the principal intracellular receptor of NO and 156 

mediates vasodilation via formation of cyclic guanosine monophosphate (cGMP) [53]). 157 

In humans, decreased expression and activity of sGC in brain tissue have been related 158 

to advanced age and Alzheimer’s disease, respectively, although no specific vascular 159 

measures were provided [54, 55]. Whether an age-related reduction in expression and 160 

activity of sGC in vascular smooth muscle contributes to a blunted vascular 161 

responsiveness to NO needs further investigation.  162 

 163 

A consistent finding from previous studies is that brachial artery flow-mediated 164 

dilation, as well as resistance artery responses to acetylcholine, are impaired in older 165 

healthy humans. As most of these previous studies found no difference in the 166 

endothelium-independent vasodilation to exogenous NO donors, the general 167 

consensus was that the lower flow-mediated dilation and resistance artery responses 168 

to acetylcholine supported the presence of a dysfunctional endothelium.  Our results, 169 

however, suggest the presence of a small-to-moderate but significant age-related 170 

impairment in SMF that is present across the vascular tree. Moreover, our finding also 171 

suggests that a portion of the impaired NO-dependent responses in conduit and 172 

resistance arteries in older healthy subjects may be in part due to reduced smooth 173 

muscle sensitivity to NO. This important observation should be taken into 174 



12 
 

consideration when interpreting the lower NO-dependent responses in healthy older 175 

humans.  176 

 177 

Another important finding of this meta-analysis was the influence of sex on the 178 

difference in vascular SMF between young and older humans. Studies that involved 179 

(predominantly) males, which is a common observation in studies in the field of 180 

cardiovascular physiology, found similar BASMF and RASMF between older and young 181 

groups. However, studies with females only or studies with a relatively high ratio of 182 

females to males reported a significantly lower BASMF and RASMF in the older group 183 

compared with the young group. One potential explanation for this finding may be 184 

related to menopausal status in women. Indeed, reduced vasodilation to exogenous 185 

NO donors has been reported in conduit and resistance arteries of healthy older 186 

women but not in those on hormonal replacement therapy. This suggests that 187 

hormone replacement therapy in postmenopausal women may preserve the sensitivity 188 

of vascular smooth muscle to NO [56-58]. In this regard, it is important to emphasize 189 

that none of the studies included in our meta-analyses involved women on hormonal 190 

therapy. Consequently, based on the assumption that the majority of older women 191 

were post-menopausal, the lower vascular SMF in older groups could be a result of the 192 

loss of vascular protection from circulating estrogens associated with post-menopause. 193 

Nevertheless, removal of estrogen with ovariectomy in rodents does not appear to 194 

alter vasodilator responses to sodium nitroprusside [59, 60], suggesting that loss of 195 

estrogen after menopause may not be the sole factor contributing to reduced vascular 196 

SMF in older women. Alternatively, estrogen-independent alterations in the NO 197 

signaling pathway could underlie the altered vascular SMF in older women in view of 198 

the decreased NO-stimulated vascular cGMP formation in middle-aged and older 199 
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women (with no report of menopause) compared with men [61]. Whilst speculative, 200 

the sex-related reduced vascular sensitivity to NO might partly explain why women 201 

remain more symptomatic and present lower cardiovascular status compared with 202 

men after long-term nitrate therapy for heart failure [62]. 203 

 204 

A potential explanation for a lower NO-mediated dilation of the brachial artery in 205 

older subjects may relate to the larger baseline diameter. As demonstrated in several 206 

previous studies, the brachial artery dilator response to ischemia or glyceryl trinitrate 207 

is inversely related to the baseline diameter [63-67]. Nonetheless, in the present study, 208 

the difference in baseline brachial diameter between older and young groups did not 209 

modify the MD in BASMF according to subgroup analysis (Table S3). Moreover, the 210 

magnitude of the difference in baseline brachial diameter between older men and 211 

young men (4 studies) was not different than the difference between older women and 212 

young women (3 studies) (P=0.24). Furthermore, the impact of sex on BASMF is not 213 

explained by artery diameter [68]. Taken together, we believe differences in brachial 214 

artery diameter between older and young groups do not entirely explain the age-215 

related decline in BASMF observed in the present meta-analysis.  216 

 217 

As for the prognostic value of vascular SMF, adverse cardiovascular events were 218 

associated with reduced smooth muscle sensitivity to NO in high-risk populations 219 

when assessed in conduit [69] and resistance arteries [70] by means of ultrasound and 220 

plethysmography, respectively. It should be noted that blood flow responses in the 221 

microcirculation assessed via plethysmography and laser Doppler techniques —such as 222 

those used in the studies included in the RASMF meta-analysis— may be, to a certain 223 

degree, dependent on microvascular structure, which in turn is strongly associated 224 
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with cardiovascular events [71]. Conversely, NO-dependent responses determined by 225 

micromyography did not predict cardiovascular events in high-risk patients, suggesting 226 

that resistance artery function per se has low clinical relevance [72]. Similarly, it cannot 227 

be discarded that the age-related reduction in RASMF is an observation dependent on 228 

differences in microvascular structure. Further research is warranted to determine the 229 

extent to which vascular structural changes with ageing influence the non-invasive 230 

estimates of smooth muscle responsiveness to NO and their clinical significance.   231 

 232 

There are some limitations in this meta-analysis. First, cross-sectional comparisons may 233 

be misleading when addressing the question of the impact of advanced age [73]. 234 

Second, we were unable to accurately determine the level of physical activity or fitness 235 

in the included studies. Since physical activity or exercise training has well-established 236 

effects on endothelial function [74], we were unable to identify the potential impact of 237 

this factor on our results. Likewise, body composition, fat distribution and blood lipids 238 

could be suggested as potential moderating factors, albeit not investigated in this meta-239 

analysis. Third, although single-dose (0.4 mg of nitroglycerin) is the common procedure 240 

to evaluate BASMF (Table 2), there are physiological and methodological variables that 241 

may affect the reproducibility of BASMF [75, 76]. In addition, the administration of 0.4 242 

mg of nitroglycerin is considered to induce a maximal NO-mediated vasodilator 243 

response [75], which could be dissociated from vascular smooth muscle submaximal 244 

responses to lower or step-wise doses of NO. In this respect, dose-response studies 245 

might have higher sensitivity to detect small differences in BASMF between older and 246 

young groups [75].  247 

 248 
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In conclusion, the current meta-analysis provides evidence that advanced age is 249 

associated with a relatively small, but significant impairment in conduit and resistance 250 

artery SMF in healthy humans. The magnitude of vascular smooth muscle dysfunction 251 

seems more prevalent in women than in men, potentially related to the loss of 252 

circulating estrogens in women after menopause. A potential implication of our finding 253 

is that the impairment in conduit and resistance artery endothelial function with 254 

advanced age may, at least in part, be attributed to changes in vascular SMF in healthy 255 

adults. Further studies are needed to determine sex-related mechanisms that may 256 

influence the ageing-associated alterations in vascular SMF in humans.  257 

 258 
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FIGURE LEGENDS 

 

FIGURE 1 Flow diagram of the process of study selection 

 

FIGURE 2 Forest plot of the mean difference (MD) in brachial artery smooth muscle 

function (BASMF) between older and young groups. BASMF was expressed as the 

percentage increase in brachial artery diameter from baseline to maximal vasodilation. 

Squares represent the MD in BASMF for each study. The diamond represents the pooled 

MD in BASMF across studies. CI, confidence interval; IV, inverse variance; SD, standard 

deviation 

 

Figure 3. Forest plot of the standardized mean difference (SMD) in resistance artery 

smooth muscle function (RASMF) between older and young groups. Squares represent the 

SMD in RASMF for each study. The diamond represents the pooled SMD in RASMF across 

studies. CI, confidence interval; IV, inverse variance; SD, standard deviation 
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TABLE 1.  Main clinical characteristics of studies included in the meta-analyses 

 n Females (%) Age (years) BMI (m2/kg) 
 
SBP (mm Hg) 

 
DBP (mm Hg)  

 
Morbidities Study,  year of publication YNG OLD YNG OLD YNG OLD YNG OLD YNG OLD YNG OLD 

Studies assessing brachial artery SMF             

DeVan et al [4], 2013  21 25 12 17 24±5 62±6* 23±5 26±6* 111±11 121±12* 60±5 75±6* none 

Pierce et al [42], 2011 16 18 0 0 25±4 63±5* 26±4 27±3 118±13 124±11 69±9 78±5* none 

Black et al [3], 2009 9 8 100 100 26±3 60±6* 23±3 31±6* 101±12 122±14* 56±9 67±8* none 

Donato  et al [6], 2009 27 23 0 0 22±5 62±5* 25±5 26±5* 117±11 124±10* 63±11 78±10* none 

Walker et al [12], 2009 26 15 0 0 23±10 66±4* 24±5 26±4 116±10 124±12* 61±5 74±8* none 

Donato et al [5], 2007 51 44 0 0 23±7 63±7* 24±7 26±7* 114±7 121±13* 62±7 75±7* none 

Gates et al [39], 2007 10 12 50 50 21±3 60±7* 22±3 25±3* 105±6 114±17 60±6 70±10* none 

Parker et al [41], 2006 8 8 100 100 22±4 70±7* 22±3 25±3* 109±15 131±11* 68±7 78±11* none 

Eskurza et al [36], 2006 9 9 11 11 26±3 64±6* 24±4 26±2 110±6 108±9 60±9 71±9* none 

Eskurza et al [38], 2005 10 9 0 0 22±3 62±6* 23±3 26±3 110±9 111±12 58±6 69±3* none 

Heiss et al [40], 2005 20 20 50 65 25±4 61±9* 22±4 24±4 117±9 122±13 77±9 81±9 none 

Eskurza et al [37], 2004 11 9 0 0 25±3 64±6* 24±3 26±3 113±7 116±12 63±7 73±12* none 

McCrohon et al [10], 2000 10 10 100 100 28±5 61±3* 23±2 24±2 106±13 124±9* 75±10 79±12 none 

Woo et al A [43], 1997 19 19 68 68 29±5 63±5* 24±8 23±4 115±11 129±14* 76±10 83±8 none 

Woo et al B [43], 1997 19 19 68 68 28±6 63±4* 23±3 25±3 108±9 127±13* 75±7 79±11 none 

Mean 18 17 37 39 25 63 23 26 111 121 66 75 ― 

Studies assessing resistance artery SMF            
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Millet et al [30], 2012  20 42 85 86 24±3 69±7* 22±3 23±4 116±8 128±10* 67±7 71±7* none 

Donato et al [8], 2011 16 22 25 32 25±4 64±5* 24±3 28±5* 111±12 126±14* 71±8 78±9* none 

Westby et al [24], 2011 14 14 0 0 25±4 61±7* 24±2 26±2* 114±11 125±11* 66±7 78±7* none 

Kirby et al [16], 2010 13 13 38 38 21±4 66±11* 22±2 24±3* N/A N/A N/A N/A none 

Tew et al [19], 2010 15 14 20 29 27±2 65±6* 25 27 119±12 124±12 75±9 79±7 none 

Donato et al [6], 2009 15 18 0 0 21±4 62±4* 25±4 26±4* 117±8 124±8* 63±8 78±8* none 

Nicholson et al [31], 2009 10 10 40 40 29±9 68±4* 24±3 25±2 116±16 122±13 62±8 69±12 none 

Kirby et al [17], 2009 14 14 36 36 22±4 65±7* 25±3 24±3 N/A N/A N/A N/A none 

Donato et al [32], 2008 11 14 18 29 23±7 64±4* 24±2 26±3 110±10 123±11* 71±7 78±7* none 

Galetta et al [9], 2006 16 16 50 31 27±2 65±4* 23±2 24±2 118±7 122±6 75±3 80±2* none 

Al-Shaer et al [21], 2006 15 17 47 24 22±4 62±12* 25±4 28±4* 116±12 126±12* 67±12 78±8* none 

Newcomer et al [33], 2005 8 8 0 0 24±6 67±6* 25±3 26±3 113±11 129±8* 74±11 81±8 none 
Weverling-Rijnsburger et al 
[34], 2004 7 8 0 0 22 80* N/A N/A N/A N/A N/A N/A none 

Ahlers et al [14], 2004 14 10 0 0 23±3 62±7* N/A N/A 118±11 120±19 74±11 72±13 none 

Smith et al [35], 2003 10 20 0 0 28±3 62±4* 25±5 29±3 115±9 124±9 64±9 81±9* none 

Minson et al [18], 2002 10 10 50 50 22±6 77±16* 24±3 24±3 120±13 137±19* 71±9 79±13 none 

DeSouza et al [15], 2002 22 41 0 0 28±5 61±6* 23±6 27±4* 114±14 122±13* 65±9 76±13* none 

Wang et al [20], 2002 12 10 0 0 24±3 67±3* 22±5 23±4 127±17 139±22 77±10 73±16 none 

Taddei et al [23], 2000 12 12 33 33 27±2 63±6* 23±4 24±4 119±5 119±6 77±3 78±3 none 

Gerhard et al [22], 1996 11 7 N/A N/A 20-29 60-69* N/A N/A N/A N/A N/A N/A none 

Mean 13 16 23 23 24 66 24 26 116 126 70 77 ― 
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Data are n, % of females, mean or mean ± SD. One study presented two groups of older subjects, each of which had been independently compared with a young group [43], 
thus they were evaluated as individual studies (distinguished by A and B). * significantly different from young group at P<0.05 
BMI, body mass index; DBP, diastolic blood pressure; OLD, older group; SBP, systolic blood pressure; SMF, smooth muscle function; YNG, young group 
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TABLE 2. Brachial artery smooth muscle function (SMF) assessment of studies included in the meta-analysis  

Data are dose or mean ± SD. One study presented two groups of older subjects, each of which had been independently compared with a location-matched young 
group [43], thus they were evaluated as individual studies (distinguished by A and B). * significantly different from young group at P<0.05 
EF, endothelial function; N/A, data not available; NMD, nitrate-mediated dilation; NTG, nitroglycerin; OLD, older group; SMF, smooth muscle function; YNG, young 
group; ↔, no significant difference between older and young groups; ↓, significant decrease in older compared with young groups 

  
 

Resting diameter (mm) 
 

SMF 
 

EF 
Study,  year of 
publication Artery 

Wall-tracking 
system YNG OLD  

 
Stimulus Dose (mg)  OLD vs. YNG 

 
OLD vs. YNG 

DeVan et al [4], 2013  brachial computerized 4.0±0.4 4.0±0.5 
 

NTG sublingual 0.4 ↔ 
 

↓ 

Pierce et al [42], 2011 brachial computerized 4.0±0.4 4.1±0.5 
 

NTG sublingual 0.4 ↔ 
 

↓ 

Black et al [3], 2009 brachial computerized 3.3±0.1 3.6±0.6 
 

NTG sublingual 0.4 ↔ 
 

↓ 

Donato  et al [6], 2009 brachial computerized N/A N/A 
 

NTG sublingual 0.4 ↔ 
 

↓ 

Walker et al [12], 2009 brachial computerized 4.1±0.4 4.4±0.5* 
 

NTG sublingual 0.4 ↔ 
 

↓ 

Donato et al [5], 2007 brachial computerized N/A N/A 
 

NTG sublingual 0.4 ↔ 
 

↓ 

Gates et al [39], 2007 brachial computerized 3.7±0.4 4.0±0.8 
 

NTG sublingual 0.4 ↔ 
 

↓ 

Parker et al [41], 2006 brachial computerized 3.0±0.5 3.1±0.4 
 

NTG sublingual 0.4 ↓ 
 

↓ 

Eskurza et al [36], 2006 brachial computerized 4.0±0.6 4.3±0.7 
 

NTG sublingual 0.4 ↔ 
 

↓ 

Eskurza et al [38], 2005 brachial computerized 4.1±0.4 4.4±0.5 
 

NTG sublingual 0.4 ↔ 
 

↓ 

Heiss et al [40], 2005 brachial computerized 3.7±0.9 4.2±0.5* 
 

NTG sublingual 0.4 ↔ 
 

↓ 

Eskurza et al [37], 2004 brachial manual 4.1±0.3 4.3±0.3 
 

NTG sublingual 0.4 ↔ 
 

↓ 

McCrohon et al [10], 2000 brachial manual 3.1±0.3 3.6±0.4* 
 

NTG sublingual 0.4 ↓ 
 

↓ 

Woo et al A [43], 1997 brachial manual 3.5±0.5 3.6±0.6 
 

NTG sublingual 0.4 ↔ 
 

↔ 

Woo et al B [43], 1997 brachial manual 3.4±0.6 3.7±0.5 
 

NTG sublingual 0.4 ↔ 
 

↓ 
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TABLE 3. Resistance artery smooth muscle function (SMF) assessment in studies included in the meta-analysis  

    SMF  EF 
Study,  year of 
publication 

Vascular 
region  Technique  Stimulus 

 
OLD vs. YNG  Stimulus 

 
OLD vs. YNG 

Millet et al [30], 2012  
supramedial 
malleolar (skin) laser Doppler  SNP iontophoresis ↔  local heating ↔ 

Donato et al [8], 2011 forearm plethysmography  SNP infusion ↔  ACh infusion ↓ 

Westby et al [24], 2011 forearm plethysmography  SNP infusion ↔  ACh infusion ↓ 

Kirby et al [16], 2010 forearm plethysmography  SNP infusion ↔  ACh infusion ↓ 

Tew et al [19], 2010 forearm (skin) laser Doppler  SNP iontophoresis ↓  ACh iontophoresis ↓ 

Donato et al [6], 2009 forearm plethysmography  SNP infusion ↔  ACh infusion ↓ 

Nicholson et al [31], 2009 forearm plethysmography  SNP infusion ↔  N/A N/A 

Kirby et al [17], 2009 forearm plethysmography  SNP infusion ↓  ACh infusion ↓ 

Donato et al [32], 2008 forearm plethysmography  SNP infusion ↔  ACh infusion ↓ 

Galetta et al [9], 2006 forearm plethysmography  SNP infusion ↔  ACh infusion ↓ 

Al-Shaer et al [21], 2006 forearm plethysmography  SNP infusion ↓  ACh infusion ↓ 

Newcomer et al [33], 2005 lega  ultrasound  SNP infusion ↔  ACh infusion ↓ 
Weverling-Rijnsburger et al 
[34], 2004 forearm plethysmography  SNP infusion ↔  ACh infusion ↔ 

Ahlers et al [14], 2004 forearm plethysmography  SNP infusion ↔  ACh infusion ↓ 

Smith et al [35], 2003 forearm plethysmography  SNP infusion ↔  Bk infusion ↔ 

Minson et al [18], 2002 forearm (skin) laser Doppler  SNP microdialysis ↓  local heating ↓ 

DeSouza et al [15], 2002 forearm plethysmography  SNP infusion ↔  ACh infusion ↓ 
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a Leg and forearm resistance artery SMF were reported. Leg resistance artery SMF was used in meta-analysis because of lower (as compared with forearm) 
coefficient of variation  
ACh, acetylcholine; Bk, bradykinin; EF, endothelial function; N/A, data not available; OLD, older group; SMF, smooth muscle function; SNP, sodium 
nitroprusside; YNG, young group; ↔, no significant difference between older and young groups; ↓, significant decrease in older compared with young groups 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

Wang et al [20], 2002 lower leg (skin) laser Doppler  SNP iontophoresis ↔  ACh iontophoresis ↓ 

Taddei et al [23], 2000 forearm plethysmography  SNP infusion ↓  ACh infusion ↓ 

Gerhard et al [22], 1996 forearm plethysmography  SNP infusion ↔  ACh infusion ↓ 


